
The role of nitric oxide signaling in reward induced by ghrelin 

and alcohol in mice 

 

Master thesis in Medicine 

Joel Kjellgren 

Under supervision of Elisabet Jerlhag 

Department of Pharmacology, Institute of Neuroscience and 

Physiology, The Sahlgrenska Academy at the University of 

Gothenburg, Sweden 

 

 

Programme in Medicine 

Gothenburg, Sweden 2014 



 

Table of Contents 

Abstract ........................................................................................................................................ 3 

Introduction ............................................................................................................................... 5 
Addiction ............................................................................................................................................... 5 
Alcohol (Ethanol) addiction ............................................................................................................ 7 
The reward systems........................................................................................................................... 8 
The mesolimbic dopamine system ............................................................................................... 9 
Ghrelin ................................................................................................................................................. 10 
Neurochemical analogies between alcohol and ghrelin .................................................... 11 
A role for ghrelin signaling in addiction ................................................................................. 13 
The role of Nitric oxide (NO) in ghrelin-induced food intake.......................................... 14 

The Aim ..................................................................................................................................... 16 
Mice ....................................................................................................................................................... 16 
Drugs .................................................................................................................................................... 16 
Conditioned place preference - CPP .......................................................................................... 17 

Ethics .......................................................................................................................................... 19 

Results ....................................................................................................................................... 20 
Acute L-NAME treatment did not effect CPP per se compared to vehicle conditioned 
mice  (P=0.1910, n=8 in each group) ........................................................................................ 20 
Subchronic L-NAME treatment during conditioning did not effect CPP per se 
compared to vehicle treatment (P=0.3906, n=8 in each group) .................................... 20 
Acute L-NAME treatment did not effect alcohol induced CPP compared to vehicle 
treatment in mice (P=0.2270, n=8 in each group) ............................................................... 21 
Acute L-NAME treatment did not effect ghrelin induced CPP compared to vehicle 
treatment in mice (P=0.6573, n=8 in each group) ............................................................... 21 
Subchronic L-name treatment during conditioning did not alter the alcohol-
induced CPP in mice (P=0.5041, n=8 in each group) .......................................................... 22 
Subchronic L-NAME treatment during conditioning attenuated the ghrelin-induced 
CPP in mice (P=0.0158, n=14 in each group) ........................................................................ 22 

Discussion with conclusions and implications ........................................................... 23 
Results ................................................................................................................................................. 23 
Important reward mechanisms .................................................................................................. 24 
Methodology ...................................................................................................................................... 26 
Future experiments ........................................................................................................................ 27 
Conclusions and implications ..................................................................................................... 27 

Populärvetenskaplig sammanfattning........................................................................... 28 

References ................................................................................................................................ 31 
 



Abstract 
Ghrelin in known to regulate energy balance. Growing evidence on common 

mechanisms involved in ghrelin’s, alcohol’s as well as other drugs’ rewarding 

properties has been found. A nitric oxide signaling pathway has shown to be of 

importance for ghrelin induced feeding as well as the rewarding effects of morphine 

and cocaine. We therefore hypothesize that the rewarding properties of ghrelin and 

alcohol might involve the same signaling pathway. Alcohol addiction is a chronic 

relapsing brain disease with major costs for individuals, families as well as society. The 

current treatment has proven to be insufficient. A key feature in development of addiction 

is the activation of the brain’s reward system. The hunger hormone ghrelin has recently 

shown to be of importance for the rewarding properties of alcohol as well as other 

addictive drugs. Furthermore, alcohol and ghrelin has shown great neurochemical 

similarities, as well as having similar reward mechanisms. The nitric oxide involving 

reaction ending in a cGMP cascade is of importance for ghrelin induced feeding as well 

as the rewarding properties of cocaine and morphine. Therefore, the effects of the nitric 

oxide synthase inhibitor L-name on the rewarding properties of alcohol and ghrelin was 

studied. A model for reward measurement called Conditioned Place Preference (CPP) 

was used where half of the mice received L-name during conditioning and half received it 

acutely, after conditioning. Mice receiving L-name was compared to mice receiving 

vehicle (placebo) using an uncoupled T-test. L-name does not have any intrinsic 

rewarding effects. The rewarding effects of alcohol are not affected by L-name 

administration. Chronic administration of L-name induces a CPP in ghrelin conditioned 

mice. Thus suggesting a role for nitric oxide signaling mediating the rewarding properties 



of ghrelin. Taken together with ghrelin’s hunger stimulating effects, nitric oxide signaling 

proves to be of importance for binge eating. 

 

 



Introduction 
 

Addiction 
Addiction is a chronic relapsing brain disease, characterized by behaviors such as 

compulsive intake of the drug, relapse, loss of control in addition to continued intake 

regardless of negative consequences (Hunt et al., 1971; Leshner, 1997)). Thus, addiction 

should be compared with other diseases of chronic nature such as hypertension and hence 

also ought to be treated accordingly. As a result, the treatment is therefore more about 

management of consequences rather than of curative essence. Substance use disorders are 

patterns of symptoms resulting from use of a substance, which the individual continues to 

take, despite experiencing problems as a result (APA 2013). Here the diagnostic criteria 

from The American Psychiatric Association’s Diagnostic and Statistical Manual of 

Mental Disorders 5th edition (DSM 5) are presented (table 1).  

Table 1. DSM criteria for substance use disorder where 2-3 applicable symptoms constitute a mild 
disorder whereas 6+ applicable symptoms constitute a severe disorder. 

1. Taking the substance in larger amounts or for longer time than intended 
2. Wanting to cut down or stop using the substance but not managing to 
3. Spending a lot of time getting, using, or recovering from use of the substance 
4. Cravings and urges to use the substance 
5. Not managing to do what should be done at work, home (family and household) 

or school, because of substance use 
6. Continuing to use, even when it causes interpersonal relationship problems 
7. Giving up or reducing important social, occupational or recreational activities 

because of substance use 
8. Using substances repeatedly, even when it puts the user in physical danger 
9. Continued use, while aware of physical or psychological problem that have been 

caused or made worse by the substance (for example smoking and COPD) 
10. Needing increased amount of substance to get the wanted effect (tolerance) 
11. Occurrence of withdrawal symptoms, relieved by taking more of the substance. 



Different theories concerning the causes of addiction have been proposed, among those 

the drug-centered and the individual-centered theories. The drug-centered theory 

proposes that addiction is a result of molecular changes in the brains rewards systems due 

to chronic drug use (Berke and Hyman, 2000; Deroche-Gamonet et al., 2004; Nestler, 

2001), whereas the individual-centered theory instead clings to the idea that hereditary 

related constitutions of the reward system, more specifically the mesolimbic 

dopaminergic reward system, are causing the addiction (Wolfe and Maisto, 2000). 

In addition to the association with alcohol and other drugs of abuse, compulsive behavior 

such as gambling can according to DSM V be applied to the term addiction. This stems 

from the big similarities in behavior observed in substance addicts and those with 

compulsive behaviors.  Internet addiction just barely failed to make the cut, and including 

hypersexuality as well as binge eating into the definition has also been proposed, due to 

the fact that the they share brain projection pathways with drug addiction, pathways with 

similar dynamic brain activating patterns (Grant et al., 2006; Potenza et al., 2003; 

Volkow and Li, 2004; Wang et al., 2004). The brain can be changed over time; this is due 

to the so-called plasticity, a procedure directed by the individual’s actions and 

experiences, causing synaptic changes (Lamprecht and LeDoux, 2004). For instance 

repeated exposure to a drug leads to long lasting changes in the reward systems of the 

brain, with the mesolimbic system being of considerable importance for development of 

addiction related behaviors (Chen et al., 2010; Robinson and Kolb, 2004). Impulse 

control dysfunction is yet another important feature in patients with compulsive 

overeating as well as drug dependence (Volkow and Fowler, 2000; Volkow and Li, 

2004). 



Alcohol (Ethanol) addiction 
Alcohol addiction is a chronic relapsing brain disease with major costs for individuals, 

families as well as society (Garbutt et al., 1999). The alcohol attributed deaths are 

according to WHO more than two millions each year, 3.8% of global deaths in 2004. The 

cause of alcohol addiction is a complex multifactorial one with environmental as well as 

genetic base, where the genetics seem to be responsible for around 40-60 % (Prescott and 

Kendler, 1999). Different kinds of alcoholism has been proposed, such as the 

differentiation between Type 1 – late onset environmentally driven alcoholism and Type 

2 – early onset more genetically dependent alcoholism (Cloninger et al., 1981). Neural 

changes occurring after longer times of alcohol overconsumption are for instance brain 

atrophy with enlarged ventricles and sulci (Ding et al., 2004), and a diminished dopamine 

(DA) release combined with a reduced number of DA-receptors (Volkow et al., 2002; 

Volkow et al., 2003). As alcohol is a small molecule with widespread pharmacodynamics 

and a versatile solvent, passing through cell membranes and diffusing through all tissues 

the understanding of the mechanisms are incomplete. Some of the receptors affected and 

potentially involved in the effects are the strychnine-sensitive glycine receptor (GlyR), 

the gamma-aminobutyric acid A receptor (GABAAR), the nicotinic acetylcholine 

receptors (nAchRs), the 5HT3 receptor, the N-Methyl-D-aspartic acid receptor 

(NMDAR), the glutamate receptor, the opioid receptor as well as Ca2+ and K+ channels 

(Herz, 1997; Lewohl et al., 1999; Lovinger and White, 1991; Lovinger et al., 1989; 

Lovinger and Zhou, 1994; Mascia et al., 1996; Narahashi et al., 1999; Suzdak et al., 

1986; Wang et al., 1994)    The currently available treatments of alcohol addiction 

(Acamprosate – among other effects an NMDAR-modulator(Spanagel et al., 1998), 

Naltrexone – a competitive opioid receptor-antagonist and Disulfiram – an aldehyde 



dehydrogenase inhibitor, have clinically been proven insufficient and therefore the 

development of new treatment strategies would be desirable (Franck and Jayaram-

Lindstrom, 2013). The neural mechanisms preceding addiction are still being researched 

and a better understanding could lead to future pharmacological treatments of alcohol 

addiction. 

The reward systems 
During the evolution of animals and the human race, areas of the brain activated by 

natural rewards have developed. Rewards positive for the survival of our species such as 

food and sex causes feelings of pleasure, reward and euphoria, an effect of the reward 

systems’ activation (Hansen et al., 1991; Wise and Rompre, 1989). Additional triggers of 

these systems such as substances of abuse, and compulsive behaviors, for example 

overeating and gambling, can lead to a more potent activation. Continued activation via 

these triggers can reinforce behaviors and through plastic neural adaptations lead to 

addiction (Kelley and Berridge, 2002). Parts of the brain making up these reward systems 

are located in the midbrain, medial forebrain as well as parts of cortical structures and the 

limbic system. A part shown to be of utmost importance is the mesocorticolimbic DA 

system (Wise and Rompre, 1989). It can be further fractioned into the mesocortical and 

the mesolimbic DA systems where the latter is the dominant part (Koob, 1992a; Koob, 

1992b) 



 

Figure 1 – an overview of the mesocorticolimbic DA-system, formed by DA neurons in the ventral 
tegmental area (VTA), projecting to nucleus accumbens (N.Acc.) as well as the prefrontal cortex 
(Piomelli, 2001) 

The mesolimbic dopamine system 
The mesolimbic DA system has pathways projecting from the VTA, via the medial 

forebrain bundle to N.Acc. where DA is released to limbic structures such as 

hippocampus and amygdala. The two parts (inner core and surrounding shell) of N.Acc. 

have different functions where the one important for reward systems is the shell(Graybiel 

and Ragsdale, 1978; Heimer et al., 1991; Voorn et al., 1989). Afferent signaling to the 

VTA is received from the laterodorsal tegmental area (LDTg) where the acetylcholine 

(ACh) neurons originate (Blaha et al., 1996). The so called cholinergic-dopaminergic 

reward link consists of these ACh neurons and the mesolimbic DA system(Larsson and 

Engel, 2004). The activation of this link through the excitation of ACh neurons on LDTg 

that in turn activate nAChRs and muscarinic acetylcholine receptors (mAChRs) on the 

surface of DA neurons in VTA leading to an activation of the mesolimbic DA system and 

the following DA release in N.Acc. (Forster and Blaha, 2000). This activation can 



through microdialysis be measured as substantially increased accumbal DA levels, 

following morphine, alcohol as well as barbiturate administration. Furthermore, these 

increased DA levels are related to stimulatory behavioral effects, correlating on a time as 

well as dose basis (Di Chiara and Imperato, 1986). This also hold true for cocaine, 

amphetamine and nicotine (Di Chiara and Imperato, 1988), strengthening the link 

between addicting drugs and raised accumbal DA levels. Accumbal DA release is also 

involved in the hedonic feelings elicited by natural rewards (Robinson and Berridge, 

1993; Wise and Bozarth, 1987; Yoshida et al., 1992). Additionally, alcohol and food 

enhances acetylcholine levels of the VTA, implying that that the cholinergic-

dopaminergic link, involving accumbal DA signaling, is important for reinforcing aspects 

of natural as well as drug induced reward, in turn important for the development of 

addiction (Lanca et al., 2000; Larsson et al., 2005). In addition to reward mediating 

mechanisms, the mesolimbic DA system is also important for the motivation to seek out 

rewards {Lex, 2008 #159; Rada et al., 2000; Saunders et al., 2013; Wassum et al., 2013; 

Yeomans et al., 1993) 

 

Ghrelin 
Ghrelin is a 28-amino acid orexigenic gut brain peptide discovered in 1999 as the first 

endogenous ligand for the growth hormone secretagogue receptor 1A (GHS-R1A) 

(Kojima et al., 1999). It is produced in the gastrointestinal tract (mainly in the 

stomach)(Kojima et al., 1999)) but may also be produced in the brain (Cowley et al., 

2003; Lu et al., 2002; Mondal et al., 2005). It has the ability to pass the blood brain 

barrier and has a diverse physiological profile such as regulation of appetite, body weight 

and energy homeostasis (Nakazato et al., 2001; Tschop et al., 2000; Wren et al., 2000). 



Raised ghrelin levels correlate closely with an increased food intake in humans 

(Cummings et al., 2001; Cummings and Schwartz, 2003; Cummings et al., 2002; Wren et 

al., 2001a). Ghrelin stimulates food intake, boosts weight gain as well as augments 

adiposity in rodents (Beck et al., 2002; Wren et al., 2001b) 

 

The existence of GHS-R1A was first discovered in 1996 (Howard et al., 1996). In 

addition to the first found expression sites, hypothalamus and pituitary gland(Howard et 

al., 1996), it has later been observed in hippocampus, nucleus accumbens as well as on 

dopaminergic neurons in VTA and cholinergic neurons in LDTg (Dickson et al., 2010; 

Guan et al., 1997; Jerlhag et al., 2006; Landgren et al., 2011a). 

 

Figure 2 – A schematic overview of ghrelin receptors in the cholinergic-dopaminergic reward link 
(Dickson et al., 2010; Guan et al., 1997; Jerlhag et al., 2006; Landgren et al., 2011a) 

 

Neurochemical analogies between alcohol and ghrelin 
Recent findings indicate that ghrelin in addition to hunger-regulation is involved in the 

reward regulation (Dickson et al.). Indeed, administration of ghrelin into the third 

ventricle, the VTA or LDTg respectively resulted in an increased DA release in nucleus 

accumbens as well as significantly raised locomotor activity (Jerlhag et al., 2006; Jerlhag 

et al., 2007). The similarity with alcohol is evident with raised accumbal DA release as 

well as an increased locomotor activity, following a lower dose of alcohol (Imperato and 



Di Chiara, 1986; Waller et al., 1986). By unselectively blocking nAchRs with 

mecamylamine, the rewarding effects of ghrelin were blocked, suggesting a role for 

central cholinergic transmission in these events (Jerlhag et al., 2006). Yet another 

nAChR-antagonist, alpha-conotoxin MII (targeting α3β2, β3 and/or α6 receptor 

subunits), inhibited the rewarding properties of ghrelin (Jerlhag et al., 2008). 

Interestingly, injecting alpha-conotoxin MII also significantly negated locomotor activity 

increase as well as accumbal DA overflow caused by alcohol administration (Blomqvist 

et al., 1997; Larsson and Engel, 2004), Another feature indicating nAchRs’ importance 

for the reward of alcohol is the injection of mecamylamine into the VTA. This measure 

effectively lowered alcohol consumption among high-alcohol preferring rats as well as 

negated the placebo-treated rats’ increased accumbal DA release (Blomqvist et al., 1996; 

Ericson et al., 1998). Taken together, these facts acts as evidence for ghrelin displaying a 

similar activation pattern of the mesolimbic dopamine system to that of alcohol 

(Soderpalm et al., 2000; Soderpalm et al., 2009).  As injecting an NMDA receptor 

antagonist (AP5) into the VTA negates the accumbal dopamine release and the locomotor 

stimulation of ghrelin, another activation mechanism of the cholinergic-dopaminergic, 

namely the glutamatergic, could prove to be of importance (Jerlhag et al., 2011a). Indeed, 

the ability of alcohol as an acute inhibitor of the NMDA receptor (Hoffman et al., 1989; 

Lovinger et al., 1989) further endorses the theory of neurochemical similarities between 

alcohol and ghrelin. These finding suggest, together with the presence of GHS-R1A in 

LDTg as well as VTA (Dickson et al., 2010; Guan et al., 1997; Jerlhag et al., 2006; 

Landgren et al., 2011a), support the involvement of ghrelin in the cholinergic-

dopaminergic reward link. Further supporting this hypothesis, ghrelin by peripheral or 



local administration into the LDTg causes a concomitant release of Ach-VTA and DA-

NAcc. (Jerlhag et al., 2012) 

A role for ghrelin signaling in addiction 
In addition to activation of the cholinergic-dopaminergic reward link and thereby 

increasing the incentive salience of motivated behaviors, a role of central ghrelin 

signaling in alcohol and drug-induced reward has been shown. Indeed, centrally or 

peripherally administrating GHS-R1A antagonists suppressed the alcohol intake in a two 

bottle (alcohol/water) free choice limited access paradigm in mice. This while ghrelin in 

the same model increased alcohol intake (Jerlhag et al., 2009). Furthermore, alcohol-

induced conditioned place preference (CPP), accumbal DA release and locomotor 

stimulation were all negated when central ghrelin signaling were suppressed, either via 

GHS-R1A, ghrelin knockout or GHS-R1A antagonism (Jerlhag et al., 2010; Jerlhag et al., 

2009; Jerlhag et al., 2011b). Supportingly, another GHS-R1A antagonist, JMV2959, was 

found reducing high alcohol consumption among high-alcohol consuming Wistar as well 

as alcohol-preferring (AA) (Landgren et al., 2012, attenuate alcohol preference and 

voluntary intake in mice {Bahi, 2013 #176). The administration of yet another GHS-R1A 

antagonist, D-Lys3-GHRP-6, decreases alcohol consumption in rats (Kaur and Ryabinin, 

2010). Furthermore, rats voluntarily consuming alcohol for two, five and ten months had 

their alcohol intake reduced after the administration of JMV2959 (Suchankova et al., 

2013). After repeated JMV2959 treatment, mice with attenuated alcohol intake failed to 

show enhanced tolerance or an alcohol rebound effect (Suchankova et al., 2013). 

Moreover, JMV2959 attenuates the motivation for alcohol consumption, measured with 

the operant lever pressing model (Landgren et al., 2012), in addition to preventing 

rebound drinking in rats, evaluated from it’s effects on negated alcohol deprivation effect. 



This indicates that the central ghrelin signaling system is required for the stimulatory 

effects of alcohol, and could be a candidate for future pharmacological treatment of 

alcohol addiction. The very same system has proven to be involved in mediating the 

rewarding effects of amphetamine, nicotine, cocaine and palatable food (Egecioglu et al., 

2010; Jerlhag et al., 2010; Jerlhag and Engel, 2011; Landgren et al., 2011b).  

The role of Nitric oxide (NO) in ghrelin-induced food intake 
NO is a gaseous short lived signaling molecule produced by nitric oxide synthase (NOS) 

from arginine in many mammalian cells, involved in the nervous system as well as 

having numerous diverse functions such as blood vessel dilatation and homeostasis, 

inflammation and immune response. One pathway including NO, namely the neuronal 

nitric oxide synthase (nNOS)/NO/soluble guanylyl cyclase (sGC)/cyclic guanosine 

monophosphate (cGMP) signaling pathway (Figure 3) has been proposed to be of 

importance for reward mediation (Itzhak, 1996; Kim and Park, 1995) The ghrelin-

induced food intake augmentation involves NO (Gaskin et al., 2003). Ghrelin supposedly 

operates through neuropeptide Y (NPY) (Bagnasco et al., 2002; Morley et al., 1999), 

increasing food intake through a NO pathway (Morley et al., 1999; Small et al., 2002). 

By blocking NOS with the NOS inhibitor Nω-Nitro-L-arginine methyl ester (L-

NAME)(Mulsch and Busse, 1990), the feeding increasing mechanisms of ghrelin were 

significantly negated while ghrelin administration per se increased the nNOS levels in the 

hypothalamus (Gaskin et al., 2003). Additionally, intra-ventral tegmental injections, as 

well as intrahippocampal CA1 injections of L-NAME have attenuated the morphine-

induced conditioned place preference (Gholami et al., 2003; Karami et al., 2002), 

suggesting a role of NO in the signaling pathways involved in mediating the rewarding 

effects of morphine. Recently, inhibition of nNOS was shown to reduce the number of 



mice sensitized from cocaine exposure (Gabach et al., 2013). Therefore, NO may be a 

potential mediator of reward in general, such as ghrelin as well as alcohol induced 

reward. 

 

 
Figure 3 – the nNOS/NO/ sGC/cGMP signaling pathway, where L-NAME inhibits NOS 



The Aim 
The purpose of this project is to elucidate and give further insight into the mechanisms, 

specifically NO signaling, mediating the rewarding properties of alcohol and ghrelin 

measured with CPP. This is done in order to find possible pharmacological targets 

suitable for the treatment of alcohol addiction as well as binge eating. 

Material and Methods 

Mice 
The mice used in the conditioned place preference experiments were NMRI mice (8-12 

weeks old and 25-40 g body weight; B&K Universal AB, Sollentuna, Sweden). The 

cages used (Macrolon III: 400 x 250 x 150 covered with filter tops (Tecniplast, Italy)) 

each gave housing for eight mice, and a 12/12 hour light/ dark cycle (lights turned on at 7 

am) were maintained. Prior to experiment initiation the mice were allowed one week of 

environment adaptation, kept in 20°C with 50 % humidity. Unlimited availability of tap 

water and food (Normal chow; Harlan Teklad, Norfolk, England) were provided. 

Drugs 
The alcohol injected (95 % ethanol, Kemetyl AB, Haninge, Sweden) was diluted in 0.9% 

sodium chloride to 15 % v/v, which was then administered intraperitoneally (ip) 5 

minutes before experiment initiation at a dose of 1.75g/kg. The dose was chosen since it 

induces increased locomotor activity, increased accumbal dopamine release as well as an 

induced CPP in NMRI mice (Jerlhag et al., 2009). L-NAME (Sigma Chemical Co. St. 

Louis, MO, USA) was diluted in 0.9% sodium chloride and administered subcutaneously 

(sc) 15 minutes before experiment initiation at a concentration of 40 mg/kg. Higher doses 

of 60-100 mg/kg has previously shown no effect on CPP (Kiyani et al., 2011), locomotor 



activity (Ulusu et al., 2005), and the dose of 40 mg/kg has shown no effect on DA release 

in N.Acc. (unpublished data). Moreover, it has previously been shown that this dose have 

no effect per se on prepulse inhibition and attenuates PCP disrupted prepulse inhibition in 

mice (Klamer et al., 2001)). Ghrelin (Bionuclear; Bromma, Sweden) was diluted in 0.9% 

sodium chloride and administered (sc) 5 minutes before experiment initiation at a 

concentration of 0.33 mg/kg. This dose has previously been shown to stimulate the 

reward system, measured through an increased locomotor activity, accumbal dopamine 

release as well as an induced CPP when administered ip (Jerlhag, 2008) as well as sc 

(unpublished data). 

Conditioned place preference - CPP 
To evaluate the effect of L-NAME conditioning in the different models, a two chambered 

CPP apparatus (Tzschentke, 2007) with distinguishable tactile as well as visual cues were 

utilized. Procedures consisted of pre-conditioning (day 1), conditioning (days 2-5) and 

post-conditioning (day 6). On the first day initial place preference was defined during 20 

minutes, when mice were allowed to move freely between the two chambers. A biased 

procedure was used selecting mice for the conditioning (sessions of 20 minutes each). 

Four rounds of experiments were undertaken where mice received L-NAME/vehicle + 

vehicle/alcohol/ghrelin, four injections daily. L-NAME/vehicle (15 minutes prior to 

conditioning) + vehicle/alcohol/ghrelin (5 minutes prior to conditioning) conditioning 

was done in the least preferred chamber, whereas vehicle (15 minutes prior to 

conditioning) + vehicle (5 minutes prior to conditioning) conditioning was done in the 

most preferred chamber. Mice undergoing conditioning with vehicle/alcohol received two 

injections daily. Two rounds of experiments were performed where mice were 

conditioned with a single substance, and instead received L-NAME on the post-



conditioning day. Vehicle/alcohol (5 minutes prior to conditioning) conditioning was 

done in the least preferred chamber, and vehicle/vehicle (5 minutes prior to conditioning) 

conditioning was done in the most preferred chamber. Between the two daily 

conditioning rounds, all mice had at least two hours of undisturbed time in their home 

cages for rest. Mice were conditioned with active substance during morning every other 

day, and during afternoon the other conditioning days. 

On post-conditioning day, mice conditioned with L-NAME + vehicle/alcohol/ghrelin had 

their place preference examined and compared to their initial place preference without 

receiving any prior injection. These are the subchronic L-NAME groups. 

The mice conditioned with alcohol/vehicle received an injection of L-NAME/vehicle 15 

minutes before the post-conditioning examination of place preference, the acute L-

NAME groups 

 
Figure 4 – a model of the CPP apparatus, with distinct visual as well as tactile cues, clearly 
differentiating the two chambers. 



Data collection procedures / Variable analyses / Statistical 
methods 
The videotapes were analyzed visually with a timer for 20 minutes in a blinded manner 

(the treatment to mice was unknown). Conditioned place preference was defined as the 

percentage of changed preference, measured with the formula (time in unpreferred 

chamber pre-conditioning / time in this unpreferred chamber also at post-conditioning) / 

1200 * 100. For comparison of conditioned place preference data an unpaired t-test was 

used. A probability value of P<0.05 was considered as statistically significant. 

Ethics 
All experiments were authorized by The Ethics Committee for Animal Experiments in 

Gothenburg, Sweden, and performed according to the recommendations in the Swedish 

Animal Welfare Act. 



Results 

Acute L-NAME treatment did not effect CPP per se compared to vehicle 
conditioned mice  (P=0.1910, n=8 in each group)  
The results of acute L-NAME injection (40mg/kg, sc) on vehicle (0.9% natrium chloride, 

ip) conditioned mice compared to those receiving acute vehicle injection (equal amount 

of 0.9% natrium chloride, sc) showed no significant difference (P=0.1910) (Figure 5). 

Subchronic L-NAME treatment during conditioning did not effect CPP per se 
compared to vehicle treatment (P=0.3906, n=8 in each group) 
The results of L-NAME (40mg/kg, sc) and vehicle (equal amount of 0.9% natrium 

chloride) conditioned mice compared to those receiving vehicle (equal amount of 0.9% 

natrium chloride, sc) showed no significant difference (P=0.3906), indicating that L-

NAME has no intrinsic effect (Figure 6). 

 

 

Figure 6 – effects of chronic L-
NAME treatment compared to 
vehicle conditioning 

Figure 5 – effects of acute L-
NAME treatment on vehicle 
conditioned mice 



 

 

Acute L-NAME treatment did not effect alcohol induced CPP compared to 
vehicle treatment in mice (P=0.2270, n=8 in each group) 
The results of acute L-NAME injection (40mg/kg, sc) on alcohol (1.75g/kg, ip) 

conditioned mice compared to those receiving acute vehicle injection (equal amount of 

0.9% natrium chloride, sc) showed no significant difference (P=0.2270)  (Figure 7).  

Acute L-NAME treatment did not effect ghrelin induced CPP compared to 
vehicle treatment in mice (P=0.6573, n=8 in each group) 
The results of acute L-NAME injection (40mg/kg, sc) on ghrelin (0.33mg/kg, sc) 

conditioned mice compared to those receiving acute vehicle injection (equal amount of 

0.9% natrium chloride, sc) showed no significant difference (P=0.6573) (Figure 8) 

 

Figure 7 – effects of acute L-
NAME treatment on alcohol 
conditioned mice 

Figure 8 – effects of acute L-
NAME treatment on ghrelin 
conditioned mice 



 

Subchronic L-name treatment during conditioning did not alter the alcohol-
induced CPP in mice (P=0.5041, n=8 in each group)  
The results of L-NAME (40mg/kg, sc) and alcohol (1.75g/kg, ip) conditioned mice 

compared to those receiving vehicle (equal amount of 0.9% natrium chloride, sc) and 

alcohol (1.75g/kg, ip) showed no significant difference (P=0.5041) (Figure 9). 

Subchronic L-NAME treatment during conditioning attenuated the ghrelin-
induced CPP in mice (P=0.0158, n=14 in each group) 
The results of L-NAME (40mg/kg, sc) and ghrelin (0.33mg/kg, sc) conditioned mice 

compared to those receiving vehicle (equal amount of 0.9% natrium chloride, sc) and 

ghrelin (0.33 mg/kg, sc) showed a significant difference (P=0.0158) (Figure 10). 

Figure 9 – effects of chronic 
L-NAME treatment on 
alcohol conditioned mice 

Figure 10 – effects of chronic 
L-NAME treatment on 
ghrelin conditioned mice 



Discussion with conclusions and implications 

Results 
In the results of acute L-NAME treatment on vehicle conditioned mice a trend towards a 

stimulated reward memory could be seen (p=0.1910). However the substance injected 

during conditioning in the least preferred compartment was merely NaCl, the very same 

substance as was received by animals prior to conditioning in the most preferred 

compartment. This suggests that these data can give no support to L-name having any 

stimulatory effect. It was further shown in the present series of experiment that 

subchronic l-name treatment during conditioning did not have an effect on CPP per se as 

compared to vehicle treatment, a result earlier reproduced for doses of L-NAME up to 

100 mg/kg (Kiyani et al., 2011). In addition, other studies have shown that acute 

treatment of L-name has no effect on accumbal dopamine release (unpublished data) or 

on locomotor activity in mice in doses up to 60 mg/kg (Ulusu et al., 2005). In other 

behavioral studies it has been shown that treatment with the same dose of L-name has no 

effects on prepulse inhibition in mice (Klamer et al., 2001). Treating alcohol/ghrelin 

conditioned mice acutely with L-NAME did not show any significant CPP induction 

either. A tendency towards increased stimulatory effects (p=0.2270) could be seen among 

mice given L-name after alcohol conditioning. This can alone however not imply that L-

NAME has a stimulatory effect. Moreover, subchronic treatment of L-NAME did not 

effect alcohol-induced CPP in mice. 

Finally, a significant CPP was induced when conditioning with L-NAME/ghrelin 

compared to a vehicle/ghrelin control treatment group. This is supporting the theory that 

the nNOS/NO/ sGC/cGMP signaling pathway is of importance for mediating the 

rewarding properties of ghrelin. 



Collectively, these data seem to speak against an effect of systemic administration of L-

NAME on the rewarding properties of alcohol. NOS enzymes other than those in VTA, 

either peripheral or central, could have been affected and negated the reward blocking 

effects previously noticed (Gholami et al., 2003; Karami et al., 2002). The effect of L-

NAME on the rewarding properties of alcohol and other drugs (for example cocaine) 

(Bozarth et al., 1994) might be non-existent.  

Important reward mechanisms 
The rewarding properties of alcohol might mainly be mediated through other means than 

the nNOS/NO/ sGC/cGMP signaling pathway, as previously suggested receptors 

potentially involved and more important in the effects are the strychnine-sensitive glycine 

receptor (GlyR), the gamma-aminobutyric acid A receptor (GABAAR), the nicotinic 

acetylcholine receptors (nAchRs), the 5HT3 receptor, the N-Methyl-D-aspartic acid 

receptor (NMDAR), the glutamate receptor, the opioid receptor as well as Ca2+ and K+ 

channels (Herz, 1997; Lewohl et al., 1999; Lovinger and White, 1991; Lovinger et al., 

1989; Lovinger and Zhou, 1994; Mascia et al., 1996; Narahashi et al., 1999; Suzdak et 

al., 1986; Wang et al., 1994). The ability of alcohol to activate the mesolimbic dopamine 

system involves both the VTA and N.Acc. (Hauser et al., 2011; Lof et al., 2007). The 

mechanisms behind the rewarding properties of cocaine as well as morphine has 

previously been shown to involve NO-signaling (Gabach et al., 2013; Gholami et al., 

2003; Karami et al., 2002). It must however be mentioned that they target the mesolimbic 

dopamine system in a different way than alcohol. Morphine act mainly as a agonist on the 

μ-opioid receptor in the VTA (Kieffer, 1995; Mansour et al., 1988), whereas cocaine acts 

as a serotonin–norepinephrine–dopamine reuptake inhibitor in N.Acc.(Carrera et al., 

http://en.wikipedia.org/wiki/Serotonin%E2%80%93norepinephrine%E2%80%93dopamine_reuptake_inhibitor


2004; Galli et al., 1995). While cocaine and morphine share mechanisms of action with 

alcohol like raised mesolimbic DA levels (Di Chiara and Imperato, 1988), they differ in 

others as mentioned above, providing a possible explanation for differences  following L-

NAME administration. Supportively, local VTA administration of L-NAME reduces 

morphine induced reward (Gholami et al., 2003). 

In the present experiment ghrelin-induced CPP was attenuated by subchronic, but not by 

acute, treatment with L-name. Acute treatment with L-NAME on post-conditioning day 

is supposed to measure the ability of the substance to block previously conditioned 

memory of a reward. Thus affecting the memory consolidation. Subchronic L-NAME 

treatment during conditioning is however measuring L-NAME’s ability to directly 

attenuating the rewarding properties of the substance. This suggests that L-NAME affects 

the rewarding properties of ghrelin (Sanchis-Segura and Spanagel, 2006). In support are 

the recent findings from our research group showing that acute L-NAME treatment 

attenuates the ability of ghrelin-induced locomotor stimulation and accumbal DA release 

(unpublished data). In support for a role of NO signaling for ghrelin-induced reward are 

the findings that ghrelin-induced food intake is reduced by L-NAME administration 

(Gaskin et al., 2003). Collectively, NO appears to be an important player for ghrelin-, but 

not alcohol-induced reward.  

The possibility that areas such as LDTg, VTA and N.Acc. are involved in the ability of 

NO to mediate ghrelin-induced reward should be considered. Indeed, local administration 

of ghrelin into the LDTg or VTA, areas known to express GHS-R1A, increase accumbal 

DA release, stimulates the locomotor activity and induces a CPP in mice as well as 

increases alcohol intake in mice (Jerlhag et al., 2009). In addition, accumbal ghrelin 



administration increases the locomotor activity, induced a CPP, increase the intake of 

palatable foods (unpublished data) as well as increases chow intake (Naleid et al., 2005), 

suggesting that NO within N.Acc. may be important for ghrelin-induced reward. In 

support for a role of VTA in NO-mediated ghrelin reward are the findings showing that 

local administration of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), which 

prevents NO signaling, into the VTA attenuates ghrelin-induced locomotor stimulation as 

well as accumbal dopamine  release in mice (unpublished data).  

 

Methodology 
Numerous methodological reasons for erroneous alterations of the results can be 

mentioned. Stress may very well have increased as a result of animal handlers being of 

the male sex (Sorge et al., 2014), leading to biased results. Humanely hearable noises 

originating from water conduits, fans as well as ultrasounds from numerous devices in the 

facility may have distorted the results. After prolonged use of the same CPP-boxes, 

impregnation of urine and excrements could skew the results. Another critique that can be 

applied to the CPP experiment is whether it at all measures the rewarding properties of 

certain conditioning. The mice seemingly preferring one compartment over the other 

during preconditioning, and then spending less time in the same compartment after 

conditioning may just have gotten weary from repeated exposure of the same dull 

environments. Aversive properties of the CPP chambers might be measured instead of 

rewarding properties. This is one of the reasons why numerous methodological studies 

must be conducted, in order to validate results.  



Future experiments 
Some studies that would further elucidate the mechanisms of the reward system and 

therefore would interesting to perform are local injection of L-NAME into specific 

cerebral parts. Nucleus Accumbens, the LateroDorsal Tegmental area as well as the 

Ventral Tegmental Area would be major candidates. Studying CPP, accumbal DA-release 

and locomotor activity after local injections would in addition to alcohol consumption be 

interesting studies to execute. Additionally, the effects of ODQ, another NO signaling 

constrainer could be intriguing to clarify, further improving our understanding of the role 

the nNOS/NO/ sGC/cGMP signaling pathway may have in the reward systems. 

Conclusions and implications 
The hypothesis that nNOS/NO/ sGC/cGMP signaling pathway is important for the 

rewarding properties of ghrelin is strengthened from these experiments. However, from 

the present series of experiments it cannot be suggested that NO is important for alcohol 

reinforcement, implying that nNOS-inhibitors cannot be used as a potential treatment 

regimen for alcohol addiction. Ghrelin plasma levels are higher in eating disorder patients 

that binge eat as compared to those that doesn’t binge eat (Tanaka et al., 2004; Tanaka et 

al., 2003a; Tanaka et al., 2003b). Binge eating disorder, an addictive disorder mandated 

via disruption in the mesolimbic dopamine system, has many similarities to other 

addictive behaviors; for instance loss of control over intake, relapse and craving (Grant et 

al., 2006; Potenza et al., 2003; Volkow and Li, 2004; Wang et al., 2004). Given that NO 

signaling appears to be important for ghrelin-induced reward as well as for ghrelin-

induced food intake it should be considered that  NO signaling system instead be a 

potential candidate for treatment of binge eating disorders.  



Populärvetenskaplig sammanfattning 
I denna studie har jag forskat på en läkemedelskandidat för alkoholberoende. Ämnet vars 

effekt jag studerat heter L-NAME och dess effekt är att blockera ett enzym (aktivt 

protein) som är viktigt för signaleringsvägar i bland annat hjärnans belöningssystem. L-

NAME visade sig inte i experimenten vi gjorde ha någon dämpande effekt på alkoholens 

belönande effekter. Konsekvenserna av detta blir att man får försöka hitta andra möjliga 

läkemedel för att kunna ge en bättre behandling av alkoholberoende. Däremot hade L-

NAME effekt på hungerhormonet ghrelins belönande effekter. Detta gör att det skulle 

kunna vara ett möjligt läkemedel för att behandla hetsätning. Att hitta nya sätt att 

behandla alkoholberoende är väldigt viktigt då det är en sjukdom som ligger bakom 

miljontals dödsfall i världen varje år, och leder till en stor mängd sjukdomar. I Sverige 

beräknas antalet dödsfall direkt orsakade av alkohol vara ca 2000 per år. Problemen för 

individ, familjer och samhälle är väldigt stora. Idag finns i Sverige tre licensierade 

läkemedel för behandling av alkoholberoende och denna studie är viktig då den talar 

emot ett möjligt behandlingsalternativ och därmed gör att man kan fokusera 

forskningsresurserna på andra alternativ. Mössen som studien utfördes på fick under 20 

minuter fritt gå runt i en låda med två stycken för dem klart avskiljbara halvor. Tiden de 

befann sig i respektive halva filmades och mättes sedan. Detta utgjorde underlag för 

vilken halva varje enskild mus föredrog. Nästa steg var att försöka ändra på denna 

preferens genom att spruta in alkohol/ghrelin och under 20 minuter placera mössen i 

halvorna de tidigare ej föredragit. Mössen fick också en spruta med vanlig 

koksaltslösning (placebo), varefter de under 20 minuter placerades i halvorna de tidigare 

föredragit. Efter att ha gjort denna konditionering under fyra dagar gav man återigen 



mössen möjlighet att fritt välja mellan de två halvorna i lådan under 20 minuters 

filmande. Alkoholens och ghrelinets belönande effekter gjorde att mössen nu befann sig i 

tidigare ej föredragna halva under längre tid än de gjort under den första dagens filmande. 

Denna effekt var det som man försökte motverka genom att ge mössen en spruta med L-

NAME. Antingen så fick de en spruta inför sista dagens filmande för att motverka minnet 

av den belönande effekten eller så fick de sprutor samtidigt som alkohol/ghrelin för att 

motverka den belönande effekten direkt. Alla grupper med möss hade även en 

kontrollgrupp för att öka tillförlitligheten i forskningen.
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