UNIVERSITY OF GOTHENBURG
SCHOOL OF BUSINESS, ECONOMICS AND LAW

Master Degree Project in Economics

The Machines are Coming

Non-parametric methods and bankruptcy prediction - An artificial
neural network approach

Ozan Demir

Supervisor: Mattias Sundén
Master Degree Project No. 2016:91
Graduate School



The Machines Are Coming

Non-parametric Methods and Bankruptcy Prediction - An Artificial Neural Network
Approach

Ozan Demir

© Ozan Demir, 2016.

Supervisor: Mattias Sundén, Department of Economics

Master’s Thesis 2016
Department of Economics
University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in BTEX
Gothenburg, Sweden 2016

v
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Non-parametric Methods and Bankruptcy Prediction - An Artificial Neural Network
Approach

Ozan Demir

Department of Economics

University of Gothenburg

Abstract

Prediction of corporates bankruptcies is a topic that has gained more importance
in the last two decades. Improvement in data accessibility makes the topic of
bankruptcy prediction models a widely studied area. This study looks at bankruptcy
prediction from a non-parametric perspective, with a focus on artificial neural net-
works (ANNs). Inspired by the classical work by Altman (1968) this study models
bankruptcies with classification techniques. Five different models - ANN, CART, k-
NN, LDA and QDA are applied to Swedish, German and French firm level datasets.
The study findings suggests the ANN method outperforms other methods with
86.49% prediction accuracy and struggles to separate the smallest companies in
the dataset from the defaulted ones. It is also shown that an increase in number of
hidden layers from 10 to 100 results in an increase of 1% in prediction accuracy but
the effect is non-linear.

Keywords: Bankruptcy prediction, machine learning, non-parametric methods, ar-
tificial neural networks.
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1

Introduction

Over the past decade, commercial banks devoted many resources to develop robust
internal models to better quantify financial risks and assign economic capital. These
ever increasing efforts have been recognized and further encouraged by different reg-
ulators. An important question for banks and the regulators is the evaluation of the
models predicting accuracy in predicting credit losses. Bankruptcy prediction mod-
els for individual obligors are a core part of the assessment made by investors and
financial institutions when estimating potential losses. Once a reliable and accurate
estimation of the creditworthiness of the firm is made, it is often straightforward
to estimate associated losses and loss distributions which can lead to sounder lend-
ing/investing decisions. Bankruptcy predictions are also useful from a policy and
regulatory perspective, where evaluating systemic risk and performing stress tests
on the financial system at both national or global level is a challenge. The latter
mentioned use of bankruptcy prediction models has grown in significance after the
burst of the financial crisis in 2008. There are however several challenges with es-
timation of creditworthiness that are owing to limitations of data availability and
subjectivity. The subjective factor could be a problem from a consistency perspec-
tive and often occurs when the default risk of an obligor is assessed by analysts.

The early credit scoring models were developed by Durand (1941) and Altman (1968)
where discriminant analysis is applied to separate creditworthy firms from non-
creditworthy firms. Lack of data for the universe of firms led to the development
of structural models. The structural models pioneered by Merton (1974) have been
popular in both academia and applied finance. The model by Merton (1974) was
later developed further by Black and Cox (1976) to increase predictability of de-
fault prior to the maturity date of the obligation. Other techniques that have been
applied to estimate bankruptcies include regression analysis with Probit (Boyes,
1989) and Logit (Ohlson, 1968) specifications. Many of the above mentioned mod-
els have shortcomings related to data-requirements and the ability to address the
complexity of the issue. In recent years, some cutting-edge technologies from other
disciplines such as Genetic Algorithms (Etemadi et al., 2011) and Neural Networks
(NN) (Atiya, 2001; Etemadi et al., 2011; Akkoc, 2012; Sun et al., 2014) have been
applied for credit scoring and resulted in better performance than traditional tech-
niques.

To the background that traditional credit scoring techniques such as regressions with
probit and logit specifications usually require more assumptions that might not hold
and still under-perform compared to some cutting-edge classification techniques, this



1. Introduction

study aims to model creditworthiness of Swedish corporates by applying different
classification techniques on corporate level data. The emphasis will be on non-
parametric methods with a focus on artificial neural networks. Five different type
of models will be tested, two parametric; linear discriminant analysis (LDA) and
quadratic discriminant analysis (QDA) and three non-parametric methods - classi-
fication and regression tree (CART), k-NN and artificial neural networks (ANN).
As a secondary contribution, this study aims to look at the effect of varying hidden
layers on the performance of artificial neural networks.

1.1 Credit Risk

The Basel Committee on Banking Supervision defines credit risk as the potential
that a borrower or counterpart will fail to meet its obligations in accordance with
agreed terms. Assessment of credit risk, and more specifically ensuring accuracy and
reliability of the evaluation is of critical importance to many market participants
motivated by different objectives. Credit risk management constitutes a critical
strategic part for the profitability of a lender. A common way of assessing credit risk
is by credit scoring models, in contrast to the subjective opinion of a loan officer, the
models analyse the borrowers creditworthiness by looking at quantitative data. A
good credit scoring model has to be highly discriminative: high scores reflect almost
no risk and low scores correspond to very high risk. An overview of techniques for
credit assessment will be presented in the next chapter.

1.1.1 Defining "Creditworthiness"

The creditworthiness of a corporate is a wide concept, it can be either defined as
a counterpart that is deemed “creditworthy” of a specific amount of money from a
lender and it can also be creditworthy in relative terms, by a specific rating or rank-
ing. This thesis follows a fairly binary perspective on creditworthiness, a company is
either creditworthy if it is not defaulted, or it is non-creditworthy if it has defaulted.
According to Standard & Poor’s (S&P), a default is first recorded upon the instance
of a payment default on a financial obligation. Dividend on stock is not part of a
financial obligation that qualifies as a default. In this thesis, a similar approach on
default has been followed — a corporate is defaulted if they failed to pay the interest
on their loans for more than 90-days, the company is also defaulted of it ceases to
exist due to failure of payment of obligations which led to bankruptcy.

1.2 Non-parametric Methods

A non-parametric method in statistics is a method in which no assumption about
the functional form of the underlying population distribution is made. Although
there are few assumptions made, a common assumption required and made about
the objects/observations is that they are independent identically distributed (i.i.d.)
from any kind of continuous distribution. As a result of these characteristics or lack
of assumptions; non-parametric statistics is also called distribution free statistics.
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There are no parameters to be estimated in a non-parametric model. In contrast
to non-parametric methods, parametric statistical models are models where the
joint distributions of the observations involves unknown parameters, that need to
be estimated. In the parametric setting, the functional form of the joint distribution
is assumed to be known. Although non-parametric and semi-parametric methods
are often lumped together under the title "mon-parametric methods', it is worth
differentiating between the two. A semi-parametric model is a method that might
have parameters but very weak assumptions are made about the actual form of the
distributions of the observations.

1.2.1 Non-parametric Density Estimation

In classification applications, the aim is to try to develop a model for predicting a
categorical response variable, for one or more predictor (input) variables. In other
words, if we know that an observation i.e. creditworthy or non-creditworthy arises
from one of different mutually exclusive classes or groups, then more specifically,
the aim is to estimate the probability of occurrence in each group at each point in
the predictor space. After the estimation of the probabilities, we can assign each
estimation point to the class with the highest probability at that point by segmenting
the predictor space into regions assigned to the different classes.

Decision

Figure 1.1: Two overlapping distributions and decision boundary.

Both parametric and non-parametric methods can be used to estimate probabili-
ties. The interest is to estimate density function f itself. Let X, X5, ..., X,, be a
random sample from a population with unknown probability density function f. If
we suppose the random sample is from a distribution with known density function
such as Normal distribution with mean p and 2. The density function f can then
be estimated by estimating the values of the unknown parameters p and o? from

3
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the sample and substitution the estimates into the function of the normal density.
Hence, the parametric density estimator becomes

A 1 1 -
fl@) = —=sern( g3 - i) (11)

2

. _n)2
5t and 67 = Taleit®
In case of a non-parametric estimation of a density function, the functional form is
not known or not assumed to be known. And there are several methods that can
be applied to estimate the density function. One of the oldest density estimator is
the histogram, where an "origin" x, and the class width A needs to be specified for

the specifications of the following interval

where [i =

L= (o ti-haot G+ (G=.—1,01,.) (1.2)

for which the number of observations falling in each I; is counted by the histogram.
The choice of "origin" is fairly arbitrary but the role of the class width becomes
immediately clear, the form of the histogram highly depends on these two tuning
variables. Another popular estimation method is the kernel estimator (naive esti-
mator). Similar to the histogram, the relative frequency of observations falling into
a small region ¢ computed. The density function f at a point x is as follows

1
f(x):}lllir(l)ﬁPr[x—h<X§x—|—h]. (1.3)

As it is with histograms, the bandwidth "h" needs to be specified however, there is
no need for a specification of the origin zy. Defining the weight function

_J 2 oif xl <1
v _{ 0 if otherwise (1.4)
Then,
f(z) = oy 1“’( A

()

; ! j T Xiy (1.5)

Instead of the rectangle weight function w(-) a general, more smooth kernel function
K (+) is chosen, the kernel density estimation can be defined as

fl) = S K (16)
K(x) <0, /O:O K(x)de = 1, K(z) = K(—z). (1.7)

The estimator depends on the bandwidth & > 0. The positivity of the kernel function
leads to a positive density estimate f(-) and the normalisation [ K(z)dx = 1 implies
[ f(z)dz = 1, which is a condition for f(x) to be a density.

4
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1.2.2 Why Non-parametric?

The field of credit-assessment has been a popular subject within both paramet-
ric and non-parametric methods. In studies such as Hernandez & Torero (2014),
the researchers are pointing at the advantage of non-parametric methods instead of
parametric for credit scoring when the odds of default are not linear with respect to
some of the explanatory variables. Similar results are shown in the paper Kumar &
Sahoo (2012) where non-parametric methods outperforms the parametric methods
in credit scoring. The advantages of non-parametric methods compared to paramet-
ric that are often quoted in literature are as follows.

o Non-parametric methods require less to no assumptions because they don’t rely
on the assumptions on the shape or parameters of the population distribution.

» FEasier to apply on smaller sample sizes

o Can be used on all types of categorical data, which are nominally scaled or
are in rank form, as well as interval or ratio-scaled data.

e They are almost as powerful as the parametric method if the assumptions
for the parametric methods don’t hold and when they hold non-parametric
methods generally outperform.

1.3 Statistical Classification and Machine Learn-

ing

The term classification occurs in a wide range of topics from social sciences to math-
ematical statistics. At its broadest meaning, the term covers any context in which
some decision or forecast is made on the basis of information available at the time
(input variables). Some contexts at which a classification procedure is fundamental
are for example mechanical procedures for sorting letters, assigning credit ratings
for individuals and corporates based on financial and personal information and even
preliminary diagnosis of a disease. The construction of a classification process for
a set of data in which true classes are known is also called pattern recognition, dis-
crimination or supervised learning. This is in contrast to the unsupervised learning
and clustering in which classes are inferred from data.

Machine learning is in general the term used for automatic computing procedures
based on logical or binary operations, that is capable of learning a task by training
on input examples. This study is concerned with the classification aspect of ma-
chine learning. The aim of machine learning here is to generate classification simple
enough for humans to understand. It must mimic human reasoning well enough to
both function and provide insight in the decision process of in this case assessing
creditworthiness of a company (Weiss Kulikowski, 1991).

There are a wide range of classification techniques used in the field of finance to-
day; one of the oldest classification procedures are the linear discriminants put forth

by Fisher (1936), the idea is to divide the sample space by a series of lines. The

5
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direction of the line drawn to bisect the classes is determined by the shape of the
clusters of the observations. In the case of linear discriminant analysis (LDA), the
distributions for each class are assumed to share the same covariance matrix which
leads to linear decision boundaries. No assumptions on the covariance matrices lead
to quadric discriminant analysis (QDA) allowing for non-linearity in the decision
boundary. Other popular techniques are decision trees (referred to as CART in this
study), this procedure is based on recursive partitioning of sample space, by divid-
ing the space into boxes and at each stage the boxes are re-examined to determine
if there is another split required. The splits are usually parallel to the y- and x-
axes(D. Michie, 1994.) Furthermore, the technique that has found more and more
applications in classification procedures is the k-Nearest-Neighbour (k-NN), the idea
is that it’s more likely that observations that are near to each other belong to the
same class. The sensitivity of the method can be changed by choosing a proper
k (number of nearest neighbours). What is of more importance for this study are
the Artificial Neural Networks(ANNs) ,that is finding applications in many different
aspects of statistical modelling, including classification. Neural Networks consists of
layers of interconnected nodes where every node is producing a non-linear function
of the input data that comes from the previous layer (either input data or from
previous node). In this sense, the complete network represents a complex set of
interdependencies that can incorporate degrees of non-linearity.(Hertz et al. 1991).

The research on optimal performance of classification techniques is not new, both in
studies where some of the above mentioned techniques were simulated (Tibshirani
LeBlanc, 1992, Ripley, 1994, Buhlmann & Yu, 2003; Kuhnert, Mengersen, & Tesar,
2003;) and in comparative studies in different areas such as business administration
(marketing) (Hart, 1992; West et al., 1997) natural sciences (Bailly, Arnaud &
Puech, 2007; Liu Chun, 2009) and medicine (Reibnegger, Weiss, Werner-Felmayer,
Judmaier, & Wachter, 1991). The major part of the studies looks at the overall
percentage of correctly classified cases by different classification techniques and the
results are sometimes contradicting. In two different studies such as Ripley (1994)
and Dudoits et al (2002) the researchers found that the traditional methods of
LDA and QDA performed better than CART but not as good as ANN. In the
study by Preatoni et al. (2005) LDA outperformed both CART and ANN but in
the contrary, Ture et al. (2005) and Yoon et al. (1993) shows that ANN shows
the highest accuracy rate of the above mentioned techniques. West et al.(1997)
shows that LDA and CART performs as well as or better than ANN on groups that
are linearly separable but in the presence of non-linearity, LDA and CART suffers
compared to k-NN and ANN. An overview of classification models is provided in
the appendix.



2

Review of Credit Evaluation
Models

This chapter will be dedicated to give a brief overview of current credit evaluation
models. Credit evaluation models can be divided into groups; structural, statisti-
cal and non-parametric. This study focuses on non-parametric evaluation models,
however, different perspectives on evaluating the creditworthiness of a company is
necessary for better and more complete understanding of the problem that is to be
tackled.

2.1 Structural Models

Structural models use the evolution of company’s structural assets, such as asset
values and debt values to estimate the time of default. Merton (1974) is the first
attempt to model the default probability in a structural way.

2.1.1 Merton’s Model

In Merton’s model, a company defaults if the company’s assets are below its out-
standing debt at the time of servicing the debt. Merton makes use of the Black and
Scholes (1973) option pricing model to build a valuation model for corporate lia-
bilities. This is fairly straightforward when the firm’s capital structure and default
assumptions are adapted to the requirements of the Black-Scholes model. Assuming
the capital structure of the firm is comprised by equity and a zero-coupon bond
with maturity 7" and face value D, of which the value at time t is denoted by E;
and z(t,T) respectively, for 0 <t < T. Where the firm’s asset value V; is the sum
of equity and debt values. According to these assumptions, the equity can be seen
as a call option on the assets of the firm with maturity 7" and strike price of D. If
the firm’s asset value V; at maturity 7" is equal to or larger than the face value of
the debt D then the firm doesn’t default. Default happens if V; < D. There are
several assumptions that Merton (1974) adopts, these are; firm can only default at
time T, in existence of transaction costs, bankruptcy costs, and taxes. There are
also assumptions on the lending and the interest rate r, borrowing and lending is
unrestricted at a constant r. The value of the firm in Merton’s model is invariant
when changes in capital structure occurs (Modigliani Miller, 1958).

The firm’s asset value is assumed to follow the process
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dV; = rVidt + o, V,dWy, (2.1)

where o, is the asset volatility and W; is a Brownian motion.
The equity- and bondholders pay-offs at time 7" is given by max(V; — D,0) and
V, — Ey, respectively

E; = max[V; — D, 0] (2.2)

AT, T) =V, - E, (2.3)

Applying the Black-Scholes pricing formula, the value of equity at time ¢t(0 <t < T)
is given by

E (Vi 0, T —t) = e " T 0[e" T3 (dy) — D®(dy)], (2.4)

where ®(-) is the distribution function of a standard normal random variable and
dy and dy are given by

(<5 ™%) + So3 (T — )

di = D , 2.5
! O'VvT —t ( )
dQZdl—O'V T—t. (26)
Then the probability of default at time 7" is given by
P[V; < D] = ®(—ds). (2.7)

An illustration of the model is depicted below.

Assets
Value
h

No Default

(] [

Detault

Debt Probability

0 T Time

Figure 2.1: Probability of Default in the Merton Model.

Merton’s model has many advantages and perhaps one of the most straightforward
advantage is that it allows to directly apply the option pricing theory developed
by Black and Scholes (1973). There are however necessary assumptions about the

8
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asset value process, interest rates and capital structure that needs to be satisfied.
As for many financial models, there is a trade-off between realistic assumptions and
how easy it is to implement and one could argue that this model ops for the latter.
One example of suggestions for improvement is from Jones et al. (1984) where it
is argued that introduction of stochastic interest rates and taxes would improve
the models performance. The Merton model was later built on by Black and Cox
(1976), introducing first passage models and hence making it possible to model the
possibility of default at any time ¢ and not only at maturity.

2.2 Statistical Models

A wide range of statistical techniques are applied in credit assessments and credit
scoring models. Techniques such as regression analysis, discriminant analysis, probit
and logit regression and many more have been applied in the past. This section will
be dedicated to give a brief overview of some of the techniques that are relevant for
this study.

2.2.1 Discriminant Analysis

The aim of discriminant analysis is to find a discriminant function to classify objects
(in this case, creditworthy and non-creditworthy) into two or more groups, based
on a set of features that characterizes the objects. In another words, the techniques
aim to maximize the difference between the groups, while trying to minimize the
differences among members of the same group.

Discriminant analysis application on credit scoring is first attempted by Durand
(1941), with a linear discriminant analysis Model (LDA). This model was further
developed by using company specific data in Beaver (1966), Altman (1968), Meyer
and Pifer (1970), Sinkey (1975), Martin (1977), West (1985) and many others. In
the important work of Altman (1968) a classical multivariate discriminant analysis
technique (MDA) is used, which builds on the Bayes classification procedure. It
assumes that the two classes (default and non-default) have Gaussian distributions
with equal covariance matrices. These assumptions and the ability of the method
to justify these assumptions are criticized in Thomas (2000) and West (2000). The
following financial ratios were used by Altman (1968) as inputs in Altman’s Z-score
model.

Financial Ratio

working capital /total assets
retained earnings /total assets
EBITA /total debt

market capitalization /total debt
sales/total assets

Table 2.1: Altman’s Ratios
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The model is using the following discriminant function to classify the companies
into groups

7 = )\11‘1 + )\2.1'2 + ...+ )\n.’ll'n, (28)

where x; represents inputs used (see above) as independent variables and ); indi-
cates discrimination coefficients.

Discriminant analysis can be divided into different categories with different strengths
and weaknesses. This study will focus on linear discriminant analysis (Applied by
Altman) and a generalization of the that method; Quadratic Discriminant Anal-
ysis(QDA). LDA generally needs fewer parameters to estimate the discriminant
function, however it is inflexible and can struggle to separate groups with different
underlying distributions. The lack of assumption on the distribution of the groups
makes QDA more flexible but it might also be less accurate compared to LDA.
Below, an example of LDA and QDA is presented.

X2z

00
L

0.5

-1.0
I

(a) LDA decision boundaries (b) QDA decision boundaries

LDA and QDA are two very common techniques applied in credit scoring, Myers
and Fogly (1963) compares regression models to discriminant analysis. West (2000),
Abdou Pointon (2009) and Gurny Gurny (2010) compare the predictive power of
probit, logit and discriminant analysis in different settings and find that the Logit
and Probit specifications outperforms DA (both LDA and QDA) and the Logit-
model outperforms both the Probit and the DA. Similar results can be seen in
Guillen Artis (1992), where Probit outperforms DA and linear regression models.

2.2.2 Regression Models

Probit and logit regression analysis are two multivariate techniques that are in this
case used to estimate the probability that default occurs by predicting a binary
dependent variable from a set of independent variables. The response (binary de-
pendent outcome) y;, is equal to 0 if default occurs (with probability P;) and 1 if
default does not occur (with probability 1-P;). Assume the following model specifi-
cation to estimate the probability P; that default will occur

b = fla+ ), (2.9)

10



2. Review of Credit Evaluation Models

where x; are financial indicators and « and [ are estimated parameters.
Two of the many ways of specifying P;, namely probit and logit transformation are
as follows.

2.2.2.1 Probit Model

The probit analysis is a widely used regression method in credit assessment for
both personal loans and corporate credits. The methodology was pioneered by
Finney (1952) in toxicological problems and the first applications of probit models
on corporate default prediction is seen in Altman et.al (1981) and Boyes (1989). In
the case of probit model the cumulative distribution function of a normal distribution
is as follows

r=[ RS Y (2.10)
P — erp\—— . .
—00 vV 2T b 2

2.2.2.2 Logit Model

The logistic regression (LR) approach to estimating default probabilities was intro-
duced by Ohlson (1968) and later further developed by Chesser (1974), Srinivasan
Kim (1986), Steenackers Goovaerts (1989) applies the logit model to personal loans,,
the LR has been widely used in both research and practice for PD estimation (Aziz
et al., 1988 ;Gentry et al., 1985; Foreman, 2003; Tseng and Lin, 2005) and has the
following specification

_ eapla+Fz) 1
" l4expla+ Ba;)  1+erp(—a— Ba;)

(2.11)

Because of the non-linear features of these models, it is necessary to use maximum
likelihood estimation. The likelihood function would be defined as

N
L=]]Prlyi=1|Xu,B,a)Pr(y;=0| X, 3,a) ¥, (2.12)
=1

The LR model does not necessarily require the same assumptions as LDA or MDA
(see below) but Harrell and Lee (1985) shows that the LR performs better than
LDA even though the necessary assumptions for LDA are fulfilled.

2.3 Non-Parametric Methods

Below, the relevant non-parametric methods for this thesis will be presented. A more
detailed presentation of the non-parametric method artificial neural networks will be
presented in the coming chapter. In contrast to the above mentioned methods, the
non-parametric methods usually requires less assumptions. The methods look at the
default probability estimation from a classification perspective, this view translates
into classifying credits into bad or good credits, where the default probability is the
determinant of the credits quality.

11
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2.3.1 CART Models

Decision trees or Classification and Regression Trees (CART) are classification tech-
niques that have been widely applied in credit assessment techniques. The CART
model was pioneered by Breiman et al. (1984) although it was earlier stated in
Raiffa Schlaifer (1961) and Sparks (1972). Early attempts to use CART in a credit
scoring application can be seen in Frydman, Altman and Kao (1985) and Makowski
(1985). CART is a non-parametric method for predicting continuous dependent
variables and categorical predictor variables. The method employs binary trees and
classifies observations into a number of classes. The basic idea of the decision tree is
to split the given dataset into subsets by recursive portioning. The splitting points
(attribute variables) are chosen based on Gini impurity and the Gini gain is given
by

i) = 1= 3 (6 = X f00)(85), 213
Ai(S,t) = Z(t) - PLZ(tL) - PR’i(tR) (214)

Where f(t,4) is the probability of obtaining ¢ in node ¢, the target variables takes
values in {1,2,3,...,m}. P is the proportion of cases in node ¢ divided to the left
child node and Py is the proportion of cases in ¢ sent to the right child node (see
nodes and "child nodes in the figure below). If there is no additional Gini gain, or
the stopping rule is satisfied, the splitting process stops and a decision tree with
nodes and cut-off values are created. The figures below illustrates an example of
application of the CART algorithm.
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Figure 2.2: Example of an CART application.

CART has been compared to other methods in several studies, Frydman, Altman
and Kao (1985) Coffman (1986) , Boyle et al. (1992) shows that CART outper-
forms DA. The type of method used can affect the choice of explanatory variable,
Devaney (1994) compares CART to logistic regression and finds that these models
select different financial ratios as explanatory variables for default prediction.
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2.3.2 k-Nearest Neighbour

The k-Nearest Neighbour (k-NN) method is a non-parametric method use for many
purposes such as probability density function estimation and classification (cluster-
ing) technique. It was first proposed by Fix and Hodges (1952) and Cover and Hart
(1967). There are several reasons for why it was chosen as a suitable method for
credit scoring and bankruptcy prediction problems:

1. The non-parametric nature of the k-NN method makes it possible to model ir-
regularities over feature space.

2. According to Terrel and Scott (1992) the k-NN method has been found to per-
form better than other non-parametric methods when the data are multidimensional.

3. The k-NN method is relatively intuitive and can be easily explained to managers
who needs to approve its implementation.

The k-NN method aims to estimate the good or bad risk probabilities (creditworthy
or non-creditworthy) for a company to be classified by the proportions "good" or
"bad" among the k "most similar" points in a training sample. The density function
estimation is very similar to the kernel estimation described above where the density
estimation function is defined as

o) = ap S5 219
K(z) >0, /fo K(x)dr = 1, K(2) = K(—2). (2.16)

K is a pre-defined kernel (Gaussian and Epanechnikov among the most popular
ones). The bandwidth A is also called the "smoothing parameter', in other words
when h — 0 the distribution is getting "spikes' at every observation X; and f(-)
becomes more smooth as h increases. The k-NN estimation is different from the
kernel-estimation in the bandwidth selection, instead of using a global bandwidth, a
locally variable bandwidth h(x) can be chosen. The idea is to use large bandwidth
for regions where the data is more sparse. In other words

h(x) = A chosen distance metric of  to the kth nearest observation

where k is determining the magnitude of the bandwidth.

The precision of the algorithm depends both on the distance metric and the num-
ber of neighbours that are pre-defined. In the illustrations below, there are three
different classifications with three different k& presented.

13



2. Review of Credit Evaluation Models

-7 T e G W i
= P o -7 + -/ SN
P i s \ ] ok \
l\‘x ’: : X : :\ X :
S ‘\ ’l‘ “ f‘

= . = Bmasghl 00 e e’ T
+ o+ + + + +

(a) 1-Nearest (b) 2-Nearest (c) 3-Nearest

Neighbour Neighbour Neighbour

Another key element in this classification technique is the similarity of the points,
it is assessed using different distance metrics.

2.3.2.1 Distance Metrics

An appropriate distance measure is a critical feature of the k-NN method. The aim
of the selection process is to choose a metric to improve the performance of the
classification according to some pre-specified criterion. The conventional approach
is concentrated on the NN rule and has minimization of the difference between
finite sample misclassification rate with the asymptotic misclassification rate as the
performance criterion.

A common distance measure is the Euclidean metric given by

di(x,y) =/ (x - y)"(x —y) (2.17)

where x and y are points in feature space. However, d; may not always be the
most appropriate distance measure to use. Fukanaga and Flick (1984) considered
the problem of selecting data-dependent versions of the Euclidean metric. They
introduced a general approach for incorporating information from the data through
the following metric

da(x,y) = /(x — y)"A(x ~y) (2.18)
where A can be any symmetric positive define matrix. Local metrics are defined as
those for which A can vary with x and global metrics in contrary are those for which
A are independent of x. In the case of the global metrics, the distance between two
points depends only on their relative position. Fukanaga and Flick (1984) suggests
using a global metric for mean-squared error minimizations. The risk of using a local
metric approach is that the metric might incorporate local information or features
of the training set that simply are not representative for the population. Because
the metric in the local case must be determined from a small region around x, it
can be difficult to determine the metric accurately. D. Michie et al (1994) for other
examples of distance metrics.

2.3.3 Cutting-edge Non-parametric Classification Models

The area of classification is developing with a fast pace due to the demand for new
methods to process newly available big-datasets. Some of them build on previ-
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ous methods while others are techniques from other fields that finds applications in
mathematical modelling. Below are two of many cutting-edge techniques for classifi-
cation, although they are not in focus in this study, it is worth mentioning the basic
ideas and performance of them. Two modern non-parametric classification tech-
niques - Support vector machines (SVMs) and Genetic Algorithm (GA) are briefly
touched upon below. Artificial neural networks (ANNs) which also falls into this
category will be presented more thoroughly in the next chapter.

2.3.3.1 Support Vector Machines

Support vector machines (SVMs) were introduced by Boser, Guyon Vapnik (1992)
and developed into a rather popular method for binary classification. The method
found application in a range of problems, including pattern recognition (Pontil Verri,
1998), text categorization (Joachims, 1998) and credit scoring (Huang et al, 2007 ,
Besens, 2003, Li, 2004). The basic idea (as it is in many other classification meth-
ods) is to find a hyperplane that correctly separates the d-dimensional data into two
classes. Since sample data is not always (rarely) linearly separable, SVMs tackles
the problem by casting the data in a higher dimensional space, where the data is
often separable. However, higher-dimensions typically comes with computational
problems, one of the key insights used in SVMs is the way it deals with higher-
dimensions, as a result it eliminates the above mentioned concern. The non-linear
casting of the data into higher dimensions is defined in terms of kernel function. In
other words, SVM can in general be understood as an application of linear tech-
nique in a feature space that is obtained by non-linear preprocessing (Christianini
and Shawe-Taylor, 2000).

In comparative studies, the SVM is often compared to ANNs, GAs and CART, in
a such a study, Huang et Al (2007), shows that SVM performs slightly better than
the others on Australian credit data. Similarly Li (2004) and Schebesch Stecking
(2005) shows that SVMs performs slightly better than other techniques when credit
scoring Chinese and German data respectively. Baesens (2003) in a similar study
finds that SVMs performs well but not as good as ANNSs.

2.3.3.2 Genetic Algorithm

Another non-parametric method that wont be in the scope of this thesis but has
been applied extensively in recent years is the Genetic Algorithm. Most of the
applied techniques being extensions of genetic algorithms by Golgberg (1989).and
Koza (1992). Genetic algorithms (GA) are developed to solve non-linear, non-convex
global optimization problems by mimicking Darwin principles of Darwinian natural
selection and was pioneered by Holland (1975). The GA’s have been traditionally
used in optimization problems as stochastic search techniques in large and compli-
cated spaces. In recent years been applied to overcome some o the shortcomings
in existing models of PD estimation. One major difference between GAs and other
non-linear optimization techniques is that they search by maintaining a population
of solutions from which better solutions are created instead of making incremental
changes to one solutions of a problem (Min et al., 2006). In a GA, a population
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of strings (called chromosomes) which encode, a potential solution to the problem
(called individuals) , is evolved toward a better solution by building on the previous
individuals until it is at levels regarded as optimal. In the case of credit scoring, the
GAs are used to find a set of defaulting rules based on the cut-off value of several se-
lected financial ratios (Bauer, 1994 and Shin and Lee 2002). One example of genetic
algorithm applied to credit scoring is Gordini (2014), where GAs are applied to find
cut-offs for each of the pre-determined financial ratios at which the company is con-
sidered bankrupt. Similar to a CART tree the genetic algorithm produces a GP tree,
the representation of a tree can be explained based on "function" and "terminal" sets
where the function set represents simple mathematical operators (4, —,x,+) and
conditional statements (if... Then...) and the terminals contains inputs, equations
etc. A representation is depicted below.

» ®E OO \@
CPNO @ ©

(AB) +(0.50C = 2) IfA or BANDif 4C or D then .....

Figure 2.3: Examples of GP trees using simple mathematical operators and con-
ditional statements

Many comparative studies have been conducted on the ability of GAs to outperform
other methods in PD estimations. Rafiei et al. (2011) finds that GAs lower accuracy
rates than Neural Networks (NN), Etemadi et al. (2009) compares GAs to MDA by
applying the methods on an Iranian dataset and shows that GAs outperform MDA.
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Artificial Neural Networks

This section will be dedicated to present the theory of artificial neural networks.
Artificial neural networks is a technique that finds applications in diverse fields, such
as character recognition, stock market prediction, machine learning and many more.
The technology is inspired and motivated by human brains character and ability to
process highly complex, non-linear and parallel systems. The brain has the capacity
to organize and structure its essential components called neurons to perform com-
putations such as pattern recognition, perception, etc. A neuron is fundamental to
the neural network in the sense that it is the unit that is processing the informa-
tion. Neural networks as computing machines was first introduced by McCulloch
and Pitts (1943) and the first rule of self-organized learning was postulated by Hebb
(1949).

An artificial neural network could be thought of as a machine that is designed to
mimic and perform tasks similar to the human brain. The neural network is built up
by units, that are often represented of nodes and connected to each other through
synapses.

3.1 Building Blocks of An Artificial Network

3.1.1 Artificial Neurons

Neurons are the computing and information-processing unit of a neural network, the
four fundamental and basic elements of the artificial neuron are as follows

1. Synapses or connecting links, where each of them are characterized by
a weight or strength. More specifically, a signal x; at the input of synapse
j connected to neuron k is multiplied by the weight of the synapse wy,.

2. An adder or linear combiner that is summing the input signals,
weighted by the respective synaptic weight of the neuron.

3. An activation function for limiting the amplitude of the output of the
neuron. The typical amplitude range of the output of the neuron is [0, 1]
or [—1,1].

4. DBias, b, The model of a neuron includes an external bias, b, which
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can have an increasing or decreasing effect on the input of the activation
function.

i, T
“ W v Output
X — > —slo() > Yk

Figure 3.1: Example of a nonlinear model of a neuron.

Figure 3.1 includes a bias by, this bias has the effect of increasing or lowering the
net input of the activation function.

The neuron k£ can be described in mathematical terms by the following equations:

Uy = Zwkja:j (3.1)
j=1
and

where wg1, W, ..., Wiy, are the weights of the synapses of the neuron k and x4, zs, ..., .,
are inputs, yx is the output of the neuron, wy is the linear combiner output, by, is the
bias and ¢(-) is the activation function. The linear combiner and the bias’ effect on
the output is given by

VU = Uy + by, (33)

where the bias b, can be either positive or negative and is a related transformation
to the output wu; of the linear combiner. The activation potential or induced local
field vy, of neuron k is defined as

Equivalently, the combination of the above mentioned equations can be formulated
as follows:
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Vp = D Wk;T; (3.5)
=0
and
yr = ©(vg) (3.6)

Where ¢(vy) is the activation function. To account for the external parameter by
which is the bias, a new synapse is added with the input

and the weight of that synapse is

Hence, the external parameter is controlled for by (1) adding a new input signal and
(2) adding a synaptic weight equal to the bias by.

— wWio = b
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Figure 3.2: Example of a Neural Network with bias by as input.

3.1.1.1 Activation functions

The output of the neuron in terms of the induced local field v is denoted by the ac-
tivation function ¢(v). There are several types of activation functions with different
characteristics, below, the three basic types are presented.

1. Threshold/Heaviside Function. Is given by

ow={5 if V0 9

Output y, of a neuron k& employing such a threshold is given by
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1 if w>0
=Y0 if v<0

where vy, is the induced local field of the neuron k and is given by

This neuron has an all-or-none property, the output takes values 1 of vy is nonneg-
ative, and 0 otherwise. It is pioneered by McCulloch and Piits (1943) and is often

m
Vr = Zwijj + bk
j=1

referred to as the McCulloch-Pitts model.

heaviside(x)
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Figure 3.3: Threshold function.
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2. Sigmoid Function. Is one of the most common of the activation
functions in artificial neural networks. In contrast to the threshold func-
tion that assumes the value of 0 or 1, the sigmoid function assumes a
continuous range of values between 0 and 1. The multilayer perceptron
especially requires ¢(-) to be continuous, differentiability is the key re-
quirement that an activation function has to satisfy for many types of
ANN’s. An example of nonlinear activation function that is continu-
ously differentiable are sigmoid functions. Two different forms of these
functions are:

1.1 Logistic Function, in its general form it is defined by

B 1
1+ exp(—av;(n))

p;(v;(n)) a>0and —oo <vj(n) < oo (3.12)

where v;(n) is the induced local field of neuron j and a is the slope
parameters of the function that can be changed to obtain functions with
different slopes, see figure for illustration.

(3.10)

(3.11)
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Figure 3.4: Sigmoid function with different a.

1.2 Hyperbolic tangent function One of the other commonly used sigmoid
functions is the hyperbolic tangent functions. In its general form, it is
defined by

©;(vj(n)) = atanh(bv;(n)), (a,b) >0 (3.13)

where a and b are constants. The hyperbolic tangent function can be
seen as the rescaled and biased version of logistic function.
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Figure 3.5: Hyperbolic Tangent Function.
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3.2 Network Architectures

In this section, two of the most common architectures (structures) of ANN’s will be
presented, although it is possible to identify three fundamentally different types of
network architectures. The single-layer network, is identified as a single input layer
of nodes at which information flows forward to the output layer of neurons, whereas
the multilayer network can be constructed of more than one hidden layers. The third
type of architecture is different in the way information flows through the network,
the recurrent network has at least one feedback loop at which the information can
flow back to previous nodes(Haykin, 2009).

3.2.1 Single-Layer Feedforward Neural Networks

In the simplest form of a neural network that is layered, there exists an input layer of
source node that projects onto the output-layer of neurons (also called computation
nodes) but not vice-versa, hence the feedforward attribute. In other words, the
network is strictly acyclic, which means information is flowing in one direction. An
example of a single-layer feedforward network is illustrated below.

Input layer Output layer

Figure 3.6: Example of a single-layer feedforward network.

3.2.1.1 Perceptron

The perceptron is the simplest form of a neural network used for classification of
patterns that are linearly separable (see figure). It was pioneered by Rosenblatt
(1958) around the McCulloch-Pitts (1943) non-linear model of neuron. The goal
of the perceptron is to accurately and correctly classify the set of externally given
input 1, xs, ..., T, into one of the classes 1 or ¢,. The classification works through
a decision rule that assigns the inputs w7y, xs,...,z,, to class ¢; if the perceptron
output is +1 and to class s if output is —1. Figure shows an illustration of a map
of the decision regions in the m-dimensional signal space. Where the two regions
are separated by a hyperplane defined by
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S wizi+b=0 (3.14)

i=1
The synaptic weights wy,ws, ..., w3 of a perceptron can be adapted by an error-
correction rule adapted on an iteration-by-iteration basis , that is known as the
perceptron convergence algorithm.

If we treat the bias b,,, as a synaptic weight that is driven by a fixed input equal to
+1, the (m + 1)-by-1 may then be defined as the input vector

x(n) = [+1,21(n), 22(n), ..., 1 (n)]*

(3.15)

where the iteration step applied to the algorithm is denoted by n. The (m + 1)-by-1
weight vector is defined as

. (3.16)

The linear combiner output is given by

m

v(n) =Y wi(n)z;(n) = W (n)z(n) (3.17)

i=0
where wg(n) represents the bias. Suppose that the input variables belong to two
linearly separable classes (see figure). Let W; be the subset of training vectors
x1(1),21(2), .. that belongs to the specific class ¢; and consequently, let Wy be the
subset of training vectors x3(1), x2(2), ... that belongs to the class ¢s. The complete
training set is the union W.

Class 1

Decision

Boundary

(a) Example of linearly sep- (b) Example of linearly
arable classes non-separable classes

Figure 3.7: Examples of linearly separable and non-separable clusters.

The training process involves the separation of the two classes ¢; and (, by adjust-
ing the weight vector w. Hence, there exists a weight vector w that can be stated

23



3. Artificial Neural Networks

as wlz > 0 for every input vector z that belongs to class ¢; and wlz < 0 for

every input vector x that belongs to class ¢o. To solve the classification problem
the perceptron will find a weight vector w such that the inequalities of the equations
above are satisfied. The weight vector of the perceptron is estimated and adapted
by the following procedure.

1. No correction is made to the weight vector of the perceptron if the nth input of
the training set, z(n) is correctly classified by the vector w(n) that is computed at
the nth iteration of the algorithm according to the following rule:

w(n+1) = w(n) if w'z(n) > 0 and z(n) belongs to class ¢; (3.18)
w(n+1) = w(n) if w'x(n) < 0and x(n) belongs to class p, (3.19)

2. If that is not the case, the weight vector w of the perceptron is updated according
to the following rule

w(n+1) = wn)—nn)xz(n) if w’(n)z(n) > 0and z(n) belongs to class v, (3.20)

w(n+1) = wn)+n(n)z(n) if w'(n)z(n) < 0andz(n) belongs to class ¢; (3.21)

where parameter 7(n) which is the learning-rate parameter that controls the adjust-
ment made on the weight vector w at iteration n.

The theorem that states the convergence of the fixed increment adaptation rule at
n =1 is as follows. The value of 7 is unimportant as long as it is positive.

Theorem 3.1 1. If n(n) = n > 0, where n is a constant independent interation
number n, then there exists a fized increment adaption rule for the perception.

Proof. See Haykin (2009) O

Now consider the absolute error-correction procedure for adapting the single-layer

perceptron. In this procedure, n(n) is variable. assume 7n(n) is the smallest integer
for which

n(n)x" (n)x(n) >| W' (n)x(n) | (3.22)

with this procedure it can be found that if the inner product w’(n)x(n) at itera-
tion n contains an incorrect sign, then, w’ (n + 1)x(n) at iteration n + 1 will have
the correct sign. Hence, by setting x(n + 1) = x(n) one can modify the training
sequence at iteration n + 1 if w’ (n)x(n) has wrong sign. This means each pattern
is repeatedly presented to the perception until the presented pattern is classified
correctly. It is also important to note that using an initial condition different from
w(0) = (0) does not significantly affect the number of iteration required to converge.
The convergence of the perceptron is hence assured regardless of the value that is
assigned to w(0). To this background, by using Theorem 3.1.1. we can state the
fixed increment convergence theorem from Rosenblatt (1962):
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Theorem 3.2 1. If there exists two linearly separable subsets of training vectors
w1 and py and the these vectors are inputs to the perceptron. Then the perceptron
convergence after some ng iterations. In the sense that

w(ng) = w(ng + 1) = w(ng +2) = ... (3.23)

s a slution vector for ng < Nynae

Proof. See Haykin (2009)

3.2.2 Multilayer Neural Networks

Another form of a neural network is the multilayer neural network, it distinguishes
itself from the single layer structure by the existence of one or more hidden lay-
ers, that consists of computation nodes. The addition of one or more hidden layers
makes it able for the network to extract higher-order statistics Haykin (2009). This
new attribute of the network is highly valuable when the size of the input layer is
particularly large.

The information that is supplied to the network through the input layer (source
nodes) passes through the first hidden layer of nodes and the output signals of the
first hidden layer are input for the second hidden layer on so on to the rest of the
network.

3.2.2.1 Multilayer perceptron

The multilayer perceptron (MLP) has been applied and successfully solved several
sorts of difficult and diverse problems(Haykin,2005). The MLP is different from the
single layer perceptron in several ways, perhaps the more distinctive difference is the
absent of hidden layers in the single layer perceptron but also the requirement for
a differentiable activation function in the MLP.The three distinctive characteristics
of a multilayer perceptron are as follows:

1. The network includes neurons that has non-linear activation function,
it is important that the non-linearity is smooth and differentiable every-
where. Examples of differentiable and non-linear activation functions
are given in the previous section.

2. The network contains either one or more layers of hidden neurons,these
hidden neurons makes it possible for the network to learn complex tasks
by progressively extract more meaningful features from the input signals
that flows into them.

3. There is high degrees of connectivity that is determined by the
synapses of the network.
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Inputlayer Hidden layer QOutputlayer

(a) Neural network with 1 hidden layer

Inputlayer Hiddenlayer1 Hidden layer2 Outputlayer

(b) Neural Network with 2 hidden layers

Figure 3.8: Examples of Multilayer perceptrons

Figures above shows the architectural graph of two different multilayer perceptrons,
with one and two hidden layers, the networks illustrated are fully connected. The
fully connected character means that a neuron in any layer of the structure is con-
nected to every previous neurons in the previous layer.

The MLP derives its computation power from the above mentioned characteristics
and the ability to learn from experience through training. In a general sense, the
function of a hidden layer of neurons is to intervene between the input variables
(signals) and the network output in an computational way. More specifically every
hidden layer performs computations of the function signal appear at the output of
each neuron and estimate the gradient vector.

A MLP that is trained with any form of method can be seen as a method of a non-
linear input-output mapping. If a continuous and differentiable function such as the
logistic function is used then a solution to the above explain context is embodied
in the universal approrimation theorem. The theorem is directly applicable to the
MLP and can be stated as:

Theorem 3.3 1. Let ¢(-) be a bounded, nonconstrant, and monotone-increasing-
continuous function. Let I,,, represent the mg-dimensional unit hypercube [0, 1],
The space of continuous functions on I, is denoted by C(L,). In that case, given
any function C(I,, )€ f ande > 0, there exist an integer M and sets of real constants
a;, bijandw;; where i = 1,...,mq such that the following can be defined
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my mo
F(1, oy Ty) = > ap(d_wijz; + b;) (3.24)
=1 =1
as an approximation of the function f(-), that is,

(X1, ey Timg) — [(X1, ey Ty ) [ < € (3.25)

for all 1, xs, ..., Ty, that lie in the input space.
Proof. See Haykin (2009). O

For a better the application of the universal approximation theorem on MLP, an
output of a multilayer perceptron stated by Eq.(3.43) can be seen as neural networks
has mg input nodes with inputs 21, ..., ,,, and m; neurons in a single hidden layers.
The hidden neuron ¢ has weights w;,, ..., w,,, and a bias b;. And the output is a
linear combination of output from hidden layers with synaptic weights of the output
layer ay, ..., Gp,.

Hence, the universal approximation theorem makes it possible under certain as-
sumptions to use neural networks for function approximation.

3.2.2.2 Optimal number of hidden neurons

The optimal number of neurons is a problem that is often faced in the practical
implementation of MLP. The problem more formerly is to find the number of hid-
den neurons my, where the criterion often used is the smallest number of hidden
neurons that results in a performance (probability of correct classification) as close
to the Bayesian classifier as possible, see Haykin (2009) for more information on
the Bayesian classifier. After the convergence of a network that has been trained
with a total number of N patterns, the probability of correct classification can be
calculated as:

P(c,N) =piP(c,N | p1) +p2P(c, N | ¢2) (3.26)

where p; = po = 1/2 and P(c, N | 1), P(c, N | ¢2) as follows

PleN o) = [ Ilx|oix (3.27)
P(e,N @) =1— /MN) Fulx | pa)dx (3.28)

and € (N) represents the region in the decision space where the multilayer percep-
tron classified the vector x as belonging to class ;. Example of how different layers
of hidden neuron’s affects the classification is illustrated in the graph below.
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Perceptron structure

General ragion

1 layer

2 lmyar

3 layer

Figure 3.9: Illustraton of decision regions depending on layers.

This graph shows the decision regions (classification boundaries) that can be pro-
duced by different number of hidden layers. The network in the example is using
the Heaviside function as a threshold function. For the MLP model the Signmoid
function is recommended and would produce curved lines in the pattern space.
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3.3 Training The Neural Networks

This section aims to present the theory of training the Neural Networks. There
is a great variety of algorithms to train both deep and shallow networks, Back-
Propagation Algorithm will be used to train the network in this thesis. The Back-
Propagation Algorithm is often used to train perceptrons of different quantities of
layers.

3.3.1 Back-propagation Algorithm

Back-propagation is a technique used for implementing Gradient descent for a multi-
layer feedforward network. Where the basic idea is to compute partial derivatives of
a function used for approximation such as F/(w,x). The function F(w,x) is realized
by the network with respect to all the elements of the weight vector w for a given
value from input vector x.

3.3.1.1 Steepest Descent

One of the most common methods for updating the weights of the neural network
is the steepest descent method. The method updates the weights in the opposite

direction to the gradient vector Ve(w). Where e = 3e?(n), and e;(n) = d;(n)—h;(n)

representing the error term between the output of the network h;(n) and the desired
response d;(n). Hence, the steepest descent method takes the form

w(n+1) = w(n) — nVe(w), (3.29)

where 7 is the learning rate. From the step n to step n + 1 the correction becomes

Aw(n) =w(n+1) —w(n) = —nVe(w). (3.30)

Equation 4.49 can be used to approximate e(w(n+ 1)) using first order Taylor series
expansion as follows

e(w(n+1)) = e(w(n)) + Vel (n)Aw(n). (3.31)

Haykin (2009) shows that this rule fulfils the condition of iterative descent which
corresponds to the following, consider a neuron j that receives the input signals
hi(n), ha, ...hpy(n) and responds to these signals by producing the output v;(n) where

vi(n) = wi(n)hi(n). (3.32)

i=0
As it was put forth earlier, to control for the bias in the model we think of hg = 1
corresponding to the bias with a weight w;o = b;. The output from the neuron

passes through the activation function (see above) with another output as a result
such as

hj(n) = ¢;(v;(n)). (3.33)
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The back-propagation algorithm applies a correction Awj;(n) to the synaptic weight,
the correction is proportional to the partial derivative %' Using the chain rule
g

of differentiation we can express the gradient as the following

Oe(n) _ de(n) dej(n) Ohj(n) Ovj(n)
Owji(n)  Oej(n) Ohj(n) Ov;(n) Ow;i(n) (3.34)
= —¢;¢ (v;(n))hs(n),

where the derivatives of the error signal e;(n) = d;(n) — hj(n), the error energy

e(n) = 4€3(n), the function signal h;(n) from the neuron j and local field v;(n) has

been used. The partial derivative a?j(?;)
ji

mining the direction of the search in weight space for the correct synaptic weight wj;.

above represents a sensitivity factor deter-

We use the delta rule for a correction Aw;;(n) applied to w;;(n) and is defined by

Oe(n)
where 7 is the learning-rate parameter of the back-propagation algorithm. The use
of the minus sign account for gradientdescent in weight space. In other words,

it aims to reduce the value of £(n) when seeking for a direction o weight change.
Replacing the result from the partial derivatives above in this formula yields

Awji(n) = nd;(n)yi(n) (3.36)

where J;(n) is the local gradient and is defined by

_ Oe(n)
Ov;(n)
_ de(n) Oej(n) dy;(n) (3.37)
de;(n) dy;(n) Ov;(n)
= ej(”)‘ﬁ;‘ (Uj (n))

The local gradient described above, points at the required changes in synaptic
weights in every iteration. According to the equations above, we can note that
a key factor involved in calculating the weight adjustment Aw;;(n) is the error sig-
nal e;(n) at the output of the neuron j. Hence, there are two different cases to be
considered, one where neuron j producing the output is in the output layer and one
when it is in a hidden layer.

d;(n)

—~

When neuron j is in the Output Layer
When neuron j is in the output layer, the error signal can be computed by using
ej(n) = dj(n) —y;(n). (3.38)
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When the error signal is computed, it is fairly straight forward to compute the local
gradient d;(n) using Equation 3.55 above.

When neuron j is a Hidden Layer

The local gradient can be re-written as the following when the neuron j is part of a
hidden layer.

(3.39)

To calculate the partial derlvatlve followmg Hayden (2009); if neuron k is an

output neuron, the cost function is 5( ) + Y keo ex(n)?. Making use of the cost
function and putting it in the gradient of the cost function yields

Z kae’“ n (3.40)

0h h;(n)

As described above, the error is

er(n) = di(n) — hi(n) = di(n) — pr(vi(n)), (3.41)
This gives
AT (3.42)

Finally, using the features above, the gradient of the cost function becomes

de(n) ,
o (n) —Zk: (n)pr (vk(n))wi;(n) -
= - Ek: dx(n)w;(n),

where v,(n) = Y, wyj(n)h;(n) and %ﬁf (n) = wg;(n). Finally, we obtain the back-

propagation formula for the local gradlent for hidden neuron 5 as the following

d;(n) 4,0] vi(n Zék n)w;(n (3.44)

Short summary

To summarize the relations that has been derived for the black-propagation algo-
rithm, we start with the correction Awj;(n) applied to the synaptic weight that is
connecting neuron ¢ to neuron 7, also called the delta rule:

Awji(n) = nd;j(n)h;(n) (3.45)
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Second, the local gradient ¢;(n) depends on whether the neuron j is in the output
layer or hidden layer

1. If neuron j is in the output layer, d;(n) equals the product of the
derivative ¢;(v;(n)) and the error signal e;(n).

2. If neuron j is in the hidden layer, §;(n) equals the product of the
associated derivative ¢%(v;(n)) and the weighted sum of the §’s computed
for the neurons in the next layers.

The Two Passes of Computation

In the application of the back-propagation algorithm, there is a distinction between
two different passes of computation. Where the first pass is referred to as the for-
ward pass and the second is the backward pass.

Forward Pass

In the forward pass, the input data passes through the synaptic weights from one
layer of neurons to the next, until it finally passes through the output layer. The
function signal is expressed as

hy(n) = @(é wiy (m)ha(m), (3.46)

where ¢ represents the activation function. The total number of inputs passing
through the network is w, applied to neuron j and wj; is the synaptic weight con-
necting neuron % to neuron j.

Backward Pass

The backward pass, in contrast to the forward pass, starts at the output layer by
passing the errors signals backwards through the network, layer by layer and com-
puting the local gradients § (see computations of § for different activation function
in Haykin (2009)) recursively for each neuron. The recursive process of this pass,
permits the synaptic weights to undergo changes according to the delta rule ex-
plained above. This recursive process is continued layer by layer by propagating the
changes to the synaptic weights.
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Empirical Model

This chapter aims to present data used for the empirical models, the results from
the empirical models and robustness checks. The main focus is the performance of
the ANN model relative to other classification techniques. An attempt will be made
to optimize the performance of the ANN model by finding the correct number of
hidden layers that result in model highest classification accuracy. The data used
for this study is in some manners unique, finding complete financial information on
defaulted companies is not easy, for this reason, the meaning of "default" is used in
a more broad manner, also including non-performing loans (NPLs). NPLs are loans
for which corporates couldn’t service the obligation to the debt-holders in 90-days
or more. This information is still very relevant for the study because what is being
investigated is the creditworthiness of companies.

4.1 Data

This section will be dedicated to present the data used for empirical application
of the models. The differences in input variables used for credit scoring is highly
diverse, this study aims to build on previous research but is restricted by data
limitations.

4.1.1 Input Variable Selection

There are a large variety of financial items used in the literature for predicting
creditworthiness. Traditional approaches on credit assessment such as Altmans Z-
score and several other attempts described in the previous chapters have focused
on quantitative input variables. Recent literature concludes that using only quan-
titative variables might not be sufficient for predicting defaults (Lehmann (2013),
Grunet et al. (2004). Including qualitative variables such as legal form of business,
number of employees, the region the business is operating on and industry type
can increase the prediction power of the models. Noting but notwithstanding these
findings, due to data-restrictions, this thesis will use quantitative items only.

There are several approaches to determine and select input variables for the models,
Hand Henley (1997) puts forth three different approaches on this matter. First,
and perhaps most important; expert knowledge can be used, this is more important
when a model is being developed for a specific sector. Financial items can show
great differences depending on which sector the company that is being assessed is
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operating on. Second, statistical procedures such as the forward and backward se-
lection based on goodness of fit measures (R-squared) can be implemented. Third,
to select variables by using a measure which indicates the difference between the dis-
tributions of the bankrupted and non-bankrupted companies on that variable, this
can either be done by specific measures or simply illustratively with two-way plots
of the variables. Also, other authors, such as Verstraeten and Van den Poel (2005)
refer to the importance of the Receiver Operating Characteristic (ROC) Curve and
its summary index Area Under the ROC Curve (AUC) in the explanatory variable
selection process. The ROC Curve gives a graphical representation of the discrimi-
natory power of a scoring system.

4.1.2 Input Variables

Financial standing of a corporate depends on many different factors, hence, insight
from an experienced analyst is often hard to beat in the accuracy of judging the
creditworthiness. It is however mentioned earlier that this approach is both time
consuming and subject to human errors. This study aims to use quantitative data
to model the creditworthiness. The concepts that will be looked at is the size of the
company, profitability, leverage, liquidity and ability to cover interest costs. This
concepts are widely used in corporate financial analysis.

Size

Size is related to volatility, which is inherently related to both the Merton and the
Gambler’s Ruin structural models. Smaller size implies less diversification and less
depth in management, this implies greater susceptibility to idiosyncratic shocks.
Size is also related to 'market position’, a common qualitative term used when as-
sessing creditworthiness.

Profitability

Profitability measures the degree to which a business is able to generate sales greater
than the cost of operating. Companies must be profitable in the long-run, or at least
generate cash flow to both survive and be creditworthy. Higher profitability should
raise a firm’s equity value. The measures also implies a longer way for revenues to
fall or costs to rise before actual losses can occur.

Leverage

In addition to profitability, leverage is a key measure of credit risk. The higher
the leverage, or gearing, the smaller the cushion for adverse shocks. The measures
represent the difference between the funds supplied by the shareholders and the fi-
nancing supplied by creditors. Higher leverage means the creditor is taking the risk
as opposed to the shareholders.

Liquidity

Liquidity is a common variable in most credit assessments. The relevance for the
credit assessment comes from the fact that liquidity is a necessary condition for

34



4. Empirical Model

servicing debt.That is, if you have sufficient current assets, you can pay current lia-
bilities. Liquidity is also a very powerful and obvious contemporaneous measure of
default or creditworthiness, because if a firm is close to defaulting, its current ratio
must be low.

Coverage

Coverage ratios reflects company’s ability to pay the interest charges on its debt.
The "coverage" aspect of the ratio indicates how many times the interest could
be paid from generated earnings, and hence providing a sense of safety margin a
company has for paying its interest for any period. A company that manages to
generate earnings well above its interest payments,is in an excellent position to
absorb possible financial storms and vice versa.

Concept Financial Item Calculation
Size Total Assets Value of Total Assets in 000’ EUR
Operating Revenue Total Operating Revenue in 000" EUR

Profitability Profit Margin  Net Operating Income/ Operating Revenue
Leverage Gearing Total Debt /Total Equity
Solvency Ratio Equity / Total Assets x 100

Liquidity Current Ratio Current assets / Current liabilities
Coverage Ratio Interest Coverage Operating income / Interest expense

Table 4.1: Input variables

4.1.3 Data Source

The firm-level data collected for this study is from the Bureau Van Dijk database
Amadeus, containing comprehensive information on roughly 21 million companies
across Europe. The data in the database is presented in a standardised way, for easier
comparisons across countries and sectors. The database contains 1,8 million entities
based in Sweden. The data quality and availability is however different across firms,
for this reason, a comprehensive data quality ensuring process was followed. Sector
specific models was decided against due to the restriction of available defaulted
entities in many industries, hence a more general approach is followed. Having
cleaned the dataset of missing values and randomised the selection of non-defaulted
companies, the entire dataset for the modelling remains at 5926 observations where
5121 of them are still active and non-defaulted firms and 805 are companies that
have defaulted on their payments.

4.1.4 Descriptive Statistics

The below tables presents descriptive statistics for the Swedish dataset, containing in
total 5926 observations including 805 defaulted companies. Descriptive statistics is
presented in three different versions, where the first graph shows descriptive statistics
for the whole dataset, the second one on non-defaulted companies and the last table
represents the defaulted companies.
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Financial Items Mean Max  Min Standard Deviation Observations
Operating Revenue 99592,018 30133574,98 0,105 844063,575 5926
Toal Assets 110244,226 52851317,04 0,225 1234127,487 5926
Profit Margin(%) 5,467 100  -100 15,524 5926
Current Ratio 2,194 99,205 0 4,151 5926
Interest Coverage (x) 72,123 10000  -100 168,986 5926
Solvency ratio(x) 37,262 98,985 0,1 22,098 5926
Gearing (%) 102,600 997,794 0 175,548 5926

Table 4.2: Descriptive Statistics for the Swedish dataset.

The whole dataset contains 5926 observations, the observations for non-defaulted
companies are randomly selected from a dataset representing both listed and non-
listed companies in Sweden. Operating revenue and total assets are given in thou-
sands of Euros, while other items are given either in percentage or multipliers.

Financial Items Mean Max Min Standard Deviation Observations
Operating Revenue 115160,622 30133574,98 898,534 907012,694 5121
Toal Assets 127516,188 52851317,04 26,402 1326778,373 5121
Profit Margin(%) 5,927 99,692 -94,727 12,846 5121
Current Ratio 2,199 99,205 0 4,132 5121
Interest Coverage (x) 80,337 1000 -97,929 177,551 5121
Solvency ratio(x) 38,077 98,985 0,159 21,761 5121
Gearing (%) 101,443 994,973 0 170,857 5121

Table 4.3: Descriptive statistics for non-defaulted companies.

What is worth noting in the table above is that the mean value of operating revenue
and total assets is higher than the mean in the dataset for all companies. This indi-
cates that the companies in the non-defaulted dataset are systematically larger. The
other major difference is in the interest coverage item, where the interest coverage
among the non-defaulted companies are higher.

Financial Items Mean Max  Min Standard Deviation Observations
Operating Revenue 552,489 78110,407 0,105 3259,057 805
Toal Assets 368,795 30722,891 0,225 1697,099 805
Profit Margin(%) 2,546 100  -100 26,745 805
Current Ratio 2,156 78 0,004 4,277 805
Interest Coverage (x) 19,869 885  -100 80,788 805
Solvency ratio(x) 32,077 98,305 0,1 23,492 805
Gearing (%) 109,965 997,794 0 202,832 805

Table 4.4: Descriptive statistics for defaulted companies.

Again, what is of great importance to mention in the dataset for defaulted companies
is the smaller size and difference in almost every other financial item. Just by looking
at the descriptive statistics, one can note the clear stronger financial performance
among non-defaulted firms. The distribution of all input variables are presented

below.
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Figure 4.1: Histograms of input variables.

4.1.5 Feature Representation on a Two-dimensional Plane

Feature (input variables) selection constitutes one of the more important aspects of
classification problems. One way of reaching an opinion on the separability of the
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classes "creditworthy" and "non-creditworthy" is to depict the features of companies
in a two-dimensional space. Below, there are 9 graphs of two-way plots illustrated,
the orange coloured dots represents the defaulted and hence non-creditworthy com-
panies whereas the blue dots represents the non-defaulted and creditworthy compa-
nies. Looking at the graphs, it is quite clear that there are major areas with overlaps,
this is not a surprise due to the fact that the selection of non-defaulted companies
where randomly selected companies among all active companies. There is a great
chance that the data of non-defaulted companies contains companies that are in
financial distress but didn’t yet default on any payments. In general what is really
worth mentioning from the illustrations below is that, majority of the defaulted
companies seems to be smaller in size. This attribute is measured in this study as
operating revenue and total assets. Other important features in the separation of
defaulted and non-defaulted companies are profitability, interest coverage and gear-
ing ratios. Although there is a possibility to actually separate the companies by
these features, one should highlight the existence of overlap in all features.
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Figure 4.2: Two-way plots of selected features 1.
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Figure 4.3: Two-way plots of selected features 2.
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4.2 Model

The empirical model to be applied to credit scoring of Swedish corporates will be as
follows. The 7 input variables were described above. The benchmark ANN model
will have 10 hidden layers but the effect of increase and decrease in hidden layers
will also be discussed.

input layer 10 Hidden layers Output layer

coverage

Figure 4.4: ANN 10-hidden layers benchmark model for Swedish non-financial
corporates.

4.2.1 Training the Empirical Model

During the training, the weights and biases of the network were iteratively adjusted
to minimize the network performance measure, e. The chosen measure represents
the training error, calculated as the mean sum of squares of the difference between
the output signal from the network, i, and the corresponding actual value, xy.
Error is measured between the actual and the desired outputs. This error is later
back propagated and new weights are recalculated and thus neuron outputs are re-
evaluated. The process is iterated until the error is minimized. This study have
applied the following error function to optimize the model and prediction accuracy
rates to evaluate their respective performance. The mean squared error function is

defined as
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1 N
N Z yk - ﬂﬁk (4-1)

After each of the iterations during the network training, the ability of the network
to be generalized was tested by performing simulations with the validation dataset.
The agreement between the simulated y; values, obtained for a given py vector of
input variables, with the corresponding actual x; values in the validation data was
determined by the same error measure, e. When the e value increased or remained
constant during 10 consecutive iterations, while the training error decreased, the
network training was stopped.

4.2.2 Model Evaluation

A classification model can be deemed good in several ways, it can have a good
predictive capability, scalability, how fast it takes to build the models and train
them etc. This study will evaluate the models based on one criteria, the prediction
accuracy, which is in line with studies such as Atiya, (2001), Gentry et al (1985),
Etemadi (2009), Gurny Gurny, (2010). The prediction accuracy will be evaluated
using confusion matrices and ROC curves. The ROC curve can be interpreted by
looking at the position of the curve. The more the ROC curve is closer to y-axis,
the better the estimated prediction model is. Or in other words, the model has
higher discriminant power if its sensitivity and specificity are higher with respect
to other model sensitivity and specificity. The curve finds its coordinates in the
two-dimensional plane by comparing number of correctly and incorrectly classified
classes to the total number of observations.

Accuracy in this study is defined in the same fashion as the previously mentioned
similar comparative studies - the proportion of correct classifications. It is however
worth noting that some errors can be more serious than others, and it may be impor-
tant to control the error rate for some key classes. In general, classification problems
have two types of errors, Type 1 (creditworthy is classified as non-creditworthy) and
Type 2 (non-creditworthy is classified as creditworthy). In credit scoring it is be-
lieved that the cost of Type 1 and Type 2 errors are very different, it is substantially
more costly to classify non-creditworthy as creditworthy than the other way around.
Although this will be part of the analysis, it wont be a key determinant for the
performance of the models in this study.

4.3 Result

This section will be devoted to show the result of the benchmark ANN model with
10 hidden layers, the effect of changes in hidden layers on classification accuracy,
the result of applications of other non-parametric methods and robustness checks
with data from Germany and France.
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4.3.1 ANN Model Result

The ANN-model is applied to the Swedish data-set, where the training and testing
of the model is done by separating the data as follows:

o 70% of the data for training

o 15% of the data for validation

o 15% of the data for testing
All samples are randomized from the whole dataset. The training sample is used to
train the training and the network is adjusted according to error. The validation
sample is used to measure network generalization and to halt the training when
generalization stops improving. And the test sample is used to test the prediction
accuracy of the network.

The following prediction accuracy is obtained from the benchmark model with 10
hidden layers.The ANN model with 10 hidden layers results in a prediction accu-
racy rate of 86.5%. Where most of the wrongly classified companies are defaulted
companies.

Creditworthy Non-creditworthy
Creditworthy | 5079 (85.6%) 706 (13.0%)
Non-creditworthy | 42 (0.6%) 89 (0.8%)

Below is an illustration of Receiver Operating Characteristic (ROC) curve, one of
the most common ways up illustrating the performance of a binary classifier. The
blue line represent the models prediction accuracy, the closer it is to the diagonal
line, the worse is the predictive power of the model. Looking at the ROC curve
below, we can see that this is not really the case.
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Figure 4.5: Receiver Operating Characteristic (ROC) curve for benchmark model

4.3.1.1 Different Hidden Layers

The effect of varying hidden layers has been showed to be critical in the studies
of K.Chen (2012), I.Shafi (2006) and Karsoliya (2012). The benchmark model on
Swedish data was initially trained with 10 hidden layers, the effect of variation in
number of hidden layers on prediction accuracy is displayed below.

Number of Hidden Layers | Accuracy
5 Hidden Layers 85.41%
10 Hidden Layers 86.53%
20 Hidden Layers 86.57%
50 Hidden Layers 86.71%
100 Hidden Layers 87.49%
150 Hidden Layers 87.39%

Table 4.5: ANN Model with different hidden layers

Decreasing the number of hidden layers from 10 to 5 affects the prediction accuracy
negatively, there was a decrease with almost 1%. Gradually increasing the hidden
layers from 10 to 20 and later to 100 increased the performance by almost 1%
compared to the benchmark model. The increasing effect is however not linear,
trying 150 hidden had a marginally decreasing effect on prediction accuracy.
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Figure 4.6: The effect of change in number of hidden layers on prediction accuracy.

4.3.2 Comparing the Methods

The performance of the optimized (with regards to hidden layers) ANN-model for
Swedish corporates can only be understood when put in perspective and comparing
it to other methods. The models that would be used for this purposed was described
in the chapter for theoretical background. All of the techniques are characterized by
their own strengths and weaknesses and they can perform differently with different
datasets. The main ANN model with 150 hidden layers and the other 8 models
were applied to the same dataset. The table below shows the prediction accuracy of
the models. Again, 70% of the data was used for training the algorithms, 15% for
validation and 15 % for testing.

Model Accuracy
ANN 100 Hidden Layers | 87.49%
CART Medium 86.53%
CART Complex 85.32%
CART Simple 86.90%
k-NN Fine 82.32%
k-NN Medium 84.36%
k-NN Coarse 83.57%
LDA 86.43%
QDA 72.31%

Table 4.6: ANN Model with different hidden layers
Although the difference is marginal, we can see from the table above that ANN
outperforms the other models with a prediction accuracy of 87.49%. The second

best performance is from the simple CART model with 86.9% prediction accuracy.
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The worst performance is from the Quadratic Discriminant Analysis (QDA) model
with 72.31% accuracy. The ROC curves for every model are shown in the graphs

below.
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Figure 4.7: ROC curves for the models.
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Figure 4.8: ROC curves for the models.
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4. Empirical Model

4.4 Robustness Checks

One way to better understand and even validate the results presented above is to
conduct “robustness checks”. This section will be dedicated to apply the models to
different datasets to look for inconsistencies or trends in the results. The results
presented above are for the Swedish dataset which is the main focus of this study.
The robustness checks starts with splitting the Swedish corporate dataset into three
different groups and applying the same models to see if there are any changes in the
results. The second and third part of the robustness checks consist of application
of the models to two different datasets, namely French and German. There are no
changes made on the models, variation is solely in data.

4.4.1 Splitting the Dataset

The rationale behind splitting the data comes from the differences that can be seen
in the descriptive statistics section between non-defaulted and defaulted companies.
The default among the companies with smaller size represented by the input vari-
ables total assets and operating revenues is substantially more common. For this
reason, it is worthwhile to investigate whether the models perform differently among
different portions of the dataset. Sorting the non-defaulted companies after largest
by assets and revenue and later extracting top 25 %, 25-75% and bottom 25% gives
three subsets. The models are applied to all of them.

4.4.1.1 Top 25%

The table below shows the prediction accuracies for the models that were applied to
the dataset of 25% of the largest non-defaulted companies and the defaulted compa-
nies. It is worth mentioning the slight increase in performance in the top performing
models ANN with 89,41%, simple CART 89,23%, CART medium 89,11% and com-
plex CART 89,10%. The performance of k-NN and both forms of discriminant
analysis decreased.

Model Accuracy
Top 25%
ANN 89.41%

CART Medium | 89.11%
CART Complex | 89.10%
CART Simple 89.23%

k-NN Fine 66.42%
k-NN Medium 72.93%
k-NN Coarse 70.00%
LDA 61.43%
QDA 81.32%

Table 4.7: Models prediction powers on Top 25 % by Operating Revenue.
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4.4.1.2 25-75%

The second table illustrates the results for the largest corporates in the 25-75% seg-
ment. These corporates are still a bit larger than the average in defaulted companies
but significantly smaller in size than the top 25%. The performance of the models
dropped compared to the larger companies but it is still slightly higher than the
application of the models on the original dataset. Best performing model in this
segment is again ANN (88.3%) followed by the CART models .

Model Accuracy
25-75%
ANN 88.3%

CART Medium | 86.63%
CART Complex | 86.20%
CART Simple 87.41%

k-NN Fine 81.30%
k-NN Medium 81.80%
k-NN Coarse 74.93%
LDA 71.61%
QDA 75.21%

Table 4.8: Models prediction powers on 25-75 % by operating revenue.

4.4.1.3 Bottom 25%

The third table represents the dataset with the smallest 25% non-defaulted corpo-
rates. The performance of every model drops significantly with none of them being
able to reach a prediction accuracy of 80%. The performance is both lower com-
pared to the segments presented above and the original dataset. ANN seems to be
the best performing model once again, followed by CART and k-NN.

’ Model \ Accuracy ‘
Bottom 25%
ANN 79.24%

CART Medium | 65.74%
CART Complex | 67.21%
CART Simple 66.16%

k-NN Fine 65.00%
k-NN Medium 68.42%
k-NN Coarse 66.12%
LDA 63.00%
QDA 62.6%

Table 4.9: Models prediction powers on bottom 25 % by operating revenue.

48



4. Empirical Model

4.4.2 Other Datasets

The second part of the “robustness checks” is to apply the models on other datasets.
The original dataset comprising Swedish corporates consisted of roughly 14% de-
faulted companies. To be able to compare the results in a fair way and ensure valid
results, the same proportion of defaulted companies were kept in the German and
French datasets.

The choice of other dataset was based on the similarities between the countries, op-
timally; dataset from other Scandinavian would have been used. However, the lack
of data on defaulted companies in that region prohibited this option. Both France
and German are two EU-member countries with similar ecosystems for corporates,
even if the choice is not optimal, for comparison reasons these datasets are similar
in character.

4.4.2.1 Germany

The German dataset consists of 1511 observations where 13.9% of those are defaulted
corporates from different industries. The table below shows the descriptive statistics
for the dataset.

Financial Items Mean Max Min Standard Deviation Observations
Operating Revenue 1981265,045 212756000 7,14 266515,534 1511
Toal Assets 12990196,312 351210000 21,481 364224717 1511
Profit Margin(%) 4,233 08,43 -99,783 14,487 1511
Current Ratio 3,483 93,307 0,001 7,447 1511
Interest Coverage (x) 23,506 996,089 -92,927 79,232 1511
Solvency ratio(x) 37,980 99,516 0,218 21,705 1511
Gearing (%) 12,952 997,964 0 171,169 1511

Table 4.10: Descriptive Statistics for full dataset Germany

The German dataset compared to the Swedish dataset contains a lot larger compa-
nies with mean of 1,981,261 thousand euros in operating revenue. There are also
minor differences in profitability, capital structure and interest coverage capabilities.

The prediction accuracies from the models applied on German dataset is shown in
the table below. ANN is again the best performing model with 87.54% accuracy, it
is followed by k-NN and QDA seem to be the worst performing model. The result
from the German dataset is fairly similar to the results from the original dataset.
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’ Model \ Accuracy ‘
Germany
ANN 87.54%

CART Medium | 85.34%
CART Complex | 82.81%
CART Simple 86.26%

k-NN Fine 81.60%
k-NN Medium 87.42%
k-NN Coarse 87.31%
LDA 86.00%
QDA 98.81%

Table 4.11: Models prediction accuracy for German dataset.

4.4.2.2 France

The largest dataset used in this study is the French dataset of non-financial cor-
porates. The dataset contains 25832 observations with roughly 14% of them being
defaulted companies. The descriptive statistics for the dataset is presented in the
table below.

Financial Items Mean Max Min Standard Deviation Observations
Operating Revenue 122502,9 174857009 9,078 1807354,611 25832
Toal Assets 1447172 26798900 8,805 2850553,434 25832
Profit Margin(%) 3,324 99,419 -99,542 0,058399 25832
Current Ratio 1,608 96,8 0,001 2,167 25832
Interest Coverage (x) 45,763 999,468 -99,876 121,253 25832
Solvency ratio(x) 34,087 99,959 0,003 19,647 25832
Gearing (%) 97,153 999,738 0 149,531 25832

Table 4.12: Descriptive Statistics for full dataset France.

The French dataset, as it was with the German dataset contains on average larger
companies with 1,225,02 thousand euros in operating revenue. It is slightly smaller
than the average in the German dataset. There are major differences in the other
input variables compared to both the Swedish and German dataset.

The prediction accuracies from the models applied on French dataset is shown in the
table below. These results are very different from the previously obtained results.
As it can be seen, the prediction accuracy is for the first time above 90% and the
best performing model is the medium k-NN with 98.52% prediction accuracy. ANN
performs better than it did on the Swedish and German dataset with 91.14%.
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’ Model \ Accuracy ‘
France
ANN 91.14%

CART Medium | 98.42%
CART Complex | 98.33%
CART Simple 98.26%

k-NN Fine 97.31%
k-NN Medium 98.52%
k-NN Coarse 98.43%
LDA 85.30%
QDA 35.24%

Table 4.13: Models prediction accuracy for French dataset.
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Discussion

The objective pursued by this study is to model Swedish corporate creditworthiness
with Artificial Neural Networks (ANN) and compare the results to other commonly
used parametric and non-parametric methods such as CART, k-NN, LDA and QDA.
In the above chapters, an introduction to credit assessment, theoretical background
for ANN and other techniques were presented. The chapter dedicated to show the
empirical investigations lays the ground for this chapter. With the light shed from
previous studies and theoretical considerations, the results of this study will be
discussed.

5.1 Performance evaluation of ANN model

The ANN-models have been shown to outperform many conventional methods in
credit scoring such as regression-models, discriminant analysis, CART, k-NN and
several others (Rafiei et al. (2011) Etemadi et al. (2009)). Previous studies such
as Atiya (2001) and M. Al Doori & B.Beyrouti (2014) finds prediction accuracies
for credit scoring with ANN’s of 85.5% and 87.4% respectively. The result from
this paper is in line with similar studies for both the level of accuracies and the
performance of the ANN compared to other models.

The initial model with 10 hidden layers had a performance of 86.5%, one of the aims
with this study is to look at how the variation in number of hidden layers affects the
performance of the model. Determining the optimal amount of hidden layers is a
critical issue for the model performance. If it is too small, the network cannot pro-
cess sufficient information (even more important with complex models with many
input-variables), and thus result in an inaccurate classification performance. And
if the number of hidden layers are too many, the training process will be very long
and require more number of epochs to end the training (D. Srinivasan, 1994). Up
to the knowledge of some researchers, there is no absolute criteria to determine the
exact number of hidden neurons that might lead to an optimal solution. Different
number of hidden neurons are used in; Arai (1993), Atiya, (2001), M. Al Doori &
B.Beyrouti, (2014) and D. Srinivasan (1994) argues that the appropriate number of
hidden layers is system dependent, mainly determined by the size of the training set
and the number of input variables. For this reason, different number of hidden lay-
ers was tested; the simulations resulted in the fact that the performance decreased
when the hidden layers decreased from 10 to 5 and increased with every increas-
ing change until 100 hidden layers. By trying different types of hidden layers, the
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performance of the model was increased from 86,53% to 87,44%, almost 1% increase.

From the descriptive statistics, especially two-way plots, it can be seen that there
are a lot of overlaps between the defaulted and non-defaulted companies. This is not
very surprising, because there are companies that are financially weak but didn’t yet
default on any payments. One could argue that the purpose of credit assessment-
models is to be able to separate out precisely the companies that are almost about
to default from the ones that actually defaults. This is however easier said than
done, it could even be very difficult with insight from an experienced analyst hence
mathematical models should be evaluated with this difficulty in mind. There are no
magical input variables that easily and accurately separates the firms. A firm can
be small but have very sound finances; it could be large with weak financials but
still manages to keep the operation running. It is clear from the confusion matrices
that, the model struggles with the over-lapping part of the data, hence most of the
errors are made in the prediction of defaulted and not non-defaulted.

This study was conducted with relatively small number of input variables, although
some older models look at 4-5 variables only, there are studies were a lot more
variables are used (M. Al Doori& B.Beyrouti, 2014). The aim was to look at the
major determinants of a company’s financials namely; size, profitability, leverage,
liquidity and coverage. These determinants can be measured in many different ways
and some of them are highly correlated. The choice of input variables was based on
previous studies on credit assessments and the availability of data. It’s important
to emphasize the importance of good quality data, if the model is to be applied
on various companies in different sectors, it is important to choose input variables
that are available for all companies, no matter industry. The ANN-model offers
further topics to investigate, the accuracy of the model can possibly be improved by
building sector-specific models, although there are challenges to get enough data on
defaulted companies in some sectors. Further, this study does not take into account
any macroeconomic aspects where for example the rise in interest rates could be
crucial for the interest expenditure of some companies and this could also improve
the accuracy of the model. Another aspect that was not taken into account in
this study is the qualitative characteristics of the companies, such as management
quality. This could be incorporated into the model by quantifying the quality of
management by looking at the number of years of experience in the management of
the companies but could require substantially more work.

5.2 Performance evaluation of ANN compared to
other models

Evaluating performance of the ANN-model by simply looking at the prediction ac-
curacy of that model does not really give a fair view of the quality of the model.
This is the main reason other models were added to this study. The models used
are commonly used to compare the performance of cutting-edge techniques such as
ANN to more established models. The most successful models in terms of prediction
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accuracy is the ANN with 87.49 % prediction accuracy. Given that the ANNs allow
for more non-linearity in the relationship, this result is perhaps not that surprising.
If we look at the graphs showing how the defaulted and non-defaulted companies
are distributed in a two-way plot we can see that it is hard to separate those classes
linearly. The results of this study are consistent with other studies when credit scor-
ing data is used, but inconsistent with some others where the models are applied to
other type of datasets. For example in a three way classification, Desai etal. (1997)
found that when considering the predictive performance, LDA was almost identi-
cal to ANN and slightly better than CART. But ANN gave the greatest predictive
performance when predicting default (rather than non-default). King et al. (1994)
found that LDA shows a greater predictive performance than neural networks, but
a poorer performance compared with CART. On the other hand, Desai et al. (1996)
in a two way classification found that LDA was inferior to ANN at predicting both
defaulted and non-defaulted.In addition Khoylou & Stirling (1993) using a sample of
two thousand cases,found that neural networks performed considerably better than
multiple linear regression.

The results from the above mentioned articles are in line with the result in this
study; ANN outperformed the other models followed by LDA, CART and k-NN.
However, as there is no universally best method that works best for all kind of
datasets, the performance is almost purely data driven. Because of the complexity
and non-linearity of credit assessment models, the models that are more flexible in
carving out the classes from each other performs the best. ANN in comparison to
other methods is flexible and flexibility can be increased by increasing hidden layers
(see optimal number of hidden layers section above). Because the performance of
the model is so much dependent on the data, it is of crucial importance to try to
apply the models on different datasets. For this reason, the models were applied in
both different sections within the same dataset (Swedish dataset) and to datasets
from other countries with different sizes.

5.3 Robustness

As it was mentioned above, the evaluation of the performance of a model cannot be
done by simply looking at the prediction accuracy of one model. The performance
rather is looked at in comparison to the performance of other models and consis-
tency across datasets. The original dataset of Swedish corporates was split into
three parts after the size of the companies measured by total operating revenue. It
was mentioned above that the models struggles to separate the companies that are
in overlap with the defaulted one, this investigation is an attempt to show that this
is the case.

The first part of this analysis is to apply the model on the dataset with the largest
non-defaulted corporates and defaulted corporates, almost all of the models per-
forms better at predicting default among these companies. With ANN at 89.41%
predicting accuracy followed by CART around 89%. Looking at how the models
perform on the mid-sized companies in the dataset we can see that the prediction
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accuracy drops to 88.3% for ANN and 86% for CART which indicates that there is
a larger overlap among these firms. What is of great importance is the performance
of the models for the bottom 25% sized companies. There is a substantial decrease
where ANN shows a prediction accuracy of 79.24% and the other models fall be-
low 70%. These results shows in a more concrete way precisely where the models
struggle to separate the defaulted companies from the non-defaulted. The fact that
ANN performs best among the models is consistent with the findings of Desai et.
al. (1997) where the ability of ANN to separate the defaulted is highlighted.

Another important aspect of the robustness checks is the application of the models
to different datasets. Datasets with corporate level data from Germany and France
was used for this purpose. There were no changes made on the models specifications.
The German dataset in comparison to the Swedish and French dataset contains less
observations with 1511 companies, however the proportion of defaulted companies
within this dataset is similar to the other datasets of roughly 14%. On average,
the companies in the German dataset are larger compared to the other datasets.
ANN shows once again the best prediction accuracy among the models with 87,54%
which is slightly larger than the Swedish dataset. This increase could be due to the
existence of larger companies in the German dataset (the top 25% largest in the
Swedish dataset was also easier to separate). The result from the original dataset
is consistent over the German dataset where the ANN outperforms the other models.

The French dataset in comparison to the Swedish and the German one is very differ-
ent in size, it contains 25,832 observations. In the study of Khoylou Stirling (1993),
the size of the sample in which the models are training and tested on affects the
prediction accuracy of the models. A similar pattern can be seen in this study, where
the prediction accuracy of almost every model increased to above 90%. Similar find-
ings are presented in Rui A.A. El-Keib (2002), where smaller sample sizes affects
the prediction performance of some models more than others. In the case of France,
ANN is no longer the best performing model k-NN shows a prediction accuracy of
98.52% compared to the 91.14% of ANN. It is hard to find a convincing argument
for why the performance of these models changed in this direction when the dataset
changed. However, it was mentioned earlier that the performance of many machine
learning algorithms, including the ANN is dependent on the data. This change in
performance compared to the Swedish and German dataset emphasizes that finding.
One should keep in mind that although the non-defaulted companies in the datasets
were randomized, it is likely that there are some kind of bias in the datasets can be
responsible for the changes in prediction accuracies. Another possible explanation
for the differences in the performance between different datasets is the macroeco-
nomic conditions, which this studies does not consider. It could be the case that
some macroeconomic condition in a country leads to more defaulted companies and
even more easily separable companies within that country.
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Conclusion

This study reviews the problem of bankruptcy prediction (creditworthiness) with
artificial neural networks (ANN). Previous studies suggest that ANNs outperform
other statistical methods such as regressions, discriminant analysis (LDA and QDA)
and also non-parametric methods such as k-NN and CART. This study is among the
first attempts to apply ANNs on Swedish corporate level data. The findings suggest
that the ANN model outperforms the other models with a prediction accuracy of
87,44%. It is closely followed by CART and QDA is the worst performing model.
The effect of number of hidden layers in the networks are also investigated and
as it is in previous studies, the increase in number of hidden layers improved the
performance of the 86,53%(10 hidden layers) to 87,49%(with 100 hidden layers).
The increase is however not linear and it starts to decrease shortly after 100 hidden
layers.

Number of Hidden Layers | Accuracy
5 Hidden Layers 85.41%
10 Hidden Layers 86.53%
20 Hidden Layers 86.57%
50 Hidden Layers 86,71%
100 Hidden Layers 87.49%
150 Hidden Layers 87.39%

Table 6.1: ANN Model with different hidden layers

The ANN model, together with the other models was applied to both different
sections within the original dataset and to other datasets. The results suggest
that the model struggles to separate the overlapping of non-defaulted and defaulted
companies that is happening among the smallest firms in the non-defaulted dataset
and the defaulted dataset. The prediction accuracy of the models are consistent
over the German dataset where ANN outperforms the other models however the
application on the French dataset with substantially more observations resulted in a
higher prediction accuracy for all models and both k-NN and CART outperformed
ANN.
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Model Sweden | Germany | France
ANN 87.49% | 87.54% | 91.14%
CART Medium | 86.53% | 85.34% | 98.42%
CART Complex | 85.32% | 82.81% | 98.33%
CART Simple 86.91% | 86.26% | 98.26%
k-NN Fine 82.32% | 81.60% | 97.31%
k-NN Medium 84.36% | 87.42% | 98.52%
k-NN Coarse 83.57% | 87,31% | 98.43%
LDA 86.43% | 86.00% | 85.30%
QDA 72.31% | 28.81% | 35.24%

Table 6.2: Models prediction accuracy for different datasets

6.1 Limitations

It is mentioned in the discussion chapter that the model can only be as good as
the input data, the lack of data on defaulted companies puts limitations on the size
of the dataset which can affect the results. Furthermore, this study evaluates the
model performances with one criteria; the overall classification accuracy, and does
not take into account the Type-2 errors that can be of great importance for a lender.
A model that show higher overall accuracy does not necessarily have less Type-2
errors, hence the performance measure could be viewed critically. Another leap
this study makes is the classification of "non-creditworthy" if the company defaults
(according to regulation in that country) or doesn’t service debt within 90-days or
longer, obviously the regulation for bankruptcy can be different among countries
and a "defaulted" company in Sweden might legally survive in France due to other
criteria.

6.2 For Further Studies

This study puts forth an empirical evaluation of two parametric (LDA and QDA)
and three non-parametric methods (k-NN, CART and ANN) for the classification of
creditworthy and non-creditworthy companies. Although it performs some optimiza-
tion efforts for CART, k-NN and ANN, the models are kept in relatively primitive
versions. One way to take this study further would be to enhance the performance
of all of the models by for example pruning the CART-model (P. Tomayo, 2000),
finding optimal k in k-NN (Hassanat, 2014) or choosing optimal error functions in
ANN (Gangal, 2007). After these optimizations, the models could be tested again.

Another way would be to use different performance measures, this study looks at
prediction accuracy by overall correctly classified corporates, however, the impor-
tance of Type 2 errors in credit scoring is noted. A comparative study on the Type
2 errors of similar models could be of great value for both practical and academic
reasons.
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Appendix 1
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Figure A.1: Overview of machine learning techniques
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Appendix 2 - ROC Germany
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Figure B.1: TROC curves for the models.
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Figure B.2: ROC curves for the models.
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Figure C.2: ROC curves for the models.
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