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Abstract 

I study the effect of perceived flood risk on property prices in Sweden, before and after a major flood 

event. Data on property transactions for single-family homes are used in a difference-in-differences 

spatial hedonic model to study the pre- and post-flood risk discount. I find no significant price discount 

for the properties in the floodplain, neither before nor after the flood. This stands in contrast to findings 

from other countries, where prices have been found to drop significantly after a major flood. An 

explanatory mechanism driving the difference could be the home insurance system of Sweden, where 

insurance against flood damages is included free of charge, in contrast to countries investigated in 

previous studies. 

 

 

 

 



 

 

1 Introduction 

A recent study shows that floods accounted for 40 % of all economic losses from natural 

disaster for the period 1900-2015 (Daniell et al., 2016). Further, in the last 50 years, floods 

have caused an estimated 300 000 deaths and adversely impacted 3.6 billion people (EM-

DAT, 2015). Due to climate change, projected increases in extreme precipitation events and 

rising sea levels, along with steady population growth, floods will likely become more 

frequent and damaging in the coming decades
1
. This thesis aims to contribute to the 

understanding of how individuals value flood risk, by examining property transaction data for 

the region around Lake Vänern, in Sweden, which 2000-2001 suffered from a severe flood. 

The results from such analyses provide an empirical basis for the design of the increasingly 

important policies that aim to minimize society’s vulnerability to floods.  

Previous studies on the topic have mostly used property market reactions to 

flood risk as a proxy for individuals’ risk perception and preferences. Most have examined the 

property market in the US and found mixed evidence for property price adjustments to flood. 

The strongest effect has been found for areas that recently have suffered from a severe flood, 

implying that the flood has at least a temporary effect on flood risk perception within the local 

communities (Bin and . However, the external validity of the findings from a country such as 

the US to other countries, will among other factors, depend on differences in e.g. the design of 

the domestic flood insurance system. In Sweden, and a few other countries in the EU, there is 

no market specifically for flood insurance, as there is in the US. In Sweden, flood damages 

are included in the home insurance free of charge, which may lead to moral hazard and over-

exploitation of construction near water as homeowners living near water do not have to bear 

the monetary costs of the increased flood risk.  

In line with previous literature, I use property transaction data in combination 

with GIS techniques in order to identify and estimate the effect of flood risk on house prices. 

During the winter of 2000-2001, Lake Vänern flooded its surroundings, and resulted in one of 

the most severe floods in Swedish history. In comparison to previously studied flood events, 

this flood is unique in the length of its duration, which allows me to study not just the effect of 

the flood on house prices before and after the flood, but also during the flood. I hypothesize 

that the price discount for flood risk was the highest during the flood, and that it was lower 

after relative to before the flood. Using a theoretical framework that takes into account 

differences in insurance costs, I further hypothesize that the price differential for flood-

                                                 
1
 See e.g. IPCC’s 5
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vulnerable properties in Sweden is lower than that estimated for the US. In order to identify 

the effect of flood risk perception on property prices, I use Difference-in-Differences (DD) 

estimation where the flood constitutes the exogenous treatment, and the treatment group the 

properties that lie in the floodplain. 

I find that only during the flood was there a significant price discount for 

floodplain properties, and only for the group consisting of the most vulnerable properties; the 

relative price reduction for this group of properties is estimated to 47-66 %. However, while 

previous studies in the US find a significant temporary effect of flood risk on prices after a 

flood, I find no significant effect neither before nor after the studied flood. An important 

explanatory mechanism could be the differences in insurance costs to cover flood damages, 

which are negligible in Sweden. My findings imply that individuals do not take into account 

neither the tangible nor the intangible costs of a flood to their property, suggesting that 

regulation of construction of homes with regards to flood risk remains important to prevent 

over-exploitation in flood-vulnerable areas. 

The thesis is organized as follows. In section 2 I review some of the previous 

literature on the topic, as well as providing a backdrop on insurance policy in Sweden relative 

to countries like the US. Section 3 contains the theoretical framework used to model how an 

economic agent values flood risk when purchasing a property. Section 4 contains data and 

descriptive statistics, while section 5 describes the empirical strategy used. Section 6 contains 

the empirical results. In section 7 I discuss the empirical results within the provided 

theoretical framework, and compare my findings to other countries, while section 8 

concludes. 

I would like to thank my supervisor Hanna Mühlrad for all of the invaluable 

support I received writing this thesis. I dedicate this thesis to Sepideh and Freya, my wife and 

daughter, who have been very supportive and understanding during this process. 

2 Background 

2.1 Previous literature 

Most literature on natural hazard risk preferences in the property market are based on the 

hedonic pricing method, first applied to the property market by Freeman (1974). In his paper, 

Freeman derives the value of certain characteristics of a good, in this case a property, by 

exploiting variation in properties’ exposure to air pollution and their respective prices. Given 

assumptions such as equilibrium in the property market (where all homeowners have 
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maximized their utility), the difference in price between properties at different exposure to air 

pollution levels equal the marginal willingness to pay (MWTP) for clean air, if everything 

else is held constant. The benefits of the model are that it is based on revealed rather than 

stated preferences and is easily applied to empirical analysis policy evaluation. However, 

Freeman’s analysis builds on the critical assumption that the benefits of lower air pollution 

levels are adequately captured by property market prices. For markets to be efficient, the 

buyers and sellers must be assumed to have perfect information as well as taking rational 

decisions, such that they maximize their utility (Debreu, 1959). While Freeman studied air 

pollution specifically, the hedonic pricing method can be used to model the value of any 

characteristic of a property, such as e.g. flood risk.  

According to the Hedonic Pricing method, an increase in flood risk awareness 

among homeowners should lead to relative price reductions, so called flood risk discounts, for 

properties at a relatively higher risk of flood. However, previous studies have found mixed 

evidence that governmental flood risk information campaigns would significantly affect 

property prices in a certain direction. Samarsinghe and Sharp (2010) find that release of flood 

maps to homeowners in New Zeeland reduce the price discount on properties in flood-hazard 

zones relative to properties outside these zones, suggesting that homeowners may have 

overestimated flood risk prior to the release of the flood maps. Contrary to the previous, both 

Shilling et al (1989) and Speyrer and Ragas (1991) found a negative effect of flood risk on 

house prices following flood-hazard zone designations. However, the latter studied the US, 

where households are incentivized, and sometimes obliged, to purchase separate flood 

insurance. This leads to a direct, tangible cost of flood risk and may thus have a greater 

impact on property prices than the release of information alone. 

To investigate whether homeowners take informed decisions or not, qualitative 

analyses, such as surveys, complement the quantitative analyses cited above. Chivers and 

Flores (2002) show in a survey sent to individuals in a flood-hazard zone in Boulder, 

Colorado, that the majority did not have a full understanding of the flood risk in their vicinity, 

nor the costs of insuring against this risk, at the time of their home purchase. Furthermore, 

Siegrist and Gutscher (2008) interviewed both individuals with previous flood experience, and 

individuals without previous flood experience. They found that individuals with no personal 

flood experience systematically and significantly underestimated the negative effects of a 

flood. This could explain why the property market tends to react differently to a real flood 

event, relative to information on flood risk alone. 
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One of the earliest attempts at estimating the effects of actual flood events on 

property prices started with Bin and Polasky (2004). In their work, they estimated the effects 

of 1999 Hurricane Floyd on residential homes in Pitt County, North Carolina using sales data 

from 1992 to 2002. Using OLS regression involving a floodplain and time period interaction 

term, they estimate a statistically significant flood risk discount to 3,8 % before the flood, 

which rises to 8,3 % in the three-year period after the flood, where the difference between the 

two is also significant. However, the period of study after the flood was limited to three years. 

Thus, it is not possible to say whether or not the flood had a lasting effect on the property 

market. Second, OLS does not account for spatial dependence between the observations, a 

common trait in econometric models of spatially distributed objects, which could lead to 

spatial autocorrelation. Not taking this into account may lead to inefficient and inconsistent 

parameter estimates and biased standard errors, making any inferences difficult (Dubin, 

1998). 

To account for the limitations in Bin and Polasky (2004) and work similar to 

theirs, Bin and Landry (2013) as well as Atreya et al. (2013) make significant contributions on 

the topic by extending the post-flood period in their studies, and adjusting their econometric 

models to account for spatial dependence effects. Bin and Landry (2013) investigate the same 

area as Bin and Polasky, but with an extended dataset on property sales stretching from 1992 

to 2008. In addition they study both the 1999 Hurricane Floyd as well as the 1996 Hurricane 

Fran as natural experiments to identify variation in property prices following flood events. A 

theoretical framework for the behavior of an economic agent is provided, that is also used in 

this thesis, which explains how property prices may vary with what is defined as “subjective 

flood risk” rather than the actual flood event’s probability. Subjective flood risk takes into 

account two important concepts. First, uninsurable and non-monetary damages are included in 

the model, such as the risk to human life, tediousness of reparation and restoration following a 

flood event. Second, they introduce a measure of information that varies with flood risk 

perception. The authors hypothesize that following a recent flood, individuals will be subject 

to the “availability heuristic”, a behavioral trait first identified by Tversky and Kahneman 

(1973). The availability heuristic is a behavioral trait which influences decision-making under 

uncertainty by giving more weight to recent and traumatic events and thus leading to 

subjective bias. Applied to flood risk, this would mean that individuals might shift towards a 

stronger (negative) valuation of flood risk following a traumatic flood event, and that this 

might dissipate over time. In their empirical analysis, a Difference-in-Differences (DD) 

approach is used in which the effect of flood risk is identified by comparing properties within 
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the floodplain with those outside, while controlling for all observable characteristics that vary 

across the dataset. Spatial dependence is controlled for using a spatial weights matrix to 

model the error term, and using Maximum Likelihood for parameter estimation. Similar to 

Bin and Polasky (2004) they find increases in the price discount for properties within the 100-

year floodplain in the first three years following each flood respectively, ranging from 9 % to 

13 %. Before the floods, no price discount was found for houses inside the floodplain. The 

post-flood discount is studied different time decay functions. Regardless of specification, the 

price discount decreases over time, and vanishes between 5-6 years after the floods, leading to 

the conclusion that while a traumatic flood does influence agents’ decision-making under 

uncertainty, they do not have a long-lasting impact. Atreya et al. (2013) use a similar 

empirical strategy to analyze data for Dougherty County, Georgia following the Flint River 

Flood of 1994. Unlike the former, they use a SARAR model which includes a spatial lag 

effect, in addition to modeling the error term. In contrast to Bin and Landry, they find a 

(weakly) significant pre-flood price discount for houses in the floodplain of 9 %. Following 

the flood, they estimate a further 13-14 % price discount for houses in the floodplain, almost 

identical to that of Bin and Landry. Similar to Bin and Landry, they test different price decay 

function specifications, and find that the decay in price discount over time is relatively robust 

to specification, and ranges between 4 to 9 years. The external validity to countries with 

different insurance systems than that of the US is limited however. For countries with 

insurance systems like that of Sweden, there is a lack of knowledge to how the property 

market responds to the perception of flood risk, and whether this differs or not from other 

country contexts. 

2.2 Flood insurance policy in Sweden 

The majority of the previous literature on flood risk perception has studied property markets 

in the US, where homeowners are obliged to purchase flood insurance from the government in 

order to cover any damage from floods (FEMA, 2015a). However, in Sweden flood damages 

are by default included “free of charge”
2
 in the typical home insurance. Sweden is 

climatologically different from US and not subject to the same magnitude of storms and flood 

events. Furthermore, house construction in Sweden has arguably been subjected to more 

centralized planning by municipal authorities, which may have reduced exploitation in flood-

prone areas. This has allowed insurance firms to offer more equitable insurances that do not 

                                                 
2
 This is a simplification one can make given that the number of houses at risk of flood is very small relative to 

the number of houses not at risk of flood, such that the average insurance premium paid is not affected by this. 
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adversely price-discriminate those that are living near water, a policy that has been in place 

for the last decades (Thorsteinsson et al, 2007). However, with the production of detailed 

flood maps and projections showing increasing flood risk, there have been calls for more 

stringent limitation of house construction in the floodplains (Thorsteinsson et al, 2007), some 

authorities even going as far as to limit house construction in areas that are estimated to be 

flooded once every 10 000 years
3
. 

3 Theoretical framework 

A convenient method for eliciting the value of a characteristic of a good, such as a house, is 

the Hedonic Pricing method (HP), first applied to the property market by Freeman (1974) and 

summarized below. Let the value (measured by its sales price) Pi of a house i be a function of 

a set of characteristics, grouped into structure- (S), neighborhood- (N) and environmental (E) 

characteristics: 

    (        ) for i = [1,n] 

Structure characteristics S relate to properties of the structure, such as the square footage, 

whereas neighborhood and environmental characteristics N and E relate to properties that are 

contingent on the location of the house, such as e.g. crime rate (a neighborhood 

characteristics) and distance to nearby water bodies (an environmental characteristic). 

The marginal implicit price of a specific environmental characteristic, such as flood risk EFlood 

is then the first derivative of the price function with respect to the environmental 

characteristic: 

   

       
       (      ) 

Thus, the hedonic model of property valuation implies that one more unit of the 

environmental characteristic EFlood will lead to a price differential of the house that equals the 

marginal willingness to pay (MWTP) PFlood for that characteristic (which may be negative for 

the case of flood risk), ceteris paribus. The advantage of using the hedonic model is that when 

applied to specific markets, such as the housing market, revealed preferences can be elicited 

for goods that are otherwise hard to measure in monetary terms. Furthermore, it is 

conveniently used and interpreted in a regression framework. When using e.g. OLS, the 

estimated coefficient for the flood risk variable corresponds directly to the hedonic price for 

this characteristic. 

                                                 
3
 For a policy brief (in Swedish) by a working group of county authorities on this, see Länsstyrelserna (2006). 
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Using the hedonic pricing framework, MacDonald et al. (1987) provides a 

model for the relationship between hedonic prices, insurance costs and incremental option 

value based on expected utility theory. Expected utility theory is used to explain decision-

making under uncertainty. The theory explains how an individual’s expected utility from a 

range of potential outcomes varies with the likelihood and risk of the outcome, as well as the 

individual’s level of risk averseness (Schoemaker, 1982). For a risk neutral individual, the 

choice with the highest expected value directly corresponds to the choice with the highest 

expected utility. For a risk averse individual, however, risk itself is seen as a cost and thus 

leads to disutility, which is why the choice with the highest expected utility (using a risk-

discounted utility) is preferred, rather than simply the highest expected value-choice. It is 

assumed that individuals decide their “property location MWTP” and insurance coverage with 

regards to their perception of flood risk such that it maximizes their expected utility 

(Macdonald et al., 1987). As noted, however, previous empirical results show that property 

location MWTP seems to depend heavily on recent flood events, i.e. there exists a subjective 

bias. Tversky and Kahneman (1973) name this behavioral trait the “availability heuristic”, 

with which an individual tends to perceive risk based on previous personal experiences rather 

than on facts. Bin et al. (2013) extends the model of MacDonald et al. to include the 

“subjective probability” (i.e. an individuals perceived flood risk) of flooding as a function of 

information (e.g. a recent flood), as well as uninsurable losses. Uninsurable losses are defined 

as non-monetary, intangible damage such as the risk of human lives, loss of invaluable objects 

etc.  In contrast to insurance costs, which are determined on the estimated probability of a 

flood, the expected utility of uninsurable losses depends on the subjective probability. 

The model by Bin et that describes the relationship between flood risk and 

hedonic price includes both an uninsurable losses term and an insurance costs term: 

  

  
 

  (   ̂)    (   ̂)

[   ( )]       [ ( )]      
 

  ( )

  
   

R is hedonic property price, p is the actual probability of a flood, V0 and V1 are utility 

functions of housing attributes a and income y before and after a flood, where V0 indicates 

utility before flood and    after. P(i) is the subjective probability of flood and depends on the 

information level i. I(p) is the insurance premium paid and is a function of actual flood 

probability p. V1 < V0 since not being flooded is strictly preferred to being flooded, 

independent of insurance costs, and 
  ( )

  
 > 0 since a higher flood risk will entail higher 

insurance premiums. Thus, 
  

  
 < 0 and there should be a negative effect of an increase in flood 



 

 

8 

risk on price. In practice, the model states that given two houses identical in all parameters 

except flood risk, the house with higher risk of flood should be valued strictly lower than the 

house with lower risk of flood. The model can be used both for short- and long term effects 

following a flood event. While the insurance costs depend on flood risk rather than recent 

flood event incidences, subjective flood probability is likely to be affected by recent floods 

due to their effect on the availability heuristic. 

In Sweden, however, insurance costs for households do not even depend on 

flood risk. This implies that the second term can be omitted when adapting the model to 

Sweden
4
. In other aspects, the uninsurable losses remain identical if individuals in Sweden are 

assumed to be subject to the same form of flood risk information influence and availability 

bias as individuals in other countries. Thus, the model that forms the theoretical framework of 

this thesis is written: 

     

  
 

  (   ̂)    (   ̂)

[   ( )]       [ ( )]      
   

Applying the model to Sweden gives a strictly smaller price differential due to variation in 

flood risk probability (
    

  
 

     

  
), holding all else constant. In addition to insurance costs, 

the magnitude of the difference will depend on other effects that may differ between the 

countries, such as the severity of the flood (which affects the price differential through the 

subjective probability p(i)) and cultural and lifestyle differences (which may affect the amount 

of uninsurable losses due to a flood). Furthermore, I hypothesize that a change in  ( ) might 

occur after a dramatic flood event, which should affect 
     

  
. In section 5 “Empirical 

strategy” I discuss how 
     

  
 is estimated, before and after a dramatic flood event. 

4 Data 

4.1 The 2000-2001 flood of Lake Vänern, Sweden 

The flood event I investigate in this study is the flood of Lake Vänern in southwestern 

Sweden, which began in October 2000 and lasted until May 2001 (henceforth “the flood”). 

Prior to this flood, the lake and its surroundings had been spared from a major flood since 

1967. The location of Lake Vänern in Sweden is shown in the map in Figure 1. The flood was 

                                                 
4
 This is based on the assumption that the insurance premium is fixed so that construction of houses within 

floodplains is small enough to not significantly affect the home insurance premiums on the national scale. 
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one of the most disruptive floods in Sweden in modern history, and surpassed all previously 

recorded water levels, including the flood of 1967 (SOU, 2006). The flood lasted for a whole 

seven months and is unique in comparison to other studied flood events in the literature by its 

duration, and the fact that water levels raised slowly, increasing by 1 m over the course of 

three months (SMHI, 2015a). Figure 2 shows a diagram of the flood’s progression during 

2000-2001, with water levels peaking by the end of January 2001.  

Totally, an estimated 280 private properties were reported for insurance claims 

after the flood (Blumenthal, 2010). However, due to the slow development of the flood, 

authorities could successfully forecast and prevent future flooding of many more houses 

within the floodplain (SOU, 2006). The implication of the generally successful effort is that 

the number of insurance claims likely heavily underestimates the number of properties 

actually at risk of floods. The total number of houses at risk of flood is much higher, possibly 

ranging up to a thousand or more. In fact, according to a recent study by Karlstad Universitet 

in the order of 2,000 buildings are at risk of floods if water levels reach near the levels of the 

2000-2001 flood (Andersson et al., 2013).The proportion that consists of privately owned 

homes is not clear. In order to reduce the risk of a Type II-error, the sample size of 

transactions of houses in the floodplain should preferably be at least as high as in previous 

studies, especially since the flood risk price discount in Sweden is likely to be smaller than 

what previous studies have found for the e.g. the US
5
. 

4.2 Variables, data sources and data-generating processes 

In order to estimate the effects of flood risk, and specifically the effect of the 2000-2001 flood 

on prices, I have collected geocoded data on property transactions for the period 1998-2003 

and 2012-2013 respectively. The observations is on a monthly resolution and cover a period 

of 34 months before the flood, 6 months during the flood, 31 months after the flood, and a 24-

month window 12 years after the flood. The transaction data is limited to private homes, and 

includes both permanent residency homes as well as vacation houses such as cottages, but 

excludes apartments
6
. I use single-family home properties rather than industrial or public 

properties, since it fits well with the theoretical framework, as well as being able to compare 

my findings with existing literature. Furthermore, the data for property transactions 

specifically for private homes is especially rich in comparison with e.g. data used in previous 

                                                 
5
 As a comparison, the datasets of Bin & Landry (2013) and Atreya et al. (2013) contain in the order of 300-400 

observed floodplain properties sales, when adjusted to the number of years studied in this thesis. My final dataset 

consists of 60 to 399 floodplain property sales, depending on the definition used (see section 5.2). 
6
 Apartments are only rarely on ground level and thus not often subject to flood damages. 
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research. For example, the data includes a value points indicator used to assess the structural 

quality of the property, as well as an assessed value (“taxation value”) for the house and the 

lot, that is used for taxation purposes. Unlike the final transaction price, the taxation values 

are an exogenous source of information since they are predetermined by the tax authorities, 

and thus not affected by temporary deviations in the perception flood risk. 

The main variables are the independent variable house price (time-variant), 

measured in thousands SEK (kSEK), and variables indicating flood risk (time-invariant). 

Similar to previous studies, I define flood risk as a binary characteristic, which indicates 

whether or not a property lies in the floodplain. The floodplain is defined as the area that lies 

below the maximum water level of a specific flood, often the 100-year flood. I use the 

maximum water level of the Lake Vänern flood to delineate the floodplain, which also 

approximately corresponds to a 100-year flood, similar to the definition used in some recent 

studies
7
. The fact that I use a lake flood event is an important distinction from previous work. 

Previous studies have examined river floods, which are characterized by a maximum water 

level that varies along the river. Floodplain location need to be extracted based on the location 

of the property in relation to an externally produced flood map that takes the water level 

variation into account. These maps may be a source of measurement error, as the relation 

between the water level and the elevation of the house or property may be unknown. In the 

case of lake floods, however, the water level is more or less identical across the floodplain 

during the flood
8
. This allows me identify floodplain location by inspecting the elevation of 

each property directly, which reduces measurement error. Another important disparity is the 

difference in duration of the flood. Normally, river floods occur in the order of hours or days 

and are generally contained within the levees. The flood studied lasted for several months. 

Due to backwards flow of water from the lake through the storm sewers, as well as “trapped” 

storm water behind the levees, floods would be likely to occur even behind the levees, making 

all properties in the vicinity of the lake below the maximum water level vulnerable to floods. 

In order to identify the elevation of the properties, I use a raster containing a 

highly detailed Digital Elevation Model (DEM), with a cell size resolution of only 2 m
9
. In 

contrast to using externally produced flood maps, I have a direct sense of the accuracy of the 

elevation data. 

                                                 
7
 Atreya et al. (2013) and Bin & Landry (2013) both use 100- and 500-year floodplain indicator variables. 

8
 In the case of Lake Vänern, waves and seiching during the 2000-2001 flood contributed to temporary 

differences in water levels in the order of 0,3 m between the communities around the lake. 
9
 The average elevation error is stated as less than 0,2 m for open spaces [Metria, 2016], which I consider fully 

adequate for the task. 
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Using the coordinate data in the geocoded dataset on property transactions as 

well as the DEM, I extract the elevations for each property. With the elevation data, I generate 

floodplain variables indicating whether or not the house of property i lies in the floodplain 

(  
           ) and whether or not the property i but not the house lies in the floodplain 

(  
              

). Lastly, I generate the variable   
     , which indicates whether or not a 

property belongs to any of the two variables defined above, to use in the baseline model. 

 For the variable,   
           

, only properties where the house lies in the 0 to 1 

meter-range above the floodplain are included. The reason to not include all properties where 

part of the property is at risk of flood (i.e. where parts of the property lies in the floodplain but 

the house lies > 1 m above it) is because a visual inspection showed that a significant amount 

of properties are both steep and large, with the house lying several meters above the 

floodplain, indicating that a flood would likely not cause any adverse effects nor damage to 

the owners of these properties. Limiting the data to houses lying 0-1 meters selects the most 

vulnerable of the properties where the house itself may or may not be at a direct risk of flood, 

while still providing me with a dataset of almost 400 houses, in line with previous work. A 

graphic explanation is provided in Figure 4, showing three properties at the three different 

levels of flood risk. 

Apart from floodplain location and sales price, a number of important covariates 

are included in order to increase precision and avoid omitted variable bias (as flood risk will 

correlate with e.g. proximity to water which will possibly have a positive effect on price). Of 

special importance are e.g. variables indicating whether or not the property is lakefront, the 

distance to nearby waterbodies and the elevation value itself, since these may be correlated 

with both price and flood risk and thus bias the parameter estimates. The covariates are best 

categorized in the same way as the characteristics of the Hedonic Pricing model: structure, 

neighboorhood and environment variables where the two latter both depend specifically on 

the location of the property and are henceforth categorized as location variables.  

Structural variables describe the physical structure of a house, i.e. the house and 

lot area, the quality, number of rooms and the type of house (e.g. whether the house is 

detached or not). Neighborhood variables describe the quality of the neighborhood, and may 

include distance to the city center, distance to and qualities of nearby schools etc. 

Environmental variables describe amenities such as whether the house has a lakefront (which, 

depending on elevation, may or may not be associated with flood risk) and distance to e.g. 
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highways and industrial zones. Descriptive statistics for all included variables are provided in 

section 5.3. 

Data on historical house prices have been ordered from Lantmäteriet’s
10

 

database of property transactions, specifically for the municipalities along Lake Vänern. Other 

than coordinates, the data includes important information about the structure, such as the 

living and lot area of each property, the assessed tax value, the number of value points etc. 

The location data, in terms of the provided coordinate, is used to generate a set of location-

specific covariates, mainly distance to features that may have either a positive or negative 

impact on price, such as the distance to the nearest waterbody (likely positive) or the distance 

to the nearest highway (likely negative).   

The sample of property transactions from Lantmäteriet originally contained 

19,300 transactions, dispersed across the municipalities around lake Vänern. After extracting 

elevation data from GIS specifically for the coastal region, the sample was condensed to 9,012 

observations. Figure 3 shows a map of Lake Vänern, the municipalities encircling it, and the 

9,012 observations of floodplain and non-floodplain properties respectively. 

 

4.3 Descriptive statistics of included variables 

In Table 1, descriptive statistics are provided for the variables used in the empirical analysis. 

The statistics are disaggregated into three groups according to the floodplain indicator 

variables: properties where the house lies in the floodplain (  
            =1), properties 

where the house lies 0-1 m above the floodplain (  
              

 =1) and properties where the 

house lies more than 1 m above the floodplain (  
      =0). 

The dataset consists of  a total 9012 observed property sales, of which 399 

properties, roughly 4 %, are defined as being in the floodplain. Of these, 60 properties have 

houses lying below the maximum occurred water level, while 339 have houses lying 0-1 m 

above it. 

On average, floodplain properties tend to sell for higher than non-floodplain 

ones, despite the fact that non-floodplain houses are both larger and have more value points. 

A probable reason is that the location of floodplain properties is comparatively more valued 

by the market than structure, as seen by the higher lot taxation values. Also, the share of 

                                                 
10

 The Swedish National Land Survey, a government agency. 
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properties that lie waterfront is dramatically different between non-floodplain properties and 

properties, going up from 2 % to 40 %. Previous studies have found that waterfront location 

typically comes with a premium of about 8-16 % on the property price (see e.g. Bin and 

Landry, 2013 and Atreya et al., 2013). 

Between the two floodplain groups, we see that properties lying partly in the 

floodplain are considerably higher priced than properties lying fully in the floodplain. We also 

see that these houses are larger and have more quality points, which could signal that owners 

might be more willing to invest in houses that both have a somewhat lower risk of flooding, 

while still lying close to water. Houses that lie too close to the water surface, however, might 

be too vulnerable to flooding to make it affordable to maintain a high standard. Another 

indicator of differences in house standard is the “Vacation property” binary variable. 

Floodplain properties consist of almost 37 % vacation properties, comparing with 20 % where 

the house is 0-1 m above the floodplain and only 10 % for non-floodplain properties. 

5 Empirical strategy 

For the baseline models, I use a Difference-in-Differences-approach. This constitutes a quasi-

experimental approach in which one group receives a treatment in time period t (the treatment 

group) while another group (the control group), receives no treatment. Later on, in time period 

t+1, the effect of the treatment is evaluated by taking the measured difference between the 

treatment and control group at t+1 and subtracting by the measured difference in time period 

t. Any difference between the two groups over time may then be attributed to the treatment. 

An advantage of the DD approach is that it allows for level differences between the treatment 

and control group. However, for the DD approach to be valid the assumption of parallel trends 

is crucial; in the counterfactual scenario (i.e. if there was no treatment), both the treatment and 

control group should show identical trends in the outcome variable, so that any difference 

over time can be attributed to the received treatment. Although this assumption cannot be 

tested, the trends prior to the treatment can be analyzed. Optimally, the two groups should 

show similar trends in the period before the treatment. Further, there should be no spillover 

effects, such that only the treatment group receives treatment. This is controlled for by using 

detailed elevation data and recorded water levels to delineate the floodplain boundary that 

separates the treatment group from the control group. 

In the baseline model, the treatment group consists of houses lying within the 

floodplain (as specified in the previous section), while houses outside of the floodplain make 
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up the control group. The flood constitutes the treatment and is assumed exogenous to 

property market mechanisms. The baseline empirical model is defined as: 

  (   )          
           

         
         

       
      

            

The outcome variable is the natural log of price in kSek, ln(Pit), for house i sold at time t. 

When the dependent variable is in the log form, the parameters are estimated as the relative, 

rather than the absolute, effect they have on price. For example, the price effect of an increase 

in flood risk for a given property should realistically depend on the price level itself: for 

upscale properties, the price discount due to flood risk should be higher than for less-valuable 

properties that tend to be less decorated. 

  
     

 indicates whether or not a house lies within the defined floodplain, while 

   
    

 indicates whether or not a house was sold post-flood. Thus,   
     

 explains the price 

differential between the treatment and control group pre-treatment, while    
    

 explains the 

price trend given no treatment. The difference-in-difference estimate, is the parameter 

estimate    of the interaction variable   
     

    
    

. Controlling for pre-treatment 

differences   
     

 and the price trend    
    

, this interaction variable captures the difference 

between the treatment and control group over time. If the parallel trends assumption holds, the 

parameter estimate of   
     

    
    

 will equal the average treatment effect. If found 

negative and statistically significant it would indicate that the flood incidence had a negative 

impact on prices of houses within the floodplain. 

The baseline model defined above can easily be expanded to include multiple 

interaction terms for the floodplain variable, e.g. to disentangle the effect of the most 

vulnerable properties (indicated by   
           ) from the less-vulnerable properties in the 

floodplain (indicated by   
          

). Furthermore, the model can be expanded with 

interaction terms between the floodplain variable and specific years, to model the eventual 

decay of the flood risk discount over time. 

Other variables included are a vector of structural variables Si and a vector of 

locational variables Li (which include neighborhood- and environmental characteristics, but 

excludes flood risk). The functional form of these variables (i.e. the effects might be non-

linear) need not be linear, and are evaluated in the Results section. Controlling for structural 

and locational variables for both the treatment and control group, the only observable 

difference between the treatment and control group will be the difference in flood risk. 
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Coefficients β1 and β3 will therefore be equal to the pre-flood price discount in percent and the 

post-flood price discount in percent, respectively. 

As a starting point, OLS is used to estimate the model parameters. Thus, in 

addition to the parallel trends assumption, the Gauss-Markov assumptions should be fulfilled 

in order for OLS to be the preferred estimator. For the topic of study, the assumptions on strict 

exogeneity and spherical errors are of special importance. First, omitted variable bias might 

violate the assumption of strict exogeneity. To minimize this potential bias, all relevant 

structural and location control variables that might both correlate with floodplain location and 

affect price are included (e.g. the variable that indicates whether or not the property lies 

waterfront). Second, the assumption on spherical errors is often violated in models of spatially 

distributed data, such as properties. The error terms in OLS models of e.g. property prices 

tend to show spatial autocorrelation, due to the fact that neighborhoods tend to share many 

similar characteristics that are also unobserved (Dubin, 1998). This can lead to inefficient and 

inconsistent estimates which may make any inference unreliable (Anselin and Bera, 1998). To 

test for spatial autocorrelation, I use Moran’s I statistic, which is a measure of spatial 

correlation that ranges from -1 to 1, where the former indicates perfect negative correlation, 

and the latter perfect positive correlation. 0 indicates no correlation at all. The test can be done 

on observations directly to describe the spatial dependence processes in the dataset, as well as 

a regression diagnostics tool if used on residuals from an OLS model. However, the test 

requires that a model of the error term with an assigned spatial weights matrix (SWM) is set-

up, which is used to compare with the null hypothesis of a model with normally and 

independently distributed error term (OLS). The spatial weights matrix contains pair-wise 

spatial relationships between all observations, and is thus an n-by-n matrix where n is the 

number of observations in the dataset. One commonly used measure of spatial relationship, 

which is used here, is inverse distance, which uses the inverse of the distance between each 

observed variable as weights in the SWM, based on the logical assumption that objects 

located near each other share similar unobserved features (Dubin, 1998). The SWM is then 

used to model the error term, which is written: 

εit = λWiε + uit 

Where εit is the modelled error term, uit is a normally and independently distributed error 

term, W the spatial weights matrix and λ the coefficient . If λ is found significant, the error 

term shows spatial autocorrelation, and thus the OLS model has potential to be improved in 

terms of efficiency and consistency by e.g. modeling the error term based on a priori 

information on spatial correlation. The standard errors can also be corrected using clustering, 
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however, this technique gives unnecessarily conservative measures of the standard errors, 

relative to alternative specifications that exploit information on the spatial correlation (Gibson 

et al., 2010). Instead, exploiting the known spatial covariance structure between the 

observations, the standard errors can be estimated more efficiently using a General Methods 

of Moments (GMM) estimator which allows for spatial dependence and is robust to 

heteroskedasticity, also known as the Spatial HAC estimator, where HAC stands for 

Heteroskedasticity- and Autocorrelation-consistent (Conley, 1999). Since OLS is a special 

form of GMM when the model is just-identified, point estimates for models estimated using 

Spatial HAC are identical to those estimated with OLS, while the standard errors differ 

(Conley, 1999),. 

The results are analyzed with regards to sensitivity to chosen spatial weights 

parameters as well as time period and floodplain variable definitions.  

6 Empirical results 

6.1 Main results of DD-estimation 

Results for four baseline models with floodplain-time period interaction terms, are presented 

in Table 2. The floodplain variable   
      indicates all properties deemed vulnerable to 

flooding according to the definition set out in section 4. Year, zip code and municipality fixed 

effects are included for all models. All models account for spatial autocorrelation, using 

spatial HAC, as described in section 5 “Empirical Strategy”, with a distance cutoff of 2 km. 

The value of this parameter is tested, motivated and discussed in section 6.3.1. Model 1 and 

Model 2 use the full sample, while Model 3 and Model 4 use a sample restricted to properties 

with distance < 300 m from nearest water body to see whether properties closer to water are 

more adversely affected by changes in flood risk perception. For Model 2 and 4, the structure 

and location variables described in Table 1 are included in the regressions, while they are 

omitted in Model 1 and 3, in order to see which effect they have on the flood risk estimates. 

The coefficient of   
      is negative, indicating that there was a flood risk 

discount prior to the flood event in the order of 4 to 8 %. However, it is only significant for 

the full sample with control variables. When restricting to the properties closest to water, the 

estimate is both smaller and becomes insignificant, implying that there can be other factors 

that affect this estimate other than flood risk perception. Since I control for time effects with 

yearly fixed effects, the coefficient of    
    

 is included to control for the specific difference 
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over time between the treatment and control group, thus it is best interpreted in conjunction 

with the coefficient of   
         

    
.  None of the estimates of the latter is significant, and 

across all the models the estimate is positive, implying that there was no flood risk discount 

after the flood.  

It is, however, possible that the potential effect of the flood on prices is 

attenuated by the less-vulnerable properties in the   
          

 treatment group, since the 

sample size in this group is 339 relative to the 60 observations found in   
           . In order 

to disentangle the effect of flood risk on price by how vulnerable the properties are to flood, 

  
      is replaced by   

            and   
          

  in the baseline models, with results 

presented in Table 3. The positive estimates for the interaction terms persist, and the results 

show that the positive effect is driven by the most vulnerable properties in the   
            

group, where the coefficient of the interaction term is positive and significant across all 

models. Depending on specification, the positive effect on vulnerable properties after the 

flood ranges from 32 to 34 % excluding control variables. Controlling for structure and 

location attributes reduces the effect to 21 to 26 %, but it still remains both significant and 

positive. The fact that there is an increase in price for the most flood-vulnerable properties 

after the flood is contradictory, especially since the price trend for waterfront properties are 

controlled for. Introducing structure and location controls reduced the positive effect, and it 

might be that the distance to nearest water body variable not adequately explains preferences 

for living near water (see below for a discussion on the specification of this variable), or 

possibly that the flood-vulnerable properties were indeed flooded and rebuilt or renovated 

afterwards, which could positively affect the prices. The latter explanation would, however, 

only be valid for those properties with a sufficiently large lag in the taxation value and value 

points variables.  

Estimate for the structure and location control variables are reported in Table A1 

in the Appendix. Covariates were analyzed with respect to their functional form using 

specification tests. Distance to nearest water body was found to have a non-linear effect on 

price, and was found most informative when using the log of distance. Both age and lot size 

were found to be best specified when adding a squared term to the regressions, implying a 

non-linear effect of age and lot size on price. Living area, however, did not show non-linear 

effects and is thus included as a linear term, along with the rest of the control variables. The 

fact that lot size is non-linear while living area is not, could be due to the fact that for many of 

the properties, lot sizes are very large compared to living area. In fact, the estimates show a 
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concave relationship between lot size and price, implying diminishing returns to lot size as lot 

size increases. 

Of the location variables, the coefficient for Waterfront is found positive and 

significant for both Model 2 and 4, and indicates a price premium of 26 % for the unrestricted 

sample, and 13 % for the sample within 300 m from nearest water body. The coefficient of 

ln(distance) to nearest water body is significant and negative, indicating that it is not only 

location directly by the water that is valued highly, but also relative proximity to water. The 

coefficient is estimated to -0.101 to -0.111 for the both models, implying that a 1 % increase 

in distance to nearest water body will lower price by approximately 0.1 %. The coefficient of 

Elevation is found insignificant, and this variable is already partly controlled for with the 

floodplain indicator variable.  

Of the structure variables, building and lot taxation values are incredibly strong 

predictors of price. Depending on model, their estimates range from 0.52-0.56 for building 

taxation value, and 0.17-0.34 for lot taxation value, implying that a 1 % increase in building 

and lot taxation value increases price by 0.52-0.56 % and 0.17-0.34 % respectively. Since the 

taxation values are calculated based on an assessed value of the structure and property, 

including these likely means that other structural variables become less significant. Notably, 

living area, one of the most commonly used price indicators, is found insignificant and even 

negative in sign, when including taxation values. Despite that lot size, value points and age of 

the house are used in the calculation of the taxation values, these variables are all found to be 

significant in Model 2. As noted before, lot size shows a positive effect on price, with 

diminishing marginal effects as the lot size becomes bigger. Value points are found to have a 

positive effect on price, as expected, with a 1 point increase leading to a 0,4 % increase in 

price in Model 2, while the effect is positive but insignificant for Model 4. Lastly, age has a 

significant and negative effect on price in both models, with an expectedly diminishing 

marginal effect of as age as age increases. In the remainder of the results section, all control 

variables are included in the regressions presented, but left out of the results tables and 

discussion, in order to focus on the price effect of floodplain location. 

 

6.1.1 Event study with flexible year binary variables 

To investigate whether results are sensitive to the defined time period, the DD-estimation 

models with full structural and neighborhood control variables are run with yearly dummy 

variables from the period during the flood and onwards, indicating whether or not a property 
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is sold that year. Since the flood occurred during November 2000 to May 2001, this period is 

considered a special case and complements the yearly dummy variables as the variable 

“DURING”. Thus, the year 2001 dummy variables is adjusted so that it covers the period 

from June 2001 and onwards. 

Parameter estimates and standard errors are reported in Table 4. As expected, 

there is a very strong effect for the most flood-sensitive properties during the flood, as can be 

seen by the estimate for   
                   , which ranges from -0,472 to -0,662 

depending on whether the full or the restricted sample is used, implying that the most 

vulnerable properties (  
             ) dropped 47-66 % in value due to their location in 

the floodplain during the flood compared to before. Furthermore, for this group of properties, 

the estimates are all lower for the first year after the flood (2001) compared to later years. 

Interestingly, there is a strong and significantly positive spike in prices 2002, just the year 

after the flood ended, which partly seems to drive the positive effect seen in the post-flood 

period as a whole. 

For the less-vulnerable properties (  
            ) there is no significant effect 

on price neither during the flood nor in the years after, except for the year 2012 where there 

was a positive and significant increase in prices of 34 %. 

Overall, the yearly estimates suggest that while there was a strong and negative 

effect of flood risk on prices for the most vulnerable properties during the flood, this effect 

rebounded immediately after the flood, and for most years even was found positive. 

6.2 Graphical analysis of price trends 

To see whether the effect of floodplain on price shows variation over time, as well as to 

legitimize the use of DD estimation, I graphically analyze price trends for properties inside 

the floodplain (the treatment group) compared to those outside (the control group). Since the 

descriptive statistics show that the two groups differ widely in terms of lying e.g. lakefront, 

and the baseline models show that such characteristics are highly valued, simple price trend 

comparisons between the groups become too noisy. Instead, I compare the residuals from the 

pooled sample regressions in the baseline models. Using the residuals, I control for all 

observed time-invariant differences and thus it makes for a clearer starting point for visual 

comparisons. Figure 5 shows the by-month average of residuals separately for the treatment 

and control group, for the period January 1998 to December 2003. For DD estimation to be 

valid, the trends in the dependent variable should be similar between the treatment and control 
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groups before the treatment was applied. As can be seen in Figure 5, there is seemingly no 

difference in trends before the flood. Further, apart from the sharp drop in during the middle 

of the flood, and two later spikes, no overall change in trend can be seen after the flood 

occurred either. A positive residual means that the model overestimates the price, while a 

negative residual means that the price is underestimated. Thus, the negative spikes during and 

after the flood signal that the baseline model underestimates prices specifically for a specific 

few of the floodplain properties.  

In order to further disentangle the variation in price, I constrain the treatment 

group to properties where the house itself lies in the floodplain, which reduces the treatment 

sample from 399 to 60 observations. The trends for the limited sample and the control group 

are seen in Figure 6. While the noise increases due to the smaller sample size, a short but 

negative trend occurring during the flood can more clearly be seen. However, the negative 

trend is broken up by both positive and negative spikes following the flood. The apparent 

heterogeneity in residuals for “House in floodplain” might be explained by heterogeneity in 

variables such as distance to Lake Vänern, which may affect both the likelihood of a property 

getting flooded, as well as the perception of flood risk from the buyer’s perspective. This 

potential heterogeneity is further analyzed in the following section. 

6.3 Robustness tests 

In this section, the main results from the DD estimation are analyzed with regards to their 

sensitivity to spatial autocorrelation parameter values, the time variable definitions and 

floodplain variable definitions. Since the models with structure and location controls give the 

highest precision and the models that differentiate property’s sensitivity to flood seem the 

most relevant, Model 6 and 8 both are subject to the robustness tests. 

6.3.1 Testing for spatial autocorrelation 

One way to formally test whether the data show signs of spatial autocorrelation is to calculate 

Moran’s I test statistic and see whether or not the null hypothesis of no spatial autocorrelation 

is rejected. In order to calculate the statistic, a spatial weights matrix (SWM) that describes 

the spatial relationship between observations must be determined a priori. As the SWM, I use 

an inverse distance matrix, described previously in Section 6. I create a large number of 

SWM’s using cutoff value that range from 200 m up to 25 km. Moran’s I is calculated for 

both the dependent variable ln(price), and the residuals from an OLS model (similar to Model 
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1, but with homoscedastic standard errors) across this range, and shown as a function of the 

cutoff distance in Figure 7. 

To reiterate, Moran’s I is a measure of spatial correlation and takes a value 

between -1 to 1, where 0 signals that there is no spatial correlation, similar to the regular 

correlation coefficient. If the dependent variable shows spatial dependence, a model that 

completely explains the spatial dependence processes would yield a Moran’s I close to 0 for 

the model’s reisduals. In Figure 7 Moran’s I for ln(price) ranges from 0,51 to 0,34, while for 

the residuals it ranges from 0,19 to 0,09, as the cutoff distance increases from 200 m to 10 km. 

Thus, property prices show a relatively high degree of spatial correlation, which increases as 

the distance between properties is reduced. Meanwhile, spatial correlation between the 

residuals is considerably smaller than that of ln(price) over the whole cutoff range, meaning 

that the model does explain a lot of the spatial dependence between the observations. 

However, spatial autocorrelation is still significant and positive. Regardless of whether 

Moran’s I is calculated for ln(price) or the residuals, all of the statistics are significant at p-

values that are too low to write out. The Z-values for the residuals range between 11.20 and 

12.82. Thus, the null hypothesis of no spatial autocorrelation in the error term is clearly 

rejected. 

Because of spatial autocorrelation, estimates of the standard errors from OLS 

estimation will be inconsistent, which is why the Spatial HAC estimator is used instead for all 

the models.  

I use the results from the Moran’s I calculation to make the selection of the 

SWM used in Spatial HAC less arbitrary. As seen in Figure 7, spatial dependence decreases 

steeply when the cutoff is increased from 200 to 1-2 km. Thereafter, it seems to level out. 

Thus, spatial dependence seems to be the strongest within a radius of 1-2 km. As a starting 

point for the Baseline models, 2 km is chosen as the cutoff distance. Since OLS is a special 

form of GMM when the model is just-identified (Conley, 1999), point estimates for models 

estimated using Spatial HAC are identical to those estimated with OLS, while the standard 

errors differ.  

To see whether the standard errors are sensitive to different distance cutoff 

values, I estimate the model using 500 m and 5 km as cutoffs, which are reported in Table 5. 

Regardless of whether the distance cutoff value is changed for the model with the full or the 

distance-restricted sample, the standard errors only slightly change, and not enough to change 
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significance status of any of the models’ point estimates. Testing for trend differences prior 

the flood event 

6.3.2 Testing pre-treatment differences in trends 

In order to test whether there is any difference in trends between the treatment and control 

group prior to the flood I interact the floodplain indicator variable with year dummies for the 

period before the flood, 1998-2000, where   
            signifies the price discount for houses 

in the floodplain in year 1998,   
                  significes the price discount in 1999 and 

  
                  signifies the price discount in 2000. The Y2000 dummy only covers 

January-September 2000, since the flood began in October that year. If the estimates for the 

pre-flood interaction terms are significant, this would indicate a difference in trends prior to 

the flood. A difference in trends prior to the treatment might invalidate the parallel trends 

assumption, since any differences over time might be attributed to pre-treatment causes. The 

results from the regressions are shown in Table 6. Judging by the insignificant parameter 

estimates for the interaction terms, I find no significant trend difference between the treatment 

and control group before the flood. 

 

6.3.3 Sensitivity to elevation cutoff values for the floodplain variables 

I conclude the robustness tests by investigating whether the results are sensitive to modest 

adjustments of the floodplain variables. For   
           , I define   

               
 as houses 

that lie -0,5 to +0.5 m above the maximum water level, and for   
          

 I define 

  
              

 as houses that lie +0.5 to +1.5 m above the maximum water level. If the 

results are robust, the estimates for the first group,   
               

, should not change 

significantly compared to the second group   
              

. As before, I use model 6 and 8 to 

investigate sensitivity to elevation cutoff values. Results are reported in Table 7. 

Increasing the elevation cutoff values by 0,5 m for both groups reduces both the 

pre-flood discount, making it insignificant, and reduces the increase seen for the   
           

 

group in Table 3, making also this estimate insignificant. Thus, the estimated effects are very 

sensitive to the specified elevation cutoff that defines the floodplain variables. The fact that 

the pre-flood discount becomes smaller and insignificant for the   
           

 group in Table 6 

can be explained by the fact that the lowest, and thus most vulnerable, properties are omitted, 
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however, it does not explain why the estimated effect is much lower after the flood, relative to 

the estimates in Table 3. 

 

7 Discussion 

7.1 Comparative analysis of results 

My empirical analysis fails to show a negative effect of the flood on house prices, and for the 

most vulnerable properties specifically, the effect is even positive and significant, even when 

controlling for changing preferences in living near water. This may suggest that the value of 

non-insurable losses in the theoretical model is much lower than insurance costs (alternatively 

insurable losses, if insurance is not purchased), since the insurance costs in Sweden are 

negligible. To investigate if the flood price discount in Sweden differs from countries where 

flood insurance is not free, results from five previous similar studies are summarized in Table 

8. Property markets in the US and the Netherlands have reacted more strongly to flood risk 

after a flood, relative to Sweden. Notably, there seems to be little evidence of property prices 

adjusting to flood risk before the flood, independent of the insurance system of the studied 

countries. 

7.2 Policy implications 

The fact that there are signs that the property market in Sweden does not adjust to flood risk 

neither before nor even after a traumatic, recent flood event has important implications for 

city planning, construction regulation and insurance policy. If individuals do not take flood 

risk into account when purchasing homes, and location near water continues to be an 

attractive feature, it could lead to overexploitation (from a societal point of view) in the 

floodplain, leading to moral hazard and social dead-weight loss. Regulation of where homes 

can be constructed may reduce this dead-weight loss, as individuals are restricted from 

building new homes in flood-prone areas. In fact, municipalities of Sweden already regulate 

where individuals may or may not construct new buildings depending on flood risk. This 

potentially lowers both insurable and non-insurable costs of floods to society, while also 

limiting people’s ability to live near water. The findings of this study seem to partly justify 

current policy, given the design of the insurance system. Optimal policy should arguably take 

into account preferences for living near water, as well as potential damages from floods, so as 

to regulate construction of new homes in a way that is socially optimal. Should a premium be 
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put on flood insurance similar to the US, it is possible that the property market also will react 

similarly. In that case, price reductions of properties in the floodplain could lead to reduced 

willingness to construct and purchase further properties there, which would diminish the 

importance of municipal regulation. Although previous studied showed a significant flood risk 

discount, this only occurred after a flood event, and only temporarily, meaning that even for 

these policy settings regulation may be justified in order to prevent overexploitation in the 

floodplain.  

 

7.3 Potential limitations 

An important limitation that is shared with most previous studies is that it has not been 

possible to differentiate flooded from non-flooded properties. Thus, it is not known whether 

changes in prices were driven by changes in flood risk perception or property flood damages. 

To the author’s knowledge, the only study that has been able to differentiate flooded- with 

non-flooded properties in the floodplain after a flood is Atreya and Ferreira (2015), in which it 

is found that only those properties that lie in the flood’s inundated area were subjected to 

flood risk discount. In principle, this thesis uses a similar approach in which the actual flood 

water level is used. However, due to the slow rise in water levels in the Lake Vänern flood, 

authorities could successfully protect most of the vulnerable properties. This prohibits me 

from knowing which properties were flooded, and it may have made it harder for locals to get 

an understanding of which properties were most at risk of being flooded. Nevertheless, 

including properties that were sold at lower prices due to flood damage would only bias the 

flood risk discount upwards, and since no significant flood risk discount is found after the 

flood, the implications of the findings remain the same.  

For the estimated price discount during the flood, which was found statistically 

significant at the 1 % level when restricting distance to nearest water body, it is worth to 

mention that the estimations is based on only 5 properties in the treatment group for this 

period. 

One potential limitation that could be unique to this study, is that there may be a 

difference in how the flood event was perceived, relative to those previously studied. In the 

US, some of the floods were catastrophic, some happened due to hurricanes, and some 

involved the loss of human lives. While the Lake Vänern flood is considered the worst flood 

in modern history in Sweden, no loss of lives occurred, and due to the relatively successful 

emergency flood defences, it is possible that it left local inhabitants less traumatized, and 
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through the availability bias mechanism had a relatively smaller impact on the property 

market. Thus it is possible that the differences seen in Table 8 are not only due to differences 

in insurance policy, but also differences in flood severity. However, since the pre-flood 

discount is also insignificant (similar to previous studies), this potential limitation does not 

affect policy implications, since policies are implemented regardless of recent flood events. 

Although I use detailed elevation data to separate the treatment group from the 

control group, it is possible that price changes due to flood risk spilled over to nearby 

properties in the control group through property market dynamics, where the price of a 

property affects other properties nearby, and vice versa. This “spatial lag” effect may be 

investigated using a spatial autoregressive specification with autoregressive and 

heteroskedastic disturbances (SARAR). However, this has been outside the scope of this 

thesis. 

8 Conclusions 

In this thesis I study the effect of flood risk on price for properties around Lake Vänern, 

before and after the lake flooded in 2000-2001. I find no significant effect of flood risk on 

price, neither before nor after the flood. The results stand in contrast to previous work from 

the US and Netherlands which show significant price discounts for floodplain properties after, 

but not before, major flood events. One important explanatory mechanism could be that the 

incentive structures differs between the countries; in Sweden flood insurance is included in 

one’s home insurance free of surplus charge, whereas it is paid for in the US and Netherlands. 

The fact that monetary flood damages are covered by insurance seems thus to offset the effect 

that a dramatic flood has on the MWTP for flood risk. The finding that the property market 

does not “price in” flood risk neither before nor after a major flood event adds support to 

current regulatory policies, which prohibit the construction of homes in areas susceptible to 

floods. However, the potential limitations of the study, as discussed above, should be taken 

into account if these results are to be used for future policy design. 

Suggestions for future studies could be to complement this empirical analysis 

with a survey to homeowners in the same region, in order to see if stated flood risk 

preferences are in line with the revealed ones. The empirical analysis could also be extended 

to include specifications using a SARAR model to take into account the possibility of a spatial 

lag effect.  
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The results from this study could serve as input to future cost-benefit analyses 

(CBA) on e.g. investments in flood control measures. Current CBA models face difficulties 

with both intangible costs, such as the cost uninsurable flood damages (Messner and Meyer, 

2005), and benefits, such as the value of living near water. The results from this study, as well 

as previous ones on the topic
11

, seem to suggest that uninsurable flood damages at least are 

significantly less valued by homeowners than insurable damages, while living near water is 

highly valued. 

 

                                                 
11

 Bin and Landry (2013) and Atreya et al. (2013) both find that the property price discount due to flood risk 

approximately equals the present value of flood insurance costs. 
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Tables 

Table 1: This table contains the descriptive statistics disaggregated over the treatment and control groups. 

Table 1: Descriptive statistics 

   
           

 = 1 

House in the 

floodplain 

   (n = 60) 

  
          

 = 1     

House near the  

floodplain 

(n = 339) 

  
     

 = 0               

House above the 

floodplain 

(n = 8,613) 

Variable name Mean (sd) Mean (sd) Mean (sd) 

Price, kSEK 1039 (611.4) 1335 (941.4) 873.9 (685.7) 

    

Structure    

Living area, m
2
 97.85 (48.60) 116.9 (50.31) 117.7 (42.65) 

Additional area, m
2
 32.42 (41.16) 34.92 (37.98) 38.31 (42.50) 

Lot size, m
2
 1621 (1296) 1491 (2002) 1372 (1894) 

Building taxation value, kSEK 287 (217) 442 (362) 384 (301) 

Lot taxation value, kSEK 232,1 (194) 294,2 (278) 174 (0.157) 

Value points 24.55 (7.77) 26.56 (7.00) 27.21 (5.96) 

Detached house (=1 if detached) 0.967 (0.181) 0.932 (0.252) 0.852 (0.355) 

Vacation property (=1 if vacation 

property) 

0.367 (0.486) 0.195 (0.397) 0.0974 (0.297) 

Age, years 44.12 (19.53) 51.17 (21.18) 43.26 (20.05) 

    

Location    

Elevation of house 45.91 (0.19) 46.74 (0.26) 58.03 (11.80) 

Waterfront (=1 if property lies 

waterfront, else = 0) 

0.400 (0.494) 0.100 (0.301) 0.0182 (0.134) 

Distance to nearest waterbody, m 159.5 (144) 269.1 (340) 889.3 (642) 

    

Period    

Year sold 2003 (4,7) 2004 (5,5) 2004 (5,4) 

Sold before flood 0,42 0.0177 0.0408 

Sold during flood 0.383 0.316 0.338 

Sold after flood    
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Table 2: This table contains the results from the baseline model using DFlood as the explanatory variable for flood risk. 

The period of study is 1998-2003 where May 2001 – December 2003 constitutes the post-flood period. 

Table 2: Regression using   
      as an explanatory variable 

Dependent variable.: ln (price) 

 Model 1 Model 2 Model 3 Model 4 

Sample Full Full Distance to water 

body < 300 m 

Distance to water 

body < 300 m 

  
     

 -0.0429 (0.0480) -0.0614** (0.0315) -0.0149 (0.0632) -0.0666 (0.0436) 

   
    

 
-0.219 (0.139) -0.164 (0.117) -0.261 (0.243) -0.186 (0.183) 

  
         

    
 -0.00442 (0.0672) 0.0278 (0.0465) -0.00210 

(0.0757) 

0.0377 (0.0520) 

Structure and location 

controls 

No Yes No Yes 

Municipality fixed effects Yes Yes Yes Yes 

Zip code fixed effects Yes Yes Yes Yes 

Year-month fixed effects Yes Yes Yes Yes 

Waterfront time trend Yes Yes Yes Yes 

Standard errors adjusted for 

spatial and temporal 

autocorrelation 

Yes Yes Yes Yes 

Observations 9012 9012 1625 1625 

R-squared 0.4161 0.6500 0.5497 0.7906 
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Table 3: This table contains the results from the models with DFlood_House disentangled from DFlood_Prop. The period of 

study is 1998-2003 where May 2001 – December 2003 constitutes the post-flood period. 

Table 3: Regression using   
           

and   
          

 as explanatory variables 

Dependent variable.: ln (price) 

 Model 5 Model 6 Model 7 Model 8 

Sample Full Full Distance to water 

body < 300 m 

Distance to water 

body < 300 m 

  
           

 
0.0134 (0.116) -0.112* (0.0631) -0.0210 (0.123) -0.102 (0.0781) 

  
          

 
-0.0549 (0.0494) -0.0536* (0.0313) -0.0132 (0.0692) -0.0617 (0.0448) 

   
    

 
-0.218 (0.139) -0.165 (0.117) -0.262 (0.244) -0.176 (0.182) 

  
               

    
 -0.0306 (0.146) 0.216** (0.100) -0.00448 (0.167) 0.267** (0.121) 

  
          

    
    

 
0.000321 (0.0718) -0.00643 (0.0493) -0.00134 (0.0835) -0.0152 (0.0551) 

Structure and location 

controls 

No Yes No Yes 

Municipality fixed effects Yes Yes Yes Yes 

Zip code fixed effects Yes Yes Yes Yes 

Year-month fixed effects Yes Yes Yes Yes 

Waterfront time trend Yes Yes Yes Yes 

Standard errors adjusted for 

spatial and temporal 

autocorrelation 

Yes Yes Yes Yes 

Observations 9012 9012 1625 1625 

R-squared 0.4161 0.6425 0.4276 0.7499 
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Table 4: The table contains results for the models run for the period 1998-2003 as well as 2012-2013 using year 

dummies instead of a single post-flood period dummy. 

Table 4: Regressions with year dummy variables 

Dependent variable.: ln (price) 

 Model 6 with year dummies Model 8 with year dummies 

Sample Full Distance to water body < 300 m 

  
           

 
-0.152** (0.0662) -0.0131 (0.0785) 

  
          

 
-0.0845** (0.0396) -0.0356 (0.0489) 

  
           

        

-0.472** (0.231) -0.662*** (0.218) 

  
                  0.0237 (0.138) -0.186 (0.183) 

  
                  0.408** (0.158) 0.332* (0.183) 

  
                  0.139 (0.141) 0.176 (0.154) 

  
                  0.328 (0.251) -0.0596 (0.220) 

  
                  0.194* (0.103) 0.243 (0.285) 

  
          

        
0.114 (0.0869) 0.0568 (0.101) 

  
          

       -0.0336 (0.0872) 0.0299 (0.0826) 

  
          

       0.0931 (0.0576) 0.0307 (0.0724) 

  
          

       -0.00226 (0.102) -0.0518 (0.112) 

  
          

       0.342** (0.141) 0.0434 (0.128) 

  
          

       0.0743 (0.0604) 0.0740 (0.0691) 

Structure and location 

controls 

Yes Yes 

Municipality fixed effects Yes Yes 

Zip code fixed effects Yes Yes 

Year-month fixed effects Yes Yes 

Waterfront time trend Yes Yes 

Standard errors adjusted for 

spatial and temporal 

autocorrelation 

Yes Yes 

Observations 9012 1625 
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R-squared 0.6013 0.7781 

 

Table 5: This table contains results from the robustness test for choice of distance cutoff value for the inverse-distance 

matrix used by the SpatHAC estimator, using the specification in Table 3.  

Table 5: Sensitivity to choice of distance cutoff value (dist_co) 

Dependent variable.: ln (price) 

 dist_co = 0.5 

km 

dist_co = 5 km dist_co = 0.5 km dist_co = 5 km 

Sample Full Full Distance to water 

body < 300 m 

Distance to water 

body < 300 m 

  
           

 
-0.136** (0.0647) -0.136** (0.0639) -0.111 (0.0855) -0.111 (0.0854) 

  
          

 
-0.0658** 

(0.0300) 

-0.0658** (0.0322) -0.0803* 

(0.0416) 

-0.0803* (0.0434) 

   
    

 
-0.00419 (0.0247) -0.00419 (0.0238) -0.0155 (0.0454) -0.0155 (0.0422) 

  
               

    
 0.209** (0.0997) 0.209** (0.102) 0.257** (0.129) 0.257** (0.130) 

  
          

    
    

 
0.00157 (0.0516) 0.00157 (0.0518) -0.0115 (0.0583) -0.0115 (0.0566) 

Structure and location 

controls 

Yes Yes Yes Yes 

Municipality fixed effects Yes Yes Yes Yes 

Zip code fixed effects Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes 

Waterfront time trend Yes Yes Yes Yes 

Standard errors adjusted for 

spatial and temporal 

autocorrelation 

Yes Yes Yes Yes 

Observations 9012 9012 1625 1625 

R-squared 0.6425 0.6425 0.7499 0.7499 
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Table 6: This table contains results from the pre-flood trend differences run for the period January 1998 to December 

2000. 

Table 6: Testing for pre-flood trend differences between floodplain- and non-floodplain 

properties 

Dependent variable.: ln (price) 

 Model 6 with year dummies Model 8 with year dummies 

Sample Full Distance to water body < 300 m 

  
           

 
-0.164 (0.115) -0.0408 (0.109) 

  
          

 
0.0107 (0.0502) -0.0108 (0.0629) 

  
                  0.129 (0.135) 0.0979 (0.157) 

  
                  0.0611 (0.168) -0.0613 (0.151) 

  
          

       
-0.113 (0.0873) -0.00634 (0.0825) 

  
          

       -0.0675 (0.0663) -0.0252 (0.0716) 

Structure and location 

controls 

Yes Yes 

Municipality fixed effects Yes Yes 

Zip code fixed effects Yes Yes 

Year-month fixed effects Yes Yes 

Waterfront time trend Yes Yes 

Standard errors adjusted for 

spatial and temporal 

autocorrelation 

Yes Yes 

Observations 9012 1625 

R-squared 0.6013 0.7781 
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Table 7: This table contains results from the robustness test using adjusted elevation cutoffs in the specification, using 

the specification in Table 3. 

Table 7: Adjusted elevation cutoffs 

Dependent variable.: ln (price) 

 Model 6 with adjusted elevation cutoffs Model 8 with adjusted elevation cutoffs 

Sample Full Distance to water body < 300 m 

  
           

 
-0.0652 (0.0432) -0.0634 (0.018) 

  
          

 
-0.0185 (0.0316) -0.030 (0.0382) 

   
    

 
0.105*** (0.0223) 0.135*** (0.0330) 

  
               

    
 0.0467 (0.0777) 0.0553 (0.0694) 

  
          

    
    

 
0.0329 (0.0393) 0.0471 (0.0507) 

Structure and location 

controls 

Yes Yes 

Municipality fixed effects Yes Yes 

Zip code fixed effects Yes Yes 

Year fixed effects Yes Yes 

Waterfront time trend Yes Yes 

Standard errors adjusted for 

spatial and temporal 

autocorrelation 

Yes Yes 

Observations 9012 1625 

R-squared 0.6013 0.7781 
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Table 8: Comparison of previous findings relative to this stud. Note that a positive discount value implies a negative 

effect of flood risk on price.  

Authors 

(year) 

Country of 

study 

Flood event Pre-flood 

discount 

Significant? Post-flood 

discount 

Significant? Time to 

normalization 

Atreya et al. 

(2013) 

USA Hurricane 

Floyd, 1999 

9 % Weakly 22-23 % Yes 4-9 years 

Bartosova et 

al. (2000) 

USA Menomonee 

River, 1997 

5 % No 19 % Yes Not studied 

Bin and 

Landry 

(2013) 

USA Flint River, 

1994 

-4 % No 9-13 % Yes 5-6 years 

Daniel et al. 

(2007) 

Netherlands River 

Meuse, 

1993 

-2 % No 7-13 % Yes At least 10 

years 

Hallstrom 

and Smith 

(2005) 

USA Hurricane 

Andrew, 

1992 

-3 % No 14-19 % Yes Not studied 

        

This study 

(2016) – 

using Model 

4 

Sweden Lake 

Vänern 

flood 2000-

2001 

4 % No -2 % No Immediately 
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Figures 

 

Figure 1: Map of Sweden with the black rectangle marking Lake Vänern and the study area.  

 

Figure 2: Time series of the water level in Vänern from October 2000 to June 2001. 
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Figure 3:Map showing Lake Vänern, property transaction observations, bordering municipalities and major towns. 

Bordering municipalities are shaded in lighter gray than non-bordering municipalities. 
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Figure 4: The figure shows property parcels and buildings overlaid on a DEM where gray indicates the floodplain (the 

area that lies below the maximum flood level). Properties where the house intersects with the floodplain are indicated 

by DFlood_House = 1. Properties where only the property but not the house intersects with the floodplain, but where the 

house lies not more than 1 m above the maximum flood level are indicated by DFlood_Prop = 1. The two groups 

aggregated are indicated by DFlood = 1 in order to separate them from properties not at risk of flood (DFlood = 0).  
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Figure 5: Time trend of residuals from the baseline model covering all floodplain properties for ln(price) from 

January 1998 to December 2003. Red lines mark the beginning and end of the flood. 

 

 

Figure 6: Time trend of residuals from the baseline model covering properties where the house is in the floodplain, for 

ln(price) from January 1998 to December 2003. Red lines mark the beginning and end of the flood. 
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Figure 7: Measure of spatial autocorrelation in ln(price) and residuals from Model 1 as a function of cutoff distance, 

using an inverse distance matrix. 
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Appendix 

Tables 

Table A1: This table contains the results for all covariates excluding zip code and year-month coefficients. 

Table A1: Main results table with full list of structure and location controls  

Dependent variable.: ln (price) 

 Model 1 Model 2 Model 3 Model 4 

Sample Full Full Distance to water 

body < 600 m 

Distance to water 

body < 600 m 

  
     

  -0.0504 (0.0477) -0.0758** 

(0.0312) 

-0.0604 (0.0649) -0.0424 (0.0400) 

 

   
    

 -0.0448 (0.0349) -0.00437 

(0.0246) 

-0.137* (0.0793) 0.00224 (0.0427) 

 

  
         

    
 0.0917 (0.0688) 0.0334 (0.0478) 0.0995 (0.0894) 0.0164 (0.0627) 

Elevation of house 
 0.00117 

(0.000881)  0.00107 (0.00168) 

Waterfront (=1 if property 

lies waterfront, else = 0) 
 0.255*** 

(0.0639)  0.132** (0.0602) 

ln Distance to nearest 

waterbody, m 
 -0.111*** 

(0.0107)  

-0.101*** 

(0.0175) 

Living area, m2 
 0.00135 

(0.00262)  

-0.000765 

(0.00435) 

Additional area, m2 
 

0.000402 

(0.000431)  

-0.000214 

(0.000705) 

Lot size, m2 
 4.99e-05*** 

(1.08e-05)  

2.90e-05** 

(1.39e-05) 

Lot size squared 
 -1.23e-09*** 

(3.86e-10)  

-6.15e-10 (6.31e-

10) 

ln Building taxation value, 

kSEK 
 0.560*** 

(0.0752)  0.520*** (0.0621) 
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ln Lot taxation value, kSEK 
 0.169*** 

(0.0393)  0.335*** (0.0583) 

Value points 
 0.00412* 

(0.00214)  0.00203 (0.00238) 

Vacation property (=1 if 

vacation property) 
 0.0723** 

(0.0329)  0.164*** (0.0371) 

Age, years 
 -0.00625*** 

(0.00239)  

-0.00807** 

(0.00344) 

Age squared 
 7.06e-05*** 

(2.14e-05)  

0.000102*** 

(3.40e-05) 

 
    

Structure and location 

controls 

No Yes No Yes 

Municipality fixed effects Yes Yes Yes Yes 

Zip code fixed effects Yes Yes Yes Yes 

Year-month fixed effects Yes Yes Yes Yes 

Standard errors controlled for 

spatial and temporal 

autocorrelation 

Yes Yes Yes Yes 

Observations 9012 9012 1625 1625 

R-squared 0.4161 0.6424 0.4276 0.7499 

 

 


	Tom sida



