

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2016

Evaluating the Characteristics of Code Reviewers and the

Code Reviewed by Them in Open Source Projects

Master of Science Thesis in the Programme Software Engineering

TAHIR YOUSAF

KASHIF HABIB KHAN

Evaluating the Characteristics of Code Reviewers and the

Code Reviewed by Them in Open Source Projects

TAHIR YOUSAF

KASHIF HABIB KHAN

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2016

Evaluating the Characteristics of Code Reviewers and the Code Reviewed by Them in Open

Source Projects

TAHIR YOUSAF

KASHIF HABIB KHAN

© TAHIR YOUSAF, May 2016.

© KASHIF HABIB KHAN, May 2016.

Examiner: RICHARD BERNTSSON SVENSSON

Supervisors: JAN SCHRÖDER, CHRISTIAN BERGER

Department of Computer Science and Engineering

Chalmers University of Technology

University of Gothenburg

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Göteborg, Sweden 2016

i

Evaluating the Characteristics of Code Reviewers and the Code Reviewed by Them in Open

Source Projects

TAHIR YOUSAF

KASHIF HABIB KHAN

Department of Computer Science and Engineering

Chalmers University of Technology

University of Gothenburg

Abstract

Open Source Software (OSS) solutions play an important role in software industry. People all

around the world use open source applications in their daily life. Development practices in OSS

usually don’t follow established industry standards, teams are often distributed, and experience

among team members varies greatly. Nevertheless, OSS has to fulfill the same quality standards

as conventional software.

Within OSS, gatekeeping is the process of controlling quality in a way that contribution goes

through a formal review. OSS use high experienced people (during code reviews) to review and

control the commits of less experienced people. But it is not evident, if committers with more

experience actually produce higher quality code.

In this study we investigate how experience influences the quality of code contributions. This

shall enable us to get a better understanding how quality assurance processes in OSS work. This

study is carried out to evaluate the characteristics of code reviewers and their contribution

efficiency. The study is comprised of six different Apache projects and exploring the facts by

using source code characteristics. The results of this study present interesting information

about characteristics of code reviewers and contributions made by them. We investigate the

relationship between contributor’s experience and contribution efficiency. According to our

study results, there is no correlation between contributor’s experience and contribution

efficiency. A developer with less experience can also provide efficient contributions. Results of

this study can be useful for software professionals, managers and IT researchers.

Keywords: Code Review, Code Inspection, Code Reviewer, Gatekeeper, Open Source Software,

Apache Software Foundation, Source Code Repository

ii

Acknowledgement

We would like to show our appreciation and gratitude to all those who have been involved in

the whole process of this thesis. We are very grateful to our supervisors Jan Schröder and

Christian Berger. They provided us great guidance, innovative ideas and constructive feedback

to complete this work. We also acknowledge the Department of Computer Science and

Engineering for providing educational resources and valuable knowledge during master study.

Finally, we would like to thank our families and friends for their support and motivation

throughout the study.

Tahir Yousaf & Kashif Habib Khan, Gothenburg 2016-03-10

Contents

List of Abbreviations ... 1

1. Introduction ... 2

1.1 Goal and Research Questions .. 3

1.2 Contributions ... 4

1.3 Scope.. 4

1.4 Structure of Document .. 5

2. Related Work .. 6

3. Methodology ... 9

3.1 Research Method .. 9

3.2 Data Collection ...11

3.3 Measurement Metrics ...22

3.4 Goal Question Metric Approach ...23

3.4.1 GQM for Research Question 1 ..24

3.4.2 GQM for Research Question 2 ..25

3.4.3 GQM for Research Question 3 ..27

4. Results ..28

4.1 Contributor’s Experience (Results for RQ1)..28

4.2 Contribution Efficiency (Results for RQ2) ...31

4.3 Correlation between Experience and Efficiency (Results for RQ3)33

5. Analysis and Discussions ..35

5.1 Contributor’s Experience ..35

5.2 Contributions Efficiency ..36

5.3 Correlation between Contributor’s Experience and Contributions Efficiency39

5.4 Threats to Validity ..42

6. Summary and Conclusion ..44

6.1 Future Work ...44

7. References ..46

Appendix A: Results of Contributor’s Experience ...49

Appendix B: Results of Contribution Efficiency ..54

Appendix C: Scatter Plots ..60

1

List of Abbreviations

OSS Open Source Software

ASF Apache Software Foundation

RTC Review Then Commit

CTR Commit Then Review

SQL Structured Query Language

JQL Jira Query Language

GQM Goal Question Metric

LOC Lines of Code

OSSD Open Source Software Development

QA Quality Assurance

RQ Research Question

UoA Units of Analysis

2

1. Introduction

Open Source Software (OSS) solutions play a key role in the software industry and provide

mission critical services to organizations. Development practices in OSS usually don’t follow

established industry standards, teams are often distributed, and experience among team

members varies greatly. Nevertheless, OSS has to fulfill the same quality standards as

conventional software.

Peer code review activity is an important quality assurance technique in both industrial

development and the open source software (OSS) community [2] [5]. This technique is used in a

semi-formal way or partially in commercial software projects which is an effective but

expensive approach. On the other hand, open source community has resolved the financial

barrier because they are self-motivated volunteers [1]. When Peer review is performed as part

of each Software development process activity, it identifies defects that can be fixed early in

the software development life cycle [4].

The focus of this study is the phenomenon of ‘Gatekeeper’ within open source software

development (OSSD). As the name suggests, this role work as a gatekeeper to the project code

base and maintains its quality. Every addition in the project code base goes by review through

these persons. They can either accept, modify or reject a change submitted by developers.Code

reviewers are usually more experienced persons and provide efficient contributions [6].

We use the terms ‘Code reviewer’ and ‘Gatekeeper’ alternatively in the next sections to relate

it to the other studies.

In this study, we investigate the characteristics of code reviewers, in regard of their experience

and contribution efficiency. We are interested in finding a way to measure their experience and

contribution efficiency. The experience and efficiency measured in other studies are conducted

for the developer role[26] [28]. Moreover, the methods use very few metrics for the

measurement (such as lines of code for measuring developer experience and use file commits

error ratio for measuring contribution efficiency) [26] [28]. We are interested to know how the

experience and contribution efficiency vary among code reviewers using series of mining based

metrics, and to find out the relationship between experience and contribution efficiency for

these persons.

The process of code reviews and role of committer is more clearly defined in Apache Software

Foundation (ASF)1. It is a major OSS community with several successful projects. By a

collaborative and meritocratic development process, Apache projects deliver enterprise level,

1
 http://www.apache.org/foundation/how-it-works.html#roles

3

freely available software solutions that attract large communities of users [3]. They have a

defined project role for performing the reviews.

We perform a case study by mining data from ASF issue tracker systems. We select the closed

and fixed issues and the code file commits made for the resolution of these issues. Then we find

out the characteristics of these code files. This case study consists of multiple units of analysis.

 The units of analysis are six projects from ASF with differences such as application domain,

project size, team size and commonalities such as similar project organization for tasks, issues

and code using the same issue tracker systems and code repository systems.

 1.1 Goal and Research Questions

The goal of this case study is to investigate the characteristics of the code reviewer and the

code where reviews are performed within OSS projects. Moreover, we investigate how these

characteristics can impact the success of code reviews.

Studies show that involving code reviews result in improved software evolvability by making the

code easier to understand and modify [9]. In [9], the authors classify the code review findings as

functional and evolvability (structure, documentation and visual representation) defects, where

the evolvability defects ratio is higher than functional defects. We investigate the effectiveness

of code reviews in regard of improvement or quality of code contributions from the code files

where the fixes are made to solve evolvability defects. We measure the experience of a

developer on a project and the characteristics of code contributions by the developer. We also

analyze whether experienced developer’s contributions are effective in term of source code

quality.

In this study, we collect data about already performed code reviews from the Apache open

source project's code base. This data is used to analyze the code reviewer effect on software

quality. We also investigate if there is a relationship between the experience of a code reviewer

and the success of code reviews. Respectively, we identified the following research questions:

1. How can a code contributor be classified in terms of project experience?

2. How can code contributions to the projects be characterized by assessing code/file

characteristics?

3. How does contributor’s project experience correlate with code contributions?

4

 1.2 Contributions

This study can be used to understand how effective is the role and characteristics of the code

reviewer in the development of software systems. This information can be used while making

the key decisions in the development of software projects, for example, when to introduce

reviews in the project life cycle. The results of the study show the impact of code review in

terms of code quality and contributor experience.

In this study, we measure contributors experience purely based on the source control system

and using file characteristics of the commits. This technique can be used to measure

contributor’s experience in an automated way. We contribute by providing methods to

measure efficiency and experience of contributors with the help of different metrics and

formulas.

 1.3 Scope

Our study focuses on OSS because it is challenging how quality is maintained. We have chosen

Apache Software Foundation (ASF) projects for our case study. The ASF is a non-profit

corporation that works as a major organization with over 140 software projects that are

released under the Apache open source license [3]. We investigate six Apache projects and

collect the data related to resolved and closed issues of the project and code files associated

with these bug fixes. ASF uses a bug tracking system known as JIRA for managing the issues

related to projects. The projects we have selected for this study are shown in Table 1.1.

The projects are mainly selected on the bases of their recent activities, a project should have an

active code repository with a commit activity in the week when data imported. The recent

activity tells us that the project is an active project with regular contributions from the

committers. We also considered the number of Total Issues, the number of Total Committers

and length of the project. Project should not be a new project or very small project. These

criterionsensure that we get reliable data and a large-enough data set, to perform significant

statistical analyses.

5

Table 1.1: Selected Apache projects for study

Projects URLs

Struts 2 http://struts.apache.org/

OFBiz https://ofbiz.apache.org/

Felix https://felix.apache.org/

Maven https://maven.apache.org/

ActiveMQ http://activemq.apache.org/

Sling https://sling.apache.org/

 1.4 Structure of Document

Chapter 1 presents background, research questions and scope of the thesis. Chapter 2 discusses

related work; how similar studies are performed by other researchers. Chapter 3 includes the

methodology, data collection and data analysis approach. This chapter also provides

information, how the research questions are addressed. Chapter 4 presents results in detail.

Afterwards, in Chapter 5 Analysis and Discussion are presented based on the results collected

during this study. Finally, Chapter 6 gives the conclusion of this study.

6

2. Related Work

We have identified related studies on code reviews and their effectiveness on software quality.

To find these studies, we performed searches using the keywords ‘Peer review’, ‘Code review’,

‘Code inspection’, ‘Code reviewer’, ‘OSS’ and ‘Apache Software Foundation’. For searching, we

have selected the IEEE digital library, ACM digital library and Science Direct because these

libraries are considered good sources for computer science related studies. Search strings using

the keywords were created and used in the libraries to find related work. We decided for a

combination of these three libraries, as we expect them cover a significant part of recent

computer science literature.

A study shows that 27% of incorrect bug fixes made by contributors who have never worked

before on source code files related with the fix [15]. Other finding suggests that the quality

control should preferably perform on changes made by a single developer with limited prior

experience [16]. As the project grows more complex, only few developers who have been

involved actively over a certain period of time can fully understand software architecture and

effectively contribute to its development [17]. The studies [15][16][17] raise a point that a new

developer can cause problems instead of benefit and experienced developer can contribute

effectively on software projects. To solve this problem, when people contributing with no or

little prior experience, code is reviewed first to maintain the quality by code reviewers. These

are normally the people who have more experience on any specific OSS project [6]. Their duties

are to review every addition before committing to the project base.

In their study, Wahyudin et al. discuss quality assurance (QA) activities in OSS projects to focus

on the questions, ‘What are the QA practices used in OSS projects?’ and ‘how do they perform

such activities?’ [1]. They carried out a case study based on Tomcat, Myface two OSS projects.

Tomcat is a pure volunteer project, whereas Myface is hybrid. They build a performance

hypothesis in relation to both types of projects. They illustrated QA practices may differ in the

different type of projects and the involvement of project community effects on QA practices.

Moreover, they proposed a framework based on stakeholder interviews in the QA process

which can be implemented in any OSS project [1]. The Framework has three processes group

those are defect detection, defect verification and solution verification. Code self-review and

team review are performed in the solution verification process.

Another study by Rigby and German [2], provides a good understanding of the peer review

mechanism in Apache Server. The study is conducted by using archival records of email

discussion and data repositories. They provided a comparison between two Apache review

techniques; review-then-commits (RTC) and commit-then-review (CTR) as well as a comparison

of Apache review to an inspection in the commercial project. This study is based on the data of

7

one project from ASF and focusing on characteristics of code reviews. Findings show that both

techniques RTC and CTR are not perfect in all environments. An optimal review process may be

designed by using formal code reviews frequently on critical sections of code before project

releases and quick review in the early development process.

In order to assure software quality, early detection of defects is highly recommended and code

review is one of effective approach for early detection of defects [6][7]. In a study by Kemerer

and Paulk [8], the impact of design and code reviews on software quality is discussed. This

research shows that the quality of products depends upon the quality control techniques such

as reviews, and the defect removal effectiveness of reviews depend on review rate. Review

quality decrease when the review rate exceeds the recommended maximum of 200 lines of

code (LOC) per hour [8]. This study verifies through results that code inspection can produce

good quality results in the software development process.

An empirical case study by Rigby and Store [7] investigates the procedure and behavior that

developers used to find which code patch is to be reviewed. Data is collected for five OSS

projects and interviews are conducted with nine core developers working on these selected

projects for this study. They describe how the patch is selected to perform the review and who

to review it. They show interesting facts after interviewing developers that experienced

committer in this area is normally reviewer and select the patch for review on the basis of area

of interest and expertise. Also discussed characteristics of the code reviewer, divided into two

types of personas positive and negative. Positive persons: objective analyzer (a reviewer

provides criticism as questions and encourage the discussion), expert adviser (expert reviewers

provide advices to new developers), enthusiastic support (reviewers provide good solutions and

take ownership of committing patch). Whereas negative persons: grumpy cynic (experienced

the member can become cynical when new developers suggest fail solutions), frustratedly

resigned (when a discussion on review has been carrying extended period of time, a reviewer

may resign from the discussion).

A study by Khanjani and Sulaiman [13] focuses on quality of review process in open source

software. The author briefly describes the concept of quality assurance under Open Source

Software Development (OSSD) model in general; furthermore, discussed the advantages and

disadvantages of the OSSD model in relation to close source software. They say OSSD model

technique is safer and faster than traditional technique to improve software quality. They find

the two factors: code review, data testing is important in software quality. Nevertheless, they

highlight the importance of peer review as a technique to improve the software quality.

A comparative case study by Asundi and Jayant [14] examines the process of the code review of

different types of projects. They collected data from five open source projects and performed

8

an analysis. Results show that core members of projects have a high ratio (90%) in the

involvement of patch submission and review process for three projects. This study shows that

some patches are not reviewed due to the incorrect format of submission according to

documentation of the project. Based on their results, they observe that four projects have at

least one response to each patch submission on average. That means every patch is reviewed at

least once.

The term code review, code inspection and code analysis are used in the software industry for

checking the quality of the code. Code inspections are beneficial for an additional reason and

they make the code easier to understand and change [9]. This study by Siy and Votta [9] shows

that 60% of all issues appeared in code reviews are not problems, but they improve the

maintainability of the code by following coding standards and decrease code redundancies. In

an OSS community project, where a large group of people contributes to the project, it is very

important that the code is easy to understand and modifiable. Another study by Mantyla and

Lassenius [10] affirms that code reviews are good for identifying the code defects because in

later phases these cannot be found as they do not have effect on software’s visible

functionality.

While each OSS project has a core group of developers (committers) with write access to the

code repository, new developers without this privilege can also make their contributions,

mainly by submitting patches to project mailing lists [11]. The patch submission and acceptance

process are critical to OSS communities [11]. It is not always immediately clear to whom to

assign a submitted patch for review [12]. It can be challenging to find a good reviewer for a

patch [12].

The papers are similar to our studies. These studies are about the code review process, patch

submission and how code review effects on software quality in OSS projects. We could not

identify studies assessing the characteristics of actual code reviewers as an example experience

of contributors and their impact on the software development process.

9

3. Methodology

This chapter describes the research method for the thesis project. After research method

description, data collection process is illustrated in detail. In the end of this chapter, Goal

Question Metric (GQM) approach is used to describe the research questions in detail.

3.1 Research Method

We investigate the characteristics of code reviewers and the code where reviews are

performed. We select six projects as cases to perform analysis. This thesis project focuses on

exploring the phenomenon of a code reviewer in environment of OSS development. Our

research strategy is a case study, performed on six different Apache projects. Our definition of

case study is based on Stol and Fitzgerald [21]. They describe it as any research conducted in

real-world setting, that focus on the specific phenomenon without changing the real

environment is considered to be a field study or case study. The research process is following

the recommendation by P. Runeson and M. Höst [22]. The steps are described below.

Case Study Design:The goal of this study and its preliminary research questions are defined. A

review on existing literature is performed. Six projects are explored in this study and limitations

are defined. The ASF projects are chosen as a domain of this study. See more detail about

projects in Section 1.2.

This is a case study with multiple units of analysis (UoA) as shown in Figure 3.1. The units of

analysis are six projects from ASF with differences such as application domain, project size,

team size and commonalities such as similar project organization for task and issues using the

same issue tracker system and code repository system. Each project has issues with the same

attributes of information.

Figure 3.1: Case study with multiple units of analysis (UoA)

Preparation of Data Collection:

selection of project are defined. The rules are included;

• A project should be active in recent time (should have commits in the week when

the data import starts). This avoids investigating outdated and inactive projects.

• During preliminary investigations, we foun

contributors are small

limit ourselves to projects with more than 20 contributors. A

more than twenty contributors as the minimum limit.

• A project should have the minimum limit of 4, 000 issue record

system.

• And project should have commit history over the couple of years.

Multiple sources and collection methods are defined for the study. Each project contains

thousands of record, so we perform data collection in an automated way. W

manual data collection as a test data to build our automated data collection method and

ensure the data reliability. Data collection processes are illustrated in Section 3.2.1 and Section

3.2.2.

Collecting Evidence: The data is collected fr

collected that help to address the research question of case study. Data can also be used to

perform further analysis.

Figure 3.1: Case study with multiple units of analysis (UoA)

Preparation of Data Collection: In this step, first data sources are investigated. The rules for

efined. The rules are included;

ject should be active in recent time (should have commits in the week when

the data import starts). This avoids investigating outdated and inactive projects.

preliminary investigations, we found that projects with less than 20

contributors are small projects with insufficient data. Hence, we

projects with more than 20 contributors. A project should have

contributors as the minimum limit.

A project should have the minimum limit of 4, 000 issue records in issue tracking

And project should have commit history over the couple of years.

Multiple sources and collection methods are defined for the study. Each project contains

thousands of record, so we perform data collection in an automated way. W

manual data collection as a test data to build our automated data collection method and

ensure the data reliability. Data collection processes are illustrated in Section 3.2.1 and Section

The data is collected from defined automated methods. Useful data is

collected that help to address the research question of case study. Data can also be used to

10

In this step, first data sources are investigated. The rules for

ject should be active in recent time (should have commits in the week when

the data import starts). This avoids investigating outdated and inactive projects.

d that projects with less than 20

e have decided to

project should have

s in issue tracking

Multiple sources and collection methods are defined for the study. Each project contains

thousands of record, so we perform data collection in an automated way. We also perform

manual data collection as a test data to build our automated data collection method and

ensure the data reliability. Data collection processes are illustrated in Section 3.2.1 and Section

om defined automated methods. Useful data is

collected that help to address the research question of case study. Data can also be used to

11

Analysis of Collected Data: Conclusion is derived from analysis and includes further possible

research to enhance the case study. The threats of validity are analyzed. Data analyses include

behavior or impact of contributor’s experience on code contributions.

3.2 Data Collection

The first step in the data collection are investigations of available resources. The Apache

Software Foundation (ASF) provides the following resources for possible contributions.

Mailing List: Each project has multiple mailing lists in ASF, where user can post a question,

feedback, comment about configuration of project, issues and new feature suggestion.

Contributors can post their messages in respective mailing list.

Issue and Bug Tracking: Each project uses their own Issue tracker [3] instance to record bugs or

issue data. Apache typically use JIRA2 and BugZilla as bug tracking systems, where contributors

can find information regarding issues. These systems track information for issue data, for

example Issue Date, Issue status, Issue Type, Update Date, Description, Assignee, Reported by

etc.

Source Code Repositories: Apache uses SVN and Git repositories for source control. These

repositories are accessible through a website Atlassian Fisheye63. It is mirroring the subversion

and Git repositories and it is integrated with issue tracker system JIRA. Realized as web service,

Fisheye6 provides information about source code, fields of information include Issue ID,

Commit Date, Committer ID, Number of files involved in particular commit, etc.

This study investigates the characteristics of code reviewer and assesses contributions on the

project. We acquire the data from issue tracking systems and source code repositories. The

data is collected for six Apache projects Struts2, OFBiz, Felix, Maven, ActiveMQ and Sling. Basic

information about size and participation about the project is listed in Table 3.1. The data is

collected using application scripts written in Microsoft C#.Net and stored in Microsoft SQL

Server.

2
https://issues.apache.org/jira/secure/BrowseProjects.jspa#all

3
https://fisheye6.atlassian.com/browse

12

Table 3.1: Project facts

Project Name Total No. of issues

imported

Total No. of files

commits

Total No. of

contributors

Struts 2 4006 71357 25

OFBiz 5683 62119 33

Felix 4242 51851 42

Maven 4310 47321 44

ActiveMQ 5173 39497 64

Sling 4663 60832 32

3.2.1 Manual Approach for Data Collection

To prepare for an automated data collection process, first we gathered the required data by a

manual process. The manual approach involves preparation of excel sheets manually from all

possible data sources. Initially, we have collected data of issues from the Apache Struts2

project. We have prepared excel sheets from Apache resources to develop the understanding

of data. It is also important to explore all possible or available fields of data by a manual process

so that we know about these for automation. This approach is practiced for one project. Figure

3.2 depicts the process of the manual approach.

Figure 3.2

Step 1: Collection of Issues Data

The issue tracking system is used to track different kind of issues information depending upon

how the tracking system is used in organization

improvement, task, sub-task, new feature or a test.

We have made a query using JIRA Query Language (JQL) for extracting the issue's data and

export them into excel files. There is a limit for export data int

issues. So, we have designed JQL on yearly bases (keeping the records under 100) and exported

issues into excel files. Excel files were made according to each year. In case yearly issues exceed

from 100 records then we have divi

Struts2 project.

The excel files contains information about issues for example Project, Issue Key, Summary, Issue

Type, Status, Priority, Resolution, Assignee, Reporter

Updated Date, Resolved Date, Components, Linked Issues, Description, Date of First Response

etc.

For retrieving the issues data, we have used the following source web url:

https://issues.apache.org/jira/browse/WW

4270?jql=project%20%3D%20WW%20AND%20status%20%3D%20Closed%20ORDER%20BY%20priority%

20DESC

Figure 3.2: Manual Data Collection Process

Step 1: Collection of Issues Data

The issue tracking system is used to track different kind of issues information depending upon

how the tracking system is used in organizations. In ASF, an issue represents either a bug, an

task, new feature or a test.

We have made a query using JIRA Query Language (JQL) for extracting the issue's data and

export them into excel files. There is a limit for export data into excel that is maximum 100

issues. So, we have designed JQL on yearly bases (keeping the records under 100) and exported

issues into excel files. Excel files were made according to each year. In case yearly issues exceed

from 100 records then we have divided into multiple files. We have prepared 52 files for the

The excel files contains information about issues for example Project, Issue Key, Summary, Issue

Priority, Resolution, Assignee, Reporter, Committer, Creator, Created

Date, Resolved Date, Components, Linked Issues, Description, Date of First Response

For retrieving the issues data, we have used the following source web url:

https://issues.apache.org/jira/browse/WW-

4270?jql=project%20%3D%20WW%20AND%20status%20%3D%20Closed%20ORDER%20BY%20priority%

13

The issue tracking system is used to track different kind of issues information depending upon

s. In ASF, an issue represents either a bug, an

We have made a query using JIRA Query Language (JQL) for extracting the issue's data and

o excel that is maximum 100

issues. So, we have designed JQL on yearly bases (keeping the records under 100) and exported

issues into excel files. Excel files were made according to each year. In case yearly issues exceed

ded into multiple files. We have prepared 52 files for the

The excel files contains information about issues for example Project, Issue Key, Summary, Issue

, Committer, Creator, Created Date,

Date, Resolved Date, Components, Linked Issues, Description, Date of First Response

4270?jql=project%20%3D%20WW%20AND%20status%20%3D%20Closed%20ORDER%20BY%20priority%

Step 2: Collection of File Commit Data

We can find commit information related to each issue obtained in step 1 through Atlassian

Fisheye6. It is a web interface th

Username, Commit Date, Commit ID, Committed File Paths, etc. We have collected commit

information against issues manually and saved them in excel files. Repositories in Atlassian

Fisheye6 are linked with JIRA and its interface looks like as in Figure 3.2. We can see the time

since last recent activity on the repository. For an example, Maven project have last update 39

minutes ago as shown in Figure 3.3

Figure 3.3: Atlassian Fisheye6 Code Repositories with Commit History Information

For retrieving the commit information for each issue, we have used following source web url to

explore the code files:

https://fisheye6.atlassian.com/browse/struts/core/src/main/java/org/apache/struts2/views/De

Library.java?r1=0aa0a69068c8dd7c61119f2a5baf8b9ab697c750&r2=9aedd857a4294a5091bce6abcdcb1

83f83833cb6

Step 3: Collection of Files Characteristics Data

Next step is collecting file characteristics for committed files through SonarQube [24]. It is a

web tool to measure file complexity. A

complexity of projects. We have manually collected the data from the SonarQube web links and

saved it into excel files. The file characteristics include Lines of Code, Complexity, Number of

Classes, Number of Functions and Complexity per Function.

Step 2: Collection of File Commit Data

We can find commit information related to each issue obtained in step 1 through Atlassian

Fisheye6. It is a web interface that provides information about commits for example Committer

Username, Commit Date, Commit ID, Committed File Paths, etc. We have collected commit

information against issues manually and saved them in excel files. Repositories in Atlassian

ed with JIRA and its interface looks like as in Figure 3.2. We can see the time

since last recent activity on the repository. For an example, Maven project have last update 39

nutes ago as shown in Figure 3.3, so it is an active project in the repository.

: Atlassian Fisheye6 Code Repositories with Commit History Information

For retrieving the commit information for each issue, we have used following source web url to

https://fisheye6.atlassian.com/browse/struts/core/src/main/java/org/apache/struts2/views/De

Library.java?r1=0aa0a69068c8dd7c61119f2a5baf8b9ab697c750&r2=9aedd857a4294a5091bce6abcdcb1

Files Characteristics Data

Next step is collecting file characteristics for committed files through SonarQube [24]. It is a

web tool to measure file complexity. Apache projects are configured with this tool to see the

complexity of projects. We have manually collected the data from the SonarQube web links and

saved it into excel files. The file characteristics include Lines of Code, Complexity, Number of

umber of Functions and Complexity per Function.

14

We can find commit information related to each issue obtained in step 1 through Atlassian

at provides information about commits for example Committer

Username, Commit Date, Commit ID, Committed File Paths, etc. We have collected commit

information against issues manually and saved them in excel files. Repositories in Atlassian

ed with JIRA and its interface looks like as in Figure 3.2. We can see the time

since last recent activity on the repository. For an example, Maven project have last update 39

: Atlassian Fisheye6 Code Repositories with Commit History Information

For retrieving the commit information for each issue, we have used following source web url to

https://fisheye6.atlassian.com/browse/struts/core/src/main/java/org/apache/struts2/views/DefaultTag

Library.java?r1=0aa0a69068c8dd7c61119f2a5baf8b9ab697c750&r2=9aedd857a4294a5091bce6abcdcb1

Next step is collecting file characteristics for committed files through SonarQube [24]. It is a

pache projects are configured with this tool to see the

complexity of projects. We have manually collected the data from the SonarQube web links and

saved it into excel files. The file characteristics include Lines of Code, Complexity, Number of

3.2.2 Automated Approach for Data Collection

Using JIRA and Atlassian Fisheye6 web URLs, it is possible to automate the data collection

process to gather the large amount of data for the research. We have exe

writing web client applications to process the web requests and fill in a database for th

analysis. Figure 3.4 shows the process of automated data collection in detail.

Figure 3.4

Step 1: Collection of Issues Data

We automated the collection of issue's data by generating web links dynamically for every

month with the month start and end date,

https://issues.apache.org/jira/sr/jira.issueviews:searchrequest

xml/temp/SearchRequest.xml?jqlQuery=project+%3D+"

%2C+Closed%29+and+createdDate+%3E%3D+%27"

"%27+and+createdDate+%3C%3D+%27"

When we download XML from the above link, it provides

regarding issues' data as we have talked above (downloadable excel file) data in XML format.

This required us to write a program which calls web request and download the XML file. Then

parse the XML and find the related inform

3.2.2 Automated Approach for Data Collection

Using JIRA and Atlassian Fisheye6 web URLs, it is possible to automate the data collection

process to gather the large amount of data for the research. We have executed web url's by

writing web client applications to process the web requests and fill in a database for th

shows the process of automated data collection in detail.

Figure 3.4: Automated Data Collection Process

n of Issues Data

We automated the collection of issue's data by generating web links dynamically for every

month with the month start and end date, an example source link is below:

https://issues.apache.org/jira/sr/jira.issueviews:searchrequest-

earchRequest.xml?jqlQuery=project+%3D+"+apacheProject+"+AND+status+in+%28Resolved

%2C+Closed%29+and+createdDate+%3E%3D+%27" + startDate +

"%27+and+createdDate+%3C%3D+%27" + endOfMonth+ "%27&tempMax=200"

When we download XML from the above link, it provides us with the same information

regarding issues' data as we have talked above (downloadable excel file) data in XML format.

This required us to write a program which calls web request and download the XML file. Then

parse the XML and find the related information. Next we save the information into our SQL

15

Using JIRA and Atlassian Fisheye6 web URLs, it is possible to automate the data collection

cuted web url's by

writing web client applications to process the web requests and fill in a database for the

We automated the collection of issue's data by generating web links dynamically for every

"+AND+status+in+%28Resolved

us with the same information

regarding issues' data as we have talked above (downloadable excel file) data in XML format.

This required us to write a program which calls web request and download the XML file. Then

ation. Next we save the information into our SQL

16

Server database. To process and filter all issues’ data related to one project, we had to change

these parameters to the above link for example Project Name, and date ranges on issue create

date with the Max limit of records of 200 (from JIRA, it’s only possible to export 100 records

once but when we tried changing download link with a program to 200 records, it worked).We

collected this data month-wise, because JIRA produces an error if more than 200 issues are

requested at once. The collected data is saved in the SQL table for issue's data. Fields are shown

in Table 3.2.

Table 3.2: Fields of information for Issues data

Issues Data Fields

Project Issue Key Title Issue Link

Summary Issue Type Status Priority

Resolution Assignee Reporter Created

Updated Resolved Affects Version Fixed Version

Components Linked Issues Description Labels

Flags Date of First Response

Step 2: Collection of File Commit Data

In the second step, we execute script for each issue key in an automated way with links like

below,

https://fisheye6.atlassian.com/search/" + repository +

"/?ql=select%20revisions%20from%20dir%20%22%2F%22%20where%20comment%20matches%20%22

" + issueKey +

"%22%20order%20by%20date%20%20desc%20%20group%20by%20changeset%20return%20path%2C%

20revision%2C%20author%2C%20date%2C%20csid%2C%20totalLines%2C%20linesAdded%2C%20linesR

emoved&csv=true

17

The above link provides us with the file commit information for one issue in CSV format. This

web request is made while saving the issue’s information. Upon receiving the response from

this web request, we parsed the CSV data to save it in the database for analysis. SQL table

contains this information regarding file's data. Fields are shown in Table 3.3.

Table 3.3: Fields of information for files data

Files Data Fields

Project Issue Key Revision Author File Path

Commit Date Changeset ID Total Lines Lines Added Lines Removed

Step 3: Downloading File Revisions Involved in Bugs Physically on Disk Storage

In this step, using a script we processed the saved file commits with file path's information in

our database to download the actual files from the Fisheye6 database. It is the most time

consuming process as it downloads thousands of files with multiple revisions.

We have downloaded all file versions involved in issues. We have downloaded the version of a

file when an issue is introduced in a file and file version when the issue is resolved for that file.

So we have a state of the file when an issue exists in the file and a state when it is fixed. Table

3.4 illustrates the before and after commit information with an example of a file ‘Form.java’.

Table 3.4: An Example with File Before and After Commit Information

Commit

Type

Project Revision File Path Commit

Date

Total

Lines

Lines

Added

Lines

Removed

After

commit

Struts 2 1485978 struts2/components

/Form.java

2013-05-24

08:56

490 143 8

Before

commit

Struts 2 1292705 struts2/components

/Form.java

2012-02-23

08:40

355 1 1

Step 4: Calculating the Characteristics of Downloaded Files

After downloading the files involved in bug fixes, we have measured the characteristics of files

using Source Monitor Tool [20]. We haven’t used SonarQube [24] for the automated process,

due to the reason it can only be configured with one version

of a single file, and second it requires to configure a complete project. For our study we need to

check characteristics for specific files.

Source Monitor provides console interface for measuring characteristics of the

files programmatically. We have written a program to take each saved file as an input from the

disk and calculate its complexity.

The console interface requires an XML configu

generate the files with characteristic's data. This file takes the input of parameters like the path

of the folder where the code files are placed, the path of the folder where it needs to save the

characteristic's data file, the format of data (either XML or CSV), cod

language. We have divided the process to measure characteristics by each issue. Source

Monitor provides characteristic's information as output in CSV format.

Figure 3.5: Input configuration file for Source Monitor console application

Step 5: Saving Characteristics of Files

In this step, we parse the CSV data generated in step 4, and save it in the database using

another console application written. We have created two tables with the same structure to

add the characteristics of a single file. One table contains the characteristics when the issue was

found while the other contains the characteristics when issue is solved. So that we can analyze

due to the reason it can only be configured with one version of a file, not for multiple versions

of a single file, and second it requires to configure a complete project. For our study we need to

check characteristics for specific files.

Source Monitor provides console interface for measuring characteristics of the

files programmatically. We have written a program to take each saved file as an input from the

disk and calculate its complexity.

The console interface requires an XML configuration file (shown in Figure 3.5

files with characteristic's data. This file takes the input of parameters like the path

of the folder where the code files are placed, the path of the folder where it needs to save the

characteristic's data file, the format of data (either XML or CSV), code file programming

language. We have divided the process to measure characteristics by each issue. Source

Monitor provides characteristic's information as output in CSV format.

: Input configuration file for Source Monitor console application

Characteristics of Files into the Database

In this step, we parse the CSV data generated in step 4, and save it in the database using

another console application written. We have created two tables with the same structure to

he characteristics of a single file. One table contains the characteristics when the issue was

found while the other contains the characteristics when issue is solved. So that we can analyze

18

of a file, not for multiple versions

of a single file, and second it requires to configure a complete project. For our study we need to

Source Monitor provides console interface for measuring characteristics of the large number of

files programmatically. We have written a program to take each saved file as an input from the

ration file (shown in Figure 3.5) as an input to

files with characteristic's data. This file takes the input of parameters like the path

of the folder where the code files are placed, the path of the folder where it needs to save the

e file programming

language. We have divided the process to measure characteristics by each issue. Source

: Input configuration file for Source Monitor console application interface

In this step, we parse the CSV data generated in step 4, and save it in the database using

another console application written. We have created two tables with the same structure to

he characteristics of a single file. One table contains the characteristics when the issue was

found while the other contains the characteristics when issue is solved. So that we can analyze

19

the difference of characteristics before and after the fix. SQL tables contains the following

information regarding characteristic's data. Fields are shown in Table 3.5.

Table 3.5: Fields of information for files complexity data

Files Characteristics Data Fields

Project Code Version File Path Number of Lines

Percentage

Comments

Statements Classes Methods per Class

Max Complexity Average Complexity Max

Depth

Average Depth

Average Statements

per Method

Percentage Branch Statements

3.2.3 SQL Database Schema

The final database structure includes six tables for data and five tables for results generation

from this data. Descriptions for the tables are summarized in Table 3.6.

20

Table 3.6: Description of database tables

Tables Description

tblProjects Contains the general information about apache projects

tblIssuesData Issues data for each project

tblFilesData Files commit of version when bug is fixed

tblFilesComplexity Files characteristics of version when bug is fixed

tblFilesDataCommitBefore Files commit of version when bug is introduced

tblFilesComplexityCommitBefore Files characteristics of version when bug is introduced

tblAnonymizeAuthor Anonymize the contributor names, anonymized

contributor ID’s are used in the results

tblResultsRQ1 Metrics information involved in RQ1.

tblResultsRQ1Normalized Normalized results for RQ1

tblResutlsRQ2 Metrics information involved inRQ 2

tblResultsRQ2Normalized Normalized results for RQ2

The Figure 3.6 and Figure 3.7 represents that how the data is organized in SQL tables.

Figure 3.6

represents that how the data is organized in SQL tables.

Figure 3.6: Database table schema

21

represents that how the data is organized in SQL tables.

22

Figure 3.7: Database table schema for keeping results of data for analysis

3.3 Measurement Metrics

This section describes the metrics, used to measure the artifacts of RQ1 and RQ2. The metrics

are measured by using file characteristics. Each metric is defined in detail as follows.

Lines of Code (LOC): Total number of physical lines in a source code file is considered LOC or

Number of Lines [20]. Empty and commented lines are also included in LOC.

Percentage Comments: The lines that contain comments are counted and then compared to

the total number of lines in the file to compute this metric [20].

Number of Classes: Classes and Interfaces are counted on bases of their declarations in a

source code file [20].

23

Methods per class: This metric count the number of methods in a class [20].

Code Complexity: The complexity metric is measured as defined by Steve McConnel’s book

[20], and using method is based on Tom McCabe’s work in which complexity is computed by

counting the number of decision points in routine [25]. Method or function is considered as

routine. Each method or function has a complexity of one plus one for each branch statement

like if, else, while, for, or foreach [20]. Each arithmetic if statements such as (MyBoolean ?

ValueIfTrue : ValueIfFalse) add one to the total complexity as well. A complexity increases by

one for each logical operator ('&&' and '||') in the logic within if, for, while or similar logic

statement [20].

Average Complexity: It is a measure by taking average of overall complexity computed for each

method or function in a file [20].

Block Depth: Nesting code can be used in most languages, nested blocks are almost always

introduced with control statements like “if”, "case" and “while” [20]. The code gets harder to

read when depth of nested block grows, more conditions must be evaluated with each new

nested depth level [20].Block level is zero at the start of each file and increases by one for each

level of nested statements.

Average Block Depth: It is measured as weighted average of the block depth of all statements

in a file [20].

3.4 Goal Question Metric Approach

Goal, Question, Metric (GQM) is an approach that is used to define the project goals in

systematic and traceable way [18]. It specifies a measurement model with three levels. First is

conceptual level where goal is defined for an object. Second is operational level where set of

questions are used to define the model. Third is quantitative level where set of metrics are

determined in order to answer the question in measurable way. GQM is a way to derive and

choose a specific task in a top-down and goal-oriented fashion [19]. This approach minimizes

the effort of data collection because only required data is to be recorded [19]. We use a GQM

approach to address our thesis’s research questions. We define goals, questions and metrics to

answer the research questions based on collected data. This approach improved our method by

clearly defining the goal, questions to achieve the goal and metrics to answer the questions.

3.4.1 GQM for Research Question 1

The goal of Research Question (RQ) 1 is measuring the contributor’s experience. To achieve this

goal, we formulate the question “How can a code contributor be classified in terms of project

experience?”. We decided on a set of metrics, which we expected to address contributors

experience. The metrics are; 1) Total number of commits, 2) Total number of issues assigned, 3)

number of lines/LOC, 4) Code complexity of file, 5) Mean time contribution in numb

hours/minutes. Figure 3.8 shows the GQM for the RQ1 and also metrics description.

Figure 3.8

Total number of Commits by contributor:

repository for a contributor. Hig

less participation.

Total number of issues assigned to contributor:

assigned to a contributor on a specific project. High values

values represents less participation.

Total Lines of Code added by contributor:

contributor in all his files commits. High values

represents less participation.

3.4.1 GQM for Research Question 1

The goal of Research Question (RQ) 1 is measuring the contributor’s experience. To achieve this

we formulate the question “How can a code contributor be classified in terms of project

ecided on a set of metrics, which we expected to address contributors

experience. The metrics are; 1) Total number of commits, 2) Total number of issues assigned, 3)

, 4) Code complexity of file, 5) Mean time contribution in numb

shows the GQM for the RQ1 and also metrics description.

Figure 3.8: Goal Question Metrics for RQ1

Total number of Commits by contributor: It measures the number of files of commits to the

repository for a contributor. High values indicate more participation and low values represents

Total number of issues assigned to contributor: This is the measure of total number of

to a contributor on a specific project. High values indicate more participation and low

values represents less participation.

Total Lines of Code added by contributor: This metric gives total number of lines added by a

contributor in all his files commits. High values indicate more participation and low values

24

The goal of Research Question (RQ) 1 is measuring the contributor’s experience. To achieve this

we formulate the question “How can a code contributor be classified in terms of project

ecided on a set of metrics, which we expected to address contributors

experience. The metrics are; 1) Total number of commits, 2) Total number of issues assigned, 3)

, 4) Code complexity of file, 5) Mean time contribution in number of

shows the GQM for the RQ1 and also metrics description.

It measures the number of files of commits to the

more participation and low values represents

This is the measure of total number of issues

ticipation and low

This metric gives total number of lines added by a

more participation and low values

Code Complexity of files (in Average):

contributor’s level of expertise in a sense if he worked on more complex files or not. If this

number is high means contributor worked on compl

contributor worked on less complex files.

Mean time contribution in number of Hours:

commits. We are taking average of time duration among all commits by a contribu

values indicate less participation and low values represents more participation.

3.4.2 GQM for Research Question 2

The goal of RQ2 is assessing the characteristics of contributions made to project. We formulate

two sub questions to achieve this g

code/file, where bugs are found and fixed? We find that the code file characteristics include

Lines of Code, Average Complexity, Code Depth, Percentage Comments, Number of Classes,

Number of Functions, Statements, Max Complexity, Max Depth etc.

Second sub question is; how can code/file characteristics be combined to assess contributions?

To assess contributions using code file characteristics, we take difference of code characteristics

when a commit is made with a version just before that commit (file version just before a

commit represents the file state when a contributor started work on a f

Figure 3.9 shows the GQM for the RQ2 and evaluated difference metrics description.

Figure 3.9

Code Complexity of files (in Average): Code complexity of files, we take this to measure the

contributor’s level of expertise in a sense if he worked on more complex files or not. If this

number is high means contributor worked on complex files and less in number indicates that

contributor worked on less complex files.

Mean time contribution in number of Hours: It indicates the time duration between two file

commits. We are taking average of time duration among all commits by a contribu

less participation and low values represents more participation.

3.4.2 GQM for Research Question 2

The goal of RQ2 is assessing the characteristics of contributions made to project. We formulate

two sub questions to achieve this goal. First sub question is, what are the characteristics of

code/file, where bugs are found and fixed? We find that the code file characteristics include

Lines of Code, Average Complexity, Code Depth, Percentage Comments, Number of Classes,

tions, Statements, Max Complexity, Max Depth etc.

how can code/file characteristics be combined to assess contributions?

To assess contributions using code file characteristics, we take difference of code characteristics

mit is made with a version just before that commit (file version just before a

commit represents the file state when a contributor started work on a file to fix an issue).

shows the GQM for the RQ2 and evaluated difference metrics description.

Figure 3.9: Goal Question Metrics for RQ2

25

Code complexity of files, we take this to measure the

contributor’s level of expertise in a sense if he worked on more complex files or not. If this

ex files and less in number indicates that

It indicates the time duration between two file

commits. We are taking average of time duration among all commits by a contributor. High

The goal of RQ2 is assessing the characteristics of contributions made to project. We formulate

oal. First sub question is, what are the characteristics of

code/file, where bugs are found and fixed? We find that the code file characteristics include

Lines of Code, Average Complexity, Code Depth, Percentage Comments, Number of Classes,

how can code/file characteristics be combined to assess contributions?

To assess contributions using code file characteristics, we take difference of code characteristics

mit is made with a version just before that commit (file version just before a

ile to fix an issue).

shows the GQM for the RQ2 and evaluated difference metrics description.

26

We define contribution assessment in the following as contribution efficiency. We decided to

use 4 file characteristics to assess the contributions efficiency. These four metrics include

Average Code Complexity, Lines of Code, Percentage Comments and Average Code Depth. The

definitions of these file characteristics are given in Section 3.3.

The selected 4 metrics further transformed into 4 manipulated metrics to assess the

contributions. Manipulated metrics are the metrics that gives comparison results (difference

values) of two different versions of the same code file to provide an evidence about the

efficiency of a contribution. These are as follows:

Average Code Complexity Difference: It is calculated by subtracting average complexity of a file

after commit from average complexity before commit. So in case it is decreased, then it gives a

positive number value.

Lines of Code Difference: This metric is calculated by taking the difference of Lines of Code

after and before commit. This value give the number of lines added in a commit. In case Lines of

Code added, then this measure gives positive number value.

Percentage Comments Difference: The difference of Percentage Comments after and before

commit. Positive difference values show us that there is addition of documentation in a code

file.

Average Code Depth Difference: It is measured in similar way as Average Complexity. We

subtract Average Code Depth of a file after commit from Average Code Depth before commit.

So in case of decrease of Average Code Depth, the difference value is a positive number.

These metrics are manipulated in a form, so that positive values represent an increase in

contribution efficiency while negative values represent decrease in contribution efficiency.

Our Strategy for measuring efficiency is described below with four points of view. With

combining all four points, we expect to create a realistic assessment of contribution efficiency.

● A decrease in Average Code Complexity shows positive impact on contribution

efficiency. The reason is, that the contributor reduced the overall complexity of the code

file with his/her commit. The commit thereby contributed to understandability and

maintainability of the code.

27

● An increase in LOC shows that contributor made a contribution by writing numbers of

lines of code. This metric gives an idea that contributor understands well the code file so

that he is able to contribute with addition of code lines.

● An increase in Percentage Comments gives a positive effect on efficiency by increasing

the readability or maintainability of the code file.

● A decrease in Code Depth represents that code is made simpler and so easier to

understand and modify.

Since every contributor have hundreds of records of evaluated metrics data, we have taken

averages of these values to calculate contribution efficiency of a contributor.

3.4.3 GQM for Research Question 3

The goal of RQ3 is to calculate correlation values between contributor’s experience and

contribution's efficiency. Figure 3.10 shows the GQM diagram for RQ3. The results of RQ1 and

RQ2 (contributors experience and contribution efficiency) are the metrics for RQ3.

Figure 3.10: Goal Question Metrics for RQ3

28

4. Results

This section presents detailed results of our case studies. These results are collected from the

automated data collection process which is mentioned in Section 3.2.2. We illustrate the results

received for all 6 projects using the results of Apache Struts2 project. The results are generated

using data of 28, 077 issues and 332, 977 files of commits with their characteristics. The

detailed analysis of these results follows in Chapter 5. For reader’s interest, all other results are

presented in the Appendix A.

4.1 Contributor’s Experience(Results for RQ1)

The experience of contributors is measured by using the metrics; Total Issues Assigned, Total

Files of Commits by Contributor, Mean Time between commits (in hours), Average Complexity

of files committed, Total Lines Added by Contributor. Descriptions of these metrics are

illustrated in Section 3.3.

Table 4.1: Cumulative Results for contributor’s experience of Apache Struts2 project

Contributors

ID

Total

Issues

Assigned

Total Commits

by Contributor

Mean Time In

Hours

Average

Complexity

Total Lines

Added by

Contributor

1 22 3821 211.73 1.72 23136

2 6 6 787.08 6.03 34

3 0 0 0 0 0

4 4 5 3059.45 1.66 230

5 7 27 182.12 1.86 512

6 1 1 0 4.14 1

7 5 13 576.55 2.07 802

8 61 346 260.4 1.86 6552

9 78 33142 57.48 1.7 1653569

10 19 97 356 2.6 1942

11 18 52 402.78 2.42 793

12 41 251 105.98 2.33 1589

13 20 171 379.08 2.28 925

14 38 1181 456.85 2.12 122727

15 335 1921 82.17 2.55 27551

16 37 117 519.92 2.62 1628

17 242 8554 42.68 1.96 430957

18 228 4850 74.07 1.81 355627

19 1 22 0 1.2 440

20 45 251 287.97 2.41 14185

21 1 1 0 2.55 17

22 57 10842 465.3 1.8 554780

23 71 858 24.45 2.08 23926

24 9 23 447.27 2.56 312

25 45 214 523.42 2.94 1550

26 13 744 671.72 2 1028

29

Table 4.1 shows results for the contributor's experience of Apache Struts2 project. In the next

step, each metric value is normalized using a min-max data normalization technique [23]. It is

simplest method to rescale the value in range {0,1}. The Equation 4.1 is used to calculate

rescale value. It calculates the relative value so contributor’s experience is also calculated

relatively with respect to the other contributor involved in project.

�� = � −min	(�)
max(�) − 	min	(�)

Equation: 4.1

Where x is the original value and x’ is normalized value. For example, we rescale the Total

number of issues assigned to a contributor’s data, and issues assigned span {40, 150}. Where

min. issues assigned value is 40 and max. value is 150. To rescale this data, we first subtract 40

from each Issue assigned value and divide the result by 110 (the difference between the max.

and min. issue assigned value).

��� = �′ × 20
100

Equation: 4.2

The final contributors’ experience is calculated by combining all five metrics with an equal

weight of 20% for each metric value. Equation 4.2 is used for calculating weight of 20%.

Contributor’s Experience = Total Issues Assigned + Total Files of Commits by Contributor +

Mean Time (in hours) + Average Complexity + Total Lines Added by Contributor

30

Table 4.2: Normalized results for contributor’s experience of Struts2 project

Contributors

ID

Total Issues

Assigned

Total Commits

by Contributor

Mean

Time In

Hours

Average

Complexity

Total Lines

Added by

Contributor

Contributor's

Experience

1 0.01257 0.02305 0.18766 0.17847 0.00280 0.38150

2 0.00299 0.00003 0.14974 0.00000 0.00000 0.15274

3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

4 0.00180 0.00002 0.00000 0.18095 0.00003 0.18278

5 0.00359 0.00016 0.18961 0.17267 0.00006 0.36594

6 0.00000 0.00000 0.00000 0.07826 0.00000 0.07826

7 0.00240 0.00007 0.16362 0.16398 0.00010 0.33009

8 0.03593 0.00208 0.18445 0.17267 0.00079 0.39384

9 0.04611 0.20000 0.19782 0.17930 0.20000 0.62323

10 0.01078 0.00058 0.17815 0.14203 0.00023 0.33119

11 0.01018 0.00031 0.17507 0.14948 0.00010 0.33483

12 0.02395 0.00151 0.19463 0.15321 0.00019 0.37198

13 0.01138 0.00103 0.17663 0.15528 0.00011 0.34340

14 0.02216 0.00712 0.17151 0.16190 0.01484 0.37041

15 0.20000 0.01159 0.19620 0.14410 0.00333 0.54363

16 0.02156 0.00070 0.16735 0.14120 0.00020 0.33030

17 0.14431 0.05162 0.19880 0.16853 0.05212 0.56376

18 0.13593 0.02926 0.19673 0.17474 0.04301 0.55041

19 0.00000 0.00013 0.00000 0.20000 0.00005 0.20005

20 0.02635 0.00151 0.18263 0.14990 0.00172 0.36059

21 0.00000 0.00000 0.00000 0.14410 0.00000 0.14410

22 0.03353 0.06542 0.17095 0.17516 0.06710 0.44674

23 0.04192 0.00517 0.20000 0.16356 0.00289 0.40837

24 0.00479 0.00013 0.17214 0.14369 0.00004 0.32065

25 0.02635 0.00129 0.16712 0.12795 0.00019 0.32160

26 0.00719 0.00448 0.15735 0.16687 0.00012 0.33153

In Table 4.2, the rightmost column in yellow shows the normalized results for the contributor’s

experience of Apache Struts2 project. Contributor 9 has the maximum experience that is

0.62323 and Contributor 6 has minimum experience with result value 0.07826. The table also

contains the normalized measurement values.

The zero values for experience are unavoidable in the results. For an example, in Table 4.2

Contributor 3 have 0 experience. This is the case when we get Contributor name from the

source systems, but we didn’t find any contribution related to him or her on these systems.

31

4.2 Contribution Efficiency (Results for RQ2)

The goal of RQ2 is assessing the contributions efficiency. A single contribution consists of a file

commit and a file version just before that commit. We used file characteristics (Code

Complexity, Code Depth, LOC and Percentage Comments) to measure the contribution

efficiency. The metrics are; Difference of average Code Complexity, Difference of average Code

Depth, Difference of average LOC, Difference of Percentage Comments. The intention behind

these metrics is discussed in Section 3.4.2.

Table 4.3: Results for contribution efficiency of Struts2 project

Contributors
ID

Difference
Avg.

Complexity

Difference
Avg. Depth

Difference
Avg. LOC

Difference
Avg.

Percentage
Comments

1 -0.00980 -0.00049 3.49020 4.38333

2 -0.12500 -0.01250 0.75000 -0.07500

3 0.00000 0.00000 0.00000 0.00000

4 0.14800 0.10600 13.40000 0.52000

5 -0.04000 -0.05300 14.20000 -1.68000

6 0.00000 0.06000 -1.00000 0.30000

7 0.26167 -0.06000 30.33333 -2.11667

8 -0.01802 -0.03542 9.10417 -0.27813

9 -0.02966 -0.02610 10.79661 0.84661

10 -0.08913 -0.01978 10.97826 -0.27391

11 -0.17273 -0.04568 8.88636 -0.18636

12 -0.02024 -0.02084 9.87952 -0.63373

13 0.00089 -0.02768 -0.30357 0.18393

14 -0.21256 -0.05068 4.82051 -0.79658

15 0.00840 0.00359 6.47166 -0.55283

16 0.05329 -0.01630 5.45205 0.14658

17 0.05191 0.00057 6.27901 -0.37605

18 -0.00272 -0.00332 9.12816 -0.83187

19 0.00000 0.00000 20.00000 19.64286

20 0.12663 0.01257 3.82178 -0.19010

21 0.00000 0.00000 0.00000 0.00000

22 -0.10261 -0.01625 2.39674 -0.00761

23 -0.03730 -0.02230 2.27000 -0.38800

24 0.01111 -0.00111 6.72222 -0.38333

25 -0.03057 -0.01557 4.27273 -0.53636

26 0.00000 0.00000 0.37097 -0.02419

Table 4.3 shows results for the contribution efficiency of Apache Struts2 project. In the next

step, these metric values are normalized as described in Section 4.1.

32

�� = � −min	(�)
max(�) − 	min	(�) ×

25
100

Equation: 4.3

The final contribution efficiency of contributor is calculated by combining all four metrics with

an equal weight of 25%. Equation 4.3 is used for calculating weight of 25%.

Contribution Efficiency of Contributor = Difference of Average Code Complexity + Difference of

Average Code Depth + Difference of Average LOC + Difference of Percentage Comments

 Table 4.4: Normalized results for contribution efficiency of Apache Struts2 project

Contributors
ID

Difference
Avg.

Complexity

Difference
Avg. Depth

Difference
Avg. LOC

Difference
Avg.

Percentage
Comments

Contribution
Efficiency

1 0.10689 0.08962 0.05732 0.07468 0.32851

2 0.04616 0.07154 0.02234 0.02346 0.16349

3 0.00000 0.00000 0.00000 0.00000 0.00000

4 0.19008 0.25000 0.18383 0.03029 0.65420

5 0.09097 0.01054 0.19404 0.00502 0.30057

6 0.11206 0.18072 0.00000 0.02777 0.32055

7 0.25000 0.00000 0.40000 0.00000 0.65000

8 0.10256 0.03702 0.12899 0.02112 0.28969

9 0.09642 0.05105 0.15060 0.03405 0.33211

10 0.06507 0.06057 0.15291 0.02117 0.29972

11 0.02100 0.02156 0.12621 0.02218 0.19095

12 0.10139 0.05897 0.13889 0.01704 0.31628

13 0.11253 0.04868 0.00889 0.02643 0.19653

14 0.00000 0.01403 0.07430 0.01517 0.10350

15 0.11648 0.09577 0.09538 0.01797 0.32561

16 0.14015 0.06581 0.08237 0.02600 0.31433

17 0.13942 0.09122 0.09292 0.02000 0.34356

18 0.11063 0.08536 0.12930 0.01476 0.34004

19 0.11206 0.09036 0.26809 0.25000 0.72050

20 0.17881 0.10930 0.06155 0.02213 0.37180

21 0.11206 0.09036 0.01277 0.02432 0.23950

22 0.05797 0.06589 0.04336 0.02423 0.19145

23 0.09239 0.05678 0.04174 0.01986 0.21078

24 0.11791 0.08869 0.09858 0.01991 0.32510

25 0.09594 0.06692 0.06731 0.01816 0.24833

26 0.11206 0.09036 0.01750 0.02404 0.24396

33

Table 4.4 shows the normalized results for the contribution efficiency of Apache Struts2

project. Contributor 19 has maximum contribution efficiency with value 0.72050. Whereas

Contributor 14 has minimum contribution efficiency with result value 0.10350.

The zero values for contribution efficiency are unavoidable in the results. For an example, in

Table 4.4 Contributor 3 have 0 efficiency. This is the case when we get Contributor name from

the source systems, but we didn’t find any contribution related to him or her on these systems.

4.3 Correlation between Experience and Efficiency (Results for RQ3)

The goal of RQ3 is to find out the correlation between contributor experience and

contribution's efficiency. Correlation between sets of data is a measure of how well the data is

related. The common measure of correlation in parametric statistics is by using Pearson

Correlation. It can be measured by the Equation 4.4.

� = 	 �(∑��) − (∑�)(∑�)
��� ∑�� − (∑�)���� ∑ �� − (∑�)��

Equation: 4.4

We have performed statistical tests (using R with an environment RStudio [27]) for calculating

the correlation between contributor experience and their contribution efficiency.

4.3.1 Interpretation of Pearson Correlation Coefficient

The Pearson Correlation Coefficient value ranges from -1 to 1. A value of 1 means a strong

relationship between X & Y. It means that Y increases as X increases. A value of 0 means no

correlation. A value of -1 means a strong correlation also but this value means Y decreases as X

increases. Correlation does not make a statement about causalities. If X correlates with Y, it

does not mean that X causes behavior of Y.

4.3.2 Correlation Coefficient Values for Six Projects

Our results are given in Table 4.5. The results show that there is no correlation between

contributor experience and efficiency. In our statistical tests, normalized datasets give us

Pearson Coefficient value ranging from -0.2669051 to 0.1229097.

34

We additionally provide the p-value, stating if the correlation coefficients are significantly

different from 0. As none of the p-values indicates significance, we conclude that even the weak

correlations may be received by chance.

Table 4.5: Correlation Coefficient value for each project

Project Pearson's correlation

coefficient

p-value

Struts 2 -0.1665629 0.4262

Maven -0.2669051 0.1053

ActiveMQ -0.07569234 0.5864

Sling 0.1229097 0.5253

Felix -0.1393565 0.404

OFBiz -0.05370417 0.782

35

5. Analysis and Discussions

This section presents the analysis of results and discuss them in detail. By the end of this

chapter, threats to validity are assessed.

5.1 Contributor’s Experience

RQ1: How can a code contributor be classified in terms of project experience?

According to our study, code contributor can be classified in terms of project experience by

combining 5 metrics of information, which are the total number of issues or tasks, total files of

commits, mean time between commits in hours, average file complexity and total lines of

contribution added by a contributor.

It is a common practice that contributor’s experience is measured by how long they contributed

to a project (with the help of the contributor start date and end date) and by using the

frequency of contributions [26]. In our study, we are examining the code files (where work is

done by a contributor) to measure the experience. Two of our metrics, lines of code and bug

fixing contributions are discussed for assessing developer contributions in an empirical study

[29], it is argued in the study that these metrics can better perform when combined with other

metrics of information. And that is the case with our study, we have combined these 2 metrics

with other 3 metrics.

In our study, we don’t use the difference between first and last contribution date as the work

period of a contributor while calculating the experience. The reason is that, in OSS environment

people don’t contribute on the regular basis. So for an example a developer A with work period

of 1 year may have more experience than a developer B with the work period of 2 years,

because it is possible that developer B have one contribution 2 years ago and then few

contributions later. Instead we use an approach to see a contributor activity with the help of

the mean time difference in hours between contributions.

If we analyze the contributor’s experience in Figure 5.1 for the Apache Struts2 project, top 4

contributors (contributor 9, 17, 18 and 15) have more contributions experience than other

contributors. Hence, using our combined metrics we can identify differences among the

contributors and identify key developers with high experience.

Figure 5.1: Apache Struts2 Contributor’s Experience

This way it can be very useful to analyze contributor experience on a project while assigning

tasks or issues to developers. We are able to answer RQ1, since we have classified the

contributor’s in terms of their experience.

5.2 Contributions Efficienc

RQ2: How can code contributions to the projects

characteristics?

Code contributions can be characterized

study, these are average file complexity, average code depth, lines of code and percentage

comments. These code/file characteristics can be combined by taking difference of ‘commit

before’ and ‘commit after’ values.

In other studies [26] [28], the quality of contribution is normally measured by one binary metric

information, which is the rate of non

value if a project compiles without any error after commit and a ‘false’ in case it generates

errors after the commit.

A recent study proposes a way to measure contribution efficiency by using comple

This study result suggests that the developers who unnecessarily increase the code complexity

are less efficient [29]. This is an empirical study but it lacks

Figure 5.1: Apache Struts2 Contributor’s Experience

This way it can be very useful to analyze contributor experience on a project while assigning

tasks or issues to developers. We are able to answer RQ1, since we have classified the

contributor’s in terms of their experience.

5.2 Contributions Efficiency

RQ2: How can code contributions to the projects be characterized by assessing code/file

characterized by using 4 metrics of information according to our

study, these are average file complexity, average code depth, lines of code and percentage

ese code/file characteristics can be combined by taking difference of ‘commit

before’ and ‘commit after’ values.

[26] [28], the quality of contribution is normally measured by one binary metric

information, which is the rate of non-bug-introducing commits. It is calculated by taking a ‘true’

value if a project compiles without any error after commit and a ‘false’ in case it generates

A recent study proposes a way to measure contribution efficiency by using comple

suggests that the developers who unnecessarily increase the code complexity

is an empirical study but it lacks the assessment of metrics of code

36

This way it can be very useful to analyze contributor experience on a project while assigning

tasks or issues to developers. We are able to answer RQ1, since we have classified the

by assessing code/file

by using 4 metrics of information according to our

study, these are average file complexity, average code depth, lines of code and percentage

ese code/file characteristics can be combined by taking difference of ‘commit

[26] [28], the quality of contribution is normally measured by one binary metric

troducing commits. It is calculated by taking a ‘true’

value if a project compiles without any error after commit and a ‘false’ in case it generates

A recent study proposes a way to measure contribution efficiency by using complexity metrics.

suggests that the developers who unnecessarily increase the code complexity

the assessment of metrics of code

37

depth and percentage comments that we used in our method with combination of code

complexity and lines of code.

Another study [30], used a model to measure contributions by using lines of code plus a

contribution factor. This study identified actions that can be classified as contributions factor

and type of actions, such as add lines of code of good/ bad quality with type as positive/

negative impact. Another example of action is commit a file with type as positive impact. But

this study is not using the code complexity metrics for measuring contributions.

For our study, we have chosen 4 file characteristics to include in the comparisons for measuring

efficiency that can contribute in efficiency of a code file. These characteristics are average code

complexity, average code depth, lines of code and percentage comments. By taking the

difference of these file characteristics with before commit versions, we are able to measure

contribution efficiency.

If we analyze the contribution's efficiency in Figure 5.2 for the Apache Struts2 project. The top 3

contributors (contributor 4, 7 and 19) have more efficient contributions than other

contributors. This can be helpful to see the best contributors in regard of quality of

contributions.

It is therefore possible to answer RQ2, using the metrics it is possible to assess efficiency by

combining file assessments. For an example, contributor 4 has efficiency value of 0.65 (as

shown in Table 4.4). In the histogram, we see that contributor 3 has 0 value for contribution

efficiency because there is no information for this contributor to measure efficiency. This is an

example of outlier in Struts 2.

Figure 5.2: Apache Struts2 Contributions Efficiency

In our study, for measuring contributions efficiency we actually gathered all code file

characteristics first and then analyzed every characteristic to include or exclude in the

measurements. We have used average code complexity, average code depth, lines of code and

percentage comments for measuring contribution efficiency. We have not used number of

statements, number of functions, number of classes, max code complexity and max code depth

in our measurements. The reasons for the characteristics that a

are;

• Number of Statements, Function

metric that covers the total lines of code file (size attributes)

statements, number of functions and number of classes correlate with Lines of Code.

For an example, it is

lines are directly proportional to number of statements.

• Max complexity and max code depth: These metrics show the complexity or depth

of a part of the file but not for complete code file. So we have excluded these

measures and included instead the averages for complexity a

Figure 5.2: Apache Struts2 Contributions Efficiency

In our study, for measuring contributions efficiency we actually gathered all code file

n analyzed every characteristic to include or exclude in the

We have used average code complexity, average code depth, lines of code and

percentage comments for measuring contribution efficiency. We have not used number of

of functions, number of classes, max code complexity and max code depth

The reasons for the characteristics that are not used in measurements

Number of Statements, Functions and Classes: We have taken the

t covers the total lines of code file (size attributes).

statements, number of functions and number of classes correlate with Lines of Code.

 repeating to use number of statements because the number of

proportional to number of statements.

Max complexity and max code depth: These metrics show the complexity or depth

of a part of the file but not for complete code file. So we have excluded these

measures and included instead the averages for complexity and code depth.

38

In our study, for measuring contributions efficiency we actually gathered all code file

n analyzed every characteristic to include or exclude in the

We have used average code complexity, average code depth, lines of code and

percentage comments for measuring contribution efficiency. We have not used number of

of functions, number of classes, max code complexity and max code depth

re not used in measurements

Classes: We have taken the lines of code

. The number of

statements, number of functions and number of classes correlate with Lines of Code.

repeating to use number of statements because the number of

Max complexity and max code depth: These metrics show the complexity or depth

of a part of the file but not for complete code file. So we have excluded these

nd code depth.

39

5.3 Correlation between Contributor’s Experience and Contributions

Efficiency

RQ3: How does contributor’s project experience correlate with code contributions?

According to statistical tests based on our results, there is no correlation between contributor’s

experience and contribution's efficiency. Table 4.5 shows Pearson Correlation Coefficients for all

six projects with their p-values.

To see the correlation visually, we have drawn scatter plots using the normalized data of our

results with the help of RStudio [27]. Along x-axis there is the contributor’s experience and y-

axis represents contribution's efficiency. Here we take an example of Apache ActiveMQ project

for the discussion with help of visual diagram for the correlation in Figure 5.3. Apache

ActiveMQ have more contributors than all other five projects, so the more data points. For all

remaining projects; to see correlation diagrams, please refer to Appendix C (Scatter plots).

 Figure 5.3: Scatter plot for ActiveMQ project

40

In Figure 5.3 for the Apache ActiveMQ project, we can again see no correlation. The data points

are linearly distribution, in parallel to the x-axis. Hence, using the metrics as described in

Section 3, we found that contribution efficiency does not increase with contributor experience.

Furthermore, the highest peak of efficiency was even observed in the lowest third of

contributor experience. There is a cluster of data points in the center, showing that more

contributors have experience in the range around 0.35 and contribution efficiency around 0.6.

This behavior shows that contributors with moderate experience have good contributions. We

find similar clusters of data points in center for Felix and OFBiz projects. This observation can be

seen in scatter plots given in Appendix C.

Figure 5.4: Scatter plot for Maven project

Similar behavior can be observed in Figure 5.4, in the scatter plot for Apache Maven. It shows

that contributors with experience in the range around 0.38 are very different in regard of

quality of contributions. The lowest value is 0.3 and the peak value for contribution efficiency is

0.7 in this region.

During the analysis, while looking at scatter plots and results we have decided to exclude the

outliers for calculating correlation values. Outliers are those data points where either

contributor efficiency or contributor experience has zero value or both measures have zero

values. The zero values are unavoidable in the result's calculation process. These outliers have

strong impact on the correlation values, even though they don’t include any information. For an

example, in case of Apache ActiveMQ, if we calculate correlation value including these outliers,

it gives us somewhat moderate correlation value of 0.49

Whereas if we see the actual correlation in the Figure 5.3, there is no correlation for ActiveMQ

project. Hence, we observed that correlation including the outliers is strongly misleading. So we

have excluded outliers for calculating the cor

Why there is no correlation between contributor experience and contributor efficiency? This

question is hard to answer. One possible reason can be that contribution efficiency not only

depend on contributor experience

developer’s IQ level, way of thinking, education, command in tools, etc. Another reason may be

that; in this context we have examined the committers working inside Apache active code base.

The committer role can have experience

a developer) before write access to the project.

We made an additional observation from the results that is not related to answering the

research questions. If we analyze

on projects. Figure 5.5 shows us that, increasing the number of committers in a project

repository not possibly increase the contribution's efficiency. For an example ActiveMQ have 65

contributors, the highest number of committers in this dataset, but the efficiency is lower than

other two projects OFBiz and Sling. The same behavior can be seen for Apache Maven.

Figure 5.5: Behavior of Contributor’s Experience and Efficiency with Total n

on the correlation values, even though they don’t include any information. For an

example, in case of Apache ActiveMQ, if we calculate correlation value including these outliers,

e correlation value of 0.49 with confidence p-

Whereas if we see the actual correlation in the Figure 5.3, there is no correlation for ActiveMQ

project. Hence, we observed that correlation including the outliers is strongly misleading. So we

have excluded outliers for calculating the correlation values for all six projects.

Why there is no correlation between contributor experience and contributor efficiency? This

question is hard to answer. One possible reason can be that contribution efficiency not only

depend on contributor experience but also depend on other factors of personality, such as

developer’s IQ level, way of thinking, education, command in tools, etc. Another reason may be

in this context we have examined the committers working inside Apache active code base.

tter role can have experience to some extent on a project with another role (such as

before write access to the project.

We made an additional observation from the results that is not related to answering the

research questions. If we analyze all six projects and relate it to the total number of committers

on projects. Figure 5.5 shows us that, increasing the number of committers in a project

repository not possibly increase the contribution's efficiency. For an example ActiveMQ have 65

butors, the highest number of committers in this dataset, but the efficiency is lower than

other two projects OFBiz and Sling. The same behavior can be seen for Apache Maven.

Figure 5.5: Behavior of Contributor’s Experience and Efficiency with Total n

Committers (Team Size)

41

on the correlation values, even though they don’t include any information. For an

example, in case of Apache ActiveMQ, if we calculate correlation value including these outliers,

value 2.236e-05.

Whereas if we see the actual correlation in the Figure 5.3, there is no correlation for ActiveMQ

project. Hence, we observed that correlation including the outliers is strongly misleading. So we

Why there is no correlation between contributor experience and contributor efficiency? This

question is hard to answer. One possible reason can be that contribution efficiency not only

but also depend on other factors of personality, such as

developer’s IQ level, way of thinking, education, command in tools, etc. Another reason may be

in this context we have examined the committers working inside Apache active code base.

with another role (such as

We made an additional observation from the results that is not related to answering the

all six projects and relate it to the total number of committers

on projects. Figure 5.5 shows us that, increasing the number of committers in a project

repository not possibly increase the contribution's efficiency. For an example ActiveMQ have 65

butors, the highest number of committers in this dataset, but the efficiency is lower than

other two projects OFBiz and Sling. The same behavior can be seen for Apache Maven.

Figure 5.5: Behavior of Contributor’s Experience and Efficiency with Total number of

42

5.4 Threats to Validity

There exist different ways to classify aspects of validity and threats to validity. We have

identified threats to internal and external validity according to P. Runeson and M. Höst [22].

These threats to validity are described in detail in this section.

Internal validity:

• Few commits contain large number of files, sometimes a complete project. This is

possible when a committer moves the repository or create a new repository for a

project. These affect the values taken for average mean time between commits. The

average mean time metric tells about the activity of a developer, so we take the distinct

commit date and time to measure the developer activity. It should not be dependent on

how many files are committed in one commit. To mitigate the problem due to this

reason we have considered multiple or large amount of files in one commit as a single

activity date time when taking average mean time in hours between commits.

• We have collected data from online issue tracking system and file commits from active

code repositories using automated scripts. It may be possible that a developer work on

an issue that is not reported on these systems. The impact of this missing information is

not significant due to the reason we evaluate the commits associated with an issue, and

issues can be linked with file commits to active repositories in these systems for

reviews.

• We have used an open source code complexity measurement tool named Source

Monitor. Complexity can be measured in different ways. There are other software

applications in the market for measuring complexity. It is possible that other tools would

have resulted in different results. We use Source Monitor, as it provides a variety of

measurements and it is widely used code analysis tool. The program supports multiple

programming languages (C++, Java, C#, Visual Basic, Delphi or HTML) and provides

advanced features like method and function level metrics for more detailed analysis and

comparison. To mitigate the problem that different software's measure complexity in

different ways, we have used the same tool for all projects. So that the results are

consistent in this regard.

• We have made the study results by using data from the metrics. In order to avoid bias,

we have given equal weight to these metrics. For an example, while calculating

contribution efficiency each of 4 metrics have 25 % weight. Further investigation into

the assessment of contributor experience might result in an adjustment of those

weights. For an example, a recent study discussed about the importance of code

complexity metric for the contributions efficiency [29].

43

External validity:

• We have chosen six medium scale projects for this study. Adding more data would

increase the amount of data for the analysis and might affect the results. We cannot

fully mitigate this generalizability threat. We have collected data for six different units of

analysis and received similar results. This gives us an indication, that the results might

be generalizable to other OSS projects as well.

44

6. Summary and Conclusion

This study analyzed six Apache projects data including 28,077 issues and 332,977 files of

commits from Apache issue tracking system JIRA and Apache code repositories (Atlassian

Fisheye). We considered not only bugs but also tasks, improvements, tests, documentation and

new features.

The study evaluates the contributor’s experience and contribution efficiency in open source

projects using issue's data and file commits made for resolving these issues. In this study we

proposed different methods to measure contributor’s experience and contribution's efficiency

with help of multiple data metrics. Contribution experience is measured using metrics that tell

about the amount of contributions, frequency and complexity level of files on which developer

worked on a project. Contribution efficiency is measured using file characteristics of code files

(Code Complexity, Code Depth, LOC, Percentage Comments).

We present findings, which are similarly received for all six projects. We did not find correlation

between experience and efficiency results. It means that a low experience contributor can also

provide good contributions. In an Apache environment, a contributor with few contributions

may also provide effective code. The reason could be that he or she gets write access to the

code repository as a committer after having an experience on the project with another role

such as a developer.

Another observation tells us that, larger the numbers of committers (or team size) on a project

don’t have the positive impact on the efficiency of contributions.

6.1 Future Work

In this section, possible future work is discussed in detail.

● We have evaluated six Apache projects. Further studies can be extended to include

more projects from the Apache domain or other open source communities like Source

forge and Red Hat.

● We considered a set of most interesting file characteristics in this study. Other file

characteristics can also be used to see the impact of these on results. Other file

characteristics include; Number of Classes, Number of Methods, Methods per class,

Statements and Method Calls.

45

● In further studies, contributors overall experience can be assessed to see the quality of

contributions. For an example, if a contributor is working on more than one project,

then it can be analyzed to see whether it’s making contributions more efficient or not.

46

7. References

[1] D. Wahyudin, A. Schatten, D. Winkler, and S. Biffl. Aspects of Software Quality Assurance in

Open Source Software Projects: Two Case Studies from Apache Project. In 33rd EUROMICRO

Conference on Software Engineering and Advanced Applications, pages 229 - 236, 2007.

[2] P. C. Rigby, D. M. German, and M. A. Storey. Open source software peer review practices:A

Case Study of the Apache Server. In 30th International Conference Software Engineering,

pages 541 - 550, 2008.

[3] The Apache Software Foundation, Available at: http://apache.org/foundation (visited on

2015-03-21).

[4] D. Huizinga, and A. Kolawa. Automated Defect Prevention: Best Practices in Software

Management. Wiley-IEEE Press, page 261, 2007.

[5] P. C. Rigby, D. M. German, L. Cowen, and M. A.Storey. Peer Review on Open-Source

Software Projects: Parameters, Statistical Models, and Theory, ACM Transactions on Software

Engineering and Methodology (TOSEM), 23(4), Article No. 35, 2014.

[6] J. Liang, and O. Mizuno. Analyzing Involvements of Reviewers through Mining a Code

Review Repository. In Joint Conference of the 21st Int'l Workshop on Software Measurement

and 6th Int'l Conference on Software Process and Product Measurement, pages 126 - 132,

2011.

[7] P. C. Rigby, M. A. Storey. Understanding Broadcast Based Peer Review on Open Source

Software Projects. In 33rd International Conference on Software Engineering, pages 541 - 550,

2011.

[8] C. F. Kemerer, M. C. Paulk. The Impact of Design and Code Reviews on Software Quality:

An Empirical Study Based on PSP Data. IEEE Transactions on Software Engineering, 35(4):534

- 550, 2009.

[9] H. Siy, and L. Votta. Does The Modern Code Inspection Have Value?. In IEEE International

Conference on Software Maintenance, pages 281 - 289, 2001.

[10] M. V. Mantyla, C. Lassenius. What Types of Defects Are Really Discovered in Code

Reviews?, IEEE Transactions on Software Engineering, 35(3)430 - 448, 2009.

[11] C. Bird, A. Gourley, and P. Devanbu. Detecting Patch Submission and Acceptance in OSS

Projects. In Fourth International Workshop ICSE on Mining Software Repositories, page 26,

2007.

47

[12] J. B. Lee, A. Ihara, A. Monden, and K. Matsumoto. Patch Reviewer Recommendation in

OSS Projects. In 20th Asia-Pacific APSEC on Software Engineering, vol. 2 pages 1 - 6, 2013.

[13] A. Khanjani, and R. Sulaiman. The process of quality assurance under open source

software development. (ISCI), In IEEE Symposium on Computers & Informatics, pages 548 -

552, 2011.

[14] J. Asundi, and R. Jayant. A patch review process in open source software development

communities: A comparative case study, In 40th Annual Hawaii International Conference on

System Sciences, page 166, 2007.

[15] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L.Bairavasundaram. How do fixes become

bugs?, In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European

conference on Foundations of software engineering, pages 26 - 36, 2011.

[16] F. Rahman, and P. Devanbu. Ownership, experience and defects: a fine-grained study of

authorship, In 33rd International Conference on Software Engineering, pages 491 - 500, 2011.

[17] G. V. Krogh, S. Spaeth, and K. R. Lakhani. Community, joining, and specialization in open

source software innovation: a case study, Research Policy, 32(7):1217 - 1241, 2003.

[18] V. R. Basili, and H. D. Rombach. The TAME project: towards improvement-oriented

software environments, IEEE Transactions on Software Engineering, 14(6):758 - 773, 1988.

[19] I. Eusgeld, F.C. Freiling, and R. Reussner (Eds.). Dependability Metrics, LNCS 4909, page

39. Springer-Verlag Berlin Heidelberg, 2008.

[20] Source Monitor. Available at: http://www.campwoodsw.com/sourcemonitor.html (visited on

2015-08-17).

[21] K. Stol, and B. Fitzgerald. A Holistic Overview of Software Engineering Research

Strategies. In Proceedings of the 3rd International Workshop on Conducting Empirical Studies

in Industry, pages 47-54, 2015.

[22] P. Runeson, and M. Höst. Guidelines for conducting and reporting case study research in

software engineering, Empirical Software Engineering, 14:131 - 164, 2009.

[23] A. Jain, K. Nandakumar, and A. Ross. Score normalization in multimodal biometric

systems, Pattern Recognition, 38(12):2270 - 2285, 2005.

[24] Sonarqube. Available at: http://www.sonarqube.org/ (visited on 2015-03-16).

[25] S. McConnel, Code Complete, Microsoft Press, 2nd edition, page 458, 2004.

48

[26] J. Eyolfson, L. Tan, and P. Lam. Do Time of Day and Developer Experience Affect Commit

Bugginess?, In Proceedings of the 8th Working Conference on Mining Software Repositories,

pages 153 - 162, 2011.

[27] RStudio Software Tool. Available at: https://www.rstudio.com/home/ (visited on 2016-01-

04).

[28] Y. Qiu, W. Zhang, W. Zou, J. Liu, and Q. Liu. An Empirical Study of Developer Quality, In

IEEE International Conference on Software Quality, Reliability and Security - Companion, pages

202 – 209, 2015.

[29] J. Lima, C. Treude, F. Figueira Filho, and U. Kulesza. Assessing Developer Contribution

with Repository Mining-Based Metrics, In IEEE International Conference on Software

Maintenance and Evolution, pages 536 – 540, 2015.

[30] G. Gousios, E. Kalliamvakou, and D. Spinellis. Measuring Developer Contribution from

Software Repository Data, In Proceedings of the international working conference on Mining

software repositories, pages 129 – 132, 2008.

49

Appendix A: Results of Contributor’s Experience

Table A.1: Results for contributor’s experience of Maven project

Contributors
ID

Total Issues
Assigned

Total Files of
Commits by
Contributor

Mean Time In
Hours

Average
Complexity

Total Lines
Added by

Contributor

Contributor's
Experience

27 0.00035 0.00025 0.19983 0.00000 0.00002 0.20020

28 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

29 0.00243 0.00018 0.19074 0.00000 0.00012 0.19330

30 0.00070 0.00008 0.00000 0.13123 0.00003 0.13195

31 0.20000 0.20000 0.19961 0.16970 0.20000 0.76931

32 0.00278 0.00066 0.18666 0.15336 0.00046 0.34326

33 0.11200 0.11070 0.19878 0.14809 0.12497 0.58385

34 0.01774 0.00747 0.19784 0.15415 0.00208 0.37181

35 0.00904 0.00410 0.19534 0.16021 0.00475 0.36935

36 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

37 0.00591 0.00066 0.17030 0.16785 0.00009 0.34415

38 0.00035 0.00018 0.06484 0.16126 0.00027 0.22672

39 0.00174 0.00012 0.19450 0.16917 0.00004 0.36545

40 0.00765 0.00178 0.19087 0.16126 0.00166 0.36144

41 0.00035 0.00012 0.17199 0.15810 0.00003 0.33047

42 0.00000 0.00000 0.00000 0.20000 0.00000 0.20000

43 0.01391 0.04505 0.19124 0.15758 0.04853 0.41126

44 0.00313 0.00059 0.17822 0.15020 0.00020 0.33175

45 0.10365 0.10271 0.19886 0.14335 0.03955 0.48541

46 0.00070 0.00094 0.18505 0.18577 0.00125 0.37276

47 0.04765 0.14141 0.19500 0.16891 0.16781 0.57937

48 0.01322 0.00346 0.19464 0.14282 0.00156 0.35224

49 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

50 0.00278 0.00377 0.18518 0.16733 0.00433 0.35962

51 0.00139 0.08478 0.19872 0.16601 0.12851 0.49463

52 0.00000 0.00004 0.00000 0.00000 0.00000 0.00000

53 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

54 0.00313 0.00723 0.15967 0.17866 0.00935 0.35081

55 0.00035 0.05529 0.17392 0.16548 0.06246 0.40221

56 0.00035 0.01491 0.17846 0.16495 0.02704 0.37081

57 0.00070 0.00043 0.18334 0.16864 0.00017 0.35285

58 0.00000 0.00037 0.20000 0.16337 0.00015 0.36352

59 0.00278 0.00424 0.19902 0.15995 0.00226 0.36400

60 0.00626 0.03430 0.18434 0.16364 0.04618 0.40042

61 0.00278 0.00061 0.18224 0.14097 0.00037 0.32636

62 0.00000 0.00014 0.19274 0.08274 0.00010 0.27557

63 0.00174 0.00023 0.15533 0.13096 0.00010 0.28813

64 0.00000 0.01349 0.17825 0.16047 0.02835 0.36707

65 0.02330 0.00711 0.19903 0.14941 0.00286 0.37459

66 0.00174 0.00045 0.19836 0.08748 0.00043 0.28801

67 0.00035 0.00018 0.17726 0.16390 0.00026 0.34176

68 0.00035 0.00002 0.20000 0.00000 0.00000 0.20035

69 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

70 0.00348 0.00043 0.18262 0.05903 0.00031 0.24544

71 0.00209 0.00041 0.17121 0.16522 0.00026 0.33877

72 0.02713 0.00702 0.19606 0.15494 0.01009 0.38823

73 0.00035 0.00006 0.18827 0.00000 0.00006 0.18867

50

Table A.2: Results for contributor’s experience of Sling project

Contributor
s ID

Total
Issues

Assigned

Total Files of
Commits by
Contributor

Mean Time
In Hours

Average
Complexity

Total Lines
Added by

Contributor

Contributor'
s

Experience

74 0.00173 0.00019 0.10675 0.09224 0.00005 0.20076

75 0.01123 0.00630 0.18681 0.14447 0.00373 0.34623

76 0.08687 0.12573 0.19600 0.16235 0.13760 0.58282

77 0.01036 0.00442 0.18937 0.15482 0.00253 0.35709

78 0.00017 0.00011 0.07707 0.00000 0.00009 0.07733

79 0.00000 0.00003 0.19985 0.12706 0.00002 0.32693

80 0.20000 0.20000 0.19757 0.12753 0.13767 0.66277

81 0.00259 0.00216 0.13909 0.14635 0.00090 0.28894

82 0.00898 0.00670 0.16529 0.06212 0.00574 0.24212

83 0.14439 0.15910 0.19660 0.13976 0.20000 0.68075

84 0.00000 0.00002 0.00000 0.00000 0.00000 0.00000

85 0.01123 0.01555 0.17613 0.13976 0.01134 0.33846

86 0.00000 0.00003 0.20000 0.19294 0.00001 0.39296

87 0.00121 0.00083 0.16220 0.20000 0.00007 0.36348

88 0.00052 0.00670 0.16688 0.12941 0.00002 0.29682

89 0.05976 0.02829 0.19288 0.12188 0.01302 0.38754

90 0.00225 0.00119 0.13784 0.00000 0.00127 0.14136

91 0.01036 0.00778 0.19487 0.14635 0.00235 0.35394

92 0.00138 0.00033 0.00000 0.16565 0.00004 0.16707

93 0.00829 0.01820 0.19309 0.16000 0.00441 0.36579

94 0.00656 0.00517 0.12676 0.15953 0.00462 0.29748

95 0.00881 0.00675 0.19011 0.14918 0.00366 0.35175

96 0.00950 0.01518 0.19467 0.16565 0.01085 0.38067

97 0.04473 0.05722 0.19714 0.14965 0.07698 0.46849

98 0.00121 0.00559 0.18492 0.10165 0.00272 0.29050

99 0.01572 0.02390 0.19681 0.18306 0.01961 0.41520

100 0.02383 0.01359 0.19544 0.10541 0.00804 0.33273

101 0.00000 0.00002 0.00000 0.14682 0.00001 0.14683

102 0.00017 0.00000 0.01245 0.03859 0.00000 0.05121

103 0.00190 0.00368 0.19171 0.15012 0.00087 0.34459

104 0.01209 0.04849 0.19422 0.16094 0.01492 0.38216

105 0.00155 0.00127 0.07624 0.17129 0.00216 0.25125

51

Table A.3: Results for contributor’s experience of Felix project

Contributors
ID

Total Issues
Assigned

Total Files of
Commits by
Contributor

Mean Time In
Hours

Average
Complexity

Total Lines
Added by

Contributor

Contributor's
Experience

106 0.00000 0.00019 0.00000 0.00000 0.00017 0.00017

107 0.00130 0.00128 0.16547 0.00000 0.00016 0.16693

108 0.00000 0.00002 0.00000 0.10705 0.00013 0.10718

109 0.00324 0.00101 0.19798 0.07821 0.00056 0.27999

110 0.00940 0.00237 0.19426 0.02244 0.00019 0.22628

111 0.00357 0.00208 0.19446 0.16923 0.00170 0.36895

112 0.00130 0.00007 0.19951 0.00577 0.00001 0.20659

113 0.00097 0.00381 0.19965 0.08077 0.00227 0.28366

114 0.10762 0.18291 0.19671 0.14167 0.05974 0.50573

115 0.12253 0.08390 0.19810 0.07500 0.01905 0.41468

116 0.01135 0.00461 0.19522 0.10385 0.00168 0.31209

117 0.01361 0.00835 0.18130 0.00128 0.00438 0.20058

118 0.03468 0.02807 0.19798 0.11282 0.00536 0.35084

119 0.00065 0.00005 0.00000 0.11090 0.00000 0.11155

120 0.03079 0.08820 0.19855 0.11987 0.02585 0.37506

121 0.00972 0.00570 0.19014 0.13205 0.00423 0.33615

122 0.00454 0.00065 0.14275 0.07756 0.00005 0.22490

123 0.00227 0.00027 0.19174 0.10577 0.00020 0.29998

124 0.20000 0.20000 0.19846 0.09038 0.20000 0.68884

125 0.00097 0.00558 0.16187 0.11154 0.00217 0.27655

126 0.00746 0.01651 0.17757 0.08910 0.00502 0.27915

127 0.12415 0.06428 0.19783 0.05962 0.02773 0.40933

128 0.00097 0.00017 0.18305 0.06282 0.00003 0.24688

129 0.01037 0.00804 0.19364 0.15641 0.00177 0.36220

130 0.02237 0.02450 0.19353 0.15128 0.00867 0.37584

131 0.00000 0.00031 0.00000 0.20000 0.00027 0.20027

132 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

133 0.00259 0.00270 0.18091 0.12821 0.00251 0.31422

134 0.00454 0.00251 0.14650 0.00000 0.00120 0.15223

135 0.02139 0.00763 0.18569 0.11859 0.00364 0.32932

136 0.04052 0.01224 0.19467 0.00769 0.00598 0.24886

137 0.03793 0.01453 0.18911 0.02821 0.00620 0.26144

138 0.02593 0.02308 0.19458 0.13974 0.00497 0.36523

139 0.00032 0.00000 0.00000 0.06154 0.00008 0.06195

140 0.18444 0.10806 0.19837 0.04808 0.04001 0.47090

141 0.00130 0.00007 0.00000 0.07564 0.00001 0.07694

142 0.00000 0.00005 0.20000 0.13141 0.00000 0.33141

143 0.00194 0.02696 0.16898 0.06154 0.00885 0.24132

144 0.00259 0.00227 0.19692 0.18462 0.00102 0.38514

145 0.00000 0.00048 0.19669 0.12628 0.00022 0.32319

146 0.00389 0.00191 0.15382 0.11218 0.00137 0.27126

147 0.00357 0.00111 0.13455 0.09808 0.00092 0.23712

148 0.12836 0.03379 0.19386 0.04231 0.00639 0.37092

52

Table A.4: Results for contributor’s experience of OFBiz project

Contributors
ID

Total
Issues

Assigned

Total Files
of Commits

by
Contributor

Mean
Time In
Hours

Average
Complexity

Total Lines
Added by

Contributor

Contributor's
Experience

149 0.02241 0.06772 0.19604 0.18330 0.13234 0.53409

150 0.00964 0.00253 0.19333 0.07080 0.00062 0.27439

151 0.00000 0.00006 0.20000 0.19750 0.00000 0.39750

152 0.04821 0.02160 0.19878 0.13898 0.00345 0.38941

153 0.00717 0.00157 0.19335 0.14102 0.00029 0.34183

154 0.01042 0.00634 0.19822 0.17784 0.00237 0.38885

155 0.00195 0.00013 0.19968 0.20000 0.00001 0.40164

156 0.00378 0.00219 0.18376 0.16068 0.00049 0.34871

157 0.00443 0.00141 0.19962 0.15795 0.00007 0.36207

158 0.00026 0.00029 0.20000 0.00000 0.00004 0.20030

159 0.00938 0.00120 0.18972 0.18795 0.00011 0.38717

160 0.00000 0.00000 0.00000 0.07375 0.00000 0.07375

161 0.01759 0.00849 0.19813 0.18250 0.00673 0.40495

162 0.00925 0.00558 0.19036 0.17705 0.00145 0.37811

163 0.04495 0.01694 0.19824 0.14795 0.00437 0.39552

164 0.00235 0.00091 0.18635 0.17011 0.00028 0.35909

165 0.20000 0.20000 0.19971 0.16886 0.20000 0.76857

166 0.00795 0.00295 0.19551 0.15500 0.00225 0.36070

167 0.01577 0.00236 0.19483 0.14193 0.00045 0.35298

168 0.00182 0.00045 0.19961 0.14682 0.00011 0.34837

169 0.02072 0.00478 0.19722 0.14193 0.00129 0.36116

170 0.00039 0.00014 0.19849 0.00000 0.00001 0.19889

171 0.00977 0.01798 0.19938 0.16716 0.00747 0.38378

172 0.00469 0.00649 0.19865 0.16352 0.00081 0.36767

173 0.00026 0.00012 0.19847 0.00239 0.00000 0.20112

174 0.00039 0.00010 0.19888 0.17080 0.00000 0.37008

175 0.00065 0.00021 0.19418 0.13670 0.00002 0.33156

176 0.00000 0.00000 0.14392 0.00000 0.00000 0.14392

177 0.00847 0.00294 0.19826 0.16795 0.00234 0.37702

178 0.00013 0.00012 0.19005 0.00000 0.00001 0.19019

179 0.00104 0.00053 0.19951 0.12102 0.00023 0.32180

180 0.00534 0.00083 0.19545 0.14830 0.00014 0.34923

181 0.00000 0.00009 0.19981 0.00000 0.00028 0.20009

53

Table A.5: Results for contributor’s experience of ActiveMQ project

Contributors
ID

Total Issues
Assigned

Total Files of
Commits by
Contributor

Mean Time In
Hours

Average
Complexity

Total Lines
Added by

Contributor

Contributor's
Experience

182 0.01170 0.00570 0.18174 0.07126 0.00283 0.26753

183 0.00039 0.00013 0.01539 0.00000 0.00001 0.01579

184 0.00039 0.00035 0.18119 0.02915 0.00052 0.21125

185 0.00039 0.00004 0.19775 0.00000 0.00000 0.19813

186 0.00078 0.00057 0.19302 0.17247 0.00080 0.36706

187 0.00390 0.00172 0.17473 0.19757 0.00129 0.37749

188 0.15750 0.14446 0.19798 0.12470 0.06964 0.54982

189 0.00351 0.00146 0.15997 0.14899 0.00140 0.31387

190 0.00039 0.00009 0.15007 0.09717 0.00010 0.24772

191 0.00858 0.00305 0.19067 0.12955 0.00221 0.33101

192 0.00234 0.00137 0.13360 0.13765 0.00175 0.27535

193 0.00078 0.00031 0.15025 0.05668 0.00010 0.20781

194 0.02183 0.06102 0.19747 0.13846 0.03290 0.39066

195 0.00234 0.00071 0.17765 0.08907 0.00023 0.26929

196 0.02222 0.00724 0.19214 0.11498 0.00176 0.33110

197 0.02534 0.01007 0.19377 0.11579 0.00223 0.33713

198 0.00039 0.00022 0.16743 0.12389 0.00014 0.29185

199 0.00078 0.00115 0.16493 0.10688 0.00022 0.27282

200 0.00156 0.00260 0.14288 0.17652 0.00081 0.32177

201 0.00819 0.00389 0.18198 0.13846 0.00130 0.32993

202 0.03041 0.02265 0.19428 0.11012 0.00970 0.34451

203 0.00039 0.00009 0.19175 0.06397 0.00003 0.25614

204 0.00000 0.00071 0.19973 0.13360 0.00029 0.33362

205 0.00078 0.00124 0.19523 0.06478 0.00054 0.26132

206 0.00000 0.00000 0.00000 0.00000 0.00005 0.00005

207 0.00468 0.00163 0.17837 0.08178 0.00100 0.26583

208 0.20000 0.16600 0.19806 0.13441 0.10122 0.63369

209 0.00000 0.00004 0.00000 0.00000 0.00000 0.00000

210 0.07018 0.06194 0.19725 0.11174 0.20000 0.57917

211 0.00117 0.00115 0.20000 0.13522 0.00062 0.33701

212 0.00585 0.00839 0.13588 0.18138 0.00630 0.32940

213 0.00507 0.00508 0.04891 0.12955 0.00139 0.18492

214 0.00117 0.00247 0.19182 0.00000 0.00051 0.19350

215 0.00000 0.00022 0.00000 0.17976 0.00015 0.17991

216 0.00936 0.00623 0.18059 0.11417 0.00265 0.30676

217 0.09669 0.18327 0.19321 0.12713 0.05780 0.47483

218 0.00000 0.00004 0.00000 0.12470 0.00007 0.12476

219 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

220 0.00000 0.00084 0.00000 0.00000 0.00012 0.00012

221 0.05692 0.05024 0.18719 0.14332 0.06394 0.45136

222 0.00078 0.00022 0.08705 0.00000 0.00001 0.08784

223 0.00078 0.00185 0.12387 0.14899 0.00019 0.27383

224 0.01793 0.00737 0.18659 0.12874 0.00255 0.33582

225 0.00312 0.00053 0.03187 0.20000 0.00013 0.23512

226 0.00039 0.00018 0.05952 0.00000 0.00000 0.05991

227 0.00000 0.00022 0.00000 0.00000 0.00001 0.00001

228 0.01481 0.00693 0.19555 0.14818 0.00531 0.36385

229 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

230 0.00000 0.00256 0.00000 0.19190 0.00472 0.19662

231 0.00000 0.00018 0.00000 0.15789 0.00019 0.15809

232 0.00000 0.00013 0.00000 0.11012 0.00008 0.11020

233 0.00000 0.00009 0.00000 0.17085 0.00005 0.17090

234 0.00156 0.03430 0.19489 0.02915 0.03360 0.25920

235 0.00000 0.00004 0.00000 0.16032 0.00005 0.16037

236 0.00312 0.00508 0.19478 0.12227 0.00257 0.32274

237 0.00078 0.00225 0.15762 0.17895 0.00087 0.33821

238 0.12554 0.09978 0.19458 0.13603 0.05716 0.51332

239 0.00546 0.00296 0.18511 0.12632 0.00085 0.31773

240 0.17076 0.20000 0.19675 0.15061 0.19319 0.71131

241 0.02963 0.01770 0.19778 0.09474 0.00771 0.32986

242 0.07914 0.05625 0.19736 0.12713 0.05699 0.46062

243 0.00195 0.00062 0.15125 0.06478 0.00126 0.21924

244 0.00039 0.00044 0.00000 0.06154 0.00004 0.06197

245 0.00000 0.00013 0.00000 0.05749 0.00031 0.05780

246 0.00234 0.00110 0.13073 0.19757 0.00009 0.33073

54

Appendix B: Results of Contribution Efficiency

Table B.1: Results for contribution efficiency of Maven project

Contributors
ID

Difference
Avg.

Complexity

Difference
Avg. Depth

Difference
Avg. LOC

Difference
Avg.

Percentage
Comments

Contribution
Efficiency

27 0.00000 0.00000 0.00000 0.00000 0.00000

28 0.00000 0.00000 0.00000 0.00000 0.00000

29 0.25000 0.15889 0.07190 0.07372 0.55450

30 0.12431 0.09262 0.11914 0.06539 0.40146

31 0.13904 0.07830 0.11298 0.05742 0.38774

32 0.12981 0.08158 0.15954 0.12332 0.49424

33 0.13151 0.08777 0.11481 0.05488 0.38897

34 0.14233 0.08032 0.16586 0.09788 0.48638

35 0.15228 0.08872 0.14862 0.12577 0.51540

36 0.00000 0.00000 0.00000 0.00000 0.00000

37 0.14432 0.09262 0.10065 0.06262 0.40021

38 0.15767 0.23251 0.29420 0.00000 0.68438

39 0.13952 0.07605 0.03903 0.02653 0.28113

40 0.10808 0.00000 0.40000 0.09176 0.59984

41 0.14432 0.08268 0.14585 0.11370 0.48654

42 0.14432 0.09262 0.10887 0.05429 0.40010

43 0.05518 0.09359 0.10022 0.06230 0.31129

44 0.12968 0.05594 0.14100 0.02752 0.35414

45 0.11406 0.05141 0.17095 0.03850 0.37492

46 0.18715 0.25000 0.00000 0.15561 0.59277

47 0.13029 0.07652 0.10086 0.06938 0.37706

48 0.15489 0.04447 0.14984 0.04011 0.38931

49 0.00000 0.00000 0.00000 0.00000 0.00000

50 0.15303 0.11200 0.01861 0.03281 0.31645

51 0.13128 0.09257 0.10019 0.06247 0.38651

52 0.00000 0.00000 0.00000 0.00000 0.00000

53 0.00000 0.00000 0.00000 0.00000 0.00000

54 0.12777 0.07907 0.07316 0.05664 0.33665

55 0.11493 0.09250 0.10074 0.06263 0.37079

56 0.09852 0.09173 0.09888 0.06712 0.35626

57 0.14549 0.08660 0.12045 0.05782 0.41035

58 0.13151 0.09262 0.15087 0.05891 0.43392

59 0.13630 0.05930 0.15459 0.05419 0.40437

60 0.00000 0.08874 0.10333 0.05597 0.24804

61 0.13167 0.07605 0.10620 0.05804 0.37196

62 0.15607 0.08710 0.08696 0.06539 0.39552

63 0.11110 0.22515 0.03595 0.12508 0.49728

64 0.09548 0.08602 0.09923 0.06244 0.34317

65 0.14402 0.03386 0.14454 0.05559 0.37801

66 0.14432 0.08434 0.22698 0.25000 0.70565

67 0.14192 0.07882 0.12873 0.06123 0.41069

68 0.00000 0.00000 0.00000 0.00000 0.00000

69 0.00000 0.00000 0.00000 0.00000 0.00000

70 0.07024 0.02746 0.21048 0.12647 0.43465

71 0.14130 0.08894 0.16776 0.03486 0.43285

72 0.12494 0.09186 0.27971 0.20001 0.69652

73 0.00000 0.00000 0.00000 0.00000 0.00000

55

Table B.2: Results for contribution efficiency of Sling project

Contributors
ID

Difference
Avg.

Complexity

Difference
Avg. Depth

Difference
Avg. LOC

Difference
Avg.

Percentage
Comments

Contribution
Efficiency

74 0.12059 0.19475 0.15532 0.10094 0.57159

75 0.11542 0.20379 0.31193 0.10449 0.73564

76 0.12505 0.20213 0.15660 0.11803 0.60181

77 0.14649 0.21264 0.24547 0.16430 0.76890

78 0.00000 0.00000 0.00000 0.00000 0.00000

79 0.25000 0.23888 0.15797 0.19901 0.84586

80 0.12489 0.20832 0.13868 0.20033 0.67222

81 0.11643 0.17471 0.21772 0.18120 0.69006

82 0.19560 0.21766 0.30460 0.15561 0.87348

83 0.13800 0.21182 0.18817 0.21535 0.75335

84 0.00000 0.00000 0.00000 0.00000 0.00000

85 0.12974 0.20751 0.19774 0.25000 0.78499

86 0.15385 0.13067 0.18257 0.00000 0.46709

87 0.12650 0.22459 0.10384 0.19043 0.64537

88 0.00000 0.00000 0.00000 0.00000 0.00000

89 0.13648 0.22520 0.15877 0.15916 0.67962

90 0.21633 0.25000 0.17546 0.16135 0.80314

91 0.13003 0.23386 0.09696 0.16336 0.62422

92 0.13263 0.00000 0.13336 0.17496 0.44095

93 0.13345 0.22403 0.10558 0.17458 0.63763

94 0.12748 0.21830 0.12106 0.18432 0.65116

95 0.15999 0.24441 0.00000 0.21181 0.61621

96 0.12267 0.21155 0.12220 0.16667 0.62308

97 0.12732 0.18869 0.15762 0.18996 0.66359

98 0.06631 0.19601 0.08416 0.13996 0.48644

99 0.13849 0.19815 0.12653 0.16806 0.63124

100 0.11866 0.18876 0.40000 0.17393 0.88135

101 0.09416 0.19601 0.21210 0.17058 0.67285

102 0.00000 0.20417 0.14321 0.14871 0.49609

103 0.12066 0.22112 0.09976 0.16342 0.60495

104 0.13796 0.22442 0.08039 0.21008 0.65285

105 0.13329 0.16674 0.32937 0.06925 0.69866

56

Table B.3: Results for contribution efficiency of Felix project

Contributors
ID

Difference Avg.
Complexity

Difference Avg.
Depth

Difference
Avg. LOC

Difference Avg.
Percentage
Comments

Contribution
Efficiency

106 0.00000 0.00000 0.00000 0.00000 0.00000

107 0.00000 0.00000 0.00000 0.00000 0.00000

108 0.00000 0.00000 0.00000 0.00000 0.00000

109 0.09039 0.02547 0.40000 0.01877 0.53464

110 0.09397 0.01912 0.26659 0.03991 0.41959

111 0.10826 0.03262 0.29688 0.05488 0.49265

112 0.09906 0.02803 0.28685 0.05475 0.46868

113 0.09526 0.03583 0.27729 0.07808 0.48646

114 0.10039 0.02912 0.31711 0.05061 0.49723

115 0.09645 0.02618 0.28827 0.04763 0.45853

116 0.10232 0.03826 0.31502 0.04094 0.49655

117 0.11246 0.03846 0.22963 0.05336 0.43390

118 0.10170 0.03231 0.27763 0.05323 0.46487

119 0.09867 0.02082 0.26636 0.05363 0.43947

120 0.10402 0.04070 0.26214 0.05634 0.46321

121 0.00000 0.00000 0.00000 0.00000 0.00000

122 0.10091 0.02975 0.26921 0.04403 0.44390

123 0.09889 0.02723 0.24587 0.06064 0.43263

124 0.11031 0.03108 0.32095 0.04957 0.51191

125 0.05950 0.00000 0.37062 0.08693 0.51705

126 0.10869 0.01486 0.35835 0.02268 0.50457

127 0.10079 0.04806 0.31147 0.05093 0.51124

128 0.09398 0.00601 0.31143 0.04784 0.45926

129 0.10273 0.03687 0.27009 0.04473 0.45442

130 0.10098 0.03499 0.29625 0.05517 0.48739

131 0.25000 0.25000 0.00000 0.24858 0.74858

132 0.00000 0.00000 0.00000 0.00000 0.00000

133 0.10071 0.02947 0.27169 0.05426 0.45612

134 0.10309 0.04817 0.24084 0.03664 0.42874

135 0.10421 0.03210 0.29678 0.05429 0.48739

136 0.11127 0.03736 0.28537 0.05243 0.48643

137 0.10292 0.03086 0.33142 0.04288 0.50808

138 0.09844 0.02145 0.31366 0.04327 0.47683

139 0.08676 0.01902 0.33602 0.25000 0.69180

140 0.11144 0.03122 0.29764 0.05589 0.49618

141 0.10252 0.03824 0.31348 0.05731 0.51155

142 0.11330 0.03343 0.24382 0.08123 0.47178

143 0.10176 0.03494 0.21803 0.00332 0.35806

144 0.09871 0.03137 0.26577 0.03279 0.42865

145 0.00000 0.01722 0.30734 0.00000 0.32455

146 0.09030 0.02860 0.35012 0.04278 0.51179

147 0.09118 0.01979 0.36910 0.05385 0.53392

148 0.14851 0.04011 0.28194 0.06409 0.53465

57

Table B.4: Results for contribution efficiency of OFBiz project

Contributors
ID

Difference
Avg.

Complexity

Difference
Avg. Depth

Difference
Avg. LOC

Difference Avg.
Percentage
Comments

Contribution
Efficiency

149 0.19189 0.10590 0.13206 0.14556 0.57542

150 0.18429 0.08229 0.22876 0.09129 0.58663

151 0.18570 0.09051 0.00000 0.13426 0.41048

152 0.18399 0.06601 0.20954 0.06553 0.52507

153 0.16933 0.03251 0.27988 0.08419 0.56591

154 0.15416 0.05153 0.38635 0.05854 0.65058

155 0.18570 0.08745 0.23673 0.12338 0.63327

156 0.18534 0.09289 0.13573 0.12015 0.53411

157 0.18453 0.09389 0.10914 0.11378 0.50133

158 0.18570 0.08745 0.37268 0.11923 0.76507

159 0.24826 0.11448 0.08313 0.15821 0.60408

160 0.18407 0.08745 0.13257 0.12338 0.52747

161 0.17118 0.04399 0.19641 0.08967 0.50125

162 0.19047 0.05373 0.29773 0.16711 0.70904

163 0.16890 0.05249 0.18297 0.13582 0.54018

164 0.17849 0.08849 0.24116 0.25000 0.75815

165 0.18979 0.08167 0.16131 0.10526 0.53803

166 0.17437 0.03522 0.28324 0.01558 0.50842

167 0.11127 0.09293 0.18091 0.13624 0.52135

168 0.17576 0.08313 0.13925 0.11996 0.51810

169 0.18017 0.06651 0.40000 0.03957 0.68625

170 0.00000 0.00000 0.00000 0.00000 0.00000

171 0.25000 0.00000 0.29887 0.05307 0.60194

172 0.19127 0.08793 0.32519 0.08289 0.68729

173 0.00000 0.25000 0.11019 0.12470 0.48489

174 0.18570 0.07520 0.14204 0.02177 0.42472

175 0.18570 0.08745 0.12310 0.12338 0.51963

176 0.00000 0.00000 0.00000 0.00000 0.00000

177 0.18540 0.07727 0.17832 0.12093 0.56192

178 0.00000 0.00000 0.00000 0.00000 0.00000

179 0.11094 0.12623 0.21779 0.00000 0.45497

180 0.18925 0.06682 0.26240 0.08403 0.60251

181 0.00000 0.00000 0.00000 0.00000 0.00000

58

Table B.5: Results for contribution efficiency of ActiveMQ project

Contributors
ID

Difference Avg.
Complexity

Difference Avg.
Depth

Difference
Avg. LOC

Difference Avg.
Percentage
Comments

Contribution
Efficiency

182 0.12831 0.15818 0.08463 0.16330 0.53441

183 0.00000 0.00000 0.00000 0.00000 0.00000

184 0.13451 0.10705 0.40000 0.09738 0.73895

185 0.00000 0.00000 0.00000 0.00000 0.00000

186 0.14031 0.19263 0.19294 0.14786 0.67374

187 0.15862 0.16900 0.23146 0.10533 0.66441

188 0.13977 0.20089 0.04922 0.17418 0.56406

189 0.14103 0.19877 0.19747 0.16605 0.70332

190 0.12464 0.21597 0.03536 0.20500 0.58097

191 0.14016 0.18096 0.07818 0.14417 0.54347

192 0.13739 0.14075 0.13981 0.05150 0.46945

193 0.14744 0.25000 0.21121 0.24500 0.85365

194 0.14066 0.18486 0.07404 0.18212 0.58169

195 0.13740 0.19678 0.00000 0.18045 0.51464

196 0.13051 0.20972 0.03748 0.18861 0.56631

197 0.13972 0.19121 0.05415 0.19267 0.57774

198 0.15641 0.18329 0.05774 0.16233 0.55978

199 0.14042 0.20689 0.02352 0.18846 0.55929

200 0.13836 0.19841 0.03368 0.21693 0.58739

201 0.13894 0.21705 0.02655 0.21118 0.59372

202 0.14267 0.19345 0.03652 0.17566 0.54831

203 0.14103 0.20916 0.05135 0.17667 0.57820

204 0.13731 0.18436 0.08751 0.15762 0.56680

205 0.13818 0.20714 0.10345 0.17796 0.62673

206 0.14815 0.24319 0.24318 0.20167 0.83619

207 0.14031 0.21426 0.04869 0.15833 0.56160

208 0.14029 0.19093 0.07038 0.17558 0.57718

209 0.00000 0.00000 0.00000 0.00000 0.00000

210 0.14082 0.19040 0.05374 0.17790 0.56286

211 0.14223 0.15434 0.13324 0.11868 0.54850

212 0.14043 0.19582 0.05071 0.16647 0.55342

213 0.13811 0.19231 0.01791 0.17950 0.52783

214 0.00000 0.00000 0.00000 0.00000 0.00000

215 0.25000 0.23979 0.00872 0.23167 0.73018

216 0.13445 0.15341 0.06213 0.16341 0.51340

217 0.13836 0.19649 0.05330 0.18337 0.57152

218 0.14103 0.01856 0.21654 0.18500 0.56113

219 0.00000 0.00000 0.00000 0.00000 0.00000

220 0.00000 0.00000 0.00000 0.00000 0.00000

221 0.14008 0.19221 0.10045 0.17555 0.60829

222 0.00000 0.00000 0.00000 0.00000 0.00000

223 0.14447 0.04012 0.01405 0.19222 0.39086

224 0.13942 0.17413 0.05468 0.16505 0.53328

225 0.14055 0.16151 0.05490 0.17056 0.52752

226 0.00000 0.00000 0.00000 0.00000 0.00000

227 0.00000 0.00000 0.00000 0.00000 0.00000

228 0.13589 0.23276 0.06218 0.20159 0.63242

229 0.00000 0.00000 0.00000 0.00000 0.00000

230 0.00000 0.00000 0.00000 0.00000 0.00000

231 0.13651 0.16832 0.11707 0.18389 0.60579

232 0.14316 0.20916 0.13661 0.18333 0.67226

233 0.14103 0.20916 0.01405 0.19167 0.55590

234 0.00000 0.13428 0.33644 0.00000 0.47072

235 0.14209 0.20235 0.15792 0.18500 0.68737

236 0.13329 0.18505 0.08715 0.13351 0.53900

237 0.13821 0.18131 0.05062 0.15765 0.52780

238 0.14072 0.19601 0.05547 0.18003 0.57222

239 0.13919 0.20111 0.03352 0.17664 0.55046

240 0.13871 0.19476 0.09789 0.18038 0.61175

241 0.14108 0.21803 0.05378 0.17741 0.59030

59

242 0.13994 0.19378 0.05501 0.17473 0.56347

243 0.13853 0.12067 0.39772 0.25000 0.90692

244 0.09350 0.00000 0.03149 0.05712 0.18211

245 0.13818 0.20916 0.02471 0.18833 0.56037

246 0.14103 0.22277 0.02790 0.18500 0.57670

60

Appendix C: Scatter Plots

Figure 5.1: Scatter plot for Struts 2 project

Figure 5.2: Scatter plot for Felix project

61

Figure 5.3: Scatter plot for Sling project

Figure 5.4: Scatter plot for OFBiz project

