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Abstract—Proving-ground testing of Active Safety

Systems is typically based on scenarios in which relative

positioning and speed of all vehicles on the track is

strictly defined. Current testing methods are not de-

signed for human driven or autonomous Vehicles Under

Test as they rely on the predictability of path-following

driving robots to precisely control these parameters. As

Active Safety Systems are both increasingly integrated

with vehicle autonomy and are further augmenting

human driving, these testing methods become less

useful. This paper presents an approach for preserving

most of the control of current methods while allow-

ing for some level of uncertainty generated by an

autonomous Vehicle Under Test. Utilising the mas-

ter/slave architectural pattern, slaved mock-up vehi-

cles, or Test Targets, are synchronised with the Vehicle

Under Test via a centralised Master Server. Using a

design science methodology, this approach is described

and then evaluated against the existing best practice. It

represents a first move towards integrating autonomous

vehicles into existing Active Safety Systems testing.

Index Terms—Synchronisation, Active safety sys-

tems testing, Master slave architecture, Autonomous

driving

I. Introduction

Active Safety Systems (ActiveSS), also known as Ad-
vanced Driver Assistance Systems (ADAS), are an increas-
ingly important part of general vehicle safety. ActiveSS,
such as collision warning or Autonomous Emergency Brak-
ing (AEB), are typically thought of as assisting human
drivers in potentially dangerous situations by avoiding or
mitigating the implications of an accident. Human reflexes
and awareness are augmented by quick, digital decision
making and sensor arrays.

As automotive automation technology advances, Ac-
tiveSS are also supplementing or are integrated into au-
tonomous driving systems. Failure in any component of
a vehicle can be fatal and the increasing complexity and
autonomy of these systems requires a similarly sophisti-
cated approach to quality and performance testing. This
can mean simulation testing, Hardware and/or Human in
the Loop testing or physical testing, either on a controlled
test track at a proving-ground or in the field in real world
conditions. The improvement of controlled track testing is
the focus of this paper [23].

Proving-ground testing of ActiveSS typically involves
one or more Vehicle/s Under Test (VUT for singular and
plural) – the vehicles on which ActiveSS are being tested
are installed. There may also be a variety of Test Targets
also known as Test Targets – moving or stationary mock-
ups of pedestrians, obstacles or other vehicles that are
designed to trigger sensor arrays in the same ways as their
real world counterparts. They are designed to limit or
eliminate the possibility of damage or injury in the case
of a collision. A test scenario will define the behaviour
and positioning of Test Targets and take into account (or
define) the expected behaviour of the VUT.

This multi-agent environment must be able to fulfil
exacting test criteria and produce repeatable results, not
always an easy task in a physical environment. Usually
the scenario is designed to meet a safety awards standard
such as the European New Car Assessment Programme
(EuroNCAP).

A. Problem Domain and Motivation

Currently, most proving-ground test environments use
agents, both VUT and Test Target, that are synchronised
by relying on internal real-time clocks and a simultaneous
start. They follow predictable, predefined paths in order
to ensure that the testing parameters are replicated con-
sistently. The VUT is often controlled by a robot driving
rig that fulfils this behaviour requirement.

As the level of ActiveSS driver augmentation as well
as Autonomous Driving increases, however, test scenarios
will need to find a way to synchronise all agents even with
a less predictable VUT. A recent study by A. Knauss et
al. on ActiveSS testing trends identified remote control
and synchronisation in a multi-agent test scenario to be
an important next step [16].

An autonomous VUT (human or computer driven) will
not necessarily behave exactly in the way that the test
scenario prescribes. The existing environments are not well
adapted to handling unpredictability. There needs to be a
way of handling control of the Test Targets that preserves
the test conditions and repeatability in synch with the
VUT. Synchronisation of communication and generated
data is also important for analysing the test results.



Synchronisation (or coordination) of automated systems
is something that has been studied for some time in
the robotics field but there is little material on solving
the specific problems of handling autonomous VUTs [11].
Such a system must consistently meet di�cult test con-
ditions in an unstructured environment. Synchronisation
for ActiveSS testing on a proving-ground track requires a
compromise between the fully controlled environment vs.
agent freedom-to-adapt dichotomy.

B. Research Goal and Research Questions

In this paper we investigate how to enable existing
ActiveSS testing processes to support Autonomous VUTs,
considering industry standard test scenarios and the
synchronisation of multiple, controlled Test Targets.
Hence, the research question for this paper is formulated
as follows:

RQ - In Active Safety Systems Testing, how can
path-following Test Targets be synchronised with an au-
tonomous Vehicle Under Test to meet strict, repeatable
test criteria?

Fig. 1. The control flow of AMPS

C. Concept and Contribution

This paper proposes a concept called AMPS (Adaptive
Master, Path-following Slave) for synchronising Test Tar-
gets with the VUT. It is based on a master/slave architec-
ture pattern, similar to the one proposed in R. Portillo-
Vélez et al. [21]. AMPS utilises a central server (the Master
Server) that tracks autonomous VUTs and controls the
Test Targets accordingly. The controlled, path-following
behaviour of the Test Targets has been shown to be a good
way to achieve reliably successful tests in many conditions
[11] [10]. AMPS will preserve this aspect of the current
best practice, also allowing for maximum compatibility
with existing commercial Test Target platforms.

AMPS will provide a basis for future work on ActiveSS
testing. In particular it provides a path toward handling
the increasing complexity introduced by increased vehicle
autonomy and multi-agent synchronisation.

D. Evaluation

The evaluation of AMPS will focus on its ability to
manage multi-agent synchronisation in ActiveSS testing
with the inclusion of an Autonomous VUT. It will be
based on qualities and scenarios derived from Autoliv’s

testing process and the existing best practice identified
from literature. The evaluation will include an experimen-
tal implementation of one of the key challenges to the
feasibility of AMPS, updating paths on-the-fly, based on
Test Target development at Autoliv.

E. Structure and Scope

The background section will look at ActiveSS testing
and expand on the idea of existing best practice. There will
also be examination of existing work on synchronisation
and a brief exploration of path-finding and prediction.

The methodology section will outline the design science
methods of construction and evaluation. It will also include
a summary of a single embedded case study of current
ActiveSS testing and derive criteria for evaluation. The
results of the paper are formed by the concept and its
subsequent evaluation.

There are some aspects of AMPS that, in implemen-
tation, will prove to be complex problems. The path-
finding and prediction, as well as clock synchronisation,
are examples. These aspects are not explored in depth in
the AMPS proposal but some guides to possible solutions
are provided in the background.

II. Background and Related Work

AMPS relies on an examination of related work from a
number of di�erent areas, the most important of which is
work that helps define the existing best practice. Some
areas integral to the success of any implementation of
AMPS, such as clock synchronisation and path-finding,
are out of scope for AMPS abstract level of design but are
briefly examined below for context.

A. ActiveSS testing: Existing best practice

One way to get a good idea of scenarios and require-
ments in ActiveSS testing is to look at requirements
outlined by the EuroNCAP, and other safety awards or-
ganisations and programs such as the US NHTSA’s NCAP
safety awards [9]. Such organisations define scenarios in
which Active Safety Systems must meet strict criteria and
are awarded a well-recognised safety rating accordingly.
One example, AEB, might require a car braking hard 20
metres ahead of the VUT while it is travelling at 70 km/h
[8].

The precision required for these scenarios is the reason
Autoliv and other developers of Active Safety Systems
use the path-driven, multi-agent system outlined above
[12]. Each vehicle uses precision GPS systems, such as
di�erential GPS (dGPS) or Real Time Kinematic GPS
(RTK-GPS) that use track-side base stations for addi-
tional accuracy, to determine its location on the track.
Control loop feedback mechanisms such as PID (propor-
tional–integral–derivative) controllers are used to regulate
each vehicle’s progress along its predefined path. Each
agent is synchronised at the beginning of the test and
rely on the accuracy of internal clocks for precision timing.



Fig. 2. An Autoliv "low-rider" test target

Every agent transmits its telemetry to a base station for
analysis.

Work by H. Schöner et al. on ActiveSS testing using
path-following robot driven Test Targets and VUTs is
cited in many publications as a reference for the kind
of open-loop testing (a control mechanism not relying on
feedback) that is used by Autoliv and others [23]. It defines
several common scenarios derived from an analysis of ex-
isting ActiveSS testing. Recent work by H. Fredriksson et
al. on repeatability in winter testing using path-following
robots demonstrates that this system can be suitable even
in adverse track conditions with some tweaking [10].

Testing at Autoliv uses this method to achieve results
in safety awards and internal test scenarios. They utilise
their own "low-rider" Test Target, a sturdy, flattened, low
profile driving platform capable of being run-over by light
trucks. Radar reflecting foam or "balloon" vehicle mock-
ups are mounted atop the platform and it is controlled
using a pre-loaded path file. This is a safe, precise and
reusable Test Target that allows for flexible scenarios.

Path planning is an integral part of existing practice.
The paths of all vehicles must fulfil the scenario within
the bounds defined by its parameters, such as relative
position and heading. It is important that the physical
limitations of the Test Target, such as the top-speed,
acceleration and turning circle of the platform, as well
as the limitations of the computing hardware and the
communication infrastructure are all understood when
planning paths.

AMPS builds on this work, taking the concept of path-
following Test Targets and adapting the path genera-
tion and synchronisation to accommodate an autonomous
VUT. Moving to an interactive, centralised system is a
significant shift and it is important that the qualities of the
existing best practice, as defined above, are maintained.
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and a slave clock (laptop). The timestamp is implemented at 
the application level using Java 
System.currentTimeMillis(), which can read system 
clock time in milliseconds. 

 
A. Master Clock 

 
Figure 9(a) shows the object model of a master clock 

system, which consists of a MasterClockSystem, a 
DisplayMasterClock (displays the time of the master 
clock), and a MasterClock. The master clock is a subclass 
of an ordinary clock. It inherits all ordinary clock attributes, 
which are shown in Figure 5 and Figure 7. The 
MasterClock has a few of the functions shown in the 
Figure 9 (a). The function initialization()sets all 
datasets and the port of a master clock. The function 
masterTimeSynchronization() sends Sync, 
Follow_UP, and Delay_Resp messages to the slave clock, 
and receives Delay_Req message in return. 

 

OrdinaryClock

MasterClock

MasterClock()
initialization():void
delayRequestResponse():void
run():void
masterTimeSynchronization():void
StopMasterClockTimeSync():void

SlaveClock
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Fig.9. Object models of master and slave clock systems. 

 
B. Slave Clock 

 
Figure 9(b) shows the object model of a slave clock 

system, which consist of a slaveClockSystem, a 
DisplaySlaveClock for displaying the times of the slave 
clock, and a SlaveClock.  The slave clock is a subclass 
of an ordinary clock. It inherits all attributes from the 
ordinary clock. The slave clock functions are shown in the 
Figure 9(b). The function initialization() sets all 
datasets and the port of a  slave clock. The function 
slaveTimeSynchronization() sends the Delay_Req 
message to the master clock, and receives Sync, 
Follow_Up, and Delay_Resp messages in return.  

As shown in Figure 9, by implementing the foundation 
classes of the IEEE 1588 standard in an application 
framework, IEEE 1588 application developers can easily 
create IEEE 1588 application objects, which inherit from the 
IEEE 1588 classes of the application framework. The 
development time of IEEE 1588 applications can be 
dramatically reduced by reusing design and code provided 
by the application framework.  
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MasterTime1
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(t2)
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(t3)

DelayM2S

DelayS2M

Sync (t1)
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t1
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Fig. 10. Delay Request-Response mechanism. 
 

C. Case Study of Delay Request-Response 
 

The IEEE 1588 standard defines two types of 
synchronization mechanisms: Delay Request-Response and 
Peer Delay. The case study mainly focuses on the Delay 
Request-Response mechanism. Figure 10 shows the clock 
synchronization process between the master clock and slave 
clock using the Delay Request-Response mechanism. The 
master clock periodically sends Sync messages to the slave 
clock every 2 seconds. The Sync message contains a 
timestamp (t1) when the packet left the master clock. The 
master clock may also optionally send a Follow_Up 
message containing the exact timestamp (precision t1) for 
the Sync packet.  The slave clock measures the exact 
reception time (t2) of the Sync message. Then, the slave 
clock sends a Delay_Req message to the master. 
Delay_Req message contains a timestamp (t3) when the 
Delay_Req packet left the slave clock. The master clock 
measures the reception time (t4) of the Delay_Req message. 
The Delay_Resp message from the master clock includes 
the time t4 to the slave clock. Slave clocks can accurately 
calculate the mean delay and offset between their local clock 
and the master clock based on the following equations 
defined in the IEEE 1588 standard.  

 
 delay = ((t2-t1)+(t4-t3))/2  

offset = ((t2-t1)-(t4-t3))/2 
 
The slave clocks can then adjust their local clocks based 

on the calculated offset to synchronize their time with the 
master clock. Then the slave clock can communicate with 
the master clock by sending and receiving these 
synchronization packets through the general interface and 
event interface. 

Figure 11 shows the result of a clock synchronization. 
In Figure 11(a), the timing parameters of the master clock 
system are shown. In Figure 11(b), in addition to the timing 
parameters of the slave clock system, the user interface also 
displays the delay (14781 ms) of the master clock to slave 
clock, the delay (-14766 ms) of the slave clock to master 
clock, the calculated delay (7 ms), and offset (14774 ms) 
between the slave clock and master clock. Thus the slave 
clock can adjust its local clock based on the offset and 
synchronize it with the master clock. Consequently the 

Fig. 3. Delay request-response mechanism from E. Song and K. Lee
[25]

B. Synchronisation

In order to handle the unpredictable trajectory of a
human driver rather than a robot one, some form of syn-
chronisation of the agents in the system is required. The
synchronisation (or coordination) of multi-agent systems
is something that has been studied for some time in the
robotics field [22].

Quite commonly, the focus for this work tends to be
either systems with fully or semi autonomous agents that
are adaptive [20] or factory-type industrial settings with
cooperation and movement strictly controlled [17]. These
methods are not ideally suited to the variable nature of
the test-track environment combined with precise control
needed for ActiveSS testing criteria.

A Master/Slave synchronisation configuration, such as
that presented by R. Portillo-Vélez et al. [21], provides a
good model for AMPS. The idea of coordinating agents
using a master unit that accepts inputs and drives the
other agents in the system is adapted for the track. That
paper focused on a master robot manipulator and its
slaves moving in unstructured non-planar space. AMPS
uses instead a Master Server, which serves as a proxy for
the behaviour of the autonomous VUT, controlling the
Test Targets.

On track synchronisation has been explored in ActiveSS
testing by S. Heinlein et al. within a more limited and
controlled scope [11]. They propose several ways to syn-
chronise a motorised gantry system that can move a soft
pedestrian target across the path of a moving vehicle. One
of their three proposals explicitly examines synchronising
dummy behaviour with the movement of a turning vehicle,
robot driven but with variable speed settings. They found
that radio transmission of vehicle position over WLAN
could be used to time the movement of the dummy to
produce repeatable results. Their system was reliant on
accurate timestamping and a good knowledge of network



latency. They were able to achieve consistent results even
with the highly variable VUT speed and suggest further
work is under way to account for lateral vehicle movement.
The gantry carried dummies were only capable of moving
forward or backward, AMPS goes a step further as it is
using Test Targets that must manoeuvre laterally as well
as longitudinally.

Achieving accurate, synchronised timing such as that
used by S. Heinlein et al. [11] is an important part of
the overall synchronisation process. The Precision Time
Protocol (PTP), defined in the IEEE 1588-2008 standard
[1], is useful for synchronising the clocks of distributed
control systems and has sub-millisecond accuracy. It also
relies on a Master/Slave style architecture, with a Master
clock responsible for the source timing. Figure 3 from
E. Song and K. Lee shows how the basic delay request-
response mechanism works. It makes sense to use PTP to
keep all the clocks in each vehicle slaved to the Master
Server for AMPS [25].

C. Path-finding and prediction

The ActiveSS testing environment is a dynamic, multi-
agent problem space and test scenario constraints play a
big factor in path planning for Test Targets. It is especially
challenging when the paths must update in real-time and
the well known Djikstra or A* heuristic-based algorithms
may not be fast enough to adapt.

A review of path-finding techniques in robotics and
computer games by Z. Algfoor et al. identified a number
of techniques suitable for multi-agent and real-time appli-
cations that have been recently studied and evaluated in
a robotics context [2]. They also found that the study of
basic path-finding techniques is a mature field and that
ongoing research is extensive, providing many options for
optimising the path-finding task of the master server.

Generally the problem is broken down into two steps,
representing terrain with graph generation and algorith-
mically finding the optimal path. Representing the terrain
of a test-track needs to be a dynamic process due to
the multi-agent environment. It is possible to do this in
a number of ways such as visibility graphs, used in the
accelerated A* algorithm proposed by D. äiölák et al.
[24], or triangulated representation of free space, used for
constraint-aware navigation developed by M. Kapadia et
al. [15]. Another option, also navigation focussed, is work
by F. Lucas et al. that proposes combining constraint
solving and ant colony optimisation algorithms with a
waypoint base terrain graph [18].

There are many other methods to explore for path-
finding, path prediction for the VUT is also a challenge.
This is a relatively more recent problem but one good
source of path prediction solutions is in autonomous
driving studies. M. Altho� et al. demonstrate a way of
using model based, probabilistic collision detection to aid
autonomously driven cars to anticipate the movements
of other vehicles on the road [3]. This particular work

is focused on predicting reachable areas that specifically
impact the decisions of the autonomous car, but the
authors state the principle is scalable.

III. Methodology

This paper takes a Design Science (also referred to
as Constructive Research) approach to researching syn-
chronisation in ActiveSS. According to A. Hevner et al.
"Design science addresses research through the building
and evaluation of artifacts designed to meet the identified
business needs" [13]. Drawing on a framework adapted
from same in figure 4, the general relevance for this re-
search is Autoliv’s need to improve their testing capability
at the AstaZero test-track facility. Their goal is to meet
a growing need for dedicated ActiveSS testing that allows
for autonomous VUTs.A preliminary study by A. Knauss
et al. on future trends in ActiveSS testing indicates there is
also a broad industry desire to have access to more capable
test environments, including synchronisation of on track
agents and Autonomous VUTs [16].

In this paper we construct an approach, AMPS, for
synchronising Test Targets with an Autonomous VUT.
The work relies on, and can be evaluated against, a knowl-
edge base that includes Autoliv’s current test strategy and
existing research into both ActiveSS testing and multi-
agent synchronisation. The work on AMPS’ will contribute
to the Knowledge Base, specifically in the area of multi-
agent synchronisation, a gap identified by S. Heinlein et
al., and ActiveSS testing in general [11].

A. Constructing AMPS

AMPS is an artefact in the form of an approach for
synchronising multiple agents in an ActiveSS setting.
Drawing from related work on both ActiveSS testing and
synchronisation in general, the paper describes a high level
approach to using path-following Test Targets slaved to
a Master Server. It allows for some level of uncertainty
as might be expected when incorporating an autonomous
VUT to ActiveSS testing.

The Concept section outlines the main components and
their roles, the general synchronisation and communica-
tion methods of AMPS and factors that need to be taken
into consideration if it is to be implemented.

B. Evaluating AMPS

Referring to the framework in figure 4, the evaluation
relies on demonstrating that AMPS meets a business need,
in this case, with a specific focus on a company that tests
ActiveSS, Autoliv. AMPS should be judged against its
ability to achieve these same needs as an improvement over
existing knowledge and best practice while introducing the
modifications necessary to allow for synchronising with an
uncontrolled VUT.

S. March and G. Smith make it clear that evaluation
forms an integral part of design science but this is "made
complicated by the fact that performance is related to
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Fig. 4. A Design Science framework from A. Hevner et. al. [13]

intended use" [19]. As AMPS is an abstract concept, eval-
uating a practical implementation is out of scope for this
paper, there are other methods for evaluation however.
When evaluating an artefact, A. Hevner et al. [13] recom-
mend a possible 5 categories of evaluation methods; ob-
servational, analytical, experimental, testing and descrip-
tive. Observational and descriptive methods are targeted
towards abstract artefacts and do not necessarily require
implementation. The evaluation of AMPS will rely on two
main methods to demonstrate the utility of the artefact:
a case study, which is an observational method, and using
scenarios of proposed usage, a descriptive method. It will
be evaluated against quality criteria established from a
reading of the related literature, outlined in table I

H. Schöner et al. and S. Heinlein, for example, propose
precision and reproducibility as key qualities needed in
any ActiveSS testing model. As described in the Back-
ground section, existing best practice is currently to use
path-following agents on the track [23] [11]. When a test
begins, all agents are synchronised and use closed-loop
controllers to ensure that lateral and longitudinal accuracy
are maintained. Real-time clocks are used to ensure timing

precision. By keeping all parameters equal, the test can
be reproduced many times over, although resets are time
consuming.

Safety is also critical. Collisions cost time and money
and, if proper procedures and fail-safes are not in place,
can be dangerous to people with cause to be on or near the
track. Autoliv, Anthony Best Dynamics and other manu-
facturers of Test Targets have developed platforms for Test
Targets that are low to the ground and can be run over by
a VUT in the event of a "collision" with no ill e�ects. They
coordinate their Test Targets in advance, again utilising
the predefined path system. Any new proposal needs to
be just as safe.

Flexibility is a requirement that takes into account the
business need aspect of the design science framework.
Autoliv partners with a number of other companies in the
AstaZero test track and this implementation must fit with
the expected technology and infrastructure mix as well
as take into account the possibility of third party Test
Targets.

The feasibility of developing APMS is a quality less
easily examined in an abstract manner. This is also a key



TABLE I
Evaluation Criteria

Precision Must have the ability to provide precise Test
Target position, velocity and timing to meet
strict parameters of test scenarios (e.g. EuroN-
CAP AEB protocol)

Reproducibility Tests must be reliably repeatable to provide
valid data for analysis

Safety Prioritises significant reduction of damage risk
where avoidable and provide manual and au-
tomatic emergency or safety critical fail-safes

Feasibility Must be feasible within infrastructure limita-
tions and compatible with existing technology

Flexibility Capable of adaptation to future advances and
third party systems within reason

concern of Autoliv’s, particularly in reference to updating
paths on-the-fly due to current work on their "low-rider".
This aspect was identified as a particular risk to AMPS
and so an extra step in its evaluation was required. Im-
plementing a modified version of existing control code for
Autoliv’s Test Targets to take path instructions on-the-fly
showed the viability of this important aspect of AMPS.

IV. Concept

As previously noted, the future of ActiveSS is trend-
ing towards increased or complete vehicle autonomy and
connectivity. Testing the e�ectiveness and safety of these
systems in an environment that comes close to replicating
real-world conditions is di�cult. These multi-agent sys-
tems need a way to continually synchronise the movement
of the various agents on track in way that is reactive to
the VUT. When considering methods to achieve this, the
key requirement is generating usable data through the
consistently successful execution of test scenarios.

The proposed concept, AMPS, combines an adaptive
master/slave architecture with the existing best-practice
strategy of using path-following Test Targets [23]. There
are three main component types in AMPS as seen in figure
IV:

• The VUT, as input to the system, will behave in-
dependently and generates the uncertainty that will
trigger decisions in the Master Server

• The Master Server is where scenario parameters are
defined, vehicle tracking occurs, paths are predicted
and generated and users can interact with the system

• The Test Targets, the slaves in this approach, receive
and follow the paths generated by the server

The main advantage of using a centralised approach is
that all decisions can be made with as complete a set
of information as possible. Track infrastructure, such as
sensors, and all of the agents generating data can all be

Receive 
Status

VUTTT

TT

Master Server

Send 
Drive File

Data
Path  

VUT = Vehicle under Test
TT = Test Target

Fig. 5. An overview of AMPS.

taken into account. Synchronisation will be one-to-many
as opposed to a more complex, many-to-many situation.
Centralising the decision making also provides room for
rapid iterative improvement of the algorithms and process
used to determine and predict paths.

A. AMPS

Looking at AMPS more closely, it can be seen that
the basic idea is an extension of the open-loop control
concept used in the existing best practice. The controller
in this case is the networked Master Server. Its input
is the initial test scenario, inclusive of any number of
parameters for success, and the actions taken by the VUT.
The Master Server is aware of the current position, speed
and trajectory of all vehicles and the layout of the track
and is responsible for plotting paths for Test Targets. The
behaviour of the Test Targets is the output.

Test Target: The Test Target will be patterned on
existing platforms in common use, using a well understood
closed-loop control system [6] [23]. These are nominally
independent, each using an embedded real-time processor
device, typically running at 100Hz and reading a path
(or drive) file, that has detailed instructions for desired
position, heading, velocity and acceleration.

Each main thread loop will interpret a line from the
path file and, using its own understanding of where it
is and where it is going based on internal measurement
equipment, adjust its speed and heading as required. These
path file are initially loaded before the test begins. In
order to update the path files as changes are made by the
master server, the Test Target has a WiFi receiver or a 4G
modem and the controller is able to receive and interpret
information over the air.

The path files are simple text files but should really be
considered time based instruction lists. When a change
is received, the Test Target program must interpret the



Fig. 6. Proposed architectural view of Master Server

packet, find the insert position for the first instruction and
then propagate subsequent changes through the rest of the
instruction list without missing a beat.

Fig. 7. Demonstrating the path lead time.

A key issue is how to ensure that there are no "jumps"
caused by gaps between the existing path and the updated
one. To handle this, it is necessary to establish an empir-
ically determined lead time for when the new path will
deviate. This enforces continuity between paths. For each
new path the Master Server relies on the synchronised
timing of each unit and plots its path with the under-
standing that changes will not propagate immediately, as
indicated in figure 7. This makes AMPS unsuitable for
quick, granular path updates. This is somewhat by design
as Test Targets should operate as stably as possible for the
most consistent data generation and so as not to provoke
unwanted reactions from the VUT.

The path file is received over a network socket in the

background of the main timed control loop. The new path
file must replace the instructions received in the control
loop, these are processed one at a time using a Real-
Time FIFO so the new path file must, even after network
transmission and interpretation, have a time variable that
is greater than that of the current timing count of the
board. There is some room for error as the closed loop
system can handle a certain amount before oscillations
become too great.

The Test Target is also always reporting relevant data
to the master server: position, velocity, heading and other
information. This is used for data collection and visuali-
sation but also to aid in fail-safe situations to determine
if there has been some unreported error in communication
or control, triggering an emergency shut-down or manual
intervention.

Master Server: The Master Server will handle input
data from each vehicle on the track, possibly from multiple
scenarios at once, along with any other track based sensor
data generated in each test. In figure IV-A, a simplified
architectural view of the Master Server, there are three
key modules identified as central to the AMPS approach.

The Scenario Manager will be a decision making module
that allows test designers to define scenarios by entering
the parameters required (such as a potential collision at
a T intersection at 60km/h) and provide the data for
displaying the current and proposed or predicted paths
of each agent as well as triggering the mechanism for



generating path files for the slaved Test Targets. This
module would also be able to provide limited control, shut-
down commands and the like to the test supervisors via
an interface.

The Path Generator will be responsible for actually re-
generating path files based on constraints provided by the
Scenario Manager and sending them to the slaved Test
Targets on the fly. The recalculation of a path takes into
account the position of a Test Target and the current
time-from-start of the test. The updated path should meet
both the criteria of the test scenario and the physical
limitations of the Test Target (i.e. the recalculated path
does not require an impossible manoeuvre too swift an
acceleration). If there is no viable path, the test can be
stopped or only the particular agent a�ected manoeuvred
out of the way.

The third module, the Path Predictor, is responsible
for predicting the likely path of the VUT. It provides
this information to the Scenario Manager where it will be
compared against the previous prediction and the desired
path for the scenario. The module constantly measures de-
viations from the VUT expected path. If these deviations
cross a threshold then a recalculation is required.

Vehicle Under Test: The VUT is considered to be an
independent actor in this system. Its path is predicted as
best as the master server is able but the level of freedom it
has in terms of deviation from its initial understanding of
the test scenario is dependent on how the test is designed.
If a test requires very strict conditions, such as handling a
close pass at high speed, a highly trained human driver or a
very constrained AD might be used and the master server
can consider the initial path prediction more reliable. If
the test is fairly freeform, such as a general navigation test,
the Master Server will consider the situation to be more
volatile and will place less value on the initial proposed
path. The VUT transmits all of its own localisation and
telemetry data and track sensor data can also be used
in getting a better fix on its behaviour. Although not
practical in the case of a human driver (unless there are
ActiveSS systems installed to make predictions based on
driver behaviour), it would make sense to also transmit
information about the planned path of the Autonomous
Driver itself.
B. Communication and Synchronisation

An overview of the communication process is presented
in figure 8. It demonstrates the important signals ex-
changed between the agents on the track and the Master
Server. In previous sections the understanding has been
that the VUT operates completely independently, there is
an exception, the start signal for beginning the tests. This
is important for the synchronising not only the physical
agents, but the distributed data collection that is used in
analysing the results of the test.

As indicated in the Background section, synchronising
the clocks of all devices is an important part of this kind of

Fig. 8. Overview of proposed communications sequence

distributed architecture. PTP is designed for distributed
deployment [1] and is suggested as one option for clock
synchronisation. The final choice for clock synchronisation
could be a�ected by factors such as already in-place
infrastructure that relies on a di�erent synchronisation
protocol or consideration for third party requirements.
By synchronising the clocks, you can synchronise the
movement of each vehicle according to an agreed upon
time scale and gather better quality data for test analysis.
It also means that a simple protocol can be established for
path update messages.

As described earlier, a new path should preserve some
small continuity to the old to ensure stability. The Test
Target should acknowledge an acceptable path once it is
received. It will not check the whole validity of the path
(except by perhaps a checksum) but, based on timing, the
first few steps of the path are checked against the next
few in the existing path. A failure can be fatal to the
test or simply trigger the Master Server to generate a new
path with updated understanding of network lag (or other
contributory factor) depending on the urgency of the path
correction.

C. Factors a�ecting AMPS

The central challenge for AMPS is handling the un-
certainty introduced by a VUT that is not predictable
in real-time. Instead of relying on static paths, in AMPS
the master server is responsible for generating new paths
adaptively. The decisions required need to be both reactive



and predictive. If the VUT deviates from the expected
path of the initial scenario, the system needs to react
and begin predicting new paths for each Test Target to
ensure each is able to meet the scenario’s requirements.
Each initial path will have been designed to have the Test
Target arrive at a destination, likely relative to the VUT,
at a certain speed and orientation. These conditions need
to be matched in any new planned path.

To be e�ective at reacting to changes, the AMPS system
requires detailed knowledge about the VUT. Existing
systems use dGPS or RTK-GPS to internally establish
precision position information but e�ective communica-
tion of this information, along with speed and trajectory,
is subject to the infrastructure limitations at the track.
Establishing these limitations is an empirical problem,
testing and measurement in an implemented real world
system is required. The potential for error and latency
must be built in to the system from the beginning, par-
ticularly in the case of Test Targets receiving path file
updates.

The real-time reliability of the Test Targets comes at a
cost. The boards used as controllers are robust and capable
of handling the calculations and hardware component
control required to drive but IO and autonomy are limited.
Receiving path files and maintaining a smooth trajectory
while interpreting them and propagating changes is a key
challenge.

The existing best practice is basically an open-loop
control system, with time and the scenario conditions the
input variables and the behaviour of the VUT and Test
Targets being the output. We can also consider AMPS as
an open loop control system with multiple independent
agents in a similar sense. The di�erence here is that the
Master Server, operating as the controller, is dependent on
a great number of influencing factors. Some of these will be
measurable variables, such as the error generated by un-
predictable VUT behaviour, others will be triggers (often
for failure), such as the failure of a path file propagating
to a Test Target. Others might be a combination.

Table II is a non-exhaustive list of higher level factors
that may impact the system, whether this factor is mea-

sured or a trigger (M/T) and the actions the system might
take in response.

A point to note is that the main driver of instability,
the VUT behaviour/status, is considered to be indepen-
dent at this high level, as in the system does measure
its impact on the VUT. This is, of course, not entirely
accurate. As we are testing Active Safety Systems, the
test scenario will be designed to use the Test Targets to
force a particular behaviour from the VUT however we
may inadvertently introduce even more uncertainty to the
system if a Test Target triggers an unexpected response
from a Autonomous/Human driver. Trying to avoid these
oscillations is one of the main drivers for (right now)
avoiding more autonomy in the Test Targets.

TABLE II
Important factors affecting AMPS

Factor M/T Action
VUT deviation from
planned scenario

M Adapt Test Target paths where
possible, show warning, if too
great cancel test

A scenario parameter
becomes unreachable

T If essential, gracefully stop
test. If secondary, prompt
warning for user with option
to cancel or continue

Test Target deviates
from expected path

T Gracefully stop test if possi-
ble. Emergency stop if danger-
ous situations predicted or Test
Target is not responding

Calculated paths to
original waypoint
would create
dangerous or di�cult
to achieve conditions

M Recalculate paths to an al-
ternative waypoint if possible.
If not possible gracefully stop
test

Test Targets and/or
VUT stop responding

T Gracefully stop test if possible.
Emergency stop if dangerous
situations predicted or vehicles
not responding

Unanticipated
collision

T Emergency stop test

Path continuity not
long enough on new
path received by Test
Target

M Master Server checks the calcu-
lated continuity delay for sent
path and adjusts and resends if
still time

Manual cancel signal T Gracefully stop test, prepare
for redirect to initial setup

Manual emergency
stop

T Emergency stop test

V. Evaluation

The best way to evaluate the overall success of AMPS
is to put it in context. It is designed to meet a business
need, introducing autonomous VUT into ActiveSS testing
as identified by Autoliv and emphasised by research by
A. Knauss et al. about the future of ActiveSS [16]. A
case study with Autoliv and an examination of literature
helped define the existing best practice to build upon.
From this, the 5 system qualities in table I: Precision,
Reproducibility, Safety, Flexibility and Feasibility, were
derived. These qualities would have to be met for AMPS
to meet this need.

Describing the AMPS design from a system quality per-
spective requires a frame of reference. The test scenarios
defined by EuroNCAP as a part of their safety awards for
ActiveSS are common use cases in ActiveSS testing. Specif-
ically we will use a scenario, Car-to-Car Rear Braking,
from the AEB Test Protocol version 1.1 [8] to demonstrate
the capability of AMPS and how its design maintains
Precision, Reproducibility and Safety. The Flexibility of
the system will be described in terms of how well it can
be integrated with existing and third party infrastructure
and technology. The Feasibility of its implementation will
be shown by presenting an experimental implementation
of updating path files on-the-fly using a simulator for
Autoliv’s Test Target.



Fig. 9. Advanced Emergency Braking – The CCRb tests will be
performed at a fixed speed of 50km/h for both VUT and EVT with all
combinations of 2 and 6m/s2 deceleration and 12 and 40m headway
c•2015 EuroNCAP

A. Precision

Figure 9 presents one of the more complex AEB scenar-
ios. The EuroNCAP guidelines state that tolerances for
the speeds of both vehicles are ±1km/h, the longitudinal
distance tolerance is ±0.5m and the latitudinal error must
be within ± 0.1m.

Maintaining the precision of the existing best practice
of using only path-following robots is di�cult. The uncer-
tainty introduced by the autonomous VUT means that the
correct conditions are not certain to be met at an exact
point on the track any more. The VUT may be slower to
accelerate up to 50km per hour than planned or may miss
its lateral path mark for a time due to lane discrepancies.

AMPS preserves the precision of the Test Targets by
updating its path so that it remains in bounds of the test
scenario without any unstable oscillations that might be
caused by a feedback loop or other autonomous alterna-
tive. When the VUT hits 50km/h, the Test Target will be
in place to decelerate as required.

As ActiveSS advance and more complex scenarios are
required, AMPS will prove to be even more valuable. The
above scenario only requires two agents. If we consider the
scenario presented in figure IV, we can see that the level of
complexity quickly increases. If both Test Targets are to
provide the tenuous conditions shown and test the decision
making process of the VUT, the timing must be precise.

Fig. 10. Example of Autonomous decision making scenario

The cost of maintaining that precision shows, however,
when one or more agents deviate from the expected course

and the Master Server cannot suitably adapt for one of a
number of reasons. A fail case occurs and the test must
be reset. The closer deviations occur to a major test event
(e.g. a swerve just before potential collision) the less likely
a test will be cancelled by the Master Server and the
moment must be reconstructed in the logs to determine
if parameters were still met. This last is also a threat
to precision in general. Overall, these risks are limited
and, compared to alternatives such as agent autonomy,
the slaved Test Target system provides the best precision
in most cases.

B. Reproducibility

A test scenario will seek to place the VUT in one or
more circumstances where its ActiveSS will be triggered
and provide data. For that data to be valuable the test
conditions must be able to be reproduced consistently. In
practice, exact conditions will be hard to repeat where
the VUT is not under complete control. What can be
reproduced is the relative pose and velocity of each vehicle
involved within defined bounds. The AMPS system allows
these bounds to be set centrally. Additionally, all data
from the tests is logged centrally. The synchronised nature
of the tests allows for reconstruction and evaluation to be
integrated into the workflow from a central point.

In the case of the AEB scenario in figure 9, if the VUT
is running at variable speeds or acceleration, there needs
to be a way to adapt consistently. The Master Server
has knowledge of the status of all vehicles and is further
aided by track side sensors. This gives it an advantage
in consistently coordinating all agents successfully over
alternatives involving some level of autonomy.

The Master server is designed to record and store all
data generated by the agents communicating telemetry.
It will record this with a view to keeping a time series,
using the PTP synchronised clock as discussed in the
Background section. The ability to reconstruct and review
the timestamped data in a centralised manner will greatly
speed up evaluation.

Any particularly interesting edge case that occurs dur-
ing a test can also be reproduced. If the ActiveSS on
the VUT in 10 makes a strange decision in this complex
scenario, it can be recreated. The Master Server stores
all of its own decisions as well as the status and log
informations of participants and should be able to repeat
the conditions, an advantage of the centralised open-loop
control. Looking at the AEB scenario again: if a particular
angle of impact causes AEB to fail for some reason, say
due to an unexpected turn by the VUT, this test can
be reproduced either by replicating conditions or actually
generating a path file for a robot controlled VUT and Test
Target recreating the full scenario.

C. Safety

A safe system is, in this context, considered to be one
that prioritises the safety of both the human participants



inside the VUT (drivers or passengers) or track side.
It also encompasses the general safety of the vehicles
involved. Minimising damage is important from not only
a cost perspective but in order to ensure that tests are
repeatable. Aside from the physical assurances given by
the low-profile and durability of the modern Test Target
platforms employed by Autoliv, AMPS provides a number
of ways in which safety can be increased.

A central pillar of the safety requirement is that there
is an emergency stop protocol in place. As it exists now,
the Autoliv Test Target has a radio controlled stop button.
This can be augmented by having a centralised Emergency
stop intervention. Initially this can be provided by over-
the-network signals built into AMPS. Emergency stopping
is a last resort, using the AMPS interface to set boundary
conditions is way in which emergency situations can be
avoided before they occur. Additionally, warnings can
be built into the system that will allow for additional
information to be provided to operators to call a stop when
unforeseen situations occur.

As indicated in H. Schöner et al., full control of agents
on the track provides the optimum safety [23]. While the
introduction of an unpredictable element adds to system
instability, the centralised control of the Test Targets
limits uncertainty to just the VUT. While not eliminating
the potential for unwanted collision (VUT/Test Target
impact is sometimes expected), it drastically reduces the
chances. In fact the system has the potential to be quite
responsive in cases where uncertainty is high. There has
been research that shows that path-following vehicles can
be tuned to be stable in poor conditions [10].

D. Flexibility

Autoliv is currently partnering with a number of other
organisations on the AstaZero test track project. This
is the context in which AMPS would operate and it is
conceivable that a number of ActiveSS providers, vehicle
manufacturers and even third party suppliers of Test
Targets will want to interface with the system. As such
any implementation needs to be as agnostic as possible in
terms of technology, communication and components.

The Test Targets that the AMPS design is centred
around is that developed by Autoliv, however the basic
premise of this design is one that has been used by, for
example, Dr. Ste�an Datateknik (DSD) [7] and Anthony
Best Dynamics (ABD) [4]. ABD, in particular, also uses
path files to control its Test Targets. Other Test Targets
might be static, or even gantry based pedestrian targets
such as those used in [11]. It also pays to consider cases
where there is a need to go back to the current best prac-
tice of solely robot driven vehicles or, inversely, increased
autonomy in Test Targets or multiple VUTs.

AMPS is a way of tracking agents and synchronising
their moments with timing based on PTP synchronisation,
a protocol well established in distributed control systems.
As designed above, AMPS synchronises Test Targets this

by pushing new paths as needed. It is simply a matter
of adjusting the information that is being sent by the
Master Server, from simple start signals or timed triggers
to direct control using UDP and CAN instructions. If the
Test Targets design evolves to become more autonomous,
the Master server can conceivably be used to synthesise
and relay all the agent status and track sensor data to
Test Targets. This would improve each agent’s decision
making while continuing to monitor for fail or dangerous
conditions.

E. Feasibility

Feasibility is not so much a quality as it is a an evalua-
tion of whether the approach can be implemented for real
ActiveSS testing. Specifically, an evaluation of feasibility is
concerned with the challenges of implementing the design.
A full understanding of the feasibility of AMPS is beyond
the scope of this paper, as it is dependent on a number
of infrastructure details and theoretical concepts such as
path-finding that require further study and implementa-
tion.

However, from Autoliv’s perspective the AstaZero test
track will provide a lot of the necessary infrastructure such
as a V2I Network over 4G and various track based sensors.
They are a part of a working group that is tasked with
solving some of the communications problems an AMPS
implementation will rely on [14] [5]. There is also current
and ongoing research into the path generation aspects of
the Master Server, as described in the Background section.
What Autoliv are most concerned with is the feasibility of
updating path files on-the-fly on their Test Targets and
the implications this has for synchronisation.

Fig. 11. Result of updated path file simulation

To meet this challenge, a small prototype was imple-
mented in LabView, targeting a National Instruments
embedded controller. Figure 11 is generated by an existing
path-following simulation designed to emulate Autoliv’s
Test Target behaviour. The simulator is fed command
signals by a timed loop, running at 100Hz. The tolerance
for missed signals, according to the vehicle designers, is
less than 100ms at a high speed. It is important, therefore,



to both receive the data e�ciently and feed it to the
simulator.

Fig. 12. Illustration of path file updating on-the-fly

The prototype process involves receiving an initial path
file from the Master Server and starting the simulator
and timed feed loop. When the Master Server wishes to
update the path file (manually triggered in this case), it
sends it over a TCP socket. The file is then parsed into an
array of line-by-line drive commands. This is checked for
continuity and an acknowledgement or fail signal returned
to the Master Server. If not a fail case, the array is then
"chunked".

The embedded board does not have a great deal of
memory and passing large arrays around (at 100Hz a
10 minute file can be 60000 lines) is expensive and can
potentially interrupt the real time flow of the board. To
limit this the path is split into smaller chunks before
it is copied to a shared variable (protected against race
conditions) and a signal is given to the timed loop to
append the new section of the path at its first point. This
is still an expensive process but the smaller the chunk, the
less onerous the process.

Path file updating on-the-fly is, therefore, shown to
be feasible in a demonstration sense. The process works
and there are no timing errors or interruptions in the
simulated trajectory. However the prototype needs to be
implemented on the real controller for true assurance.

VI. Discussion

The AMPS concept is one way of approaching the topic
of testing autonomous or human driven VUTs in Active
Safety testing. It can be thought of as upgrading the
infrastructure of the test track. If the system works as it is
supposed to, the Test Targets are a part of the track in the
same way the gantry-carried pedestrians in S. Heinlein et
al. are [11]. They are controlled centrally and always where
they need to be. The obvious key di�erence over existing
best practice is that there is now an uncontrolled element.

Slightly less obvious is the enhancement to interactivity
with the system. Certainly, the partners at AstaZero are
already moving towards greater interaction with track
infrastructure and it is an obvious next step to include
the Test Targets along with the rest.

This paper only provides a high level view of what
the AMPS concept might look like. It is not a com-

prehensive examination of how this particular solution
could be implemented, nor are all of the implementation
challenges necessarily easy to overcome. The paper does
provide some direction on how to proceed with aspects like
communication protocols and path-finding for example
but these require further work.

AMPS as it is proposed here is not the only possible di-
rection, however, and in the Autoliv case study there were
proposals for alternative ways to introduce autonomous
VUTs into ActiveSS testing.

A. Alternative Approaches

Autonomous agents are presented in some sections
above as unsuitable as Test Targets but are not an inher-
ently bad idea. The Master/Slave pattern was adopted for
AMPS to try and simplify and control the Test Target
situation on the track. By moving the adaptivity to a
central server, however, any response to changes in VUT
behaviour is, by necessity, delayed. This increases the
chance that there may be a scenario breaking event -
such as an unexpected lane change into the path of a
Test Target - that cannot be handled. There is scope for
incrementally allowing some level of autonomy, perhaps
eventually full autonomy, as the technology and algorithms
become more stable and predictable. Of course a central
server can still be used to monitor the projected paths of
all the agents to avoid dangerous conflicts. It also bears
considering that in a static test track environment with
communication possible between agents, the Test Targets
can be given significantly more assistance in estimating
ground truth. The obvious disadvantage, as mentioned
above, is that any Test Target independence will increase
uncertainty across the system. A system that relies on
autonomy by design will also tie the track environment
to those vehicles that meet a very specific specification,
reducing the flexibility of the system.

On the other side of argument is the possibility that
allowing both lateral and longitudinal flexibility in the
system from the beginning may prove too di�cult. Any
proposed system must be able to eventually handle mul-
tiple VUT agents with uncertain lateral and longitudinal
movements. It could be a reasonable proposition, however,
that an initial incremental stage, restricting the system to
longitudinal uncertainty (requiring this to be controlled in
the VUT) would be preferable. It would allow for more sta-
ble testing for those tests, such as AEB, that do not require
lateral parameters. Turning, swerving or lane changing
involves much quicker and more disruptive movements
that could di�cult to handle adaptively, particularly with
a central server handling the adjustments. The existing
best practice, using robot driven VUTs, and/or limited
interaction with Test Targets (e.g. restricting close lane
passing) could be used where lateral movement is a key
requirement of the scenario.



B. Threats to Validity

The main threat to the validity of this paper is due
to the abstract nature of the design: Implementation is
out of scope for the paper as written but regardless,
hard data is limited and many key details are left to the
implementation stage. The focus on extending the existing
best practice provides some solid ground but, so far as we
are aware, no testing tracks have implemented an adaptive
system with this particular mix of adaptation and control.

As well as the exclusion of implementation details, it
must be pointed out that the evaluation is not necessarily
exhaustive. Relying on a solitary case study does not
provide a total picture of the feasibility and flexibility of
the system for example. Fleshing out the details of AMPS
and providing a more rigorous evaluation of its qualities
in a more in-depth study will be necessary next step to
demonstrating its viability.

AMPS is one way of looking at the problem but it is not
the only solution, as we see in the alternative approaches
section. By deliberately avoiding autonomy for the sake of
stability it is possible we are on the wrong side of history.
Arguments were made to support this decision but even
as a part of the case study there were suggestions that
maybe some level of autonomy was desired. At the very
least, however, AMPS is designed to be flexible and there
is no reason why it cannot function e�ectively as a clearing
house for information and an interactive interface for test
engineers.

The abstract nature of the AMPS design means that
it is flexible and technology agnostic. For the scenarios
as defined it should be generalisable where there is call
for controlled testing of ActiveSS with Autonomous VUT.
However, many ActiveSS test environments do not rely
on the near flat platforms used by Autoliv and others.
It may less useful in situations where these are deemed
unnecessary or impractical. One example is the pedestrian
tracking work being done by S. Heinlein et al. They have a
perfectly functional test environment that is better served
by the direct control systems they use.

In this paper we provide an example of how to update
path files on-the-fly. This relies on the particular technol-
ogy in use by Autoliv. It may be impractical to expect
third party manufacturers to have the ability to implement
similar update on-the-fly systems. Additionally, without
specifying a defined protocol, something that is definitely
required in any future work, updating files could prove an
unstable "hacky" solution to the problem.

Finally, the basis for this work is to improve the testing
of ActiveSS on proving-grounds. The existing best practice
uses test scenarios derived from, amongst other sources,
work by organisations such as EuroNCAP. The scenarios
are created to emulate real world conditions but if they
are shown to be inadequate in this regard or outdated,
the validity of the AMPS design as a way to adequately
test ActiveSS may be threatened.

As autonomy in vehicles becomes more of a factor
in real world driving, test scenarios in general use
are expected to be updated as well. AMPS has been
designed to take into account what are likely to be more
complex, multi-agent scenarios. It is possible, however,
that there will be unforeseen requirements that render
the current AMPS design unsuitable. Similarly there
may be existing, unexamined scenarios in ActiveSS
testing that are outside the capabilities of AMPS that
may threaten the generalisability of the findings presented.

VII. Conclusion and Future Work

The AMPS concept is a step towards accommodating
autonomous vehicles into ActiveSS testing. AMPS takes
the existing best practice and adapts it using synchronisa-
tion methods that are adopted from other robotics fields.
In doing so, it takes into account the unique requirements
of vehicle and ActiveSS testing, preserving as much control
for test designers as possible over the parameters of a
scenario. It also centralises much of the existing process
reducing the overhead of analysis and resets.

Future work on AMPS and autonomous VUTs in Ac-
tiveSS testing should be based on implementation. Clari-
fying some of the unknowns in the design, such as the path
generation problems and the specifics of necessary proto-
cols for communication on real networks is an expected
next step. It would also be of value to explore some of
the alternatives suggested, increasing or decreasing agent
autonomy as the situation calls. It will inevitably become
necessary to accommodate multiple, fully autonomous
vehicles as the technology becomes more prevalent.
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