
1Master Thesis in software Engineering and Management
Model Driven Development with
Ruby on Rails
Antonios Protopsaltou
Göteborg, Sweden 2004

2

REPORT NO. 2007/58

Rapid prototyping of web applications combining
Ruby on Rails and Reverse Engineering

Antonios Protopsaltou

Department of Applied Information Technology
IT UNIVERSITY OF GÖTEBORG

GÖTEBORG UNIVERSITY AND CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2004

3

Rapid prototyping of web applications combining Ruby on Rails and Reverse Engineering

ANTONIOS PROTOPSALTOU
© ANTONIOS PROTOPSALTOU, 2007.
Report no 2007:58
ISSN: 1651-4769
Department of Applied Information Technology
IT University of Göteborg
Göteborg University and Chalmers University of Technology
P O Box 8718
SE – 402 75 Göteborg
Sweden
Telephone + 46 (0)31-772 4895

Antonios Protopsaltou
Göteborg, Sweden 2007

4

Rapid prototyping of web applications combining Ruby on Rails and Reverse Engineering

ANTONIOS PROTOPSALTOU

Department of Applied Information Technology

IT University of Göteborg

Göteborg University and Chalmers University of Technology

SUMMARY

This study presents the results from a comparison study performed in order to evaluate Ruby on
Rails modeling and code generation features against J2EE environment and AndroMDA. For that
purpose quality scenarios were built in order to to perform metrics measurements that in the latter
stage were used to evaluate the both platforms. The scenarios’ main purposes were to measure
development speed, implementation complexity, modeling time, and versioning.

Through this process, it was possible to identify key features that pointed Ruby on Rails as the
faster development environment. The results showed that a Rails developer could write less code
(for implementing the same functionalities) than a J2EE developer. The time spent for modeling the
database schema in textual environment was less than then AndroMDA visual environment. The
time needed for creating a diagram of the database schema using Ruby on Rails reverse
engineering plugins was less compared to J2EE. Finally, Ruby on Rails database version
management allows the developer to switch between different database schemes in less and simpler
steps than in J2EE or AndroMDA.

The report is written in English.

Keywords: Ruby on Rails, Model Driven Development, MDA, AndroMDA, Reverse
Engineering Plugins

5

Acknowledgments

I would like to thank my supervisor Thomas Lundqvist for his guidance and
encouragement throughout this thesis work. During this research project I benefited from
his advices, particularly when exploring new ideas.

Many thanks to my patient and loving girlfriend Fofo, who has been a great supporter.

Finally I would like to thank my parents, Despoina and Stavros, for their love and support.

6

Table of Contents
Chapter 1 Introduction..7

1.1 Importance of the problem...7
1.2 Related work..9
1.3 Methodology..9
1.4 Structure of the report..10

Chapter 2 Background...12
2.1 Model Driven Development...12
2.2 Reverse Engineering...13
2.3 Graphical and Textual model design ..14
2.4 Model Driven Architecture..15
2.5 Ruby on Rails...18

 Reverse Engineering Plugins..19
2.6 AndroMDA..19

Chapter 3 Reverse Engineering Plugins..20
3.1 Evaluation Methodology..20
3.2 Reverse Engineering Plugins Evaluation Results.......................................20

Chapter 4 Case Study..22
4.1 Case study Methodology...22

 Environments Comparison..22
 Evaluation Scenarios...22
 Background of the participants..23

4.2 Case study results...23
 First Scenario...23
 Second Scenario...23
 Third Scenario...25
 J2EE Environment Performance...25
 AndroMDA...25

Chapter 5 Analysis...27
5.1 RoR VS Traditional J2EE environment..27
5.2 RoR VS AndroMDA..28
5.3 Experiences working with AndroMDA..28

Chapter 6 Conclusions and future work...30
Chapter 7 REFERENCES ...31

7

Chapter 1 Introduction

Some problems due to ad-hoc implementation of Web-based systems which
was the general trend in the 90’s (Murugesan and Ginige 2005), could range
from project delays to poor quality and uncompleted implementations.

There have been interesting approaches such as Model Driven Development
(MDD) and Tool centered approaches that promise to reduce the productivity
problems within this domain.

There exist several frameworks in the market for developing web applications,
most of them claiming they increase productivity. Software engineers often
find it hard to decide which one will be the best choice in selecting the
appropriate one, having as criteria requirements satisfaction, development,
maintenance and so on.

Most of the times software engineers/chief architects are faced to decide
between choices such as MDD vs. Agile MDD, textual vs. graphical modeling,
graphical modeling editors vs. Reverse Engineering tools.

This study presents the results from a comparison case study performed in
order to evaluate Ruby on Rails framework and software design/
implementation strategies or methodologies in a given context. This case study
has been carried in a more exploratory spirit than a strict proposal of a
technology evaluation framework. For that purpose, two prototypes with the
same requirements were developed, and for each of them a specific
development platform was chosen (Ruby on Rails and J2EE). Furthermore,
quality scenarios were built in order to perform metrics measurements that in
the latter stage were used to evaluate the both platforms. The scenarios’ main
purposes were to measure development speed, implementation complexity,
modeling time and versioning. Some of the scenarios were also applied to a
third framework called AndroMDA.

Hence, the main research questions of the study are:

How does Ruby on Rails support Model Driven Development and other
development quality attributes in comparison to other platforms like J2EE and
AndroMDA? How efficient are the existing reverse engineering tools for Ruby
on Rails?

1.1 Importance of the problem

During the 90’s an ad hoc implementation process was mainly followed for the
development of web applications (Murugesan and Ginige 2005). Some
repercussions of this trend are visible on a survey that took place in 2000 on
Web-based project development by the Cutter Consortium:

8

● Delivered systems did not meet business needs 84 percent of the time.
● Schedule delays plagued the projects 79 percent of the time.
● Projects exceeded the budget 63 percent of the time.
● Delivered systems did not have the required functionality 53 percent of

the time.
● Deliverables were of poor quality 52 percent of time.(Ginige and

Murugesan 2001)

At the World Wide Web conference in 1996 first papers with an interest in web
applications problems were presented (Rashid, Zhangi and Farooque 2005).
The problematic areas that were presented were the development, deployment,
operation, maintenance and quality of web systems. In 1998, Murugesan along
with Yogesh Deshpande and Steve Hansen have established a new discipline,
Web Engineering:

“Web engineering is the establishment and use of sound scientific, engineering
and management principles and disciplined and systematic approaches to the
successful development, deployment and maintenance of high quality Web-
based systems and applications.” (Murugesan et al. 2001)

Web engineering is using software engineering principles. One of the processes
being used for the development of web database-based applications is the
Model-driven development process. Bran Selic defines Model Driven
Development (MDD) as “a software development approach where models
become essential artifacts of the development process, rather than serving an
inessential supporting purpose” (2006).

A study has shown that model driven development process increases
productivity by 37% (Middleware Company 2003). However, MDD is not the
only buzz word nowadays that claims to increase productivity. Hibbs (2007)
argues that developing an application with Ruby on Rails
(Ruby on Rails 2007) can be 5 to 10 times faster than a Java framework
without making sacrifices in the quality of the application. The main reason
behind this is that the framework is written in Ruby (Ruby programming
language 2007) an object oriented scripting language and Ruby on Rails
guiding principles: “less software and convention over configuration”.

There exist several frameworks in the market for developing web applications,
most of them claiming they increase productivity. Software engineers often
find it hard to decide which one will be the best the choice in selecting the
appropriate one, having as criteria requirements satisfaction, development
speed, complexity, scalability, maintenance and so on. For instance, a software
engineer may have to choose between J2EE and Asp.Net. If J2EE is the
answer, then the engineer has to decide: Struts or Spring, Hibernate or EJB and
so on. Often, this decision is based on developer's previous experience with the

9

framework or the programming language. But sometimes this is not enough,
especially when evaluating new technologies having no experience with them.
And a software engineer's dilemmas do not stop here:

● Model Driven Architecture (Miller and Mukerji 2004) or Agile Model
Driven Development (Agile Modeling 2007)?

● Textual or graphical modeling?
● Unified Modeling Language or Domain Specific Modeling Language

(Microsoft Corporation 2007)?
● Graphical modeling editors or Reverse Engineering tools ?

For all the above there exist several debates over the web with criteria similar
with the ones referred when selecting development framework. Every choice
has its own advantages and drawbacks. A combination of choices could even be
harder to evaluate. This process could be aggravated by the incompatibilities
between some choices due to their inherent characteristics. (for instance, the
choice of Model Driven Architecture eliminates the choice of textual
modeling). Some other times a choice may benefit through a combination of
choices like choosing graphical instead of textual with a graphical modeling
editor that generates code.

1.2 Related work

At the time of the study, International World Wide Web conference was calling
for papers relevant to web engineering and:

● Model-driven Web application development
● Case studies and best practices
● Design models and methods (IW3C2 2007)

There exist extensive research for Model Driven Development applied in
several application frameworks(Middleware Company, 2003;Bezivin et al.
2004;MacDonald, Russell and Atchison 2005; Hong and Dong 2003). Also,
there are some comparative evaluations between Ruby on Rails and J2EE
(Rustad 2005) or .Net, most of them on their application framework’s
architecture. However, there has not been conducted any study about
combining Ruby on Rails and Model Driven Development. Also there are not
any written experiences or studies for developing software using Ruby on Rails
built-in modeling features.

1.3 Methodology

The research methodology used in this thesis work is a case study (Kitchenham
and Pickard 1995). The current case study consists of a comparison of RoR
against the J2EE framework and AndroMDA (AndroMDA 2007) in terms of
development quality aspects, mainly focusing on development speed. It also

10

evaluates Ruby on Rails reverse engineering tools and examines how Ruby on
Rails textual modeling and code generation features aid the developer to
increase his productivity.

Through this study, it is suggested the usage of model driven development
approach for developing of database-backed, small-medium sized, web
applications. To give a concrete example, this study involves Ruby on Rails
development framework and reverse engineering process. I believe that this
approach affects in a positive way the productivity and the maintenance effort
of such projects. One of the assumptions here is that there is no need of
designing graphical diagrams if using Ruby on Rails and a reverse engineering.
The motto for this approach is: “Textual modeling is enough”. Nevertheless, it
has to be mentioned that the purpose of the study is not to prove that textual
modeling is better than graphical modeling.

In this case study, I used and investigated the model driven development
process using textual instead of graphical modeling with Ruby on Rails for the
implementation of a web database-based application. I performed a case study
approach with one study unit (Vokac and Jensen 2004) – the development of an
on-line survey system - and compare aspects relevant to productivity and
maintenance (development speed, size, time, etc...) of it against its sister
project which is going to be implemented by the first year master students.
Finally, Ruby on Rails was compared in terms of modeling and code
generation features with model driven development tool, Andromda.

There are six types of data collected in case studies (Tellis 1997): Documents,
Archival Records, Direct observation, Participant observation, Interviews and
physical artifacts. For the current study, the following data was collected and
used:

● Artifacts from the project (i.e. source code and diagrams for the
comparison of the different frameworks).

● Software development diary for recording personal experiences.
● Notes from direct observation technique by executing some scenarios

with one of the main developers of the sister project
● Notes from participant observation technique where I executed the

same scenarios in RoR environment.
● Semi structured interview with the developer of the sister project

For the comparison of Ruby on Rails features with AndroMDA's it was used
active participation technique and record time, steps and personal experiences
when executing scenarios in both frameworks.

1.4 Structure of the report

The structure of the report is organized as follows: Chapter 2 contains the

11

background theory. Chapter 3 presents the method and the results of the reverse
engineering plugins evaluation. Chapter 4 presents the case study methodology
and the results of performed scenarios. Chapter 5 analyses the results of the
comparison study and Chapter 6 concludes and mentions future research
directions.

12

Chapter 2 Background

This chapter provides the theoretical background and explains the concepts of
Model Driven Development, Model Driven Architecture, Reverse Engineering,
Textual and graphical modeling. It also provides information about
AndroMDA and Ruby on Rails and its reverse engineering plugins.

2.1 Model Driven Development

A model in Model Driven Development is a reduced representation of a system
focusing on the properties of interest for a given view point. It is a coherent set
of formal elements (Mellor, Clark and Futagami 2003) describing something,
e.g. an e-commerce application, built for some purpose that is compliant to a
particular form of analysis, such as:

● Communication between developers, managers and customers
● Project planning
● Reduce risks
● Transformation into implementation

According to Selic (2006) a successful engineering model should be:
● Understandable. The model should be expressed in a form to

communicate the essential information directly and accurately
● Accurate. The model must correctly specify the properties of interest
● Predictive. The model must be capable to predict the behavior of the

system
● Provide abstraction and hide all the unnecessary information

Today, there is a big concern on web applications development methods and
processes with a view to quality and integrity (Murugesan et al. 2001) of such
systems. Integration problems between design and implementation and track of
changes are very common when developing web applications. Two of the most
important problems when developing databased-based applications are
productivity and maintenance. A typical development process for such
applications is shown in Figure 1 (Bingi, Shufen and Zhao 2005)

13

As we can see in Figure 1 , the development process is an iterative waterfall
process where a large number of documents during phases 1 (requirement
analysis) and 2 (data storing description and data operating documents
description) are being produced. When the system is changing the changes
need to be documented. The developers need to modify the documents in order
to be consistent with the source code. When the changes are often the
productivity is getting low since updating artifacts by hand requires time. In
addition, most of the developers consider as their main task to produce source
code and not writing/updating documents which costs them time and slows
down the development process. Thus, documents are rarely synchronized with
the source code during later stages of projects. The result of this is maintainer
needs to read a lot of code to understand the functionality and behavior of the
system. Also , the developers are often forced to implement suboptimal
solutions with duplicated code, violate key architectural principles, and
complicate system and quality assurance because of lack of consistent artifacts
of the system and the source code (Douglas 2006).

During the life cycle of a web application the software design might change lot
of times because web applications in general constantly evolve (Murugesan
and Ginige 2005). Use of a model driven development approach will help not
only to make these changes in a short period of time but also to track the
changes and have a consistency between application implementation (e.g.
source code) and analysis information (design diagrams).

2.2 Reverse Engineering

Model Driven Development is following a forward engineering process, where

Figure 1: Flow of traditional databased development

14

software engineers from high-level abstractions and logical designs move to
the physical implementation of the system. While forward engineering is the
traditional development process, reverse engineering goes the opposite
direction;it follows a bottom-up direction by generating representations of the
system in another form or in a higher level of abstraction (Buss and Henshaw
1991). Understanding the source code of an application involves the reverse
engineering process. Cros and Chikofsky define reverse engineering as “the
process of analyzing a subject system to identify the system’s components and
their interrelationships and create representations of the system in another form
or at a higher level of abstraction" (1990). In nowadays there are several open
source and commercial tools that support reverse engineering . The major
purpose of such tools is to aid software engineers in the process of
understanding and analyzing the system during maintenance activities
(Rugaber 1994).

2.3 Graphical and Textual model design

Model Driven Development has been applied in many different forms. One of
the most simple MDD forms is one-time automatic generation of source code
from a simple model. In most of the cases, for the creation of the models of a
software system, a visual/graphical modeling language is used (for example the
Unified Modeling Language (UML) (Object Management Group). However,
there are some people saying that graphical models are not always that
effective as textual. Steffen Prochnow models statechart diagrams using a
textual modeling language Esterel (Prochnow, Traulsen and Hanxleden 2006)
and compares it against graphical modeling language in:

● Comprehensibility. Graphical modeling can describe better complex
systems in comparison with the one dimensional flow of text. On the
other had often the results of real applications are very large and
unmanageable graphics making harder for the reader to use and read
them. Textual modeling can represent precise details very well while
graphical modeling is good for higher level of abstraction.

● Editing Speed. Entering textual programming code to specify an
application is very efficient and faster than a graphical modeling
language. Because of the linear text flow, inserting and deleting
symbols and words is very simple. An example of the steps that needed
in order to add a new state at a statechart diagram is presented at KIEL
(Prochnow, Traulsen). While in textual environment there are only two
steps with two lines of text, there are 19 steps at the graphical
environment.

● Revision Management. When large repositories of textual code are
developed, evolution is well traceable. At anytime of the project’s
lifecycle a person can obtain revealing information about the
increments of the programming work by comparing the versions of the

15

file (e.g. using WinMerge (Winmerge Development Team, 2007).
According to Prochnow this can not be done in graphical modeling.

Diomidis Spinellis (2003) says that there is no rule specifying that models
should have a graphical form. He proposes the use of textual languages for the
creation of design models and automatic generation of graphical diagrams
instead of drawing the diagrams in a visual environment. Drawing diagrams
requires to place and manipulate shapes on the canvas which is time consuming
and for some people, boring. Also, software engineers often focus on delivering
nice pictures wasting effort on the tidy arrangement of graph nodes instead of
delivering an effective design. On the negative side Spinellis mentions that
learning the declarative notation might be harder than experimenting with a
visual tool and his automatic generation tool of graph diagrams has some
visualization problems. Another example of textual modeling is a tool for
Agent UML. Michael Winikoff (Winkoff 2005) presents a textual notation for
Agent UML protocols. Using this textual notation the tool can generate
sequence diagrams.

2.4 Model Driven Architecture

Model Driven Architecture, MDA is the Object Management Group (OMG)
methodology to model driven development process. MDA comes to solve the
problematic programmer's shortcut (Figure 2) (Warmer, Kleppe and Bast
2003).

16

As we can see in Figure 2, a developer is not following all the steps of the
iterative process development life cycle. He prefers to jump to coding phase
instead of updating design documents. Following an MDA process this is not
possible. In MDA modeling is the central part of the development life cycle
that will lead to the deployment of good applications.

The development life cycle in MDA has the same phases as the traditional
development life cycle. One of the major difference between the two
development approaches is the artifacts' nature that are created between the
development phases and their usage. These artifacts are essential models that
can be interpreted by computers. In Figure 3 we can see the core models of
MDA:

Figure 2: Traditional Software Development
life cycle

17

● Platform Independent Model (PIM). PIM is a description of the desired
system. It specifies the structure and the functions of it excluding all the
technical details.

● Platform Specific Model (PSM). PSM is the result of applying specific
transformation rules to PIM.

● Code, the final step where source code is automatically generated.
Figure 4(Warmer, Kleppe and Bast 2003) shows the major steps in
MDA development process.

Figure 4: Steps in the MDA development process

The transformation tool (Figure 4) is responsible the translation process from
model to model. There exist several MDA tools in the market like OptimalJ
(Compuware OptimalJ 2007) and ArcStyler (Interactive Objects 2007).

Figure 3: MDA software development life cycle

18

2.5 Ruby on Rails

Ruby on Rails is a full stack development framework for developing database-
backed web applications (Dave and Heinemeier 2006). Its architecture is based
on the Model View Controller architecture.

Rails has an inbuilt layer for object relationship mapping named Active Record
(Rails Framework Documentation). Active Record follows the standard Object
Relational Mapping (ORM) model. It maps tables to classes, rows to objects,
and columns to object attributes. However, Active Record is not only an ORM
package for Rails. It is also the model part for Rails giving the power to the
developer to define the relations among the tables using a simple-natural
language such as belongs_to, has_many. An example of such is:
Class Department < ActiveRecord :: Base

has_many :employees
end

The above code describes the one-to-many relationship between the
Departments and Employees tables. Another interesting feature of
ActiveRecord is the find methods that supplies to the developer:
e = Employees.find_by_name(“some_name”)
deps = Departments.find_all()
The first line of code returns an Employee object with name equals to
“some_name” and the second line a list of department objects. As we can see
there is no need for writing Sql queries. Even when we want to save an object
to the database we type:
e.name = “new_name”
e.save

At the first line we change the name of an employee and at the second line we
save it at the database. What we can notice from the above code (e.name =
“new_name”) is that there is no need to create any getter and setter methods for
the objects. And also the update method (save the changes to an object to the
database) for the employee object is automatically created (e.save). Rails
creates all the CRUD (create, read, update, delete) methods for every object in
the database.

A valuable feature in rails are the migrations. Migrations are small
programs/scripts that allow the developer to incrementally create the database.
These scripts are currently supported by MySql, Oracle, Sqlite, Sql Server,
PostgreSql and Sybase (Rails Framework Documentation). Thus, creating the
database schema using migrations, the developer can easily change to another
supported database. In addition, using Rails migrations the developer has then
option to switch between several versions of the database very fast and easy.
Moreover, migrations are following the DRY principle of Rails (Don't Repeat

19

Yourself) where the column definition is specified only once (and not for
example in getter methods, setter methods, configuration files).

Reverse Engineering Plugins

After conducting research I have found four reverse engineering plugins for
RoR framework:

● Visualize models (Franzen 2007)
● Rails application visualizer, RAV (Sawicki and Hagelberg 2007)
● RailRoad (Smaldone 2007)
● UmlDumber (Škultéty 2007)

Visualize models, RAV and RailRoad generate pictures and UmlDumber
generates an xml file to be imported to a UML tool. Visualize models and
UmlDumber are using the schema.rb file- generated by RoR framework
representing the actual database schema-as input data to reverse engineer.
RailRoad and RAV are reading the model classes in order to identify the
database tables and the relationships among them. RailRoad plugin though
goes one step further. It can generate class diagrams showing inheritance
associations.

2.6 AndroMDA

AndroMDA is an open source generation framework that follows the MDA
paradigm. It can transform models created by UML tools (e.g MagicDraw, into
deployable components of J2EE or .Net platform.

Besides the UML tools, AndroMDA requires Maven (Apache Software
Foundation) for building and deploying its applications. As an application
server it uses Jboss and for the tutorial example it uses MySql as database
server. The environment setup is different for creating a .Net application where
Microsoft Visual Studio 2005 and Microsoft SQL Server are prerequisites.

J2EE is a platform independent environment written in Java for developing
web applications.

20

Chapter 3 Reverse Engineering Plugins

This chapter describes the methodology that performed for the evaluation of
Ruby on Rails reverse engineering plugins. It also presents the results of the
evaluation since the plugins are going to be used for the comparison case study
(chapter 4)

3.1 Evaluation Methodology

The evaluation of the reverse engineering plugins was based on the online
prototype system developed with RoR. The evaluation criteria that are used for
the assessment of the four plugins are:

● Installation effort: how easy is the installation of the plugins
● Support: documentation and on-line help
● Usability
● Speed for generating diagrams
● Filters : generate diagrams with specific part of interest
● Layout : how “readable” are the generated diagrams (layout algorithm,

notation)

3.2 Reverse Engineering Plugins Evaluation Results

I have executed several cases to evaluate the plugins. These are the results of
the plugins evaluation based on the defined criteria:

● Ease of installation. The installation of these plugins for someone that is
familiar with SVN is not difficult. Visualize models and RAV plugins
can be installed by downloading the source code from the repositories
and copy it to the vendor folder of the rails project. RailRoad has the
easiest installation of all. It can be installed by using Gem (RubyGems)
running in a command window the command: gem install railroad.

● Support. There is no detailed documentation for the plugins, probably
because their capabilities are very limited. There exists supporting
forums for the plugins that generate images, since all of them are hosted
at hosted at RubyForge. UmlDumber in not at RubyForge server and
users can post comments/questions at its blog site.

● Usability. The plugins are very usable. By running a command in a
command window the developer can generate a .png picture or an .xml
file.

● Speed. It took less than 5 seconds to generate a picture diagram or an
xml file.

● Filters. Only RailRoad plugin gives the developer the option to specify
which information should be included at the diagram like properties

21

type or inheritance associations and add an information label on the
diagram(date, database schema version).

● Layout. The three plugins that generate pictures are using the dot layout
algorithm and Graphviz software (Graphviz) which makes them more
readable. UmlDumber is not using any layout algorithm. However, the
developer has the power to edit the model using a UML tool, e.g
StarUML and rearrange the boxes, group them, add/remove information
and at the end save it as a uml model file or export it as an image. None
of the plugins that generate image files is using the UML notation for
creating diagrams. RailRoad plugin uses a notation which is closer to
Business Object Notation, BON (Walden and Data, 1998).

A disadvantage of these plugins is that they may produce diagrams with
poor readability when the number of classes is big. Another disadvantage is
that they do not generate other type of diagrams (i.e. activity or state chart
diagrams). Nevertheless, RoR plugins seem to provide a fast solution for
reverse engineering, database schema verification and communication. Is
not possible to state which is the best plugin to use in this case, since all of
them have quite similar capabilities. The choice of the plugin depends on
the case that is going to be used and the developer's personal taste.

22

Chapter 4 Case Study

This chapter contains information for the comparison case study. It describes
the performed methodology and presents the results of the study.

4.1 Case study Methodology

The case study is based on an on-line survey system similar to a commercial
system available at www.surveymonkey.com. The first year master students in
the software engineering and management master program were developing
this on-line system using java web services. I developed part of this system in
the Ruby on Rails framework while paying special attention to modeling,
reverse engineering and development speed aspects of the process.

Environments Comparison

The first year master students chose to develop the application in a J2EE
environment using web services and enterprise java beans. MySql was chosen
as the development database and Sun server as the application server. As a java
IDE they were using NetBeans and for database management MySql Query
Browser tool. The team was not following a model driven development
approach and was using extreme programming as software development
method.

In Ruby on Rails it was used default web application server WebRick and
Notepad++ as an editing source code IDE. The development database was
MySql.

For working with AndroMDA I chose to use MagicDraw as a UML editor and
Eclipse as java IDE. As an application server I used Jboss and for the database
MySQL server.

Evaluation Scenarios

In order to examine the time and steps needed for developing same
functionality in J2EE and Ruby on Rails I have created some scenarios. The
first scenario was to create a picture diagram of the database schema.
The second scenario was to add a new table to the database, update the source
code and deploy the new component in order to test the changes. The primary
key of the new table (departments) should also be a foreign key to an existing
table (surveys) having a one to many relationship (one department has many
surveys). The third scenario was to change the name of an existing column
(“name” to “survey_name”) of a table (surveys), update the code, manually
update all the configuration files (without using NetBeans wizards) and deploy
the component to test the changes.

http://www.surveymonkey.com/
http://www.surveymonkey.com/
http://www.surveymonkey.com/

23

While performing the scenarios at the J2EE environment and recording the
steps, I conducted a semi-structure interview with the developer.

Interview Questions:
● Number of versions of the database schema
● Do you have a graphical view of the database schema

In AndroMDA environment I did not execute the above scenarios. Instead, I
read about the framework, installed it and followed one of the tutorials for
creating part of an employees' time tracker application in J2EE. When the
prototype was deployed I added a new column at a table to the database
schema using MagicDraw to record steps needed for changes to take affect.

Background of the participants

The developer that participated for executing the scenarios had 6 months
experience working with enterprise java beans and web services. I have three
years working experience as a web developer, last one developing only J2EE
applications (using eclipse IDE, struts framework and JSP). While I was
conducting this case study I had no experience in Ruby language, RoR
framework, Model Driven Architecture and MDA.

4.2 Case study results

In the beginning of our session with the J2EE developer I asked him how many
versions of the database they had and he answered me that there were only two.
When I asked if he had graphical view of the database schemes in order to see
the differences between the two versions the answer was “no, but I can create
them by using MySql Workbench tool”. So I asked him to execute the first
scenario and create a visual design of the database schema.

First Scenario

The developer spent approximately 3 minutes to open the tool, generate the
visual schema of the database and rearrange the database tables. After that it
took 3 minutes to export the model as a png image. During the conversion time
(model to image), the tool took all the cpu usage and the memory used by the
tool went from 40 to 300 Mb.

I executed the same scenario with Ruby on Rails using the reverse engineering
plugins. The time for generating a diagram using single command in a
command window was less than 5 seconds

Second Scenario

The J2EE developer in approximately two minutes did the changes to the

24

database using MySql Query Browser tool for the second scenario. The next
thing he did was to open NetBeans IDE and delete a package generated by
NetBeans(including java files and configuration files) and by using another
wizard he generated this package. The reason for doing that was to update the
configuration files for the changes at the database and generate source code
relevant with enterprise java beans. What was left was to create manually all
the CRUD methods for the new table (departments) and change all the CRUD
methods for the existing table (surveys) since he added a new column (the
foreign key with reference to the departments table). I asked him to change
only one method (create new survey) and test it, just to check that what he did
was running. Everything was working fine.

For the second scenario I used RoR's migrations to add the new table at the
database. In a command window I run the command: ruby script/generate
model department. The model generator generated two files:
002_create_departments.rb and department.rb. I have added the following lines
at the 002_create_departments.rb file :
class CreateDepartments < ActiveRecord::Migration
 def self.up
 create_table :departments do |t|
--> t.column :name, :string
--> t.column :description, :string
--> t.column :manager, :string

end
--> add_column :surveys, :department_id, :integer
end

 def self.down
 drop_table :departments
--> remove_column :surveys, :department_id
 end
end

After that I run the command: ruby db:migrate. That command made the
changes to the database. As mentioned before RoR uses its own domain
specific language to define the relationships among the database tables. In
order to define the new relationship I had to specify it at the already existing
survey.rb file and the new department.rb file:
class Survey < ActiveRecord::Base

has_many :survey_pages
has_and_belongs_to_many :users

--> belongs_to :department
end
class Department < ActiveRecord::Base
--> has_many :surveys
end

The time I spent for making these changes was approximately two minutes.
And that was all. I did not have to write any other code for the CRUD methods.

db:migrate
db:migrate
db:migrate

25

Third Scenario

The developer did the changes to the database using the same tool as in the
second scenario. When he opened NetBeans I asked him to update the
configuration files and the java beans manually. He spent about 30 minutes
trying to make the changes but he could not make it run. He told me that he
tried that once at the past but these xml configuration files “gave me a
headache”. So we decided to go for the auto generation solution and do the
same steps as he did at the first scenario (delete and automatically generate
configuration and enterprise bean files, change the CRUD methods manually).

For the third scenario I run the command: ruby script/generate migration
rename_survey_column_name. This generator generated a
004_rename_survey_column_name.rb file. I added two lines in this file:
class RenameSurveyColumn < ActiveRecord::Migration
 def self.up
--> rename_column :surveys, :name, :survey_name
 end

 def self.down
--> rename_column :surveys, :survey_name, :name
 end
end

The second line was not necessary. But by doing so, I could undo the changes
and switch to the previous version of the database. There was no need to add or
modify source code for the CRUD methods and it took less than a minute to
make this change.

J2EE Environment Performance

During the execution of the scenarios, the J2EE developer said twice “when
you do programming you have to be patient”. The reason for saying that was
that plenty of times he had to wait for the IDE''s response. In addition there
were pop out windows messages like, “the memory load of the system is
extremely high” or “your system is low on virtual memory” making his working
environment very slow. This issue gave him a disappointed look. In windows
task manager the memory usage during the changes was 500 mb and the
“commit charge” almost 900 mb.

AndroMDA

After spending one and a half day for setting up the environment I started the
implementation of the Timetracker application. AndroMDA set up the
environment of the application from scratch and generated code for Spring,
Struts and Hibernate frameworks. When I finished modeling AndroMDA
generated all the source code. Only two lines of source code were needed to be

26

added manually to display the contents of a database table to web browser.

Using a command in a command window AndroMDA created the database
based on the model. However, when I made a change to the database model
AndroMDA could not update the database. First I had to drop the table and
then run AndoMDA's command to create the database.

Next table shows the steps needed to add a new column at AndroMDA and
Ruby on Rails
AndroMDA Ruby on Rails
add the address attribute at the
UserVO box with the stereotype value
object

Add the following line :
add_column
:users,:address,
:string

add the address attribute at the User
box with the stereotype entity

run migration script

drop table users from the database Reverse engineering plugin to
generate database schema diagram

run mvn install script
run mvn create database schema script

27

Chapter 5 Analysis

Chapter 5 presents the analysis of the comparison case study results.

5.1 RoR VS Traditional J2EE environment

Ruby on Rails and its textual modeling features provides the developer with the
option to make the database changes via a text editor with the use of domain
specific language. By doing so, the editing speed is enhanced. By doing so,
affects the editing speed in a positive way. For instance, It is much faster to
rename a column by adding a line in a text file than open a database editing
IDE, load the database schema,open the table and edit the column.
Nevertheless making the changes using Active Record and migrations, allows
the developer to switch between different versions of the database very easily
and fast. Based on my working experience, in the traditional J2EE environment
this can be done with the use of a version control system, where the software
engineer needs to:

● create a database schema script
● put it under version control
● update to specific revision of the “create database schema” script
● drop the database schema
● create the new database schema

Another result of modeling with RoR is that following its modeling restrictions
(e.g primary key name must be id) you can get all the simple CRUD methods
automatically generated. This is done with one line of code:
scaffolding :name_of_the_table

In the traditional J2EE environment the developer needs to create all these
methods (a sample of the sister project is 120 lines of code for the CRUD
methods of one table.

Working with RoR did not require editing any configuration file when
executing the scenarios. In the traditional j2ee environment besides the updates
to database it requires to be updated the configuration files between the
database and their representation inside the application. For all developers this
is a tedious work. NetBeans provides wizards for automatic generation of such
files. In RoR these configuration files do not exist. Another interesting result is
that with RoR reverse engineering plugins a developer can generate the
database schema diagram in less than 5 seconds while in the j2ee environment
took 6 minutes. But Ruby on Rails textual model of the database has another
advantage. When it is hard to find the differences between two database
versions by looking the generated picture diagrams, a developer can “diff”
them and find the differences really fast.

28

In my opinion every developer likes fast tools with fast response. The
development environment of Rails is such one. A text editor, a command
window and a lightweight application server is all you need to develop a web
application. During my professional carrier, I use to have plenty of times the
“disappointed look” that the developer of the sister project had. This situation
didn’t occur with Ruby on Rails.. Moreover, during the implementation of web
applications a developer wants feedback to check his changes. In J2EE
environment this requires to compile the code and deploy the component. In
Ruby on Rails this was not necessary. Every change I made to the source code
was easily tested in a web browser by just refreshing the page.

5.2 RoR VS AndroMDA

Ruby on Rails is not an MDA tool like AndroMDA. It does not use a graphical
environment for modeling and it does not follow the MDA paradigm (but still
Ruby on Rails can run in every platform). In spite of this it follows a model
driven development approach, by giving the option to the developer to model
that database using a domain specific language and create the database schema.
Since I did not perform the same scenarios as I did with RoR and J2EE I can
not compare the development speed effort between the two environments.

With a focus on the database modeling I can say that RoR textual modeling
language was very easy to learn and use. There is no answer on which
modeling environment is better. It is a matter of :

● Developer's taste. keyboard and text or mouse, boxes, arrows and
dialogs

● Switching database version method: using migrations – or drop db
schema and generate a new one

● Diffing between two models: textual modeling language or xml

When it comes to database modeling speed though, textual modeling is faster.
It was much faster to add a single line of code in Rails than filling in dialog
boxes and recreating the database schema.

In terms of development environment performance, Ruby on Rails is the
winner. WebRick memory usages in windows task manager is 25MB of
memory while Jboss and MagicDraw is 250MB.

5.3 Experiences working with AndroMDA

Although AndroMDA's documentation was almost up-to-date there was
nowhere specified that there are compatibility issues with the latest version of
maven. That makes it hard to install AndroMDA's environment.

Modeling for AndroMDA is not the common UML modeling activity that
software engineers are used to. AndroMDA requires a specific UML model

29

structure in order to be interpreted. Also specific stereotypes are mandatory to
be used to define which cartridge is going to be used for code generation.
Every cartridge requires specific properties and modeling rules. From the
above we understand that UML knowledge is not the only important issue for
AndroMDA. I found the modeling details and rules quite complex (this could
be due to the fact that I spent only one week examining AndroMDA).

An advantage of using AndroMDA is that the application's architecture is based
on design patterns (e.g Data Access Object, DAO pattern). Also most of the
code is automatically generated with the use of cartridges. The developers need
to write only domain specific code. Another advantage is that the deployment
of the application was done by writing a running a single command in a
command window. There was no need to create an ant file to generate ear or
war component. AndroMDA did that for me. An interesting feature of
AndroMDA was the use of activity diagrams to design the process model of the
application. With the use of Bpm4Struts cartridge AndroMDA generates the
struts code.

On the negative side it was a surprise that AndroMDA could not update the
database schema. However, in my opinion, the major disadvantage working
with AndroMDA was the level of details and the specific rules of the UML
models. The developer needs to have modeling abilities and I am not sure that
all developers are good modelers. While MDA tools become more and more
popular a new debate is on the road: graphical versus textual programming.

30

Chapter 6 Conclusions and future work

In this thesis I have investigated the Ruby on Rails framework, its modeling
features and its reverse engineering plugins. The comparison with J2EE
showed that the Rails developer gains in productivity by writing less code and
having a lighter development environment. Moreover, the deployment features
in Ruby on Rails gives the developer direct feedback for his changes. In
addition a Ruby on Rails developer is free from the tedious work of writing
configuration files. Also, the Ruby on Rails migrations showed that you can
save time when creating the database schema and switching between database
versions. The reverse engineering plugins can generate the database model very
fast and are great for database verification although they are not following a
UML notation.

AndroMDA is a great open source MDA tool. Models are always synchronized
with the application's source code and the developer needs to write only
domain specific code. A software engineer can easily extend it to satisfy his
domain needs by writing his own cartridges.

However AndroMDA didn’t provide enough merits to be considered as a faster
solution for developing web applications. I prefer to write code for the
executable details of the system and reverse engineer my database schema
when I want a graphical diagram of the database model.

Further investigation needs to be done to evaluate RoR scalability and the
deployed application's performance. Moreover RoR reverse engineering
plugins should be extended with extra capabilities and the use of UML
notation. Finally, another interesting idea would an be evaluation, using the
evaluation framework for software technology proposed by Brown and
Wallnau (1996), of AndroMDA against a commercial tool (e.g optimalJ) and a
traditional development environment.

31

Chapter 7 REFERENCES

Agile Modeling, 2007 : Agile Model Driven Development (AMDD): The Key
to Scaling Agile Software Development,
http://www.agilemodeling.com/essays/amdd.htm

AndroMDA, 2007 : http://www.andromda.org/

Apache Software Foundation, 2007: Maven, http://maven.apache.org/

Bezivin Jean, Hammoudi Slimane, Lopes Denivaldo, Jouault Frederic,
2004: Applying MDA Approach for Web Service Platform, Proceedings of the
8th IEEE Intl Enterprise Distributed Object Computing Conf

Bing Li, Shufen Liu, Zhao Yu, 2005 : Applying MDA in Traditional
Database-based Application Development, The 9th international Conference on
Computer Supported Cooperative Work in Design Proceedings

Brown Alan, Wallnau Kurt, 1996: A framework for evaluating software
technology, IEEE Software

Buss Eric, Henshaw John, 1991: A Software Reverse Engineering
Experience, Proceedings of the 1991 conference of the Centre for Advanced
Studies on Collaborative research, Pages: 55 – 73

Chikofsky E. , Cross J., 1990: Reverse engineering and design recovery: a
taxonomy,IEEE Software

Code Generation Network, 2007: An Interview with Matthias Bohlen of
UML2EJB and AndroMDA, http://www.codegeneration.net/tiki-
read_article.php?articleId=8

Compuware OptimalJ, 2007 : Model Driven Java Development Tool
http://www.compuware.com/products/optimalj/

Dave Thomas, Heinemeier David, 2006: Agile web development with Rails,
Second Edition

Douglas C. Schmidt, 2006 : Model-Driven Engineering, IEEE Computer

Franzen Nils, 2007 : Visualize models, http://visualizemodels.rubyforge.org

Ginige Athula, Murugesan San , 2001 : The Essence of Web Engineering.
Managing the Diversity and Complexity of Web Application Development,
IEEE Multimedia

Graphviz, 2007: Graph Visualization Software, http://www.graphviz.org/

Hansson David Heinemeier, 2007 : Ruby on Rails,
http://www.rubyonrails.org

http://www.rubyonrails.org/
http://www.rubyonrails.org/
http://www.rubyonrails.org/
http://visualizemodels.rubyforge.org/
http://visualizemodels.rubyforge.org/
http://visualizemodels.rubyforge.org/
http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/

32

Hibbs Curt, 2007 : ONLamp : Rolling with Ruby on Rails,
http://www.onlamp.com/pub/a/onlamp/2005/01/20/rails.html

Hong Wang , Dong Zhang, 2003 : MDA-based Development of E-Learning
System,Proceedings of the 27th Annual International Computer Software and
Applications Conference

Interactive Objects , 2007 : ArchStyler http://www.arcstyler.com/

ISWorld, 2007 : Design research in Information Systems,
http://isworld.org/Researchdesign/drisISworld.htm"

IW3C2, 2007 : Sixteenth International World Wide Web Conference",
http://www2007.org/cfp-WE.php"

Joaquin Miller, Jishnu Mukerji, 2003 : MDA Guide Version 1.0.1, OMG

Kitchenham Barbara, Pickard Lesley, 1995 : Case studies for Method and
tool evaluation, IEEE Software

MacDonald Anthony, Russell Danny, Atchison Brenton, 2005: Model-
driven Development within a Legacy System: An industry experience report,
Proceedings of the 2005 Australian Software Engineering Conference

Microsoft Corporation, 2007: Domain-Specific Language Tools,
http://msdn2.microsoft.com/en-us/library/bb126235(VS.80).aspx

Middleware Company, 2003 : Model Driven Development for J2EE Utilizing
a Model Driven Architecture (MDA) Approach

Murugesan San, Deshpande Yogesh, Hansen Steve, Ginige Athula" 2001 :
Web Engineering: A New Discipline for Development of Web-Based Systems,
IEEE MultiMedia

Murugesan San, Ginige Athula, 2005 : Web Engineering: Introduction and
Perspectives, Idea Group Inc.2005

Object Management Group, 2007 : Unified Modeling Language,

http://www.uml.org

Prochnow Steffen , Traulsen Claus, 2005 : Textual and Graphical
Representations of Statecharts

Prochnow Steffen , Traulsen Claus , Reinhard von Hanxleden, 2006 :
Synthesizing Safe State Machines from Esterel, Proceedings of the 2006
LCTES Conference

Rails Framework Documentation, 2007 : Active Record,
http://api.rubyonrails.org/classes/ActiveRecord/Base.html

http://api.rubyonrails.org/classes/ActiveRecord/Base.html
http://api.rubyonrails.org/classes/ActiveRecord/Base.html
http://api.rubyonrails.org/classes/ActiveRecord/Base.html
http://www2007.org/cfp-WE.php
http://www2007.org/cfp-WE.php
http://www2007.org/cfp-WE.php

33

Rails Framework Documentation, 2007 : Migration
Record,http://api.rubyonrails.com/classes/ActiveRecord/Migration.html

Rashid Ahmad, Zhang Li, Farooque Azam, 2005 : Web Engineering: A new
Emerging Discipline, International Conference on Emerging Technologies

RubyForge, 2007 : Rails Application Visualizer,
http://rubyforge.org/projects/rav"

RubyGems Manuals, 2007: http://www.rubygems.org/

Ruby programming language, 2007 : Rubyhttp://www.ruby-lang.org/en/

Ruby on Rails, 2007 : http://www.rubyonrails.org/

Rugaber S., 1994 : White Paper on Reverse Engineering. Georgia Institute of
Technology

Rustad Aaron, 2005: Ruby on Rails and J2EE: Is there room for both? Two
Web application frameworks compared,
http://www.ibm.com/developerworks/web/library/wa-rubyonrails/

Sawicki Christoffer, Hagelberg Phil, 2007 : Rails application visualizer,
http://rubyforge.org/projects/rav

Skultety Miroslav, 2007 : UmlDumber,
http://blog.zmok.net/articles/2006/11/13/visualize-your-rails-schema

Smalddone Jaview, 2007 : RailRoad, http://railroad.rubyforge.org/

Selic Bran, 2006 : Model-Driven Development: Its Essence and Opportunities,
Proceedings of the Ninth IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing

Spinellis Diomidis, 2003 : On the Declarative Specification of Models, IEEE
Software

Stephen J. Mellor, Anthony N. Clark,Takao Futagami, 2003 : Model Driven
Development, IEEE Software

Takeda, H., Veerkamp, P., Tomiyama, T., Yoshikawam, H, 1990 : Modeling
Design Processes, AI MagazineWinter: 37-48

Tellis Winston, 1997 : Introduction to Case Study, The Qualitative Report,
Volume 3, Number 2, http://www.nova.edu/ssss/QR/QR3-2/tellis1.html

Tikhomirov Artem, 2006 : Textual Modeling Framework,
http://www.eclipsecon.org/2006/Sub.do?id=438

Vokac Marek , Jensen Oluf, 2004: Using a Reference Application with
Design Patterns to Produce Industrial Software, Springer-Verlag Berlin
Heidelberg

http://railroad.rubyforge.org/
http://railroad.rubyforge.org/
http://railroad.rubyforge.org/
http://blog.zmok.net/articles/2006/11/13/visualize-your-rails-schema
http://blog.zmok.net/articles/2006/11/13/visualize-your-rails-schema
http://blog.zmok.net/articles/2006/11/13/visualize-your-rails-schema
http://rubyforge.org/projects/rav
http://rubyforge.org/projects/rav
http://rubyforge.org/projects/rav
http://www.rubyonrails.org/
http://www.rubyonrails.org/
http://www.rubyonrails.org/
http://rubyforge.org/projects/rav
http://rubyforge.org/projects/rav
http://rubyforge.org/projects/rav

34

Walden Kim, Data Enea, 1998 : Business Object Notation (BON)

Warmer Jos, Kleppe Anneke , Bast Wim, 2003: MDA Explained, the Model
Driven Architecture: Practice and Promise, Chapter 1

Winikoff Michael, 2005 : Towards Making Agent UML Practical, Proceedings
of the Fifth International Conference on Quality Software (QSIC’05)
Winmerge Development Team, 2007 : Winmerge 2.6,
http://www.winmerge.org

http://www.winmerge.org/
http://www.winmerge.org/
http://www.winmerge.org/

	Chapter 1 Introduction
	1.1 Importance of the problem
	1.2 Related work
	1.3 Methodology
	1.4 Structure of the report

	Chapter 2 Background
	2.1 Model Driven Development
	2.2 Reverse Engineering
	2.3 Graphical and Textual model design
	2.4 Model Driven Architecture
	2.5 Ruby on Rails
	Reverse Engineering Plugins

	2.6 AndroMDA

	Chapter 3 Reverse Engineering Plugins
	3.1 Evaluation Methodology
	3.2 Reverse Engineering Plugins Evaluation Results

	Chapter 4 Case Study
	4.1 Case study Methodology
	Environments Comparison
	Evaluation Scenarios
	Background of the participants

	4.2 Case study results
	First Scenario
	Second Scenario
	Third Scenario
	J2EE Environment Performance
	AndroMDA

	Chapter 5 Analysis
	5.1 RoR VS Traditional J2EE environment
	5.2 RoR VS AndroMDA
	5.3 Experiences working with AndroMDA

	Chapter 6 Conclusions and future work
	Chapter 7 REFERENCES

