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ABSTRACT 
More than 50% of our immune system is located in the gut. The intestinal 
epithelium, which forms an interface between the organism and the 
environment, harbors intraepithelial lymphocytes (IELs) that comprise a 
mixture of conventional αβ T cells and unconventional αβ- and γδ T cells. 
IELs play important roles in regulation of gut epithelial integrity and in 
recognition of stressed and infected epithelial cells, and thus, are critical 
effector components of mucosal immunity. However, the understanding of 
the IEL function and their interaction with the neighboring epithelial cells is 
still limited. The aim of this thesis was to investigate how the Butyrophilin 
(Btn) and Butyrophilin-like (Btnl) molecules are involved in the epithelial cell 
– IEL cross-talk and hence, to characterize their role in regulating local T cell 
mediated immune responses in the intestinal mucosa.  

Btn and Btnl proteins have over the past decade emerged as novel regulators 
of T cell functions both in periphery and locally in the tissue, and have been 
shown to be genetically associated with various inflammatory and 
proliferative disorders. We have reported the ability of intestinal epithelial 
cell (iEC)-specific Btnl proteins to induce IEL activation and proliferation in 
conditions without exogenous stimulation, which may contribute to the 
upkeep of the intestinal IEL pool. We have furthermore identified novel 
intestinal epithelial cell expressed Btnl- heteromeric protein complexes, and 
demonstrated that one of them, the Btnl1-Btnl6 heteromeric complex, 
specifically enhances the expansion of intestinal IELs bearing the Vγ7Vδ4 
receptor in vitro. We have additionally explored how iEC-specific Btnl 
proteins are regulated in the neonatal murine small intestine and found that 
Btnl- protein expression is delayed in the ontogeny and that the expression 
of the Btnl genes is regulated on post-transcriptional level. Our data 
demonstrate that the proteins are not detectable in the small intestinal 
epithelium of mice before 3 weeks of age, and that the appearance of Btnl1 
and Btnl6 proteins correlates with the expansion of intestinal Vγ7Vδ4 IELs, 
further adding strength to our in vitro results. Since γδ IELs are essential for 



 
 

the maintenance of the homeostasis in the gut, our findings suggest that Btnl 
proteins have implications in the intestinal immune response. To increase the 
understanding of the Btn and Btnl molecules’ role in intestinal disorders, we 
have characterized the expression of human and mouse Btn and Btnl genes 
in colonic inflammation and intestinal tumors. Our results show an altered 
expression of the BTN and BTNL genes in these diseases and indicate an 
association between Btn and Btnl genes and ulcerative colitis and colon 
cancer. 

In summary, this thesis work has demonstrated that iEC-specific Btnl 
proteins can regulate the function of intestinal intraepithelial lymphocytes in 
the gut, and that Btn and Btnl genes are associated with bowel pathology. 
Nonetheless, further studies are necessary to identify the complete 
immunomodulatory implication of the Btn and Btnl family members in 
healthy and inflamed/infected gut mucosa.  

Keywords: butyrophilin-like, butyrophilin, intraepithelial lymphocytes, 
mucosal immunity, intestinal epithelial cells, γδ T cells, intestinal 
inflammation, colon cancer, ulcerative colitis. 
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SAMMANFATTNING PÅ SVENSKA 
Mer än 50% av våra immunceller finns i tarmen. Tarmslemhinnan, som 
utgör en viktig barriär mot vår omgivning och som skyddar kroppen från 
skadliga organismer, innehåller s.k. intraepiteliala T lymfocyter (IELs). Dessa 
lokala immunceller har en unik sammansättning av αβ TCR och γδ TCR T 
celler som skiljer sig från kroppens övriga T lymfocyter och är viktiga för 
igenkänning av stressade och infekterade celler samt för reglering av 
inflammation i tarmen. Förståelsen kring funktionen av IELs samt 
konsekvensen av deras interaktion med andra celler i tarmslemhinnan, 
framför allt epitelceller som de är i direkt kontakt med, är dock fortfarande 
begränsad. Syftet med projektet var att kartlägga hur Butyrophilin (Btn) och 
Btn-like (Btnl) molekyler medverkar vid kommunikationen mellan 
epitelceller och intestinala IELs och därmed karaktärisera deras roll vid 
regleringen av tarmens immunsvar. Btn och Btnl proteiner har de senaste 
åren uppmärksammats som nya regulatorer av immunförsvaret och har visat 
sig kunna reglera T lymfocyter och även vara associerade med 
inflammatoriska sjukdomar och cancer. Vi har visat att funktionen av 
intestinala IELs, och därmed också immunresponsen i tarmen, kan 
moduleras av Btnl proteiner som uttrycks av tarmens epitelceller, och att 
interaktionen mellan Btnl och IEL i tarmslemhinnan leder till proliferation 
och aktivering av IELs. Detta peka på att Btnl proteinerna är inblandade i 
upprätthållande av IEL poolen i tarmen. Vi har vidare identifierat nya 
biologiska proteinkomplex i tarmepitelet som är uppbyggda av olika Btnl 
proteiner, och visat att dessa komplex ökar proliferationen av en specifik 
IEL population som uttrycker Vγ7Vδ4 TCR. Eftersom γδ T celler är viktiga 
för upprätthållande av homeostasen i tarmen, tex genom att medverka vid 
nygenerering av epitelceller, samt kan känna igen och eliminera stressade 
epitelceller, är det viktigt att veta hur dessa T celler regleras. Vi har även tittat 
på hur de lokala Btnl proteinerna regleras i den neonatala tarmen. Våra data 
demonstrerar att uttrycket av de vävnadsspecifika Btnl proteinerna är 
fördröjt i tarmen de första veckorna efter födseln och att proteinerna inte är 
detekterbara i tarmslemhinnan före 3 veckors ålder i mus. Detta kan ha 
konsekvenser för expansionen av IEL populationen i den neonatala tarmen 
och därmed också för tarmens immunrespons tidigt i livet. För att öka 
förståelsen för Btn och Btnl genernas funktion vid tarmrelaterade sjukdomar 
har vi karaktäriserat uttryck av humana och mus Btn och Btnl gener vid 
inflammation och cancer i tarmen. Våra resultat demonstrerar att uttrycket 
av flera av dessa gener är förändrat vid dessa sjukdomar och visar på en 



 
 

association mellan Btn och Btnl gener och ulcerös kolit och colon cancer. 
Sammanfattningsvis har vår forskning visat att Btn och Btnl proteiner kan 
reglera funktionen av intestinala T lymfocyter och därmed immunresponsen i 
tarmslemhinnan, samt att Btn och Btnl gener är associerade med 
tarmrelaterade sjukdomar. En fortsatt kartläggning av Btnl proteinernas 
betydelse för immunregleringen i tarmslemhinnan är viktig för att ytterligare 
öka förståelsen för hur immunsystemet regleras i frisk och 
inflammerad/infekterad tarm. 
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1. INTRODUCTION 
Our body is protected from pathogens and other harmful substances, and 
the damage they cause, by a variety of effector cells, tissues and molecules 
that together make up the immune system.  

The immune system is traditionally classified in two types: innate and 
adaptive. The innate immune system is the early line of host defense, and 
consists of biochemical and cellular mechanisms that are in place even 
before infection and that provide a rapid non-specific response to invading 
pathogens. The main components of the innate immune system are physical 
and chemical barriers, phagocytic cells, dendritic cells (DCs), circulating 
plasma proteins and innate lymphoid cells (ILCs) like natural killer (NK) 
cells. In contrast, the response of the adaptive immune system is antigen-
specific, being effective only after undergoing clonal expansion and 
differentiation, which takes several days, and includes memory that makes 
future responses against a specific antigen more efficient. There are two 
types of adaptive immune responses: humoral immunity, mediated by 
antibodies produced by B lymphocytes, and cell-mediated immunity, 
mediated by T lymphocytes.  

Recently, several studies have described the existence of cell populations that 
possess features of both innate and adaptive immunity, suggesting a concept 
of a continuum of the immune response. These populations have a restricted 
repertoire of antigen receptors, they are primarily located in mucosal tissues 
(particularly near epithelia), and they can be functionally grouped by their 
capacity to respond to infection during the period between activation of the 
phagocytic cells of the innate immunity and the T and B cells of the adaptive 
immunity. These bridge populations are known as innate-like cells and 
include: gamma delta (γδ) T cells, intraepithelial lymphocytes (IELs), 
invariant natural killer T (iNKT) cells and mucosal-associated invariant T 
(MAIT) cells, which express T cell receptors for antigen; and B1-B cells and 
splenic marginal zone B (MZB) cells, which express B cell receptors for 
antigen [1, 2].  

Although most studies on the biology of T cells focus on systemic T 
lymphocytes, the recently developed interest for how epithelia, being the 
primary targets of infection and other forms of damage, may influence 
lymphocyte activation, regulation and function, has drawn attention to local 
intraepithelial lymphocytes and their interaction and communication with 
epithelial cells. 
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1.1 Intraepithelial lymphocytes 

IELs are T lymphocytes that reside in the skin and in the mucosal epithelia 
of the intestine, the biliary tract, the oral cavity, the upper respiratory tract 
and lungs, and the reproductive tract. IELs represent a significant fraction of 
the epithelium, with an average of about one IEL per 5-10 epithelial cells in 
the murine or human small bowel [3]. Intestinal IELs are located intercalated 
between the epithelial cells (Figure 1), and constitute the largest lymphocyte 
population in the whole body due to the expanded surface of the small 
intestine epithelium formed by multiple villi and microvilli. The murine skin 
also harbors an extensive network of IELs, known as dendritic epidermal T 
cells (DETCs) for their unique dendritic morphology, which do not seem to 
have exact human counterparts [4, 5].  

 

Figure 1. Small intestinal epithelium (modified from reference [6]). 
IEL: intraepithelial lymphocyte; LPL: lamina propria lymphocyte. 

IELs heterogeneity and phenotype 
Murine and human IELs differ from the systemic T cells in their subset 
composition. Unlike the spleen, peripheral blood and lymph node T cells 
that can be subdivided into major histocompatibility complex (MHC) class 
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II-restricted CD4+ TCRαβ+ T cells and MHC class I-restricted CD8αβ+ 
TCRαβ+ T cells, the IEL population is more heterogeneous and can be 
classified into two major subpopulations based on the expression of the T 
cell receptors (TCRs) and co-receptors: the first group, called conventional 
or type a IELs and more recently named as induced IELs, consists of 
conventional CD4+ and CD8αβ+ TCRαβ+ T cells, while the second subset, 
referred to as unconventional, type b or natural IELs, is made up of CD8αα+ 
TCRαβ+, CD4- and CD8- (double negative, DN) TCRγδ+, and CD8αα+ 
TCRγδ+ IELs [7, 8]. These IEL types are found in both humans and mice, 
however, CD8αα+ TCRαβ+ IELs are present in human fetal intestine but 
have not been formally identified in adults [9, 10]. In contrast to the small 
bowel, the murine and human large intestine, which harbors the greatest 
microbial antigen load, is mainly composed by conventional IELs [7], and 
the murine skin DETCs are DN TCRγδ+, which belong to the 
unconventional IEL group [11, 12]. 

Unconventional IELs typically express a CD3 complex composed of CD3ζ-
FcεRIγ heterodimers or FcεRIγ-FcεRIγ homodimers instead of CD3ζ- CD3ζ 
homodimers, express by conventional IELs [13].  

Furthermore, intestinal IELs are CD69+ and CD44+, but they do not show 
markers of recently activated cells such as CD25. They are heterogeneous in 
terms of the expression of conventional T cell markers such as CD2, CD5 
and CD28. In contrast to the unconventional IELs, conventional IELs 
express a typical phenotype of memory T cells namely 
CD2+CD5+CD28+cytotoxic T lymphocyte antigen (CTLA)-4+Thy1+LyC6+ 
[14, 15].  

Thus, IELs appear as activated effector cells but require additional activation 
to manifest a full functional potential, which suggests that the IEL 
compartment has an “activate yet resting” constitutive state [14, 16]. 

IELs development and ontogeny 
IEL subsets are progeny of precursor cells located in the bone marrow or in 
the fetal liver, however, their development and maturation is not uniform. 
Conventional IELs are restricted to MHC and are thymus derived as they are 
absent in athymic mice [17, 18]. They acquire an activated phenotype in 
response to antigens in peripheral lymphoid tissue and migrate into mucosal 
epithelia, presumably awaiting a second exposure to antigen, akin to memory 
effector cells in other tissues. Unconventional IELs can be either thymus-
independent – they are detected in athymic mice [17-22] and they are 



Introduction 
 

 
18 

 

believed to develop in gut-associated cryptopatches located in crypt lamina 
propria [23], or thymus-dependent like murine DETCs and genital tract 
TCRγδ+ IELs, which are primarily generated in the fetal thymus [24]. 
Unconventional IELs are not dependent on classical MHC molecules.  

Intestinal IELs constitutively express CD103 (also known as αEβ7 integrin) 
and CC-chemokine receptor 9 (CCR9), which interact with E-cadherin and 
CC-chemokine ligand 25 (CCL25), respectively, on intestinal epithelial cells, 
resulting in gut-homing [25]. 

Ontogeny studies of intestinal IELs demonstrate that newborn rodents have 
resident IELs in the small bowel, being mainly TCRγδ+ IELs, and that the 
population increases until weaning age. By contrast, TCRαβ+ IELs are 
infrequent early in life, but expand with age in response to external antigens 
[26-28]. Moreover, in the absence of microbiota (germ-free mice) and dietary 
proteins (antigen-free mice), the IEL subsets are notably reduced with the 
exception of TCRγδ+ IELs [29, 30]. 

IELs function 
IELs are situated within the epithelium, which not only offers obvious 
opportunities for direct epithelial cell - T cell interaction, but also an 
immediate response against pathogenic infection, cell transformation and 
uncontrolled infiltration by systemic cells in order to preserve the epithelial 
integrity [7, 8, 12]. 
IELs exhibit potent cytotoxic capacities mediated by the release of granzyme 
and perforin located in cytoplasmic granules [31], and by activation-induced 
expression of Fas ligand (FasL), which induces apoptotic cell death upon 
ligation with Fas on target cells [16]. IELs additionally produce a variety of 
chemokines, e.g. macrophage inflammatory protein 1α (MIP-1α) and MIP-
1β; cytokines, such as interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), 
transforming growth factor-β (TGF-β), interleukin (IL)-2, IL-4, IL-5, IL-6, 
IL-10, IL-13 or IL-17 [14, 32]; and growth factors [33, 34]. Furthermore, 
IELs express NK cell receptors and can lyse target cells in a TCR-
independent manner [35]. This artillery of effector molecules is essential for 
the maintenance of the epithelial integrity and the protection from severe 
infection and inflammation. Indeed, IELs have shown to display protective 
functions against enteric viral, bacterial or parasitic infection, where they 
secrete perforins, granzymes, IFN-γ, TGF-β and TNF-α, which are essential 
for host immunity to the pathogens [36-40]. IELs can also prevent or reduce 
the severity of some inflammatory diseases like colitis or celiac disease, by 
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expressing anti-inflammatory cytokines such as TGF-β and IL-10, and 
keratinocyte growth factors (KGFs), which allow to preserve the epithelium 
and restore tissue integrity after injury [33, 41, 42]. Moreover, DETCs can 
express high levels of IFN-γ and granzymes, but they also express IL-13, 
which can regulate B cells [43]. 

Although IELs show beneficial roles, they can exert uncontrolled 
cytotoxicity and enhance immune responses, which may initiate or 
exacerbate inflammatory diseases. Thus, several reports demonstrate a direct 
correlation between the number of IELs in the intestinal mucosa and disease 
severity in patients with intestinal inflammatory bowel disease (IBD) [44-46], 
where these IELs can be responsible for the colitis induction through the 
secretion of IL-17 [47]. Furthermore, IL-15, which is over-expressed by 
intestinal epithelial cells from individuals with celiac disease, is known to 
trigger potent cytotoxic responses by IELs [48].  

1.2 Intraepithelial γδ T cells 

γδ T cells, together with αβ T cells and B cells, represent the three 
lymphocyte lineages found in all vertebrates [49]. Similar to B cell receptors 
and αβ T cell receptors, the variable region of the γδ TCRs is generated 
through somatic rearrangement of V (variable), D (diversity) and J (joining) 
segments, through the activity of the recombination-activating genes encode 
enzymes, RAG-1 and RAG-2. Structural diversity of γδ TCRs depends on 
combination of different sets of V, D and J segments, and addition or loss of 
nucleotides in joining sites [50-52]. Some γδ T cell subsets in particular tissue 
locations, such as the skin and the uterine epithelia, have no junctional 
diversity and thus, they express invariant TCRs with canonical junctional 
sequences [53]. These invariant γδ T cell subsets are derived from fetal γδ T 
cells, unlike peripheral subsets that express more diverse γδ TCRs [54]. 

The antigen-receptor repertoire of human and mouse γδ T cells is encoded 
by Vγ and Vδ genes. The most common Vγ chains in mice are: Vγ1, Vγ2, 
Vγ4, Vγ5, Vγ6 and Vγ7. Invariant Vγ5Vδ1 DETCs and Vγ6Vδ1 T cells are 
located in the epidermis and in the uterovaginal epithelia, respectively [55]. 
γδ T cells predominantly use: Vγ1 or Vγ7 chains combined with various 
TCRδ chains in the gut [56], Vγ1 or Vγ4 chains in the spleen, Vγ1, Vγ4 or 
Vγ6 chains in the liver, and Vγ4 or Vγ6 chains in the lung epithelia [52, 57]. 
In humans, the most prevalent Vδ chains are: Vδ1, Vδ2 and Vδ3. The best 
defined are the Vγ9Vδ2 T cells, which reside in the peripheral blood [58] (the 
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TCR nomenclature is according to Heilig and Tonegawa for mouse γδ T 
cells [59] and Lefranc and Rabbitts for human γδ T cells [60]). 

In mouse, γδ T cells are exported from the fetal thymus to epithelia-rich 
tissues in programmed waves (Figure 2). The first wave of γδ T cells 
populates the epidermis, the second wave homes the epithelia of the 
reproductive tract and lung, and the third wave colonizes the gut, the spleen 
and the lymph nodes. After these initial waves, αβ T cells predominate, 
making up more than 95% of the T cells [51, 52, 61].  

 

 

 

 

 

 

 

 

 

  
  
 
 
 
 
 

Figure 2. T cell development occurs in waves. 
Modified from Janeway et al. Immunobiology. NY: Garland Science; 2001. 
LN: lymph node. 

In the periphery, γδ T cells play an important role in the immunity of a broad 
range of infectious stresses [62] and in tumor immune surveillance [63]. γδ T 
cells directly lyse and eliminate infected or stressed cells through the 
production of granzymes, and produce a vast variety of cytokines and 
chemokines to regulate other immune or non-immune cells [64, 65]. 
Moreover, they also trigger DC maturation [66-68], provide help for B cells 
and promote the production of immunoglobulin E (IgE) [69, 70], and 
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present antigens for αβ T cell priming [71-73]. Furthermore, γδ T cells are 
implicated in protection against cancer, killing tumor cells and secreting 
potent anti-tumor cytokines such as IFN-γ [74-78]. However, they are also 
involved in tumor promotion. Thus, γδ T cells producing IL-17 [79, 80], IL-
4 [81], IL-10 and TGF-β suppress anti-tumor immune responses by 
inhibiting effector functions of γδ T cells and CD4+ and CD8+ αβ T cells 
[63, 82, 83], and by recruiting immunosuppressive myeloid cells that promote 
angiogenesis, tumor cell growth and regulatory T cells (Treg) differentiation 
[84, 85]. 

Although γδ T cells can be found in the periphery, they mainly reside in 
epithelial tissues being part of the IEL compartment. Intraepithelial γδ T 
cells, also known as γδ IELs, play unique roles in homeostasis and disease. 
They participate in tissue repair regulating epithelial cell turnover and 
differentiation, and producing epithelial growth factors, cytokines and 
chemokines [33, 34, 86]. At the same time, they are involved in protection 
from malignancy, recruiting inflammatory cells to the site of damage and 
killing diseased epithelial cells through their high cytolytic potential [87-89]. 
Several studies have reported deficiency in wound healing [55, 90], tumor 
rejection [89], recovery from colitis [33], lung injury [91] and homeostatic 
regulation of the epithelia [92] in the absence of γδ IELs (γδ TCR-/- mice). 

Intraepithelial γδ T cells during homeostasis  
Intestinal and skin intraepithelial γδ T cells have been shown to be essential 
in tissue homeostasis and repair. In the gut, intraepithelial γδ T cells regulate 
the regeneration and differentiation of intestinal epithelial cells (iECs), 
controlling the epithelial cell growth and differentiation [86, 93]. In the skin, 
DETCs contribute to wound healing through secretion of distinct growth 
factors including KGFs and insulin-like growth factor-1 (IGF-1) [34, 92, 94, 
95]. IGF-1 is involved in reverse the epidermal apoptosis and it is 
constitutively expressed by DETCs [92]. Furthermore, DETCs express 
chemokines such as MIP-1α, MIP-1β, RANTES and lymphotactin, to recruit 
specialized inflammatory cells, and cytokines including IL-2, IFN-γ, TNF-α 
and IL-17 upon activation [96, 97]. This suggests that DETCs not only 
regulate epidermal homeostasis, but also immune responses during stress or 
damage.  

The cytokines IL-7 and IL-15 are essential for development, localization and 
survival of γδ T cells, as well as for their homeostasis [98-101]. The 
development and survival of the epidermal γδ IELs (DETCs) is dependent 
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on IL-7, but not IL-15 [102], whereas the generation and maintenance of 
intestinal intraepithelial γδ T cells relies on the presence of both IL-7 and IL-
15 [103]. Furthermore, normal γδ IEL development is also dependent on the 
development of conventional αβ IELs [104]. 

Cross-talk between intraepithelial γδ T cells and epithelial 
cells 
In some epithelial tissues, like the murine skin, intraepithelial γδ T cells 
comprise the main T cell population, whereas in other epithelial sites, such as 
the intestinal epithelium, they coexist with αβ T cells [24]. Intraepithelial γδ T 
cells are in close contact with the neighboring epithelial cells, and although 
the communication between them is considered as essential, few molecular 
inter-cell interactions have been identified [105, 106]. The best characterized 
examples of epithelial cell - IEL interaction are: 

- NKG2D 

The activating receptor, NKG2D, is a transmembrane protein that belongs 
to the family of the C-type lectin-like receptors, which is expressed as a 
homodimer on NK, γδ and CD8+ T cells [107, 108]. In humans, NKG2D is 
engaged by MICA and MICB, as well as by members of the ULBP family 
[107, 109], and in mice, by Rae-1, H60 and Mult1 [107, 109]. All NKG2D 
ligands are homologous to MHC molecules, and they are absent or present at 
low levels under homeostatic conditions, but are up-regulated by infected, 
transformed and stressed epithelial cells [108] .  

NKG2D has been shown to provide important co-stimulatory signals for 
intraepithelial γδ T cell activation and function in damaged intestinal and skin 
tissues: in humans, intestinal intraepithelial γδ T cells expressing the Vδ1 γδ 
TCR can recognize the NKG2D ligands MICA and MICB, and may serve as 
an immune surveillance mechanism or may be involved in the maintenance 
of epithelial homeostasis [87, 88, 110], and in mice, the engagement of 
NKG2D with its ligands activates DETCs [89, 111-113].  

- JAML 

JAML, or Junctional Adhesion Molecule-Like, is a transmembrane 
glycoprotein expressed on neutrophils, monocytes and memory T cells [114]. 
Low levels of JAML were also found on mouse epidermal γδ IELs under 
steady-state conditions and up-regulated upon activation [115]. JAML is 
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engaged by the Coxsackie and Adenovirus receptor (CAR), expressed on 
keratinocytes (epidermal epithelial cells) and intestinal epithelial cells [116].  

Binding of JAML to its ligand provides co-stimulation that results in 
proliferation, through the recruitment of phosphatidylinosytol 3-kinase 
(PI3K), and activation of DETCs, as well as in production of cytokines such 
as IL-2, IFN-γ and TNF-α, and expression of KGF-1 by DETCs. Thus, the 
cross-talk between JAML and CAR is a crucial component in epidermal 
wound repair [115, 117]. 

- CD100 

CD100, also known as Semaphorin 4D, is a member of the semaphorin 
family, which is expressed on B and T cells, including intraepithelial γδ T 
cells [118-120]. Engagement between CD100 and one of its ligands, plexin 
B2, is critical for activation of intraepithelial γδ T cells [120]. Interaction 
between CD100 on DETCs and plexin B2 on keratinocytes plays an 
important role in response to keratinocyte damage in the epidermis [120]. In 
colon, interaction between CD100 on intestinal γδ IELs and plexin B2 on 
epithelial cells is vital for mediating healing of the colon epithelium during 
colitis [121]. Thus, the cross-talk between CD100 and plexin B2 is a key 
component in the regulation of wound healing and inflammation.  

- Skint-1 

Skint-1 is a transmembrane protein that belongs to the Skint Ig superfamily, 
which is expressed by epithelial cells in the thymus and the skin [122]. Skint-
1 determines the repertoire of the epidermal IEL, being essential for the 
selection of the murine Vγ5Vδ1 intra-epidermal T cell compartment [122-
124]. Furthermore, it has been described that only upon engagement by 
Skint1, Vγ5Vδ1 DETCs are able to express IFN-γ, suggesting that this 
interaction is vital for the maturation of DETCs [125]. 

Butyrophilin (Btn) and Butyrophilin-like (Btnl) gene family members have 
structural relatedness to Skint-1 and are one of the closest relatives outside 
the Skint family [122, 126]. Btn and Btnl proteins have over the past decade 
emerged as essential regulators of T cell functions, both in periphery and 
locally in the tissue [126-130]. 
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1.3 Butyrophilin and Butyrophilin-like molecules 

Btn and Btnl genes belong to the family of co-stimulatory 
molecules 
T cell activation requires two signals. The first signal is the interaction 
between the peptide-antigen-MHC present on the antigen presenting cell 
(APC) and the T cell receptor. A second signal, known as co-stimulation, 
which is crucial to achieve full T cell activation or tolerance, is provided by 
the interaction between co-stimulatory or co-inhibitory molecules, expressed 
on APC, and the T cell [131]. 

One of the best characterized families of co-stimulatory molecules is the B7 
superfamily, which has a pivotal role in the regulation of T cell responses. 
This family includes positive co-stimulatory molecules such as B7-1 (CD80 
in humans), B7-2 (CD86 in humans) and inducible co-stimulator ligand 
(ICOS-L), and negative co-stimulatory molecules such as programmed 
death-ligand 1 (PD-L1), PD-L2, B7 homologue 3 (B7-H3) and B7-H4, 
expressed by APCs [132, 133].  

B7-1 and B7-2 can bind to CD28 or CTLA-4, which are expressed on the T 
cell surface, delivering activatory or inhibitory signals to T cells, respectively. 
In addition, ICOS-L interacts with ICOS providing activatory signals, and 
PD-L1/PD-L2 and B7-H3/B7-H4 bind to PD-1 and B7-H3/B7-H4 T cell 
expressed-receptors, respectively, inducing inhibitory responses that are 
crucial for immune tolerance [132, 133]. 

Btn and Btnl molecules share strong homologies with the B7 family and 
independent studies over the past 10 years have demonstrated 
immunological functions for several of the Btn and Btnl family members 
[126-130, 133, 134]. 

Butyrophilin and Butyrophilin-like family 
The BTN and BTNL genes are clustered on human chromosomes 5 and 6, 
and on mouse chromosomes 11, 13 and 17. Several are located within the 
MHC-locus and are conserved in mice and humans [135, 136].  

To date, 11 members (7 BTN and 4 BTNL) have been identified in humans. 
The BTN molecules are divided in three phylogenetic associated subfamilies: 
BTN1, BTN2 and BTN3. The BTN1 group is composed only of BTN1A1, 
while the BTN2 and BTN3 subfamilies contain three molecules BTN2A1, 
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BTN2A2 and BTN2A3 (pseudogene), and BTN3A1, BTN3A2 and 
BTN3A3, respectively. The 4 BTNL molecules found in humans are 
BTNL2, BTNL3, BTNL8 and BTNL9. In mouse, 9 members (2 Btn and 7 
Btnl) have been described. The Btn molecules include Btn1a1 and Btn2a2, 
whereas the Btnl molecules include Btnl1, Btnl2, Btnl4, Btnl5 (pseudogene), 
Btnl6, Btnl7 (pseudogene) and Btnl9. Among all these members, only 
BTN1A1, BTN2A2, BTNL2 and BTNL9 are clear orthologues between 
human and mouse [126, 127, 130].  

In addition to the BTNL molecules mentioned above, there are other 
Butyrophilin-like molecules described. One of them is BTNL10 (BTN4), 
however, it appears unclear if it produces a full-length transcript [129]. 
Others have received non-BTNL names: erythroblast membrane associated 
protein (ERMAP or BTN5) and myelin oligodendrocyte glycoprotein (MOG 
or BTNL11), both found in human and mouse [129]. While ERMAP is 
involved in the development of erythroid cells [137, 138], MOG is a 
glycoprotein involved in the myelination of nerves in the central nervous 
system and has been linked to immune-related functions [139, 140]. 

Like the B7 family, the structure of the Btn and Btnl family members 
consists of two extracellular Ig-like domains (IgV and IgC), a transmembrane 
domain and a cytoplasmic domain. Additionally, most of the family 
members, except for Btnl2, BTN3A2 and MOG, contain a B30.2 
intracellular domain (Figure 3) [126-130, 136].  

 

 

 

 

 

 

 

 

  

 
Figure 3. Structural organization of the Btn and Btnl family members, 
which are structurally related to the Skint and B7 families. 
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The B30.2/SPRY domain, present in several protein families, covers a wide 
range of functions. Proteins with B30.2/SPRY domain are involved in RNA 
metabolism (DDX1, hnRNPs) [141], intracellular calcium release (RyR 
receptors) [142], regulatory and developmental processes (HERC1, Ash2) 
[143, 144], and regulation of cytokine signaling (SOCS) [145]. A recent 
evolutionary adaptation, comprising the combination of SPRY and PRY to 
produce B30.2 domain, is found in Btn/Btnl and tripartite motif (TRIM) 
molecules [146, 147]. The members of the TRIM family have a variety of 
functions, such as viral restriction factors (TRIM5α) and immune signaling 
(TRIM21), in which the B30.2 domain appears to be involved in 
multimerization and binding to ligands [148-150].  

Btn and Btnl molecules are expressed at the RNA level in a broad spectrum 
across human and mouse tissues [126, 128]. Whereas some members are 
highly restricted to a specific tissue, such as murine Btnl4 and Btnl6, which 
are limited to intestinal epithelial cells [151], others are widely expressed in 
lymphoid and non-lymphoid tissues, e.g. BTN2A1 [152] and Btn2a2 [153]. 
Moreover, the transcripts’ expression is not always reflected at the protein 
level, for example, while Btn1a1 transcripts are broadly detected, Btn1a1 
protein is only found in lactating mammary tissue and in thymic stroma 
[153]. 

Immunological functions of human BTN and BTNL 
molecules 
Over the recent years, several human BTN and BTNL members have been 
genetically associated with various immunological diseases. Thus, 
polymorphisms in the human BTNL2 have been linked to a growing 
number of inflammatory disorders, all of which are characterized by 
inappropriate T cell activation. Thus, single nucleotide polymorphisms 
(SNPs) in BTNL2 have been reported to be associated with the following 
diseases: sarcoidosis [154-163], ulcerative colitis (UC) [164-166], rheumatoid 
arthritis [167, 168], spontaneous inclusion body myositis [169], systemic 
lupus erythematosus [167], type I diabetes [167], tuberculosis [166, 170, 171], 
leprosy [166] and antigen-specific IgE responsiveness [172]. As these 
diseases are defined by improper T cell activation, the genetic linkage 
between Btn and Btnl genes and the inflammatory disorders suggests the 
family’s implication in T cell regulation. 

Several studies have additionally identified an association between BTN and 
BTNL members with cancer. Thus, BTNL2 has been associated with 
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increased susceptibility to prostate cancer [173] and BTN3 with ovarian 
cancer [174-176]. Furthermore, BTN3A2  has been linked to type I diabetes 
[177], and BTN2A1 to metabolic syndrome [178], myocardial infarction 
through an effect of dyslipidemia [178-182] and hypertension [183]. 

In addition, several human BTN and BTNL members have been reported to 
possess immunomodulatory potential by controlling the biological activity of 
immune cells, mainly peripheral T cells. 

Studies on human MOG (BTNL11) have shown that the interaction of 
MOG with dendritic cell-specific intercellular adhesion molecule-3-grabbing 
non-integrin (DC-SIGN), expressed on brain microglia and dendritic cells, is 
involved in the control of immune homeostasis in the healthy human brain 
[184]. Moreover, binding of BTN2A1 to the lectin DC-SIGN was reported 
to modulate immature monocyte-derived dendritic cells. However, this 
binding required high mannose glycosylation of BTN2A1, glycosylation 
typical of transformed cells, suggesting that BTN2A1 could have a role in 
immune surveillance of tumors [152]. 

The BTN3 (also known as CD277) subfamily, which is expressed by most 
human immune cell subsets, including T cells, B cells, monocytes, dendritic 
cells and NK cells [185], has been largely studied. Many different functions 
have been attributed to the BTN3 members, including modulation of T cell 
function, immune evasion and antigen presentation [128]. Use of distinct 
anti-BTN3 monoclonal antibodies for elucidating the role of BTN3 on the 
regulation of T cells has led to different biological outcomes. Whereas 232.5 
antibody, which binds and phosphorylates BTN3 on the T cell surface [186], 
and 103.2 antibody, which sterically blocks the association of proteins 
engaged by BTN3 during activation [187], inhibited T cell activation; 20.1 
antibody, which binds to a different epitope on BTN3 that results in cross-
linking of the BTN3 molecules [187, 188], triggered T cell activation. Binding 
of distinct antibodies leads to changes in the organization of BTN3 
molecules on the cell surface and thus, it is likely that these structural and 
biophysical differences contribute to the different functional outputs of these 
antibodies. Furthermore, it has been reported that BTN3 is highly up-
regulated in tumor cells in ovarian cancer by soluble mediators present in the 
tumor microenvironment, including CCL3 and vascular endothelial growth 
factor (VEGF), and that its engagement on the surface of activated T cells 
attenuated anti-tumor T cell responses [174]. Additionally, recent studies 
have demonstrated that BTN3A1 can present phosphoantigens (pAgs) to 
Vγ9Vδ2 T cells, predominantly located in the human blood, and hence, can 
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act as an antigen-presenting molecule to activate unconventional T cells, 
which will be recruited to the sites of infection developing their killing 
potential [188-193]. 

Although most data suggest an inhibitory role of BTN and BTNL molecules 
in immune cell activation, there are recent data showing that Butyrophilin-
like molecules can also trigger T cell activation. Studies have suggested that 
BTNL8, expressed in neutrophils, binds to resting but not activated T cells, 
and that the addition of BTNL8-Fc fusion protein to T cell cultures co-
stimulated proliferation and cytokine production in vitro [194].  

Immunological functions of murine Btn and Btnl 
molecules 
The Btn and Btnl family members are characterized by their similarity to the 
first identified Btn protein, Btn1a1, which is involved in the regulation of 
milk lipid droplets production and secretion during lactation [195, 196]. 
Recent studies have, however, identified novel immunoregulatory functions 
for Btn1a1. Thus, Btn1a1, expressed in mammary glands, thymic stromal 
cells and B cells, has also been reported to be capable of inhibiting T cell 
responses in in vitro assays using Btn1a1-Fc fusion protein [153].  

Immunological functions have additionally been identified for several of the 
other family members. Different mouse studies have documented the 
influence of Mog (Btnl11) in the neuroinflammatory diseases multiple 
sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) [197, 
198]. Mog-/- mice revealed that the lack of immune tolerance to Mog in wild-
type mice is responsible of the Mog-induced EAE [199]. Furthermore, it was 
detected that treatment of mice suffering from EAE with Btn1a1 protein can 
suppress the disease progression due to molecular mimicry and antibody 
cross-reactivity between Mog and Btn1a1 [200-202]. 

Studies on mouse Btn2a2 have demonstrated similar inhibitory effects as for 
Btn1a1 [153]. Btn2a2 is expressed on thymic epithelial cells, as well as on 
dendritic cells, monocytes and B cells [153]. Binding of Btn2a2-Fc to 
activated T cells inhibited TCR activation and induced de novo expression of 
Foxp3 in T cells [153, 203]. Moreover, Btn2a2-/- mice revealed enhanced T 
cell responses, potentiated anti-tumor responses, and exacerbated Mog-
induced EAE, increasing the evidence of a negative immunomodulatory role 
of Btn2a2 [204].  
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Much of attention has been focused on Btnl2, due to the genetically 
association of human BTNL2 polymorphisms with several inflammatory 
disorders [154-172]. Btnl2 is largely expressed on intestinal epithelial cells, 
dendritic cells and macrophages, in mucosal and lymphoid tissues [205, 206]. 
Several in vitro studies revealed that Btnl2-Fc fusion protein can inhibit T cell 
proliferation and cytokine production in response to a TCR activating signal 
in peripheral T cells [205, 206]. Furthermore, Btnl2-Fc was demonstrated to 
promote expression of Foxp3, a transcription factor necessary for the 
development and function of Tregs, and thus, to be able to promote the 
development of regulatory T lymphocytes [207]. Additionally, over-
expression of Btnl2 gene was reported in Mdr1a-/- mice, a mouse model of 
IBD [206], suggesting that Btnl2 is involved in down-modulation of immune 
responses and thus, in the control of inflammation. 

Characterization of Btnl1 expression demonstrated RNA and protein 
expression limited to intestinal epithelial cells, but no expression in intestinal 
lymphoid cells such as IELs or lamina propria lymphocytes (LPLs) [151]. 
Although a study by another group reported a broader RNA expression, 
presenting transcripts in a broad spectrum of lymphoid and non-lymphoid 
tissues, and in CD8+ T cells, B cells, DCs and macrophages, the expression 
was not confirmed on the protein level [208]. Characterization of Btnl1 
function demonstrated the ability of Btnl1 to inhibit the effects of T cells. 
Studies on peripheral T lymphocytes showed that Btnl1-Fc fusion protein 
inhibited T cell proliferation via cell cycle arrest and IL-2 production, and 
that mouse treatment with anti-Btnl1 antibodies enhanced T cell immune 
responses and exacerbated both Mog-induced EAE and allergic asthma 
[208]. Another study investigating local effects of Btnl1 in tissue 
demonstrated an effect of Btnl1 in modulation of IEL - epithelial cell 
interactions in the murine small intestinal mucosa. Epithelial cell expression 
of Btnl1 was involved in attenuating the ability of these cells to produce pro-
inflammatory cytokines and chemokines of the NFκB pathway, such as IL-6, 
CXC-chemokine ligand 1 (CXCL1) and MIP-1β (CCL4), in response to 
activated TCRαβ+ and TCRγδ+ IELs [151]. 

Btn and Btnl proteins and their counter-receptors 
Butyrophilin and Butyrophilin-like proteins mediate complex interactions 
between different cell types, acting through yet unidentified counter-
receptors. The similarity of the domain organization in the Btn/Btnl family 
to that of the B7 family, together with the observation that Btn-Fc and Btnl-
Fc fusion proteins bind to a variety of immune cells (whereas BTN3 
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members, Btnl1, Btnl2, Btnl9, Btn1a1 and Btn2a2 bind to activated T cells 
[134, 153, 205, 208], and BTNL8 to resting T cells [194], Btnl1, Btnl2 and 
Btnl9 also interact with B cells, dendritic cells and macrophages [205, 208]), 
suggested that they may share binding interactions and partners with the B7 
family. This notwithstanding, several studies have shown that Btn-Fc and 
Btnl-Fc fusion proteins do not interact with known B7 family receptors [134, 
153, 194, 206, 208].  

Only one binding partner has been identified so far for the Btn/Btnl family. 
DC-SIGN, expressed by monocytes and dendritic cells, has been shown to 
interact with the human MOG and BTN2A1 proteins [152, 184]. 

Also of relevance in this regard is the B30.2 protein domain, which has 
attracted increasing attention by its possible involvement in T cell interaction 
[189, 192, 209]. Although the interaction between BTN3A1 and Vγ9Vδ2 T 
cells is not conclusively established, two major hypotheses have been 
presented. One suggests a direct binding of pAg to the external IgV domain 
of BTN3A1, conferring the ability of BTN3A1 to present pAgs on the cell 
surface to Vγ9Vδ2 T cells [189], whereas the other suggests an indirect pAg 
presentation, where pAg binds to the intracellular B30.2 domain of 
BTN3A1, altering the conformation of the extracellular BTN3A1 and thus, 
driving the activation of Vγ9Vδ2 T cells [192, 210]. However, if the 
BTN3A1 is the ligand for the γδ T cells itself or if it requires other molecules 
for TCR engagement, remains unknown.  

Taken together, multiple data demonstrate a role of the Btn and Btnl 
molecules in driving modulation of the immune responses. Much of 
attention has been focused on the implication of the Btn and Btnl molecules 
in immune responses in the periphery, however, assessing their role in the 
local tissues is equally important for a complete understanding of their 
biological effects. Furthermore, the identification of the counter-receptors 
for Btn and Btnl molecules is also critical for a full insight into the family’s 
immunomodulatory functions. 

In conclusion, further and more detailed studies to decipher a 
comprehensive view of the role of Btn and Btnl molecules are essential to, in 
the longer run, use them as potential targets for diagnosis and therapeutics. 
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2. AIMS 
The overall aim of this thesis was to explore the role of the Butyrophilin-like 
molecules in regulating local T cell mediated immune responses in the gut. 
The characterization of novel determinants controlling the function of IELs, 
as well as the identification and exploration of novel IEL – epithelial cell 
interaction pathways, provides new insights into regulation of T cell 
mediated immune responses in the intestinal mucosa and thus, into the 
immune activation and also immune dysregulation in a variety of 
physiopathological contexts associated with intestinal inflammation and 
carcinogenic stress. 

The specific aims were: 

- To further characterize the Btnl1, -4 and -6 molecules, defining their 
protein expression pattern and identifying their biological form. 

- To investigate the ability of the gut resident Btnl proteins to regulate 
intestinal IELs.   

- To define how the expression of the Btnl molecules is regulated in 
the small intestine during ontogeny and in the absence of gut 
colonization. 

- To determine how BTN and BTNL genes are regulated in intestinal 
inflammation and cancer. 
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3. KEY METHODOLOGY 
This section provides a general description of the main experimental 
procedures used in this thesis work. More detailed protocols can be found in 
the Materials and Methods section of Papers I-IV. 

3.1 Mice 
Mice used in this thesis included common wild-type (WT) strains, i.e. 
C57BL/6 and C3H/HeN, germ-free (GF) mice and knock-out strains, i.e. 
Muc2-/- and ApcMin/+. 

Mouse models of spontaneous colitis (Muc2-/-) and intestinal tumorigenesis 
(ApcMin/+) were used in paper IV. Muc2-/- mice constitute a relevant animal 
model to study inflammatory bowel diseases. In mouse colon, bacteria are 
separated from the epithelial cells by the inner mucus layer formed by Muc2 
mucin [211]. Muc2 deficient mice lack secreted mucus, which allows bacteria 
to penetrate and reach the epithelium, leading to inflammation of the colon 
and development of spontaneous colitis. Likewise, humans with active 
ulcerative colitis have an inner mucus layer that is penetrable [212, 213]. 
ApcMin/+ mice constitute a powerful animal model of intestinal carcinogenesis 
in humans. Min (multiple intestinal neoplasia) is a mutant allele of the murine 
Apc (adenomatous polyposis coli) tumor suppressor gene, encoding a non-
sense mutation. Like humans with germline mutations in APC, ApcMin/+ mice 
are predisposed to intestinal adenoma formation [214, 215]. 

C57BL/6 and C3H/HeN mice (paper I) were purchased from Harlan 
Laboratories (Netherlands) and Janvier Labs (France), respectively. GF 
(paper II) and conventional (CV) C57BL/6 mice (papers II and III), and 
Muc2-/- and ApcMin/+ mice (paper IV), all on the C57BL/6 background, were 
bred in the Laboratory of Experimental Biomedicine (EBM), Gothenburg 
University (Gothenburg, Sweden). All animals were housed at EBM, 
University of Gothenburg. Protocols were approved by the government 
animal ethics committee (permits no. 335-2012, 310-2010, 280-2012 and 
110-2013), and institutional animal care and use guidelines were followed.  

3.2 Patients and specimen collection 
Colon biopsies from 16 patients with UC, 8 patients with irritable bowel 
syndrome (IBS) and 17 patients with colon cancer were included in paper 
IV. Parameters analyzed in UC and IBS patients were compared to 18 
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healthy subjects who served as controls in the study, while parameters 
analyzed in the tumor of colon cancer patients were compared to unaffected 
mucosa from the same individuals. Patients were recruited at Sahlgrenska 
University Hospital, Gothenburg, and Södra Älvsborgs Hospital, Borås, 
Sweden. The study was performed according to the Declaration of Helsinki 
and approved by the Regional Ethical Review Board in Gothenburg. All 
volunteers gave a written informed consent before participation.  

Intestinal biopsies were collected and placed immediately in RNAlater 
(Ambion®) for 24 hours before freezing at -80°C and subsequent RNA 
extraction. 

3.3 Cell lines and generation of transiently and 
stably transfected cells 

HEK 293 cell line, derived from human embryonic kidney cells grown in 
tissue culture [216], 3T3 fibroblast cell line, derived from murine embryonic 
tissue [217], and murine intestinal epithelial cell line MODE-K, derived from 
C3H/He mice [218] were used in papers I-III. Cells were maintained at 
37°C, 5% CO2 in Dulbecco’s modified essential medium (DMEM; Gibco®, 
Life Technologies) plus 10% fetal calf serum (FCS; PAA Laboratories), 100 
U/ml penicillin, 100 μg/ml streptomycin, 0.292 mg/ml glutamine and 1× 
non-essential amino acids (Gibco®, Life Technologies). 

Cell transfection is a technique commonly used to introduce exogenous 
DNA to cells. There are two categories: transient transfection, in which the 
introduced DNA persists in cells for a limited period of time; and stable 
transfection, in which the cells pass the introduced DNA to their progeny, 
because the transfected DNA has been incorporated into the genome. 

In papers I and III, HEK 293 and MODE-K cells were transiently 
transfected with Btnl1-, Btnl4-, Btnl6-, Btnl4- + Btnl1-, Btnl6- + Btnl1-, 
Btnl6- + Btnl4-pMX-IRES-GFP or pMX-IRES-GFP (empty vector) using 
polyethylenimine (PEI; Polysciences) or lipofectamine (InvitrogenTM, Life 
Technologies) according to standard procedures. 

In papers I-III, MODE-K cells were stably transfected with Btnl1-, Btnl4-, 
Btnl6-, Btnl6- + Btnl1-pMX-IRES-GFP or pMX-IRES-GFP, by 
transduction with viral supernatants, and sorted for GFPhi cells on a BD 
FACSAriaTM II cell sorter (BD Bioscience) or an iCyt SynergyTM cell sorter 
(BioLegend). 
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Untagged Btnl-pMX-IRES-GFP and N-terminal FLAG-tagged or HA-
tagged Btnl-pMX-IRES-GFP constructs were used based on the 
experiments’ requirements. 

3.4 Generation of polyclonal antibodies 
Antibodies are produced by the immune system in response to the presence 
of a specific antigen. Depending on the method of production, the 
antibodies can be classified into polyclonal and monoclonal. A polyclonal 
antibody represents a collection of antibodies from different B cell lineages 
that recognize multiple epitopes on the same antigen, whereas a monoclonal 
antibody represents an antibody from a single B cell lineage and therefore 
only binds to one unique epitope. 

Btnl1 and Btnl6 polyclonal antibodies used in papers I and II were made by 
Moravian-Biotechnology (Brno, Czech Republic), while Btnl4 polyclonal 
antibody used in paper III was produced by Agrisera AB (Vännäs, Sweden). 
A synthetic peptide from the extracellular murine Btnl1 or Btnl6 protein 
sequence was conjugated to an immunogenic carrier protein, keyhole limpet 
hemocyanin (KLH). Before immunization, the recombinant protein derived 
from the murine Btnl4 protein sequence was emulgated in Freund’s 
adjuvant. These constructs were injected into New Zealand White rabbits or 
“Agrisera crossbreed” rabbits (a crossbreed between New Zealand White 
and Aries French rabbits), respectively. Pre-immune serum was collected 
from each rabbit and purified using a protein A or G column to serve as 
negative control. The immune-sera were collected post-immunization and 
specific antibodies were isolated from sera components by affinity 
purification on a specific peptide/protein column. Enzyme-linked 
immunosorbent assay (ELISA) against the original peptide/protein was 
performed to test the reactivity of these antibodies. 

3.5 Preparation of cell suspensions and cell culture 
In papers I-III, intestinal epithelial cells, intraepithelial lymphocytes and 
lamina propria lymphocytes were isolated from murine small intestine 
according to previously described procedures [219-222]. iECs were 
recovered at the interface between 40% and 20% Percoll (GE Healthcare 
Bio-sciences AB), and IELs and LPLs were recovered at the interface 
between 80% and 40% Percoll. Negative and positive selections with anti-
CD45 microbeads (Miltenyi Biotec) were performed in some of the 



Key Methodology 
 

 
36 

 

experiments for purification of iECs and IELs or LPLs, respectively, using 
an auto-MACS separator (Miltenyi Biotec).  

The isolated IELs were either analyzed directly or cultured, making use of a 
long-term culture system for intestinal IELs that permits IELs to be rested 
and then rapidly re-activated when stimulated via the TCR [222]. IELs were 
cultured in the presence of 1 μg/mL anti-CD3ε (clone 145-2C11, BD 
Pharmigen) and a cytokine mixture containing IL-2, IL-3, IL-4 and IL-15 for 
48 hours, and thereafter transferred to fresh wells and cultured only in the 
presence of IL-2. Cells were maintained in 96-well round-bottom plates at 
37°C and 10% CO2. Medium was replaced every 3–4 days.  

In paper I, splenocytes were obtained from murine spleen and depleted of B 
cells by negative selection with anti-CD19 microbeads (Miltenyi Biotec) 
using an auto-MACS separating system (Miltenyi Biotec). 

3.6 In vitro T cell proliferation assay 
The proliferation method used in paper I relies on the ability of the 
carboxyfluorescein diacetate succinimidyl ester (CFSE) highly fluorescent 
dye to penetrate cell membranes and covalently label intracellular molecules. 
Due to this covalent coupling reaction, the CFSE can be retained within cells 
for extremely long periods. The progressive halving of CFSE fluorescence 
within daughter cells following each cell division allows tracing multiple 
generations by flow cytometry. 

MODE-K cells transduced with Btnl1-, Btnl6- + Btnl1-pMX-IRES-GFP or 
pMX-IRES-GFP were co-cultured with CFSE-labeled IELs in the presence 
of anti-CD3 (clone 145-2C11, BD Pharmigen), or in the absence of 
activation with or without IL-2 (10 U/ml; Roche) or IL-15 (50 ng/ml; R&D 
Systems); or with CFSE-labeled splenocytes in the presence of anti-CD3 
(clone 145-2C11, BD Pharmigen) and anti-CD28 (clone 37.51, BD 
Pharmigen), or in the absence of activation with IL-2 (10 U/ml; Roche). 
Lymphocytes were left to proliferate, and cell division and activation was 
monitored after 72 and 96 hours by flow cytometry. Culture supernatants 
were collected at 96 hours and used for cytokine protein analysis. 

3.7 Flow Cytometry 
Flow cytometry was used in papers I-III for analysis of the expression of 
cell surface and intracellular molecules, allowing identification and 
quantification of specific cell types in a heterogeneous cell population. Cell 
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components were fluorescently labeled and then excited by a laser to emit 
light at varying wavelengths. CellTraceTM CFSE Cell Proliferation Kit 
(Molecular Probes®, Life Technologies) was used for assessment of 
lymphocyte proliferation in paper I.  

Cell surface and intracellular antigen expression was analyzed using the 
following fluorochrome-conjugated anti-mouse antibodies: anti-FLAG- or 
anti-HA-APC (PerkinElmer), rabbit polyclonal anti-Btnl1 and pre-immune 
serum (Moravian-Biotechnology), anti-CD45-Alexa Fluor 700 (30-F11; 
eBioscience), anti-CD3ε-FITC (145-2C11; BD PharmigenTM), anti-pan 
TCRγδ-eFluor 450 (eBioGL3; eBioscience), anti-TCRβ-APC or APC-CyTM7 
(H57-597; eBioscience), anti-TCR Vγ1.1/Cr4-PE (2.11; BioLegend), anti-
TCR Vδ4-eFluor 660 (GL2; eBioscience), anti-TCR Vγ7-biotin (kindly 
provided by Dr. Pablo Pereira, Institut Pasteur) and anti-CD25-PerCPCy5.5 
(PC61.5, eBioscience). APC-conjugated AffiniPure F(ab’)2 fragment donkey 
anti-rabbit IgG (H+L) (Jackson ImmunoResearch) and streptavidin-APC-
CyTM7 (BD Biosciences) were used as secondary antibodies. 7-
aminoactinomycin D (7AAD; Sigma-Aldrich) and LIVE/DEAD® Fixable 
Red Dead Cell Stain (Molecular Probes®, Life Technologies) were used to 
exclude non-viable cells. For detection of intracellular molecules, cells were 
permeabilized using a cytofix/cytoperm kit (BD Biosciences). Cell samples 
were acquired on a BDTM LSR II cytometer, and the analysis was performed 
using the FlowJo Software version 7.6.5 (BD Bioscience). 

3.8 Cytokine Assay 
Mouse cytokines were measured in supernatants obtained from co-culture 
experiments in paper I, using Mouse Th1/Th2/Th17/Th22 13plex Kit 
FlowCytomixTM (eBioscience). This method allows the simultaneous 
detection and quantification of multiple analytes (13 cytokines) in one 
sample. Samples were acquired on a BDTM LSR II flow cytometer, and data 
were analyzed using the FlowCytomixTM Pro Software (eBioscience). 

3.9 Immunofluorescent staining 
The immunofluorescence (IF) is a robust tool to detect the location and 
expression levels of proteins of interest based on the use of fluorochromes 
bound to antibodies. IF can be used on cells or tissue sections. 

In paper I, MODE-K cells transiently transfected with FLAG-tagged-Btnl6-
, FLAG-tagged-Btnl6- + HA-tagged-Btnl1-pMX-IRES-GFP or pMX-IRES-
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GFP, were plated on collagen-coated coverslips. Cells were fixed in 4% 
paraformaldehyde, and stained with rabbit anti-HA (Sigma-Aldrich) followed 
by a goat anti-rabbit-Cy5 (Jackson ImmunoResearch) used as secondary 
antibody, and with anti-FLAG-PE (Prozyme). 

In paper II, murine small intestinal sections were fixed in methanol-
Carnoy’s solution and embedded in paraffin. Sectioning was performed using 
a cryostat. Sections were deparaffinized, antigen-retrieved, stained with 
rabbit polyclonal anti-Btnl1 or pre-immune serum, and incubated with 
TRITC-conjugated AffiniPure F(ab’)2 fragment donkey anti-rabbit IgG 
(H+L) (Jackson ImmunoResearch).  

Cells and tissue sections (papers I and II) were blocked using 10% normal 
horse serum (NHS) to prevent unspecific binding of antibodies, and 
mounted in Prolong® Gold antifade reagent containing 4’,6’-diamidino-2-
phenylindole (DAPI; Molecular Probes®, Life Technologies) to visualize 
nuclei. Images were recorded using the confocal microscope Zeiss LSM700 
Inverted available at the Centre of Cellular Imaging at the University of 
Gothenburg (Gothenburg, Sweden), and analyzed with ZEN lite 2011 
microscope software (Carl Zeiss). 

3.10 Western Blotting 
Western blotting (WB) was used in papers I-III to detect the presence of 
Btnl proteins in tissue or cell lysates. 

Murine tissues, isolated primary cells or Btnl- transfected MODE-K cells 
were homogenized in cell lysis buffer (50 mM Tris-HCl pH 8, 150 mM 
NaCl, 1% Triton X-100) containing complete protease inhibitor cocktail 
tablets (Roche Diagnostics). Lysates were clarified by centrifugation, and 
total protein quantification was performed with BCA Protein Assay Kit 
(Pierce), where bovine serum albumin (BSA) is used as protein standard. A 
specific amount of protein was then denatured in reducing or non-reducing 
sample buffer (NuPAGE® LDS 4x, Novex®, Life Technologies; or SDS-
PAGE loading buffer) ± 1 M dithiothreitol (DTT) (Sigma-Aldrich) at 95°C 
for 5 minutes. Incubation of samples with peptide N-glycosidase F (R&D 
Systems) at 37°C overnight was used in paper III for removal of N-glycans. 
Samples were loaded onto NuPAGE® 4-12% Bis-Tris Gels (Novex®, Life 
Technologies) or 6% SDS-PAGE gels. Separated proteins in gels were 
blotted by wet or semidry transfer to nitrocellulose membranes (Merck 
Millipore), or Coomassie-stained with ImperialTM Protein Stain (Thermo 
Scientific) to visualize the protein bands. 
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Anti-mouse antibodies used to immunoblot the membranes were: anti-
FLAG (Sigma-Aldrich), anti-HA (Sigma-Aldrich), anti-GFP (Sigma-Aldrich), 
rabbit polyclonal anti-Btnl1, -Btnl4 or -Btnl6 and their pre-immune sera 
(Moravian-Biotechnology and Agrisera AB), and anti-β-actin (Sigma-
Aldrich). Specific proteins were then detected using HRP-conjugated goat 
anti-mouse or anti-rabbit antibodies (Jackson ImmunoResearch). 
Streptavidin-HRP was used to detect surface proteins which were 
biotinylated with non-cleavable EZ-link Sulfo-NHS-LC-Biotin (Thermo 
Scientific) prior to cell lysis. Membranes were developed with Immobilon 
Western Chemiluminescent HRP Substrate (Merck Millipore), and analyzed 
with the Fujifilm LAS-4000 Mini luminescence imager. 

3.11 Immunoprecipitation 
Immunoprecipitation (IP) is one of the most widely used methods for 
purification of proteins from cells or tissue lysates. Proteins are precipitated 
using specific antibodies and subsequently detected by western blotting or 
mass spectrometry. When the antibody targets a known protein that is 
believed to be a member of a complex of proteins, it is possible to pull down 
the entire complex and thereby identify unknown members of the complex. 
This technique, known as co-immunoprecipitation, was applied in papers I 
and III. 

Two different IP protocols were used: 
- Magnetic bead-based separation, using Dynabeads® Protein G (Novex®, 

Life technologies) cross-linked to FLAG M2 monoclonal antibody (Sigma-
Aldrich) or Dynabeads® M-270 Epoxy (InvitrogenTM, Life Technologies) 
cross-linked to rabbit anti-Btnl1 polyclonal antibody or pre-immune serum 
(Moravian-Biotechnology). Cell lysates from FLAG-tagged-Btnl-pMX-IRES 
transduced MODE-K cells or from isolated murine small intestinal epithelial 
cells, were incubated with the coupled beads. Bound material was collected 
on a magnet and eluted. 

- Protein G PLUS-Agarose (Santa Cruz Biotechnology). Cell lysates from 
HA-tagged-Btnl-pMX-IRES transduced MODE-K cells were incubated with 
anti-HA polyclonal antibody (Sigma-Aldrich). Thereafter, the immune 
complex was captured on a support to which the complex was immobilized 
(Protein G PLUS-Agarose). Finally, the immunoprecipitates were eluted 
from the support.  

Immunoprecipitated samples were analyzed by western blotting or mass 
spectrometry. 
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3.12 Mass Spectrometry  
Mass spectrometry (MS) is an invaluable technique in proteomics that 
measures the mass-to-charge ratio of ions to identify molecules in complex 
mixtures. In paper I, mass spectrometry was used for complex detection in 
lysates of freshly isolated small intestinal epithelial cells. Cell lysates were 
subjected to IP using anti-Btnl1 polyclonal antibody or pre-immune serum 
(Moravian-Biotechnology), run on SDS-PAGE gel, and Coomassie-stained 
with ImperialTM Protein Stain (Thermo Scientific) for band excision and 
mass spectrometry analysis. 

The proteins were in-gel digested with trypsin (Promega), and the eluted 
peptides were analyzed by nanoflow liquid chromatography tandem mass 
spectrometry (nLC-MS/MS) using an Easy-nLCTM 1000 system (Thermo 
Scientific) coupled to a Q-ExactiveTM mass spectrometer (Thermo Scientific) 
through a nanoelectrospray ion source. Data were analyzed against the Mus 
Musculus NCBI database (29-May-2015) using the Mascot protein 
identification program (Matrix Science), which identifies proteins from 
peptide sequence databases.  

3.13 Quantitative real-time PCR 
Quantitative polymerase chain reaction (qPCR) allows the quantitation of 
genes in biological samples. In combination with reverse-transcription PCR, 
which performs complementary DNA (cDNA) synthesis from RNA, qPCR 
can be used to quantitate changes in gene expression. In papers II-IV, 
qPCR was used to measure gene expression of human and murine BTN and 
BTNL, and human IL-6 genes. qPCR uses fluorescent reporter molecules to 
monitor the amplification of products during each cycle of the PCR reaction. 
In these studies, GoTaq® qPCR Master Mix (Promega) containing the 
double-stranded DNA-intercalating dye agent BRYT Green® was used. 

Before qPCR analysis, RNA extraction from the tissues of interest (murine 
intestinal tissue in papers II-IV, and colon biopsies from patients in paper 
IV), and cDNA preparation were performed. Human and murine tissues 
were lysed and homogenized (Tissuelyser II, Qiagen), and total RNA was 
isolated using RNeasy® mini kit (Qiagen), including DNAse I digestion. 
RNA concentration and purity was determined using the spectrophotometer 
NanoDrop ND-1000. The Omniscript® Reverse Transcriptase kit (Qiagen) 
and the SuperScriptTM III Reverse Transcriptase kit (InvitrogenTM, Life 
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Technologies) were used for cDNA synthesis for human and murine 
samples, respectively. 

Quantitative PCR was performed using GoTaq® qPCR Master Mix 
according to manufacturer's instructions (Promega) on a LightCycler480 
thermal cycler (Roche). Each qPCR analysis was run in duplicate. The 
sequences of the PCR primers (Eurofins MWG Operon and Applied 
Biosystems) used in papers II-IV are listed in Table 1. Gene expression was 
assessed with the 2-ΔCt method using human HPRT1 or murine β-actin as 
housekeeping genes. 

Table 1. Primer sequences used for qPCR. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Gene 

Primer sequence 
Forward Reverse 

Human   

HPRT1 Primers were purchased from Applied Biosystems (Hs99999909_m1) 
BTN1A1 5´-ggatggaagctacgaagaagc-3´ 5´-tgcatactgatgtgagggtca-3´ 
BTN2A1 5´-aggagaccagatttcgtttcct-3´ 5´-agggcagcagctgattccat-3´ 
BTN2A2 5´-gaaggcaggtcctacgatga-3´ 5´-tgggccttgatttcaatgag-3´ 
BTN3A1 5´-tcagaggggaatgctaagagg-3´ 5´-caagtatggtgaccgaagaaga-3´ 
BTN3A2 5´-ctccaatgggaataccaagg-3´ 5´-gggaacttgccattttcatcta-3´ 
BTN3A3 5´-actcaagtggaggaaaatccagt-3´ 5´-tggcagatcccgcggctct-3´ 
BTNL2 5´-agaaggggtcggtcatcag-3´ 5´-gctgtatatcttctcccactctgac-3´ 
BTNL3 5´-tcagtttctacgagctggtgtc-3´ 5´-ccaaggcctggacaaactt-3´ 
BTNL8 5´-gctctcatgctcagtttggtt-3´ 5´-gtctggcccaaacacctg-3´ 
BTNL9 5´-tcttgtcttcctcatgcacct-3´ 5´-gcctagcaccttgacctctg-3´ 
IL6 Primers were purchased from Applied Biosystems (Hs00985639_m1) 

Murine    

β-actin 5´-cttctttgcagctccttcgtt-3´ 5´-aggagtccttctgacccatgc-3´ 
Btn1a1 5´-tactggccttaggatttctcacc-3´ 5´-gacgtgaatcttccaatcgaact-3´ 
Btn2a2 5´-tggagacgaaccctcttacatg-3´ 5´-cacatggacggcagtcaaatc-3´ 
Btnl1 5´-tgaccaggagaaatcgaagg-3´ 5´-caccgagcaggaccaatagt-3´ 
Btnl2 5´-ttcacaatgccagaacttcg-3´ 5´-ttccatctctgtccctccac-3´ 
Btnl4 5´-cattctcctcagagacccacacta-3´ 5´-gagaggcctgagggaagaa-3´ 
Btnl6 5´-atccttggagatccacagtgaa-3´ 5´-gggagagaccttgggaaaga-3´ 
Btnl9 5´-cccctttagagggaggtga-3´ 5´-aatactgagaaatctgccatctgtc-3´ 
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3.14 Statistical analysis 
Two statistical methods, parametric and non-parametric, were applied in data 
analysis. Parametric tests assume a normal distribution of the data, whereas 
non-parametric tests rely on no assumptions of the data’s distribution. 

In papers I-III, parametric statistics were used. The unpaired two-tailed t-
test was used for comparison between two independent groups, while One-
Way ANOVA followed by Holm-Sidak’s multiple comparisons test was 
applied to evaluate differences between three or more groups. Correlation 
between parameters was determined using Pearson correlation test.  

In paper IV, non-parametric statistics were applied. The unpaired two-tailed 
Mann-Whitney test was used for comparison between two independent 
groups, while Kruskal-Wallis test followed by Dunn’s multiple comparisons 
test was applied to evaluate differences between three groups. Statistical 
significance between two paired groups was determined by Wilcoxon 
matched-pairs signed-ranks test. Correlation between parameters was 
determined using Spearman correlation test.  

Differences were considered statistically significant when P<0.05 (*P≤0.05, 
**P ≤0.01, ***P≤0.001, and ****P≤0.0001). All data were generated using 
GraphPad Prism version 6.04. 
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4. RESULTS AND DISCUSSION 
For many years, body surface epithelia was viewed to primarily contribute to 
host protection through its physicochemical barrier functions, however, 
there is emerging evidence that epithelial cells are able to stimulate IELs and 
hence, to regulate immune responses. This notwithstanding, few molecules 
used by epithelial cells to instruct immune cells in the intestine have been 
identified. Defining the interactions involved in the epithelial cell – IEL 
cross-talk is therefore crucial, not only to improve our understanding of the 
biology of T cells that reside in intestinal mucosa, but also to give new 
insights into the immune activation and perhaps more importantly, into 
immune dysregulation in infectious-, inflammatory- and carcinogenic stress 
in the gut.  

The text below summarizes the findings of the four papers included in this 
thesis. The results from Papers I-III, which focus on the study of the 
murine, intestine localized Btnl family members, will first be described. This 
will be followed by discussion of data in Paper IV that presents a 
comprehensive expression analysis of human and murine BTN and BTNL 
genes in colonic inflammation and cancer.  

Bas et al. previously reported that the expression of Btnl1, -4 and -6 
transcripts is largely restricted to small intestinal epithelial cells, and that 
Btnl1 protein, detected on the surface of iECs and located in direct 
juxtaposition with IELs, is implicated in the regulation of activated intestinal 
IELs by suppressing local pro-inflammatory signals [151]. Therefore, in 
papers I-III, we focused on the characterization of Btnl4 and Btnl6 as 
possible novel epithelial immune regulators.  

4.1. Btnl protein expression and the proteins’ 
biological forms (Papers I and III) 

To study the expression of Btnl4 and Btnl6 proteins, we generated rabbit 
polyclonal anti-Btnl4 and anti-Btnl6 antibodies. Despite several attempts to 
generate antibodies recognizing the native form of the Btnl4 and Btnl6 
proteins, the developed anti-sera only recognized the proteins in their 
reduced form and thus, could not be used for in situ studies. To overcome 
this obstacle, we turned to molecular biology and generated tools that 
allowed us to study proteins’ expression and function in vitro. Thus, we 
constructed Btnl1, -4 and -6 cDNAs that included a FLAG or HA epitope C 
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terminal to the putative signal cleavage site, and that were cloned into 
bicistronic pMX-IRES-GFP expression vectors. Murine small intestinal 
epithelial MODE-K cells, which do not ordinarily express Btnl proteins, 
were then transfected with these constructs.  

Using the generated antibodies in western blotting under reducing 
conditions, we demonstrated that Btnl6 protein is exclusively expressed in 
the intestine, and that its expression in the small intestine is confined to 
iECs. We further demonstrated that also Btnl4 protein is expressed in 
epithelial cells in the small intestine. These data are consistent with the 
previously published mRNA data by Bas et al. [151].  

Moreover, the anti-Btnl4 antibody detected two bands in lysates from 
primary small intestinal epithelial cells and from Btnl4 transfected MODE-K 
cells. Size-reduction of the bands upon N-glycosidase F treatment of Btnl4 
transfected MODE-K cell lysates indicated the existence of two glycosylated 
forms of the Btnl4 protein. Protein glycosylation has been reported to be 
involved in biological recognition, where their structure diversity provides 
signals for protein targeting and cell - cell interactions [223]. Intriguingly, 
binding of human BTN2A1 to DC-SIGN, which modulates immature 
monocyte-derived dendritic cells, was revealed to be dependent on tumor-
specific glycosylation of the BTN2A1 protein [152]. Thus, distinct 
glycosylation of the Btnl4 protein may lead to different protein’s interactions 
and hence, to different outcomes depending of local conditions such as 
intestinal homeostasis or stress. 

Whereas Btnl4, like Btnl1, is readily expressed on the surface of small 
intestinal epithelial MODE-K cells, we showed that cell surface expression 
of Btnl6 is specifically dependent on the presence of Btnl1. While 
determining if this Btnl1-dependent expression of Btnl6 was mediated by 
Btnl1-Btnl6 interaction and using immunoprecipitation techniques, we 
identified a previously unknown Btnl1-Btnl6 complex displayed on the cell 
surface of small intestinal MODE-K cells. Mass spectrometry of anti-Btnl1 
immunoprecipitated lysates from primary small intestinal epithelial cells 
revealed a non-reduced Btnl1 homodimer complex of ~130 kDa, and a high 
molecular mass Btnl1-Btnl6 heteromeric complex and thus, identified the 
presence of Btnl1-Btnl6 protein complex formation in vivo. We additionally 
demonstrated that Btnl4 can exist both as a homomer and as a Btnl1-Btnl4 
heteromeric structure on the surface of small intestinal MODE-K cells. The 
observed Btnl1-Btnl4 and Btnl1-Btnl6 heteromerizations may explain the 
inability of the generated antibodies, in particular the anti-Btnl6 antibody, to 
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recognize the native form of the proteins, most likely due to epitope masking 
after complex formation.  

Altogether, our data demonstrate the presence of multiple Btnl forms 
comprising various combinations of the iEC-specific Btnl proteins, which 
may result in different or even divergent functions of the Btnl proteins 
determined by their composition. However, the high homology between 
Btnl4 and Btnl6 (88% amino acid identity in the ectodomain [126]) and their 
capacity to form heteromeric complexes with Btnl1, may also imply 
redundant functions of the Btnl molecules in the intestinal epithelium.  

4.2. Btnl expression in the absence of gut microbiota 
and in the ontogeny (Papers II and III) 

During early neonatal life, namely at birth and at weaning, important changes 
occur in the gut. The infant’s immature intestinal immune system develops 
as it comes into contact with microbial and dietary antigens. Thus, both 
microbial colonization and diet have a decisive role in the complete 
development of the mucosal immune system [224].  

To assess the impact of the gut microbiota on Btnl protein expression, we 
examined the presence of Btnl1 and Btnl6 proteins in germ-free mice. We 
found that the expression of Btnl1 and Btnl6 proteins in the neonate gut is 
not dependent of microbial colonization, as Btnl1 and Btnl6 proteins are 
present in germ-free mice at comparable levels to those detected in 
conventional mice. 

Furthermore, to gain insight into how the weaning event regulates the 
expression of Btnl proteins, we investigated the presence of Btnl1, Btn4 and 
Btnl6 proteins in the small intestine of newborn, 1-4 week-old and compared 
the expression to adult mice. We found that the expression of Btnl1, -4 and -
6 proteins is delayed during ontogeny and appears in the small intestinal 
epithelium of 2-3 week-old pre-weaning pups. This delay was not reflected at 
the RNA level, where the Btnl expression is already detected in the newborn 
small intestine, suggesting post-transcriptional regulation during mouse 
intestinal maturation. Although the appearance of Btnl proteins occurs 
before weaning, where pups are mainly fed with milk, we cannot determine 
whether an increased exposure to pelleted food and thus, to dietary antigens, 
is involved in the expression of Btnl proteins, or if the expression is 
regulated by an unknown developmental factor. 
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4.3. Immunological role of Btnl proteins  
(Papers I and II) 

The primarily restricted expression of Btnl proteins in gut epithelium and the 
reported suppression of co-stimulation-induced IEL activation by Btnl1 
[151], suggest that other iEC-specific Btnl molecules may have similar 
capacity to effect IEL - epithelial cell communication.   

To further study immunomodulatory roles of the Btnl molecules on IEL 
response, we performed in vitro T cell proliferation assays, exploiting a 
culture system that overcomes the rapid apoptosis of IELs ex vivo [225, 226] 
and that permits IELs to be rested and then re-activated when stimulated via 
the TCR [151, 222]. Ex vivo IELs, which lack or have low levels of CD25 
[16], or splenocytes were co-cultured with Btnl1-, Btnl1-Btnl6- or pMX- 
(empty vector) transfected small intestinal epithelial MODE-K cells. The 
reliability of the co-culture system was verified by confirming previously 
reported suppressive effect of Btnl1-Fc on CD3-activated peripheral T cells 
[208]. Thus, we proved that under anti-CD3 and anti-CD28 stimulation, 
splenocyte proliferation is reduced in the presence of both Btnl1 and Btnl1-
Btnl6 complex. 
In contrast, we found no significant reduction or increase of IEL 
proliferation by either Btnl1 or Btnl1-Btnl6 complex in the presence of anti-
CD3 stimulation. Instead, we demonstrated the capacity of Btnl1 and Btnl1-
Btnl6 complex to induce IEL proliferation in the absence of exogenous 
activation. This ability is dependent of the presence of IL-2 or IL-15, as no 
proliferation was detected in the absence of these cytokines, and is specific 
for IELs, as no proliferation was observed in unstimulated splenocytes. 
Although the Btnl1-Btnl6 complex is not critical for promoting IEL 
proliferation, we revealed that the Btnl1-Btnl6 complex specifically enhances 
the expansion of IELs bearing the Vγ7Vδ4 receptor. Altogether, our data 
imply the contribution of the epithelium-specific Btnl proteins to the upkeep 
of the intestinal IEL pool. Proliferation of intestinal IELs in situ in the 
absence of activation had been demonstrated by previous studies [227, 228], 
however, the mechanisms behind the homeostatic expansion of IELs has to 
our knowledge not been fully defined. 

In addition, we found that Btnl- transfected MODE-K cells up-regulate 
CD25 expression on both TCRαβ+ IELs and TCRγδ+ IELs in the absence 
of TCR stimulation, and that the observed proliferation is restricted to IELs 
up-regulating CD25. Although CD25 expression was significantly up-
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regulated on IELs in the presence of Btnl proteins and exogenous IL-2, 
CD25 induction could additionally be observed in conditions with IL-2 and 
MODE-K cells transfected with pMX. In contrast, in conditions with 
exogenous IL-15, CD25 expression was only up-regulated on IELs in the 
presence of Btnl proteins, and was not observed when IELs were co-
cultured with pMX- transfected MODE-K cells. In view of the fact  that co-
cultures with exogenous IL-15, which is constitutively expressed by iECs 
[229-231], will better reproduce homeostatic conditions in the small intestine 
than IL-2, which is only available at low levels in the gut under steady state-
conditions [232], our data suggest that the IEL proliferation is dependent on 
the synergy between IL-15 and Btnl proteins. Additionally, we demonstrated 
that this effect is reliant on direct iEC - IEL contact, as no CD25 expression 
was found in co-cultures where MODE-K cells and IELs were separated by 
transwells.  

Furthermore, we reported that Btnl proteins can also induce IFN-γ secretion 
by IELs in the absence of anti-CD3 activation and in the presence of 
exogenous IL-15. Taking into account that some studies have shown a 
protective role of IFN-γ in the removal of transformed epithelial cells under 
steady-state conditions [74], this IFN-γ secretion by IELs in the absence of 
TCR stimulation may contribute to the maintenance of the homeostasis in 
the intestinal epithelium. As the IFN-γ production by IELs was significantly 
higher in the presence of Btnl1 compared to Btnl1-Btnl6 complex, this may 
reflect different efficiency in regulating IEL function, or even indicate that 
Btnl6 counter-act the effect of Btnl1.  

The identified iEC-expressed Btnl1-Btnl6 heteromeric complex has, as 
discussed above, a specific biological role particularly elevating the 
proliferation of intestinal intraepithelial Vγ7Vδ4 T cells under “steady-state” 
conditions in vitro. To assess the association between the Btnl proteins and 
the IEL repertoire in the small intestine in vivo, we examined the γδ 
expressing IEL repertoire during the first weeks of neonatal development in 
the murine small intestine, and found that the expansion of Vγ7Vδ4 IELs in 
the neonate gut correlates with the appearance of the Btnl1 and Btnl6 
proteins at 3 weeks of age. Our data are consistent with studies 
demonstrating an increase in the percentage of γδ IELs detected at 2-3 
weeks of age in the small intestine of neonatal mice [26-28]. Moreover, 
observations reporting extra-thymic origin of γδ IELs [17, 20, 22], and the 
reported linkage between the intestinal γδ TCR repertoire and the MHC class 
II locus [56, 233], which intriguingly contains the Btnl1 and Btnl6 genes, 
imply that the gut population of IELs may be governed by gut micro-
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environmental factors rather than by immigration of thymus-derived T cells 
and thus, support our data. 

Furthermore, our results showing comparable levels of Btnl1 and Btnl6 
proteins in GF and CV mice are supported by earlier publications 
demonstrating a significant difference in the number of αβ IELs, but no 
differences in the frequency of γδ IELs between GF and CV mice [29, 30]. 

Taken together, and in accordance with the suggestion that the IEL 
colonization process may be regulated by gut micro-environmental factors, 
our data suggest that the homeostatic expansion of IELs in the gut is driven 
by iEC-specific Btnl proteins. Curiously, our finding describing that Btnl1-
Btnl6 complex enhances the expansion of Vγ7Vδ4 IELs is similar to the one 
observed for the skin epithelium resident Skint-1, a close relative to Btnl1 
and Btnl6 that regulates epidermal Vγ5Vδ1 IEL development [122-124].  

4.4. Human and murine BTN and BTNL gene 
expression in normal colon (Paper IV) 

Although significant progress has been made in understanding the role of 
Btn and Btnl molecules in modulation of T cell mediated immune responses, 
little is still known about the molecules’ implication in inflammatory and 
proliferative disorders. Hence, in paper IV, we investigated how the BTN 
and BTNL genes are regulated in intestinal inflammation and cancer. 

We first assessed the expression of BTN and BTNL genes in normal colon 
from human and mouse by quantitative real-time PCR. Variable BTN and 
BTNL mRNA expression levels were identified. In human colon, BTN2A1, 
BTN2A2, BTN3A1, BTN3A2, BTN3A3, BTNL3 and BTNL8 genes 
showed relatively high expression levels, whereas BTN1A1, BTNL2 and 
BTNL9 genes were present at low levels. In murine colon, Btnl1 and Btnl4 
genes were expressed at relatively high levels, Btn1a1, Btnl2 and Btnl6 genes 
were found at intermediate levels, and Btn2a2 and Btnl9 transcripts were on 
the limit of detection.  

Btnl9 mRNA expression pattern had not been characterized before and thus, 
we examined its expression in a panel of mouse tissues. We found that liver 
and mesenteric lymph nodes had the highest expression of Btnl9 compared 
to thymus and spleen, and that Btnl9 was not expressed in small intestine.    
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4.5. Human BTN and BTNL gene expression in 
intestinal inflammation and cancer (Paper IV) 

Over the recent years, BTN and BTNL molecules have been genetically 
linked to various immunological diseases. Polymorphisms in the human 
BTNL2 gene have been associated with inflammatory disorders such as 
sarcoidosis [154-163], ulcerative colitis [164-166], rheumatoid arthritis [167, 
168] and myositis [169]; and to prostate cancer [173]. Furthermore, a few 
studies have identified an association between human BTN3 and ovarian 
cancer [174-176].  

As several human BTN and BTNL genes are expressed in the intestine, they 
may be involved in gastrointestinal disorders. We used qPCR to map their 
expression in colon samples from patients with ulcerative colitis, irritable 
bowel syndrome and colon tumors. Expression in UC and IBS patients was 
compared to the expression in healthy subjects with no prior history of 
gastrointestinal diseases, while expression in the tumor of colon cancer 
patients was compared to adjacent unaffected mucosa from the same 
individuals.  

Our analysis revealed a significant up-regulation of BTN1A1, BTN2A2, 
BTN3A2 and BTN3A3 genes in UC patients compared to healthy subjects. 
By contrast, the expression of most of the BTNL genes was unchanged, with 
the exception of BTNL8 that was significantly down-regulated (Table 2). 
Our data showing unchanged levels of BTNL2 in UC patients suggest that 
the reported BTNL2 SNPs associated with susceptibility to UC [164-166] 
affects the encoded BTNL2 protein instead of the BTNL2 gene expression, 
as in the case of sarcoidosis, where the resulting protein lacks the C-terminal 
IgC domain and the transmembrane helix, thereby disrupting the membrane 
localization of the protein [154]. Moreover, our data presenting an opposite 
expression pattern of BTN3 genes and BTNL8 gene in UC patients correlate 
with the divergent ability of these molecules to modulate peripheral T cell 
activation. If BTN3, reported to inhibit T cell proliferation and cytokine 
secretion [174, 186], and BTNL8, described to trigger T cell activation [194], 
exhibit analogous functions in the intestine, the outcome of an up-regulation 
of BTN3 and a down-regulation of BTNL8 in an inflamed scenario, would 
be to attenuate the T cell mediated immune response and thus, to limit 
progression to chronic inflammation. In addition, we demonstrated an 
inverse correlation between BTN3A3 and IFNγ, where increased expression 
of BTN3A3 associates with decreased expression of IFNγ. IFN-γ has 
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previously been reported to be increased in UC patients [234], thus, our 
results further suggest a feedback mechanism to limit the effect of 
inflammation in the colon of UC patients.  

Whereas inflammatory bowel diseases, namely Crohn’s disease and UC, are 
characterized by macroscopic signs of inflammation or ulceration in the 
small and large intestine, such changes are not present in irritable bowel 
syndrome [235]. Our data showed normal BTN and BTNL gene expression 
in IBS patients compared to healthy individuals, implying that the altered 
expression of BTN and BTNL genes in UC patients is driven by 
inflammation. 

Furthermore, our analysis indicated unchanged expression levels of BTN 
genes in tumor tissue of colon cancer patients compared to adjacent 
unaffected tissue from the same subjects. By contrast, BTNL2, BTNL3, 
BTNL8 and BTNL9 genes were significantly down-regulated (Table 2). In 
view of recent studies demonstrating the ability of BTNL molecules to 
regulate T cell mediated immune responses, where BTNL8 was reported to 
enhance T cell activation [194], it is logical to speculate that a down-
regulation of BTNL genes in the tumor may have implications in immune 
surveillance and tumor promotion.  

Table 2. Human BTN and BTNL gene expression data. 

 
 

UC patients 
 

Colon cancer patients 
BTN1A1 ↑↑↑ ↔ 
BTN2A1 ↔ ↔ 
BTN2A2 ↑↑↑ ↔ 
BTN3A1 ↔ ↔ 
BTN3A2 ↑ ↔ 
BTN3A3 ↑↑↑↑ ↔ 
BTNL2 ↔ ↓↓ 
BTNL3 ↔ ↓↓ 
BTNL8 ↓↓↓ ↓↓↓ 
BTNL9 ↔ ↓ 

↑ indicates significant up-regulation (↑ P≤0.05, ↑↑ P≤0.01, ↑↑↑ P≤0.001, and ↑↑↑↑ P≤0.0001). 
↓ indicates significant up-regulation (↓ P≤0.05, ↓↓ P≤0.01, ↓↓↓ P≤0.001, and ↓↓↓↓ P≤0.0001). 
↔ indicates no significant up- or down-regulation. 
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4.6. Murine Btn and Btnl gene expression in 
intestinal inflammation and cancer (Paper IV) 

Humans and mice are surprisingly similar, sharing between 95-98% of our 
genomes and getting most of the same diseases. The ease with which the 
murine genome can be manipulated has provided a powerful tool to create 
useful mouse models of IBD and intestinal cancer.  

To better understand the role of Btn and Btnl molecules in inflammatory 
and proliferative disorders, we examined the expression of murine Btn and 
Btnl genes in intestinal samples from mouse models of spontaneous colitis 
(Muc2-/-) and intestinal tumorigenesis (ApcMin/+). Expression in distal, middle 
and proximal large intestine of Muc2-/- mice was compared to the expression 
in Muc2+/- mice, which served as controls. Expression in the small intestinal 
polyps derived from ApcMin/+ mice was compared to adjacent unaffected 
tissue from the same mice. 

Our analysis revealed a significant down-regulation of Btn1a1, Btnl1, Btnl4, 
Btnl6 and Btnl9 genes in the distal part of the colon of Muc2-/- mice 
compared to control mice. By contrast, no differences were found in the 
expression levels in the proximal part (Table 3). In both UC patients and 
Muc2-/- mice, signs of inflammation and destruction of colon architecture 
increase proximally from the distal part, where the inflammation is most 
pronounced [212, 213, 236, 237]. Thus, our data suggest that the altered 
expression of Btn and Btnl genes is related to inflammation. The down-
regulation of Btnl1, Btnl4 and Btnl6 genes was particularly intriguing since 
these genes are essentially restricted to intestinal epithelia. Btnl1 has been 
reported to attenuate the epithelial response to activated IELs, resulting in 
reduced production of pro-inflammatory mediators such as IL-6 and 
CXCL1, which are involved in promoting influx of monocytes and 
neutrophils [151, 238, 239], and our data have demonstrated the ability of 
Btnl1 and Btnl6 to promote IEL proliferation. Hence, as intestinal γδ IELs 
contribute to preservation and restoration of the gut integrity in colitis [33, 
41, 86, 93, 95], a down-regulation of the intestine-specific Btnl1 and Btnl6 
genes may contribute to progression of the ongoing inflammation and to 
impair tissue integrity’s repair.  

The analysis of Btn and Btnl genes in ApcMin/+ mice revealed significantly 
increased expression levels of Btn1a1 and Btn2a2 genes in isolated small 
intestinal polyps compared to adjacent unaffected tissue from the same mice. 
In contrast, levels of Btnl1 transcripts were significantly decreased (Table 3). 
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The consequence of an up-regulation of Btn1a1 and Btn2a2, reported to 
inhibit T cell activation [153] and to induce Treg development [203], may be 
to contribute to immune evasion and tumor promotion. This is consistent 
with a study revealing potentiated anti-tumor responses in Btn2a2-/- mice 
[204]. In addition, a down-regulation of Btnl1, described to suppress 
epithelial cell production of pro-inflammatory IL-6 and CXCL1 in response 
to activated intestinal IELs [151], may further contribute to tumor 
progression as enhanced levels of both IL-6  and CXCL1 have been reported 
to participate in development of intestinal cancer [240-242]. Attenuated 
levels of Btnl1, which promotes IEL proliferation, may result in a reduced 
number of IELs and consequently in reduced IEL-cytotoxic activity to kill 
transformed epithelial cells [87-89], farther promoting tumor development.  

Table 3. Murine Btn and Btnl gene expression data. 

 Muc2-/- mice  
ApcMin/+ mice TUM 

  Proximal Middle Distal 
Btn1a1 ↔ ↔ ↓ ↑ 
Btn2a2 ↔ ↔ ↔ ↑↑ 
Btnl1 ↔ ↓↓↓ ↓↓↓↓ ↓ 
Btnl2 ↔ ↔ ↔ ↔ 
Btnl4 ↔ ↓ ↓↓ ↔ 
Btnl6 ↔ ↓ ↓↓ ↔ 
Btnl9 ↔ ↔ ↓ ND 

↑ indicates significant up-regulation (↑ P≤0.05, ↑↑ P≤0.01, ↑↑↑ P≤0.001, and ↑↑↑↑ P≤0.0001). 
↓ indicates significant up-regulation (↓ P≤0.05, ↓↓ P≤0.01, ↓↓↓ P≤0.001, and ↓↓↓↓ P≤0.0001). 
↔ indicates no significant up- or down-regulation. 

In conclusion, our results showing an altered expression of the BTN and 
BTNL genes in colonic inflammation and intestinal tumors, further attest 
these genes as active players in the orchestration of immune responses and 
thus, affirm the importance of these genes in the immune system both in 
health and in disease. 



 

53 
 

5. CONCLUDING REMARKS 
Btn and Btnl proteins have over the past decade emerged as essential 
regulators of T cell functions in mice and humans. Heretofore, much of 
attention has been focused on assessing the proteins’ biological effects on 
systemic T cells, and only few studies have attempted to understand their 
capacity to regulate the activity of local intraepithelial T cells. Their 
elucidation is an important step in understanding tissue-specific 
inflammatory diseases and associated carcinoma, as well as host defense. 

Bas et al. previously showed that the expression of Btnl1, Btnl4 and Btnl6 
genes is largely restricted to epithelial cells in the gut, and that Btnl1 is a 
novel tissue-specific regulator of intestinal epithelial cell - intraepithelial T 
cell cross-talk, being able to attenuate the epithelial response to activated 
TCRαβ+ and TCRγδ+ IELs. This observation, together with our data 
demonstrating an up-regulation of IEL activation and proliferation 
dependent of Btnl proteins in conditions without exogenous activation, 
suggest that the interaction between IELs and Btnl proteins may lead to 
different outcomes depending on local conditions, e.g., intestinal 
homeostasis or inflammatory stress. While attenuation of epithelial response 
to activated IELs may be important in controlling an inflammatory response 
and progression to chronic inflammation, induction of TCRαβ+ and TCRγδ+ 
IEL activation and proliferation in the absence of exogenous stimulation 
may contribute to the maintenance of the intestinal IEL pool. Moreover, we 
have identified the existence of previously unknown multimeric complexes 
comprising various combinations of the iEC-specific Btnl proteins, which 
may have different functions determined by their form, and demonstrated 
that the Btnl1-Btnl6 heteromeric complex, expressed in primary small 
intestinal epithelial cells, has a specific biological role particularly enhancing 
the expansion of IELs bearing the Vγ7Vδ4 receptor in in vitro studies. In 
addition, we examined the γδ expressing IEL repertoire during the first 
weeks of neonatal development in the murine small intestine, and found that 
the expansion of Vγ7Vδ4 IELs in the neonate gut correlates with the 
appearance of the Btnl1 and Btnl6 proteins at 3 weeks of age. Although 
further experiments, for example using Btnl-/- approaches, will be necessary 
to confirm the association between the Btnl1-Btnl6 complex and the in vivo 
proliferation of Vγ7Vδ4 IELs, these in situ data further add strength to our in 
vitro results.  
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Although T cell regulation by Btn and Btnl molecules in now unfolding, the 
molecules’ implication in inflammatory and proliferative disorders is poorly 
defined. Therefore, we present a comprehensive expression analysis of 
human and murine BTN and BTNL genes in colonic inflammation and 
intestinal tumor. We demonstrated a substantial and significant modulation 
of several of the genes in ulcerative colitis and colon cancer and hence, our 
data suggest an inflammation driven- regulation of BTN and BTNL genes. 
Altogether, these data represent a valuable resource proposing several Btn 
and Btnl candidates to further investigate UC and colon cancer susceptibility. 

In conclusion, this thesis work has demonstrated that iEC-specific Btnl 
proteins are involved in the regulation of IEL activity in the gut, and that Btn 
and Btnl genes are associated with bowel pathology. These findings shed 
new light on the elucidation of local immune regulation in the gut and the 
contribution of the Btn and Btnl molecules to pathophysiology. Nonetheless, 
further studies are necessary to identify the family’s full immunomodulatory 
capacity, e.g. by identifying their binding partners, to, in the future, be able to 
use them as clinical targets.  
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