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Abstract 

Open Source Software (OSS) solutions play an important role in software industry. People all 

around the world use open source applications in their daily life. Development practices in OSS 

usually don’t follow established industry standards, teams are often distributed, and experience 

among team members varies greatly. Nevertheless, OSS has to fulfill the same quality standards 

as conventional software. 

Within OSS, gatekeeping is the process of controlling quality in a way that contribution goes 

through a formal review. OSS use high experienced people (during code reviews) to review and 

control the commits of less experienced people. But it is not evident, if committers with more 

experience actually produce higher quality code. 

In this study we investigate how experience influences the quality of code contributions. This 

shall enable us to get a better understanding how quality assurance processes in OSS work. This 

study is carried out to evaluate the characteristics of code reviewers and their contribution 

efficiency. The study is comprised of six different Apache projects and exploring the facts by 

using source code characteristics. The results of this study present interesting information 

about characteristics of code reviewers and contributions made by them. We investigate the 

relationship between contributor’s experience and contribution efficiency. According to our 

study results, there is no correlation between contributor’s experience and contribution 

efficiency. A developer with less experience can also provide efficient contributions. Results of 

this study can be useful for software professionals, managers and IT researchers. 

 

Keywords: Code Review, Code Inspection, Code Reviewer, Gatekeeper, Open Source Software, 

Apache Software Foundation, Source Code Repository 
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1. Introduction 

Open Source Software (OSS) solutions play a key role in the software industry and provide 

mission critical services to organizations. Development practices in OSS usually don’t follow 

established industry standards, teams are often distributed, and experience among team 

members varies greatly. Nevertheless, OSS has to fulfill the same quality standards as 

conventional software. 

 

Peer code review activity is an important quality assurance technique in both industrial 

development and the open source software (OSS) community [2] [5]. This technique is used in a 

semi-formal way or partially in commercial software projects which is an effective but 

expensive approach. On the other hand, open source community has resolved the financial 

barrier because they are self-motivated volunteers [1]. When Peer review is performed as part 

of each Software development process activity, it identifies defects that can be fixed early in 

the software development life cycle [4]. 

 

The focus of this study is the phenomenon of ‘Gatekeeper’ within open source software 

development (OSSD). As the name suggests, this role work as a gatekeeper to the project code 

base and maintains its quality. Every addition in the project code base goes by review through 

these persons. They can either accept, modify or reject a change submitted by developers.Code 

reviewers are usually more experienced persons and provide efficient contributions [6].   

We use the terms ‘Code reviewer’ and ‘Gatekeeper’ alternatively in the next sections to relate 

it to the other studies. 

 

In this study, we investigate the characteristics of code reviewers, in regard of their experience 

and contribution efficiency. We are interested in finding a way to measure their experience and 

contribution efficiency. The experience and efficiency measured in other studies are conducted 

for the developer role[26] [28]. Moreover, the methods use very few metrics for the 

measurement (such as lines of code for measuring developer experience and use file commits 

error ratio for measuring contribution efficiency) [26] [28]. We are interested to know how the 

experience and contribution efficiency vary among code reviewers using series of mining based 

metrics, and to find out the relationship between experience and contribution efficiency for 

these persons. 

 

The process of code reviews and role of committer is more clearly defined in Apache Software 

Foundation (ASF)1. It is a major OSS community with several successful projects. By a 

collaborative and meritocratic development process, Apache projects deliver enterprise level, 

                                                
1
 http://www.apache.org/foundation/how-it-works.html#roles 
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freely available software solutions that attract large communities of users [3]. They have a 

defined project role for performing the reviews.  

 

We perform a case study by mining data from ASF issue tracker systems. We select the closed 

and fixed issues and the code file commits made for the resolution of these issues. Then we find 

out the characteristics of these code files. This case study consists of multiple units of analysis. 

 The units of analysis are six projects from ASF with differences such as application domain, 

project size, team size and commonalities such as similar project organization for tasks, issues 

and code using the same issue tracker systems and code repository systems. 

 1.1 Goal and Research Questions 

The goal of this case study is to investigate the characteristics of the code reviewer and the 

code where reviews are performed within OSS projects. Moreover, we investigate how these 

characteristics can impact the success of code reviews. 

 

Studies show that involving code reviews result in improved software evolvability by making the 

code easier to understand and modify [9]. In [9], the authors classify the code review findings as 

functional and evolvability (structure, documentation and visual representation) defects, where 

the evolvability defects ratio is higher than functional defects. We investigate the effectiveness 

of code reviews in regard of improvement or quality of code contributions from the code files 

where the fixes are made to solve evolvability defects. We measure the experience of a 

developer on a project and the characteristics of code contributions by the developer. We also 

analyze whether experienced developer’s contributions are effective in term of source code 

quality. 

 

In this study, we collect data about already performed code reviews from the Apache open 

source project's code base. This data is used to analyze the code reviewer effect on software 

quality. We also investigate if there is a relationship between the experience of a code reviewer 

and the success of code reviews. Respectively, we identified the following research questions: 

 

1. How can a code contributor be classified in terms of project experience? 

2. How can code contributions to the projects be characterized by assessing code/file 

characteristics? 

3. How does contributor’s project experience correlate with code contributions? 
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 1.2 Contributions 

This study can be used to understand how effective is the role and characteristics of the code 

reviewer in the development of software systems. This information can be used while making 

the key decisions in the development of software projects, for example, when to introduce 

reviews in the project life cycle. The results of the study show the impact of code review in 

terms of code quality and contributor experience. 

 

In this study, we measure contributors experience purely based on the source control system 

and using file characteristics of the commits. This technique can be used to measure 

contributor’s experience in an automated way. We contribute by providing methods to 

measure efficiency and experience of contributors with the help of different metrics and 

formulas. 

 1.3 Scope 

Our study focuses on OSS because it is challenging how quality is maintained. We have chosen 

Apache Software Foundation (ASF) projects for our case study. The ASF is a non-profit 

corporation that works as a major organization with over 140 software projects that are 

released under the Apache open source license [3]. We investigate six Apache projects and 

collect the data related to resolved and closed issues of the project and code files associated 

with these bug fixes. ASF uses a bug tracking system known as JIRA for managing the issues 

related to projects. The projects we have selected for this study are shown in Table 1.1. 

 

The projects are mainly selected on the bases of their recent activities, a project should have an 

active code repository with a commit activity in the week when data imported. The recent 

activity tells us that the project is an active project with regular contributions from the 

committers. We also considered the number of Total Issues, the number of Total Committers 

and length of the project. Project should not be a new project or very small project. These 

criterionsensure that we get reliable data and a large-enough data set, to perform significant 

statistical analyses. 
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Table 1.1: Selected Apache projects for study 

 

Projects  URLs 

Struts 2 http://struts.apache.org/ 

OFBiz https://ofbiz.apache.org/ 

Felix https://felix.apache.org/ 

Maven https://maven.apache.org/ 

ActiveMQ http://activemq.apache.org/ 

Sling https://sling.apache.org/ 

 

 1.4 Structure of Document 

Chapter 1 presents background, research questions and scope of the thesis. Chapter 2 discusses 

related work; how similar studies are performed by other researchers. Chapter 3 includes the 

methodology, data collection and data analysis approach. This chapter also provides 

information, how the research questions are addressed. Chapter 4 presents results in detail. 

Afterwards, in Chapter 5 Analysis and Discussion are presented based on the results collected 

during this study. Finally, Chapter 6 gives the conclusion of this study.  
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2. Related Work 

We have identified related studies on code reviews and their effectiveness on software quality. 

To find these studies, we performed searches using the keywords ‘Peer review’, ‘Code review’, 

‘Code inspection’, ‘Code reviewer’, ‘OSS’ and ‘Apache Software Foundation’. For searching, we 

have selected the IEEE digital library, ACM digital library and Science Direct because these 

libraries are considered good sources for computer science related studies. Search strings using 

the keywords were created and used in the libraries to find related work. We decided for a 

combination of these three libraries, as we expect them cover a significant part of recent 

computer science literature.  

 

A study shows that 27% of incorrect bug fixes made by contributors who have never worked 

before on source code files related with the fix [15]. Other finding suggests that the quality 

control should preferably perform on changes made by a single developer with limited prior 

experience [16]. As the project grows more complex, only few developers who have been 

involved actively over a certain period of time can fully understand software architecture and 

effectively contribute to its development [17]. The studies [15][16][17] raise a point that a new 

developer can cause problems instead of benefit and experienced developer can contribute 

effectively on software projects. To solve this problem, when people contributing with no or 

little prior experience, code is reviewed first to maintain the quality by code reviewers. These 

are normally the people who have more experience on any specific OSS project [6]. Their duties 

are to review every addition before committing to the project base. 

 

In their study, Wahyudin et al. discuss quality assurance (QA) activities in OSS projects to focus 

on the questions, ‘What are the QA practices used in OSS projects?’ and ‘how do they perform 

such activities?’ [1]. They carried out a case study based on Tomcat, Myface two OSS projects. 

Tomcat is a pure volunteer project, whereas Myface is hybrid. They build a performance 

hypothesis in relation to both types of projects. They illustrated QA practices may differ in the 

different type of projects and the involvement of project community effects on QA practices. 

Moreover, they proposed a framework based on stakeholder interviews in the QA process 

which can be implemented in any OSS project [1]. The Framework has three processes group 

those are defect detection, defect verification and solution verification. Code self-review and 

team review are performed in the solution verification process. 

 

Another study by Rigby and German [2], provides a good understanding of the peer review 

mechanism in Apache Server. The study is conducted by using archival records of email 

discussion and data repositories. They provided a comparison between two Apache review 

techniques; review-then-commits (RTC) and commit-then-review (CTR) as well as a comparison 

of Apache review to an inspection in the commercial project. This study is based on the data of 
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one project from ASF and focusing on characteristics of code reviews.  Findings show that both 

techniques RTC and CTR are not perfect in all environments. An optimal review process may be 

designed by using formal code reviews frequently on critical sections of code before project 

releases and quick review in the early development process. 

 

In order to assure software quality, early detection of defects is highly recommended and code 

review is one of effective approach for early detection of defects [6][7]. In a study by Kemerer 

and Paulk [8], the impact of design and code reviews on software quality is discussed. This 

research shows that the quality of products depends upon the quality control techniques such 

as reviews, and the defect removal effectiveness of reviews depend on review rate. Review 

quality decrease when the review rate exceeds the recommended maximum of 200 lines of 

code (LOC) per hour [8]. This study verifies through results that code inspection can produce 

good quality results in the software development process. 

 

An empirical case study by Rigby and Store [7] investigates the procedure and behavior that 

developers used to find which code patch is to be reviewed. Data is collected for five OSS 

projects and interviews are conducted with nine core developers working on these selected 

projects for this study. They describe how the patch is selected to perform the review and who 

to review it. They show interesting facts after interviewing developers that experienced 

committer in this area is normally reviewer and select the patch for review on the basis of area 

of interest and expertise. Also discussed characteristics of the code reviewer, divided into two 

types of personas positive and negative. Positive persons: objective analyzer (a reviewer 

provides criticism as questions and encourage the discussion), expert adviser (expert reviewers 

provide advices to new developers), enthusiastic support (reviewers provide good solutions and 

take ownership of committing patch). Whereas negative persons: grumpy cynic (experienced 

the member can become cynical when new developers suggest fail solutions), frustratedly 

resigned (when a discussion on review has been carrying extended period of time, a reviewer 

may resign from the discussion). 

 

A study by Khanjani and Sulaiman [13] focuses on quality of review process in open source 

software. The author briefly describes the concept of quality assurance under Open Source 

Software Development (OSSD) model in general; furthermore, discussed the advantages and 

disadvantages of the OSSD model in relation to close source software. They say OSSD model 

technique is safer and faster than traditional technique to improve software quality. They find 

the two factors: code review, data testing is important in software quality. Nevertheless, they 

highlight the importance of peer review as a technique to improve the software quality. 

 

A comparative case study by Asundi and Jayant [14] examines the process of the code review of 

different types of projects. They collected data from five open source projects and performed 
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an analysis. Results show that core members of projects have a high ratio (90%) in the 

involvement of patch submission and review process for three projects. This study shows that 

some patches are not reviewed due to the incorrect format of submission according to 

documentation of the project. Based on their results, they observe that four projects have at 

least one response to each patch submission on average. That means every patch is reviewed at 

least once. 

 

The term code review, code inspection and code analysis are used in the software industry for 

checking the quality of the code. Code inspections are beneficial for an additional reason and 

they make the code easier to understand and change [9]. This study by Siy and Votta [9] shows 

that 60% of all issues appeared in code reviews are not problems, but they improve the 

maintainability of the code by following coding standards and decrease code redundancies. In 

an OSS community project, where a large group of people contributes to the project, it is very 

important that the code is easy to understand and modifiable.  Another study by Mantyla and 

Lassenius [10] affirms that code reviews are good for identifying the code defects because in 

later phases these cannot be found as they do not have effect on software’s visible 

functionality. 

 

While each OSS project has a core group of developers (committers) with write access to the 

code repository, new developers without this privilege can also make their contributions, 

mainly by submitting patches to project mailing lists [11]. The patch submission and acceptance 

process are critical to OSS communities [11]. It is not always immediately clear to whom to 

assign a submitted patch for review [12]. It can be challenging to find a good reviewer for a 

patch [12]. 

 

The papers are similar to our studies. These studies are about the code review process, patch 

submission and how code review effects on software quality in OSS projects. We could not 

identify studies assessing the characteristics of actual code reviewers as an example experience 

of contributors and their impact on the software development process. 
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3. Methodology 

This chapter describes the research method for the thesis project. After research method 

description, data collection process is illustrated in detail. In the end of this chapter, Goal 

Question Metric (GQM) approach is used to describe the research questions in detail. 

3.1 Research Method 

We investigate the characteristics of code reviewers and the code where reviews are 

performed. We select six projects as cases to perform analysis. This thesis project focuses on 

exploring the phenomenon of a code reviewer in environment of OSS development. Our 

research strategy is a case study, performed on six different Apache projects. Our definition of 

case study is based on Stol and Fitzgerald [21]. They describe it as any research conducted in 

real-world setting, that focus on the specific phenomenon without changing the real 

environment is considered to be a field study or case study. The research process is following 

the recommendation by P. Runeson and M. Höst [22]. The steps are described below. 

 

Case Study Design:The goal of this study and its preliminary research questions are defined. A 

review on existing literature is performed. Six projects are explored in this study and limitations 

are defined. The ASF projects are chosen as a domain of this study. See more detail about 

projects in Section 1.2.  

 

This is a case study with multiple units of analysis (UoA) as shown in Figure 3.1. The units of 

analysis are six projects from ASF with differences such as application domain, project size, 

team size and commonalities such as similar project organization for task and issues using the 

same issue tracker system and code repository system. Each project has issues with the same 

attributes of information. 



Figure 3.1: Case study with multiple units of analysis (UoA)

 

Preparation of Data Collection:

selection of project are defined. The rules are included;

 

• A project should be active in recent time (should have commits in the week when 

the data import starts). This avoids investigating outdated and inactive projects.

• During preliminary investigations, we foun

contributors are small

limit ourselves to projects with more than 20 contributors. A

more than twenty contributors as the minimum limit.

• A project should have the minimum limit of 4, 000 issue record

system. 

• And project should have commit history over the couple of years.

 

Multiple sources and collection methods are defined for the study. Each project contains 

thousands of record, so we perform data collection in an automated way. W

manual data collection as a test data to build our automated data collection method and 

ensure the data reliability. Data collection processes are illustrated in Section 3.2.1 and Section 

3.2.2. 

 

Collecting Evidence: The data is collected fr

collected that help to address the research question of case study. Data can also be used to 

perform further analysis. 

 

 

Figure 3.1: Case study with multiple units of analysis (UoA) 

Preparation of Data Collection: In this step, first data sources are investigated. The rules for 

efined. The rules are included; 

ject should be active in recent time (should have commits in the week when 

the data import starts). This avoids investigating outdated and inactive projects.

preliminary investigations, we found that projects with less than 20 

contributors are small projects with insufficient data. Hence, we 

projects with more than 20 contributors. A project should have 

contributors as the minimum limit. 

A project should have the minimum limit of 4, 000 issue records in issue tracking 

And project should have commit history over the couple of years. 

Multiple sources and collection methods are defined for the study. Each project contains 

thousands of record, so we perform data collection in an automated way. W

manual data collection as a test data to build our automated data collection method and 

ensure the data reliability. Data collection processes are illustrated in Section 3.2.1 and Section 

The data is collected from defined automated methods. Useful data is 

collected that help to address the research question of case study. Data can also be used to 
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In this step, first data sources are investigated. The rules for 

ject should be active in recent time (should have commits in the week when 

the data import starts). This avoids investigating outdated and inactive projects. 

d that projects with less than 20 

e have decided to 

project should have 

s in issue tracking 

Multiple sources and collection methods are defined for the study. Each project contains 

thousands of record, so we perform data collection in an automated way. We also perform 

manual data collection as a test data to build our automated data collection method and 

ensure the data reliability. Data collection processes are illustrated in Section 3.2.1 and Section 

om defined automated methods. Useful data is 

collected that help to address the research question of case study. Data can also be used to 
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Analysis of Collected Data: Conclusion is derived from analysis and includes further possible 

research to enhance the case study. The threats of validity are analyzed. Data analyses include 

behavior or impact of contributor’s experience on code contributions. 

3.2 Data Collection 

The first step in the data collection are investigations of available resources. The Apache 

Software Foundation (ASF) provides the following resources for possible contributions. 

 

Mailing List: Each project has multiple mailing lists in ASF, where user can post a question, 

feedback, comment about configuration of project, issues and new feature suggestion. 

Contributors can post their messages in respective mailing list. 

 

Issue and Bug Tracking: Each project uses their own Issue tracker [3] instance to record bugs or 

issue data. Apache typically use JIRA2 and BugZilla as bug tracking systems, where contributors 

can find information regarding issues. These systems track information for issue data, for 

example Issue Date, Issue status, Issue Type, Update Date, Description, Assignee, Reported by 

etc. 

 

Source Code Repositories: Apache uses SVN and Git repositories for source control. These 

repositories are accessible through a website Atlassian Fisheye63. It is mirroring the subversion 

and Git repositories and it is integrated with issue tracker system JIRA. Realized as web service, 

Fisheye6 provides information about source code, fields of information include Issue ID, 

Commit Date, Committer ID, Number of files involved in particular commit, etc.  

 

This study investigates the characteristics of code reviewer and assesses contributions on the 

project. We acquire the data from issue tracking systems and source code repositories. The 

data is collected for six Apache projects Struts2, OFBiz, Felix, Maven, ActiveMQ and Sling. Basic 

information about size and participation about the project is listed in Table 3.1. The data is 

collected using application scripts written in Microsoft C#.Net and stored in Microsoft SQL 

Server. 

 

 

 

 

 

                                                
2
https://issues.apache.org/jira/secure/BrowseProjects.jspa#all 

3
https://fisheye6.atlassian.com/browse 
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Table 3.1: Project facts 

 

Project Name Total No. of issues 

imported 

Total No. of files 

commits 

Total No. of 

contributors 

Struts 2 4006 71357 25 

OFBiz 5683 62119 33 

Felix 4242 51851 42 

Maven 4310 47321 44 

ActiveMQ 5173 39497 64 

Sling 4663 60832 32 

 

 

3.2.1 Manual Approach for Data Collection 

To prepare for an automated data collection process, first we gathered the required data by a 

manual process. The manual approach involves preparation of excel sheets manually from all 

possible data sources. Initially, we have collected data of issues from the Apache Struts2 

project. We have prepared excel sheets from Apache resources to develop the understanding 

of data. It is also important to explore all possible or available fields of data by a manual process 

so that we know about these for automation. This approach is practiced for one project. Figure 

3.2 depicts the process of the manual approach. 



Figure 3.2

 

Step 1: Collection of Issues Data

 

The issue tracking system is used to track different kind of issues information depending upon 

how the tracking system is used in organization

improvement, task, sub-task, new feature or a test.

 

We have made a query using JIRA Query Language (JQL) for extracting the issue's data and 

export them into excel files. There is a limit for export data int

issues. So, we have designed JQL on yearly bases (keeping the records under 100) and exported 

issues into excel files. Excel files were made according to each year. In case yearly issues exceed 

from 100 records then we have divi

Struts2 project. 

The excel files contains information about issues for example Project, Issue Key, Summary, Issue 

Type, Status, Priority, Resolution, Assignee, Reporter

Updated Date, Resolved Date, Components, Linked Issues, Description, Date of First Response 

etc. 

For retrieving the issues data, we have used the following source web url:

https://issues.apache.org/jira/browse/WW

4270?jql=project%20%3D%20WW%20AND%20status%20%3D%20Closed%20ORDER%20BY%20priority%

20DESC 

 

 

Figure 3.2: Manual Data Collection Process 

Step 1: Collection of Issues Data 

The issue tracking system is used to track different kind of issues information depending upon 

how the tracking system is used in organizations. In ASF, an issue represents either a bug, an 

task, new feature or a test. 

We have made a query using JIRA Query Language (JQL) for extracting the issue's data and 

export them into excel files. There is a limit for export data into excel that is maximum 100 

issues. So, we have designed JQL on yearly bases (keeping the records under 100) and exported 

issues into excel files. Excel files were made according to each year. In case yearly issues exceed 

from 100 records then we have divided into multiple files. We have prepared 52 files for the 

The excel files contains information about issues for example Project, Issue Key, Summary, Issue 

Priority, Resolution, Assignee, Reporter, Committer, Creator, Created

Date, Resolved Date, Components, Linked Issues, Description, Date of First Response 

For retrieving the issues data, we have used the following source web url: 

https://issues.apache.org/jira/browse/WW-

4270?jql=project%20%3D%20WW%20AND%20status%20%3D%20Closed%20ORDER%20BY%20priority%
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The issue tracking system is used to track different kind of issues information depending upon 

s. In ASF, an issue represents either a bug, an 

We have made a query using JIRA Query Language (JQL) for extracting the issue's data and 

o excel that is maximum 100 

issues. So, we have designed JQL on yearly bases (keeping the records under 100) and exported 

issues into excel files. Excel files were made according to each year. In case yearly issues exceed 

ded into multiple files. We have prepared 52 files for the 

The excel files contains information about issues for example Project, Issue Key, Summary, Issue 

, Committer, Creator, Created Date, 

Date, Resolved Date, Components, Linked Issues, Description, Date of First Response 

4270?jql=project%20%3D%20WW%20AND%20status%20%3D%20Closed%20ORDER%20BY%20priority%



 

Step 2: Collection of File Commit Data

 

We can find commit information related to each issue obtained in step 1 through Atlassian 

Fisheye6. It is a web interface th

Username, Commit Date, Commit ID, Committed File Paths, etc. We have collected commit 

information against issues manually and saved them in excel files. Repositories in Atlassian 

Fisheye6 are linked with JIRA and its interface looks like as in Figure 3.2. We can see the time 

since last recent activity on the repository. For an example, Maven project have last update 39 

minutes ago as shown in Figure 3.3

 

Figure 3.3: Atlassian Fisheye6 Code Repositories with Commit History Information

For retrieving the commit information for each issue, we have used following source web url to 

explore the code files: 

https://fisheye6.atlassian.com/browse/struts/core/src/main/java/org/apache/struts2/views/De

Library.java?r1=0aa0a69068c8dd7c61119f2a5baf8b9ab697c750&r2=9aedd857a4294a5091bce6abcdcb1

83f83833cb6 

Step 3: Collection of Files Characteristics Data

 

Next step is collecting file characteristics for committed files through SonarQube [24]. It is a 

web tool to measure file complexity. A

complexity of projects. We have manually collected the data from the SonarQube web links and 

saved it into excel files. The file characteristics include Lines of Code, Complexity, Number of 

Classes, Number of Functions and Complexity per Function.

 

Step 2: Collection of File Commit Data 

We can find commit information related to each issue obtained in step 1 through Atlassian 

Fisheye6. It is a web interface that provides information about commits for example Committer 

Username, Commit Date, Commit ID, Committed File Paths, etc. We have collected commit 

information against issues manually and saved them in excel files. Repositories in Atlassian 

ed with JIRA and its interface looks like as in Figure 3.2. We can see the time 

since last recent activity on the repository. For an example, Maven project have last update 39 

nutes ago as shown in Figure 3.3, so it is an active project in the repository. 

: Atlassian Fisheye6 Code Repositories with Commit History Information

For retrieving the commit information for each issue, we have used following source web url to 

https://fisheye6.atlassian.com/browse/struts/core/src/main/java/org/apache/struts2/views/De

Library.java?r1=0aa0a69068c8dd7c61119f2a5baf8b9ab697c750&r2=9aedd857a4294a5091bce6abcdcb1

Files Characteristics Data 

Next step is collecting file characteristics for committed files through SonarQube [24]. It is a 

web tool to measure file complexity. Apache projects are configured with this tool to see the 

complexity of projects. We have manually collected the data from the SonarQube web links and 

saved it into excel files. The file characteristics include Lines of Code, Complexity, Number of 

umber of Functions and Complexity per Function. 
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We can find commit information related to each issue obtained in step 1 through Atlassian 

at provides information about commits for example Committer 

Username, Commit Date, Commit ID, Committed File Paths, etc. We have collected commit 

information against issues manually and saved them in excel files. Repositories in Atlassian 

ed with JIRA and its interface looks like as in Figure 3.2. We can see the time 

since last recent activity on the repository. For an example, Maven project have last update 39 

 

: Atlassian Fisheye6 Code Repositories with Commit History Information 

For retrieving the commit information for each issue, we have used following source web url to 

https://fisheye6.atlassian.com/browse/struts/core/src/main/java/org/apache/struts2/views/DefaultTag

Library.java?r1=0aa0a69068c8dd7c61119f2a5baf8b9ab697c750&r2=9aedd857a4294a5091bce6abcdcb1

Next step is collecting file characteristics for committed files through SonarQube [24]. It is a 

pache projects are configured with this tool to see the 

complexity of projects. We have manually collected the data from the SonarQube web links and 

saved it into excel files. The file characteristics include Lines of Code, Complexity, Number of 



3.2.2 Automated Approach for Data Collection

Using JIRA and Atlassian Fisheye6 web URLs, it is possible to automate the data collection 

process to gather the large amount of data for the research. We have exe

writing web client applications to process the web requests and fill in a database for th

analysis. Figure 3.4 shows the process of automated data collection in detail.

Figure 3.4

Step 1: Collection of Issues Data

 

We automated the collection of issue's data by generating web links dynamically for every 

month with the month start and end date, 

https://issues.apache.org/jira/sr/jira.issueviews:searchrequest

xml/temp/SearchRequest.xml?jqlQuery=project+%3D+"

%2C+Closed%29+and+createdDate+%3E%3D+%27"

"%27+and+createdDate+%3C%3D+%27"

When we download XML from the above link, it provides 

regarding issues' data as we have talked above (downloadable excel file) data in XML format. 

This required us to write a program which calls web request and download the XML file.  Then 

parse the XML and find the related inform

 

3.2.2 Automated Approach for Data Collection 

Using JIRA and Atlassian Fisheye6 web URLs, it is possible to automate the data collection 

process to gather the large amount of data for the research. We have executed web url's by 

writing web client applications to process the web requests and fill in a database for th

shows the process of automated data collection in detail. 

 

 

Figure 3.4: Automated Data Collection Process 

n of Issues Data 

We automated the collection of issue's data by generating web links dynamically for every 

month with the month start and end date, an example source link is below: 

https://issues.apache.org/jira/sr/jira.issueviews:searchrequest-

earchRequest.xml?jqlQuery=project+%3D+"+apacheProject+"+AND+status+in+%28Resolved

%2C+Closed%29+and+createdDate+%3E%3D+%27" + startDate + 

"%27+and+createdDate+%3C%3D+%27" + endOfMonth+ "%27&tempMax=200" 

When we download XML from the above link, it provides us with the same information 

regarding issues' data as we have talked above (downloadable excel file) data in XML format. 

This required us to write a program which calls web request and download the XML file.  Then 

parse the XML and find the related information. Next we save the information into our SQL 
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Using JIRA and Atlassian Fisheye6 web URLs, it is possible to automate the data collection 

cuted web url's by 

writing web client applications to process the web requests and fill in a database for the 

 

We automated the collection of issue's data by generating web links dynamically for every 

"+AND+status+in+%28Resolved

us with the same information 

regarding issues' data as we have talked above (downloadable excel file) data in XML format. 

This required us to write a program which calls web request and download the XML file.  Then 

ation. Next we save the information into our SQL 
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Server database. To process and filter all issues’ data related to one project, we had to change 

these parameters to the above link for example Project Name, and date ranges on issue create 

date with the Max limit of records of 200 (from JIRA, it’s only possible to export 100 records 

once but when we tried changing download link with a program to 200 records, it worked).We 

collected this data month-wise, because JIRA produces an error if more than 200 issues are 

requested at once. The collected data is saved in the SQL table for issue's data. Fields are shown 

in Table 3.2. 

 

Table 3.2: Fields of information for Issues data 

 

Issues Data Fields 

Project Issue Key Title Issue Link 

Summary Issue Type Status Priority 

Resolution Assignee Reporter Created 

Updated Resolved Affects Version Fixed Version 

Components Linked Issues Description Labels 

Flags Date of First Response   

 

 

Step 2: Collection of File Commit Data 

 

In the second step, we execute script for each issue key in an automated way with links like 

below, 

 

https://fisheye6.atlassian.com/search/" + repository + 

"/?ql=select%20revisions%20from%20dir%20%22%2F%22%20where%20comment%20matches%20%22

" + issueKey + 

"%22%20order%20by%20date%20%20desc%20%20group%20by%20changeset%20return%20path%2C%

20revision%2C%20author%2C%20date%2C%20csid%2C%20totalLines%2C%20linesAdded%2C%20linesR

emoved&csv=true 
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The above link provides us with the file commit information for one issue in CSV format. This 

web request is made while saving the issue’s information. Upon receiving the response from 

this web request, we parsed the CSV data to save it in the database for analysis. SQL table 

contains this information regarding file's data. Fields are shown in Table 3.3. 

Table 3.3: Fields of information for files data 

 

Files Data Fields 

Project Issue Key Revision Author File Path 

Commit Date Changeset ID Total Lines Lines Added Lines Removed 

 

 
Step 3: Downloading File Revisions Involved in Bugs Physically on Disk Storage 
 

In this step, using a script we processed the saved file commits with file path's information in 

our database to download the actual files from the Fisheye6 database. It is the most time 

consuming process as it downloads thousands of files with multiple revisions. 

We have downloaded all file versions involved in issues. We have downloaded the version of a 

file when an issue is introduced in a file and file version when the issue is resolved for that file. 

So we have a state of the file when an issue exists in the file and a state when it is fixed. Table 

3.4 illustrates the before and after commit information with an example of a file ‘Form.java’. 

Table 3.4: An Example with File Before and After Commit Information 

Commit 

Type 

Project Revision File Path Commit 

Date 

Total 

Lines 

Lines 

Added 

Lines 

Removed 

After 

commit 

Struts 2 1485978 struts2/components

/Form.java 

2013-05-24 

08:56 

490 143 8 

Before 

commit 

Struts 2 1292705 struts2/components

/Form.java 

2012-02-23 

08:40 

355 1 1 

 

 

Step 4: Calculating the Characteristics of Downloaded Files 

 

After downloading the files involved in bug fixes, we have measured the characteristics of files 

using Source Monitor Tool [20]. We haven’t used SonarQube [24] for the automated process, 



due to the reason it can only be configured with one version 

of a single file, and second it requires to configure a complete project. For our study we need to 

check characteristics for specific files.

Source Monitor provides console interface for measuring characteristics of the

files programmatically. We have written a program to take each saved file as an input from the 

disk and calculate its complexity.  

The console interface requires an XML configu

generate the files with characteristic's data. This file takes the input of parameters like the path 

of the folder where the code files are placed, the path of the folder where it needs to save the 

characteristic's data file, the format of data (either XML or CSV), cod

language. We have divided the process to measure characteristics by each issue. Source 

Monitor provides characteristic's information as output in CSV format.

 

Figure 3.5: Input configuration file for Source Monitor console application 

 

Step 5: Saving Characteristics of Files

In this step, we parse the CSV data generated in step 4, and save it in the database using 

another console application written. We have created two tables with the same structure to 

add the characteristics of a single file. One table contains the characteristics when the issue was 

found while the other contains the characteristics when issue is solved. So that we can analyze 

 

due to the reason it can only be configured with one version of a file, not for multiple versions 

of a single file, and second it requires to configure a complete project. For our study we need to 

check characteristics for specific files. 

Source Monitor provides console interface for measuring characteristics of the

files programmatically. We have written a program to take each saved file as an input from the 

disk and calculate its complexity.   

The console interface requires an XML configuration file (shown in Figure 3.5

files with characteristic's data. This file takes the input of parameters like the path 

of the folder where the code files are placed, the path of the folder where it needs to save the 

characteristic's data file, the format of data (either XML or CSV), code file programming 

language. We have divided the process to measure characteristics by each issue. Source 

Monitor provides characteristic's information as output in CSV format. 

: Input configuration file for Source Monitor console application 

Characteristics of Files into the Database 

In this step, we parse the CSV data generated in step 4, and save it in the database using 

another console application written. We have created two tables with the same structure to 

he characteristics of a single file. One table contains the characteristics when the issue was 

found while the other contains the characteristics when issue is solved. So that we can analyze 
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of a file, not for multiple versions 

of a single file, and second it requires to configure a complete project. For our study we need to 

Source Monitor provides console interface for measuring characteristics of the large number of 

files programmatically. We have written a program to take each saved file as an input from the 

ration file (shown in Figure 3.5) as an input to 

files with characteristic's data. This file takes the input of parameters like the path 

of the folder where the code files are placed, the path of the folder where it needs to save the 

e file programming 

language. We have divided the process to measure characteristics by each issue. Source 

 

: Input configuration file for Source Monitor console application interface 

In this step, we parse the CSV data generated in step 4, and save it in the database using 

another console application written. We have created two tables with the same structure to 

he characteristics of a single file. One table contains the characteristics when the issue was 

found while the other contains the characteristics when issue is solved. So that we can analyze 
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the difference of characteristics before and after the fix. SQL tables contains the following 

information regarding characteristic's data. Fields are shown in Table 3.5. 

 

Table 3.5: Fields of information for files complexity data 

 

Files Characteristics Data Fields 

Project Code Version File Path Number of Lines 

Percentage 

Comments 

Statements Classes Methods per Class 

Max Complexity Average Complexity Max 

Depth 

Average Depth 

Average Statements 

per Method 

Percentage Branch Statements   

 

3.2.3 SQL Database Schema 

The final database structure includes six tables for data and five tables for results generation 

from this data. Descriptions for the tables are summarized in Table 3.6. 
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Table 3.6: Description of database tables 

 

Tables Description 

tblProjects Contains the general information about apache projects 

tblIssuesData Issues data for each project 

tblFilesData Files commit of version when bug is fixed 

tblFilesComplexity Files characteristics of version when bug is fixed 

tblFilesDataCommitBefore Files commit of version when bug is introduced 

tblFilesComplexityCommitBefore Files characteristics of version when bug is introduced 

tblAnonymizeAuthor Anonymize the contributor names, anonymized 

contributor ID’s are used in the results 

tblResultsRQ1 Metrics information involved in RQ1. 

tblResultsRQ1Normalized Normalized results for RQ1 

tblResutlsRQ2 Metrics information involved inRQ 2 

tblResultsRQ2Normalized Normalized results for RQ2 

 

 

 

 

  



 

The Figure 3.6 and Figure 3.7 represents that how the data is organized in SQL tables.

 

 

Figure 3.6

 

represents that how the data is organized in SQL tables.

Figure 3.6: Database table schema 
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represents that how the data is organized in SQL tables. 
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Figure 3.7: Database table schema for keeping results of data for analysis 

3.3 Measurement Metrics 

This section describes the metrics, used to measure the artifacts of RQ1 and RQ2.  The metrics 

are measured by using file characteristics. Each metric is defined in detail as follows. 

 

Lines of Code (LOC): Total number of physical lines in a source code file is considered LOC or 

Number of Lines [20]. Empty and commented lines are also included in LOC. 

 

Percentage Comments: The lines that contain comments are counted and then compared to 

the total number of lines in the file to compute this metric [20]. 

 

Number of Classes: Classes and Interfaces are counted on bases of their declarations in a 

source code file [20]. 
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Methods per class: This metric count the number of methods in a class [20]. 

 

Code Complexity: The complexity metric is measured as defined by Steve McConnel’s book 

[20], and using method is based on Tom McCabe’s work in which complexity is computed by 

counting the number of decision points in routine [25]. Method or function is considered as 

routine. Each method or function has a complexity of one plus one for each branch statement 

like if, else, while, for, or foreach [20]. Each arithmetic if statements such as (MyBoolean ? 

ValueIfTrue : ValueIfFalse) add one to the total complexity as well. A complexity increases by 

one for each logical operator ('&&' and '||') in the logic within if, for, while or similar logic 

statement [20]. 

 

Average Complexity: It is a measure by taking average of overall complexity computed for each 

method or function in a file [20].  

 

Block Depth:  Nesting code can be used in most languages, nested blocks are almost always 

introduced with control statements like “if”, "case" and “while” [20]. The code gets harder to 

read when depth of nested block grows, more conditions must be evaluated with each new 

nested depth level [20].Block level is zero at the start of each file and increases by one for each 

level of nested statements. 

 

Average Block Depth: It is measured as weighted average of the block depth of all statements 

in a file [20].  

3.4 Goal Question Metric Approach 

Goal, Question, Metric (GQM) is an approach that is used to define the project goals in 

systematic and traceable way [18]. It specifies a measurement model with three levels. First is 

conceptual level where goal is defined for an object. Second is operational level where set of 

questions are used to define the model. Third is quantitative level where set of metrics are 

determined in order to answer the question in measurable way. GQM is a way to derive and 

choose a specific task in a top-down and goal-oriented fashion [19]. This approach minimizes 

the effort of data collection because only required data is to be recorded [19]. We use a GQM 

approach to address our thesis’s research questions. We define goals, questions and metrics to 

answer the research questions based on collected data. This approach improved our method by 

clearly defining the goal, questions to achieve the goal and metrics to answer the questions.  

 



3.4.1 GQM for Research Question 1

The goal of Research Question (RQ) 1 is measuring the contributor’s experience. To achieve this 

goal, we formulate the question “How can a code contributor be classified in terms of project 

experience?”. We decided on a set of metrics, which we expected to address contributors 

experience. The metrics are; 1) Total number of commits, 2) Total number of issues assigned, 3) 

number of lines/LOC, 4) Code complexity of file, 5) Mean time contribution in numb

hours/minutes.  Figure 3.8 shows the GQM for the RQ1 and also metrics description. 
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Total number of Commits by contributor:

repository for a contributor. Hig

less participation. 

 

Total number of issues assigned to contributor:

assigned to a contributor on a specific project. High values 

values represents less participation.

 

Total Lines of Code added by contributor:  

contributor in all his files commits. High values 

represents less participation. 

 

3.4.1 GQM for Research Question 1 

The goal of Research Question (RQ) 1 is measuring the contributor’s experience. To achieve this 

we formulate the question “How can a code contributor be classified in terms of project 

ecided on a set of metrics, which we expected to address contributors 

experience. The metrics are; 1) Total number of commits, 2) Total number of issues assigned, 3) 

, 4) Code complexity of file, 5) Mean time contribution in numb

shows the GQM for the RQ1 and also metrics description. 

 

Figure 3.8: Goal Question Metrics for RQ1 

Total number of Commits by contributor: It measures the number of files of commits to the 

repository for a contributor. High values indicate more participation and low values represents 

Total number of issues assigned to contributor: This is the measure of total number of 

to a contributor on a specific project. High values indicate more participation and low 

values represents less participation. 

Total Lines of Code added by contributor:  This metric gives total number of lines added by a 

contributor in all his files commits. High values indicate more participation and low values 
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The goal of Research Question (RQ) 1 is measuring the contributor’s experience. To achieve this 

we formulate the question “How can a code contributor be classified in terms of project 

ecided on a set of metrics, which we expected to address contributors 

experience. The metrics are; 1) Total number of commits, 2) Total number of issues assigned, 3) 

, 4) Code complexity of file, 5) Mean time contribution in number of 

shows the GQM for the RQ1 and also metrics description.  

 

It measures the number of files of commits to the 

more participation and low values represents 

This is the measure of total number of issues 

ticipation and low 

This metric gives total number of lines added by a 

more participation and low values 



Code Complexity of files (in Average):

contributor’s level of expertise in a sense if he worked on more complex files or not. If this 

number is high means contributor worked on compl

contributor worked on less complex files.

 

Mean time contribution in number of Hours:

commits. We are taking average of time duration among all commits by a contribu

values indicate less participation and low values represents more participation.

3.4.2 GQM for Research Question 2

The goal of RQ2 is assessing the characteristics of contributions made to project. We formulate 

two sub questions to achieve this g

code/file, where bugs are found and fixed?  We find that the code file characteristics include 

Lines of Code, Average Complexity, Code Depth, Percentage Comments, Number of Classes, 

Number of Functions, Statements, Max Complexity, Max Depth etc.

 

Second sub question is; how can code/file characteristics be combined to assess contributions?

To assess contributions using code file characteristics, we take difference of code characteristics 

when a commit is made with a version just before that commit (file version just before a 

commit represents the file state when a contributor started work on a f

Figure 3.9 shows the GQM for the RQ2 and evaluated difference metrics description.

 

 

 

Figure 3.9

 

Code Complexity of files (in Average): Code complexity of files, we take this to measure the 

contributor’s level of expertise in a sense if he worked on more complex files or not. If this 

number is high means contributor worked on complex files and less in number indicates that 

contributor worked on less complex files. 

Mean time contribution in number of Hours: It indicates the time duration between two file 

commits. We are taking average of time duration among all commits by a contribu

less participation and low values represents more participation. 

3.4.2 GQM for Research Question 2 

The goal of RQ2 is assessing the characteristics of contributions made to project. We formulate 

two sub questions to achieve this goal. First sub question is, what are the characteristics of 

code/file, where bugs are found and fixed?  We find that the code file characteristics include 

Lines of Code, Average Complexity, Code Depth, Percentage Comments, Number of Classes, 

tions, Statements, Max Complexity, Max Depth etc. 

how can code/file characteristics be combined to assess contributions?

To assess contributions using code file characteristics, we take difference of code characteristics 

mit is made with a version just before that commit (file version just before a 

commit represents the file state when a contributor started work on a file to fix an issue). 

shows the GQM for the RQ2 and evaluated difference metrics description.

Figure 3.9: Goal Question Metrics for RQ2 
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Code complexity of files, we take this to measure the 

contributor’s level of expertise in a sense if he worked on more complex files or not. If this 

ex files and less in number indicates that 

It indicates the time duration between two file 

commits. We are taking average of time duration among all commits by a contributor. High 

 

The goal of RQ2 is assessing the characteristics of contributions made to project. We formulate 

oal. First sub question is, what are the characteristics of 

code/file, where bugs are found and fixed?  We find that the code file characteristics include 

Lines of Code, Average Complexity, Code Depth, Percentage Comments, Number of Classes, 

how can code/file characteristics be combined to assess contributions? 

To assess contributions using code file characteristics, we take difference of code characteristics 

mit is made with a version just before that commit (file version just before a 

ile to fix an issue). 

shows the GQM for the RQ2 and evaluated difference metrics description. 
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We define contribution assessment in the following as contribution efficiency. We decided to 

use 4 file characteristics to assess the contributions efficiency. These four metrics include 

Average Code Complexity, Lines of Code, Percentage Comments and Average Code Depth. The 

definitions of these file characteristics are given in Section 3.3. 

 

The selected 4 metrics further transformed into 4 manipulated metrics to assess the 

contributions. Manipulated metrics are the metrics that gives comparison results (difference 

values) of two different versions of the same code file to provide an evidence about the 

efficiency of a contribution. These are as follows: 

 

Average Code Complexity Difference: It is calculated by subtracting average complexity of a file 

after commit from average complexity before commit. So in case it is decreased, then it gives a 

positive number value. 

 

Lines of Code Difference: This metric is calculated by taking the difference of Lines of Code 

after and before commit. This value give the number of lines added in a commit. In case Lines of 

Code added, then this measure gives positive number value. 

 

Percentage Comments Difference: The difference of Percentage Comments after and before 

commit. Positive difference values show us that there is addition of documentation in a code 

file. 

 

Average Code Depth Difference: It is measured in similar way as Average Complexity. We 

subtract Average Code Depth of a file after commit from Average Code Depth before commit. 

So in case of decrease of Average Code Depth, the difference value is a positive number. 

 

These metrics are manipulated in a form, so that positive values represent an increase in 

contribution efficiency while negative values represent decrease in contribution efficiency. 

 

Our Strategy for measuring efficiency is described below with four points of view. With 

combining all four points, we expect to create a realistic assessment of contribution efficiency. 

 

● A decrease in Average Code Complexity shows positive impact on contribution 

efficiency. The reason is, that the contributor reduced the overall complexity of the code 

file with his/her commit. The commit thereby contributed to understandability and 

maintainability of the code. 
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● An increase in LOC shows that contributor made a contribution by writing numbers of 

lines of code. This metric gives an idea that contributor understands well the code file so 

that he is able to contribute with addition of code lines. 

 

● An increase in Percentage Comments gives a positive effect on efficiency by increasing 

the readability or maintainability of the code file. 

 

● A decrease in Code Depth represents that code is made simpler and so easier to 

understand and modify. 

 

Since every contributor have hundreds of records of evaluated metrics data, we have taken 

averages of these values to calculate contribution efficiency of a contributor. 

 

3.4.3 GQM for Research Question 3 

The goal of RQ3 is to calculate correlation values between contributor’s experience and 

contribution's efficiency. Figure 3.10 shows the GQM diagram for RQ3. The results of RQ1 and 

RQ2 (contributors experience and contribution efficiency) are the metrics for RQ3. 

 

 
 

Figure 3.10: Goal Question Metrics for RQ3 
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4. Results 

This section presents detailed results of our case studies. These results are collected from the 

automated data collection process which is mentioned in Section 3.2.2. We illustrate the results 

received for all 6 projects using the results of Apache Struts2 project. The results are generated 

using data of 28, 077 issues and 332, 977 files of commits with their characteristics. The 

detailed analysis of these results follows in Chapter 5. For reader’s interest, all other results are 

presented in the Appendix A.  

4.1 Contributor’s Experience(Results for RQ1) 

The experience of contributors is measured by using the metrics; Total Issues Assigned, Total 

Files of Commits by Contributor, Mean Time between commits (in hours), Average Complexity 

of files committed, Total Lines Added by Contributor. Descriptions of these metrics are 

illustrated in Section 3.3. 

Table 4.1: Cumulative Results for contributor’s experience of Apache Struts2 project 

Contributors 

ID 

Total 

Issues 

Assigned 

Total Commits 

by Contributor 

Mean Time In 

Hours 

Average 

Complexity 

Total Lines 

Added by 

Contributor 

1 22 3821 211.73 1.72 23136 

2 6 6 787.08 6.03 34 

3 0 0 0 0 0 

4 4 5 3059.45 1.66 230 

5 7 27 182.12 1.86 512 

6 1 1 0 4.14 1 

7 5 13 576.55 2.07 802 

8 61 346 260.4 1.86 6552 

9 78 33142 57.48 1.7 1653569 

10 19 97 356 2.6 1942 

11 18 52 402.78 2.42 793 

12 41 251 105.98 2.33 1589 

13 20 171 379.08 2.28 925 

14 38 1181 456.85 2.12 122727 

15 335 1921 82.17 2.55 27551 

16 37 117 519.92 2.62 1628 

17 242 8554 42.68 1.96 430957 

18 228 4850 74.07 1.81 355627 

19 1 22 0 1.2 440 

20 45 251 287.97 2.41 14185 

21 1 1 0 2.55 17 

22 57 10842 465.3 1.8 554780 

23 71 858 24.45 2.08 23926 

24 9 23 447.27 2.56 312 

25 45 214 523.42 2.94 1550 

26 13 744 671.72 2 1028 
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Table 4.1 shows results for the contributor's experience of Apache Struts2 project. In the next 

step, each metric value is normalized using a min-max data normalization technique [23]. It is 

simplest method to rescale the value in range {0,1}.  The Equation 4.1 is used to calculate 

rescale value. It calculates the relative value so contributor’s experience is also calculated 

relatively with respect to the other contributor involved in project. 

 

�� = � −min	(�)
max(�) − 	min	(�) 

 

Equation: 4.1 

 

Where x is the original value and x’ is normalized value. For example, we rescale the Total 

number of issues assigned to a contributor’s data, and issues assigned span {40, 150}. Where 

min. issues assigned value is 40 and max. value is 150. To rescale this data, we first subtract 40 

from each Issue assigned value and divide the result by 110 (the difference between the max. 

and min. issue assigned value). 

 

 

��� = �′ × 20
100 

 

Equation: 4.2 

 

The final contributors’ experience is calculated by combining all five metrics with an equal 

weight of 20% for each metric value. Equation 4.2 is used for calculating weight of 20%. 

 

Contributor’s Experience = Total Issues Assigned + Total Files of Commits by Contributor + 

Mean Time (in hours) + Average Complexity + Total Lines Added by Contributor 
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Table 4.2: Normalized results for contributor’s experience of Struts2 project 

 

Contributors 

ID 

Total Issues 

Assigned 

Total Commits 

by Contributor 

Mean 

Time In 

Hours 

Average 

Complexity 

Total Lines 

Added by 

Contributor 

Contributor's 

Experience 

1 0.01257 0.02305 0.18766 0.17847 0.00280 0.38150 

2 0.00299 0.00003 0.14974 0.00000 0.00000 0.15274 

3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

4 0.00180 0.00002 0.00000 0.18095 0.00003 0.18278 

5 0.00359 0.00016 0.18961 0.17267 0.00006 0.36594 

6 0.00000 0.00000 0.00000 0.07826 0.00000 0.07826 

7 0.00240 0.00007 0.16362 0.16398 0.00010 0.33009 

8 0.03593 0.00208 0.18445 0.17267 0.00079 0.39384 

9 0.04611 0.20000 0.19782 0.17930 0.20000 0.62323 

10 0.01078 0.00058 0.17815 0.14203 0.00023 0.33119 

11 0.01018 0.00031 0.17507 0.14948 0.00010 0.33483 

12 0.02395 0.00151 0.19463 0.15321 0.00019 0.37198 

13 0.01138 0.00103 0.17663 0.15528 0.00011 0.34340 

14 0.02216 0.00712 0.17151 0.16190 0.01484 0.37041 

15 0.20000 0.01159 0.19620 0.14410 0.00333 0.54363 

16 0.02156 0.00070 0.16735 0.14120 0.00020 0.33030 

17 0.14431 0.05162 0.19880 0.16853 0.05212 0.56376 

18 0.13593 0.02926 0.19673 0.17474 0.04301 0.55041 

19 0.00000 0.00013 0.00000 0.20000 0.00005 0.20005 

20 0.02635 0.00151 0.18263 0.14990 0.00172 0.36059 

21 0.00000 0.00000 0.00000 0.14410 0.00000 0.14410 

22 0.03353 0.06542 0.17095 0.17516 0.06710 0.44674 

23 0.04192 0.00517 0.20000 0.16356 0.00289 0.40837 

24 0.00479 0.00013 0.17214 0.14369 0.00004 0.32065 

25 0.02635 0.00129 0.16712 0.12795 0.00019 0.32160 

26 0.00719 0.00448 0.15735 0.16687 0.00012 0.33153 

 

In Table 4.2, the rightmost column in yellow shows the normalized results for the contributor’s 

experience of Apache Struts2 project. Contributor 9 has the maximum experience that is 

0.62323 and Contributor 6 has minimum experience with result value 0.07826. The table also 

contains the normalized measurement values.  

 

The zero values for experience are unavoidable in the results. For an example, in Table 4.2 

Contributor 3 have 0 experience. This is the case when we get Contributor name from the 

source systems, but we didn’t find any contribution related to him or her on these systems. 
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4.2 Contribution Efficiency (Results for RQ2) 

The goal of RQ2 is assessing the contributions efficiency. A single contribution consists of a file 

commit and a file version just before that commit. We used file characteristics (Code 

Complexity, Code Depth, LOC and Percentage Comments) to measure the contribution 

efficiency. The metrics are; Difference of average Code Complexity, Difference of average Code 

Depth, Difference of average LOC, Difference of Percentage Comments. The intention behind 

these metrics is discussed in Section 3.4.2. 

 

Table 4.3: Results for contribution efficiency of Struts2 project 

 

Contributors 
ID 

Difference 
Avg. 

Complexity 

Difference 
Avg. Depth 

Difference 
Avg. LOC 

Difference 
Avg. 

Percentage 
Comments 

1 -0.00980 -0.00049 3.49020 4.38333 

2 -0.12500 -0.01250 0.75000 -0.07500 

3 0.00000 0.00000 0.00000 0.00000 

4 0.14800 0.10600 13.40000 0.52000 

5 -0.04000 -0.05300 14.20000 -1.68000 

6 0.00000 0.06000 -1.00000 0.30000 

7 0.26167 -0.06000 30.33333 -2.11667 

8 -0.01802 -0.03542 9.10417 -0.27813 

9 -0.02966 -0.02610 10.79661 0.84661 

10 -0.08913 -0.01978 10.97826 -0.27391 

11 -0.17273 -0.04568 8.88636 -0.18636 

12 -0.02024 -0.02084 9.87952 -0.63373 

13 0.00089 -0.02768 -0.30357 0.18393 

14 -0.21256 -0.05068 4.82051 -0.79658 

15 0.00840 0.00359 6.47166 -0.55283 

16 0.05329 -0.01630 5.45205 0.14658 

17 0.05191 0.00057 6.27901 -0.37605 

18 -0.00272 -0.00332 9.12816 -0.83187 

19 0.00000 0.00000 20.00000 19.64286 

20 0.12663 0.01257 3.82178 -0.19010 

21 0.00000 0.00000 0.00000 0.00000 

22 -0.10261 -0.01625 2.39674 -0.00761 

23 -0.03730 -0.02230 2.27000 -0.38800 

24 0.01111 -0.00111 6.72222 -0.38333 

25 -0.03057 -0.01557 4.27273 -0.53636 

26 0.00000 0.00000 0.37097 -0.02419 

 

Table 4.3 shows results for the contribution efficiency of Apache Struts2 project. In the next 

step, these metric values are normalized as described in Section 4.1. 
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�� = � −min	(�)
max(�) − 	min	(�) ×

25
100 

 

Equation: 4.3 

 

The final contribution efficiency of contributor is calculated by combining all four metrics with 

an equal weight of 25%. Equation 4.3 is used for calculating weight of 25%. 

 

Contribution Efficiency of Contributor = Difference of Average Code Complexity + Difference of 

Average Code Depth + Difference of Average LOC + Difference of Percentage Comments   

 

 

 Table 4.4: Normalized results for contribution efficiency of Apache Struts2 project 

 

Contributors 
ID 

Difference 
Avg. 

Complexity 

Difference 
Avg. Depth 

Difference 
Avg. LOC 

Difference 
Avg. 

Percentage 
Comments 

Contribution 
Efficiency 

1 0.10689 0.08962 0.05732 0.07468 0.32851 

2 0.04616 0.07154 0.02234 0.02346 0.16349 

3 0.00000 0.00000 0.00000 0.00000 0.00000 

4 0.19008 0.25000 0.18383 0.03029 0.65420 

5 0.09097 0.01054 0.19404 0.00502 0.30057 

6 0.11206 0.18072 0.00000 0.02777 0.32055 

7 0.25000 0.00000 0.40000 0.00000 0.65000 

8 0.10256 0.03702 0.12899 0.02112 0.28969 

9 0.09642 0.05105 0.15060 0.03405 0.33211 

10 0.06507 0.06057 0.15291 0.02117 0.29972 

11 0.02100 0.02156 0.12621 0.02218 0.19095 

12 0.10139 0.05897 0.13889 0.01704 0.31628 

13 0.11253 0.04868 0.00889 0.02643 0.19653 

14 0.00000 0.01403 0.07430 0.01517 0.10350 

15 0.11648 0.09577 0.09538 0.01797 0.32561 

16 0.14015 0.06581 0.08237 0.02600 0.31433 

17 0.13942 0.09122 0.09292 0.02000 0.34356 

18 0.11063 0.08536 0.12930 0.01476 0.34004 

19 0.11206 0.09036 0.26809 0.25000 0.72050 

20 0.17881 0.10930 0.06155 0.02213 0.37180 

21 0.11206 0.09036 0.01277 0.02432 0.23950 

22 0.05797 0.06589 0.04336 0.02423 0.19145 

23 0.09239 0.05678 0.04174 0.01986 0.21078 

24 0.11791 0.08869 0.09858 0.01991 0.32510 

25 0.09594 0.06692 0.06731 0.01816 0.24833 

26 0.11206 0.09036 0.01750 0.02404 0.24396 
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Table 4.4 shows the normalized results for the contribution efficiency of Apache Struts2 

project. Contributor 19 has maximum contribution efficiency with value 0.72050. Whereas 

Contributor 14 has minimum contribution efficiency with result value 0.10350. 

The zero values for contribution efficiency are unavoidable in the results. For an example, in 

Table 4.4 Contributor 3 have 0 efficiency. This is the case when we get Contributor name from 

the source systems, but we didn’t find any contribution related to him or her on these systems. 

 

4.3 Correlation between Experience and Efficiency (Results for RQ3) 

The goal of RQ3 is to find out the correlation between contributor experience and 

contribution's efficiency. Correlation between sets of data is a measure of how well the data is 

related. The common measure of correlation in parametric statistics is by using Pearson 

Correlation. It can be measured by the Equation 4.4. 

 

 

� = 	 �(∑��) − (∑�)(∑�)
��� ∑�� − (∑�)���� ∑ �� − (∑�)��

 

Equation: 4.4 

 

We have performed statistical tests (using R with an environment RStudio [27]) for calculating 

the correlation between contributor experience and their contribution efficiency. 

 

4.3.1 Interpretation of Pearson Correlation Coefficient 

The Pearson Correlation Coefficient value ranges from -1 to 1. A value of 1 means a strong 

relationship between X & Y. It means that Y increases as X increases. A value of 0 means no 

correlation. A value of -1 means a strong correlation also but this value means Y decreases as X 

increases. Correlation does not make a statement about causalities. If X correlates with Y, it 

does not mean that X causes behavior of Y. 

4.3.2 Correlation Coefficient Values for Six Projects 

Our results are given in Table 4.5. The results show that there is no correlation between 

contributor experience and efficiency. In our statistical tests, normalized datasets give us 

Pearson Coefficient value ranging from -0.2669051 to 0.1229097.  
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We additionally provide the p-value, stating if the correlation coefficients are significantly 

different from 0. As none of the p-values indicates significance, we conclude that even the weak 

correlations may be received by chance.  

 

Table 4.5: Correlation Coefficient value for each project 

 

Project Pearson's correlation 

coefficient 

p-value 

Struts 2 -0.1665629  0.4262 

Maven -0.2669051  0.1053 

ActiveMQ -0.07569234 0.5864 

Sling 0.1229097  0.5253 

Felix -0.1393565 0.404 

OFBiz -0.05370417 0.782 
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5. Analysis and Discussions 

This section presents the analysis of results and discuss them in detail. By the end of this 

chapter, threats to validity are assessed. 

5.1 Contributor’s Experience 

 

RQ1: How can a code contributor be classified in terms of project experience? 

According to our study, code contributor can be classified in terms of project experience by 

combining 5 metrics of information, which are the total number of issues or tasks, total files of 

commits, mean time between commits in hours, average file complexity and total lines of 

contribution added by a contributor. 

 

It is a common practice that contributor’s experience is measured by how long they contributed 

to a project (with the help of the contributor start date and end date) and by using the 

frequency of contributions [26]. In our study, we are examining the code files (where work is 

done by a contributor) to measure the experience. Two of our metrics, lines of code and bug 

fixing contributions are discussed for assessing developer contributions in an empirical study 

[29], it is argued in the study that these metrics can better perform when combined with other 

metrics of information. And that is the case with our study, we have combined these 2 metrics 

with other 3 metrics. 

 

In our study, we don’t use the difference between first and last contribution date as the work 

period of a contributor while calculating the experience. The reason is that, in OSS environment 

people don’t contribute on the regular basis. So for an example a developer A with work period 

of 1 year may have more experience than a developer B with the work period of 2 years, 

because it is possible that developer B have one contribution 2 years ago and then few 

contributions later. Instead we use an approach to see a contributor activity with the help of 

the mean time difference in hours between contributions. 

 

If we analyze the contributor’s experience in Figure 5.1 for the Apache Struts2 project, top 4 

contributors (contributor 9, 17, 18 and 15) have more contributions experience than other 

contributors. Hence, using our combined metrics we can identify differences among the 

contributors and identify key developers with high experience. 

 



 

Figure 5.1: Apache Struts2 Contributor’s Experience

 

 

This way it can be very useful to analyze contributor experience on a project while assigning 

tasks or issues to developers. We are able to answer RQ1, since we have classified the 

contributor’s in terms of their experience.

 

5.2 Contributions Efficienc

 

RQ2: How can code contributions to the projects 

characteristics? 

Code contributions can be characterized

study, these are average file complexity, average code depth, lines of code and percentage 

comments. These code/file characteristics can be combined by taking difference of ‘commit 

before’ and ‘commit after’ values.

 

In other studies [26] [28], the quality of contribution is normally measured by one binary metric 

information, which is the rate of non

value if a project compiles without any error after commit and a ‘false’ in case it generates 

errors after the commit. 

 

A recent study proposes a way to measure contribution efficiency by using comple

This study result suggests that the developers who unnecessarily increase the code complexity 

are less efficient [29]. This is an empirical study but it lacks 

 

Figure 5.1: Apache Struts2 Contributor’s Experience 

This way it can be very useful to analyze contributor experience on a project while assigning 

tasks or issues to developers. We are able to answer RQ1, since we have classified the 

contributor’s in terms of their experience. 

5.2 Contributions Efficiency 

RQ2: How can code contributions to the projects be characterized by assessing code/file 

characterized by using 4 metrics of information according to our 

study, these are average file complexity, average code depth, lines of code and percentage 

ese code/file characteristics can be combined by taking difference of ‘commit 

before’ and ‘commit after’ values. 

[26] [28], the quality of contribution is normally measured by one binary metric 

information, which is the rate of non-bug-introducing commits. It is calculated by taking a ‘true’ 

value if a project compiles without any error after commit and a ‘false’ in case it generates 

A recent study proposes a way to measure contribution efficiency by using comple

suggests that the developers who unnecessarily increase the code complexity 

is an empirical study but it lacks the assessment of metrics of code 
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This way it can be very useful to analyze contributor experience on a project while assigning 

tasks or issues to developers. We are able to answer RQ1, since we have classified the 

by assessing code/file 

by using 4 metrics of information according to our 

study, these are average file complexity, average code depth, lines of code and percentage 

ese code/file characteristics can be combined by taking difference of ‘commit 

[26] [28], the quality of contribution is normally measured by one binary metric 

troducing commits. It is calculated by taking a ‘true’ 

value if a project compiles without any error after commit and a ‘false’ in case it generates 

A recent study proposes a way to measure contribution efficiency by using complexity metrics. 

suggests that the developers who unnecessarily increase the code complexity 

the assessment of metrics of code 



37 
 

depth and percentage comments that we used in our method with combination of code 

complexity and lines of code. 

 

Another study [30], used a model to measure contributions by using lines of code plus a 

contribution factor. This study identified actions that can be classified as contributions factor 

and type of actions, such as add lines of code of good/ bad quality with type as positive/ 

negative impact. Another example of action is commit a file with type as positive impact. But 

this study is not using the code complexity metrics for measuring contributions. 

 

For our study, we have chosen 4 file characteristics to include in the comparisons for measuring 

efficiency that can contribute in efficiency of a code file. These characteristics are average code 

complexity, average code depth, lines of code and percentage comments. By taking the 

difference of these file characteristics with before commit versions, we are able to measure 

contribution efficiency. 

 

If we analyze the contribution's efficiency in Figure 5.2 for the Apache Struts2 project. The top 3 

contributors (contributor 4, 7 and 19) have more efficient contributions than other 

contributors. This can be helpful to see the best contributors in regard of quality of 

contributions. 

 

It is therefore possible to answer RQ2, using the metrics it is possible to assess efficiency by 

combining file assessments. For an example, contributor 4 has efficiency value of 0.65 (as 

shown in Table 4.4). In the histogram, we see that contributor 3 has 0 value for contribution 

efficiency because there is no information for this contributor to measure efficiency. This is an 

example of outlier in Struts 2. 

 

 

 



 

Figure 5.2: Apache Struts2 Contributions Efficiency

In our study, for measuring contributions efficiency we actually gathered all code file 

characteristics first and then analyzed every characteristic to include or exclude in the 

measurements. We have used average code complexity, average code depth, lines of code and 

percentage comments for measuring contribution efficiency. We have not used number of 

statements, number of functions, number of classes, max code complexity and max code depth 

in our measurements. The reasons for the characteristics that a

are; 

 

• Number of Statements, Function

metric that covers the total lines of code file (size attributes)

statements, number of functions and number of classes correlate with Lines of Code.

For an example, it is 

lines are directly proportional to number of statements.

 

• Max complexity and max code depth: These metrics show the complexity or depth 

of a part of the file but not for complete code file. So we have excluded these 

measures and included instead the averages for complexity a
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In our study, for measuring contributions efficiency we actually gathered all code file 

n analyzed every characteristic to include or exclude in the 

We have used average code complexity, average code depth, lines of code and 

percentage comments for measuring contribution efficiency. We have not used number of 

of functions, number of classes, max code complexity and max code depth 

The reasons for the characteristics that are not used in measurements 

Number of Statements, Functions and Classes: We have taken the 

t covers the total lines of code file (size attributes). 

statements, number of functions and number of classes correlate with Lines of Code.

 repeating to use number of statements because the number of 

proportional to number of statements. 

Max complexity and max code depth: These metrics show the complexity or depth 

of a part of the file but not for complete code file. So we have excluded these 

measures and included instead the averages for complexity and code depth.
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In our study, for measuring contributions efficiency we actually gathered all code file 

n analyzed every characteristic to include or exclude in the 

We have used average code complexity, average code depth, lines of code and 

percentage comments for measuring contribution efficiency. We have not used number of 

of functions, number of classes, max code complexity and max code depth 

re not used in measurements 

Classes: We have taken the lines of code 

. The number of 

statements, number of functions and number of classes correlate with Lines of Code. 

repeating to use number of statements because the number of 

Max complexity and max code depth: These metrics show the complexity or depth 

of a part of the file but not for complete code file. So we have excluded these 

nd code depth. 
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5.3 Correlation between Contributor’s Experience and Contributions 

Efficiency 

 

RQ3: How does contributor’s project experience correlate with code contributions? 

According to statistical tests based on our results, there is no correlation between contributor’s 

experience and contribution's efficiency. Table 4.5 shows Pearson Correlation Coefficients for all 

six projects with their p-values.  

 

To see the correlation visually, we have drawn scatter plots using the normalized data of our 

results with the help of RStudio [27]. Along x-axis there is the contributor’s experience and y-

axis represents contribution's efficiency. Here we take an example of Apache ActiveMQ project 

for the discussion with help of visual diagram for the correlation in Figure 5.3. Apache 

ActiveMQ have more contributors than all other five projects, so the more data points.  For all 

remaining projects; to see correlation diagrams, please refer to Appendix C (Scatter plots). 

 

 Figure 5.3: Scatter plot for ActiveMQ project 
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In Figure 5.3 for the Apache ActiveMQ project, we can again see no correlation. The data points 

are linearly distribution, in parallel to the x-axis. Hence, using the metrics as described in 

Section 3, we found that contribution efficiency does not increase with contributor experience. 

Furthermore, the highest peak of efficiency was even observed in the lowest third of 

contributor experience. There is a cluster of data points in the center, showing that more 

contributors have experience in the range around 0.35 and contribution efficiency around 0.6.  

This behavior shows that contributors with moderate experience have good contributions. We 

find similar clusters of data points in center for Felix and OFBiz projects. This observation can be 

seen in scatter plots given in Appendix C. 

 

 

Figure 5.4: Scatter plot for Maven project 

 

 

Similar behavior can be observed in Figure 5.4, in the scatter plot for Apache Maven. It shows 

that contributors with experience in the range around 0.38 are very different in regard of 

quality of contributions. The lowest value is 0.3 and the peak value for contribution efficiency is 

0.7 in this region. 

 

During the analysis, while looking at scatter plots and results we have decided to exclude the 

outliers for calculating correlation values. Outliers are those data points where either 

contributor efficiency or contributor experience has zero value or both measures have zero 

values. The zero values are unavoidable in the result's calculation process. These outliers have 



strong impact on the correlation values, even though they don’t include any information. For an 

example, in case of Apache ActiveMQ, if we calculate correlation value including these outliers, 

it gives us somewhat moderate correlation value of 0.49

Whereas if we see the actual correlation in the Figure 5.3, there is no correlation for ActiveMQ 

project. Hence, we observed that correlation including the outliers is strongly misleading. So we 

have excluded outliers for calculating the cor

 

Why there is no correlation between contributor experience and contributor efficiency? This 

question is hard to answer. One possible reason can be that contribution efficiency not only 

depend on contributor experience

developer’s IQ level, way of thinking, education, command in tools, etc. Another reason may be 

that; in this context we have examined the committers working inside Apache active code base. 

The committer role can have experience

a developer) before write access to the project.

 

We made an additional observation from the results that is not related to answering the 

research questions. If we analyze

on projects. Figure 5.5 shows us that, increasing the number of committers in a project 

repository not possibly increase the contribution's efficiency. For an example ActiveMQ have 65 

contributors, the highest number of committers in this dataset, but the efficiency is lower than 

other two projects OFBiz and Sling. The same behavior can be seen for Apache Maven.
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Why there is no correlation between contributor experience and contributor efficiency? This 

question is hard to answer. One possible reason can be that contribution efficiency not only 

depend on contributor experience but also depend on other factors of personality, such as 

developer’s IQ level, way of thinking, education, command in tools, etc. Another reason may be 

in this context we have examined the committers working inside Apache active code base. 
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before write access to the project. 
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on the correlation values, even though they don’t include any information. For an 

example, in case of Apache ActiveMQ, if we calculate correlation value including these outliers, 

value 2.236e-05. 

Whereas if we see the actual correlation in the Figure 5.3, there is no correlation for ActiveMQ 

project. Hence, we observed that correlation including the outliers is strongly misleading. So we 
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all six projects and relate it to the total number of committers 

on projects. Figure 5.5 shows us that, increasing the number of committers in a project 

repository not possibly increase the contribution's efficiency. For an example ActiveMQ have 65 
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other two projects OFBiz and Sling. The same behavior can be seen for Apache Maven. 
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5.4 Threats to Validity 

There exist different ways to classify aspects of validity and threats to validity. We have 

identified threats to internal and external validity according to P. Runeson and M. Höst [22]. 

These threats to validity are described in detail in this section. 
 
Internal validity: 
 

• Few commits contain large number of files, sometimes a complete project. This is 

possible when a committer moves the repository or create a new repository for a 

project. These affect the values taken for average mean time between commits. The 

average mean time metric tells about the activity of a developer, so we take the distinct 

commit date and time to measure the developer activity. It should not be dependent on 

how many files are committed in one commit. To mitigate the problem due to this 

reason we have considered multiple or large amount of files in one commit as a single 

activity date time when taking average mean time in hours between commits. 
 

• We have collected data from online issue tracking system and file commits from active 

code repositories using automated scripts. It may be possible that a developer work on 

an issue that is not reported on these systems. The impact of this missing information is 

not significant due to the reason we evaluate the commits associated with an issue, and 

issues can be linked with file commits to active repositories in these systems for 

reviews. 
 

• We have used an open source code complexity measurement tool named Source 

Monitor. Complexity can be measured in different ways. There are other software 

applications in the market for measuring complexity. It is possible that other tools would 

have resulted in different results. We use Source Monitor, as it provides a variety of 

measurements and it is widely used code analysis tool. The program supports multiple 

programming languages (C++, Java, C#, Visual Basic, Delphi or HTML) and provides 

advanced features like method and function level metrics for more detailed analysis and 

comparison. To mitigate the problem that different software's measure complexity in 

different ways, we have used the same tool for all projects. So that the results are 

consistent in this regard. 
 

• We have made the study results by using data from the metrics. In order to avoid bias, 

we have given equal weight to these metrics. For an example, while calculating 

contribution efficiency each of 4 metrics have 25 % weight. Further investigation into 

the assessment of contributor experience might result in an adjustment of those 

weights. For an example, a recent study discussed about the importance of code 

complexity metric for the contributions efficiency [29]. 
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External validity: 
 

• We have chosen six medium scale projects for this study. Adding more data would 

increase the amount of data for the analysis and might affect the results. We cannot 

fully mitigate this generalizability threat. We have collected data for six different units of 

analysis and received similar results. This gives us an indication, that the results might 

be generalizable to other OSS projects as well. 
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6. Summary and Conclusion 

This study analyzed six Apache projects data including 28,077 issues and 332,977 files of 

commits from Apache issue tracking system JIRA and Apache code repositories (Atlassian 

Fisheye). We considered not only bugs but also tasks, improvements, tests, documentation and 

new features.  

 

The study evaluates the contributor’s experience and contribution efficiency in open source 

projects using issue's data and file commits made for resolving these issues. In this study we 

proposed different methods to measure contributor’s experience and contribution's efficiency 

with help of multiple data metrics. Contribution experience is measured using metrics that tell 

about the amount of contributions, frequency and complexity level of files on which developer 

worked on a project. Contribution efficiency is measured using file characteristics of code files 

(Code Complexity, Code Depth, LOC, Percentage Comments).  

 

We present findings, which are similarly received for all six projects. We did not find correlation 

between experience and efficiency results. It means that a low experience contributor can also 

provide good contributions. In an Apache environment, a contributor with few contributions 

may also provide effective code. The reason could be that he or she gets write access to the 

code repository as a committer after having an experience on the project with another role 

such as a developer.  

 

Another observation tells us that, larger the numbers of committers (or team size) on a project 

don’t have the positive impact on the efficiency of contributions. 

 

 

6.1 Future Work 

In this section, possible future work is discussed in detail. 

 

● We have evaluated six Apache projects. Further studies can be extended to include 

more projects from the Apache domain or other open source communities like Source 

forge and Red Hat. 

 

● We considered a set of most interesting file characteristics in this study. Other file 

characteristics can also be used to see the impact of these on results. Other file 

characteristics include; Number of Classes, Number of Methods, Methods per class, 

Statements and Method Calls. 
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● In further studies, contributors overall experience can be assessed to see the quality of 

contributions. For an example, if a contributor is working on more than one project, 

then it can be analyzed to see whether it’s making contributions more efficient or not. 
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Appendix A: Results of Contributor’s Experience 

 

Table A.1: Results for contributor’s experience of Maven project 

 

Contributors 
ID 

Total Issues 
Assigned 

Total Files of 
Commits by 
Contributor 

Mean Time In 
Hours 

Average 
Complexity 

Total Lines 
Added by 

Contributor 

Contributor's 
Experience 

27 0.00035 0.00025 0.19983 0.00000 0.00002 0.20020 

28 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

29 0.00243 0.00018 0.19074 0.00000 0.00012 0.19330 

30 0.00070 0.00008 0.00000 0.13123 0.00003 0.13195 

31 0.20000 0.20000 0.19961 0.16970 0.20000 0.76931 

32 0.00278 0.00066 0.18666 0.15336 0.00046 0.34326 

33 0.11200 0.11070 0.19878 0.14809 0.12497 0.58385 

34 0.01774 0.00747 0.19784 0.15415 0.00208 0.37181 

35 0.00904 0.00410 0.19534 0.16021 0.00475 0.36935 

36 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

37 0.00591 0.00066 0.17030 0.16785 0.00009 0.34415 

38 0.00035 0.00018 0.06484 0.16126 0.00027 0.22672 

39 0.00174 0.00012 0.19450 0.16917 0.00004 0.36545 

40 0.00765 0.00178 0.19087 0.16126 0.00166 0.36144 

41 0.00035 0.00012 0.17199 0.15810 0.00003 0.33047 

42 0.00000 0.00000 0.00000 0.20000 0.00000 0.20000 

43 0.01391 0.04505 0.19124 0.15758 0.04853 0.41126 

44 0.00313 0.00059 0.17822 0.15020 0.00020 0.33175 

45 0.10365 0.10271 0.19886 0.14335 0.03955 0.48541 

46 0.00070 0.00094 0.18505 0.18577 0.00125 0.37276 

47 0.04765 0.14141 0.19500 0.16891 0.16781 0.57937 

48 0.01322 0.00346 0.19464 0.14282 0.00156 0.35224 

49 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

50 0.00278 0.00377 0.18518 0.16733 0.00433 0.35962 

51 0.00139 0.08478 0.19872 0.16601 0.12851 0.49463 

52 0.00000 0.00004 0.00000 0.00000 0.00000 0.00000 

53 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

54 0.00313 0.00723 0.15967 0.17866 0.00935 0.35081 

55 0.00035 0.05529 0.17392 0.16548 0.06246 0.40221 

56 0.00035 0.01491 0.17846 0.16495 0.02704 0.37081 

57 0.00070 0.00043 0.18334 0.16864 0.00017 0.35285 

58 0.00000 0.00037 0.20000 0.16337 0.00015 0.36352 

59 0.00278 0.00424 0.19902 0.15995 0.00226 0.36400 

60 0.00626 0.03430 0.18434 0.16364 0.04618 0.40042 

61 0.00278 0.00061 0.18224 0.14097 0.00037 0.32636 

62 0.00000 0.00014 0.19274 0.08274 0.00010 0.27557 

63 0.00174 0.00023 0.15533 0.13096 0.00010 0.28813 

64 0.00000 0.01349 0.17825 0.16047 0.02835 0.36707 

65 0.02330 0.00711 0.19903 0.14941 0.00286 0.37459 

66 0.00174 0.00045 0.19836 0.08748 0.00043 0.28801 

67 0.00035 0.00018 0.17726 0.16390 0.00026 0.34176 

68 0.00035 0.00002 0.20000 0.00000 0.00000 0.20035 

69 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

70 0.00348 0.00043 0.18262 0.05903 0.00031 0.24544 

71 0.00209 0.00041 0.17121 0.16522 0.00026 0.33877 

72 0.02713 0.00702 0.19606 0.15494 0.01009 0.38823 

73 0.00035 0.00006 0.18827 0.00000 0.00006 0.18867 
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Table A.2: Results for contributor’s experience of Sling project 

 

Contributor
s ID 

Total 
Issues 

Assigned 

Total Files of 
Commits by 
Contributor 

Mean Time 
In Hours 

Average 
Complexity 

Total Lines 
Added by 

Contributor 

Contributor'
s 

Experience 

74 0.00173 0.00019 0.10675 0.09224 0.00005 0.20076 

75 0.01123 0.00630 0.18681 0.14447 0.00373 0.34623 

76 0.08687 0.12573 0.19600 0.16235 0.13760 0.58282 

77 0.01036 0.00442 0.18937 0.15482 0.00253 0.35709 

78 0.00017 0.00011 0.07707 0.00000 0.00009 0.07733 

79 0.00000 0.00003 0.19985 0.12706 0.00002 0.32693 

80 0.20000 0.20000 0.19757 0.12753 0.13767 0.66277 

81 0.00259 0.00216 0.13909 0.14635 0.00090 0.28894 

82 0.00898 0.00670 0.16529 0.06212 0.00574 0.24212 

83 0.14439 0.15910 0.19660 0.13976 0.20000 0.68075 

84 0.00000 0.00002 0.00000 0.00000 0.00000 0.00000 

85 0.01123 0.01555 0.17613 0.13976 0.01134 0.33846 

86 0.00000 0.00003 0.20000 0.19294 0.00001 0.39296 

87 0.00121 0.00083 0.16220 0.20000 0.00007 0.36348 

88 0.00052 0.00670 0.16688 0.12941 0.00002 0.29682 

89 0.05976 0.02829 0.19288 0.12188 0.01302 0.38754 

90 0.00225 0.00119 0.13784 0.00000 0.00127 0.14136 

91 0.01036 0.00778 0.19487 0.14635 0.00235 0.35394 

92 0.00138 0.00033 0.00000 0.16565 0.00004 0.16707 

93 0.00829 0.01820 0.19309 0.16000 0.00441 0.36579 

94 0.00656 0.00517 0.12676 0.15953 0.00462 0.29748 

95 0.00881 0.00675 0.19011 0.14918 0.00366 0.35175 

96 0.00950 0.01518 0.19467 0.16565 0.01085 0.38067 

97 0.04473 0.05722 0.19714 0.14965 0.07698 0.46849 

98 0.00121 0.00559 0.18492 0.10165 0.00272 0.29050 

99 0.01572 0.02390 0.19681 0.18306 0.01961 0.41520 

100 0.02383 0.01359 0.19544 0.10541 0.00804 0.33273 

101 0.00000 0.00002 0.00000 0.14682 0.00001 0.14683 

102 0.00017 0.00000 0.01245 0.03859 0.00000 0.05121 

103 0.00190 0.00368 0.19171 0.15012 0.00087 0.34459 

104 0.01209 0.04849 0.19422 0.16094 0.01492 0.38216 

105 0.00155 0.00127 0.07624 0.17129 0.00216 0.25125 
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Table A.3: Results for contributor’s experience of Felix project 

 

Contributors 
ID 

Total Issues 
Assigned 

Total Files of 
Commits by 
Contributor 

Mean Time In 
Hours 

Average 
Complexity 

Total Lines 
Added by 

Contributor 

Contributor's 
Experience 

106 0.00000 0.00019 0.00000 0.00000 0.00017 0.00017 

107 0.00130 0.00128 0.16547 0.00000 0.00016 0.16693 

108 0.00000 0.00002 0.00000 0.10705 0.00013 0.10718 

109 0.00324 0.00101 0.19798 0.07821 0.00056 0.27999 

110 0.00940 0.00237 0.19426 0.02244 0.00019 0.22628 

111 0.00357 0.00208 0.19446 0.16923 0.00170 0.36895 

112 0.00130 0.00007 0.19951 0.00577 0.00001 0.20659 

113 0.00097 0.00381 0.19965 0.08077 0.00227 0.28366 

114 0.10762 0.18291 0.19671 0.14167 0.05974 0.50573 

115 0.12253 0.08390 0.19810 0.07500 0.01905 0.41468 

116 0.01135 0.00461 0.19522 0.10385 0.00168 0.31209 

117 0.01361 0.00835 0.18130 0.00128 0.00438 0.20058 

118 0.03468 0.02807 0.19798 0.11282 0.00536 0.35084 

119 0.00065 0.00005 0.00000 0.11090 0.00000 0.11155 

120 0.03079 0.08820 0.19855 0.11987 0.02585 0.37506 

121 0.00972 0.00570 0.19014 0.13205 0.00423 0.33615 

122 0.00454 0.00065 0.14275 0.07756 0.00005 0.22490 

123 0.00227 0.00027 0.19174 0.10577 0.00020 0.29998 

124 0.20000 0.20000 0.19846 0.09038 0.20000 0.68884 

125 0.00097 0.00558 0.16187 0.11154 0.00217 0.27655 

126 0.00746 0.01651 0.17757 0.08910 0.00502 0.27915 

127 0.12415 0.06428 0.19783 0.05962 0.02773 0.40933 

128 0.00097 0.00017 0.18305 0.06282 0.00003 0.24688 

129 0.01037 0.00804 0.19364 0.15641 0.00177 0.36220 

130 0.02237 0.02450 0.19353 0.15128 0.00867 0.37584 

131 0.00000 0.00031 0.00000 0.20000 0.00027 0.20027 

132 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

133 0.00259 0.00270 0.18091 0.12821 0.00251 0.31422 

134 0.00454 0.00251 0.14650 0.00000 0.00120 0.15223 

135 0.02139 0.00763 0.18569 0.11859 0.00364 0.32932 

136 0.04052 0.01224 0.19467 0.00769 0.00598 0.24886 

137 0.03793 0.01453 0.18911 0.02821 0.00620 0.26144 

138 0.02593 0.02308 0.19458 0.13974 0.00497 0.36523 

139 0.00032 0.00000 0.00000 0.06154 0.00008 0.06195 

140 0.18444 0.10806 0.19837 0.04808 0.04001 0.47090 

141 0.00130 0.00007 0.00000 0.07564 0.00001 0.07694 

142 0.00000 0.00005 0.20000 0.13141 0.00000 0.33141 

143 0.00194 0.02696 0.16898 0.06154 0.00885 0.24132 

144 0.00259 0.00227 0.19692 0.18462 0.00102 0.38514 

145 0.00000 0.00048 0.19669 0.12628 0.00022 0.32319 

146 0.00389 0.00191 0.15382 0.11218 0.00137 0.27126 

147 0.00357 0.00111 0.13455 0.09808 0.00092 0.23712 

148 0.12836 0.03379 0.19386 0.04231 0.00639 0.37092 
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Table A.4: Results for contributor’s experience of OFBiz project 

 

Contributors 
ID 

Total 
Issues 

Assigned 

Total Files 
of Commits 

by 
Contributor 

Mean 
Time In 
Hours 

Average 
Complexity 

Total Lines 
Added by 

Contributor 

Contributor's 
Experience 

149 0.02241 0.06772 0.19604 0.18330 0.13234 0.53409 

150 0.00964 0.00253 0.19333 0.07080 0.00062 0.27439 

151 0.00000 0.00006 0.20000 0.19750 0.00000 0.39750 

152 0.04821 0.02160 0.19878 0.13898 0.00345 0.38941 

153 0.00717 0.00157 0.19335 0.14102 0.00029 0.34183 

154 0.01042 0.00634 0.19822 0.17784 0.00237 0.38885 

155 0.00195 0.00013 0.19968 0.20000 0.00001 0.40164 

156 0.00378 0.00219 0.18376 0.16068 0.00049 0.34871 

157 0.00443 0.00141 0.19962 0.15795 0.00007 0.36207 

158 0.00026 0.00029 0.20000 0.00000 0.00004 0.20030 

159 0.00938 0.00120 0.18972 0.18795 0.00011 0.38717 

160 0.00000 0.00000 0.00000 0.07375 0.00000 0.07375 

161 0.01759 0.00849 0.19813 0.18250 0.00673 0.40495 

162 0.00925 0.00558 0.19036 0.17705 0.00145 0.37811 

163 0.04495 0.01694 0.19824 0.14795 0.00437 0.39552 

164 0.00235 0.00091 0.18635 0.17011 0.00028 0.35909 

165 0.20000 0.20000 0.19971 0.16886 0.20000 0.76857 

166 0.00795 0.00295 0.19551 0.15500 0.00225 0.36070 

167 0.01577 0.00236 0.19483 0.14193 0.00045 0.35298 

168 0.00182 0.00045 0.19961 0.14682 0.00011 0.34837 

169 0.02072 0.00478 0.19722 0.14193 0.00129 0.36116 

170 0.00039 0.00014 0.19849 0.00000 0.00001 0.19889 

171 0.00977 0.01798 0.19938 0.16716 0.00747 0.38378 

172 0.00469 0.00649 0.19865 0.16352 0.00081 0.36767 

173 0.00026 0.00012 0.19847 0.00239 0.00000 0.20112 

174 0.00039 0.00010 0.19888 0.17080 0.00000 0.37008 

175 0.00065 0.00021 0.19418 0.13670 0.00002 0.33156 

176 0.00000 0.00000 0.14392 0.00000 0.00000 0.14392 

177 0.00847 0.00294 0.19826 0.16795 0.00234 0.37702 

178 0.00013 0.00012 0.19005 0.00000 0.00001 0.19019 

179 0.00104 0.00053 0.19951 0.12102 0.00023 0.32180 

180 0.00534 0.00083 0.19545 0.14830 0.00014 0.34923 

181 0.00000 0.00009 0.19981 0.00000 0.00028 0.20009 
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Table A.5: Results for contributor’s experience of ActiveMQ project 

Contributors 
ID 

Total Issues 
Assigned 

Total Files of 
Commits by 
Contributor 

Mean Time In 
Hours 

Average 
Complexity 

Total Lines 
Added by 

Contributor 

Contributor's 
Experience 

182 0.01170 0.00570 0.18174 0.07126 0.00283 0.26753 

183 0.00039 0.00013 0.01539 0.00000 0.00001 0.01579 

184 0.00039 0.00035 0.18119 0.02915 0.00052 0.21125 

185 0.00039 0.00004 0.19775 0.00000 0.00000 0.19813 

186 0.00078 0.00057 0.19302 0.17247 0.00080 0.36706 

187 0.00390 0.00172 0.17473 0.19757 0.00129 0.37749 

188 0.15750 0.14446 0.19798 0.12470 0.06964 0.54982 

189 0.00351 0.00146 0.15997 0.14899 0.00140 0.31387 

190 0.00039 0.00009 0.15007 0.09717 0.00010 0.24772 

191 0.00858 0.00305 0.19067 0.12955 0.00221 0.33101 

192 0.00234 0.00137 0.13360 0.13765 0.00175 0.27535 

193 0.00078 0.00031 0.15025 0.05668 0.00010 0.20781 

194 0.02183 0.06102 0.19747 0.13846 0.03290 0.39066 

195 0.00234 0.00071 0.17765 0.08907 0.00023 0.26929 

196 0.02222 0.00724 0.19214 0.11498 0.00176 0.33110 

197 0.02534 0.01007 0.19377 0.11579 0.00223 0.33713 

198 0.00039 0.00022 0.16743 0.12389 0.00014 0.29185 

199 0.00078 0.00115 0.16493 0.10688 0.00022 0.27282 

200 0.00156 0.00260 0.14288 0.17652 0.00081 0.32177 

201 0.00819 0.00389 0.18198 0.13846 0.00130 0.32993 

202 0.03041 0.02265 0.19428 0.11012 0.00970 0.34451 

203 0.00039 0.00009 0.19175 0.06397 0.00003 0.25614 

204 0.00000 0.00071 0.19973 0.13360 0.00029 0.33362 

205 0.00078 0.00124 0.19523 0.06478 0.00054 0.26132 

206 0.00000 0.00000 0.00000 0.00000 0.00005 0.00005 

207 0.00468 0.00163 0.17837 0.08178 0.00100 0.26583 

208 0.20000 0.16600 0.19806 0.13441 0.10122 0.63369 

209 0.00000 0.00004 0.00000 0.00000 0.00000 0.00000 

210 0.07018 0.06194 0.19725 0.11174 0.20000 0.57917 

211 0.00117 0.00115 0.20000 0.13522 0.00062 0.33701 

212 0.00585 0.00839 0.13588 0.18138 0.00630 0.32940 

213 0.00507 0.00508 0.04891 0.12955 0.00139 0.18492 

214 0.00117 0.00247 0.19182 0.00000 0.00051 0.19350 

215 0.00000 0.00022 0.00000 0.17976 0.00015 0.17991 

216 0.00936 0.00623 0.18059 0.11417 0.00265 0.30676 

217 0.09669 0.18327 0.19321 0.12713 0.05780 0.47483 

218 0.00000 0.00004 0.00000 0.12470 0.00007 0.12476 

219 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

220 0.00000 0.00084 0.00000 0.00000 0.00012 0.00012 

221 0.05692 0.05024 0.18719 0.14332 0.06394 0.45136 

222 0.00078 0.00022 0.08705 0.00000 0.00001 0.08784 

223 0.00078 0.00185 0.12387 0.14899 0.00019 0.27383 

224 0.01793 0.00737 0.18659 0.12874 0.00255 0.33582 

225 0.00312 0.00053 0.03187 0.20000 0.00013 0.23512 

226 0.00039 0.00018 0.05952 0.00000 0.00000 0.05991 

227 0.00000 0.00022 0.00000 0.00000 0.00001 0.00001 

228 0.01481 0.00693 0.19555 0.14818 0.00531 0.36385 

229 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

230 0.00000 0.00256 0.00000 0.19190 0.00472 0.19662 

231 0.00000 0.00018 0.00000 0.15789 0.00019 0.15809 

232 0.00000 0.00013 0.00000 0.11012 0.00008 0.11020 

233 0.00000 0.00009 0.00000 0.17085 0.00005 0.17090 

234 0.00156 0.03430 0.19489 0.02915 0.03360 0.25920 

235 0.00000 0.00004 0.00000 0.16032 0.00005 0.16037 

236 0.00312 0.00508 0.19478 0.12227 0.00257 0.32274 

237 0.00078 0.00225 0.15762 0.17895 0.00087 0.33821 

238 0.12554 0.09978 0.19458 0.13603 0.05716 0.51332 

239 0.00546 0.00296 0.18511 0.12632 0.00085 0.31773 

240 0.17076 0.20000 0.19675 0.15061 0.19319 0.71131 

241 0.02963 0.01770 0.19778 0.09474 0.00771 0.32986 

242 0.07914 0.05625 0.19736 0.12713 0.05699 0.46062 

243 0.00195 0.00062 0.15125 0.06478 0.00126 0.21924 

244 0.00039 0.00044 0.00000 0.06154 0.00004 0.06197 

245 0.00000 0.00013 0.00000 0.05749 0.00031 0.05780 

246 0.00234 0.00110 0.13073 0.19757 0.00009 0.33073 
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Appendix B: Results of Contribution Efficiency 

 

Table B.1: Results for contribution efficiency of Maven project 

 

Contributors 
ID 

Difference 
Avg. 

Complexity 

Difference 
Avg. Depth 

Difference 
Avg. LOC 

Difference 
Avg. 

Percentage 
Comments 

Contribution 
Efficiency 

27 0.00000 0.00000 0.00000 0.00000 0.00000 

28 0.00000 0.00000 0.00000 0.00000 0.00000 

29 0.25000 0.15889 0.07190 0.07372 0.55450 

30 0.12431 0.09262 0.11914 0.06539 0.40146 

31 0.13904 0.07830 0.11298 0.05742 0.38774 

32 0.12981 0.08158 0.15954 0.12332 0.49424 

33 0.13151 0.08777 0.11481 0.05488 0.38897 

34 0.14233 0.08032 0.16586 0.09788 0.48638 

35 0.15228 0.08872 0.14862 0.12577 0.51540 

36 0.00000 0.00000 0.00000 0.00000 0.00000 

37 0.14432 0.09262 0.10065 0.06262 0.40021 

38 0.15767 0.23251 0.29420 0.00000 0.68438 

39 0.13952 0.07605 0.03903 0.02653 0.28113 

40 0.10808 0.00000 0.40000 0.09176 0.59984 

41 0.14432 0.08268 0.14585 0.11370 0.48654 

42 0.14432 0.09262 0.10887 0.05429 0.40010 

43 0.05518 0.09359 0.10022 0.06230 0.31129 

44 0.12968 0.05594 0.14100 0.02752 0.35414 

45 0.11406 0.05141 0.17095 0.03850 0.37492 

46 0.18715 0.25000 0.00000 0.15561 0.59277 

47 0.13029 0.07652 0.10086 0.06938 0.37706 

48 0.15489 0.04447 0.14984 0.04011 0.38931 

49 0.00000 0.00000 0.00000 0.00000 0.00000 

50 0.15303 0.11200 0.01861 0.03281 0.31645 

51 0.13128 0.09257 0.10019 0.06247 0.38651 

52 0.00000 0.00000 0.00000 0.00000 0.00000 

53 0.00000 0.00000 0.00000 0.00000 0.00000 

54 0.12777 0.07907 0.07316 0.05664 0.33665 

55 0.11493 0.09250 0.10074 0.06263 0.37079 

56 0.09852 0.09173 0.09888 0.06712 0.35626 

57 0.14549 0.08660 0.12045 0.05782 0.41035 

58 0.13151 0.09262 0.15087 0.05891 0.43392 

59 0.13630 0.05930 0.15459 0.05419 0.40437 

60 0.00000 0.08874 0.10333 0.05597 0.24804 

61 0.13167 0.07605 0.10620 0.05804 0.37196 

62 0.15607 0.08710 0.08696 0.06539 0.39552 

63 0.11110 0.22515 0.03595 0.12508 0.49728 

64 0.09548 0.08602 0.09923 0.06244 0.34317 

65 0.14402 0.03386 0.14454 0.05559 0.37801 

66 0.14432 0.08434 0.22698 0.25000 0.70565 

67 0.14192 0.07882 0.12873 0.06123 0.41069 

68 0.00000 0.00000 0.00000 0.00000 0.00000 

69 0.00000 0.00000 0.00000 0.00000 0.00000 

70 0.07024 0.02746 0.21048 0.12647 0.43465 

71 0.14130 0.08894 0.16776 0.03486 0.43285 

72 0.12494 0.09186 0.27971 0.20001 0.69652 

73 0.00000 0.00000 0.00000 0.00000 0.00000 
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Table B.2: Results for contribution efficiency of Sling project 

 

Contributors 
ID 

Difference 
Avg. 

Complexity 

Difference 
Avg. Depth 

Difference 
Avg. LOC 

Difference 
Avg. 

Percentage 
Comments 

Contribution 
Efficiency 

74 0.12059 0.19475 0.15532 0.10094 0.57159 

75 0.11542 0.20379 0.31193 0.10449 0.73564 

76 0.12505 0.20213 0.15660 0.11803 0.60181 

77 0.14649 0.21264 0.24547 0.16430 0.76890 

78 0.00000 0.00000 0.00000 0.00000 0.00000 

79 0.25000 0.23888 0.15797 0.19901 0.84586 

80 0.12489 0.20832 0.13868 0.20033 0.67222 

81 0.11643 0.17471 0.21772 0.18120 0.69006 

82 0.19560 0.21766 0.30460 0.15561 0.87348 

83 0.13800 0.21182 0.18817 0.21535 0.75335 

84 0.00000 0.00000 0.00000 0.00000 0.00000 

85 0.12974 0.20751 0.19774 0.25000 0.78499 

86 0.15385 0.13067 0.18257 0.00000 0.46709 

87 0.12650 0.22459 0.10384 0.19043 0.64537 

88 0.00000 0.00000 0.00000 0.00000 0.00000 

89 0.13648 0.22520 0.15877 0.15916 0.67962 

90 0.21633 0.25000 0.17546 0.16135 0.80314 

91 0.13003 0.23386 0.09696 0.16336 0.62422 

92 0.13263 0.00000 0.13336 0.17496 0.44095 

93 0.13345 0.22403 0.10558 0.17458 0.63763 

94 0.12748 0.21830 0.12106 0.18432 0.65116 

95 0.15999 0.24441 0.00000 0.21181 0.61621 

96 0.12267 0.21155 0.12220 0.16667 0.62308 

97 0.12732 0.18869 0.15762 0.18996 0.66359 

98 0.06631 0.19601 0.08416 0.13996 0.48644 

99 0.13849 0.19815 0.12653 0.16806 0.63124 

100 0.11866 0.18876 0.40000 0.17393 0.88135 

101 0.09416 0.19601 0.21210 0.17058 0.67285 

102 0.00000 0.20417 0.14321 0.14871 0.49609 

103 0.12066 0.22112 0.09976 0.16342 0.60495 

104 0.13796 0.22442 0.08039 0.21008 0.65285 

105 0.13329 0.16674 0.32937 0.06925 0.69866 
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Table B.3: Results for contribution efficiency of Felix project 

 

Contributors 
ID 

Difference Avg. 
Complexity 

Difference Avg. 
Depth 

Difference 
Avg. LOC 

Difference Avg. 
Percentage 
Comments 

Contribution 
Efficiency 

106 0.00000 0.00000 0.00000 0.00000 0.00000 

107 0.00000 0.00000 0.00000 0.00000 0.00000 

108 0.00000 0.00000 0.00000 0.00000 0.00000 

109 0.09039 0.02547 0.40000 0.01877 0.53464 

110 0.09397 0.01912 0.26659 0.03991 0.41959 

111 0.10826 0.03262 0.29688 0.05488 0.49265 

112 0.09906 0.02803 0.28685 0.05475 0.46868 

113 0.09526 0.03583 0.27729 0.07808 0.48646 

114 0.10039 0.02912 0.31711 0.05061 0.49723 

115 0.09645 0.02618 0.28827 0.04763 0.45853 

116 0.10232 0.03826 0.31502 0.04094 0.49655 

117 0.11246 0.03846 0.22963 0.05336 0.43390 

118 0.10170 0.03231 0.27763 0.05323 0.46487 

119 0.09867 0.02082 0.26636 0.05363 0.43947 

120 0.10402 0.04070 0.26214 0.05634 0.46321 

121 0.00000 0.00000 0.00000 0.00000 0.00000 

122 0.10091 0.02975 0.26921 0.04403 0.44390 

123 0.09889 0.02723 0.24587 0.06064 0.43263 

124 0.11031 0.03108 0.32095 0.04957 0.51191 

125 0.05950 0.00000 0.37062 0.08693 0.51705 

126 0.10869 0.01486 0.35835 0.02268 0.50457 

127 0.10079 0.04806 0.31147 0.05093 0.51124 

128 0.09398 0.00601 0.31143 0.04784 0.45926 

129 0.10273 0.03687 0.27009 0.04473 0.45442 

130 0.10098 0.03499 0.29625 0.05517 0.48739 

131 0.25000 0.25000 0.00000 0.24858 0.74858 

132 0.00000 0.00000 0.00000 0.00000 0.00000 

133 0.10071 0.02947 0.27169 0.05426 0.45612 

134 0.10309 0.04817 0.24084 0.03664 0.42874 

135 0.10421 0.03210 0.29678 0.05429 0.48739 

136 0.11127 0.03736 0.28537 0.05243 0.48643 

137 0.10292 0.03086 0.33142 0.04288 0.50808 

138 0.09844 0.02145 0.31366 0.04327 0.47683 

139 0.08676 0.01902 0.33602 0.25000 0.69180 

140 0.11144 0.03122 0.29764 0.05589 0.49618 

141 0.10252 0.03824 0.31348 0.05731 0.51155 

142 0.11330 0.03343 0.24382 0.08123 0.47178 

143 0.10176 0.03494 0.21803 0.00332 0.35806 

144 0.09871 0.03137 0.26577 0.03279 0.42865 

145 0.00000 0.01722 0.30734 0.00000 0.32455 

146 0.09030 0.02860 0.35012 0.04278 0.51179 

147 0.09118 0.01979 0.36910 0.05385 0.53392 

148 0.14851 0.04011 0.28194 0.06409 0.53465 
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Table B.4: Results for contribution efficiency of OFBiz project 

 

Contributors 
ID 

Difference 
Avg. 

Complexity 

Difference 
Avg. Depth 

Difference 
Avg. LOC 

Difference Avg. 
Percentage 
Comments 

Contribution 
Efficiency 

149 0.19189 0.10590 0.13206 0.14556 0.57542 

150 0.18429 0.08229 0.22876 0.09129 0.58663 

151 0.18570 0.09051 0.00000 0.13426 0.41048 

152 0.18399 0.06601 0.20954 0.06553 0.52507 

153 0.16933 0.03251 0.27988 0.08419 0.56591 

154 0.15416 0.05153 0.38635 0.05854 0.65058 

155 0.18570 0.08745 0.23673 0.12338 0.63327 

156 0.18534 0.09289 0.13573 0.12015 0.53411 

157 0.18453 0.09389 0.10914 0.11378 0.50133 

158 0.18570 0.08745 0.37268 0.11923 0.76507 

159 0.24826 0.11448 0.08313 0.15821 0.60408 

160 0.18407 0.08745 0.13257 0.12338 0.52747 

161 0.17118 0.04399 0.19641 0.08967 0.50125 

162 0.19047 0.05373 0.29773 0.16711 0.70904 

163 0.16890 0.05249 0.18297 0.13582 0.54018 

164 0.17849 0.08849 0.24116 0.25000 0.75815 

165 0.18979 0.08167 0.16131 0.10526 0.53803 

166 0.17437 0.03522 0.28324 0.01558 0.50842 

167 0.11127 0.09293 0.18091 0.13624 0.52135 

168 0.17576 0.08313 0.13925 0.11996 0.51810 

169 0.18017 0.06651 0.40000 0.03957 0.68625 

170 0.00000 0.00000 0.00000 0.00000 0.00000 

171 0.25000 0.00000 0.29887 0.05307 0.60194 

172 0.19127 0.08793 0.32519 0.08289 0.68729 

173 0.00000 0.25000 0.11019 0.12470 0.48489 

174 0.18570 0.07520 0.14204 0.02177 0.42472 

175 0.18570 0.08745 0.12310 0.12338 0.51963 

176 0.00000 0.00000 0.00000 0.00000 0.00000 

177 0.18540 0.07727 0.17832 0.12093 0.56192 

178 0.00000 0.00000 0.00000 0.00000 0.00000 

179 0.11094 0.12623 0.21779 0.00000 0.45497 

180 0.18925 0.06682 0.26240 0.08403 0.60251 

181 0.00000 0.00000 0.00000 0.00000 0.00000 
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Table B.5: Results for contribution efficiency of ActiveMQ project 

 

Contributors 
ID 

Difference Avg. 
Complexity 

Difference Avg. 
Depth 

Difference 
Avg. LOC 

Difference Avg. 
Percentage 
Comments 

Contribution 
Efficiency 

182 0.12831 0.15818 0.08463 0.16330 0.53441 

183 0.00000 0.00000 0.00000 0.00000 0.00000 

184 0.13451 0.10705 0.40000 0.09738 0.73895 

185 0.00000 0.00000 0.00000 0.00000 0.00000 

186 0.14031 0.19263 0.19294 0.14786 0.67374 

187 0.15862 0.16900 0.23146 0.10533 0.66441 

188 0.13977 0.20089 0.04922 0.17418 0.56406 

189 0.14103 0.19877 0.19747 0.16605 0.70332 

190 0.12464 0.21597 0.03536 0.20500 0.58097 

191 0.14016 0.18096 0.07818 0.14417 0.54347 

192 0.13739 0.14075 0.13981 0.05150 0.46945 

193 0.14744 0.25000 0.21121 0.24500 0.85365 

194 0.14066 0.18486 0.07404 0.18212 0.58169 

195 0.13740 0.19678 0.00000 0.18045 0.51464 

196 0.13051 0.20972 0.03748 0.18861 0.56631 

197 0.13972 0.19121 0.05415 0.19267 0.57774 

198 0.15641 0.18329 0.05774 0.16233 0.55978 

199 0.14042 0.20689 0.02352 0.18846 0.55929 

200 0.13836 0.19841 0.03368 0.21693 0.58739 

201 0.13894 0.21705 0.02655 0.21118 0.59372 

202 0.14267 0.19345 0.03652 0.17566 0.54831 

203 0.14103 0.20916 0.05135 0.17667 0.57820 

204 0.13731 0.18436 0.08751 0.15762 0.56680 

205 0.13818 0.20714 0.10345 0.17796 0.62673 

206 0.14815 0.24319 0.24318 0.20167 0.83619 

207 0.14031 0.21426 0.04869 0.15833 0.56160 

208 0.14029 0.19093 0.07038 0.17558 0.57718 

209 0.00000 0.00000 0.00000 0.00000 0.00000 

210 0.14082 0.19040 0.05374 0.17790 0.56286 

211 0.14223 0.15434 0.13324 0.11868 0.54850 

212 0.14043 0.19582 0.05071 0.16647 0.55342 

213 0.13811 0.19231 0.01791 0.17950 0.52783 

214 0.00000 0.00000 0.00000 0.00000 0.00000 

215 0.25000 0.23979 0.00872 0.23167 0.73018 

216 0.13445 0.15341 0.06213 0.16341 0.51340 

217 0.13836 0.19649 0.05330 0.18337 0.57152 

218 0.14103 0.01856 0.21654 0.18500 0.56113 

219 0.00000 0.00000 0.00000 0.00000 0.00000 

220 0.00000 0.00000 0.00000 0.00000 0.00000 

221 0.14008 0.19221 0.10045 0.17555 0.60829 

222 0.00000 0.00000 0.00000 0.00000 0.00000 

223 0.14447 0.04012 0.01405 0.19222 0.39086 

224 0.13942 0.17413 0.05468 0.16505 0.53328 

225 0.14055 0.16151 0.05490 0.17056 0.52752 

226 0.00000 0.00000 0.00000 0.00000 0.00000 

227 0.00000 0.00000 0.00000 0.00000 0.00000 

228 0.13589 0.23276 0.06218 0.20159 0.63242 

229 0.00000 0.00000 0.00000 0.00000 0.00000 

230 0.00000 0.00000 0.00000 0.00000 0.00000 

231 0.13651 0.16832 0.11707 0.18389 0.60579 

232 0.14316 0.20916 0.13661 0.18333 0.67226 

233 0.14103 0.20916 0.01405 0.19167 0.55590 

234 0.00000 0.13428 0.33644 0.00000 0.47072 

235 0.14209 0.20235 0.15792 0.18500 0.68737 

236 0.13329 0.18505 0.08715 0.13351 0.53900 

237 0.13821 0.18131 0.05062 0.15765 0.52780 

238 0.14072 0.19601 0.05547 0.18003 0.57222 

239 0.13919 0.20111 0.03352 0.17664 0.55046 

240 0.13871 0.19476 0.09789 0.18038 0.61175 

241 0.14108 0.21803 0.05378 0.17741 0.59030 
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242 0.13994 0.19378 0.05501 0.17473 0.56347 

243 0.13853 0.12067 0.39772 0.25000 0.90692 

244 0.09350 0.00000 0.03149 0.05712 0.18211 

245 0.13818 0.20916 0.02471 0.18833 0.56037 

246 0.14103 0.22277 0.02790 0.18500 0.57670 
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Appendix C: Scatter Plots 

 

Figure 5.1: Scatter plot for Struts 2 project 

 

 

  

Figure 5.2: Scatter plot for Felix project 
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Figure 5.3: Scatter plot for Sling project 

 

 
 

Figure 5.4: Scatter plot for OFBiz project 


