UNIVERSITY OF GOTHENBURG

Predicting software vulnerabilities using topic

extraction
An investigation into the relation between LDA topic models, and
ability of machine learning to predict software vulnerabilities

Bachelor of Science Thesis in the Software Engineering and Management
Programme

SAIMONAS SILEIKIS

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering
Goteborg, Sweden, June 2016

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Predicting software vulnerabilities using topic extraction
An investigation into the relation between LDA topic models, and ability of machine
learning to predict software vulnerabilities

Saimonas Sileikis
© Saimonas Sileikis, June 2016.
Examiner: Jan-Philipp Steghofer

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Goteborg, Sweden June 2016

Predicting software vulnerabilities using topic modeling

Using extracted topics from source code using LDA algorithm (latent
Dirichlet allocation) as features for machine learning, to predict
vulnerable files in source code

Bachelor of Science Thesis in the Software Engineering and Management
Programme

SAIMONAS SILEIKIS

The Author grants to Chalmers University of Technology and University of Gothenburg the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let Chalmers
University of Technology and University of Gothenburg store the Work electronically and
make it accessible on the Internet.

Predicting software vulnerabilities using topic extraction
An investigation into the relation between LDA topic models, and ability of machine learning
to predict software vulnerabilities

Saimonas Sileikis
© Saimonas Sileikis, June 2016.
Examiner: Jan-Philipp Steghofer

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering
SE-412 96 Géteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Goteborg, Sweden June 2016

II

I

v

VI

VII

CONTENTS

Introduction

I-A Contribution e e e e e

I-B Research question

Terminology

Background

1II-A Latent Dirichlet allocation e e

III-B Machine learning L L L e e e e e e e

1II-C Related research e

Method

IV-A Preparation for topic modeling L e e e e

IV-B Topic modeling e e

IV-C Machine learning L L e e e e e e

IV-D Performance indicators L e e e e

Results

V-A LD A . e

V-B Weka . . . o e e e
V-B1 First run e
V-B2 Second run e e e

Discussion

Threats to validity

VIII Conclusion

References

[\

A OA W WL W

AN WL I e W

Abstract—A vulnerability database for a large C++ program was
used to mark source code files responsible for the vulnerability
either as clean or vulnerable. The whole source code was used
with latent Dirchlet allocation (LDA) to extract hidden topics from
it. Each file was given a topic distribution probability, as well as the
status of being either clean or vulnerable. This data was used to
train machine learning algorithm to detect vulnerable source files,
based only on their topic distribution. In total, three different sets
of data were prepared from the original source code with varying
number of topics, number of documents, and iterations of LDA
performed. None of data sets showed ability to predict software
vulnerability based on LDA and machine learning.

I. INTRODUCTION

The scope and complexity of software projects are con-
stantly expanding. The greater size of complexity slows down
or even makes it impossible for a reasonable amount to
completely understand what is happening, and see the big
picture. These hurdles contribute to the fact that the big
software projects happen not to fit in budget and time frames,
resulting in either a late delivery of the product, or rushing
the product and thus increasing the chance of defects. Some
of the defects can manifest as a software vulnerabilities that
might allow attackers to exploit them for personal gain, which
usually results in a loss for either the product owners or the
product users.

Dealing with software vulnerabilities is harder than usual
software defects due to the fact that attackers are disincen-
tivized to report these vulnerabilities. The attackers can either
exploit the vulnerabilities themselves or sell them to a third
party [1], whom could exploit the vulnerability for a greater
effect. To combat this a number of companies have implement
vulnerability reward programs [2]. These programs specify
a protocol for reporting vulnerabilities, and researchers who
disclose new-found vulnerabilities according to this protocol
are rewarded. Increasing the amount of people working to find
vulnerabilities, increases the likelihood of them being found, at
the disadvantage of requiring compensation for these people.
Some companies have spent over $500,000 in their reward
programs [2]

Another alternative for employing more people to search for
vulnerabilities in a company’s software is to employ machines
to do that. Automation of discovery of software vulnerabilities
has a two-fold advantage. First of all, it can be done faster,
as there is no need to wait for a person to stumble upon a
vulnerability, and then decide if to ignore, to report or, in worst
case, to exploit it or sell it. Secondly, it would allow to fix the
vulnerabilities before they are deployed to the general public,
thus saving money in regards to vulnerability reward programs.
Although automated vulnerability search is unlikely to replace
contemporary methods, it would be a suitable supplement to
them.

A. Contribution

There are multiple methods of automatic code assessing to
find defects [3]. Although there is previous research into the

relationship between software concepts, and defects [4][5][6]
majority of them place the emphasis on traditional software
defects, while the aim of this paper is to investigate the
subset of software defects - vulnerabilities. Another mark to
distinguish this paper from others is to pair topic extraction
with machine learning, using the topics as features describing
a source code file.

If there is a statistically significant link between the topics
extracted using latent Dirichlet allocation and a machine
learning algorithm to detect vulnerability, it could be used as a
justification for further research in this area. If topic extraction
can be used to detect software vulnerabilities reliably, that
would imply that it is possible to automate such a task. The
implication could be huge, from saving developer time looking
for vulnerabilities in peer code, or enhancing the software
vulnerability detection for experts using it as an aid. It could
result in more vulnerabilities being found at a faster rate,
before they are exploited or sold to a third party. This could
prevent losses that would elsewise incur if such vulnerabilities
remained undetected

B. Research question

RQ: Research question: can a machine learning algorithm
be trained to reliably detect files associated with software vul-
nerabilities, using hidden topics discovered by latent Dirich-
let allocation (LDA) topic extraction model. Where reliable
means, that the precision and recall (described in section IV)

II. TERMINOLOGY

Bag - An unordered collection of objects, where duplicate
objects are allowed
Classifier - A machine learning algorithm used to classify
items into classes i.e. groups Corpus - A collection of
documents
Document - A mixture of different topics that contains words
LDA - Latent Dirichlet allocation. An algorithm that is used
to extract topics from a source.
Mean - An average, where all the items are summed up and
divided by the total number of items
Topic - A list of words and their probability to occur in that
topic
Tokenization - Act of separating a single block of text into
individual items that are commonly referred as “tokens” Word
- A element of a document that is has a certain probability to
occur in topics. A word can occur in any topic but has different
probabilities to occur in different topics.

III. BACKGROUND
A. Latent Dirichlet allocation

Latent Dirichlet allocation is an algorithm used to extract
hidden (latent) topics from a document. Paper about LDA was
first published in 2003 by Blei et al. [7], which describes the
algorithm. Remarkably, the same model was also published

by Pritchard et al. in 2000 [8]. Both of these were done
independently.

The algorithm assumes that the document was created in a
further described fashion. There are n pre-determined topics.
When document is created, a distribution over topic is chosen,
that is, the document will have a certain amount of topic A
and certain amount of topic B, and so on for each topic.
Once a topic distribution is known, a topic is chosen at
random according the topic distribution in the document (more
popular topics have a greater chance to be chosen). When
topic is chosen, a word is chosen at random based on the
word distribution in that topic (more relevant words within
the topic have greater chance to be chosen). After the word is
determined, a new topic, and thus a new word is chosen. This
process is continued until the whole document is generated.
Of course, no documents are written in such manner, and
this is merely a abstraction that reduces the complexity of a
natural language and gives some resemblance of an underlying
structure, to which the algorithm can cling to

Even if word are recognizable to a reader, the document as
a whole does not have any coherent meaning. Despite these
problems, an ordinary human reader could still distinguish
what is the topic distribution purely on the choice of words.
As an example, a document filled with words as “tree”, “root”,
“leaf”, “petal”, “fruit”, and “summer”, “warm”, “harvest”,
”cut”, would not make much sense, but it would be a sensible
guess that it is a document about farming and gardening.
Therefore, even a “bag of words” model is enough to reveal
the hidden topic distribution. This model uses the topics to
create document with words. Such model is desired, because
it is possible to reverse and use a document with words to
create a list of topics.

A simplistic explanation of algorithm is described in this
paragraph. The algorithm is given a number of topics, as well
as a list of documents, both of which are supplied by the
user. Each word in the whole corpus is randomly assigned
a topic. Once every word has a random topic assigned to it,
the algorithm tries to infer the hidden topics. This is done
by choosing an individual instance of a word from a single
document, removing the associated topic from that individual
word, and guessing which topic the word should actually be
assigned to. This is done mainly by two values: how well
the word fits the document and how well the word fits the
topic. As an example, if a wordX is found in documentD,
and the documentD has many words from topicA, and very
few words from topicB, then the wordX has much higher
probability to be from topicA, showing how well the word
fits in the document. On the other hand, if we look at topicB
and see that topicB has many instances of wordX occurring
in it, and topicA has very few instances of wordX, that would
mean that wordX fits topicA well, and thus is more likely to
be from topicA. The final decision as to which topic the word
belongs to is a sum of both values.

The above process is repeated for every word in the corpus.
Once that is done, an iteration is complete. It is desirable
to have multiple iterations to arrive at less random values.

Even though the initial distribution is completely random,
multiple iterations, words that occur in same topics, and same
documents start to congregate and stick to their own topics
with greater chance. This is possible because the initial topics
are functionally meaningless and just proverbial houses that
words can occupy, and a lot of words change their initial topic
very fast. To reiterate, each topic has a chance for any word
to be in it, and therefore each word has a chance to belong to
any topic, despite that those chances could be extremely low.
That is the probabilistic nature of LDA.

B. Machine learning

The data obtained from LDA will be used in machine
learning to investigate the relationship between that data and
ability to find vulnerabilities based on it alone. Machine
learning is a method of automatic data analysis. It allows
to efficiently process high quantities of data, as well as to
provide a deeper insight, that is much harder to come up with
manually [9]. It can be used for sorting e-mails into categories
(e.g. spam, social), in marketing to predict customer groups
and relevant stimuli for those groups, or to analyze trends in
social networks [10] [11]. Machine learning can be generally
divided into two categories - supervised and unsupervised
[12]. Supervised learning means that the data provided to
the machine learning algorithm is labeled, that the algorithm
knows what it must find, and it only needs to find a way how to
find that relationship. The other alternative is using unlabeled
data, which is used in unsupervised machine learning. In that
case, the algorithm does not know what it must find, and must
infer the information by itself [13].

C. Related research

There has been research about using software metrics and
text mining as indicators for vulnerable components [14]. A
more general search, for software defects in general, was done
by Gupta et al. in 2015, where they used software metrics as
well [3]. Another research team [4] did an investigation of
the localization of software defects, using static code analysis,
with the help of LDA. Other group has researched LDA as a
tool for modeling topics to enhance developer understanding
of software and ease maintenance [6]. Similar goals can be
seen in [5] where the researchers tried to use LDA as a tool
to visualize topics from source code, as well as to find related
files, based on their topic distribution. LDA has also been
used to analyze Common Vulnerability and Exposures (CVE)
reports to find most popular vulnerabilities, as well as to help
to identify trends in new vulnerabilities [15]. This is one of
few examples of LDA used for security and not just bug
prediction. Despite it being used for natural language, and not
source code, it still had positive results, and this gives hope
for a link between source code and vulnerabilities. Similar
approach has been used by [16] to use National Vulnerability
Database (NVD) as input for topic modeling, and use topic
distribution to evaluate other software, thus using LDA as a
tool of quantitative security risk assessment. This is the most

similar research that has been conducting, in relation to this
paper, becausea vunerability database was used in order to
evaluate software. The evaluation was performed by searching
for vulnerabilities in files, same as it is done in this experiment.

IV. METHOD
A. Preparation for topic modeling

Chromium source code for version 8.552.215 was obtained,
totaling 26 576 files. In addition, a database in form of comma
separated values that contains vulnerability IDs, as well as
the physical location of a file that is responsible for that
vulnerability. The total number of vulnerabilities in the set
was 1488. Due to the fact that the database was compiled from
multiple versions of Chromium, some of the files identified in
the vulnerability database were not present in the version that
was used. The final number of files that are were responsible
for vulnerabilities was 897.

GibbsLDA++ was used to extract hidden topics from
Chromium source code. GibbsLDA++ is licensed under GNU
General Public License and is available for public use. The
required input for GibbsLDA++ is a single file, which contains
all documents that are to be analyzed and used for extraction.
Each document should have an identifier, as well as a list of
tokens associated with that document. For the purpose of this
paper, each source file was treated as a single document, and
the path to that file was treated as the identifier.

The tokenization of source code was done by a Python
script, which was written solely for the purpose of this
paper. Tokenization script not only separates the text into
individual words, but also performs text “cleaning” functions,
such as removing white space characters (tabs, spaces, new
lines, etc.), as well as various commonly used programming
language symbols (exclamation marks, parentheses, brackets,
ampersands, slashes, asterisks, etc). Final result is compiled
into a single text file, where the first line is the total number
of document the whole corpus contains, and each line after that
is a document with its respective tokens. That is the required
format of input data for GibbsLDA++.

B. Topic modeling

The corpus is every single file in the source code. The
total size of the corpus is over 26 thousand files. These files
are compiled into a single text document of large size. This
document is a single file, and takes up over 160 megabytes
of space. The way that LDA works means that each word
in a document will increase the time needed to produce a
topic model. This, coupled with the size of the of corpus,
means that LDA computation takes a long time to complete.
This means that mistakes in the experiment design can result
in a significant amount of time spent that did not produce
anything of value. To avoid such problem, initial experiment -
preparing data, processing data with LDA, preparing the topic
models from LDA to be used in machine learning, and finally
using machine learning was done with a smaller scope. Even

if this smaller scope preliminary experiment is suboptimal and
might not produce statistically significant result, it allowed to
detect problems with the design earlier on, without requiring
a greater amount of effort invested. Since LDA requires the
user to input the amount of topics to discover, as well as
desired number of iterations to perform, 25 topics and 200
iterations were given. That means the LDA assumes that the
document was generated using 25 topics, and now those topics
are hidden in the corpus and must be discovered. Since the
number 200 was given for the number of iteration, the process
described in the III subsection Latent Dirichlet allocation
was performed 200 times before the final topic distribution is
calculated. Lower amount of topics and iterations resulted in
a faster computational time.

The first actual run followed, after the experiment design
was shown to be feasible. The first run was supposed to be
the main point of analysis, thus the default number of topics
- 100, was used. This was done because lower amount of
topics might produce less reliable topic models, due to words
being able to be categorized into a smaller number of topics.
On the other hand, having a large number of topics has two
disadvantages. First disadvantage is that the computational
time increases with each topic, because each word has an
associated probability with each topics. The second disadvan-
tage is that with large number of topics, more topic remain
mostly empty. Thus, the default value of 100 was chosen.
Even though this being the focus of the experiment, 500
iterations were performed. The default amount of iterations for
GibbsLDA++ is 2 000. This number was not used, because
the aforementioned 500 iterations took about two weeks of
uninterrupted compilation time, with a minimal amount of
background processes running. Because of diminishing returns
nature of LDA in regards to number of iterations, the number
of iterations was compromised to 500.

To compensate for a lower than desired number of iterations
in the first run, a second run was designed. This time the
number of topics was kept the same, to keep the results approx-
imately the same, but the number of iteration was increased
to the desired 2 000. To allow a topic model extraction with
such a number of topics to be completed in a reasonable time
frame, a compromise in other attributes had to be made. A
smaller number of files were used. The files used came from
a stratified sample. This sample of the source code, which is
over 26 000 files, kept the non-vulnerable to vulnerable file
ratio. The stratified sample contained 2580 clean files, that
were not responsible for vulnerabilities, and 89 vulnerable
files, that were responsible for a vulnerability. This results
in an approximately 90% smaller sample, while still being
faithful to the original ratios between clean and vulnerable
files, but with an added benefit of having an advantage of
shorter computation times for machine learning, and even
more so for LDA processing.

Once a distribution of topics over documents is produced
by LDA, the last step is to mark each document as either
responsible for vulnerability or not. This was done using a
Python script that was written for the purpose of this paper.

The script simply reads each line of data that was inputted
into LDA, that is, a source code file location on the hard drive
and associated tokenized code, as well as reading outputted
topic distribution for that file. The associated file is looked
up in the vulnerable database, and if it is found, that file
is marked as responsible for a vulnerability. If a file is not
found in the vulnerability database, then it is marked as not
responsible for the vulnerability. Regardless of the outcome,
the topic distribution and the status of being responsible for a
vulnerability is written to a third text file, which will later be
used for machine learning part of the paper.

C. Machine learning

Weka, version number 3.8, a GNU Public Licensed third-
party software, was used to for machine learning aspect of the
paper. Weka allows to import a data set, use a variety of native
functions to format and sanitize the data, and provides a wide
variety of machine learning algorithms. Different algorithms
have various requirement for the form of the data set. As
an example, an amount of more popular algorithms require
the data to be nominal. That is, data cannot be numeric,
with infinite number of values between 0 and 1, and has to
be confined in a specific number of categories, referred to
as “bins”. To take advantage of multiple machine learning
algorithms, the distribution of topics among the documents
had to be discretized, that is - grouped to into 200 bins, of the
same size. Such a high number of bins was chosen because
the word-over-topic probabilities range from very low, to very
high, and to avoid having too many items in one bin, a higher
number was chosen. The use of equal-frequency bins, that is,
each bin should have about the same amount of items in it,
was not used, since such grouping would give more weight to
words with lower frequencies, and topics should be influenced
more by high frequency, more topical words, rather than less
often used ones.

The main motivation behind these choices were the accuracy
rankings between algorithms [17]. Fernandez et al. 2014 [17]
performed a comparison of 179 classifiers, using 121 data sets,
to evaluate the performance of each classifier in regards to
all the others. After removing duplicates, that is classifiers
that were tested more than once, because of having been
implemented in various environments (C, MatLab, R, etc),
best performing classifier algorithms were found. Out of these
classifiers some were not available in Weka version 3.8 (the
version used for this experiment), and others were removed
from not being capable to process the data that LDA has
produced. Another qualifier for the method was complexity,
meaning how fast it arrives at the result. Having over 26
000 word-per-topic probabilities, with 100 topics, disqualified
classifiers that were too slow with large amounts of data.
Where too slow means, that it did not arrive at the result
after 2 hours. The following machine learning algorithms were
used in the end: J48, RandomForest, RandomTree, REPTree,
DecisionTable, BayesNet, NaiveBayes. All of these algorithms
the default settings, and not parameters, were changed from
how they are initially set in Weka 3.8

It was possible to find and tailor the best method for
each algorithm but to avoid researcher bias and environment
variation, same training and testing option was used for each
algorithm. The method for training, as well as testing the
validity of the algorithm is cross-validation, using 10 folds.
This means that the dataset (the total output from LDA) is
separated into 10 groups with the same number of files in
them, called folds. Then, 90% of those folds, 9 in this case,
will be used to train the classifier to create an algorithm to
arrive at the correct decision. The last 10% are used to validate
the algorithm that machine learned, that is, the algorithm
obtained from the previous 90% will be used on the last 10%,
and whether it arrives at the correct decision, will determine
how accurate the algorithm is. Once that is done, a new unique
mix of 90% of dataset will be used to create an algorithm,
which will be tested on the remaining 10%. This will be done
10 times in total, and the results from each iteration will be
summed up. The benefit of such method of training and testing
is reduced variance between algorithms, due to the fact that
each algorithm is tested using same dataset. Another benefit
is that, outliers in the data set do not skew the performance
as much, because they are used only for 10% of evaluation.
If cross-validation with 10 folds was not used, and a part of
a document that contains majority of outliers was employed
for validation, it would produce significantly different results
because the algorithm was trained using normal values from
the data set, but it was evaluated on the basis of outliers.

D. Performance indicators

To evaluate how reliable topic modeling is as an attribute
provider for machine learning algorithm that tries to detect
software vulnerabilities, thus to answer the research question
RQ, following metrics will be used. True positive, false
positive, true negative, false negative, precision, and recall.
The metrics indicate how well the algorithm classifies files as
vulnerable. Positive result, means that the machine learning
algorithm identified the file as being positive, in regards to
it belonging to a vulnerable file class. On the other hand, if
the result is negative, it means that the algorithm classified
the file as not belonging to the vulnerable file class. In other
words, positive means that the algorithm thinks that the file is
vulnerable, and negative means that it thinks that the file is not
vulnerable. This does not mean that the classifier is correct,
and “true or false” prefixes are used. True positive means
that a vulnerable file was correctly identified as vulnerable.
False positive means that a non-vulnerable file was incorrectly
identified as vulnerable. True negative means that a non-
vulnerable file was correctly identified as a not vulnerable.
False negative means that a vulnerable file was incorrectly
identified as a not vulnerable.

The last two indicators are calculated using the previous
ones. Precision is calculated as TPZ%, where TP is true
positive, and F'P is false positive. Precision shows how many
positively identified items were correct, that is, how many files
are actually vulnerable, out of all files that classifier identified
as vulnerable. The other indicator is Recall. It is calculated as

TABLE I
A LIST OF INTERESTING TOPICS. THE NUMBER BEFORE THE # SYMBOL
INDICATES THE RUN NUMBER, THIS IS USED TO DISTINGUISH THE DATA
BETWEEN FIRST AND SECOND RUN. THE VALUES ARE PROVIDED AS
PROBABILITIES, WHERE 0 MEANS IT WILL NEVER OCCUR, AND 1 MEANS
THAT IT ALWAYS OCCURS. ;t REPRESENTS THE MEAN, AND 0 REPRESENTS
THE STANDARD DEVIATION

Topic name Maximum value o

1#Topil4 0.029 0.381 0.033
1#Topic19 0.026 0.288 0.03
1#Topic21 0.006 0.075 0.007
1#Topic43 0.098 0.781 0.1
1#Topic52 0.16 0.898 0.146
1#Topic63 0319 0.985 0.22
1#Topic73 0.179 0.939 0.158
1#Topic95 0.174 0.928 0.156
2#Topic39 0.087 0.696 0.13
2#Topic60 0.121 0.78 0.137
2#Topic65 0.103 0.843 0.134
TP::_%, where T'P is true positive, and F'N is false negative.

Recall indicates how many true positive files were found, that
is, out of all actually vulnerable files how many were classified
as vulnerable.

V. RESULTS
A. LDA

GibbsLDA-++ produces few files. A .others file that contains
the information about the model, such as number of topics, or
number of iterations, this is mostly what is provided by the
user. A .phi file, that contains a word-over-topic distribution,
that is, a probability that a given word appears in that topic.
The .phi file is used for finding the most popular words in the
topic. A .theta file that contains the the topic-over-document
distribution, that is a probability that a given topic appears in a
document, where a document is a file containing source code.
The topics in this document are used as training attributes in
machine learning. A .tassign file is used to store model training
data, it is desired to continue iterating model, with same, or
new parameters, this file is not relevant for this paper. Lastly,
.twords contains the most popular words from each topics.

Majority of the topics that were extracted were not partic-
ularly interesting. Not interesting means, that the mean of
all the probabilities of all words is extremely close to 0. The
mean being very close to 0, means that most of the words
have very low chance of appearing in the topic. Since majority
of the words have very low chance appearing, it also means
that majority of the words have equal chance of appearing,
thus implying that the topic is mostly an equal mixture of all
words from the corpus. For a source code file, it means that
the file composition is very similar to all other files in the
whole program.

Majority of topics in the first run, had the mean probability
smaller than 0.001, where as the majority of topics from the
second run had a mean probability for the words was under

0.02. For the first run, an interesting topic was distinguished
as a topic with a mean word probability over 0.001, and for
the second run, a topic that had a mean world probability of
0.02. Different qualifiers are used for the two runs, because
the mean word probability over all topics in the second
run was an order of magnitude higher than the first run.
In total, 11 interesting topics were extracted. Since LDA
cannot infer topic names, they are simply named numerically,
and their corresponding is completely random, and has no
meaning whatsoever. Following topics were found interesting
from first run: topicl4, topicl9, topic2l, topic43, topic52,
topic63, topic73, and topic95. Following topics were found
interesting from the second run: topic39, topic60, and topic65.
A visualization of these topics can be seen in figure 1. The
common theme of all these figure’s is that their means are
is about 10 times larger than rest of the topics from the run.
All of the means, the maximum value, and standard deviation
can be see in table I

B. Weka

1) First run: This subsection contains the data obtained
from the first run. The summary can be found in II The first
run, with a total of 26 576 items, out of which 25 804 were
marked as not vulnerable, and 772 files that were marked as
vulnerable, with 100 topics and 500 iterations. This set-up is
the main point of interest in this paper. It represents the full
corpus, with a default value of 100 topics, that was iterated
500 times.

The first classifier to be tested was J48. It classified every
single file as not vulnerable. This means that every single that
is vulnerable, was incorrectly classified as a not vulnerable.
Because none of the vulnerable files were identified, it gives
0% to both true positive and true negative. This also results,
that all files that could have been classified as true negatives,
were classified as such, giving 100% to true negative, and since
every single vulnerable file was classified as non-vulnerable, it
means that the maximum value for false negatives is reached
- 100%. Because no positives were found, both precision and
recall are at 0%

Second classifier to be used was RandomForest. It clas-
sified 137 files as being vulnerable, out of which only 2
were actually vulnerable, and 135 were not vulnerable. This
results in the rate of 0.259% true positive rate, and 0.523%
false positive rate. 26 439 items were classified as being not
vulnerable, out of which 25 669 were actually not vulnerable
and 770 were vulnerable. This results in the rate of 99.477%
true negative and 99.741% as false negative. Using this in-
formation, precision is calculated to be 1.46% and recall as
0.259%

Third classifer to be used was REPTree. It classified, just
as J48, all of the files as non-vulnerable. Because in both of
the classifiers, all files are classified the same, it results in
the same metrics, 0% TP, 0% FP, 100% TN, 100% FN, 0%
precision, 0% recall.

6

topic14

[S—

F
i

opIc1Y

[—

i

topic21

[

r
0

topic43

[—

r
0

_ topic52

topicT3

| —

il

topic63

ﬂTrrrﬂ—rrn—mﬁ—HW

i

41

i
099

topic39

Hﬂnam B4 TP TP 88 4B £ 46 26 B4 30 12 4 10 4 0 1
T T 1

i

topic60

rlm,mwswsnmm?nam\sw £4 40 37 12 12 19 8 7 7 4 2 1 1
T ! !

o

topic65

. 7591 8563 44 34 97 36 00 0 147 4 4 2 0 0 D 1
T T 1

0.4

035 07 039 078 o 04z

Fig. 1. The y axis represents the probability of a word occurring in the topics. The x axis represent how many words fall into the probability categories
from y axis. The higher the bar, the more words occur at that probability. The upper half of the figure provides visualization for interesting topics from first
run, while the lower half represents the interesting topics from the second run This graphic has been produced using Weka visualizer tool, and cropping out
irrelevant topics.

TABLE I
MACHINE LEARNING PERFORMANCE INDICATORS FROM THE FIRST RUN. FIRST NUMBER SHOWS THE TOTAL NUMBER OF ITEMS IN THE CATEGORY,
WHILE THE SECOND NUMBER SHOWS THE PERCENTAGE IN REGARDS TO THE MAXIMUM VALUE POSSIBLE FOR THAT CELL. THAT IS, TP AND FN ARE
PERCENTAGES OF ALL FILES ASSOCIATED WITH A SOFTWARE VULNERABILITY, AND FP AND TN ARE PERCENTAGES OF ALL FILES THAT HAVE NO
CONNECTION TO SOFTWARE VULNERABILITIES

Algorithm name | True positive (TP) | False positive (FP) | True negative (TN) | False negative (FN) | Precision | Recall

J48 0 (0%) 0 (0%) 25804 (100%) 772 (100%) 0 (0%) 0 (0%)
RandomForest | 2 (0.259%) 135 (0.523%) 25669 (99.477%) 770 (99.741%) 1.46% 0.259%
REPTree 0 (0%) 0 (0%) 25804 (100%) 772 (100%) 0 (0%) 0 (0%)
RandomTree 5 (0.648%) 217 (0.841%) 25587 (99.159%) 767 (99.352%) 2.252% 0.648%
DecisionTable 0 (0%) 1 (0.004%) 25803 (99.996%) 772 (100%) 0 (0%) 0 (0%)
BayesNet 4 (0.518%) 34 (0.132%) 25770 (99.868%) 768 (99.482%) 10.526% | 0.518%
NaiveBayes 4 (0.518%) 35 (0.136%) 25769 (99.864%) 768 (99.482%) 10.256% | 0.518%

RandomTree classified 222 files as vulnerable. From those
222 files, 5 were actually vulnerable, and the remaining 217
were non-vulnerable. This means that TP is 0.648% and that
FP is 0.841%. It also classified 26 354 files as not vulnerable,
from which 25 587 were actually not vulnerable, and 767 were
actually vulnerable. This information allows to calculate, TN
of 99.159% and FN 99.352%. Using this data, the precision
is found to be 2.252% and the recall to be 0.648%.

DecisionTable classified only 1 files as vulnerable, and
this file was actually not vulnerable. This means that TP is
0% and FP is 0.004%. Remaining 26 575 were classified
as not vulnerable, out of which 25 803 were actually not
vulnerable, and 772 were vulnerable. This means that every
single vulnerable file was misclassified, resulting in TN of
99.996% and FN of 100%. Because no true positives were
found, both recall and precision are at 0%.

BayesNet classified 38 files as vulnerable. From these 38,
only 4 were true positives, and remaining 38 were false
positives. Thus, in percentage, the TP is 0.518% and FP is
0.132%. This leaves 26 538 files identified as negatives, from
which 25 770 are true negatives, and 278 as false negatives.
This results in the TN being 99.868% and FN being 99.482%.
Using this, the precision is calculated to be 10.526%, and

recall is calculated as 0.518%

NaiveBays classified 39 files as vulnerable. From these, 4
were vulnerable, and 35 were non vulnerable. The TP rate
is 0.518% and FP rate is 0.136%. Other 26 537 files were
classified as negatives, that not vulnerable, out of which 25
769 were actually not vulnerable, and 768 were vulnerable.
The TN rate is found as 99.864% and FN rate is 768%. The
precision is 10.256% and the recall is 0.518%.

2) Second run: This subsection describes the data obtained
from training machine learning algorithms, with the data
obtained from the second run. A second run was performed
to compensate for the lower than desired number of iterations
in the first run. This run consisted of 100 topics, and 2 000
iterations, but was only using 10% of the code base. In total
2 669 were used, out of which 2 580 are known to be not
associated with known vulnerabilities, and 89 are known to be
associated with known vulnerabilities in the code base. This
keep the vulnerable non vulnerable file ratio of approximately
1 to 29.

RandomForest identified 26 files as vulnerable. Out of
these 26 files, 7 items were actually vulnerable, and 29 files
were not vulnerable. This results in true positive being 7.865%,
and the false positive being 1.124%. The remaining 2 633 files

TABLE III
MACHINE LEARNING PERFORMANCE INDICATORS FROM THE SECOND RUN. FIRST NUMBER SHOWS THE TOTAL NUMBER OF ITEMS IN THE CATEGORY,
WHILE THE SECOND NUMBER SHOWS THE PERCENTAGE IN REGARDS TO THE MAXIMUM VALUE POSSIBLE FOR THAT CELL. THAT IS, TP AND FN ARE
PERCENTAGES OF ALL FILES ASSOCIATED WITH A SOFTWARE VULNERABILITY, AND FP AND TN ARE PERCENTAGES OF ALL FILES THAT HAVE NO
CONNECTION TO SOFTWARE VULNERABILITIES

Algorithm name | True positive (TP) | False positive (FP) | True negative (TN) | False negative (FN) | Precision | Recall

J48 0 (0%) 0 (0%) 2580 (100%) 89 (100%) 0 (0%) 0 (0%)
RandomForest | 0 (0%) 0 (0%) 2580 (100%) 89 (100%) 0 (0%) 0 (0%)
REPTree 0 (0%) 0 (0%) 2580 (100%) 89 (100%) 0 (0%) 0 (0%)
RandomTree 7 (7.865%) 29 (1.124%) 2551 (98.876%) 82 (92.135%) 19.444% | 7.865%
DecisionTable 0 (0%) 0 (0%) 2580 (100%) 89 (100%) 0 (0%) 0 (0%)
BayesNet 0 (0%) 0 (0%) 2580 (100%) 89 (100%) 0 (0%) 0 (0%)
NaiveBayes 0 (0%) 0 (0%) 2580 (100%) 89 (100%) 0 (0%) 0 (0%)

were classified as not vulnerable, out of which 2 551 were
actually not vulnerable, and 82 were known to be vulnerable.
This results in true negative being 98.876% and false negative
being 92.135%. Using the before mentioned data, and the
formula described in section IV, precision is calculated to be
19.444% and, recall is calculated as 7.865

The remaining classifiers, that is J48, RandomForest,
REPTree, RandomTree, DecisionTable, BayesNet, Naive-
Bayes resulted in same data. They all classified all of the
items as not vulnerable. Because the data is exactly the same
percentage-wise, as in first run’s J48 and RE PT'ree results,
the data is the same. TP and FP being 0%, TN and FN being
100%, and precision and recall being 0% because no true
positives were found.

VI. DISCUSSION

First thing to note, that out of 100 topics in the first run,
only 8 were interesting, and then only 3 topics were found to
be interesting in the second run. This might be because the
vocabulary in software engineering when it comes to coding
is very limited, and once a certain words gets assigned to
a topic, it is more likely that similar words will cling to it,
creating bigger topics, because so many of the source code
files have the same elementary composition. This is more
pronounced in the second run, because the number of files,
and thus the number of unique words is even smaller there.
Therefore, the smaller corpus with a limited vocabulary results
in fewer interesting topics, due to words belonging to just few
topics.

Judging from results, it is clear that the current implementa-
tion of the experiment cannot be used to identify source code
files, that might be responsible for vulnerabilities. Majority of
the algorithms described in the result section, not only were
they not able to distinguish reliable between vulnerable files,
but could not distinguish between those two types in any sta-
tistically significant manner. This was particularly apparent in
the algorithms from tree class, such as REPTree, RandomTree,
and RandomForest. Compared to Bayesian class algorithms
(BayesNet, NaiveBayes), were less likely to classify vulnera-
ble files as vulnerable. This can be seen in trees results, where
very few, to none at all, vulnerable files were classified, be

it true positive, or false positive. One explanation could be
that they were not able to model differences between vulner-
able files and non-vulnerable files. This explanation could be
argumented, because Chromium is a network application, a
lot of the code is responsible for network functionality. Since
software attacks usually happen over the Internet, in other
programs with known vulnerabilities might manifest more
often in files associated with networking, which would give
the vulnerable files a more unique topic distribution compared
to the rest of the codebase. Such difference might be harder
to distinguish in software that is deeply embedded in working
with Internet.

The best performing algorithms from the first run were
Bayesian. Both BayesNet, NaiveBayes produced the highest
precision, both over 10%. The second place goes to Ran-
domTree with 2.252% precision, and RandomForest takes the
third place with 1.46% precision. On the other hand, Ran-
domTree achieved a higher recall rate of 0.648, in comparison
to Bayesian algorithms, which got a smaller rate of 0.518%. In
the second run, Bayesian algorithms performed significantly
worse, getting 0% both in recall and in precision. Where
RandomTree achieved an even greate precision and recall,
even compared to the first run’s Bayesian methods, having
precision of 19.444% and recall of 7.865%.

Majority of the algorithms did not result in any useful data
from the second run. I suspect the main cause for this is the
reduced number of files, despite the fact that it did not affect
the RandomTree negatively.

Another noteworthy item can be seen from results. Bayesian
algorithms were able to identify more vulnerable files, as ac-
tual vulnerable files. This could be used to argue that Bayesian
algorithms were able to predict the status of files better, but it
does not seem to be the case. This is because the percentage
of real vulnerable files that were classified as vulnerable was
around 0.6%, which is about the same number as amount of
non-vulnerable files that were classified as vulnerable. It can
be assumed that the Bayesian models inferred that the chance
for a vulnerable file is 0.6% and just randomly guessed which
files were vulnerable. This would explain, why about 0.6%
of both vulnerable and non-vulnerable files were classified as
vulnerable.

Last observation, is that comparing accuracy of models
generated by machine learning algorithms from the first run,
to the models from the second run, the second run performed
noticeably better. The main differences between the two runs
were that the second run had greater number of iterations,
as well as greater number of topics. This could be used
as an argument that more iterations will produce noticeable
more accurate results, but such would be disputed from the
data second run. The second run had the most instances
of algorithms grouped all data into a single class for non-
vulnerable files, despite the fact that same number of topics
were used, and greater number of iterations. Low accuracy of
the second run shows, that using stratified sample did not prove
to be a valid strategy. One reason for that is the small number
of vulnerable files. With 89 vulnerable files, there might have
not been enough to form a unique identity with topic models,
compared to the rest of the code base, resulting in greater
homogeneity of topic distributions between all of the files.

VII. THREATS TO VALIDITY

Construct validity. The experiment was designed to mea-
sure if it is possible to predict software vulnerabilities using
topic extraction and machine learning. The biggest threat to
construct validity was using only a single implementation of
topic modeling - LDA. This decision felt comfortable, because
it is one of the most popular methods of topic modeling. The
original paper by Blei et al. [7] has been cited over 14 500
times, and has multiple implementations in C, Java, MatLab,
R, etc. Since this is not a comparative study of topic modeling
algorithms, LDA was chosen as the most popular option.

Conclusion validity. The greatest threat to validity of con-
clusion would be claiming that there is no relationship between
topics in source code, and the chance for that file to be
responsible for a software vulnerability. The conclusion of
the paper is that no correlation has been found with the
current design of the experiment, and few reasons for that are
mentioned, as well as suggestions how they can be remedied.
To arrive at this conclusion, standard methods were used with
little to no customization, such as GibbsLDA++ and Weka.
Only changes that were made, was formatting the data to
required format, to be used with respective software.

Internal validity. There is very little threat to internal
validity, because there were no actual choices to make. All
of the data that was available to used, were used uniformly
without any discrimination. Stratified sample was done using
pseudo-random number generator provided by Python, and
cross-validation was done using folds, so that every part of
data set was used both for training, and evaluating machine
learning.

External validity. The reached conclusion only applies for
Chromium when it comes to detecting software vulnerabilities
using LDA. Different results could be reached using another
method of topic modeling, as well as using it for other purpose
than vulnerability prediction. For example, it is possible that
LDA might lend itself for the use of finding source files,

that are similar to each other. More research has to be
done to definitively disprove connection between vulnerability
prediction and topic extraction. This is because the experiment
was done on a single program, using a single topic extraction
model.

VIII. CONCLUSION

The most reliable algorithms for topic detection were
Bayesian ones - BayesNet and NaiveBayes, in terms of
precision, but RandomTree performed slightly better in the
terms of recall, at the cost of significantly lower precision.
On the other hand, when the data set became much smaller,
RandomTree became a clear leader, both in precision and
recall

No data has been found, that would support the theory,
that software vulnerabilities can be predicted using latent
Dirichlet allocation analysis with combination of machine
learning. Even though no clear link has been found between
topic models and software vulnerabilities in this experiment,
it does not mean that these two cannot be used together. As
mentioned in discussion, results might have been different
if source code from another program was used, due to how
Chromium is closely related to networking. Another matter
to investigate is a different experiment design, using different
tokenization methods and removing fewer symbols from the
source code, or using fewer topics for LDA. The data can
also be affected by the number and a method of discretization
for topic distribution. It also might be worth investigating this
case more, if there is an access to more powerful resources that
would allow to perform topic modeling with greater number
of topics, as well as for more iterations, as it was demonstrated
in the second run.

REFERENCES

[1] J. J. G. Jaziar Radianti, “Understanding hidden information security
threats: The vulnerability black market,” in Proceeding HICSS 07
Proceedings of the 40th Annual Hawaii International Conference on
System Sciences, p. 156, 2007.

[2] M. Finifter, D. Akhawe, and D. Wagner, “An empirical study of
vulnerability rewards programs.,” in USENIX Security, vol. 13, 2013.

[3] V. Gupta, D. N. Ganeshan, and D. T. K. Singhal, “Developing soft-
ware bug prediction models using various software metrics as the bug
indicators,” IJACSA, 2015.

[4] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Bug localization
using latent dirichlet allocation,” Information and Software Technology,
vol. 52, no. 9, pp. 972-990, 2010.

[5] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi, “Mining
concepts from code with probabilistic topic models,” in Proceedings of
the twenty-second IEEE/ACM international conference on Automated
software engineering, pp. 461-464, ACM, 2007.

[6] G. Maskeri, S. Sarkar, and K. Heafield, “Mining business topics in
source code using latent dirichlet allocation,” in Proceedings of the Ist
India software engineering conference, pp. 113—120, ACM, 2008.

[71 D. M. Blei, A. Y. Ng, and M. L. Jordan, “Latent dirichlet allocation,”
the Journal of machine Learning research, vol. 3, pp. 993-1022, 2003.

[8] J. K. Pritchard, M. Stephens, and P. Donnelly, “Inference of population
structure using multilocus genotype data,” Genetics, vol. 155, no. 2,
pp. 945-959, 2000.

[9] P. Simon, Too Big to Ignore: The Business Case for Big Data, vol. 72.
John Wiley & Sons, 2013.

[10] E. Alpaydin, Introduction to machine learning. MIT press, 2014.

[11]

(12]

[13]

[14]

[15]

[16]

[17]

D. Freitag, “Machine learning for information extraction in informal
domains,” Machine learning, vol. 39, no. 2-3, pp. 169-202, 2000.

R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Machine learning:
An artificial intelligence approach. Springer Science & Business Media,
2013.

R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught
learning: transfer learning from unlabeled data,” in Proceedings of the
24th international conference on Machine learning, pp. 759-766, ACM,
2007.

J. Walden, J. Stuckman, and R. Scandariato, “Predicting vulnerable
components: Software metrics vs text mining,” in Software Reliability
Engineering (ISSRE), 2014 IEEE 25th International Symposium on,
pp. 23-33, IEEE, 2014.

S. Neuhaus and T. Zimmermann, “Security trend analysis with cve topic
models,” in Software reliability engineering (ISSRE), 2010 IEEE 21st
international symposium on, pp. 111-120, IEEE, 2010.

R. Das, S. Sarkani, and T. A. Mazzuchi, “Software selection based on
quantitative security risk assessment,” IJCA Special Issue on Computa-
tional Intelligence & Information Security, pp. 45-56.

M. Ferndndez-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we
need hundreds of classifiers to solve real world classification problems?,”
The Journal of Machine Learning Research, vol. 15, no. 1, pp. 3133—
3181, 2014.

