UNIVERSITY OF GOTHENBURG

A study on Opening Software Platforms

Bachelor of Science Thesis in the program Software Engineering and
Management

MAaRrkuUs ERLACH
Sara Johansson

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering
Goteborg, Sweden, June 2016

The Author grants to Chalmers University of Technology and University of Gothenburg the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let Chalmers
University of Technology and University of Gothenburg store the Work electronically and
make it accessible on the Internet.

A study on opening up Software Platforms

MARKUS. ERLACH,
SARA. JOHANSSON,

© MARKUS. ERLACH, June 2016.
© SARA. JOHANSSON, June 2016.

Examiner: IMED. HAMMOUDA

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Goteborg, Sweden June 2016

Abstract

This study investigates factors for opening up a soft-
ware platform within an industrial setting. Using
questionnaires and interviews, data was gathered and
grounded theory was applied. The results showed
that guidelines for how to open up a software plat-
form are needed and that companies lacked domain
knowledge.

Acknowledgment: We would like to thank our su-
pervisor Thorsten Berger (Chalmers — University of
Gothenburg, Sweden) for his guidance. We would
also like to thank our partners Christoph Elsner
(Siemens AG, Germany), Benedikt Schultis (Siemens
AG, Germany), and Christoph Seidl (Technical Uni-
versity of Braunschweig, Germany) for their support
in the making of our bachelor thesis.

1 Introduction

There is a significant increase of companies that have
adopted a software ecosystem. J. Bosch discusses
one of the most common transitions from a software
product line to a software ecosystem. One of his rea-
sons for this transition is a ”a successful platform
and intra-organizational software product line”.[11]
S. Jansen, A. Finkelstein, and S. Brinkkemper define
a software ecosystem as ”"a set of actors function-
ing as a unit and interacting with a shared market
for software and services, together with the relation-
ships among them. These relationships are frequently
underpinned by a common technological platform or
market and operate through the exchange of infor-
mation, resources and artifacts.” This definition tells
us that the relationships in a software ecosystem are
supported and held together by a platform.

In this thesis We follow M. Gawer and A. Cusumano
(2002), and their definition of a software platform.
They define it as ” A foundation technology or set of
components used beyond a single firm and that brings
multiple parties together for a common purpose or to
solve a common problem”. A software platform al-
lows for the creation of multiple different applications

to be built upon it and allows for variation based off
of the underlying structure of the software platform
[3][8]. This can make companies become platform
leaders and a platform leader will be able to influ-
ence complementary products to be created within
their industry [3]. Being in a leadership position if
other companies do not aid in innovating can on the
other hand be quite costly. For example, Intel pro-
duces microprocessors for PC’s and when developing
their 64-bit processor spent a lot of time and money.
Had the rest of the market not begun innovating their
products, Intel would have lost an immense amount
of money and time spent on development [2].

This study focuses on the platform of a software
ecosystem. We aim at getting a grasp on what in-
dustries are required to do in order to go from a
closed software platform to an open software plat-
form. Since a platform is an underlying technologi-
cal factor of an ecosystem we also investigate what
technological aspects a software platform would need
change to open up a software platform.

A closed platform is proprietary, controlled and
owned by a single organization or party. The plat-
form development is limited to internal contributions
within the organization. This could be done through
licensing, legal actions such as patents, copyrights or
plain secrecy [13]. So what does open mean? Eisen-
mann et al., (2008) define a platform as open if the
development, the contributions, the use of the plat-
form, and the commercialization is not restricted. Or
if all restrictions placed are reasonable and applied
equally to all. Two ways of opening a platform can
be seen, horizontal and vertical [20]. A horizontal ap-
proach means sacrificing some control by licensing the
platform to competitors, or integrating further plat-
form sponsors. A vertical approach means granting
external developers access to the market of comple-
mentary applications [8] [9]. This is the definition of
open we will use in our thesis.

As software companies with closed software platforms
grow, they can choose to open up their software plat-
form allowing external actors a chance to contribute
to the development [8][9]. It is worth mentioning that
a company controls the growth of its ecosystem and

it also decides exactly what external developers can
access[7]. Despite this companies do not always know
how to open up their software platform. They do not
know which parts of their platform should be opened,
how much should be opened, which technology should
be changed and they do not know what factors can in-
fluence the success when opening up their company’s
software platform. This study was designed and car-
ried out with the aim of answering these questions in
an industrial setting.

e RQI1: How do companies successfully open up
closed software platforms?

— SQ1: What factors contribute to the open-
ing of a software platform?

— SQ2: How does opening up a software plat-
form affect a company?

e RQ2: What technological changes are necessary?

2 Related Research

2.1 Software Platforms

Kilamo et al. (2011) study the problems that come
with making communities for open source software
that previously was closed. They looked at indus-
trial case studies, developed tools and methods, and
worked together with companies in an attempt to
identify best practices for opening software in an in-
dustrial setting. Working with these companies they
tried to applied the OSCOMM framework, which is a
framework that helps with opening up software that
was previously proprietary in three phases. Looking
at the data gathered and the tools and frameworks
used in this study, we can extract information that
could be beneficial to us. The OSCOMM framework
was used in a case study where a software company
applied the OSCOMM framework with the goals of
growing and expanding to reach international part-
ners. After evaluating their use of OSCOMM, the
company stated that they should have focused more
on re-factoring the software for community develop-
ment and that they in the future plan on investing

more in marketing. Attempting to increase the size
of the community so that it can reach a level of self-
sustainability.

Platform-mediated networks can have several differ-
ent types of roles that can all be opened to encour-
age participation from external sources. Looking
at these factors can help us see which type of fac-
tors more greatly benefits the opening of a software
platform as well as in what context they are used.
Eisenmann et al. (2008) look at the different factors
that either motivate decisions on opening or closing
the platform. They concluded that openness occurs
at multiple levels depending on whether the partic-
ipation is unrestricted. Several types of strategies
were formed that either grant or restrict access to
the different participants. When proprietary plat-
forms mature, they are usually opened to include
new providers that contribute to the platform. As
the platform grows, these new providers will usually
have opinions about the way the platform is directed
and try to force the platform to open its governance.
A shared platform on the other hand tends to go the
other way and look for a central authority to be able
to settle differences and set directions. This closes
a previously open platform’s governance. What this
means for platform governance is that forces tend to
push both different types towards a hybrid style gov-
ernance where control is central and handle platform
technology, and the responsibility of serving users is
shared. Eisenmann et al. (2008) used four different
roles to show the openness of a platform. These roles
are the demand-side user, the supply-side user, the
platform provider and the platform sponsor. Eisen-
mann et al. (2008) give examples of platforms that
are all successful but open at different role levels.
When evaluating our survey responses, we will know
that where a company decides to allow access will
not give a definitive answer of where to open up a
software platform. Instead it might allow us to see
patterns related to which roles are open and what
other factors contributed to a successful opening.

M. Anvaari and S. Jansen (2010) study how different
architecture and openness of mobile platforms can af-
fect the growth of a software ecosystem. The success
of a mobile platform being open or closed can be ar-

gued depending on what aspects you see as success.
Examining how open a platform is would let you un-
derstand openness strategy of a platform, which en-
tails how much of a platform the supplier will give
a user access to. Anvaari and Jansen (2010), devel-
oped a tool that looks at three different layers; appli-
cations layer, middleware layer and kernel layer. The
model also shows three ways of how accessible the
platform is from each layer. Using this tool they tried
to identify architectural factors that would show the
openness strategy behind the different mobile plat-
forms. The model however does not take into con-
sideration licensing aspects of the platforms. Anvaari
and Jansen (2010), show that by taking licensing into
consideration, you can more clearly see which parts
are open and identify factors of the openness strat-
egy. Anvaari and Jansen (2010) conducted interviews
with application developers, in order to confirm the
results they had gotten regarding how open the dif-
ferent mobile platforms are. This confirmed some of
their previous results, but they also learned that ap-
plication developers believe that the degree to which
a mobile platform is open might be lesser than what
the literature claims.

2.2 Ecosystems

It is vital that the concept of ecosystems is grasped
before making any change to a software platform.
Berger et al. (2014) compare the technical mech-
anisms of open and closed platforms. Closed plat-
forms have mechanisms that hinder development that
is not profitable. Open platforms address other as-
pects which allows for a high security but an easy
access. Using simple dependency languages allows
ecosystems that provide end users with free market
assets to use mechanisms. These mechanisms shapes
the open-platform design by affecting direct and in-
direct dependencies. Berger et al. (2014) created
a conceptual framework in order to evaluate ecosys-
tems. They found that every ecosystems type of
framework assisted in directing the design of the plat-
form. Giving clear insight on relationships, variabil-
ity mechanisms, and characteristics of the ecosystem.
In order to draw conclusions about the different plat-

forms/products that the survey and interview par-
ticipants have described, the connections within the
ecosystem needs to be understood.

During research it is just as vitally important to in-
vestigate the failures as the successes. An opening
of a software platform can fail for multiple reasons,
not uncommonly it is due to failures and lacks within
other aspects of the company or ecosystem. Jansen
(2014) discusses an operationalization of the health
of an open source ecosystem. Allowing an opportu-
nity to investigate healthy ecosystems without start-
ing from scratch. R. Costanza and M. Mageau (1999)
define "the concept of ecosystem health as a compre-
hensive, multiscale, dynamic, hierarchical measure of
system resilience, organization, and vigor”. Part of
a healthy ecosystem is choosing the appropriate de-
velopment predictions of a platform. For an open
platform to be healthy, it is necessary to constantly
maintain and extend it to keep up with competing
platforms. Jansen (2014) provides a view of healthy
ecosystems so that strategical changes to an open
platform can be made. Once a platform is open, it
needs to stay open and evolve.

Henk, Slinger and Sjaak(2011) recognized a gap in
the knowledge of using in-the-field software opera-
tions that organizations could use to improve the
ecosystems quality. The thought behind this paper is
to receive the same type of benefits one could achieve
from opening up a closed platform. By filling in this
gap those that are part of the ecosystem can make
the software better and stronger, increasing the sta-
bility and health of the ecosystem. Henk, Slinger and
Sjaak(2011) discusses the importance of knowing how
a software actually operates and what it provides to
its users. By analyzing organizations knowledge of
software operations they concluded that infrastruc-
ture, utilization and propagation are the main points
to improve in order for this gap to be filled. Looking
at the domain knowledge of companies in our sur-
vey will allow us to better analyze the importance
of this aspect when opening up a software platform.
Henk, Slinger and Sjaak(2011) realized that there is a
parallel connection to software operation knowledge,
and to trustworthy relationships between the soft-
ware ecosystem participants.

3 Methodology

3.1 Research methodology

Grounded theory is a way of creating theories that
are based on analyzing data. The source of data can
be anything from a document to a video file or a re-
searcher’s own experiences. The basic idea or method
would be to start with a case or experience and go
through it in order to develop abstract categories. So
that one could create, explain and understand the
data, identifying interrelationships within it. The
data that is collected in this study is analyzed us-
ing grounded theory. Grounded theory offers several
different types of ways to analyze data. Kathy Ar-
mas(1996) discusses line-by-line coding and focused
coding which expects questions and categories to be
predetermined. While Naresh R. Pandit(1996) dis-
cusses a more combined and detailed data analysis.
These types are open coding, axial coding, and se-
lective coding. Open Coding is an analytic type of
coding which involves asking questions in order to
gather data into different categories and sub cate-
gories. These categories can be built up again using
axial coding to connect the dots between the main
categories and their children, allowing for both new
answers and questions to be formed. Similarly, selec-
tive coding also draws new conclusions but by con-
necting the main categories.

3.2 Eliciting participants

To find participants for the survey questionnaire,
we needed to locate Software Engineering indus-
try practitioners. This was done by scouring soft-
ware engineering conferences and in particular con-
ferences that had Software Engineering in Practice
(SEIP) workshops. We looked through conferences
that were about software engineering, software plat-
forms and software ecosystems. Conferences that
were scoured include: International Conference on
Software Engineering (ICSE), International Work-
shop on Software Ecosystems (IWSECO) and Work-
ing IEEE/IFIP Conference on Software Architecture

(WICSA). These conferences are held annually and
we went back as far as 2006 looking for industry prac-
titioners. We did not look at any particular domains
like medical or automotive industries but rather in-
dustries as a whole. Limiting our data collection to
any one particular industry would have limited our
results and could have made our participant pool too
small.

Inclusion criteria: The company needed to have
opened, be in the process of opening or tried to open
their software platform previously. The companies
also needed to have a contact person with an email for
us to be able to contact them personally. To find the
most suitable participants, personnel involved with
the software industry were prioritized. Participants
were largely found by looking at industry committees
or industry workshops at these conferences.

Exclusion criteria: Companies with contact emails
that would most likely be sent to an info email were
excluded since the chance of a response was deemed
to be low. Companies with too little information on
their software platform were also excluded because
one could not ascertain whether they were opening,
had opened or were trying to open their software plat-
form. People involved in research at companies or
at software engineering institutes had already largely
been found and were therefore excluded.

3.3 Surveys

The questionnaires content was carefully created by
deducing what type of information was needed for
the research and tested by a third-party, allowing
for critique and some reconstruction. The question-
naire consists of 31 questions and it is optional for
the participant to add his/her name and email at
the end, thus making anonymity a choice and solicit-
ing whether the participant wanted the final report.
Some questions allow the participant to answer mul-
tiple choices for the same question. The question-
naire is attached as an appendix, and the following
list shows how we map the survey questions with the
research questions.

Questions 1 - 4 General properties.

Questions 5 - 8 Technological aspects (RQ2).

Questions 9 - 16 Reasons, process and strategy
(SQ1).
Questions 17 & 18 Technological aspects (RQ2).

Questions 19 - 25 Affect, success and challenges

(RQL, SQ2).

Questions 26 - 29 Technological aspects (RQ1,
RQ2).

Questions 30 - 31 Participant individual ques-
tions.

e Questions 32 - 35 Contact and final remarks.

The second part of the survey was the interview
which was aimed at participants whose software plat-
form had been opened and is still open. Based on
the interviewees individual questionnaire answers, an
interview guideline was created in such a way that
the interview was semi-structured. Using the semi-
structured method allowed the interviewer, one of our
partners, to ask questions during the interview based
on information gathered then and there. To arrange
the meeting a formal email directed towards the par-
ticipant was sent, and to encourage participation the
interview was set to be 30 to 45 min long.

4 Results

Looking at the open coding data it is clear that cer-
tain patterns can be acknowledged. The data con-
tains information regarding several different types of
software platforms within industries, those that have
gone from closed to opened platforms, those that de-
signed their platform to be open and those that made
certain areas within their platform more open.

After evaluating the open coding categories, certain
categories were deemed unnecessary for the research
and disregarded in the next step of analysis. In order
to further evaluate the data and create new questions
that needed answering, axial coding was used to find

points of interest and interrelationships between cat-
egories and sub-categories. These new questions and
points of interest created the foundation for the inter-
view guideline draft. Our questionnaire was answered
in full by 15 individual participants from different
projects. Out of these 15 responses, 4 projects are
open software platforms and 11 are still in the pro-
cess of opening up. The participant’s roles in software
platform projects have been roles such as Marketing
expert to Developer or Software Architect and some
participants also answered that they have had multi-
ple roles.

Role Count | Percent %
Developer 8 50
Modeler 1 6,3
Software architect 11 68.8
Team leader 6 37.5
Project manager 5 31.3
Domain expert 3 18.8
Researcher 1 6.3
Product manager 2 6.3
Marketing expert 1 6.3
Other: Requirements en- | 1 6.3
gineer

Other: User 1 6.3
Other: System Architect 1 6.3
Other: Consultant 1 6.3

Table 1: Roles.

The experience that the participants have, ranged
from 3 to 5 years up to greater than 10 years. Only
1 (6.7%) participant had 3 to 5 years of experience
, 2 (13.3%) participants had between 5 and 10 years
of experience and 12 (80.0%) participants had more
than 10 years of experience within the software engi-
neering field.

4.1 Results of questionnaire analysis

Industries are driven to implement an open software
platform and the majority of industries that partici-
pated in the study (40%) had chosen to do a complete
re-implementation of a closed platform. While 30%

chose to re-engineer, re-factor, or extend their closed
platform. 10% of the participants decided to design
a completely new software platform making it open
from the start.

4.2 Reasons for opening up a software
platform

From all the participants a total of 12 business in-
tentions could be recognized. Innovation through ex-
tensions by third parties received a 19.5% making it
the most common reason. Industries are commonly
profit focused, so it is not a surprise that 12.2% par-
ticipants had the business intention to increase users
and 12.2% had shared cost of innovation.There were
several other business intentions such as; increase at-
tractiveness for new users, new revenue streams, new
application areas, establish a unique selling point, es-
tablish a value chain, increase value for existing users,
stabilize market position, increase domain knowledge
in platform organization, and reduce commodity bur-
den. Another strong factor to pushing the opening up
of a software platform are technical intentions. En-
able external realization of specialized requirements
and realize functionality that is beyond the organiza-
tion’s capacity are the technical intentions of 70% of
the participants. Some specific problems have arisen
in several of the projects that answered the question-
naire, leading them to try and open up their software
platform. The most occurring problems are; an over-
flow of requirements from users (33.3%), struggling
with market competition (27.8%), and lack of com-
patibility with other platform (11.1%).

The participants benefits differed from one another.
Some of the benefits include an increased domain
knowledge, increased mind share in a technical do-
main, increased extensions and extensions implemen-
tation frequency. Other benefits include having new
business opportunities, a common application frame-
work, extended platform functionality, established in-
tegration’, and for development teams the ability to
develop and deliver on their own schedule. The draw-
backs also differed from one another. The draw-
backs included; high effort to keep interfaces sta-

ble, hard to maintain backward compatibility, ne-
gotiation between stakeholders, customers losing in-
terest, code ownership, making decisions, varying
quality of extensions, balancing internal and exter-
nal business models, protecting company from ar-
chitectural drivers, process-immaturity, more testing
needed, and extended integration was needed.

Out of the 15 participants that completed the ques-
tionnaire, 1 respondent chose not to answer what
challenges they had faced in the process of opening up
their software platform. The challenges faced most
often are having to restructure the architecture, in-
troducing new technologies and being able to main-
tain backwards compatibility. 71.4% of all respon-
dents stated that maintaining backwards compatibil-
ity was a challenge.

Challenge Count | Percent %
Maintaining backwards | 10 714
compatibility

Restructuring teams 4 28.6
Restructuring architec- | 9 64.3
ture

Introducing new technolo- | 9 64.3
gies

User acceptance 3 214
Modeling the ecosystem 1 7.1
Other: 4 28.6

Table 2: Challenges faced.

Out of the 15 participants that completed the ques-
tionnaire, 1 respondent chose not to answer what as-
pects they found important for sustaining the suc-
cess of their open software platform. The partici-
pants personal opinions are commonly shared when
it comes to sustaining the success of an open software
platform. All 14 (100%) participants either agreed or
strongly agreed that the software quality of the plat-
form as well as having stable extension mechanisms
are the most important aspects in sustaining the suc-
cess of the open platform. 13 (92.9%) participants ei-
ther agreed or strongly agreed that the software qual-
ity of the extensions are important, while 1 (7.1%)
was neutral. 10 participants either agreed or strongly
agreed that the quality assurance of extensions are

important while 3 (21.4%) were neutral and 1 (7.1%)
disagreed. That having a large number of extensions
is important was the opinion of 3 (21.4%) participants
while 5 (35.7%) remained neutral and 6 (42.9%) ei-
ther disagreed or strongly disagreed. 2 (14.3%) par-
ticipants either agreed or strongly agreed that having
a market place for extensions was important for sus-
taining the success. 5 (35.7%) remained neutral and
7 (50.0%) disagreed or strongly disagreed. Commu-
nity management was agreed or strongly agreed upon
to be important by 8 (57.1%) participants, with 4
(28.6%) being neutral and 2 (14.3%) disagreeing and
strongly disagreeing.

Out of the 15 respondents who completed the ques-
tionnaire, 1 did not answer on whether he/she be-
lieved that they needed to significantly change the
business model. The percentages for business model
is out of 14 answers whereas the rest are calculated
with a total of 15 answers. Roughly 60% agreed
or strongly agreed that their business model, their
architecture, their process of platform development
and their organization of development needed to be
changed significantly when opening their platform.
The results gathered are summarized in table 3.

Verifying the quality of external extensions is shown
to be done using a few different ways but is most
likely aided by the documentation and support for
development of extensions. Out of the 15 partici-
pants that completed the questionnaire, 5 (33.3%)
stated that they use manual technical reviews, 1 use
certification of contributors, 2 (13.3%) use certifica-
tion of the extensions, 2 (13.3%) use certification of
the development process, 3 (33.3%) utilize contracts
to oblige the contributors to use certain quality assur-
ance mechanisms. Out of the 15 answers, 7 (46.6%)
stated other and out of these 7 others, 4 (57.1%) an-
swered that they do not verify third-party extensions
at this moment or yet.

Opening up a software platform usually indicates
that extensions will increase. The results show that
there is no favorable phase in the life cycle of when an
extension is to be added. Although most platform ex-
tensions (26,1%) are implemented in the commission-
ing/deployment phase. 21,7% of the participants ex-

tensions are integrated regularly and multiple times
per release, 21,7% also have an explicit integration
phase for each release. The least common practice is
for end-users to add extensions directly to the run-
ning system.

The use of different strategies showcase that there is
no definitive strategy. All projects have prioritized
different aspects and put emphasis on the parts they
thought would mostly benefit their product and com-
pany as a whole.

4.3 Technological aspects

To build software platforms you need a programming
language. Our questionnaire respondents answered
which they had used to realize their platforms and
the most common languages were; C used 6 times
(40.0%), C++ used 8 times (53.3%), Java used 5
times (33.3%) and C# used 4 times (26.6%). The op-
tion ”Other::” got 4 different additional answers that
were used in combination with one of the aforemen-
tioned programming languages where one was left
blank (Not answered). These being HTML/CSS/JS
1 (6.6%), Domain specific language 1 (6.6%), JS 1
(6.6%) and Not answered 1 (6.6%). Out of the 15
participants that had answered in full, 8 (53.3%) an-
swered that they used more than 1 language in their
project.

Out of the 15 participants that completed the ques-
tionnaire, 2 respondent chose not to answer what
kind of extension mechanism they had used in their
software platform. The percentages are calculated
using 13 answers in total. The most used extension
mechanism was the use of APIs at 76.9%, making
it the most used extension mechanism with a plug-
in system being the second most used with 53.8%.
Thirdly comes the use of Isolated run-time containers
and Web-services used in 5 (38.5%) platforms. Used
in 4 (30.8%) platforms is Domain specific languages
(DSL) and least used in our respondents platforms is
Explicitly formulated conventions which was used in
3 (23.1%) platforms.

Out of the 15 respondents who completed the ques-

Aspect that needed change Str. agree | Agree Neutral | Disagree | Str. disagree
Business model 4(28.6%) | 5(35.7%) | 2(14.3%) | 2(14.3%) | 1(7.1%)
Platform architecture 3(20.0%) 6(40.0%) | 4(26.6%) | 2(13.3%) | 0(0%)
Platform development process 3(20.0%) 8(53.3%) | 4(26.6%) | 0(0%) 0(0%)
Organization of the development | 2(13.3%) | 7(46.6%) | 6(40.0%) | 0(0%) 0(0%)

Table 3: Aspects that needed change.

Programming language Extension mechanism Control of execution
C# API, Web Service, Plug-in, EFC | P executes E

CH++ API, Web Service, Plug-in P executes E

C++, C, Java API, Web Service, IRC P executes E
C++,C API, EFC P executes E

C API, Plug-in, IRC, EFC P executes E

C, Java, JS API, DSL, Plug-in, IRC P executes E

C#, C, C++, DSL API E executes P

C++, Java IRC E executes P

C++, Java Web Service, IRC E executes P

C++ API, DSL, Plug-in Other:: Both

Java, CSS/HTML/JS API, Plug-in Other::Both

Other API, Web Service, DSL Other::Both

C# N/A N/A

C# N/A N/A

C++,C Plugins Other::Unclear question.

Table 4: Programming language, extension mechanism and control of platform execution for the projects.

tionnaire, 2 did not answer which option of execu-
tion they use. The execution of the deployed plat-
form control is split between three ways. Option one
is having the extensions execute the platform, op-
tion two is having the platform execute the exten-
sions (inversion of control principle). The third op-
tion was Other where 3 out 4 respondents answered
that both alternatives are used depending on the ex-
tension point. The last respondent did not fully un-
derstand the question. Having the platform execute
the extensions, option two, is the most used option
being used in 6 (46.1%) out of the 13 projects, and
is used twice as often as option one and three which
are used in 3 (23.1%) out of 13 projects. The results
of three main categories are summarized in table 4.

When asked how they support the development of ex-
tensions the participants show that the development
of extensions are well supported in most projects.

The documentation and support for the development
of extensions greatly increases the chance that ex-
ternal developers can aid and innovate the develop-
ment of the software platform and help with spe-
cialized requirements. Out of the 15 participants
that completed the questionnaire, 14 (93.3%) uti-
lize Interface/API-Documentation in their projects,
12 (80.0%) utilize Tutorials/How-to’s and Code ex-
amples, 11 (73.3%) utilize Development guidelines,
6 (40%) have a Software development kit (SDK), 5
(33.3%) utilize code templates and 2 (13.3%) projects
use other means of supporting the development of ex-
tensions.

4.4 Interview results

To strengthen the questionnaire results and to aid us
in answering our research questions, interviews were

held with two industrial participants. This section is
a summary of the two interviews held and will be dis-
cussed in the next part to strengthen the conclusions
drawn from the questionnaire result.

4.5 Interview results of an open re-
designed platform

Company X: Their software platform was a complete
re-design. They originally tried to open an internal
product but quickly discontinued their attempt and
began redesigning the platform. The key reasons for
their redesign was that they wanted to reduce cost
integration, make it more reusable by external cus-
tomers, increase fault reporting and in particular re-
designing the API/Plug-and-play.

They faced some challenges when redesigning their
software platform. The customer wanting it to be
made using C# was one struggle they faced. A
significant change to the Domain model also led to
consequences that required them to change the API.
Changing the API also meant having to support the
legacy API that was redesigned 20 years prior. An-
other struggle was the protection of intellectual prop-
erty. Making the code clean and placing functionality
at the most efficient places meant giving competi-
tors access to parts of the code that was undesirable
for them to share. This led to the software archi-
tect having to find a trade-off between efliciency and
placement of code. They learned from these chal-
lenges were that separating the API and removing
the legacy API should have been done a lot sooner,
to remove the hassle of having to support an old in-
compatible version for only legacy users. They also
realized that they need to be more precise and clear
in their communication as well as documentation so
that customers expectations match what the plat-
form can provide.

The use of communities and building up one was con-
sidered less important to them because they tend to
have one-to-one communication with their customers
since their customers more often than not, are com-
petitors who you might not want to share your se-
crets with. As a part of the software platform being

open, customers are given the ability to test an eval-
uation version. This evaluation platform is thought
of as a means for users to test before purchasing. For
the original platform there is a full release every six
months. However, for the latest version there is a
patch release every 3 weeks.

One of the key elements to this software platforms
success was dedicated towards reliability. The inter-
viewee praised reliability to the extent that it is con-
sidered one of the major reasons to why it surpassed
a strong competitor. Another element discussed is
the domain knowledge that has been obtained over
the years. The company considers domain knowledge
to be a must for a software platform to survive and
compete in the market.

4.6 Interview results of an open
cloud-based platform

Company Z moved all their software to open source
projects creating a cloud based platform. The users
of the platform are developers who can create their
own services and deploy them into the cloud. These
services can then be used by other services already
running in the cloud infrastructure, making it a com-
positional approach. It was planned to have different
data centers where the cloud infrastructure runs but
for now there is one data center that is the central
space. The first iteration of the opening up of the
platform was creating something called suits where
several tools and connectors between tools are con-
tained. The next step was to utilize these tools and
build up a new micro service which was then used in
the project cloud. The micro services in the cloud
infrastructure uses strings, string roots and the old
string ecosystem. In the infrastructure there are dif-
ferent data stores that run on several data bases. In-
terfaces are described by the means of rest API’s.
Using the old tools functionality the micro services
were created and those were then connected with the
rest APD’s.

The reasons for opening up were competition, com-
patibility, and difficulties maintaining the platform.
In the beginning the company had different tools

from different locations, this meant that a lot of
bridges were needed so the decision was made to con-
nect those different tools. Before some parts were
C++ and some where Java and there was the need
to connect them via calls so rest API’s made it much
easier. Another big issue for company 7 was that the
old tools were monolithic in their architecture.

This platform’s underlying technology is a cloud in-
frastructure where you can deploy new services, these
services are called droplets. A droplet is similar to
an Android app and has a life cycle. This underly-
ing technology has applications inside which runs the
cloud infrastructure. These droplets are the means
of creating a new functionality by creating and de-
ploying a service. The droplet is deployed into the
cloud infrastructure and it knows the domain name of
other services in the cloud, which it then calls using
Rest API. The communication between the droplet
and the Rest API improved the integration of com-
ponents.

The functionality was extracted from the old tools
and added to the Rest APIs making them exist in
the cloud. Although the old tools are capable of more
than those that are now available in the cloud, it is
important for company Z to open up the platform so
buyers can create services, thus showing the company
what users want. The code of the platform has the
same base, but it was rebuilt in order to make it a
cloud service. Everything in the interface part is new
but the core business logic is the same. Company Z
does not allow bad interfaces to exist in their plat-
form, and the good ones have had several iterative
improvements.

To analyze the legacy code company Z had a strat-
egy where they determined what functionality to of-
fer. Next they analyzed the resources available and
how these resource could be mapped to the platform.
Then they performed some iterations, such as writing
example applications. One exercise that they per-
formed were hackatons where developers were asked
to use the services in the platform and create their
own services. This showed them what could be im-
proved and what was missing.

The lessons learned were that there was a lot of effort

10

in opening up a platform, it is time consuming and
you do not have to rewrite everything but instead
you can reuse parts of the old tools. One unexpected
lesson learned was that they had expected more from
the underlying technology, making them have to de-
velop a lot by themselves.

5 Discussion

The questionnaire results provided more questions
than answers, since this study applies grounded the-
ory those questions could be investigated further by
using interviews. This study is aimed towards assist-
ing in creating guidelines on how to open up a soft-
ware platform in an industry. There is not enough
data support to draw the guidelines but there is
enough data to discuss what type of guidelines could
be considered. Discussing the different results from
the survey, common traits that the different software
platforms have are discussed. The results also showed
underlying reasons that industries have for opening
up a software platform. This gave us the ability to do
selective coding; creating relationships between main
categories.

5.1 Strategies and plans for opening
up a software platform

The use of strategies and a planned process is often a
crucial step when developing software or any product
in general. Developing a strategy gives you something
to follow and makes it easier to predict risks that
could arise at later stages. Being able to predict how
something can turn out, will aid efforts in planning
for these risks. The questionnaire showed that most
projects needed to somehow significantly change their
architecture, their development process, their devel-
opment teams as well as their business plan and this
is far from desirable when developing your product.
Anvaari and Jansen (2010), suggest that by looking
at how open a software platform is, could potentially
give insight into architectural factors that show ”the
openness strategy”. Looking further into how open

the different platforms were could perhaps have gar-
nered us a better understanding of architectural fac-
tors that affect the outcome when opening up a soft-
ware platform. Better planning of a software projects
architecture for a software platform seems crucial and
should be researched more to help form guidelines.
Guidelines of how to best plan your software architec-
ture in a way that warrants little to no changes when
the project has been deployed. From the first inter-
view, company X idealized domain knowledge and
thought that one could/should not open a software
platform without domain knowledge. Henk, Slinger
and Sjaak’s (2011) study supports the importance of
domain knowledge in a closed platform. It is now
also possible that domain knowledge is just as im-
portant for open software platforms and the process
of opening a software platform. In our opinion this is
one of the more important factors when opening up
a software platform.

Company Z had a quality assurance strategy, where
they had teams, made up of both developers and ad-
ministrators, for every provided service in the plat-
form. This means that there is a team actively check-
ing new services added by users. This strategy could
be suited for a platform where the expected number
of new services created by users are known to be quite
few but vital. Another strategy that company Z had
was to test the platform by allowing a set of users,
in this case developers, to play with the platform in
order to understand what needs to be evolved further
or what is lacking in the platform. Testing before and
during the process of opening up a software platform
could remove potential threats.

5.2 Decisions and reasons for opening
up software platforms

From the results we can see that the decision to open
a software platform is generally the realization that
innovation exists both internally and externally. As
well as realizing that certain requirements and func-
tions would be too difficult for the employees to pro-
vide. The results of this study has not shown a single
duplicate of the benefits gained. Not being able to

11

predict the benefits could be considered an uncer-
tainty that makes industries hesitant to open a soft-
ware platform. From the results we can also see that
an increase in users is a common reason for indus-
tries to open up their software platform. Stakeholders
are vital to an industry and current stakeholders will
have a tendency to refuse any change. One needs to
remember, as B. Balter (2015) mentions, that these
stakeholders are internal, being more open will allow
the attraction of external stakeholders[6].

All of the participants had problems with their closed
platform. An overflow of requirements from users and
market competition were the biggest issues with the
closed platforms. Another common reason to open
up a software platform within an industrial setting is
innovation. Considering that strong software is now
days being considered a necessity to achieve quality
and loyalty, the demand to improve software is con-
stant. According to the results, software platforms
similar to the Android Os is the type that indus-
tries most commonly open up. Perhaps because this
type of software is the easiest to open up? Within
the industrial world open software platforms are tar-
geted towards users that are departments and devel-
opers within an organization. Allowing employees
and departments to give input on a platform which
they use every day aids companies in finding inno-
vation through internal development. Perhaps an-
other reason to why these particular users are tar-
geted could be that an industry software platform
commonly poses safety issues regarding intellectual
property. As Company X explained, the protection of
intellectual property becomes a trade-off point where
you either allow competitors access to undesirable
parts and have clean code or restrict access and have
inefficient code. This gives the option of not allow-
ing complete openness to the public but a controlled
openness for the company in question.

5.3 Sustaining the success of an open
software platform

Extension mechanisms are a great tool that gives ex-
ternal developers a chance to aid in an organizations

development. In our questionnaire, the most used
extension mechanism was API’s, which was utilized
by 76,7% of the projects. The research by Kilamo
et al. (2011), state that companies that have gone
through the process of opening up proprietary soft-
ware, learned that more effort should have been put
towards; re-factoring the code for external contribu-
tors and building a community.

Most questionnaire respondents added that they uti-
lize some form of tutorials or code examples to aid
external developers. This correlates to the fact that
100% of all questionnaire respondents strongly agree
or agree that the software quality of the platform is an
important aspect. 92.9% of all questionnaire respon-
dents strongly agree or agree that the software quality
of the extensions is also a very important aspect of
sustaining the open software platforms success. Com-
paring to other aspects of success for opening up a
software platform, providing sufficient guides for cus-
tomers is little effort that could be greatly beneficial.
From the interview of Company X it was noted that
the aid for external developers was not just one al-
ternative but almost every alternative there exists.

From company X we learned that they did not have
a community setup in order to aid the software plat-
forms growth since most customers are competitors
and the interactions were one-to-one based. In the re-
search by Kilamo et al. (2011), a company explained
that after evaluating their opening process and use of
a framework, they would have put more effort into the
community aspect to make it self-sustainable. When
sustaining the success it is important to acknowledge
that an open software platform is a living organism
within an organization and its health is important.
Jansen’s(2014) model of operationalization can de-
termine the health of an ecosystem. Determining the
health of the software ecosystem will provide insight
into which areas of the software platform needs to be
altered in order for a healthier ecosystem. Since a
platform is an underlying basis for a software ecosys-
tem, keeping an ecosystem healthy would result in
sustaining the success of an open platform. An open
software platform needs to be constantly maintained
and improved otherwise competition might strangle
it. Sustaining the success is a considerable effort that

12

a company needs to undertake and partially aid in
answering SQ2.

5.4 Technological aspects and chal-
lenges when opening up a software
platform

The most used programming languages among the
participants responses are; C++, C#, Java and C.
There is evidence in our result that what kind of ex-
tension was used stem from what type of program-
ming language is utilized but it is not concrete enough
to be able to draw a supported conclusion to which
is best. Out of the 13 fully completed answers (2 did
not answer), there are a total of 6 different types of
extension mechanisms used. Some extension mecha-
nisms are used in the same project and the most com-
monly used ones are API’s and Plug-ins. The type of
extension mechanism used does seem to correlate to
what kind of execution control is used but the limited
data makes it hard to say for certain. The execution
of the deployed platform control consist of 2 differ-
ent ways of execution and could depend more on the
type of platform than how the platform is designed.
Whether one way of control is more crucial to an
open platform is hard to determine and would need
further investigation. What we can see from table 2
is that you can use a variety of extension mechanism
as well as programming languages, and the control of
how you execute these extensions might not always
correlate. In all the projects where the platform exe-
cuted the extensions, API’s are used, which includes
the projects where both ways of execution is used.

As could be seen in the results, the most common
challenges that arise during the opening of a soft-
ware platform have to do with technology. Restruc-
turing the architecture, introducing new technologies,
and being able to maintain backwards compatibility.
These all cause trouble for projects due to the lack
of knowledge surrounding the process of opening a
software platform. When opening up a software plat-
form, one of the main strategies is to re-use several
parts of the old platform. This is a good approach but
one needs to remember that with opening up there

comes new aspects to the technology that needs to
be considered. Company Z could only use subsets of
their old tools. New connections had to be created
and new user friendly interfaces had to be made from
scratch. When opening up a software platform, it is
vital to remember that the platform is no longer ma-
nipulated from one side, but from multiple sides and
these sides have to communicate without disturbing
each other.

6 Threats to validity

Since the questionnaire had almost 100 partial re-
sponses which were excluded from the study, there is
a potential internal threat that majority of the par-
ticipants were not appropriate for this study. Al-
though some of the software platforms were not com-
pletely opened yet, their data was still considered.
This could be considered an internal threat but the
data was still important to the study since it included
information that could help draw conclusions of why
a software platform is opened. The data analysis was
done by a human being, and what one person deems
as interesting might not be interesting in another per-
sons eyes. To avoid this internal threat the analysis
and its results were done in a pair-wise manner. Ev-
ery result, discussion and conclusion was made in a
pair-wise way manner, meaning the content has been
written, discussed and then re-written more than
once. Related work guided and supported many of
the conclusions, this could be a internal threat since
there are many research studies out there that do
contradict each other.

The questionnaire responses account for the majority
of data, However, since there were such a vast num-
ber of partial responses there is an external threat
to the quality of the questions. There is an uncer-
tainty to why there were so many partial responses,
the questionnaire could have been too long, the ques-
tions could have been too complex, the questions
could have posed a security threat, or the partici-
pants that were asked to join had no valuable input
to the study. From the excluded interview it is clear

13

that there is an uncertainty as to weather the prod-
uct in question is an open software platform or not.
If this misunderstanding is common then it poses a
construct threat to the results and conclusions of this
study.

7 Future work

Taking into consideration all the areas discussed, we
believe that the areas that need more research and
could be explored further are technological aspects.
Why these are chosen and how they correlate to each
other. From the results we can see that they do not
depend on each other and might have more to do
with how the software architecture was initially de-
signed but it is unclear from the questions asked and
would therefor require more research for a deeper un-
derstanding of why these are chosen. Perhaps they
are chosen because of how the software platform is in-
tended to work. Eisenmann et al. (2008), looked at
factors that contribute to the decision of the opening
or closing of a software platform. They concluded
that openness depends on where you allow access
for outside contributions. Which also suggest that
by looking at where a software platform is opened
for external developers could have been useful when
trying to understand which factors, other than the
technological, affect the outcome of opening a soft-
ware platform, better answering RQ1. Another area
of interest would be strategies used, the software ar-
chitecture and how they are initially designed. Get-
ting a better understanding of how software platforms
are designed to be open or restructured might give
better insight into how projects should be designed.
This could have answered questions like if a company
should open up a closed platform or design it to be an
open platform initially. Licensing and legal concerns
have not been discussed in this thesis but is however
aspects that could affect the outcome when opening
up a platform. A company would perhaps need to
look over trade-offs that affect the intellectual prop-
erty of the company and efficiency of the platform.

8 Conclusion

The below parts summarize aspects that answer our
research questions. Paragraph one discusses what
the study revealed as important aspects for a suc-
cessful opening of a software platform within an in-
dustrial setting. While paragraph 2 and 3 discusses
what leads a company to open up their software plat-
form and how it affected the company after opening
it. The last paragraph contains the conclusions we
drew about the technical aspects that are necessary
when one opens a software platform. These technical
aspects could be used as a guideline if uncertain on
how to plan your software platform to be opened up.
When an industry plans to open up a software plat-
form we believe that strategy and domain knowledge
go hand-in-hand.

From the first interview, company X idealized do-
main knowledge and thought that one could/should
not open a software platform without domain knowl-
edge. Henk, Slinger and Sjaak’s(2011) study sup-
ports the importance of domain knowledge in a closed
platform. From the study it is now also possible to
conclude that it is just as important for successfully
opening up a software platform. There are several im-
portant aspects to consider when opening up a previ-
ously closed software platform. Before opening up it
is important to discuss, determine, and understand
the underlying technologies that will be used. The
study has revealed that it is possible for companies to
expect too much of technology that is introduced to
the development. We can also conclude that design-
ing or redesigning a software platforms architecture is
detrimental to any project that wants to develop an
open software platform. As to not design a software
platform that is cost inefficient or time consuming
when having to restructure and redesign it.

There is a significant relationship between the indus-
tries reasons for opening up a closed platform. It
is revealed that the main struggles with closed plat-
forms are due to an overflow of requirements, intense
market competition and lack of compatibility with
other platforms. These problems alone would not
push the opening of a software platform. However,

14

adding the industries business and technical inten-
tions would. These three are the common factors
that push an industry to open up their closed plat-
form.

Companies were affected differently. Benefits and
drawbacks that companies had varied to such an ex-
tent that it is impossible to validate what is common.
It can be speculated that the reason is that there
are no guidelines on how to open up a software plat-
form, meaning that the process of opening up differs
between the companies. However, different domain
specific platforms using the same process of opening
up could still end up having different results. Even
if drawbacks and benefits are different, the way that
companies have to sustain the success after opening
up their software platform is fairly similar. Other
factors of sustaining the success includes means to
able external development, maintaining the quality
of the extension mechanisms and the software plat-
form, keeping the extensions stable, and managing
the community.

From the study we can not conclude what technologi-
cal aspects should be used, but what aspects are most
common. The study showed that there is no clear cor-
relation between aspects like programming language,
extension mechanisms used and how the execution of
the deployed platform is controlled. What we can de-
termine is that using a programming language that
gives structure is key and that which one is deter-
mined by what you need out of the language for your
project. The most common way to execute your de-
ployed platform is having the platform execute the
extensions. The type of extension mechanism most
commonly used with this is API’s. Which is used in
all projects where the platform executes the exten-
sions. Using a plug-in system or a Web Service is
also quite common.

9 References

[1] A. Gawer, The organization of platform leader-
ship: an empirical investigation of intel’s manage-
ment processes aimed at fostering complementary in-

novation by third parties, PhD Thesis, Massachusetts
Institute of Technology, 2000.

[2] A. Gawer and M Cusumano, Driving High-Tech
Innovation: The Four Levers of Platform Leadership,
2001.

[3] A. Gawer and M Cusumano, Platform Leadership
How Intel, Microsoft, and Cisco Drive Industry Inno-
vation, 2002.

[4] A. Strauss and J. Corbin, Grounded Theory
Methodology, In Handbook of Qualitative Research,
1994

[5] A. Strauss and J. Corbin, Grounded theory re-
search: Procedures, canons, and evaluative criteria,
Qualitative sociology, 1990.

[6] B. Balter, Five best practices in open source: in-
ternal collaboration, 2015.

[7] C. RB. de Souza, et al., The Social Side of Soft-
ware Platform Ecosystems, Proceedings of the 2016
CHI Conference on Human Factors in Computing
Systems, ACM, 2016.

[8] D. Hilkert, A. Benlian, and T. Hess, The Open-
ness of Smartphone Software Platforms — A Frame-
work and Preliminary Empirical Findings from the
Developers’ Perspective, Annual Conference of the
Gesellschaft fiir Informatik, 2011.

[9] D. Hilkert, et al., Perceived Software Platform
Openness: The Scale and its Impact on Developer
Satisfaction, 2011.

[10] H. Schuur, S. Jansen and S. Brinkkemper, The
Power of Propagation: On the Role of Software Op-
eration Knowledge within Software Ecosystems, De-
partment of Information and Computing Sciences,
Utrecht University, 2011.

[11] J. Bosch, From Software Product Lines to Soft-
ware Ecosystems , 2009.

[12] K. Armas, The search for Meanings-Grounded
Theory, 1996.

[13] K. Boudreau, Open Platform Strategies and In-
novation:Granting Access versus Devolving Control,
Management Science, Volume 56, Issue 10, 2010.

15

[14] M. Anvaari and S. Jansen - Evaluating architec-
tural openness in mobile software platforms 2010.

[15] N. Pandit, The Creation of Theory: A Recent
Application of the Grounded Theory Method, Uni-
versity of Manchester, 1996.

[16] R. Costanza and M. Mageau, What is a healthy
ecosystem?, 1999.

[17] S. Jansen, Measuring the Health of Open Soft-
ware Ecosystems: Moving Beyond the Scope of
Project Health, Information and Software Technol-

ogy Journal, special issue on Software Ecosystems,
2014.

[18] S. Jansen, A. Finkelstein, and S. Brinkkemper. A
sense of community: A research agenda for software
ecosystems. 2009.

[19] S. Jansen, and M. Cusumano, Defining Software
Ecosystems: A Survey of Software Platforms and
Business Network Governance, 2012.

[20] T. R. Eisenmann, G. Parker and M. Alstyne,
Opening Platforms: How, When and Why?, Harvard
Business School, 2008.

[21] T.Kilamo et al., From proprietary to open
source—Growing an open source ecosystem, Journal
of Systems and Software, Volume 85, Issue 7, 2012.

Appendix: Survey on Opening Software Platforms

General Properties of the Open Platform

1. What is the name of your platform?

2. What is the domain of your platform (e.g., finance, software development, games, content
management)?

3. If you had to characterize your open platform by comparing it to other well-known platforms,
to which extent do you agree it is similar to one of the following platforms?

4. Who are the users of your platform?

5. Using which of the following programming language(s) is your platform realized?

6. What are the extensions to your platform called?

7. How large is your platform currently in lines of code (LOC)?

8. How many people are currently and actively involved in developing, maintaining, and testing
the platform?

Rationales for Opening Up the Platform

9. Were there any problems with the closed platforms that led to opening it up?
10. What were the business intentions for opening up the platform?

11. What were the technical intentions for opening up the platform?

Platform Opening Process

12. How long did the platform exist before it was opened?

13. How long did it take to open up the platform? Leave empty if still ongoing

14. What was the starting point of the opening process?

15. How many people were/are actively involved in opening up the platform?

16. Can you briefly describe the process or strategy you followed when opening the platform?
17. How is the execution of the deployed platform controlled?

18. Which of the following extension mechanisms did you incorporate to open the platform and
which technology was used?

19. For opening the platform, did you need to significantly change one of the following aspects?
20. Did you face any particular challenges when opening-up the platform? If so, where?

Consequences and Success Criteria

21. Considering the entire process of opening up the software platform, to which extent do you
22. How did the size of the code base change as result of the platform opening process?

23. What were the particular benefits of opening-up the platform?

24. What were the particular drawbacks after opening-up the platform?

Sustaining the Open Platform

25. Which of the following aspects do you find very important for sustaining your open platform?
26. How do you support the development of extensions?

27. Which mechanisms do you use to verify the quality of third-party/external extensions?

28. How many extensions exist for the open platform (apps, plug-ins, components etc.)?
29. At which stage of the platform lifecycle does the platform first get in contact with an
extension?

Role and Personal Details

30. What have been your roles in software-platform development?
31. How many years of industrial experience do you have in software
Engineering?

Contact
32. Do you want to receive a report with the results of the study?
33. May we contact you with clarification questions on your answers?

Final Remarks

34. If you are willing to be contacted for further clarification questions or to receive the study
results, please give us your name and email address.

35. Are there any final remarks you would like to tell us (e.g., if you canceled the opening
process or the procedure failed, please give reasons)?

