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Abstract

This thesis evaluates weak form efficiency of the Swedish stock market, by testing
whether or not the index OMXSPI follows a random walk. Returns of the index are
mapped onto one of two states by the use of a simple mapping rule, and the resulting
data set is treated as a higher-order Markov chain for the purpose of analysis. The
Bayesian Information Criterion is used to determine the optimal order of the chain and
the established optimal order is tested against the alternative that the chain is of order
zero. Further, as the estimation of the transition probabilities of the chain requires it
to be time homogenous, a test for time homogeneity is performed. We find that neither
random walk behaviour nor time homogeneity can be rejected for the period January
2000 - April 2015. This is true for daily, weekly as well as monthly returns.

Sammanfattning

Den här uppsatsen utvärderar om den svenska aktiemarknaden är effektiv i svag form.
Detta görs genom att låta indexet OMXSPI representera den svenska aktiemarknaden
och testa om indexet följer en slumpvandring. Avkastningen från OMXSPI avbildas på
ett av två tillstånd i ett tillståndsrum genom användningen av en enkel regel för denna
avbildning. Datan som fås efter denna avbildning behandlas sedan sedan som en markov-
kedja i den efterföljande analysen. För att bestämma den ordning som bäst representerar
datan används det bayesianska informationskriteriet. Skattningen av övergångsmatrisen
för markovkedjan görs under antagandet att kedjan är tidshomogen och därför testats
detta antagande. Vi kan varken förkasta att indexet OMXSPI för tidsperioden janua-
ri 2000 till April 2015 följer en slumpvandring, eller att kedjan är tidshomogen. Detta
gäller för så väl daglig, som veckovis och månatlig indexdata.
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1 Introduction
How do you beat the market? For obvious reasons this is perhaps the single most important
question in portfolio management. The question suggests that outperforming the market is
possible, which would mean that investors consistently can earn returns that are higher than
the expected market return.

Advocates of the efficient market hypothesis (EMH) disagree. In fact, EMH directly
implies that it is impossible to develop a trading strategy that consistently beats the market
over time (Malkiel, 2005). This does not mean that investors cannot beat the market, but
that if they do so, it is not due to fact that they have a superior trading strategy; they simply
owe their success to chance.

The efficient market hypothesis says that capital markets are efficient, which means that
all available information that is relevant to the pricing of an asset is incorporated in the
price of the same asset (Fama, 1970). The concept of market efficiency is closely related to
the idea that the movements of stock prices are indistinguishable from those of a random
walk. This idea is known as the random walk hypothesis (RWH). The two hypotheses are
related in the sense that if stock prices indeed follow a random walk, future stock prices
cannot be predicted, and hence no trading strategy that consistently beats the market can
be developed.

The opinions on the degree of efficiency in stock markets differ among financial economists,
and many believe that there may be some degree of predictability in stock market returns
(cf. Fama & French, 1988; Malkiel, 2003; Schiller, 2014). Even so, the question of whether
or not potential patterns in returns can be exploited profitably, as well as market efficiency
as a general concept, are still highly debated topics within the field of financial economics.

Market efficiency is not just of interest as a theoretical concept; it also has implications
for the actions of market participants. In an efficient market all available information about
an asset is reflected in its price, and thus market efficiency is of obvious interest since it
ensures that prices give accurate signals for investment decisions (Fama, 1970).

This paper aims to evaluate the efficiency of the Swedish stock market, by testing whether
or not the price of the index OMXSPI follows a random walk. This means that our main
interest is to test the Swedish stock market for what Fama (1970) refers to as weak form
efficiency, which in turn means that the question of interest is whether or not information
about historical prices are incorporated in the current price of the index. Many such tests, for
various markets, have been performed (cf. Fama, 1970; Fama, 1991; Fama, 2014), including
tests for the Swedish stock market (cf. Frennberg & Hansson, 1993; Shaker, 2013). The
methodology has differed between the tests and for the Swedish stock market variations of
autoregressions have been the models of choice. This paper develops a Markovian model
inspired by the one used by Fielitz and Bhargava (1973) as well as the one used by McQueen
and Thorley (1991). The model is based on the fact that independent returns is a sufficient
condition for a random walk in prices, and hence random walk behaviour can be tested by
assessing the dependence structure of returns. A data set consisting of indicator variables
representing high and low returns respectively is constructed and tested for dependence
structures by estimating transition probabilities under the assumption that the data set
represents a Markov chain of a given order.

The Markovian model has several advantages over an autoregressive one. It is non-
parametric, and hence no assumptions about the distribution from which the data is sampled
have to be made. The model also allows for non-linear dependences (McQueen & Thorley,
1991), as the transition probabilities are allowed to vary depending on previously realised
returns. Additionally, since the returns are mapped onto states, the model is insensitive
to outliers, and therefore the whole sample can be used for the purpose of analysis. These
advantages come at a price, as the Markovian model requires other strong assumptions; the
chain representing the returns must be aperiodic, irreducible and time homogeneous. The
first two of these assumptions will be validated in the estimation procedure, while the last
one will be tested explicitly.

This paper offers an extension of previous models used to test random walk behaviour
in stock market prices using Markov chains (cf. Fielitz & Bhargava, 1973; McQueen &
Thorley, 1991). Instead of fixing an order of the chain, and thereby limiting the analysis to a
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certain dependence structure, an optimal order is derived. Further, it is shown that pairwise
tests cannot be used to reliably establish the optimal order of the chain, and therefore an
information criterion, namely the Bayesian information criterion (BIC), is used instead. In
addition, the paper contributes with a discussion on the highest possible order of the Markov
chain that can be tested, and outlines the test for time homogeneity in detail. Finally, in
the test for time homogeneity a correction of the degrees of freedom of the test statistic is
presented and motivated in detail, as previous papers have either been unclear or fallacious
in this particular matter (cf. Fielitz & Bhargava, 1973; Tan & Yilmaz, 2002).

In terms of delimitations, the state space on which the Markov chain is defined only
consists of two states. In addition, the order of the chain is not allowed to vary over the time
period. This is mainly due to time constraints, but also due to the fact that the focus is
devoted to extending the fixed-order Markovian model to improve the reliability of the test.
Further, only the efficiency of the Swedish stock market, represented by the index OMXSPI,
is evaluated. Data of different frequencies is, however, considered. Daily, weekly as well
as monthly price data are analysed as there may be different dependence structures in the
different data sets.

To summarise, the questions this paper attempts to answer are:

• Do the prices of the Swedish stock market during the period January 2000 to April 2015
follow a random walk? Equivalently, can the returns during the period be modelled by
a zero order Markov chain?

• Is the assumption of time homogeneity of the Markov chain reasonable?

• Based on the results from the test for random walk behaviour, can the Swedish stock
market be considered to be weak form efficient?

2 A Review of Past Results
Over the last fifty years, many tests for random walks in stock prices and market efficiency
have been published. This section presents an overview of what has been done within the
field of market efficiency and on random walks in asset prices. The overview is limited to
studies that either have used a Markovian approach or where the market of interest has been
the Swedish stock market.

Most studies that have tested for random walks in stock prices using a Markovian model
have employed it on the US stock markets. For example, Niederhoffer and Osborne (1966)
rejected random walk behaviour of a set of stocks traded at the New York Stock Exchange
(NYSE) when considering intraday returns modelled by a second-order Markov chain. These
results were confirmed by Fielitz and Bhargava (1973), who used a first-order Markov chain
to model returns of a set of stocks. Fielitz and Bhargava included three states, which allowed
them to model magnitudes. A random walk in stock price was rejected for the vast majority
of the stocks. In a paper from 1975, Fielitz used a Markov chain of order one to test for time
dependence in returns of individual securities traded at the NYSE. For short time periods
it was found that there existed a weak price memory, which means that returns could be
predicted for short time periods.

McQueen and Thorley (1991) used a second-order Markov chain to test the random walk
hypothesis using annual returns from the NYSE. They found that the real prices of the NYSE
showed significant deviations from random walk behaviour. These results confirmed findings
by Lo and MacKinlay (1988). McQueen and Thorley (1991) did not test the assumption
about time homogeneity of the Markov chain.

Tan and Yilmaz (2002) presented criticism against the method that McQueen and Thor-
ley, as well as Fielitz and Bhargava used. The criticism was based on McQueen and Thorley’s
failure to test if the assumptions of the model, in particular the assumption about time ho-
mogeneity, held. In addition, Tan and Yilmaz criticised Fielitz and Bhargava for performing
tests that required the Markov chain to be time homogeneous, even though they had rejected
the same assumption.
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The research on market efficiency and random walks in Swedish stock prices is limited.
No study has used a Markovian model to examine random walk behaviour of the Swedish
stock market, but other methods such as autoregressions, variance ratio and serial correlation
tests have been used by Jennergren and Korsvold (1974), Frennberg and Hansson (1993) as
well as Shaker (2013).

The Swedish and Norwegian stock markets were tested for random walk behaviour by
Jennergren and Korsvold. They considered 45 stocks, and rejected a random walk behaviour
for a majority of those. Frennberg and Hansson tested and rejected random walk behaviour
of the Swedish stock market for the time period 1919 to 1990. They confirmed findings
from the US stock markets where returns over long periods exhibited mean reversion, while
short horizon returns showed positive autocorrelation (cf. Lo & MacKinlay, 1988; Poterba
& Summers, 1988). By using Swedish stock market data from the time period 1986 to
2004, Metghalchi, Chang and Marcucci (2008) tested three different trading rules based on a
moving average. They found that these trading rules could outperform a simple buy and hold
strategy even if transaction costs were included. Shaker (2013) examined the random walk
behaviour of the Swedish stock market using daily closing prices of the index OMXS30 during
the time period 2003 to 2013. He rejected both weak form market efficiency and random
walk behaviour of the Swedish stock market using variance ratio and serial correlation tests.

3 Theory
This section introduces the efficient market hypothesis and the random walk hypothesis. The
section starts with a presentation of the efficient market hypothesis and discusses how market
efficiency can be evaluated. An introduction to the random walk hypothesis follows. The
section concludes with a discussion about the relationship between random walks in stock
prices and the efficient market hypothesis.

3.1 The Efficient Market Hypothesis
Market efficiency has been a highly debated subject in economic theory ever since Eugene
Fama presented his doctoral dissertation in the 1960s. A market is said to be efficient if all
information that is available and relevant to the pricing of an asset is incorporated in the
price of the same asset (Fama, 1991). The efficient market hypothesis (EMH) then simply
says that stock markets are efficient in the described sense (Fama, 1970). The term efficiency
itself refers to the idea that a market with the described property gives "accurate signals for
resource allocation" (Fama, 1970 pp. 1), thus making capital markets efficient.

A necessary condition for this strong version of EMH is that there are no transaction
costs, nor any expenses related to the acquiring of relevant information. Weaker versions
of the hypothesis, which have the benefit of being more economically reasonable, have been
suggested. Jensen (1978) introduced a version where a market is efficient if the marginal
benefit of acting on information is no higher than the marginal cost of the same action. In
other words, by this definition, prices only need to reflect information on which it would
otherwise have been profitable to act.

Testing EMH is not possible unless which information set is used is specified (Fama, 1970).
To make the hypothesis testable Fama (1991) introduced three types of tests corresponding to
three subsets of information: weak form tests, where the information set consists of historical
security prices and other market observable variables; semi-strong form tests, where the
information set also includes other publicly available information; and strong form tests,
where private information is included as well.

In 1991, Fama changed these categories into ones that says more about what is actually
tested for. Weak, semi-strong and strong form tests were now introduced as tests for return
predictability, event studies and tests for private information, respectively.

Tests of market efficiency relates observed prices to equilibrium prices in the sense that
under EMH the observed price should exhibit the properties of the equilibrium price (Fama,
2014). The efficient market hypothesis thus has to be tested jointly with an asset pricing
model, which is used to model equilibrium returns or prices. If the specified equilibrium asset
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pricing model does not hold, efficiency may be rejected because of an inadequate specification
of the returns even though relevant information may be incorporated in prices. In general
there is no way of determining if market inefficiency, the pricing model or some combination
of the two is the reason for the rejection (Fama, 2014). This difficulty, known as the joint
hypothesis problem, makes the choosing of a reasonable pricing model a crucial part of testing
EMH.

3.2 The Random Walk Hypothesis
The theory of random walks in stock prices dates back to 1900 when Louis Bachelier presented
his dissertation The Theory of Speculation. Fama defines a market to be a random walk
market if "successive price changes in individual securities are independent" (Fama, 1965 pp.
56). If price changes are independent, and transaction costs are ignored, complicated trading
strategies will not be more successful than a simple buy and hold strategy, since the price
development of securities cannot be predicted.

The notion that price development is unpredictable is consistent with the random walk
hypothesis (RWH), which says that the movement of stock prices cannot be distinguished
from a those of a random walk (Fama, 1965; Malkiel, 2005). This is the same as to say that
the development of a partial sum of a sequence of independent random numbers is equally
unpredictable as the future path of the asset prices. According to Fama, the random walk
hypothesis is not an exact description of real asset price behaviour (Fama, 1965). Even so, the
dependence structure may be weak enough to consider RWH to be a reasonable approximate
description of the movements of stock prices (Fama, 1965).

3.3 Random Walks and Efficient Markets
If the movements of stock prices are indistinguishable from those of a random walk investors
cannot possibly predict returns and hence the efficient market hypothesis is associated with
the idea that stock prices follow a random walk (Malkiel, 2003). It would be misleading to
talk about any strict logical implications. The market could follow a walk because investors
choose assets at random. While this is not likely, it illustrates that a random walk in prices
is not a sufficient condition for market efficiency. Conversely, in the context of this thesis, as
returns are divided into states one may find that one can predict the direction of stock price
movements, but not the magnitude of a rise or a fall in price. Therefore, a test of RWH may
lead to a situation where something can be said about the behaviour of the stock market,
but where it is still impossible to beat the market consistently.

How the efficient market hypothesis is related to the random walk hypothesis has been a
highly debated topic in the field of finance (cf. Lo & MacKinlay, 2002; Malkiel, 2003). The
relationship between RWH and EMH cannot be explained in terms of sufficiency and necessity
(Lo & MacKinlay, 2002). However, economic literature (cf. Fama, 1991, 2014), suggests that
a random walk in stock prices is consistent with the efficient market hypothesis, and in many
studies (cf. Fama & Blume, 1966; Jensen, 1978) EMH and random walks in stock prices are
evaluated in the same context. In this paper random walk behaviour in stock prices will be
considered to be an indication of market efficiency and, inversely, non-random walk behaviour
will be seen as evidence, but not as proof, of market inefficiency. There will, however, be no
deeper evaluation of the relationship between the two.

3.4 Markov Theory
Basic theory on Markov chains is presented in this section. It starts with the definition and
some properties of first-order Markov chains (in the first subsection simply referred to as
Markov chains), and then extends the definition and properties of first-order Markov chains
to higher-order Markov chains.

3.4.1 First-Order Markov Chains

Consider a set of states S = {s1, s2, ...}, henceforth referred to as a state space, and a discrete
time random process {Xn : n ∈ N} that moves, or transitions, from one state in the state
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space to another. The process is called a Markov chain if the probability distribution of
the future state is independent of all previous states except for the current one. The formal
mathematical definition of a Markov chain is given below:

Definition 3.1. Let S be a countable state space. The process {Xn : n ∈ N} is a Markov
chain if it satisfies the Markov property:

P(Xn = j|Xn−1 = in−1, . . . , X0 = i0) = P(Xn = j|Xn−1 = in−1) (1)

∀n ≥ 1,∀i0, . . . , in−1, j ∈ S.1

This definition, as well as others presented in this subsection, is based on the notations
and terminology presented by Grimmett and Stirzaker (2001).

The transition probabilities and the transition probability matrix (TPM) of the Markov
chain {Xn : n ∈ N}, henceforth denoted by X, is defined as:

Definition 3.2. Let S be a countable state space and X a discrete time Markov chain. The
transition probability from state i in step n− 1 to state j in step n is denoted
pij(n− 1, n) = P(Xn = j|Xn−1 = i). The transition probability matrix
P(n− 1, n) = (pij(n− 1, n)) is the ns × ns matrix of transition probabilities pij(n− 1, n),
where ns denotes the cardinality of the state space.2

For the purpose of further reference, an important property of Markov chains is irre-
ducibility, which mathematically is defined as:

Definition 3.3. Let X be a Markov chain defined on state space S. The chain X is said to
be irreducible if:

∀i, j ∈ S,∃m ∈ Z+,m <∞ : P(Xn+m = j|Xn = i) > 0. (2)

Another important property of Markov chains is aperiodicity, which is related to the
period of the chain. Both concepts are defined below:

Definition 3.4. Let X be a Markov chain defined on state space S. The state i is said to
have period di, where di is:

di = gcd{m : P(Xm = i|X0 = i) > 0}, (3)

where gcd stands for greatest common divisor. A state is said to be aperiodic if di = 1.

If the probability of a transition from state i to j does not depend on when the chain is
in state i or j the chain X is called time homogenous. Formally this can be defined as:

Definition 3.5. The Markov chain X over the state space S is called time homogenous if

pij(n− 1, n) = pij(0, 1) (4)

∀n ≥ 1,∀, i, j ∈ S.
For a time homogenous chain the notation pij is used to denote the probability for each

one-step transition from i to j, thus pij(0, 1) = pij .

Let X be a time homogenous Markov chain defined on a state space S with L states. The
transition probability matrix (TPM), here denoted by P,3 can then be stated as follows:

1Every in−k, k = 1, . . . , n equals some state sl ∈ S, l = 1, 2, . . .
2The cardinality of a state space S is commonly denoted by |S|. To simplify notation, especially in the

method section, ns will be used throughout this paper.
3In the matrix given in (5), 1 represents the state s1 ∈ S and 2 represents s2 ∈ S. Analogously each

positive integer k represents sk ∈ S. Note that the state space is finite with cardinality L.
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P = (pij) =


p11 p12 · · · p1L
p21 p22 · · · p2L
...

...
. . .

...
pL1 pL2 · · · pLL

 . (5)

3.4.2 Higher-Order Markov Chains

Higher-order Markov chains can be seen as generalisations of first-order Markov chains. The
order refers to the number states prior to the future one that may carry information about
the future outcome. The definitions given below are straight forward generalisations from
the ones concerning first-order Markov chains. Formally, a Markov chain of order u is defined
as follows:

Definition 3.6. Let S = {s1, s2, ...} be an at most countable state space and {Xn, n ∈ N}
be a discrete-time stochastic process. Then {Xn, n ∈ N} is a Markov chain of order u if:

P(Xn = j|Xn−1 = in−1, . . . , X0 = i0) = P(Xn = j|Xn−1 = in−1, . . . , Xn−u = in−u) (6)

∀n ≥ u,∀j, in−1, . . . , in−u, . . . i0 ∈ S.

By this definition, a first-order Markov chain is also a second-order Markov chain. In fact
it follows directly from the definition that a Markov chain of order u is also a Markov chain
of order u+ 1.4 In other words it is a sufficient, but not necessary, condition for a Markov
chain of order u+ 1 to be a Markov chain of order u.

Remark 1. It is consistent with the discussion above to think about a Markov chain of order
zero. As an example consider any sequence of independent random variables, that takes
values in a countable set.5

The definitions of transition probabilities and the transition probability matrix (TPM)
as well as concepts such as time homogeneity are defined analogously to those for a Markov
chain of order one. For reference purposes these definitions can be found below.

Definition 3.7. Let S = {s1, s2, ...} be an at most countable state space and
Su = {sn1 ...snu : ∀snk

∈ S} be the state space containing all possible sequences of length u
consisting of states sn ∈ S. Consider a u:th order Markov chain X. The transition probability
pij(n− u, n) to end up in j ∈ S at time n after having followed the path described by the
sequence i ∈ Su is defined as:

pij(n− u, n) = P(Xn = j|Xn−1 = in−1, . . . , Xn−u = in−u) (7)

i = in−u . . . in−1 ∈ Su, j ∈ S.
The transition probability matrix P(n− u, n) = (pij(n− u, n)) is then the nus × ns matrix of
transition probabilities pij(n− u, n).

Note that as a probability is assigned to each combination of previous states, the transition
probability matrix is no longer a square matrix, unless u = 1. As stated in definition 3.7,
the states in the chain prior to the future one belongs to the state space Su which consists of
all possible sequences, of length u, of states in S. This means that for a second-order chain
with only two states, s1 and s2, the state space of interest is S2 = {s1s1, s1s2, s2s1, s2s2}.

4See appendix A.1 for a motivation.
5Assume that X1, X2, . . . are independent variables taking values in some countable set. Then:

P(Xn = xn|Xn−1 = xn−1, . . . , X1 = x1) = P(Xn = xn),

where the equality follows from the independence of the random variables. This is a Markov chain of order
zero.
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Note that s1s2 and s2s1 represents different sequences; the first one represents that the chain
moves from s1 to s2 and the second one represents the reversed movement.

For a Markov chain of order u irreducibility and aperiodicity are defined analogously to
the first-order chains. A chain is irreducible if all states are accessible from each other, i.e
the probability of moving from one state i ∈ S to another state j ∈ S is positive in any finite
number of transitions. It follows that irreducibility is independent of the order. Furthermore,
the period, di, of an u:th order chain is the greatest common divisor of the possible paths
that can be taken from one state sk ∈ S to the same state sk ∈ S. If di = 1 then the u:th
order chain is aperiodic. In particular, if pij > 0 for all i ∈ Su, j ∈ S, then the chain is
aperiodic.

The Markov chain is time homogenous if the transitions following a certain path depend
only on the sequence of states, and not on when the sequence starts. Formally, this is defined:

Definition 3.8. The Markov chain X defined on the state space S is called time homogenous
if

pij(n− u, n) = pij(0, u) (8)

∀n ≥ u,∀, i ∈ Su,∀j ∈ S.
For a time homogenous chain the notation pij is used to denote the probability for each
transition following the sequence i to j.

Remark 2. If the sequence considered in remark 1 is identically distributed the Markov chain
is time homogenous 6.

4 Methodology
This section outlines the procedure to test for random walks in stock prices. First, the
construction of the Markov chain modelled is presented. Thereafter, the Bayesian information
criterion (BIC) is used to determine the order of the constructed Markov chain modelled.
The null hypothesis that the constructed chain is of order zero is then tested against the
alternative that the chain is of the order established by BIC. This is called a test for time
dependence. Finally, as the estimation of the transition probabilities requires that the Markov
chain is time homogenous, a test for time homogeneity is given.

4.1 Returns and Benchmark Returns
Let Pt be the price of an asset at time t, t = 0, . . . , T . The return7, denoted rt, t ≥ 1, during
the period t− 1 to t is then calculated as:

rt =
Pt − Pt−1

Pt−1
. (9)

Hence, rt is the percentage change from one time period to the next.
The two benchmarks that are used in this paper are the geometric return and the zero

return. The geometric return is calculated as:

r̂ =

(
T∏

i=1

(1 + ri)

)1/T

− 1, (10)

6If the sequence X1, X2, . . . of random variables considered in remark 1 are identically distributed in addi-
tion to independently distributed. Then: P(Xn = xn) is the same for all n since the probability distribution
is identical for all random variables.

7It is worth to mention that log-returns are commonly used in empirical financial economics. One crucial
reason for this is that the logarithmic transformation make the data look more normally distributed. As
the model presented in this paper does not require any normality assumption, the more direct approach of
assessing returns, rather than log-returns, can be taken.
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where T is the number of observations, i.e. the sample size of returns, and ri is calculated as
in (9). When zero is used as the benchmark r̂ is equal to 0. In the construction of the state
space in section 4.2 the expected return, E[r], is replaced by r̂ which represents the estimate
of E[r].

4.2 Mapping Returns to States
To model returns by a Markov chain which is discrete in both time and space, the returns
have to be divided into states. This is done by assigning a rule that maps the returns onto
the states on which the Markov chain is defined. In this paper two states are considered. Let
{rt, t = 1, . . . , T} be a time series of returns. The returns are classified as "low" and "high"
depending on whether or not the return is above the expected return E[r]. Let the state
space, S, consist of the two states L and H which indicate low and high returns, respectively.
The returns are then mapped into this state space as follows:

Xt =

{
L if rt < E[r]
H if rt ≥ E[r].

(11)

Since, E[r] in (11) is unobservable it is replaced by any of the two benchmarks denoted by r̂.
It would be possible to consider more than two states and have each state represent an

interval within which the realised returns lie. The main reason for not using more than two
states in this thesis is the difficulty of finding an unambiguous way of constructing such a
mapping. This is, to a certain extent, true for two states as well, but at least two states are
needed for the chain to carry any information at all.

4.3 Estimation of Transition Probabilities
The transition probabilities of a u:th order Markov chain are estimated under the assumption
that the chain is time homogenous. Considering a time homogenous chain, the maximum
likelihood estimates of the transition probabilities are given by8:

p̂ij =
nij
ni.

, ∀i ∈ Su,∀j ∈ S, (12)

which are obtained by maximising the likelihood function subject to the constraint:∑
j pij = 1, i ∈ Su, j ∈ S. The counts nij and ni. denote for the number of transitions

from i ∈ Su to a specific j ∈ S and the number of transitions from i to any state j ∈ S,
respectively. The observed counts are displayed in a transition count matrix (TCM). The
transition probabilities are displayed in a transition probability matrix (TPM), and the esti-
mated transition probabilities are displayed in an estimated TPM. Note that the estimation
procedure requires that each row in the TCM must sum to a positive value, since otherwise
the denominator in (12) would be zero and the expression would not even be defined.

For a Markov chain of order two defined on a state space S = {H,L}, the TCM and the
estimated TPM are displayed in figure 1 below:

8A derivation of the maximum likelihood estimates of the transition probabilities can be found in appendix
A.2.
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Figure 1.
An illustration of the TCM and the TPM of a second-order Markov chain.

The figure illustrates the transition count matrix and the estimated transition probability matrix
of a second-order Markov chain defined on a state space, S, consisting of two the states L and H.

The entries in the TCM, nLLL, . . . , nHHH are the observed number of transitions for the
second-order Markov chain followed that given path. The numbers p̂ij are the estimated transition

probabilities for the associated sequences.

TCM
Previous Future state
states L H
L L nLLL nLLH

L H nLHL nLHH

H L nHLL nHLH

H H nHHL nHHH

TPM
Previous Future state
states L H
L L p̂LLL 1− p̂LLL

L H p̂LHL 1− p̂LHL

H L p̂HLL 1− p̂HLL

H H p̂HHL 1− p̂HHL

The TCM and TPM above can be generalised to a u:th order Markov chain defined on a
state space with cardinality ns in a straightforward manner.

4.4 Test for the Order of a Markov Chain
The aim of this section is to determine the order of the Markov chain modelled. Intuitively,
multiple pairwise tests may seem appealing, and has previously been suggested by Tan and
Yilmaz (2002). They presented the following procedure: the null hypothesis that the Markov
chain is of order zero is tested against the alternative that the Markov chain is of order
one. If the null hypothesis is rejected, the procedure is repeated, but this time order one
is tested against order two. The pairwise tests continue until the null hypothesis that the
Markov chain is of the lower order cannot be rejected, or until a specified highest order,M , is
reached. Whenever the test first fails to reject that the chain is of order u ∈ {0, 1, . . . ,M−1},
when tested against the alternative that the chain is of order u+ 1, the chain is considered
to be of order u.

However, it is possible, when testing a chain of order u+ 1, that the null hypothesis that
the chain is of order u − 1, cannot be rejected when tested against the alternative that the
chain is of order u (see appendix A.3 for further details). This shows that the procedure
suggested by Tan and Yilmaz (2002) is not reliable.

Therefore, a more reasonable approach is to use an information criterion and in this paper
the Bayesian information criterion (BIC) is used. The use of BIC when testing for the order
of the chain can intuitively be motivated by the fact that it penalises for increasing the order
of the chain if the additional information contained in the realisations of the added periods
containing the additional information is insufficient. The main reason for choosing BIC9, over
e.g. Akaike information criterion (AIC), is that the BIC gives both an optimal and consistent
estimator of the order of the Markov chain. The use of BIC requires that a maximum allowed
order, M , is specified in advance and a method for doing so is presented in section 4.4.1. The
procedure to estimate the order using BIC is given in section 4.4.2.

4.4.1 Determining the Highest Possible Order

The method used to determine the order of the chain requires that a maximum order M is
specified in advance. As it is possible, for any u ∈ N, to construct a Markov chain that is
of order u, but not of any order v ∈ N such that v < u,10 one cannot determine a highest
order without considering the nature of the data set of interest. In the context of this paper,

9The Bayesian information Criterion is also known as Schwartz Bayesian criterion (SBC) since it was first
derived by Schwartz (1978) to find the optimal dimension for the model used.

10In appendix A.3 an example of such a construction is shown.
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this would mean that one would have to present an argument for why it is economically
unreasonable for a sequence of returns to be a Markov chain of an order higher than M .

There is, however, a technical limitation which must also be taken into consideration. For
the test of the order of a chain to be valid it is required that each transition probability is
strictly positive. This in turn implies that there must be at least one count in each entry in
the corresponding TCM. For a given chain this means that once the order is high enough for
the corresponding TCM to have an entry which equals zero, one must assume that the chain
is not of this or any higher order.

In this paper the maximum order, M , will be set to the highest order that corresponds
to a TCM whose entries are all non-zero. The motivation for choosing the maximum order
M this way is simple. As it is a stronger assumption that a chain is of order u ∈ N than that
the chain is of order u+ 1, and hence the larger M is, the weaker the assumption one has
to make about the order of the chain becomes. By choosing M as above it gives the largest
possible maximum order and hence also the weakest possible assumption about the order of
the chain for each data set.

4.4.2 Test for the Order by Using an Information Criterion

This section describes a method, first presented by Anderson and Goodman (1957), for
deciding whether or not the TPM of a Markov chain of order v < u is statistically different
from the TPM of a chain of order u. The method is required to determine an order using
the Bayesian information criterion (BIC). The order established using BIC is optimal, in the
specific sense that, under the assumptions that the prior distribution is a non-informative
Dirichlet distribution, it minimises the expected loss (Katz, 1981). The established order
does not depend on either the prior distribution or the posterior distribution (Katz, 1981).

The BIC procedure requires that the state space, S, is finite and that the Markov chain
is aperiodic and irreducible. Furthermore, as stated above, a maximum order, M , has to be
specified. By determining M as above the assumptions of irreducibility and aperiodicity are
fulfilled. Further, the state space S = {L,H} is finite. Hence, the assumptions hold.

As for the testing procedure, which is based on the work of Anderson and Goodman
(1957), consider a sequence of data which may be represented by a Markov chain. The
objective is to test if the Markov chain is of order v against the alternative that the Markov
chain is of order u. It can be assumed, without loss of generality, that v < u. In this setting
there are three sequences to consider; u = in−u, . . . , in−1 ∈ Su which carries information
in the Markov chain of order u; v = in−v, . . . , in−1 ∈ Sv, which carries information in the
Markov chain of order v; and d = in−u, . . . , in−(v+1) ∈ Sd = Su−v, which belongs to the set
of sequences that separate the sequences in Su from the ones in Sv, it follows that u = dv.
The transition probabilities using this newly introduced notation for the chain of order u and
the chain of order v are defined in equations (13) and (14), respectively:

puj = P(Xn = j|Xn−1 = in−1, . . . , Xn−v = in−v, . . . Xn−u = in−u) = pdvj , (13)

pvj = P(Xn = j|Xn−1 = in−1, . . . , Xn−v = in−v). (14)

Let nuj = ndvj be defined as the number of transitions following the sample path
in−u . . . in−v . . . in−1j for the Markov chain of order u. Analogously nvj is defined as the num-
ber of transitions following the path in−v . . . in−1j for the v:th order chain. Define nu. = ndv.
and nv. as the total number of transitions following the sample paths in−u . . . in−v . . . in−1
and in−v . . . in−1 for the Markov chains of order u and v, respectively. Then the maximum
likelihood estimates of the transition probabilities are calculated as in (12). However, using
the notation introduced above, the transition probability given in (12) is now given by (15)
and (16) for the chains of order u and v, respectively:
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p̂uj =
nuj
nu.

=
ndvj
ndv.

= p̂dvj , (15)

p̂vj =
nvj
nv.

. (16)

The null hypothesis, H0, and the alternative hypothesis, H1, can be formulated11 as
below:

H0 : the chain is of the lower order v,
H1 : the chain is of the higher order u, but not of the lower order v.

The likelihood ratio statistic Λv for a given sequence, vj, is given below:

Λv =
∏
v,j

(
p̂vj
p̂dvj

)ndvj

. (17)

There are nu−vs unique sequences in which the sample paths coincide. Therefore, the test
statistic Λ becomes the product of the test statistics Λv. This is to say that:

Λ =
∏
d

Λv =
∏
d

∏
v,j

(
p̂vj
p̂dvj

)ndvj

 =
∏
d,v,j

(
p̂vj
p̂dvj

)ndvj

. (18)

Taking the transform −2 log(Λ), the limiting result becomes:

− 2 log(Λ) = 2
∑
d,v,j

ndvj log

(
p̂dvj
p̂vj

)
a∼ χ2

df , df = (nus − nvs)(ns − 1). (19)

Thus the asymptotic distribution of the test statistic −2 log(Λ) under the null hypothesis
follows a Chi-squared distribution with (nus − nvs)(ns − 1) degrees of freedom. Which is a
generalisation of the test statistic derived in Anderson and Goodman (1957).

Under the assumptions that the Markov chain is aperiodic, irreducible and defined on a
finite state space S, with an upper bound M of the order of the chain, the BIC estimator for
the order of the chain is defined below.

Definition 4.1. Let X be a Markov chain of order u < M . Let the likelihood ratio statistic,
Λ, for testing order u versus order M be denoted by Λu,M , then the BIC estimator, ûBIC,
for the order of the Markov chain is such that:

f(ûBIC) = min
0≤u<M

f(u), (20)

where f(u) = −2 log(Λu,M )− (nMs − nus )(ns − 1) log(T ), T is the sample size and
(nMs − nus )(ns − 1) is the degrees of freedom for the likelihood ratio statistic Λu,M .

The likelihood ratio test statistic is at least as large when an order higher than u is tested
against v, as it is when testing u against v. In the same sense as adding explanatory variables
to a linear regression model never reduces the fit, adding periods that may carry information

11The aim is to test whether or not the probability distribution of the u:th and v:th order Markov chains
are the same. Mathematically, the null and alternative hypotheses can be stated as:

H0 : ∀u ∈ Su, ∀j ∈ S; puj = pvj
H1 : ∃u ∈ Su, ∃j ∈ S; puj 6= pvj .
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in the Markov chain never reduces the likelihood ratio statistic. Therefore, in the testing
procedure the term (nMs − nus )(ns − 1) log(T ) penalises for increasing the order, which can
be compared to utilising the adjusted R-squared when additional explanatory variables are
added to a multiple linear regression.

It should be noted that, when using BIC for estimating the order of a Markov chain, one
tests the highest allowed order M against all lower orders 0, 1, . . . ,M − 1 (Katz, 1981). If
BIC gives the optimal order 0, then the BIC only says that this order best represents the
data when penalising for the increased order. It does not determine whether or not there is
any dependence structure in the returns. Thus, to be able to perform a significance test for
time dependence, the optimal order, determined using BIC, must be at least 1. Therefore,
we have chosen to test the maximum order M against the lower orders u ∈ {1, . . . ,M − 1}.

4.5 Testing if the Order of the Chain is Different from Zero
Assuming that an optimal order u has been established using BIC, u is the optimal order
(or, rather, the optimal order different from zero) of the Markov chain, but BIC says nothing
about whether or not this order results in a plausible model. If every order of the chain
results in a bad model, BIC just gives us the least bad of these models. Therefore, a test
must performed to determine whether the order established using BIC results in a model
that is significantly better than a Markov chain of order zero.

Under the assumption of time homogeneity, the null and alternative hypotheses can be
stated12 as below:

H0 : The chain of the optimal order is also a chain of order 0,
H1 : the chain of the optimal order is not a chain order 0.

The point estimate, p̂.j , of p.j , j ∈ S is under the null hypothesis, given by:

p̂.j =
n.j
n..

, (21)

where n.j is the sum of transitions to state j for all prior sequences i ∈ Su and n.. is the total
number of transitions to any state for all prior sequences, which is the same as the sample
size.

The test statistic for testing the null hypothesis, H0, against the alternative hypothesis,
H1, is given by equation (19) where the v:th order is zero and the u:th order is the optimal
order established using BIC. The distribution of the test statistic under the null hypothesis
is asymptotically Chi-square distributed with (nus − 1)(ns − 1) degrees of freedom.

4.6 Testing for Time Homogeneity of a Markov Chain
The transition probabilities of the Markov chain is estimated under the assumption of time
homogeneity. This assumption has to be validated.

A quite intuitive procedure, based on the work of Anderson and Goodman (1957), for
testing time homogeneity is to divide the time series into N > 1 subintervals of equal length.
For time homogeneity to be valid, the TPM must be the same for each of the N subintervals
of time. Let subinterval k be denoted by Ik, k = 1, . . . , N . Given that the Markov chain of
order u has taken the path i ∈ Su in subinterval Ik, the transition probability of moving to
j ∈ S is denoted as follows:

pkij = P(Xn = j|Xn−1 = in−1, . . . , Xn−u = in−u), n ∈ Ik, i ∈ Su, j ∈ S. (22)

12The aim is to test whether or not the probability distribution is the same for the optimal order and the
zero-order chains. Let p.j denote the probability of moving to state j ∈ S regardless of the prior sequence.
Mathematically, the null and alternative hypotheses can be described as:

H0 : ∀i ∈ Su, ∀j ∈ S; pij = p.j
H1 : ∃i ∈ Su, ∃j ∈ S; pij 6= p.j .

12



The transition probabilities of each subperiod of time are estimated completely analo-
gously to the transition probabilities over the whole time period, using (12) for the subperi-
ods sample. The aim is to test whether or not the TPM for each subperiod is the same as
the TPM for the whole period. The null and alternative hypotheses can be expressed13 as:

H0 : the Markov chain is time homogenous,
H1 : the Markov chain is time heterogeneous.

Under the null hypothesis the likelihood ratio test statistic, Λ, becomes:

Λ =

N∏
k=1

∏
i∈Su,j∈S

(
p̂ij
p̂kij

)nk
ij

. (23)

The likelihood ratio test statistic, Λ, is asymptotically equivalent to:

−2 log(Λ) = 2
N∑

k=1

∑
i∈Su,j∈S

nkij log

(
p̂kij
p̂ij

)
. (24)

The test statistic −2 log(Λ), under H0, is asymptotically Chi-squared distributed with (N −
1)nus (ns−1) degrees of freedom14, which is a straightforward generalisation of the test statistic
for a time homogeneity test of a Markov chain of order one given in Anderson Goodman
(1957). Here p̂kij is the estimate of (22) and p̂ij is the estimate of the transition probability
of the u:th order Markov chain over the whole time period, which is given by (12). Since
all subintervals are compared to the whole time period the problem of multiple comparisons
becomes apparent. Bonferroni’s method, by which the significance level is adjusted based on
the number of comparisons made, is used.

5 Data
In this section the data used in this paper is presented and described in detail. Additionally,
some summary statistics15 of the data are given. The data used in this paper is the Nasdaq
OMXSPI index, also known as the Stockholm all share index. This index represents the value
of all shares that are traded at Stockholm stock exchange (http://www.nasdaqomxnordic.com).
The price data consists of the closing prices of the index OMXSPI for days, weeks and months
respectively (non-trading days are excluded).16

The index OMSXPI is used as a proxy for the Swedish stock market. The motivation for
using this index over the index OMXS30 is that it includes all traded stocks at the Stockholm
Stock Exchange while OMXS30 only consists of the 30 most traded stocks. Therefore, the
index OMXSPI serves better as a proxy for the Swedish stock market as a whole than
OMXS30 does.

The time period used in this study is January 2000 to April 2015. In particular, for the
daily price data, the statistics are based on observations from the time period 2000-01-02 to
2015-04-23. The weekly prices come from the period 2000-01-07 to 2015-04-17 and for the
monthly closing prices the period 2000-01-31 to 2015-03-31 has been considered. The returns

13Let the TPM for the k:th subinterval be denoted by Pk and the TPM for the whole time period be
denoted by P. The objective is to test whether or not the transition probabilities from each subperiod is
the same as the transition probabilities for the whole time period. The null hypothesis and the alternative
hypothesis can then mathematically be stated as:

H0 : ∀k ∈ {1, . . . , N};Pk = P
H1 : ∃k ∈ {1, . . . , N};Pk 6= P.

14In appendix A.4 a motivation for this number of degrees of freedom can be found.
15All computations have been preformed using MATLAB version 2014b.
16The data used has been downloaded 2015-04-25 through the Bloomberg terminal.
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are calculated as in (9). In table 1 some descriptive statistics of the samples used throughout
this paper are shown17.

Table 1
Descriptive Statistics of Prices and Returns.

The table shows some descriptive statistics of daily, weekly and monthly closing prices and the
corresponding returns of the index OMXSPI during the period January 2000 - April 2015. In the
left part of the table the descriptive statistics of the prices are shown and in the right part the
corresponding descriptive statistics of the returns are shown. The statistics shown are the mean,
median, standard deviation (Std.), the minimum and maximum value, the inner quantile range

(IQR), the skewness, kurtosis and the number of observations (No. obs.).

Descriptive statistics of prices.
The descriptive statistics of closing prices during

the period January 2000 - April 2015.

Daily Weekly Monthly
Mean 302.5067 302.5237 302.6447
Median 307.3150 306.8850 308.4100
Std. 86.2225 86.3420 86.7245
Min 126.4100 134.3700 134.3700
Max 560.5500 556.1700 548.6400
IQR 129.3800 128.3900 130.4650
Skewness 0.1800 0.1721 0.1637
Kurtosis 2.6567 2.6238 2.6365
No. obs. 3842 798 183

Descriptive statistics of returns.
The descriptive statistics of returns during the period

January 2000 - April 2015.

Daily Weekly Monthly
Mean 0.0002 0.0011 0.0043
Median 0.0007 0.0040 0.0066
Std. 0.0144 0.0298 0.0568
Min -0.0775 -0.2059 -0.1789
Max 0.0901 0.1161 0.1873
IQR 0.0144 0.0315 0.0568
Skewness 0.0793 -0.6785 -0.2641
Kurtosis 6.5072 7.0059 4.1830
No. obs. 3841 797 182

6 Results
This section presents the results18 from the various tests we have performed on the Markov
chain constructed from the returns of the index OMXSPI. All of these tests are discussed in
greater depth in section 4, where the Markovian model used in this paper is presented. It is
found that the optimal order of the Markov chains representing daily, weekly and monthly
returns is 1. This is true both when the benchmark is the geometric return and when it is the
zero return. Further, it is found that a random walk behaviour of the Swedish stock market
cannot be rejected, nor can the assumption of time homogeneity be rejected, for any of the
benchmarks and for all frequencies of returns.

6.1 The Optimal Order
The highest order allowed for the chain is determined as described in section 4.4.1 for each of
the frequencies. The highest order allowed is denoted byM in table 2. Note thatM does not
need to be the same for all frequencies of returns. The statistic −2 log(Λu,M ) (see definition
4.1) is denoted by ηu,M to simplify the notation in table 2. Further, f(u)|M denotes the
BIC statistic, where order u is tested against order M . In table 2 these two statistics are
displayed for daily, weekly and monthly returns of OMXSPI.

17In appendix B plots of time series of prices and returns for the index OMXSPI during January 2000 to
April 2015 are given for daily, weekly as well as monthly data.

18All computations within this section have been performed using MATLAB version 2014b.
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Table 2
Test results for the test of the order.

The table shows the test results for the optimal order of the Markov chains, as determined by BIC,
describing daily, weekly and monthly returns of the index OMXSPI during the period January

2000 - April 2015. In the first part of the table the benchmark return is the geometric return and
in the second part of the table the benchmark is the zero return. The variable f(u)|M denotes the
test statistic calculated using the Bayesian information criterion and the variable ηu,M is the test

statistic calculated in the test of order u against the highest order allowed M .

Geometric return.
The benchmark return used to construct the Markov chain is the geometric return.

Daily Weekly Monthly Daily Weekly Monthly
u f(u)|M=7 f(u)|M=5 f(u)|M=3 ηu,M=7 ηu,M=5 ηu,M=3

1 -915.3 -175.7 -18.2 124.4 24.5 13.0
2 -902.0 -163.2 -9.7 121.2 23.7 11.0
3 -870.6 -137.4 - 119.6 22.8 -
4 -811.1 -94.4 - 113.0 22.8 -
5 -692.6 - - 99.5 - -
6 -470.9 - - 57.2 - -

Zero return.
The benchmark return used to construct the Markov chain is the zero return.

Daily Weekly Monthly Daily Weekly Monthly
u f(u)|M=7 f(u)|M=5 f(u)|M=3 ηu,M=7 ηu,M=5 ηu,M=3

1 -914.5 -175.9 -19.3 125.2 24.3 11.9
2 -900.4 -163.0 -11.2 122.9 24.0 9.6
3 -868.8 -137.6 - 121.4 22.6 -
4 -807.2 -95.7 - 117.0 11.1 -
5 -686.3 - - 105.9 - -
6 -470.0 - - 58.2 - -

From table 2 one can see that the function value f(u)|M is the smallest for u = 1 for
all the three frequencies of returns for both the benchmarks. Hence, the optimal order of
the Markov chain representing daily, weekly and monthly returns is 1. This is true for both
benchmarks used to construct the Markov chain modelled.

6.2 Time Dependence in Returns
With the optimal order established, the test for time dependence is, as described in section
4.5, simply a matter of testing a chain of the established optimal order against a chain of
order 0. In this case, the optimal estimate of the order, i.e. the BIC estimate of the order, is
1 for all the three frequencies of returns. This means, for daily, weekly and monthly returns,
that the null hypothesis that the Markov chain is of order 0 is tested against the alternative
hypothesis that it is of order 1, for each of the frequencies of returns and both benchmarks.

Below in table 3, the test results for time dependence in returns are shown. In the left
part of the table the test results using the geometric return as the benchmark are shown and
in the right part of the table the test results when the zero return is used as the benchmark
are shown.
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Table 3
Test results for time dependence.

The table shows the test results for daily, weekly and monthly data when the optimal order, ûBIC,
established by the Bayesian information criterion, is tested against the order 0. In the left part of
the table the benchmark return is the geometric return and in the right part of the table the return
is the zero return. Here df is the number of degrees of freedom of the test statistic η in the test for

time dependence.

Geometric return.
The benchmark return used to construct the

Markov chain is the geometric return.

Daily Weekly Monthly
ûBIC 1 1 1
η 0.0701 0.2333 0.3539
df 1 1 1
p-value 0.7912 0.6291 0.5519

Zero return.
The benchmark return used to construct the Markov chain

is the zero return.

Daily Weekly Monthly
ûBIC 1 1 1
η 0.0024 0.0005 1.8321
df 1 1 1
p-value 0.9608 0.9825 0.1759

In both the left and right part of table 3, the test results for the Markov chains constructed
using the aforementioned benchmarks show high p-values for all three frequencies of returns.
At the conventional significance levels (1 %, 5% and 10%) the null hypothesis that the Markov
chain of the optimal order is also a Markov chain of order zero cannot be rejected. Hence,
we cannot reject that the returns are time independent for any of the three frequencies of
returns, and for both benchmarks used to construct the chain.

6.3 Test for Time Homogeneity
This section presents the test results of the test for time homogeneity outlined in section
4.6. Considering the BIC estimate of the order and two subintervals of equal length, time
homogeneity cannot be rejected. The details of the test results are presented in table 4 below
where the benchmark is the geometric return in the left part of the table and the zero return
is the benchmark in the right part.

Table 4
Test results for time homogeneity of the chain of the optimal order.

The table shows the test results for time homogeneity of the Markov chains of the optimal order,
ûBIC, representing daily, weekly and monthly returns of the index OMXSPI during the time period
January 2000 - April 2015, when the time series of returns is divided into N = 2 subintervals of

equal length. The test statistic of the test for time homogeneity is denoted by ηûBIC,N . In the left
part of the table the benchmark used to construct the chain is the geometric return and in the

right table the benchmark is the zero return.

Geometric return.
The benchmark return used to construct the

Markov chain is the geometric return.

Daily Weekly Monthly
ûBIC 1 1 1
N 2 2 2
ηûBIC,N 3.7140 2.6171 1.3805
df 2 2 2
p-value 0.1561 0.2702 0.5115

Zero return.
The benchmark return used to construct the

Markov chain is the zero return.

Daily Weekly Monthly
ûBIC 1 1 1
N 2 2 2
ηûBIC,N 3.8915 2.0733 1.3455
df 2 2 2
p-value 0.1429 0.3546 0.5103

Here ηûBIC,N denotes for the test statistic in (24), where ûBIC is the optimal order estab-
lished using BIC and N is the number of subintervals of equal length the data set is divided
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into to perform the test for time homogeneity. For the estimation procedure outlined in
section 4.3 to be valid the chain has to be homogenous. The high p-values show that time
homogeneity cannot be rejected for the optimal order for any of the chains representing daily,
weekly and monthly returns of OMXSPI if the conventional significance levels are considered.
This is true both when the geometric return and the zero return are used as benchmarks.

In table 5 below, the test results for time homogeneity of the Markov chain of order 0 is
shown. In the left part of the table, the test results when the geometric return is used as the
benchmark is shown and the test results when the zero return is used as the benchmark is
shown in the right part.

Table 5
Test results for time homogeneity of the chain of order zero.

The table shows the test results for time homogeneity of the Markov chains of order 0 representing
daily, weekly and monthly returns of the index OMXSPI during the period January 2000 - April
2015 when the time series of returns is divided into N = 2 subintervals of equal length. The test
statistic of the test for time homogeneity is denoted by ηûBIC,N . In the left part of the table the
benchmark used to construct the chain is the geometric return and in the right part of the table

the benchmark is the zero return.

Geometric return.
The benchmark return used to construct the

Markov chain is the geometric return.

Daily Weekly Monthly
u 0 0 0
N 2 2 2
η0,N 0.2671 0.3054 0.8571
df 1 1 1
p-value 0.6053 0.5805 0.3546

Zero return.
The benchmark return used to construct the

Markov chain is the zero return.

Daily Weekly Monthly
u 0 0 0
N 2 2 2
η0,N 0.1388 0.2731 3.6785
df 1 1 1
p-value 0.7094 0.6013 0.0551

The p-values corresponding to daily, weekly and monthly returns, in table 5 are well above
any conventional significance level when the geometric return is used as the benchmark.
Hence, time homogeneity cannot be rejected for the chains representing the aforementioned
frequencies, when the geometric return is used as benchmark. When the zero return is used
as the benchmark, time homogeneity cannot be rejected for the Markov chains of order
0 representing daily and weekly returns. The p-value for the Markov chain representing
the monthly returns is slightly above 5 %. However, in this case a significance level of 5
% corresponds to an overall significance level of 10 % when Bonferroni’s method is used,
since two comparisons are made when there are two subintervals. This means that time
homogeneity cannot be rejected at the 10 % significance level for any of the three frequencies
of returns.

7 Discussion
The research on market efficiency and random walks in stock prices is as various as it is
voluminous. This section aims to place the method developed and the tests performed in
this paper in a larger context. It also discusses the reliability of the model used, as well as
how the joint hypothesis problem appears in this setting.

The section starts with a brief summary of the results and the conclusions that can
be drawn from these, and a validation of the of the assumptions about the Markov chain
modelled follows. Thereafter, the joint hypothesis problem is addressed in conjunction with
a discussion on the choosing of benchmarks. The section continues with a comparison with
previous research in which random walks in asset prices and weak form efficiency of the
Swedish stock market have been evaluated, and thereafter a comparison with studies in
which a Markovian approach has been used to test for random walk behaviour in stock prices
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is made. In particular, the difference in methodology is discussed. A discussion about what
this paper brings to the research on market efficiency and random walks in stock prices in
general, and to research using a Markovian approach in particular, follows. The section ends
with possible extensions of the presented model that have not been implemented within the
frame of this paper, but may be of interest for further research.

7.1 Summary
We find that the random walk hypothesis cannot be rejected for the index OMXSPI for
the period January 2000 to April 2015, using the Markovian methodology presented and
developed in this paper. This holds true for daily, weekly as well as monthly returns. Further,
time homogeneity cannot be rejected for any of the data sets of returns. No evidence that
supports that prices can be predicted using historical data is found, which is consistent with
that the Stockholm Stock Exchange is weak form efficient.

7.2 Validation of the Assumptions
The method presented in section 4 requires the Markov chain representing the stock returns
to be aperiodic, irreducible and time homogeneous. If the analysis concerning random walks
and efficient markets is to carry any weight, these assumptions need to be validated.

Aperiodicity and irreducibility of the estimated chains are implicitly tested for both in
the use of BIC and in the test for time homogeneity, as computations of the test statistics
require that the transition probabilities are strictly positive. This is a sufficient condition for
aperiodicity and irreducibility of the chain.19

Time homogeneity is explicitly tested for, and cannot be rejected for any of the data sets
considered in this paper. This increases the reliability of the results as time homogeneity is a
necessary condition for the estimation of the TPMs to be valid. However, it should be noted
that a failure to reject time homogeneity is not the same as accepting that the chain is time
homogeneous; it simply means that, when dividing the chain into a number of subintervals
of equal length, the transition probabilities of the subintervals are not significantly different
from the transition probabilities over the whole period. Nevertheless, the failure to reject the
null hypothesis does support the assumption of time homogeneity, in the sense that if there
would have been a large difference between the TPMs of the different subintervals and the
TPM over the entire period, time homogeneity would have been rejected.

7.3 The Joint Hypothesis Problem and the Choosing of Benchmarks
The joint hypothesis problem, discussed in further detail in section 3.1, states that the efficient
market hypothesis must be tested jointly with an equilibrium pricing model. This means that
to decide whether or not any excess returns can be made, one must first establish a level
of returns which can be considered "normal". In this paper, a benchmark return is used
to represent the normal return and the simple mapping rule is that any return above the
benchmark is classified as "high", and any return below the same benchmark is classified as
"low". The benchmarks used to determine in which state to place the return over one time
period is the zero return and the geometric return, respectively.

The use of zero as a benchmark is motivated by the fact that any positive return increases
the value of a portfolio. Abstracting from reality and considering a risk-free return of zero,
investors would prefer to keep their money in the market during such a period. Inversely, a
negative return would mean that investors would prefer to stay out of the market. In this
setting, it does not matter whether zero is considered to be high or low, as if the return is
zero over a period, any investor would be indifferent as to where their money is placed.

19It is easy to see that the chain is aperiodic, since whenever all transition probabilities in the TPM are
strictly positive each possible path ij, i ∈ Su, j ∈ S can be taken by the chain. As all entries in the TPM are
positive, it is possible to move from any previous path i ∈ Su to any state j ∈ S, this includes any path that
ends with j (i.e. the state which the chain moves to). Therefore it is possible to move from a given state
to the same state in one step; hence the period of every state is one and the chain is aperiodic. Also, as all
entries are positive it is possible to move to any state from any other state, which means that the chain is
irreducible.
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A return of zero cannot be said to equal the expected return, as empirical evidence
suggests that the expected return of the market should be positive for long time periods.
Because the mapping fails to account for magnitudes, it is also impossible to say which
periods are the most profitable, or even if a period is more profitable than the average one;
all that can be concluded is that the return is positive. Because of this, the benchmark zero is
not to be seen as an equilibrium return in an empirical setting, but as a possible equilibrium
return in a theoretical abstraction, which can be used to investigate patterns in historical
prices.

The other benchmark return that is used is the geometric return, which can hardly be
described as the expected return at any time during the time period. Even if the future
would be like the past in a probabilistic sense, which would let the geometric return up to a
given time point act as a benchmark return for the same point in time, there is no reasonable
argument for the opposite. Hence, the geometric return is not to be treated as an equilibrium
return, but rather as a benchmark against which the performance of an individual stock can
be measured. So, while it cannot be said about returns above the geometric return that they
have beaten some kind of expectation, it can be said that they have performed well relatively
to an unbiased average.

7.4 Comparisons With Other Studies
This section compares our results to previous studies, which are divided into two categories.
First, our results are compared to other studies that focused either exclusively or partly on
random walk behaviour of the Swedish stock market and Swedish stock market efficiency.
Thereafter, a comparison with other studies which have used a Markovian approach is made.

7.4.1 Comparisons With Other Tests for Swedish Stock Market Efficiency

In section 2, four studies that tested the Swedish stock market for random walk behaviour in
stock prices and weak form efficiency are discussed. Three of these studies (cf. Jennergren &
Korsvold, 1974; Frennberg & Hansson, 1993; Shaker, 2013) concerned random walks in stock
prices. The exception is the study by Metghalchi, Chang and Marcucci (2008), which tested
for the profitability of three trading rules based on moving averages.

Metghalchi, Chang and Marcucci found that trading rules based on moving averages
can be profitable even when transaction costs are accounted for, which violates both weak
form market efficiency and that stock prices follow a random walk. These results stand in
contrast to the results obtained using the Markovian approach in our paper, which suggest
that a random walk behaviour of the Swedish stock market cannot be rejected. One possible
explanation for the difference in results is that the time period used differs. As mentioned in
section 2 Metghalchi Chang Marcucci used data from the period 1986 to 2004. As of today,
when the computer technology is developed to a large extent, such profit opportunities are
more likely to vanish rapidly, as high-frequency robots exploit such opportunities instantly.

In contrast to our results studies by Jennergren and Korsvold (1974) as well as Frennberg
and Hansson (1993) reject random walks in stock prices of stocks traded at the Swedish stock
market. The difference in results can be explained by several factors. The time series used
is not the same since our sample is from the 21st century while their samples are from the
20th century. It is possible that the market was less random prior to the development of fast
computer communications. Furthermore, the methodology used in this paper differs from
the ones used in these two papers. In addition, Jennergren and Korsvold (1974) did use
individual stocks traded at the Swedish stock exchange while we use an index as a proxy for
the Swedish stock market.

A comparison to Shaker (2013) is especially appealing since Shaker used the index OMXS30
from January 2003 to January 2013 which is very similar to OMXSPI for the period January
2000 to April 2015, which is used in this paper. Shaker rejected random walk behaviour for
this time period while we conclude that a random walk in the price of the index OMXSPI
cannot be rejected. The Markovian model that is used in the context of this paper differs
from the linear model Shaker used to test for serial correlation in returns. Since these two
indices are very similar and the time period Shaker used is included in our sample’s time
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period the difference in results is surprising. One possible explanation could be that some
assumptions in either our Markovian model or in Shaker’s linear model have been violated.
However, none of the assumptions made in the Markovian model in this paper can be re-
jected. Another possible explanation can be the choosing of benchmark in the construction
of the Markov chain. Other benchmarks, which are not considered in this paper, might give
different results.

7.4.2 Comparisons With other Markovian Studies

There are other papers that have used Markovian models for testing random walk behaviour
in stock prices, e.g. those presented in section 2 (cf. Niederhoffer & Osborne, 1966; Fielitz &
Bhargava, 1973; Fielitz, 1975; McQueen & Thorley, 1991; Tan & Yilmaz, 2002). This section
goes through some of the important differences of our paper as compared to earlier papers
that have used Markovian models.

The main difference between the Markovian model in this paper and the Markovian
models in earlier papers is how the order is established. The studies by McQueen and
Thorley (1991), Fielitz and Bhargava (1973) as well as Fielitz (1975) chose a model with a
specified order, they did not test if this order was optimal or not. Nevertheless, it should
be mentioned that McQueen and Thorley (1991) presented some arguments supporting their
choice to use a second-order markovian model. Our model on the other hand, does not make
any a priori assumption regarding the order of the chain, instead an optimal order is derived.
Tan and Yilmaz (2002) did address how to determine which order to use. However, the
procedure they suggested for determining the order is incorrect. Since every Markov chain
of order u is a chain of order u + 1 as well, it is not possible to make the pairwise tests of
orders as they suggested. In our paper BIC is used to get around this problem. Both the
consistency and the optimality of the BIC estimator give additional support for the usage of
BIC.

Further, some papers that have used a Markovian model for testing random walk be-
haviour in stock prices have made crucial assumptions that were never tested for. McQueen
and Thorley (1991) assumed time homogeneity of the Markov chain representing the returns
of the NYSE, without testing for it, the study Fielitz and Bhargava (1973) on the other hand
were aware of the importance of time homogeneity. They tested for it, rejected it, and still
proceeded with the analysis and rejected random walk behaviour of the stocks considered.
The assumption of time homogeneity is tested and cannot be rejected for the samples con-
sidered in this paper, which is the best possible outcome since the null hypothesis is must be
that the chain is time homogenous.

Tan and Yilmaz (2002) criticised McQueen and Thorley (1991) for not testing the assump-
tion of time homogeneity. According to Tan and Yilmaz the assumption of time homogeneity
would have been rejected for the data set McQueen and Thorley used. Nonetheless, the null
distribution of the test statistic used by Tan and Yilmaz had the wrong degrees of freedom
(see appendix A.4 for the correct degrees of freedom). This paper uses an approach first
suggested by Anderson and Goodman (1957) for testing the assumption of time homogene-
ity, which is similar to the approach used by Fielitz and Bhargava (1973) as well as Fielitz
(1975). However, our results can be reproduced as the number of subintervals used is stated
explicitly, which is not the case in the previously mentioned papers.

7.5 Contributions
This paper offers an alternative approach for testing for a random walks in stock prices using
a Markovian model to capture dependence structures in returns, which may be non-linear.
One big advantage of this model compared to others, is that the model is nonparametric, i.e.
no assumptions about the distribution of returns have to be made. The main contribution
to the field of market efficiency and random walk theory is the development of an existing
method for testing for random walk behaviour of a stock market, in the sense that this paper
provides a way to optimally determine the order of the Markov chain modelled. Furthermore,
it does contribute with a crucial correction of the asymptotic distribution of the test statistic
used in the test for time homogeneity in earlier studies. From an economic point of view,
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this paper contributes with test results on random walk behaviour in prices, using a method
which, as far we know, never has been applied to the Swedish stock market.

7.6 Suggestions for Further Studies
One of the restrictions within the scope of this paper is that the state space consists of
only two states. Future studies may use the method presented in this paper, but include
more states, which would allow the model to capture not only the directions, but also, to
some degree, the magnitudes of the returns. Another suggestion would be to use two states,
one state that represents positive returns and one that represents negative returns, and in
addition to these states include a variable that predicts the magnitude of a return, given that
it is positive, or negative, and has followed a particular path. Such a model has been used by
Lennartsson, Baxevani and Chen (2008) to capture the amount of precipitation in Sweden.

The model can be extended to a vector process (cf. Fielitz & Bhargava, 1973), which con-
siders all firms traded at the Stockholm Stock Exchange, or another market, simultaneously.
This extension can use BIC for order selection, allowing for different orders among the firms
used in the vector process. A combination of this procedure and a chain that allows for more
than two states is also a possibility.
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A Miscellaneous

A.1 A Markov Chain of Order u is a Chain of Every Higher Order
Assume that X is a Markov chain of order u. By the definition of a Markov chain of order u:

P(Xn = j|Xn−1 = in−1, . . . , X0 = i0) = P(Xn = j|Xn−1 = in−1, . . . , Xn−u = in−u).

Since the random variable Xn−(u+1) does not carry any information according to the Markov
property, it follows that:

P(Xn = j|Xn−1 = in−1, . . . , Xn−(u+1) = in−(u+1)) = P(Xn = j|Xn−1 = in−1, . . . , Xn−u = in−u).

The equalities above yield the following result:

P(Xn = j|Xn−1 = in−1, . . . , X0 = i0) = P(Xn = j|Xn−1 = in−1, . . . , Xn−(u+1) = in−(u+1)).

Which means that X is a Markov chain of order u + 1. By induction it follows that X is a
Markov chain of order u+ v for all v ∈ N: u+ v ≤ n, where n ∈ N.

A.2 Derivation of the MLEs of a Transition Probability
Let X be a time homogenous Markov chain of order u on a state space S. Define Su

as the state space consisting of all possible sequences in u steps on S. Let Y1, . . . YT be
independent random variables such that Yl takes any value corresponding to the possible
sequences, ij, i ∈ Su, j ∈ S, that is the observed value of Yl, yl = ij. Then the probability of
Yl = yl is:

P(Yl = yl) = pij , i ∈ Su, j ∈ S,

T is the sample size. The likelihood function, L, can then be written as:

L = P(Y1 = y1, . . . , YT = yT ) =

T∏
l=1

P(Yl = yl) =
∏

i∈Su,j∈S
p
nij

ij , (25)

where pij is the transition probability of a u:th order time homogenous chain from state
i ∈ Su to j ∈ S, nij is the number of transitions from i ∈ Su to j ∈ S observed in the times
series used. Furthermore, define ni. as the total number of times the chain was observed in
state i ∈ Su. The log-likelihood function, l, is defined as the natural logaritm, log, of L:

l = l(pij , i ∈ Su, j ∈ S) =
∑

i∈Su,j∈S
nij log(pij). (26)

The objective is to maximise (26) subject to the constraints:

∑
j∈S

pij = 1, pij ≥ 0,∀i ∈ Su, j ∈ S. (27)

Let L be the Lagrangian function, then the objective is to find the maximum of the La-
grangian:
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L =
∑

i∈Su,j∈S
nij log(pij) + λ

1−
∑
j∈S

pij

 . (28)

If the cardinality is ns, then there are nus states in Su. Hence, when maximising the
Lagrangian, there are nus · ns + 1 first order conditions. For all i ∈ Su and all j ∈ S the
following condition holds:

∂L
∂pij

= 0 =⇒ pij =
nij
λ
,∀i ∈ Su, j ∈ S. (29)

By taking the partial derivate w.r.t. the Lagrangian multiplier, λ, the first order condition
becomes:

∂L
∂λ

= 0 =⇒ 1 =
∑
j∈S

pij , (30)

by using (29) in (30) the equation can be solved for λ:

1 =
∑
j∈S

pij =
∑
j∈S

nij
λ

=
ni.
λ
⇐⇒ λ = ni., (31)

by substituting (31) back to (29) the maximum likelihood estimate, p̂ij of pij becomes:

p̂ij =
nij
ni.

, ∀i ∈ Su, j ∈ S, (32)

which is the maximum likelihood estimate of the u:th order Markov chain transition proba-
bility, as given in equation (12) in section 4.3.

A.3 Generating a Markov Chain of a Given Order
Consider a Markov chain of order u with the state space S = {s1, s2}, the starting distribution
π = [ 12

1
2 ] and the TPM

P =



ps1k1s1 ps1k1s2

ps1k2s1 ps1k2s2
...

...
ps1kns1 ps1kns2

ps2k1s1 ps2k1s2
...

...
ps2kns1 ps2kns2


, (33)

where kj ∈ Su−1, j = 1, . . . , n. Let ps1kjs1 = p and ps2kjs1 = 1 − p for all j = 1, . . . , n,
resulting in the TPM
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P =



p 1− p
p 1− p
...

...
p 1− p

1− p p
...

...
1− p p


, (34)

where each entry in the matrix above corresponds to the same entry in the previous one. Note
that this construction of the TPM results in a chain whose transition probabilities depend
only on the realisation of the stochastic variable observed u periods earlier. To emphasise,
the path of the chain does depend on the state the chain was in u periods earlier but, by
assumption, not on any other realisations. Hence the process is a Markov chain of order u.20

Now consider the same process and the construction of the TPM if only u− 1 periods
prior to the current one are considered. The TPM can be written as:

P =


pk1s1 pk1s2

pk2s1 pk2s2
...

...
pkns1 ps1kns2

 , (35)

where kj , j = 1, . . . , n is the same as above. Because of the symmetry of the starting dis-
tribution as well as the the TPM of the chain of order u, each entry in the matrix above
equals the avarage of the transition probabilities corresponding to the sequences ps1kjsi = p

and ps2kjsi = 1− p, j = 1, . . . , n, i = 1, 2, which equals p+1−p
2 = 1

2 , resulting in the TPM

P =


1/2 1/2
1/2 1/2
...

...
1/2 1/2

 , (36)

in which the probability of a transition to s1 and s2 respectively is obviously 1
2 regardless of

which path the chain has taken previously. In other words, the chain is independent of every
realisation up to u− 1 periods back. As the chain actually does depend on the realisation u
periods back, it is not a Markov chain of order u− 1. It is, however, impossible to determine
this from the TPM above. Indeed, every entry of every TPM where v, v < u, previous periods
are considered will equal 1

2 . This means that if the chain is (incorrectly) assumed to be of
order u − 1, the TPM when u− 1 previous periods are considered would tell us that the
process is a random walk. This is obviously not the case, as the chain is, by construction, a
Markov chain of order u.

A.4 Degrees of Freedom in Test for Time Homogeneity
The chi-square distributed test statistic used to determine the reasonableness of the time
homogeneity assumption is calculated by summing the logarithmic differences between the
estimated transition probabilities for each subperiod and the corresponding estimated tran-
sition probabilities for the entire period. The null hypothesis that the Markov chain is time
homogenous is then rejected if the probability of finding a test statistic as extreme as the
calculated one, given that the null hypothesis is true, is sufficiently small; i.e. we reject the
null if the observed p-value is lower than the chosen significance level α. In this setting,

20Trivially, the process is also a Markov Chain of any order w such that w > u (see appendix A.1 for
further details).
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the previous question translates to whether or not the estimated transition probabilities of
the subintervals differ enough from the transition probabilities over the entire time period to
reject the null hypothesis that the transition probabilities are the same over the whole time
period. In order to determine whether this is the case or not one must know the distribution
of the test statistic. According to Anderson and Goodman (1957) the statistic of interest is
chi-squared distributed. To be more precise, it follows a distribution which belongs to the
family of chi-squared distributions. Which chi-squared distribution it follows is determined
by the degrees of freedom of the test statistic.

The degrees of freedom, df , of a test statistic is defined as the number of values, observed
or estimated, which are used in the calculation of the test statistic and may vary freely. Let
us consider what this means for the test statistic in the test for time homogeneity. The
data is divided into N subintervals, and for each of these a TPM is estimated. The TPM
over the entire period is then simply the weighted average of the TPMs for each subinterval,
which means that once the transition probabilities for the N − 1 first subintervals have been
estimated, the TPM of the N :th subinterval must be such that the weighted average of all of
them is the TPM for the entire period. In other words, the TPMs of N − 1 subintervals may
vary freely. Each TPM consists of nus rows, where nus is the cardinality of the state space Su;
and ns columns, where ns is the cardinality of the state space S. Each row can be seen as
representation of a multinomial distribution with ns outcomes. As the probabilities of each
row must sum to one, all but one of the transition probabilities may vary freely. With N − 1
subintervals in which the TPMs may vary freely, and nus (ns − 1) transition probabilities that
may vary freely in each TPM, the definition of degrees of freedom, df , gives:

df = (N − 1)nus (ns − 1), (37)

degrees of freedom for the test statistic (24) of time homogeneity.

B Figures
In the figures below, the prices of the index OMXSPI and the corresponding returns are
displayed for monthly, weekly and daily data, respectively. The purpose of these figures is to
give a general idea of whether or not the prices follow a random walk.
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Figure 2.
Plots of monthly prices and returns.

The figure shows plots of the monthly closing prices and the returns of the index OMXSPI during
the period 2000-01-01 to 2015-03-31. In the first plot, the price is displayed at the vertical axis and

the number of the month is displayed at the horizontal axis. In the second plot, the return is
displayed at the vertical axis and the number of the month is displayed at the horizontal axis.
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Figure 3.
Plots of weekly prices and returns.

The figure shows plots of the weekly closing prices and the returns of the index OMXSPI during
the period 2000-01-01 to 2015-04-17. In the first plot, the price is displayed at the vertical axis and

the number of the week is displayed at the horizontal axis. In the second plot, the return is
displayed at the vertical axis and the number of the week is displayed at the horizontal axis.
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Figure 4.
Plots of daily prices and returns.

The figure shows plots of the daily closing prices and the returns of the index OMXSPI during the
period 2000-01-01 to 2015-04-23. In the first plot, the price is displayed at the vertical axis and the
number of the day is displayed at the horizontal axis. In the second plot, the return is displayed at

the vertical axis and the number of the day is displayed at the horizontal axis.

30


	Introduction
	A Review of Past Results
	Theory
	The Efficient Market Hypothesis
	The Random Walk Hypothesis
	Random Walks and Efficient Markets
	Markov Theory

	Methodology
	Returns and Benchmark Returns
	Mapping Returns to States
	Estimation of Transition Probabilities
	Test for the Order of a Markov Chain
	Testing if the Order of the Chain is Different from Zero
	Testing for Time Homogeneity of a Markov Chain

	Data
	Results
	The Optimal Order
	Time Dependence in Returns
	Test for Time Homogeneity

	Discussion
	Summary
	Validation of the Assumptions
	The Joint Hypothesis Problem and the Choosing of Benchmarks
	Comparisons With Other Studies
	Contributions
	Suggestions for Further Studies

	References
	Appendices
	Miscellaneous
	A Markov Chain of Order u is a Chain of Every Higher Order
	Derivation of the MLEs of a Transition Probability
	Generating a Markov Chain of a Given Order
	Degrees of Freedom in Test for Time Homogeneity

	Figures

