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Systematic Evaluation of Selected Algorithms for Sensor Based
Localization for a Mini Autonomous Vehicle*

Gabriele Kasparaviciute1

Abstract— This paper evaluates two different sensor fusion
algorithms and their effect on a localization algorithm in
the Robot Operating System. It also describes algorithms’
strengths and weaknesses. In order to evaluate these algorithms
experiment was conducted in three different scenarios for
both fusion algorithms, results were collected under the same
conditions. The data compares the final robot’s position to
ground truth.

I. INTRODUCTION
A. Background

Localization has become an important topic in the field
of robotics especially for technologies such as self-driving
vehicles which critically rely on accurate and timely location
information. There are various approaches and methods to
localization, which can be divided into different categories,
such as precise localization problems or identifying the
environment in which a robot is moving (static or dynamic).
Thrun et al [9] differentiate localization problems in their
various degrees of difficulty based upon the information
available to the robot at the outset:

1) Position tracking. In this situation, a robot knows its
initial position and where it is heading. This is also
called a local problem.

2) Global localization. In this situation, the robot is placed
somewhere on a map but it does not receive any
information about its current position from the user.
It has to rely on its sensors to evaluate its current
position.

3) Kidnapped robot problem. This problem derives from
the global localization problem, but is more challeng-
ing. In this situation, a robot is placed in a different
location from its initial position but is not aware of
this change, making its location information a false
positive. In global localization problems a robot is at
least aware that it does not know its position—but here
the robot does not know that it does not know its actual
position. The significance of this problem lies in its
ability to test an algorithms ability to recover from
localization failures.

By being able to solve the global and/or kidnapped local-
ization dilemmas, it is possible for robots to solve complex
real life problems. Examples can be seen in the DARPA
and Urban competitions, where real autonomous cars face
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different scenarios and are expected to avoid obstacles [21],
[5]. During these contests, autonomous cars use a variety of
different sensors, one of the most important (yet expensive)
sensors being GPS (Global Positioning System), still con-
sidered reliable even though it provides a car’s position with
an error margin to within a few centimeters at best [6], [15].
Furthermore, GPS is still highly unreliable in urban scenarios
[21]. Therefore, it is important to depend on other sensors
such as wheel encoders, inertia measurement units (IMUs),
and laser scanners. Simply employing previously mentioned
sensors is however not enough, as they cannot solve complex
localization issues due to high sensor data uncertainty. It is
critical to be able to use and analyze the information these
sensors provide in order to get the most accurate data about
a robot’s surroundings [22], [23].

B. Problem Domain & Motivation

It is for the above mentioned reasons a robot needs to
be aware of two state estimations regarding a map it is
attempting to navigate. The first state estimation is local,
describing the robots prompt surroundings, which aids in
avoiding obstacles and path planning. The second estimation
is global, providing the robot with knowledge of its position
within a global coordinate frame. In the local estimation,
robots usually adopt sensor fusion, which is a process that
makes use of an algorithm to combine data from multiple
sensors to provide more accurate data about the current en-
vironment. By combining local and global state estimations,
it is possible to improve the robustness and accuracy of a
robot within a given map.

Previous work has noted a gap in localization research,
where robots have usually depended on only either local esti-
mates or fusing data onto a global estimate frame [24]. There
are few papers which focus on creating a third coordinate,
which fuses sensor data and subsequently provides the data
to a global estimate—a robot could adopt this information
and calculate its global position onto a coordinate frame,
making use of another algorithm [25]. Furthermore, there is a
lack of research of local state algorithms effect on the global
one in this precise sensor setup in simulation environment.
Therefore the objectives of my research are stated as follows:

1) Model the simulation environment to replicate stake-
holder’s mini vehicle with the chosen algorithms.

2) Model the simulation environment to test algorithms.
3) Analyze algorithms’ performance.



C. Research Goal & Research Questions

This paper compares two different sensor fusion algo-
rithms (Extended Kalman Filter and Unscented Kalman
Filter) and their influence on another algorithm—which
computes a robot’s position estimate (Monte Carlo
Localization)—in a simulation performed in an experiment
with the support of an industrial stakeholder. The localization
algorithm which outputs the end result solves the global
localization problem. The inputs chosen for the experiment
are described in detail in Section IV. The expected output
is a robot’s position (x, y and heading angle) compared to
ground truth data retrieved from simulation software. Test
cases are run under a controlled case study framework. By
running simulations with appropriate parameter setup it eases
the robot’s transition to real life experiments.

The experiment is conducted by running automatic black
box software tests, taking into account a high level un-
derstanding of the algorithms and the system. Running an
experiment in the simulation allows to maintain stakeholder’s
requirements, evaluate prototypical solution possibilities and
confirm hypothesis in a controlled and systematic way which
requires large quantity of data for validation.

This research raises the following questions:
1) What algorithms are relevant for an autonomous vehi-

cle to localize itself?
2) Which of the two algorithms provides better localiza-

tion accuracy?

D. Contributions

The aim of this paper is to systematically compare the
influence of two different sensor fusion algorithms on a
localization algorithm implemented in the Robot Operating
System (ROS) software, affecting the positioning and move-
ment of a robot. This algorithm setup has not been tested
before in ROS with the proposed sensor arrangement. By
running black box software tests on the proposed robot, it
increases the link to simulations to as an instrument to clarify
requirements, evaluates prototypical solution possibilities,
or/and allows to confirm hypothesis in a controlled and
systematic way.

E. Scope

Idustrial stakeholder offered predefined sensors, chosen to
be installed in a 1/10 scale autonomous mini vehicle (robot).
It includes:

• two wheel encoders which measure traveled distance;
• an inertia measurement unit which measures angular

velocity and acceleration;
• a RPLIDAR laser range scanner measuring distance to

objects.
Furthermore, stakeholder determined Robot Operating

System (ROS) as a software simulation requirement to con-
duct the experiment. This was chosen for several reasons:
firstly, ROS is the most prominent framework for robot
software development, run by an open source community
maintaining various libraries and device drivers [27], [26].

(a) Topological map exam-
ple

(b) Grid based map exam-
ple

Fig. 1: Two major map representation samples based on [34].

Furthermore, ROS allows researchers to run various simula-
tions and allows for the same setups to be run on hardware
(more information in section III). Lastly, ROS was the
software package used for stakeholder’s final project.

F. Structure of the Article

This paper is structured as follows: Section II describes
relevant algorithms for both localization and sensor fusion,
in addition to common approaches taken to solve localization
problems within a given map. It also distinguishes three
major map categories used in algorithms as inputs. Section
III outlines the background of the software package used for
simulation and data gathering. The design of the experiment
is detailed in section IV. Data collection and validation from
the experiment is reported in Section V while interpretation
of this data is provided in Section VI. Finally the findings are
summarized in Section VII which describes how the results
of the study can be carried into future work.

II. RELATED WORK

A. Environmental representations

A robot’s sensors can identify objects in its environment
by criteria such as shape and color. Using a static map
as an input for a localization algorithm enables a robot to
compare the current data received by its sensors against the
previously installed map’s data, computing for position and
direction of travel. Maps are a crucial input, and therefore
detailed research is needed for them. There are three main
categories of maps discussed in the literature: topological
maps, metric maps, and hybrid maps. This section discusses
each, providing their advantages and disadvantages.

1) Topological maps: Topological maps are an abstract of
an environment based on connected nodes and arcs. These
maps allow for distorting point positions without changing
spatial relationships between the nodes. Nodes resemble
places, while arcs resemble paths on which a robot can move
(see Fig. 1 a). This type of map can be built in different
ways, such as building it from grid map information, because
it is a low-resolution model focusing on information like
open spaces and passageways [2], [1]. Since it only focuses
on nodes and arcs, topological maps efficiently help planning
processes with data and is resistant to faulty localization and
wheel slippage [3], [4]. However, this category of maps also
has some disadvantages. For example, these maps are time
consuming to build, especially if the environment requiring



representation is complex [9]. In addition, a vehicle depend-
ing on topological maps uses its sensors to understand its
surrounding based on landmarks or distinct sensor readings.
This creates a problem if two places are similar yet are
reached via different paths.

2) Metric maps: Metric maps represent environments by
making divisions of equally spaced grids. Each grid may
hold information about an obstacle within. These kinds of
maps are rather easy to construct, and succeed in extensive
environments as they are represented by two-dimensional
grids (see fig. 1b). One of the most popular ways to acquire
such a map is by using a laser scanner on a vehicle.
Furthermore, recognition of places on metric maps is not
ambiguous and is viewpoint independent. Additionally these
maps help when calculating the shortest path. To accomplish
this, a vehicle’s position is computed incrementally using
odometric information (data acquired from motion sensors
such as wheel encoders) and other sensor readings.

Nonetheless, grid based metric maps have weaknesses too,
such as requiring more space on hardware and being less
efficient when compared to topological maps [6]. This is
due to the fact that a high resolution of grid is needed if all
details are to be captured [3].

3) Hybrid maps: There is one more alternative if neither
two approaches fit—hybrid maps. As the name states, it
is possible to apply two mapping approaches that would
compensate each other. For example, Fassbender et al [7], [8]
used a metric-topological map for navigation in an outdoor
environment, stating that it helped to combine the accuracy
of metric maps with the efficiency of topological maps.

After taking into account these three maps’ benefits and
weaknesses, it was decided to choose a metric grid based
map due to its ease of construction and also due to low
environment complexity.

B. Algorithms

The two most popular approaches used for sensor fusion
are Kalman filter based method while the standard localiza-
tion algorithm is based on Monte Carlo Localization (MCL)
methods, also known as particle filters [10]. Before jumping
into the algorithms directly, it is important to clear up
definitions for concepts they rely on: Gaussian distribution,
covariance matrix, variance, belief, and odometry.

1) Gaussian distribution. Mobile robots receive informa-
tion about their surroundings from sensors which are
prone to error. Mathematically this uncertain data is
portrayed by random variables and probability theory.
Gaussian distribution (also known as normal distribu-
tion, the bell curve shape) represents the possibility
for a random variable to fall under a given value (see
Fig. 2). Its mean is in the peak of the curve, which
distributes all other values equally (50%) around the
mean[33].

2) Covariance matrix shows whether variables in a vector
correspond to each other in a positive way (if variables
x and y increase, that means they tend to covary)[4].

3) Variance is the average distance from mean.

Fig. 2: Normal distribution example.

Fig. 3: A high level presentation of Extended
Kalman filter manner according to [28].

4) Belief is a robots understanding of the state envi-
ronment, including its past sensor measurements and
controls.

5) Odometry data is data retrieved from a robot’s motion.
In our case, it will be retrieved from wheel encoders.

1) Extended Kalman Filter: Extended Kalman filter
(EKF) has been known for decades and is an improved
version of Kalman filter (KF) which can only deal with
linear functions [17], [18], [19], [20]. However, in real life
situations data is nonlinear. In our case, measurements taken
from a laser scanner behave similar to sine or cosine wave
forms, rather than a straight line. The Extended Kalman filter
(EKF) has been known for decades, and is an improved
version of KF that can be applied to nonlinear data. EKF is
thus more significant in our case and more applicable than
KF. The basic idea of EKF is linearization. EKF takes the
mean estimate it received from a previous time stamp and
linearizes nonlinear functions around that mean, making it
possible to apply the original Kalman filter to update the
robot’s state[24]. A visualization of how EKF is carried out
is shown in figure 3.

The input of EKF algorithm is t (time), µ (mean calculated
previously), covariance ⌃, u (control) and z (measurement).
All these variables represent a belief (see fig. 4). In lines
2 and 3, EKF applies a first order method called Taylor
expansion, which constructs a linear function and covariance
of the current estimate. These two steps are called prediction
steps, which output a predicted belief µ and ⌃ representing
the belief one-time stamp before combining the measurement
z. The belief is retrieved by combining the control (u).
The mean is then updated using a function that represents
the state (g) with an alternative previous mean. In line 3,



Fig. 4: The Extended Kalman filter algorithm [9].

covariance is updated by using a linearized state function
(now G).

In lines 4 through 6, the estimated belief is altered into a
desired belief by involving the measurement zt. The variable
Kt in line 4 is called the Kalman gain, which dictates to what
degree observations should have effect when compared to the
prediction, while also adding process noise covariance (Q)
which models uncertainty in the prediction stage of filtering.
Line 5 transforms the mean by incorporating the Kalman
gain while in line 6 new covariance of belief adjusts its
information in regards to the Kalman gain and measurement
(h).

To simplify, if a robot is moving around a plane and
calculates that the gain is equal to 1, that means that the
previous state does not matter and its current state estimation
is calculated from observations. While if the gain is equal
to 0, it suggests that data received from measurements is
insignificant, and original calculations are used relating to
its current state.

The Extended Kalman filter handles nonlinearities by
using Jacobians (G and H instead of A, B and C matrices
in Kalman filter). Jacobians are the first derivatives, which
simply say how far the current state estimate is from the best
estimate it had before. G and H need to be recomputed in
every point in time because the linearization point changes.
However, it depends on the degree of a function’s nonlin-
earity. If the linearized functions are approximately linear,
then in general EKF’s belief is accurate. Otherwise, large
uncertainties will lead to increased errors and may contain
expensive matrix operations [29]. There have been some
attempts to use EKF in vehicle localization, for example,
Dantanarayana et al [14] have fused odometry information
and range bearing sensor data for their robot, while Hoang et
al [30] fused omnidirectional camera and a laser rangefinder
using EKF. Others have used infrared sensors and odometry
data [31], [32].

2) Unscented Kalman Filter: An Unscented Kalman filter
(UKF) is more complex compared to an EKF as it involves
more steps (see Fig. 5). However, it similarly includes the
prediction and update steps (also known as estimation). The
basic idea behind this algorithm is as follows: UKF computes
a set of sigma points (where the first one is the mean), then

Fig. 5: A high level presentation of Unscented
Kalman filter manner according to [28].

Fig. 6: A high level presentation of Monte Carlo Localiza-
tion.

it maps those points through a nonlinear function and uses
those points to reconstruct a normal distribution (which are,
as mentioned above, all the Kalman filter can handle) [33].
It also assigns weighted points to these sigma points. The
difference between EKF and UKF is that UKF refrains from
solely linearizing around the mean—in other words it takes
into account points away from the mean. Sigma points and
weights are free parameters that can be customized for each
scenario. There is no unique solution of choosing them, but
there are some properties that it must follow. For example, all
sigma points should sum to 1 and if the mean is reconstructed
from weight points, the result should be the original mean
with the same covariance matrix.

3) Monte Carlo Localization Algorithm: In robot localiza-
tion the most important concept is belief as the robot does not
know its position, which cannot be measured directly. This
conveys that the robot calculates its position from the given
map and sensor data [44]. Position is expressed by a vector
which includes two dimensional coordinates x and y and
the robot’s heading ⇥ (theta) . The most common algorithm
used to determine belief is the Bayes filter algorithm, which
simply calculates the probability for a state that a robot could
be in. Mathematical derivations of the Bayes filter can be
found in [9]. There are many filters within the Bayes family,
but when it comes to localization, Monte Carlo Localization
(MCL) has been characterized as the gold standard [36], [37],
[38], [39].

The concept of MCL is as follows: its input is any arbitrary
distribution (not Gaussian) and a map. It distributes particles
which hold the state hypothesis (possible position). Each of
these samples has a weight indicating the probability of that
area (fig. 6). To put it simply, the more samples are clustered
in an area, the higher probability a robot is located in the



(a) High uncertainty of robot’s position.

(b) Low uncertainty of robot’s position.

Fig. 7: Particle filter in action in ROS.

corresponding area. For example, if there are n number of
samples (particles), that means a system could have n number
of states. This means that the higher number of samples used
in the system, the higher probability of finding the robot’s
state [33]. However, there is also a drawback to this. Since
computational resources mostly are scarce, the number of
samples has to be chosen carefully. Compared to the Kalman
filter which requires the same computational resources if the
area is 10cm large or 1000cm large, MCL’s computation
resources highly depend on the number of samples[33]. In
order for MCL to be able to generate all these particle
filters and choose the way to spread them, it depends on the
motion model of the robot and observation, which retrieves
odometry data. For example, if a robot moves 1cm forward,
particles would also move 1cm forward in the map while
also adding to the noise around it. This spawns the next
generation of samples. MCL’s advantage in this case is that
it does not require linearization (compared to KF) since it
bases sampling on the motion model [45].

An illustration of how a particle filter works is shown in
figure 7. In figure 7a, it shows a robot that is unsure of
its position. However, the second it starts moving towards
its goal, the particle filter propagates all samples forward
according to the motion of robot, weighs them and then
re-samples, thus reducing the particle swarm (pic. b). This
is done by not only depending on the motion model, but
also on observations, which are usually received by various
environment recognition sensors (laser scanners, ultrasonic
sensors). After a few steps the system identifies where a robot
must be in line of the observations. The more information
the robot can retrieve from observation, the fewer particles
are spread around (particles with low weight are discarded).
This whole process is also called global localization.

In comparison to EKF, rather than calculating mean and
covariance in the prediction step, UKF computes sigma

<rosparam param=”odom0 config” >
[true, true, false x, y, z
false, false, true, roll, pitch, yaw
false, false, false x, y and z velocities
false, false, true roll, pitch and yaw’s velocities
false, false, false] x, y, and z accelerations
</rosparam >

TABLE I: Odometry configuration.

points. Then it uses those points for expected observation
and Kalman gain to compute the belief. Furthermore, UKF
does not use Jacobians, thus it has a better approximation
for nonlinear models. UKF has been applied in different
scenarios. For example, Kim et al [35] implemented UKF
to perform sensor fusion for an automatic guided vehicle
with a laser scanner, proximity sensors, encoders, and a
gyroscope installed. Zhang et al and Li et al [28] presented
an example where UKF was used for GPS and IMU sensor
fusion. MCL has the advantage of being able to maintain
many states while KF can only maintain one. MCL works
well in low dimensional space, for example 2D, because it
does not require as many particles. It is also mostly used
in localization required situations where robot does not have
predefined landmarks. There have been various applications
of MCL in research [22], [40], [41]. [42], [43] presented
results of a vehicle using a laser scanner and odometry data
while trying to localize themselves globally.

It is worth mentioning that nowadays due to better and
cheaper hardware, the localization problem is attempted to be
solved using only vision [12], [13], [11]. The extra sensors
used in our project’s robot would signify additional costs
compared to a robot with only one sensor, however a more
robust system machine is obtained.

III. BACKGROUND ON SIMULATION

Robot Operating System (ROS) is an open source robot
software framework. The key ideas behind its application
are nodes, messages, and topics. Nodes represent software
modules that interact with each other in a peer-to-peer
way. These nodes correspond to each other by broadcasting
messages. A message holds information that describes a data
structure (boolean, floating point, integer, and so on). Nodes
communicate messages by publishing them to a chosen topic
(for example, a map). If a node requires data it subscribes to
a topic, which means there can be many nodes connected to
one topic and vice versa. The most simple communication
method is a pipeline (see fig. 9). The robot used in this paper
is a derivation of a Clearpath Robotics Jackal1. Our project
required to remove some sensors from the stock unit (such as
GPS) and adjust its kinematics (most robots use differential
drives with actuators for each wheel).

In the figure 8 the main graph is odom (which corresponds
to odometry). The second graph (base link) subscribes to
odom, which then publishes data to chassis link. The lat-
ter publishes data to other sensor links—for example, all

1http://www.clearpathrobotics.com/jackal-small-unmanned-ground-
vehicle/



Fig. 8: Robot’s coordinate frames in Robot Operating System.

Fig. 9: Visualization of robot’s computational graph in Robot Operating System.

separate wheels, laser scanner link, and so on. Some of
these graphs describe the physical equipment needed to
hold a sensor, for example (mid mount) which can play an
important role in case of collisions. As it is clear, there are
many nodes sending these images (see figure 9). In order
for ROS to be able to keep up with the information about
the robot’s states, there are some predefined nodes keeping
track of it.

In figure 9 the node /robot state publisher gathers infor-
mation about the robot’s state and publishes it to whomever
subscribes. It gathers joint angle data of the robot and
publishes 3D positions of those links based on the robot’s
kinematics.

/tf is a package that maintains information about multiple
coordinate frames (the tree structure seen in figure 8).

/map server loads and provides a map.

/jackal velocity controller/odom collects odometry data
from Gazebo 2, a realistic robot simulator.

/controller spawner, /twist marker server, /cmd vel relay
provides data required to mimic robot controllers.

/*kf localization contributes to sensor fusion. In this pa-
per’s case it is IMU and two wheel encoders.

/amcl supplies Monte Carlo Localization approach and
tracks the robot’s pose.

Even though most of these setups are common for any
robot, the key items requiring adjustment for the purpose of
our study were:

1) Make the robot as similar to the stakeholder’s requests
as possible; making sure it has the same sensor setup
with similar specifications (for example, adapting ROS

2http://gazebosim.org/



laser scanner to simulate physical RPLIDAR laser
ranger)

2) Navigate the robot and constrain its kinematics in such
way that it would resemble an automobile.

3) Map creation.
The first item was resolved by adjusting such ROS param-

eters as odometry configuration. This configuration defines
which variables will be fused to the final estimate. Refer to
table I to see how the odometry configuration looks like in
our case. To the right are explanations of boolean values. In
this example, x and y positions, yaw, x and yaw velocities
are fused to the final estimate. IMU data looks similar.

The second item was addressed by applying a time elastic
band (TEB) path planner, which focuses on navigation of
robot with respect to avoiding contact with obstacles, plan-
ning the shortest path to a goal [16]. In our case it was also
allowed to limit the wheel’s turning radius, which made it
similar to car-like robots.

The third item was resolved by creating a map in the
robot simulation (Gazebo) and commanding the robot to
roam around it while using Simultaneous Localization and
Mapping algorithm, which output a 2D grid map.

IV. METHODOLOGY
In this section experimental setup is described. After an

extensive literature review, the relevance of the three algo-
rithms was confirmed and therefore all of them were used
in the study. Various Kalman filters approaches’ advantages
are outlined in a detailed different localization techniques
comparison study in [50]. Other researchers have shown
agreement in [14], [24], [28], [29]. Similar situation has been
noted with another algorithm; Monte Carlo Localization has
gained its popularity after the DARPA Urban challenge and
it has proven its benefits [21], [5].

To be able to evaluate the Extended Kalman Filters and the
Unscented Kalman Filters fusion effect on the localization al-
gorithm, it was necessary to set up a simulation environment
(see Section III for more details).

The mini-vehicle used in this experiment had a differential
drive with a limited turning radius of 30 degrees with two
wheel encoders mounted on its back wheels and an inertia
measurement unit (IMU). Laser scanner was placed on the
top of robot.

The robot was tested with two different maps (see fig. 10).
Each map’s area was around 900m2. The reason these maps
and the following scenarios were chosen came about after
observing a pattern in previous papers [24], [48], [47], [32],
[51], [49]. Most papers state that their experiments started
with a simple straight line with an obstacle sitting next to
a robot and introduced turning motions to the robot. Later
on difficulty was increased by introducing robot to various
trajectory shapes. The first map tests a simple scenario where
a robot simply drives straight between obstacles (see fig. 10
a). Similar tests were produced in [24], [32]. Additionally,
another test course was run within this map simulating a
city block. This included making the robot drive around
a rectangle shape, as was suggested by [47]. The second

Controlled Variable Clarification
Sensors In ROS simulation it is possible to adjust sen-

sor noise. Noise was added to laser scanner
measurements with a mean of 0.0 and standard
deviation of 0.01. According to specifications,
99% of samples fell within 30mm of actual mea-
surements. Odometry noise was left as default.

Final state estimate It specifies which variables are used for sensor
fusion. See table I.

Particle number Particle number was set between 500 and 2000.
This number has been left by default from the
previous model. As the map is not large it should
be acceptable.

Process noise covari-
ance and estimate co-
variance

Also denoted as Q and P respectively in the
Kalman filter, have been left as default.

TABLE II: Controlled variables of the experiment.

Dependent Variable Clarification
Robot’s estimated pose x, y coordinates followed with heading

angle.
Position variance matrix x, y and trajectory deviation from mean.

TABLE III: Dependent variables of the experiment.

map included some building blocks in it, forcing the vehicle
to drive on a prepared figure-of-eight trajectory, creating a
scenario putting its wheel encoders to a challenging task [46].

Sensors were fused by selecting their appropriate output
values (see tables I and V). Wheel encoders and IMU
supplied acceleration, angular rate, and velocity data. In the
odometry matrix, x, y, yaw and yaw velocity values have been
designated for sensor fusion with IMU’s yaw, yaw velocity, x
acceleration and y acceleration. Filters receive duplicate data
of yaw and yaw velocity in order for the robot’s trajectory to
be calculated in the most accurate way. As we are operating
in a 2D coordinate frame, all Z axis values have been set to
false. The second wheel encoder’s data is fused into the filter
by providing a parameter to ROS taking care of its matrix.

Both IMU and wheel encoders have a set Gaussian noise,
with IMU providing data at a rate of 50 Hz. Measurement
data can be extracted from wheel encoders at a rate of 20 Hz.
These numbers have been chosen by determining an average
based on studying previous experiments [24], [49]. The robot
on average drove each instance for approximately 15m.

(a) Urban map. (b) figure-of-eight shaped
map.

Fig. 10: Maps used in simulation.



Independent Variable Clarification
*kf node localization State estimation node in ROS.

TABLE IV: Independent variables of the experiment.

<rosparam param=”imu0 data” >
[false, false, false x, y, z
false, false, true, roll, pitch, yaw
false, false, false x, y and z velocities
false, false, true roll, pitch and yaw’s velocities
true, true, false] x, y, and z accelerations
</rosparam >

TABLE V: IMU data final estimate matrix.

The experiment was conducted as a controlled case study,
which determined the variables seen in tables II, III and IV.
Each of the three scenarios (straight line, rectangle, and
figure-of-eight) were repeated five times and their average
performance was taken into final calculations.

Mini-vehicle was controlled by setting points on the map
and letting it navigate through the map until it reached each
point.

V. RESULTS

Results for the Extended Kalman filter and Unscented
Kalman Filter’s effect on the Monte Carlo Localization
algorithm are discussed in this section. Data was recorded
while running each scenario and then extracted. Trajectory
orientation was output as quaternions, an alternative way to
represent spacial rotation, though it was decided to compare
trajectory in Euler angles, which are more familiar to most
researchers. The final results for each scenario are expressed
as the mini-vehicle’s position (x, y and heading angle in
degrees) in ground truth data from the Gazebo simulation
and the position as estimated by algorithms. Ground truth
provides the true, also known as the correct robot’s position
data, to evaluate robot’s estimated position. The focus of
this paper is to evaluate which setup of algorithms is best,
determining this using the following strategy:

• Ground truth root-mean-square (RMS) estimate error,
which measures the difference between ground truth and
the robots given estimate. The lower this value is, the
more accurate a position is provided by the algorithm.

• Estimation errors, calculated by looking at the covari-
ance magnitude as a function per time. This reveals the
robot’s calculated uncertainty over time.

• Mean of ground truth RMS.
For the straight line scenario, it is observed that the robot

using EKF started the experiment with a high uncertainty
for all values in position vector; all estimated error variables
are approximately 5 times higher than the ground truth
estimated error (see fig. 11a). The average ground truth error
is approximately 0.5 m. We can see that for the x coordinate
ground estimated error follows ground truth error coarsely,
showing that robot underestimated its position regarding x.
However, when the robot overestimated its y position; the
ground truth error mean was high (50 cm) and accumulated
over time even though the robot’s uncertainty was rather

(a) x plane results using EKF.

(b) x plane results using UKF.

Fig. 11: Ground truth error, mean, and estimated error for x
plane in a straight line scenario.

low (see fig. 12a). Trajectory error is similarly low, usually
staying below the ground truth mean (see fig. 13a).

Testing for UKF had similar results. The robot once again
started with high uncertainty of its position even though
ground truth error halts around the average mean error. To be
more specific, x results show that the average error between
ground truth and the estimated position was less than 20 cm,
with the robot rather certain about its x position (see fig. 11b).
It took a longer time for the robot to reduce its estimated
error position y. Nonetheless, the ground truth error mean
was only around 8 cm, showing little difference between
ground truth and estimated position of y (see fig. 12b). Robot
trajectory was initially erroneous, with the mean of ground
truth RMS less than 0.5 degrees. However, the spikes in
ground truth error show that trajectory was not estimated
well (see fig. 13b).

When running the robot through the figure-of-eight course,
results from the implemented EKF algorithm showed many
spikes for x and y coordinates. Every spike respectively
begins with a turn around an obstacle. We can see that x
estimation starts off with a some uncertainty (around 40
cm), however it corrects itself with each time step before
a turn. Estimated error follows the ground truth RMS error
coarsely, meaning the robot was aware of its uncertainty (see



(a) y plane results using EKF.

(b) y plane results using UKF.

Fig. 12: Ground truth error, mean, and estimated error for y
plane in a straight line scenario.

fig. 14a). The robot overestimated its position regarding y,
with many spikes measured even though it mostly stays under
the ground truth RMS mean. Furthermore, the estimated error
did not follow the ground truth RMS, which means the robot
was not fully aware of its y position (see fig. 18a). The
situation is better in the trajectory results: ground truth error
was below the mean and estimated error followed roughly
the ground truth. It is clear that in at the finish the robot
is absolutely lost in regards to its trajectory since the error
value jumped to nearly 160 degrees (see fig. 15a).

UKF showed more promising results in this scenario;
spikes are scarce. The robot started with a high x plane
uncertainty, which saw a twofold reduction by the middle
of this scenario. The average ground truth error was low
(15 cm). However, the ground truth error peaked twice at
the end of this experiment. Since the robot’s estimated error
follows the ground truth error, this reveals that the robot
is aware of its uncertainty (see fig. 14b). y plane showed
similar results as x (see fig. 18b). Trajectory output showed
that the robot had little uncertainty and error when compared
to ground truth—most of the time below average except for
at the end of experiment, when it peaked to over 20 degrees
(see fig. 15b).

The final scenario challenged the robot to navigate a

(a) Heading results using EKF.

(b) Heading results using UKF.

Fig. 13: Ground truth error, mean, and estimated error for
heading in a straight line scenario.

rectangle shaped obstacle. For the robot employing EKF, the
x plane stays under the 20 cm average. The robot’s error
accumulated even though the actual difference is rather low
(see fig. 16a). Similar results are displayed for the y plane.
However, in this case the ground truth and estimated error
increased by the end of the experiment (see fig. 17a). Spikes
in trajectory reveal that the robot’s course varied greatly.
Similar curves are not exhibited in estimated error, which
accumulated over time (see fig. 19a).

The robot using UKF shows similar spikes in all position
variables. x plane results present that the robot’s estimation
is relatively close to the ground truth. Only in the end of the
experiment does the robot miscalculate its estimation even
though it is in an approximate position (see fig. 16b). The
robot begins the experiment with high uncertainty regarding
the y plane, but is very accurate throughout most of the
scenario: the ground truth RMS stays below the mean (see
fig. 17b). The robot’s heading displays a high uncertainty,
especially regarding the estimated error, which does not
follow the ground truth error (see fig. 19b).



(a) x plane results using EKF.

(b) x plane results using UKF.

Fig. 14: Ground truth error, mean, and estimated error for x
plane in figure-of-eight scenario.

VI. ANALYSIS AND DISCUSSION

A. Relevant localization algorithms

Robot localization can be achieved by applying various
approaches. One of the most popular approaches includes ex-
clusively implementing Kalman filter based algorithms [46],
[31], [32]. Most popular reasons are ease of implementation
and reduced computation burden. Another approach involves
only the use of particle filters [45], [39]. All three algorithms
have gained their acclaim in the research field [50], [5]. The
reason for choosing last option is based on low computational
resources [3], [6].

B. Algorithms evaluation

The Unscented Kalman filter showed its robustness in all
the scenarios, mostly evident by a low (sometimes even by
double) ground truth error mean value when compared to
the Extended Kalman filter. Additionally, results show that
the ground truth error using EKF was spiking much more
often and to higher values. One possibility for this is that
there is a severe non-linearity, which is difficult for the EKF
to handle. Similar results have been shown in [15], [23],
[45], [46]. Researchers reported that most of the time UKF
performed better, except for when the robot’s trajectory was

(a) Heading results using EKF.

(b) Heading results using UKF.

Fig. 15: Ground truth error, mean, and estimated error for
heading in figure-of-eight scenario.

set to a circle. In that case robot performed with similar
results [35].

To increase the accuracy of the algorithms, we would have
to adjust some of the initial controlled variables set in the
experiments methodology. For example, measurement and
process noise accumulate rapidly, and thus should without
question be taken into account. Even though the experiment
included three different scenarios, it does not prove conclu-
sively that the UKF performs better in all of them.

Since exact experimental setup has not been tested previ-
ously, it can not be fully compared to previously published
research papers. This may be due to the same scarce com-
putation resources reason in practice since the application of
two algorithms may be too cost intensive [52], [45].

C. Threats to Validity

One major limitation of this study was that the setup was
not optimal. Even though the requested robot model was
expected to use car-like kinematics, it was only possible
to adapt a differential drives mechanism. Additionally, the
chosen map was too large for the robot, given its sensor ar-
rangement. The laser scanner was set to replicate RPLIDAR,
which measures distance up to 6 meters. This generated
difficulties for the robot to detect obstacles, which in turn



(a) x plane results using EKF.

(b) x plane results using UKF.

Fig. 16: Ground truth error, mean, and estimated error for x
plane in rectangle scenario.

hindered the robots ability to locate itself more accurately.
Furthermore, instead of using teleoperation in the simulation,
the robot navigated using manually-assigned points. This
could have generated some errors resulting in the robot not
completely following the same path for each scenario.

Simulation aids in developing a successful model and
enables testing various real life scenarios. However, it is
important to bear in mind some points. First of all, in this
paper’s setup robot’s tires to ground friction has not been
taken into account. It has been asserted that it influences
robot’s final position [24]. Furthermore, before conducting
real life tests, it is substantial to consider sensors calibration
which would decrease their noise. Moreover, sensor’s rate
also influences sensor fusion algorithm’s output. In the
simulation, the rate remained unchanged. However, there is
a possibility that in reality one sensor may have a lower rate
than the other or it may be affected by some external factors
which would decrease the end performance. This could
generate another source of discrepancy between simulation
and actual performance in real life. Research could also be
conducted in a different context by implementing sensor
fusion with GPS and comparing results to the current study.
Along with a diverse sensor setup, this experiment can be
also be conducted applying a different method, for example,

(a) y plane results using EKF.

(b) y plane results using UKF.

Fig. 17: Ground truth error, mean, and estimated error for y
plane in rectangle scenario.

limited lab experiment on an actual physical mini vehicle.
This would provide evidence if the hypothesis (in this case
if UKF outperforms EKF) is true.

VII. CONCLUSION AND FUTURE WORK

In this paper the effect of two sensor fusion algorithms
(Extended Kalman filter and Unscented Kalman filter) were
tested in regards to the Monte Carlo Localization algorithm
through a simulation conducting an experiment. Algorithms
were analyzed in three different scenarios. Each of these al-
gorithm’s advantages and disadvantages have been discussed,
following with an explanation of simulation environment
setup. This exact setup has not been tested before. Fur-
thermore, different map categories used in robot localization
were described with their advantages and disadvantages. The
results state that the setup is possible and it shows that UKF
in all scenarios performed better than EKF.

In future work, simulation could adapt a real world en-
vironment by installing a sample map from Open Street
Map. This could lead to more real life test cases of an
autonomous mini vehicle. Furthermore, a different algorithm
setup (skipping the sensor fusion step and only using a laser
scanner) would be interesting to test in the same environment
as this experiment and compare results on a physical mini



(a) y plane results using EKF.

(b) y plane results using UKF.

Fig. 18: Ground truth error, mean, and estimated error for y
plane in figure-of-eight scenario.

vehicle including computation resources. Even though one
of the reasons for sensor fusion is to get rid of dependency
from only using one sensor.

(a) Heading results using EKF.

(b) Heading results using UKF.

Fig. 19: Ground truth error, mean, and estimated error for
heading in rectangle scenario.

REFERENCES

[1] Zwynsvoorde, V., Simon, D., & Alami, R. (2000). Incremental
topological modeling using local Voronoi-like graphs. In Intelligent
Robots and Systems, 2000.(IROS 2000). Proceedings. 2000 IEEE/RSJ
International Conference on (Vol. 2, pp. 897-902). IEEE.

[2] Fabrizi, E., & Saffiotti, A. (2000). Extracting topology-based maps
from gridmaps. In Robotics and Automation, 2000. Proceedings.
ICRA’00. IEEE International Conference on (Vol. 3, pp. 2972-2978).
IEEE.

[3] Thrun, S. (1998). Learning metric-topological maps for indoor mobile
robot navigation. Artificial Intelligence, 99(1), 21-71.

[4] Thrun, S., & Bcken, A. (1996, August). Integrating grid-based and
topological maps for mobile robot navigation. In Proceedings of the
National Conference on Artificial Intelligence (pp. 944-951).

[5] Levinson, J., Montemerlo, M., & Thrun, S. (2007, June). Map-Based
Precision Vehicle Localization in Urban Environments. In Robotics:
Science and Systems(Vol. 4, p. 1).

[6] Levinson, J., & Thrun, S. (2010, May). Robust vehicle localization
in urban environments using probabilistic maps. In Robotics and
Automation (ICRA), 2010 IEEE International Conference on (pp.
4372-4378). IEEE.

[7] Fassbender, D., Kusenbach, M., & Wuensche, H. J. (2015, September).
Landmark-based navigation in large-scale outdoor environments. In
Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on (pp. 4445-4450). IEEE.

[8] Drouilly, R., Rives, P., & Morisset, B. (2015, September). Hybrid
metric-topological-semantic mapping in dynamic environments. In
Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on (pp. 5109-5114). IEEE.

[9] Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics.
Cambridge, Mass: MIT Press.



[10] Kristensen, S., & Jensfelt, P. (2003, October). An experimental
comparison of localisation methods, the mhl sessions. In Intelligent
Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ
International Conference on(Vol. 1, pp. 992-997). IEEE.

[11] Lategahn, H., & Stiller, C. (2014). Vision-only localization. Intelligent
Transportation Systems, IEEE Transactions on, 15(3), 1246-1257.

[12] Nagai, I., Watanabe, K. ”Path tracking by a mobile robot equipped
with only a downward facing camera”, Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on,On page(s): 6053
- 6058

[13] Jo, K., Jo, Y., Suhr, J. K., Jung, H. G., & Sunwoo, M. (2015). Precise
Localization of an Autonomous Car Based on Probabilistic Noise
Models of Road Surface Marker Features Using Multiple Cameras.
Intelligent Transportation Systems, IEEE Transactions on, 16(6), 3377-
3392.

[14] Dantanarayana, L., Dissanayake, G., Ranasinghe, R., & Furukawa,
T. (2015, December). An extended Kalman filter for localisation in
occupancy grid maps. In 2015 IEEE 10th International Conference on
Industrial and Information Systems (ICIIS) (pp. 419-424). IEEE.

[15] Zhang, H., Chen, J. C., & Zhang, K. (2014, April). RFID-based
localization system for mobile robot with Markov Chain Monte Carlo.
In American Society for Engineering Education (ASEE Zone 1), 2014
Zone 1 Conference of the (pp. 1-6). IEEE.
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