
Shared tools in software organizations
An empirical investigation

Bachelor of Science Thesis in Software Engineering and Management

DIMITRIOS PLATIS
JIAXIN LI

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, June 2016

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Shared tools in software organizations
An empirical investigation

Dimitrios Platis
Jiaxin Li

© Dimitrios Platis, June 2016.
© Jiaxin Li, June 2016.

Examiner: Michel Chaudron

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Cover image source: http://www.xda-developers.com/custom-toolchain-roms-kernels/

Department of Computer Science and Engineering
Göteborg, Sweden June 2016

Shared tools in software organizations: An empirical investigation

Dimitrios Platis
University of Gothenburg

Software Engineering & Management BSc
dimitris@platis.solutions

Jiaxin Li
University of Gothenburg

Software Engineering & Management BSc
lijiaxin1012@gmail.com

Abstract

In the present research, tools and toolchains were in-
vestigated through the perspective of being shared within
software organizations. Particularly, we conducted a liter-
ature review which was combined with a case study, that
took place in two software organizations, in Gothenburg,
Sweden. The different implications of shared tools and
toolchains were studied and especially, their benefits, chal-
lenges and suggested characteristics. The important role
of interoperability was verified, as did the suitability of
a generic software assessment method, to be applied on
shared tools. The paper suggests that further work can be
conducted on the subject, in order to refine the assessment
method and investigate shared tools in ecosystems with ex-
ternal actors.

1 Introduction

During the last years, the effect of software and the re-
lated products in our daily lives is ever increasing, with the
software development industry currently playing a signif-
icant role in the economies of many countries around the
globe. As the value and complexity of the software products
increase, so does the importance of the programming tools
to build them. Tools and, their combination, toolchains are
employed in order to facilitate software development and
enable the integration of different components often devel-
oped by separate teams.

These tools and toolchains, often need to be shared
across a software organization, in order to facilitate the
development process by having a common workflow and
seamless communication. However, previous studies sug-
gest [6] that despite knowledge sharing is considered im-
portant in the industry, most of the secondary software, such
as tools and toolchains, are developed in-house and seldom
shared with the rest of the organization or the extended
ecosystem. Additionally, there appears to be a scarcity of
assessment methods on tools [18, 8], in order to determine

their appropriateness for various contexts.
It has been suggested that companies benefit from tools

being shared systematically and that more investigation
needs to be done on the matter [37]. Based on the iden-
tified gaps, we designated the implications of shared tools
and toolchains as the topic of our investigation. This will be
achieved by adopting a combination of a literature review
with a case study. Particularly, this paper elaborates on their
benefits and challenges in software organizations, attempts
to establish several guidelines as to which attributes shared
tools should be characterized by and ultimately propose an
assessment method on them, based on an existing frame-
work. Towards achieving this goal, we have devised a quar-
tet of research questions. Specifically, the main research
question revolves around a method on how to assess shared
tools. This could sway the decision regarding which shared
tool or toolchain should be adopted or to identify how to im-
prove already existing ones. Moreover, the secondary ques-
tions consist of inquiries about the advantages and obsta-
cles commonly accompanying shared tools and toolchains,
as well as the intended characteristics of tools when shared
in a software organization.

In section 2 previous studies can be found on the theo-
retical background of this work, as well as on relevant top-
ics. Next, in section 3, the research questions are outlined,
followed by section 4 where the adopted methodology to
investigate the various topics is illustrated. Afterward, a
reader can find the analysis of the collected data, while the
resulting discussion is located in section 6. Finally, this
paper elaborates on the various validity threats that were
encountered, as well as the deployed measures to mitigate
them, with the epilogue in section 8, summarizing the vari-
ous findings and suggesting topics for future research.

2 Background and related work

In order to facilitate the interpretation of the collected
data, it is necessary to establish the theoretical foundations
of this study. This is achieved, by outlining the required
background knowledge on the subject, such as various defi-

nitions on tools and the different kinds of tools in existence,
as well as related work on the subject of shared tools in soft-
ware organizations.

2.1 Background

Tools are software artifacts that support a large number
different software engineering processes. They could be in-
volved in various stages in a product’s life cycle, from de-
velopment and testing to integration and deployment.

They, are typically programs or scripts of lower com-
plexity compared to the primary software they are support-
ing and can be used in conjunction with other tools in order
to fulfil a purpose or to carry out a specific function. Tools
can be either stand alone and explicitly launched by the user,
or belong to a broader platform such as an Integrated Devel-
opment Environment (IDE) in order for their execution and
combination to be more seamless.

Toolchains, on the other hand, refer to a number of sep-
arate and stand alone tools, that are ”chained” together, so
the output of one becomes the input of the next, in order to
perform complicated tasks or produce a collection of more
complete software artifacts. The individual tools that are
comprising a toolchain can, but are not required to, be uti-
lized in sequence in order for their combined utilization to
accomplish a more advanced goal. A characteristic exam-
ple of a toolchain supporting development could involve the
compilation, assembling and linking of source code, there-
fore using a set of three distinct tools, for a particular run-
time environment.

In the context of embedded systems, Biehl (2013) men-
tions that their development frequently involves a variety of
tools. As a consequence, in order to accomplish a holis-
tic tool support throughout the development process, the
toolchains were introduced, to combine the various tools
[12]. The author argues that toolchains have evolved from
unsystematic in-house single-purpose software, to compli-
cated and advanced systems, in order to facilitate a dis-
tributed development process, integration and communica-
tion between diverse artifacts.

Tools can support software development, such as source
code editors, assemblers, linkers and compilers. Modern
tool suites and programming languages are also accompa-
nied by a debugger. In Model Driven Engineering (MDE),
tools have a very high importance, due to the fact that model
transformation plays a major role in enabling the develop-
ment at a higher abstraction level (i.e. models) to be realized
as a platform specific implementation [28].

Particularly, in MDE it is required for the tools to be able
to aid in automating the various model transformations that
are commonly a necessity. According to Sendall and Koza-
czynski (2003), such tools should not be limited to provid-
ing a predetermined set of model transformation, but allow

technically skilled users with a degree of customizability to
the transformations the tool can perform. On top of this,
they consider as a positive trait of an MDE tool one that can
recognize the particular context and offer various proposals
on what model transformation should be applied. As model
transformation implies the introduction of a model as an in-
put to a tool and the production of one or more models as the
tool’s output, MDE toolchains are often created. In fact, re-
searchers suggest [29] that the maturity of such a toolchain
is needed in order to leverage the advantages of MDE.

Furthermore, in the category of tools that support soft-
ware development, we could include version control tools
(e.g. Git), tools text search tools such as grep and tools that
generate code from visual artifacts, as in the case of graph-
ical user interfaces (i.e. WindowBuilder in Eclipse) and in-
struments to monitor performance or possible bottlenecks,
such as profilers.

Tools can also be used for testing with a plethora [27]
of the specific kind in circulation. Pohjolainen (2002) has
created a categorization of testing tools into the field that
they are applied, noting that those categories are often over-
lapped. The primary classification includes tools used in
order to design the tests, test the GUI or tools that facili-
tate the management of tests. Specifically, these categories
include test case and data generators, automated tests for
GUI centric artifacts and automation tools for applications
without graphical interfaces.

Additionally, there are tools that provide static code anal-
ysis, with lint being a well-known example and tools that
enable the user to implement tests and test evaluation tools,
that facilitate the quality assessment of the tests, such as
code coverage. Furthermore, the author has also outlined
tools that enable their users to perform integration, regres-
sion and requirements testing. Mustafa et. al. (2009) also
offer another taxonomy of testing tools [30], based on dif-
ferent test tool attributes, note that the majority of the test-
ing tools they discovered through various sources, were in-
tended for web applications.

Furthermore, as agile practices gain a foothold, integra-
tion and deployment tools acquire more significance. Par-
ticularly, it is a common challenge [31] in an industrial
context to developing software at different locations, that
is being deployed and tested for various hardware. In or-
der to make the continuous integration methodology more
lean and productive, the build and testing processes need to
be automated. This is where continuous integration tools,
come into play. Jenkins is a characteristic example of the
said tools and its main feature involves the execution of a
predetermined set of instructions (i.e. ”jobs”) triggered by
a specific event, such as a commit using a version control
tool or time intervals. Complementary to the above, Jenk-
ins offers test reports and notifications on the build process
to the involved developers. One particular advantage of the

tool, beneficial to the industry is its ability to commence
jobs remotely, on several locations, with different hardware
specifications and operating systems.

Another relevant technique, called continuous delivery
promotes the production of software in compact cycles.
This approach qualifies the software as constantly release-
able, therefore offering the organizations that follow it, the
advantage of deploying updates and upgrades to their live
systems or services rapidly, therefore subsequently gaining
an upper hand against their competitors [32]. A tool that
is inspired by the continuous delivery principles, is Go by
ThoughtWorks. Go common tasks, are added as ”pipelines”
while the instantiations of the pipelines are named ”jobs”.
Go additionally offers a visualization of the process, which
enables the users tp locate the current progress of the pro-
cess, from committing new code to the deployment of its
changes.

2.2 Related work

Previous research on the topic of assessing shared tools
and toolchains has not been conducted to our knowledge.
However, there have notably been works on assessment of
different or similar software artifacts shared in the context
of software ecosystems. Additionally, we have identified
previous studies on the characteristics and assessment of
tools and toolchains.

2.2.1 Software Ecosystems

As software ecosystems are emerging and increasingly gain
significance within the Software Engineering field [1, 2] it
is feasible to compare them along with their common im-
plications and characteristics, to that of large-scale and de-
centralized software products inside a single organization.

This correlation, is backed by researchers such as Schul-
tis et. al. (2014) who in their research are referring to
them as ”internal software ecosystems” [33] and have con-
ducted an extensive case study in order to discover the rel-
evant architectural challenges that exist in such settings.
Particularly, they claim that the lack of a centralized struc-
ture, in large software projects developed within a single
organization, creates several architectural concerns. They
conducted a case study, which permitted them to generate
among others a categorization of typical architectural chal-
lenges, along with a detailed insight and metrics, of the var-
ious collaboration models they have discovered. As such
collaboration models are characteristic, they can be used in
order to identify the current situation and help researchers
or managers decide on corrective measures, in order to im-
prove the general development process.

More on the architectural challenges of software ecosys-
tems, Bosch (2010) mentions the various challenges and

their proposed solutions, that are surfacing in regards to ar-
chitecture which are specifically caused by the involvement
of additional ”external” developers, who add new features
[7]. Notable concerns include low interface stability, cum-
bersome overview of the evolution, security and reliability
issues. Resemblance of Bosch’s research to the current re-
search on tools shared within software organizations can be
spotted, due to the fact that many developers, often on dif-
ferent sites have to work on the same extended product or
platform, which can contain legacy code and the need for
decisions to be taken, that will have a very broad impact
and have to determine a general direction, often arise.

Next, Hammouda et. al. (2015) discuss the implications
of maintaining APIs in a software ecosystem that is con-
stantly changing and evolving [4] therefore, need to satisfy
the ecosystem’s vision. The authors stress the challenges of
API design within an ecosystem and argue about the neces-
sity to steadily oversee the status, in order to identify plau-
sible reasons for reassessment. They propose the ”Ecosys-
temability Assessment Method” as the technique to evalu-
ate APIs under the scope of a software ecosystem. As large
scale products within a single software organization can be
considered as internal software ecosystems, the particular
assessment method of APIs can offer us valuable insights
and inspiration on how to design an assessment method for
shared tools.

Cao et. al. (2015), on the topic of assessing APIs
from the perspective of software ecosystems, have intro-
duced a strategy to evaluate APIs from the viewpoint of
the users, by conducting a case study. Specifically, based
on a combination of ”fitness dimensions” as well as tech-
nical and cognitive profiles of API users, they proposed a
new method of API assessment. Their work and in particu-
lar their methodology, namely utilizing an already existing
framework which based on case study is customized for a
specific purpose, can be leveraged for the current research
on assessing shared tools.

Furthermore, the study by Sekitoleko et. al. (2015)
provides valuable insight and findings on secondary soft-
ware development in Model Driven Engineering, as it was
investigated through a case study conducted within auto-
motive ecosystems [6]. Based on the definition of the au-
thor, on what is secondary software, it is inferred that tools
and toolchains that are the subject of this present study, fall
within their scope. Therefore, the results of that particu-
lar study maintain a high degree of relevance and semantic
correlation with this one. To be more specific, Sekitoleko
et. al. support that despite the undeniable benefits of Model
Driven Engineering’s to the industry, the absence of exper-
tise on secondary software, these benefits cannot be easily
leveraged. Their study explored the various sociotechnical
aspects of secondary software development and ways to im-
prove the development of such software artifacts, in order

to decrease the necessary time for software development in
the ecosystem of automotive industries. Eventually, their
study stresses the need for the establishment of a systematic
structure that enables both development and sharing of sec-
ondary software, which would also decrease common chal-
lenges expected in Model Driven Engineering, such as low
interoperability, between the various software entities. The
results of this study, are highly relevant to the current paper,
as it discusses the development of very similar software ar-
tifacts within automotive software ecosystems. It provides
us with the foundations to begin elaborating on shared tools
and their various implications.

2.2.2 Tool assessment

In regards to considerations about tools and their character-
istics, Barth et. al. (2012) elaborate on the significance of
interoperability and seamless communication between tools
and regardless of organizational restrictions on location and
development phase [8]. The authors note that despite the
importance of openness and interoperability being widely
recognized, it is not realized at a high degree by the related
software that is available in the market. They proceed to
suggest an assessment technique for tools, judging on their
interfaceability with other tools. Additionally, they suggest
the relevant criteria and metrics, for this assessment to be-
come systematic, in order for the users to be able to deter-
mine the appropriateness of the various tools at hand, while
the developers can create tools based on those guidelines.
The importance of interoperability and particularly the sig-
nificant role it is suggested to play when combining tools,
will help us define our assessment criteria, on shared tools
within software organizations.

Schlegel et. al. (2010) present a prime paradigm of
a model driven engineering toolchain, devised for an en-
vironment that inherently hinders interoperability [9]. In
particular, they suggest a model driven engineering ap-
proach which focuses on the robustness of robotic systems.
They have accomplished that by creating a robotics meta-
model, accompanied by a preliminary set of non functional
characteristics and requirements. Next, they established a
toolchain, which enabled them to reap the benefits of model
driven engineering. Specifically, it is utilized for its model
transformation and code generation capabilities, as well
as the means to progress towards resource awareness, e.g.
through providing analyses of the scheduled real-time activ-
ities. The authors’ example, despite being domain specific,
can be used in order to provide us ground for generalization
and the basis for constructing guidelines and best practices
on toolchains.

Complementing the above literature, as to the reliabil-
ity of tools, Wildmoser et. al. (2012) propose a system-
atic technique to evaluate tools and determine ”tool con-

fidence levels” according to the ISO 26262 standard [15].
In the automotive industry, as well as other domains, there
are very strict requirements on the safety and failure rate of
the developed software artifacts, including tools. The au-
thors, based on empirical observations from large projects
in an industrial context, have devised a strategy that system-
atically determines tool confidence levels, which enables
vendors to disqualify tools that are not up to par with the
ISO quality standard. The authors elaborate on the means
to identify failures and propose two techniques in order to
accomplish that task. A function based as well as an arti-
fact based. Additionally, they devised a tool that provides
the necessary analysis, to be used in conjunction with those
strategies and to determine their ability to provide results of
high significance. Robustness and reliability are admittedly
important aspects when assessing a tool. However, the as-
sessment of tools shared in software organizations will need
to take more aspects into consideration.

Furthermore, toolchains are argued to positively affect
productivity and facilitate cost reduction. In this regard,
Biehl et. al. in [10] and [11], discuss the benefits of
toolchains on productivity despite their relatively high im-
plementation cost. They attempt to quantify the decision
making on the adoption of a toolchain by applying a cost
analysis model in order to estimate the costs involved in the
realization of a toolchain, therefore calculating their effi-
ciency in regards to the capitals necessary to invest. Their
theory was verified via a case study in an industrial context.
Cost, is a significant factor of tool assessment, especially
since it can be interrelated to the usability of a tool or a
toolchain.

A number of usability and functionality attributes of
tools used in the automotive electrical and electronic archi-
tectures were quantified and evaluated on the grounds of in-
teroperability and compatibility in order to form a toolchain,
in the work by Waszecki et. al. (2013). Particularly, they
recognize the difficulty of selecting the most suitable tools
to support a specific development process within an auto-
motive corporation [18]. This process should not merely
involve the implementation phase, but modeling and test-
ing as well. Moreover, they argue that even if that is ac-
complished, combining them into an efficient toolchain that
covers the various stages of the development process, is not
guaranteed and remains a risk. They propose a systematic
approach towards composing such toolchains, by providing
an overview of the relevant industrial design processes, its
related challenges and investigating a number of commer-
cially available tools.

2.2.3 Tool characteristics

To begin with, Whittle et. al. (2013) [36] designate tools
as one of the deciding factors involved in the adoption

of model driven engineering in an organization. The au-
thors consider as their key contribution a classification of
aspects which represent the impact of tools on the adop-
tion of model driven engineering. Their taxonomy includes
four primary categories. The technical factors, the inter-
nal and external organizational ones and finally the social.
There, different challenges are mentioned, such as their
high complexity along with low usability, incompatibility
with an organization’s structure and culture, considerable
cost, scarcity of knowledge on how to select them and fi-
nally, the reluctance of using the tools, due to lack of trust
in their abilities. Our paper builds upon this research, in or-
der to define a set of common challenges for tools that will
suggest the best practices regarding their characteristics and
ultimately an assessment method.

On building toolchains, Wolvers et. al. (2013) stress the
problems caused by the inherently different meta-models
among the different tools [38]. They propose an integration
framework, that is found on the Open Services for Lifecycle
Collaboration approach. To verify their suggestions, they
conducted a case study in an industrial context and devel-
oped an adaptor to interface the various tools as web ser-
vices.

Porter et. al. (2009) intrigued by the need to create over-
all better toolchains that would, in turn, increase the produc-
tivity of the developers of embedded systems, introduced a
model based prototyping toolchain, accompanied by a hard-
ware in the loop system, which would enable embedded
designers to evaluate concepts with higher efficiency [13].
Particularly, common problems they mention in the contem-
porary tools (e.g. Simulink) include the lack of model rep-
resentation of several crucial parts of the system, absence of
modeling features for the deployment activities and loosely
integrated verification tools. Their toolchain aims to counter
those disadvantages by offering modeling options for both
functional and nonfunctional properties of the system, as
well as tighter integration of verification and analysis tools.

Next, Biehl (2013) considers the task of creating
toolchains that seamlessly combine the various tools for
the development of embedded systems, laborious and time-
consuming [12]. The researcher attributes this to the fact
that it is, to a considerable extent, a non-automated task.
To hinder the process further, toolchains are largely de-
scribed using generic modeling languages or languages
non-specific to the embedded systems domain. This, in
turn, increases the challenges involved in their develop-
ment and in order to tackle this, the author has proposed
a domain-specific modeling language, for the elaboration
of toolchains. Moreover, Burden et. al. (2014) also point
out the large amount of effort, required to integrate tools in
the process of a software organization, as they need to be
customized to a large extent first or the process to be altered
in order to support them [26]. The difficulty to implement

a toolchain combined with their importance in the develop-
ment of embedded systems, designates it as one of the most
important challenges also expected in the context of shared
tools.

Furthermore, Karsai et. al. (2006) are introducing a set
of model-driven engineering tools in order to solve the low
verifiability and maintainability, of IVHM systems which
were developed using hand written code [19]. The re-
searchers, focus their efforts in the reusability of their tool
suite, but more importantly imply the importance of interop-
erability in order to facilitate integration, when developing a
component of a larger system. Reusability is anticipated to
gather an even higher importance under the scope of shared
tools.

Voget et. al. (2010) in their work, introduce various con-
cepts in order for a new and improved toolchain in the au-
tomotive industry to emerge, based on the AUTOSAR stan-
dard [34]. Specifically, they recognize the importance of
sharing and exchanging models, within an automotive soft-
ware organization, a factor which for the authors directly
implies that interoperability of tools is a factor the success
of the AUTOSAR methodology depends on. Additionally,
they stress that common challenges derive from the insuffi-
cient import and export features of various tools. Moreover,
the origins behind many impediments in the process of cre-
ating a seamless toolchain and workflow can be identified
in the fact that tools are frequently characterized by differ-
ent, fundamentally incompatible, technologies, with steep
learning curves.

Interoperability, or rather its lack, is also recognized by
Kern and Kühne (2009) as one of the most prominent chal-
lenges in the existing commercial tools, as well as the main
hindering factor for developing toolchains and reusing mod-
els [20]. In their work, they demonstrate their approach by
increasing the interoperability between two modeling tools,
Microsoft Vision and Eclipse Modeling Framework.

Finally, Walderhaug (2013) discusses ways to increase
the usability of model driven engineering tools, from
the perspective of the healthcare software industry [14].
Specifically, the author elaborates on a model development
toolchain that was created, which aided in developing web
applications and services based on the CEN-13940 stan-
dard. The toolchain was particularly designed in a manner
that promotes the design of software artifacts with high in-
teroperability. The author argues that the particular domain
knowledge was satisfyingly embedded in the model driven
engineering toolchain and the various resulting observations
can be applied to model driven engineering toolchains, in
general, regardless of the domain they are realized in. For
example, those recommendations stress the need for the
modelling tool to provide the project structure, as well as
design model verification and validation. Qualities that are
also highly evaluated by tools in the domain of embedded

systems, i.e. in [13]. More importantly, a collection of
suggestions that was derived from the development of the
health care toolchain, on how to apply domain-specific re-
quirements into model driven development tools, is offered.

3 Research questions

The research questions will provide the guidelines and
the central points of our research. They aim to indicate the
various implications of shared tools and suggest an assess-
ment technique.

To begin with, light will be shed upon the various advan-
tages reaped by the software organization, from the adop-
tion of shared tools. These will be formulated by synthe-
sizing data from both the previous literature and data de-
rived from the various interviews, conducted within the case
study.

• RQ1 - What are the benefits of sharing tools in a soft-
ware organization?

The next research question is oriented towards illustrat-
ing the challenges involved in a software organization that
utilizes shared tools. The various issues that are commonly
surfacing, will be derived from common problems discov-
ered in the bibliography, as well as those designated by our
interviewees.

• RQ2 - What are the challenges of sharing tools in a
software organization?

Acquiring a response to the previous, enables us to get
a comprehensive overview of the technical domain and the
various inherent difficulties from sharing tools in software
organizations, as well as their derived profits. Next, in or-
der to define an assessment method for tools and toolchains
shared in software organizations, the researchers have to
formulate a picture on the distinct characteristics, tools
should have, in order to be shared efficiently.

• RQ3 - Which should the optimum characteristics of
shared tools be?

Finally, an attempt is made to define an assessment
method for shared tools. This finding is comprised of the
synthesis between the previous research questions and a
generic software assessment method that is described in
section 4.3. Particularly, the said assessment method will
be verified in terms of applicability in the domain of shared
tools. An assessment method should specify the appropri-
ateness of a shared tool, for it to be adopted by the organi-
zation or improved if already being used.

• RQ4 - How should tools shared in a software organi-
zation be assessed?

4 Methodology

In the process of defining the benefits and challenges of
sharing tools across a software organization, we conducted
a bibliographic review on the subject and combined its find-
ings with data gathered from an exploratory case study,
which took place in Gothenburg, Sweden, involving em-
ployees from two software organizations. Particularly, in
total eight individuals from two large software organiza-
tions, engaged in the automotive and communications do-
mains gave the researchers a deeper insight on tool sharing,
through six semi-structured interviews. The interviewees
are either users or developers of different tools. Addition-
ally, the BAPO framework [16] will be adopted in order to
facilitate the analysis of the extracted data but more impor-
tantly was utilized in order to structure the interview guide.

Regarding the BAPO framework, an additional ”dimen-
sion” was added to the proposed ones, in order to increase
the coverage and the applicability of the evaluation frame-
work. Specifically, considering the nature of tools, which
is to support another process, e.g. development, testing
etc, we decided to enhance the evaluation framework with
a ”product” perspective , in order to detect and illustrate the
effects of shared tooling on the product that is being built,
with the aid of the tools and toolchains.

4.1 Case study

In the process of extracting useful empirical findings
from an industrial perspective, it was decided to conduct
a case study in two large software organizations in the city
of Gothenburg, Sweden. According to Höst et. al. (2007)
there has been a plethora of paradigms of case studies con-
ducted on software engineering topics, however, no specific
to the field of software engineering, guidelines as to how
they shall be realized. Therefore, they argue, the researchers
intending to launch such initiatives in the software engineer-
ing field, can abide by the generic norms of case study rule-
books [22].

On the overall characteristics of case studies, Yin (1994)
supports the idea that case studies have the ability to elab-
orate on technically specific circumstances with more un-
known factors than data points [21]. Their results are com-
monly formulated based on multiple sources and after data
triangulation. Additionally, data collection and analysis are
modeled after the previous construction of the theoretical
foundations, by the researchers.

As the core topic of this research has not been thoroughly
investigated in the past and a plethora of aspects have re-
mained relatively untouched by previous researchers, the
case study that was conducted can be characterized as ex-
ploratory [17]. To put it differently, the study intends to
discover more about the situation that has been developed

and search for new perceptions, ideas and hypotheses for
further research.

The survey method [35] chosen to collect the data in this
particular case study were semi-structured interviews. Half
of the interviews were conducted on the working site of the
employees while the rest in quiet rooms at the Lindholmen
university Campus. As it is accustomed in semi-structured
interviews which are common in case studies [17], the ques-
tions were predefined but not necessarily asked in a concrete
order, depending on the flow of the conversation. If for ex-
ample, an interviewee would elaborate on aspects that were
covered on a question near the end, the course of the inter-
view would be shifted, in order to discuss those concerns,
without interrupting the subject’s course of thought. In ad-
dition to this, complementary questions were in some oc-
casions added or improvised, in order to investigate aspects
that were not anticipated by the interviewers and no relevant
question had been priorly scheduled.

Furthermore, in order to perform data triangulation so
to validate and signify our findings, we chose two different
software organizations for our data collection and extrac-
tion. Specifically, company A is engaged in the automotive
industry, while company B is in the telecommunications do-
main. We opted for these two organizations based on the
fact that they develop or use tools, that often need to be ex-
changed between different developer teams around the work
site or even among different locations in the world. Addi-
tionally, they are interested in improving their process and
sought after critical observations from external entities.

Motivated by the need to both investigate the topic and
improve the research process simultaneously, we organized
a pilot interview with three employees of company A. We
utilized these preliminary findings in order to refine our in-
terview guide. Particularly, we removed specific questions
which were hard to comprehend and easy to misunderstand
by our subjects, while introducing new questions, in order
to clarify various concepts, to establish the profile of each
interviewee and acclimatize them faster to the purpose of
the discussion.

Next, a focus group discussion followed, with members
of company A and the academia with many participants, on
a broader context about common challenges encountered
during the practical application of continuous integration
in the automotive domain. This discussion enabled the re-
searchers to get a better understanding of the general situ-
ation and increase their domain knowledge, which resulted
in small modifications and improvements of the interview
guide. The final interview with an employee from company
A was arranged, in order to increase the data points from
the automotive industry on the matter.

After a preliminary analysis of the collected resources
from company A, we started to interview employees from
company B, applying the knowledge and experiences that

were attained from the initial interviews. Particularly, the
accumulated data enabled the researchers to facilitate the
comprehension of several domain specific terms and to
make various parallelism to the context and different cir-
cumstances of company B.

In total, four employees from company B were inter-
viewed, in separate interviews. The interviewees are em-
ployed in two different departments of company B, are all
assigned to different roles professionally and use or develop
different tools. This variety of roles and positions, enables
the researchers to cover a larger spectrum of the software
development activities taking place in the software organi-
zation and increase the validity of the results by minimizing
biased opinions, as it might have been the case with subjects
from a single department, working on the same domain and
being tasked with adjacent roles. Interviews with more em-
ployees from both companies would have undeniably been
beneficial, however, this was not achievable due to the lim-
ited available resources and time constraints.

Moreover, questions 4 and 5 from the interview guide,
were used to answer RQ1, regarding the benefits of shared
tools. The results from questions 6,7,8,9 were utilized for
RQ2 regarding the challenges. The response to RQ3, as
to the characteristics, was facilitated by interview questions
10, 11, 12, 13. Finally, in order to reply to RQ4 concerning
the assessment method, no interview questions were exclu-
sively used. In fact, it was based on data from the previous
research questions, as well as the rest of the interview guide.

Last but not least, following the recommendations of
Runeson et. al. (2009) the interviews contained three stages
[17]. Initially, the interviewees and the interviewers were
engaged in a light and introductory talk, about the goals of
the research and its context in order to get acclimatized to
both the researchers and the interview process. Next, the
initial introductory questions were asked, when the sub-
jects would talk generally about themselves and the role in
the organization, as well as their definitions of various key
terms. Finally, the attention is shifted and focused on the
main topic of the discussion, on the sharing of tools and
toolchains in their software organization.

4.2 Analyzing the data

Data that were collected from the surveys were tran-
scribed and thematically organized in order to facilitate the
analysis and extraction of findings. In order to progress to-
wards the primary goal of this work, which is to generate an
assessment method for tools shared within software orga-
nizations, the need to partly quantify and structure the col-
lected data arises. To achieve this, we leveraged the BAPO
framework and its various dimensions, by formulating the
interview guide based on it, in order to facilitate the classi-
fication of data.

Next, the various categories according to which the data
will be organized, have been carefully selected, based on the
most common pattern the interviews would follow and are
ultimately inspired by the questions that were asked overall,
despite the various changes that were applied in the inter-
view guide. In other words, despite the discussion not fol-
lowing an identical schema throughout the various different
interviews, due to the various improvements, the essence of
the guide remained the same. Therefore, it is applicable to
attempt and group the findings from the various discussions
with the employees of the software organizations.

This adopted categorization process was carefully se-
lected and conducted, in order to enhance the traceability
of results from the first-degree data sources, i.e. the inter-
views. A clear chain of the evidence was maintained for
every conclusive remark that was made, so to increase the
validity and significance of the study.

Data were classified for further analysis, according to
the following semantic categories, followed up brief disam-
biguations:

1. Background: Data about the background of each inter-
viewee and their definitions of key terms

2. Benefits: Data structured by the BAPO framework re-
garding the benefits of sharing tools

3. Challenges: Data structured by the BAPO framework
regarding the challenges of sharing tools

4. Challenging factors and mitigation: Data on intervie-
wees’ responses to common challenges

5. Shared tools suitability: Data on the suitability of
shared tools depending on each development phase

6. Characteristics for sharing: Data on the characteristics
shared tools should have

7. Other attributes: Data on interviewees’ opinions on
common characteristics of shared tools

Each category found above was extracted from one or
more survey questions, thus, the traceability can be en-
sured. The basic information section is composed of the
basic information of the interviewee, the organization, the
role of the interviewee in that organization and the data on
the shared tool or toolchain in the organization. The bene-
fits section will include the various benefits of sharing tools
based on the BAPO framework along with an evaluation
of the significance of each BAPO dimension by the inter-
viewees. Likewise for the BAPO dimensions regarding the
challenges.

Next, the challenging factors shall illustrate each sub-
ject’s attitude towards some common factors mentioned in
the literature. Data falling under this category, in regards

to the challenges will be mapped to a 5-degree Likert scale
of severity according to the interviewees’ attitude towards
them. In most occasions, the interviewees demonstrated
a very clear verbal preference or disagreement with these
aspects, therefore, we consider the quantification to a 5-
degree scale plausible. Specifically, the scale begins with
an attribute being most significant, represented by the num-
ber ”1” and ends with the least significant features, being
designated by number ”5”. The base or neutral degree is
illustrated by number ”3”.

Furthermore, the category that follows will concern data
regarding the key characteristics a sharing tool/tool-chain
should have according to the interviewees, as well as the
frequency that each characteristic was mentioned among all
the interviewees. Eventually, the last category will hold data
using a 5-degree scale, on the subjects’ input on common
attributes of shared tools, derived from the literature review.

This classification of the collected data, facilitated the
extraction of findings and enabled us to have a firm
overview of the collected data, by categorizing them in
spreadsheets.

4.3 Evaluation Framework

The collected data from the interviews of the case stud-
ies were analyzed and correlated against each other, in order
to discover common patterns, antitheses and eventually be
used in order to create an evaluation method for tools. In re-
gards to this, we have receded into using the criteria based
assessment [23] by Jackson et. al. (2011). The technique
has been devised in order to conduct software evaluations
and therefore it is feasible, in concept, to apply it to a tool
evaluation setting. In this work, it will serve as the basis of
the shared tools evaluation method and will be modified ac-
cordingly, after utilizing the data from the case studies and
the literature. This will enable us to specialize the method
and narrow its application down from the generic software
domain to the one of the shared tools and toolchains.

The criteria based assessment evaluates software on
the grounds of usability, maintainability and sustainability.
This method involves the auditing of the tools against vari-
ous attributes and best practices that are typical of software,
fulfilling those three quality requirements. The various as-
sessment criteria that were adopted for the purposes of this
study as well as their subcategories are presented below.
Each of the criteria is accompanied by relevant questions,
which enable the auditors to determine the level of compli-
ance of the software in question, with the quality attribute.

1. Usability

(a) Understandability

(b) Documentation

(c) Buildability

(d) Installability

(e) Learnability

2. Sustainability & Maintainability

(a) Copyright/Licensing

(b) Community

(c) Accessibility

(d) Testability

(e) Portability

(f) Changeability

(g) Interoperability

As the authors of the criteria assessment methods stress
in their work, the importance of each criterion can be ad-
justed to the specific case that the technique is being ap-
plied. To put it differently, it is often necessary to consider
that each of the criteria should be considered with a differ-
ent weight, or importance, in order to compensate the vari-
ous special circumstances that arise from each special case.
Subsequently, we utilized the results of the case studies, to
assign weights to each of the quality attributes, in order to
form an evaluation method for tools shared in a software
organization.

Similarly, Jackson et. al. have designed another eval-
uation method, based on tutorials and focusing more on
the various user personas perspectives [24]. Specifically,
the tutorial based assessment offers an evaluation of a soft-
ware artifact’s usability as a log of experiences and obser-
vations, offering an insight from different user viewpoints.
Moreover, we utilized its user-developer and developer per-
spectives, based on the fact that our interviewees commonly
share most characteristics with those two profiles. The user-
developer personas, provide software evaluations from the
point of view of the ones that are developing against an API
of a tool and use it in conjunction with other components.
The said profile typically appreciates the easiness to install,
configure and use a tool as well high interfaceabily with
other components. On the other hand, the developer per-
sona, commonly involves individuals who are either creat-
ing the software or modifying it and their usual concerns
include the degree of difficulty to maintain, refactor or in-
crease the functionality of a tool. Based on the above, we
have devised the following list of questions, which will be
used in conjunction with the above criteria, in order to as-
sure that the coverage of the various concerns of the domain,
is maintained at a maximum degree. Additionally, we pro-
pose the responses to be on a 5-degree scale, so to facilitate
the assessment and comparison of different tools.

1. How easy is it to set up the environment, write and
compile code for the tool or code that uses the tool?
(1-Very easy, 5-Very hard)

2. How easy is it to specify which other tools or software
and their versions are necessary in order to set up a
development environment involving the tools? (1-Very
easy, 5-Very hard)

3. How satisfied are you with the available tutorials and
examples for the various tool versions? (1-Very satis-
fied, 5-Very dissatisfied)

4. How easy is it to understand the API documentation?
(1-Very easy, 5-Very hard)

5. To what extent does the documentation cover the tool’s
API? (1-Completely, 5-Nominally)

6. How easy is it to specify the various intellectual prop-
erty and copyright issues that may arise from the use
of a tool? (1-Very easy, 5-Very hard)

7. How easy is it to understand the source code and/or
design of the tool if it is available? (1-Very easy, 5-
Very hard)

8. How easy is it to validate user code that involves the
tool? (1-Very easy, 5-Very hard)

9. How easy it is to release or deploy user code that in-
volves the tool? (1-Very easy, 5-Very hard)

The questions above should be used complementary to
the ones proposed by each criterion of the tutorial based
assessment, especially if criteria do not explicitly cover a
certain factor, e.g. versioning and architectural design con-
cerns.

4.4 Threats to validity

The validity of a research implies the extent to which its
result can be trusted, are true, the various deductions that
were made to reach them are valid and remain unaffected
by the researchers’ subjective perspective [17]. Threats to
validity should be mitigated throughout the various stages
of the research, from the literature review to data collec-
tion and analysis. The said risks, will be extensively dis-
cussed in Section 7. By adopting the classification scheme
by Runeson et. al. (2009) [17] we can view the validity
from four viewpoints and therefore categorize the various
threats against it.

Particularly, the authors have defined the construct va-
lidity, which engages the issue of the alignment between
the various ”operational measures” of the study and what
is actually the goal of the investigation (e.g. based on the

research questions). A threat to construct validity could
be the lack of common perception between the interview-
ers and the interviewees, regarding fundamental terms, e.g.
tools. Next, there is the internal validity which comes un-
der debate when there are unprecedented factors that affect
the phenomena and the researchers have not taken into ac-
count, while conducting their study. Internal validity could
be compromised in case the persons conducting the research
are causing biased answers, or unknowingly otherwise af-
fecting the process and results.

Furthermore, the external validity revolves around the
question whether the study’s findings can be generalized
and have a realistic reflection on different settings, outside
the specific environment that was investigated. To put it dif-
ferently, the external validity queries whether the results of
the study are arguably universal and can be utilized by other
researchers in similar settings. The main threats of this
study are against the external validity, due to the fact that
merely a limited amount of employees of the two software
organizations can be interviewed. In order to mitigate this,
we collaborated with employees engaged in a wide spec-
trum of activities, roles and different tools, so to ensure that
the sample attained a high degree of representativeness of
the situation.

Last but not least, the reliability of the results, defines
the measure of which the study can be reproduced in the
future from different researchers and still produce the same
results. This is determined by the extent to which the col-
lected data and their subsequent analysis are dependent the
original researchers. A typical scenario of this threat, in-
cludes cases where the data collection or analysis process
are not illustrated enough, therefore, they are cumbersome
to reproduce by third persons.

5 Results

During the case studies, we conducted six semi-
structured interviews, based on an essentially similar inter-
view guide. The interviews were recorded and later tran-
scribed. The data found below, consist our effort to structure
and visualize them, using tables, so to facilitate the corre-
lation between the different variables and the extraction of
findings. Each table is accompanied by a description in the
appropriate subsection. The results have been divided into
sections, grouped by the research question they intend to
answer.

Additionally, a synopsis of the specific elements, sug-
gested made by the interviewees, can be found in table 14
in the Appendix. This table is of particular interest because
it displays the entire latitude of the various benefits, chal-
lenges and attributes of shared tools, according to the em-
ployees of the two large software organizations that were
investigated. It will be used in the following sections in or-

der to designate the most significant results.

5.1 Background

Table 5.1 contains the background information for each
interview. They illustrate the specific context for each inter-
view and were gathered at the beginning of each discussion.
This was done, not only to acclimatize the interviewees but
also offer a broader perspective, for the data that would fol-
low to be placed into. They are particularly useful, in order
to quickly establish an overview of the specific setting for
each case, for example regarding the product that is being
developed, or whether the interviewees actively develop or
merely use a shared tool or toolchain. These results are not
directly mapped to a specific research question, however,
they can facilitate discussion by designating the given con-
text on each occasion.

5.2 Benefits

Table 5.2 eloquently illustrates the various benefits of
share tools, structured according to the BAPO framework.
What is more, the benefits on each dimension are also
weighted, depending on the importance the interviewees
would designated them as. For example, the first row of
the table, can be interpreted as interviewee 1, in company
A does not believe there are particularly many benefits of
using shared tools in the product itself, however firmly sup-
ports that they are advantageous to the process.

Generally, the subjects argued that by sharing tools, the
total productivity is increased, as the shared knowledge is
mainly enhanced from the organization and process per-
spectives. This allows tasks to be completed faster. This ob-
servation was confirmed by most of the interviewees from
both companies as it is shown in the table 5.2. Addition-
ally, shared tools seem to facilitate the reuse of software
artifacts, while improving the communication and collabo-
ration within the organization. Some characteristic excerpts
from the discussions follow, which can give the reader a bet-
ter idea of the collected information regarding the benefits
of shared tools and toolchains. For a complete outlook on
the benefits suggested during the case study, please refer to
table 14 in the Appendix.

An employee from company B argued on the topic of the
advantages offered by shared tools:

”The tools are setup to work with a specific orga-
nizational structure and the process we chose is
based on certain team size. In that sense, it works
well that we share both the tools and the process.”

An interviewee, from company B, claimed in regards to
the benefits of shared toolchains:

Table 1. Context information
ID Organization Role Product Develop & share tool(chain) Use shared tool(chain)
1 B Software architect CI TRUE TRUE
2 B Web developer CI TRUE TRUE
3 B Software developer BS FALSE TRUE
4 B Software developer BS FALSE TRUE
5 A Software developer CI TRUE TRUE
6 A Software developer ECU TRUE TRUE

*CI = Continuous Integration system, ECU = Engine Control Unit software, BS = Base Station software

Table 2. Benefits

ID Product Process Business Organization Architecture
1 4 1 3 2 5
2 1 NA NA 2 3
3 3 2 NA 1 NA
4 NA 3 1 2 NA
5 2 1 1 3 5
6 4 1 3 2 3

*1 = most significant, 5 = least significant NA= Not Applicable

”Having shared toolchain is definitely a benefit
for the knowledge management perspective in or-
ganizations.”

Additionally, a different individual from the same company,
noted in regards to the advantages gained by the process:

”Since we are using the same tools as the whole of
the organization, everything is setup, so process
wise is easier to start with.”

As to the benefits on the business aspects of the orga-
nization, the majority of the interviewees agreed that they
believe they can clearly determine benefits. A person from
company A told the researchers:

”It will save money by not having too much cus-
tomized solutions.”

Several interviewees could foresee benefits to the prod-
uct itself, by the use of shared tools and toolchains. Par-
ticularly, a characteristic example, from an interview with
individuals of company A, regarding benefits to the product
includes the following:

”Sharing tools means also you can spend more
resources on them as it will benefit the product in
that sense.”

5.3 Challenges

The gathered results regarding the various challenges
involved in the use of shared tools, are illustrated in the

Table 3. Challenging aspects

ID Product Process Business Organization Architecture
1 1 2 NA 3 NA
2 3 2 NA NA 1
3 NA 2 NA 1 NA
4 2 1 NA 3 NA
5 2 3 1 4 NA
6 NA NA NA 1 2

*1 = most significant, 5 = least significant NA= Not Applicable

following sections. They are divided into the challeng-
ing aspects of software development, according to the
BAPO framework and then, a list of various common chal-
lenges, their significance according to their interviewees
and whether there has been a devised mitigation strategy. In
table 14 the whole spectrum of challenges that were men-
tioned during the interviews can be seen.

5.3.1 Challenging aspects

Data collected on challenging aspects, are summed up in ta-
ble 5.3.1 and are organized in the same manner as the bene-
fits, in table 5.2, as illustrated in section 5.2. The challenges,
grouped by BAPO framework’s dimensions and designated
with their respective weights, give us an outlook on the gen-
eral situation, from the perspective of the interviewees, in
regards to challenges. Specifically, when it comes to the
challenges, the most noticeable and distinct one revolves
around the process, as table 5.3.1 suggests.

A strong opinion regarding obstacles due to shared tools,
was expressed by an employee of company B:

”Sometimes developers need to change between
the tools too often, especially in cross functional
teams. It’s quite a waste of time from the process
perspective.”

This seems to be in accordance with the interviewees
general perception that knowledge management can be
problematic when too many shared tools are involved. Sim-

Table 4. Challenge / Mitigation strategy
ID Intellectual Property Ownership Versioning Evolution
1 5 / FALSE 1 / TRUE 5 / FALSE 2 / TRUE
2 5 / FALSE 2 / FALSE 1 / TRUE 3 / FALSE
3 2 / TRUE 3 / TRUE 3 / TRUE 3 / TRUE
4 3 / TRUE 3 / TRUE 1 / TRUE 3 / TRUE
5 2 / TRUE 1 / FALSE 2 / TRUE 2 / TRUE
6 3 / TRUE 5 / TRUE 3 / TRUE 3 / TRUE

*1 = most significant, 5 = least significant
TRUE = existing mature mitigation strategy
FALSE = NOT existing mature mitigation strategy

ilarly, a person from company A mentioned additional chal-
lenges in regards to this aspect, of having an abundance of
tools in use:

”Having too many shared tools, you will get
knowledge management problems when prod-
ucts going to the market. The maintainability
of the product might be affected if you have too
many tools, since the problem of maintaining the
knowledge of how to use the tools will be larger.”

Aside from the process and product perspective, the
challenges to the organization can not be neglected as well,
with 5 out of 6 interviewees mentioned the problem. A per-
son from company B claimed:

”Sometimes the tools have assumptions about the
team structure. And also when people are leav-
ing, the responsibility for the tools changes as
well. Everything becomes very rigid when you
have tools.

At the same time, an employee from company A sup-
ported the opinion that tools might even hinder innovation:

Having too strict policies for introducing shared
tools might be demotivating certain developers
and it might also slow down the innovation.”

The same participant argued that since sharing and reusing
tools can be beneficial, a way to tackle the above conse-
quence would be to allow the developers to introduce new
tools, if the need arises.

5.3.2 Challenging factors and mitigation strategy

Table 4 illustrates the interviewee’s responses to various
common challenges in the specific context, as well as the
existence of a mitigation strategy against these concerns.
During the interviews, it became apparent the ownership
and responsibility of shared tools, is a considerable chal-
lenge to most of the individuals we discussed with.

Yet, despite this problem being somewhat common,
some of them are encountering difficulties mitigating or

finding a solution about it. When investigating a bit deeper
into the issue, we identified a divergence between the users
and the developers of shared tools. Particularly, in an occa-
sion from company B, the user takes as granted that:

”Usually, there should be a team that supports
tools”

On the other hand, a developer of shared tools, from the
same company, discussed that in their work, they are specif-
ically careful with taking the responsibility of a tool.

”Owning a tool is expensive, and it requires a lot
of effort.”

Generally, owning a tool and thus accepting its responsi-
bility was one of the most mentioned challenges of shared
tools. The evolution of shared tools is another challenging
factor which was considered of high importance among the
other issues that exist. The same developer from company
B argued on the matter:

Most of the developers have some legacy tools or
APIs to get rid of, yet they have to support them,
porting them and deprecating them gradually”.

What is more to the evolution management, many of the
participants argued that a good versioning system has to be
devised. One example that came up involved different ver-
sions of the same tool for separate clients. Additionally, it is
worth to mention that some of the participants found defin-
ing the appropriateness of a shared tool a challenging factor,
something that we also came across in previous studies.

5.4 Shared tool characteristics

To define a set of suggested characteristics for shared
tools and toolchains, we first present the results regarding
the development phases which according to the intervie-
wees are relevant to the use of shared tools. This is followed
by, the various ideas collected from the case study partici-
pants, on the different attributes they strive for. The last
table includes the findings on how the employees evaluate
the significance of numerous common shared tool aspects.

5.4.1 Shared tools suitability

In the effort of the researchers to determine which develop-
ment phase the tools are mostly appropriate for, in order
to determine the various generic properties a shared tool
should have, the participants in the interviews were asked
to designate which software development phase, the shared
tools mostly fit in. The summary of the responses is dis-
played in table 5.4.1.

The results, designate the integration phase to be of high
significance as to where shared tools are suitable. Other

Table 5. Shared tools suitability
Software development activities Positive responses

Implementation 3
Integration 6

Testing 3
Deployment 4

than that, the rest of the stages enjoy similar preference by
the interviewees. Specifically for the implementation, an
employee of company B mentioned:

”When it comes to implementation, I don’t think
that organization should force everybody to work
with the same tools.”

This could imply a strict workflow, introduced by hard-to-
use tools, can also pose obstacles to development and cre-
ativity.

5.4.2 Characteristics for sharing

The interviewees were asked to share their thoughts on the
characteristics a tool or a toolchain should have, in order
facilitate its sharing across a software organization. The
rightmost column of table 14 summarizes the characteristics
suggested during the discussions, that shared tools should
attain, as well as the frequency they were mentioned by the
interviewees.

There was a general consensus on the need for active
support on the tools. This was mentioned by both the de-
velopers and the ones who merely use shared tools. This
support, implying responsibility and ownership was admit-
tedly an intricate task, as it was previously discussed and
illustrated in section 5.3.2. Extensive and understandable
documentation was another popular choice among the indi-
viduals that participated in the interviews.

Additionally, some of the participants required the tools
to be usable, interoperable, attributes that were also men-
tioned in the literature and will facilitate the combination of
different tools to form toolchains. Last but not least, some
of the interviewees suggested tools need to be tested and de-
pendable, conditions that can be traced back to our findings
from the related literature, which indicated the lack of trust
developers commonly exhibit towards tools.

5.4.3 Other attributes

Lastly, the interview participants were asked to express their
opinion on various common characteristics of shared tools
and to define their significance from their own perspective.
An attempt to collect and visualize the results can be seen
on table 6. The table follows the format that was previously

explained, with each attribute being assigned to a measure-
ment of significance, according to each interviewee.

Among the available attributes, infrastructure, standard-
ization and openness are the most highly evaluated ones.
Particularly, the shared tool developers drew the picture that
it is important to have a communication channel to discuss
with the users. This could be a web forum or a physical
meet-up. On the other hand, from a user perspective, they
appreciate a team of experts for troubleshooting and help,
with high availability. Additionally, there was a preference
towards web-based tools, as opposed to locally installed
ones, possibly due to them being easier to acquire and in-
stall.

Several interviewees, considered standardization and
openness as interrelated factors. These attributed were
highly esteemed. Additionally, it was mentioned that stan-
dardization was a precondition of openness. A participant
from company B, mentioned in this regard:

”If you have openness you have to have standard-
ization, otherwise it doesn’t work.”

On the matter, an interviewee from company A claimed:

”When I want to integrate tools that I want in a
larger environment or ecosystem, working with
common data formats makes a lot of things much
easier. So openness and standardized APIs also
depend on the quality and maturity of the tools.”

5.5 Assessment method

There were no specific case study results, exclusively
used in order to facilitate the formulation of a shared tools
assessment method. That being said, elements from all
the previous research questions, including the background
information on the participants and the different contexts,
were utilized in order to initiate the discussion. Here, it is
noteworthy that in two occasions there was a reference to
selecting the appropriate tools being a challenging task.

6 Discussion

The empirical data from the case study, combined with
the bibliographic evidence from the literature review en-
abled the researchers to formulate answers to the research
questions and reach several conclusions related to the sub-
ject of this study. The data from the two sources, i.e. the
literature review and the case study, will be utilized in order
to define the challenges and benefits of shared tools in soft-
ware organizations, suggestions on how to share them and
an early approach on a shared tool assessment method. The
answers to the research questions will be formulated based
on the significance of the findings from each source, i.e. the

Table 6. Other attributes
ID Infrastructure Community Architecture Accessibility Openness Standardization
1 2 3 5 2 1 1
2 1 4 5 2 4 1
3 1 2 5 4 3 1
4 5 5 5 3 2 5
5 1 1 5 4 1 2
6 2 3 5 2 2 2

*1 = most significant, 5 = least significant

case study and the literature review, as well as whether we
can synthesize data from the two sources.

6.1 Benefits of shared tools in software or-
ganizations

As to the benefits of shared tools and toolchains in soft-
ware organizations, results from the case study and the liter-
ature review appear to be to a considerable extent in align-
ment. Generally, it can be observed that the members of
the software organizations who were interviewed identify
shared tools to be mostly beneficial to the process, organi-
zational and business aspects. This means that the develop-
ment process was improved by the introduction of shared
tools and toolchains, the organizational structure becomes
clearer and seamless as well as the profitability of the prod-
ucts appears to be increased.

Particularly, based on the case study interviews, there
seems to be a distinctly positive effect, on the productivity.
This was in alignment with findings from the bibliographic
research, as presented in section 2.2. Tasks appear to be
completed faster, as a consequence of the adoption of shared
tools and toolchains. In the meanwhile, costs are decreased,
which in turn either increases the competitiveness of the fi-
nal product or enables the organization to invest more in it,
without additional resources.

Furthermore, the decrease in development time is often
the consequence of automation in one of the development
phases, such as testing or integration. This automated pro-
cess can benefit the quality of the final product. An example
could involve shared testing tools, increasing the test cov-
erage, as opposed to manual ones. Moreover, the use of
shared tools, can catalyze and augment the advantages of
model driven engineering, by facilitating the various model
transformations and handling with reusable tools, across
the organization. This, in turn, benefits the communication
among the different teams.

6.2 Challenges of shared tools in software
organizations

The utilization of shared tools in software organizations
is accompanied by a plethora of challenges. They were
prevalent in both the findings from the case study, as well as
the bibliographic research. The various difficulties, seem to
be hindering mainly the development process aspects, while
it should be noted most of the interview participants claimed
lack of opinion, regarding challenges as seen from a busi-
ness perspective. This could be attributed to the fact, that
none of the interviewees held a position very high in man-
agement.

Additionally, there appears to be some convergence on
the various issues that are faced, between the case study and
the literature. Particularly, the evolution management, in a
shared tool environment within an organization, can be dif-
ficult. The same can be argued from a software ecosystem
perspective, regarding the various architectural challenges
that commonly exist. Next, a persistent impediment, ac-
cording to various sources in the literature regarding the use
of tools and toolchains, is the lack of interoperability. In-
teroperability, on the other hand, was considered as a very
important characteristic by the interviewees for tools, how-
ever, was not specifically mentioned as a challenging factor.

Many of the case study participants, among both of the
two software organizations, found ownership and respon-
sibility for a tool, to be a particularly troubling factor. It
was admitted that, the fact that the implied responsibility
to support a shared tool after releasing it, was a discour-
aging agent. Furthermore, another point of probable align-
ment between the literature review and the case study find-
ings could be the high cost of creating a shared tool and
a toolchain. This, due to the fact that it is a manual proce-
dure. During the discussions with the employees in the soft-
ware organizations, it was mentioned that it is often cum-
bersome to learn many different tools, as well as maintain-
ing the relevant knowledge on an organizational level, while
also shared tools can be a limiting factor in some occasions.
These two observations, from the different sources, can be

plausibly correlated. The high cost and complexity of devel-
oping tools and toolchains can justifiably be complemented
by the observation that it is usually difficult to learn and use
shared tools.

Next, the need for openness and an assessment method to
specify the suitability were noted on multiple occasions as
two typical important challenges, accompanying the use of
tools and toolchains. These aspects were encountered both
in the literature and during the interviews with the develop-
ers. Moreover, versioning was frequently mentioned as an
important cause of problems during the case study, there-
fore, it should be considered as a factor that often poses
challenges in the adoption and development of shared tools.

6.3 Suggested characteristics of shared
tools

During the case study and the literature review, we came
across a plethora of useful characteristics that tools shared
within software organizations should attain. One of those
attributes, as designated by both the past research on the
subject as well as the interviewees, is interoperability. The
ability of a tool, to be easily interfaced with other, was one
of the substantial attributes of a shared tool.

Additionally, this ”virtue” seems to be interrelated with
some other suggested characteristics, such as functionality,
usability, openness and standardized interfaces. Particu-
larly, a tool that is able to be easily combined with other
tools or the rest of the system makes it more trivial to use
and increases its learnability. These, in turn, go hand in
hand with the proposed openness features by both the lit-
erature and the case study, such as the import and export
functions or the standardized communication protocol.

Furthermore, some of the participants in the case study
argued that they would appreciate better support and doc-
umentation, something that should decrease the learning
curve. Therefore, with a better overall support both in terms
of training material, e.g. usage manuals, Wikis, documen-
tation pages and human capital, i.e. support teams, the ef-
fort and cost for developers to familiarize themselves with
tools and toolchains should be decreased. Finally, we ob-
served a trend among the participants to highly value web-
based tools, which could imply that they are easier to get
acquainted with and distribute.

6.4 An approach towards a shared tool as-
sessment method

Building upon the previous discussion and particularly
the findings on the benefits, the challenges as well as the
proposed characteristics of shared tools, there was observed
a high degree of alignment between the various aspects of
shared tools with the different attributes suggested by the

criteria based assessment. The criteria based assessment,
described in section 4.3, is a generic software evaluation
framework, that enables assessments judging on the usabil-
ity, maintainability and sustainability of software artifacts.

In order to customize the various criteria, to the spe-
cific circumstances of each context, that a shared tool or
toolchain are evaluated within, specific weights should be
assigned to each criterion, so to compensate for the vari-
ous domain specific requirements or use case. Moreover,
the need to deepen the shared tools assessment method and
adapt it to the appropriate circumstances might arise. In
that occasion, the evaluation could be complemented with
relevant questions from the tutorial based assessment.

7 Validity threats

Threats to validity to case studies that intend to extract
qualitative data have always been a subject of concern to
the research community. This, due to the fact that the per-
sons conducting the study have to be at certain points sub-
jective and utilize their own personal perspective in order to
respond creatively and rigorously [25] to the circumstances
that are being developed. In order to identify, organize and
therefore be able to mitigate the various risk factors, we out-
lined the various aspects of validity in Section 4.4. Specif-
ically, the classification scheme by Runeson et. al. (2009)
[17] was used in order to identify the various threats among
the various aspects of this study. In the next sections, we
shall outline the various mitigation tactics that were devised
in order to assure the various aspects of validity.

7.1 Construct validity

Construct validity can be briefly described as the ex-
tent to which the chosen research methodology corresponds
with the concepts and theories that are being investigated.
A first step in order to assure the integrity of construct va-
lidity was to establish a common baseline with the intervie-
wees, regarding the common key concepts at the beginning
of each interview. Each participant was asked to give a def-
inition of the various terms that are discussed, in order to
ensure the conceptual alignment between the two sides.

Additionally, the interview guide was validated by our
two supervisors for academic suitability and continuously
improved for domain appropriateness. Particularly, the su-
pervisors helped to ensure that the questionnaire stood by
high research standards and was appropriate for the context.
Moreover, the pilot interview at company A, as well as the
various minor adjustments that were made, enabled us to
use questions and terms understandable by the interviewees
and relevant to their domain’s technical vocabulary.

7.2 Internal validity

Internal validity sums up to the existence of factors un-
known to the persons conducting the research that can affect
the data collection process. We tried to minimize risks to-
wards the internal validity of our study, by selecting partic-
ipants from different teams or companies, tasked with dis-
tinct responsibilities. This enabled us to triangulate the re-
sults and minimize the effect of unprecedented factors to the
total results of this research.

7.3 External validity

The external validity can be attributed as the degree to
which the results of a study can be generalized and them
to be usable by future researchers or other individuals. In
other words, whether the results are applicable in related
but separate contexts. This is recognized as one of the most
major risks of the study, as the number of individuals and
tools from the two software organizations that were inves-
tigated in the current research are merely a fraction of the
total number of developers and tools utilized in those com-
panies.

That being said, the fact that the participants that were
selected interviewee profiles differed greatly, we attempted
to mitigate risks to the external validity and allow our re-
sults to be feasibly generalizable, to a certain extent. Addi-
tionally, the software organizations that were selected, are
engaged in two very broad technological domains, namely
the automotive and telecommunications and are committed
in an attempt to improve their processes. It is plausible to
argue that the various phenomena encountered in those two
domains, should be relevant to different ones as well.

On the other hand, both of the organizations that were
investigated, are considered large. Subsequently, the appli-
cability of the results to medium and small companies is
questionable and calls for further research.

7.4 Reliability

The reliability of the study can be characterized as the
extent to which the researchers conducting it, are emphat-
ically affecting its outcome, in a way that it ceases to be
reproducible by different researchers, following the same
methodology. In other words, reliability is determined by
whether future researchers following the same process, are
able to extract the same findings. It should be noted that
there are some concerns, as to this aspect, due to the fact that
a relatively small number of interviews was conducted. Ad-
ditionally, the process followed during the literature review
was not systematic, therefore not the same bibliographic re-
sults will be necessarily be discovered.

In order to increase the reliability of the study, the data
collection process was conducted in two different software
organizations, including participants with distinct roles and
responsibilities. Next, during the interviews we tried to not
affect the participants with previous knowledge, e.g. com-
mon challenges in the particular context, that we had pre-
viously accumulated during the case study. This, to ensure
the collected data would be undiluted data, free from bias.

8 Conclusion

During this research, a literature review and a case study
were conducted, in order to further investigate shared tools
and toolchains, as well as their various implication in soft-
ware organizations. The findings were formulated based
upon the synthesis of results from the relevant bibliogra-
phy, along with the analysis of collected data from a case
study, involving employees from two major software orga-
nizations, in Gothenburg, Sweden.

The results indicate that common benefits and challenges
of tools in the literature are also encountered by the par-
ticipants of the two software companies that were inves-
tigated, such as the increase of productivity and the lack
of interoperability respectively. Their ability to increase
the degree of automation, allow for faster implementation
and higher quality products. Furthermore, the use of shared
tools and toolchains enables reaping the benefits of model
driven engineering. Additionally, sharing tools facilitate
cross-organizational communication.

On the other hand, managing the evolution and version-
ing of shared tools can be challenging tasks, something that
is encountered in the literature for artifacts within software
ecosystems as well. Then, another important issue that the
shared tool developers often find themselves faced with, is
the ownership and responsibility. The fact that it could be
implied that they will have to support a tool once they share
it, can be hard to afford and requires considerable effort. In
addition to this, learning new tools is often hard and so is
their development, which both translate to high cost.

Generally, using shared tools, appeared to positively
contribute to the process, organization and business aspect
of the software development. At the same time, their adop-
tion can often lead to problems, mainly regarding some
other process aspects of software development. This high
level information on where benefits and challenges are
mostly experienced, can serve as a directive to managers
who wish to improve the certain dimensions of their orga-
nizations or are trying to narrow down the source of various
impediments.

Some distinct and novelty characteristics of shared tools
were surfaced through the case study, such as the need for
extensive and elaborate documentation, as well as dedicated
user groups for support. Such resources could lower the

learning curve, therefore, decrease their cost. Next, a ma-
jor attribute that tools should be represented by is interop-
erability. Interoperability can, in turn, be correlated with
other traits, such as usability, openness and standardized in-
terfaces. These qualities allow shared tools to be combined
and reused easier, which is typically essential to their pur-
pose.

Additionally, the appropriateness of a generic software
assessment method was verified to be applicable for shared
tools and toolchains. Specifically, building upon the previ-
ous implications of shared tools in software organizations, a
high degree of alignment was observed between the various
aspects of shared tools and those evaluated by the criteria
based assessment framework. This lead us to claim that
one can apply the criteria based assessment, which reviews
software artifacts in terms of usability, maintainability and
sustainability, on shared tools and toolchains.

During the data analysis, it was recognized that a larger
amount of first-degree empirical data is necessary in order
to acquire a deeper insight of the various specific challenges
and benefits of each software organization. Therefore, it
is suggested that future research is oriented towards refin-
ing the proposed assessment method, by utilizing more data
points. What is more, it would be of particular interest to at-
tempt to generalize the findings and place them in a broader
perspective. Specifically, to investigate the implications of
shared tools and toolchains, within a software ecosystem
that involves external actors.

References

[1] Hanssen, G. K. (2012). A longitudinal case study of an
emerging software ecosystem: Implications for prac-
tice and theory. Journal of Systems and Software, 85(7),
1455-1466.

[2] van den Berk, I., Jansen, S., & Luinenburg, L. (2010,
August). Software ecosystems: a software ecosys-
tem strategy assessment model. In Proceedings of the
Fourth European Conference on Software Architecture:
Companion Volume (pp. 127-134). ACM.

[3] Knauss, E., & Hammouda, I. (2014, August). EAM:
Ecosystemability assessment method. In 2014 IEEE
22nd International Requirements Engineering Confer-
ence (RE) (pp. 319-320). IEEE.

[4] Hammouda, I., Knauss, E., & Costantini, L. (2015,
May). Continuous API design for software ecosystems.
In Rapid Continuous Software Engineering (RCoSE),
2015 IEEE/ACM 2nd International Workshop on (pp.
30-33). IEEE.

[5] Cao, Q., & Gong, Z. (2015). API Design Con-
siderations: An Empirical Assessment Ap-

proach. University of Gothenburg. Retrieved from
http://hdl.handle.net/2077/39979

[6] Sekitoleko, N., Knauss, E., Damian, D., Hammouda.,
I., & Lantz, J. (2015). The Role of Secondary Software
in Automotive Ecosystems. In Proceedings of the Eu-
ropean Open Symposium on Empirical Software Engi-
neering, Lille, France.

[7] Bosch, J. (2010, August). Architecture challenges for
software ecosystems. In Proceedings of the Fourth Eu-
ropean Conference on Software Architecture: Compan-
ion Volume (pp. 93-95). ACM.

[8] Barth, M., Drath, R., Fay, A., Zimmer, F., & Eckert, K.
(2012, September). Evaluation of the openness of au-
tomation tools for interoperability in engineering tool
chains. In Emerging Technologies & Factory Automa-
tion (ETFA), 2012 IEEE 17th Conference on (pp. 1-8).
IEEE.

[9] Schlegel, C., Steck, A., Brugali, D., & Knoll, A.
(2010). Design abstraction and processes in robotics:
from code-driven to model-driven engineering. In Sim-
ulation, Modeling, and Programming for Autonomous
Robots (pp. 324-335). Springer Berlin Heidelberg.

[10] Biehl, M., & Torngren, M. (2012, August). A cost-
efficiency model for tool chains. In Global Software
Engineering Workshops (ICGSEW), 2012 IEEE Sev-
enth International Conference on (pp. 6-11). IEEE.

[11] Biehl, M., & Torngren, M. (2012, July). An Estima-
tion Model for the Savings Achievable by Tool Chains.
In Computer Software and Applications Conference
Workshops (COMPSACW), 2012 IEEE 36th Annual
(pp. 488-492). IEEE.

[12] Biehl, M. (2013). A modeling language for the de-
scription and development of tool chains for embedded
systems.

[13] Porter, J., Volgyesi, P., Kottenstette, N., Nine, H., Kar-
sai, G., & Sztipanovits, J. (2009, June). An experi-
mental model-based rapid prototyping environment for
high-confidence embedded software. In Rapid System
Prototyping, 2009. RSP’09. IEEE/IFIP International
Symposium on (pp. 3-10). IEEE.

[14] Walderhaug, S. (2013). Design and evaluation of the
ModelHealth toolchain for continuity of care web ser-
vices. Automated Software Engineering, 20(2), 185-
235.

[15] Wildmoser, M., Philipps, J., & Slotosch, O. (2012).
Determining Potential Errors in Tool Chains. In Com-
puter Safety, Reliability, and Security (pp. 317-327).
Springer Berlin Heidelberg.

[16] Van Der Linden, F., Bosch, J., Kamsties, E., Känsälä,
K., & Obbink, H. (2004). Software product family
evaluation. In Software Product Lines (pp. 110-129).
Springer Berlin Heidelberg.

[17] Runeson, P., & Höst, M. (2009). Guidelines for con-
ducting and reporting case study research in software
engineering. Empirical software engineering, 14(2), pp.
47-55 and 131-164.

[18] Waszecki, P., Lukasiewycz, M., Masrur, A., &
Chakraborty, S. (2013). How to engineer tool-chains for
automotive E/E architectures? ACM SIGBED Review,
10(4), 6-15.

[19] Karsai, G., Biswas, G., Abdelwahed, S., Mahadevan,
N., & Manders, E. (2006). Model-based software tools
for integrated vehicle health management. Paper pre-
sented at the , 2006 8 pp.-442.

[20] Kern, H., & Kühne, S. (2009, June). Integration of
microsoft visio and eclipse modeling framework us-
ing m3-level-based bridges. In Proceedings of Second
Workshop on Model-Driven Tool and Process Integra-
tion (MDTPI) at ECMFA, CTIT Workshop Proceedings
(pp. 13-24).

[21] Yin, R. K. (1994). Case study research: Design and
methods (2.th ed.). Thousand Oaks, CA: Sage.

[22] Höst, M., Runeson, P., Institutionen för dataveten-
skap, Faculty of Engineering, L., Lunds universitet, De-
partment of Computer Sciences. . Departments at LTH.
(2007). Checklists for software engineering case study
research.

[23] Jackson, M., Crouch, S., & Baxter, R. (2011). Soft-
ware evaluation: criteria-based assessment. Software
Sustainability Institute, The University of Edinburgh.
Retrieved from http://goo.gl/Ah7B1w

[24] Jackson, M., Crouch, C., & Baxter, R. (2011). Soft-
ware Evaluation: Tutorial-based Assessment. Software
Sustainability Institute Guides, The University of Edin-
burgh. Retrieved from http://goo.gl/JTdw5J

[25] Maxwell, J. A. (1992). Understanding and validity
in qualitative research. Harvard Educational Review,
62(3), 279.

[26] Burden, H., Heldal, R., & Whittle, J. (2014, Septem-
ber). Comparing and contrasting model-driven engi-
neering at three large companies. In Proceedings of the
8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (p. 14). ACM.

[27] Pohjolainen, P. (2002). Software Testing Tools.
Department of Computer Science and applied math-
ematics, University of Kuopio. Retrieved from
http://goo.gl/RxQe7C

[28] Sendall, S., & Kozaczynski, W. (2003). Model trans-
formation the heart and soul of model-driven software
development (No. LGL-REPORT-2003-007).

[29] Bruyninckx, H., Klotzbücher, M., Hochgeschwender,
N., Kraetzschmar, G., Gherardi, L., & Brugali, D.
(2013). The BRICS component model: A model-based
development paradigm for complex robotics software
systems. Paper presented at the 1758-1764.

[30] Mustafa, K. M., Al-Qutaish, R. E., & Muhairat, M.
I. (2009, December). Classification of software test-
ing tools based on the software testing methods. In
2009 second International Conference on Computer
and Electrical Engineering (pp. 229-233). IEEE.

[31] Seth, N., & Khare, R. (2015, December). ACI (auto-
mated Continuous Integration) using Jenkins: Key for
successful embedded Software development. In 2015
2nd International Conference on Recent Advances in
Engineering & Computational Sciences (RAECS) (pp.
1-6). IEEE.

[32] Chen, L. (2015). Continuous delivery: Huge benefits,
but challenges too. IEEE Software, 32(2), 50-54.

[33] Schultis, K. B., Elsner, C., & Lohmann, D. (2014,
November). Architecture challenges for internal soft-
ware ecosystems: a large-scale industry case study. In
Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering
(pp. 542-552). ACM.

[34] Voget, S., & Favrais, P. (2010). How the concepts
of the Automotive standard ’AUTOSAR’ are real-
ized in new seamless tool-chains. In 2010 European
congress of Embedded Real-Time Software and Sys-
tems, Toulouse.

[35] Trochim, W. M. (2006). Types of surveys. Retrieved
from http://goo.gl/VfPZij

[36] Whittle, J., Hutchinson, J., Rouncefield, M., Burden,
H., & Heldal, R. (2013). Industrial adoption of model-
driven engineering: Are the tools really the problem?.
In Model-Driven Engineering Languages and Systems
(pp. 1-17). Springer Berlin Heidelberg.

[37] Smith, E. K., Bird, C., & Zimmermann, T. (2015,
May). Build it yourself! homegrown tools in a large
software company. In Software Engineering (ICSE),
2015 IEEE/ACM 37th IEEE International Conference
on (Vol. 1, pp. 369-379). IEEE.

[38] Wolvers, R., & Seceleanu, T. (2013, September). Em-
bedded Systems Design Flows: Integrating Require-
ments Authoring and Design Tools. In Software Engi-
neering and Advanced Applications (SEAA), 2013 39th
EUROMICRO Conference on (pp. 244-251). IEEE.

A Appendix

A.1 Interview Guide

1. What is your role in the company?

2. What is your definition of a shared tool/toolchain?

3. Do you have any existing shared tool/toolchain in your
organization? If no, are you planning one?

4. Could you please discuss the benefits of shared tools
with respect to product, process, business, organiza-
tion, and architecture dimensions?

5. Can you rank the importance of those dimensions with
respect to the benefits of shared tools?

6. Could you please discuss the challenges of shared tools
with respect to product, process, business, organiza-
tion, and architecture dimensions?

7. Can you rank the importance of those dimensions with
respect to the challenges of shared tools?

8. If not covered, how do you rate the importance of those
factors with regard to challenges:

• Intellectual property

• Ownership/responsibility

• Versioning

• Evolution

9. If not already covered, how do you address those chal-
lenges?

10. In what software development activities shared tools fit
best? E.g. Implementation, Integration, Deployment

11. How tools should be shared in the organization?

12. What characteristics should a tool have for sharing in
the organization?

13. How do you see the importance of those factors for a
shared tool?

• Infrastructure (e.g. forum, etc)

• Community (inner source versus open source)

• Architectural issues (such as object orientation)

• Accessibility (e.g. local installation versus web-
based)

• Openness (e.g. import/export features)

• Standardization (e.g. well-defined data exchange
format)

A.2 Interview data

The following tables include a summary of the inter-
views, classifying the findings into three categories:

• Benefits of shared tools

• Challenges of shared tools

• Suggested characteristics or attributes of shared tools

Table 14 visualizes the information gathered from all
the resources. If elements were discovered in more than
one interview, their frequency was included next to them,
inside parentheses. Additionally, table 7 displays the se-
quence the various interviews were conducted chronolog-
ically, with the first two interviews being conducted with
employees of company A and the rest with participants from
company B.

Table 7. Interview chronological data
ID Date
6 November 2015
5 February 2016
3 March 2016
4 April 2016
1 May 2016
2 May 2016

Table 8. Interview #1

Benefits Challenges Attributes
Easier to setup
and get started
Cost decrease

Maintainability
Seamless

organization
Enforce a common

architecture

Can be a
limiting factor

High
implementation

cost
Assumptions on
organizational

structure
Require

responsibility
Require good

versioning

Interoperability
Few

dependencies
User group
for support

Communication
infrastructure
Standardized

interfaces
Openness

Web-based

Table 9. Interview #2
Benefits Challenges Attributes

Facilitates
reuse

Seamless
organization

Sustainability
Performance

Require
robustness

Ad-hoc share
or usage
Misuse
Need to

support legacy
code or APIs
Require good

versioning

Solid
infrastructure
Web-based

Standardized
interfaces

Consistency
Interoperability

Table 10. Interview #3
Benefits Challenges Attributes

Robustness
Efficiency
Consistent

communication

Difficult to
learn

Knowledge
management

(too many tools)
Hard to assess

the tool
appropriateness

Documentation
Wiki

User group
for support

Easy to
distribute

Table 11. Interview #4
Benefits Challenges Attributes

Cost decrease
Knowledge

management
(reduced number

of tools)

Difficult to
learn

Knowledge
management

(too many tools)
Require good

versioning

Tested
Dependable

Documentation
User group
for support
Usability
Openness

Table 12. Interview #5

Benefits Challenges Attributes
Knowledge

management
(reduced number

of tools)
Maintainability

Facilitate
reuse

Increased quality

Can be a
limiting factor

Can hinder
innovation
Knowledge

management
(too many tools)

Low maintainability
(too many tools)

Lack of
certification

Hard to assess
the tool

appropriateness
Require

responsibility

Usability
Documentation

Up-to-date
Openness

Standardized
interfaces

User group
for support

Table 13. Interview #6

Benefits Challenges Attributes
Faster

production
Better

communication
Facilitate

testing
Enforce

a common
architecture
Common

vocabulary
Facilitate

cross-organizational
model handling

Ad-hoc approach
No top-down

implementation
Employee
resistance

Narrow domain
perspective

Competing and
conflicting tools

Bad
documentation

Require
responsibility

Require
feedback

Web-based
Documentation
Discoverability
Relevance to

domain
Tested
Ranked

Standardized
interfaces
Easy to
setup

Table 14. Interviews summary

Benefits Challenges Attributes
Knowledge

management(2)
(reduced number

of tools)
Cost decrease(2)

Maintainability(2)
Seamless

organization(2)
Enforce a common

architecture(2)
Facilitate

cross-organizational
model handling

Facilitates
reuse(2)

Easier to setup
and get started
Sustainability
Performance
Robustness
Efficiency

Faster
production
Consistent

communication
Better

communication
Common

vocabulary
Increased quality

Facilitate
testing

Require
responsibility(3)

Require good
versioning(3)
Knowledge

management(3)
(too many tools)

Can be a
limiting factor(2)

Difficult to
learn(2)

Hard to assess
the tool

appropriateness(2)
High

implementation
cost

Assumptions on
organizational

structure
Requires

robustness
Misuse
Need to

support legacy
code or APIs
Can hinder
innovation

Low maintainability
(too many tools)

Lack of
certification

Ad-hoc approach
No top-down

implementation
Employee
resistance

Narrow domain
perspective

Competing and
conflicting tools

Bad documentation
Require feedback

Documentation(5)
User group

for support(4)
Standardized
interfaces(4)
Openness(3)

Web-based(3)
Tested(2)

Interoperability(2)
Usability(2)

Few
dependencies

Communication
infrastructure

Solid
infrastructure
Consistency

Wiki
Easy to

distribute
Dependable
Up-to-date

Discoverability
Relevance to

domain
Ranked
Easy to
setup

	Bachelor of Science Thesis in Software Engineering and Management
	Dimitrios Platis
	JIAXIN LI

