

RADAR: An Approach for the Detection of Anti-
patterns in UML Class Diagrams

Bachelor of Science Thesis in the Programme of Software Engineering

PETRA BÉCZI

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, May 2015

The Authors grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Authors warrants that they are the authors to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Authors shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Authors
have signed a copyright agreement with a third party regarding the Work, the Authors
warrants hereby that they have obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

PETRA BÉCZI

Academic Advisor:
MICHEL CHAUDRON

Examiner:
HÅKAN BURDEN

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden May 2015

RADAR:	 An	 approach	 for	 the	 Detection	 of	 Anti-‐Patterns	
in	 UML	 Class	 Diagrams	 	

Petra	 Béczi
Department	 of	 Computer	 Science	 and	 Engineering,	
University	 of	 Gothenburg,	 Box	 100,	 SE-‐405	 30,	

Gothenburg,	 Sweden.	
gusbeczpe@student.gu.se

Michel	 Chaudron	
Academic	 Advisor	
chaudron@chalmers.se	 	

Abstract—Anti-patterns in UML designs, alias bad design choices that are
claimed as due to the incompetent participation of the designer to Object-Oriented (OO)
system could lead to later issues regarding to its maintenance. That is why the early-
capture of those is a common desirability and emphasized as it would be a highly
important action for the prevention of issues. However, the discovery of anti-patterns is
a difficult procedure in case of working with a large scale and complex OO system.
There are existing metric based solutions in which the detection of anti-patterns is
automatized, however, none of those operates on UML class diagrams. In this paper, we
introduce our approach called RADAR, which is a solution to detect inter alia, Complex
Class, Large Class, Lazy Class, and ManyFieldAttributesButNotComplex (MFABNC) in
UML class diagrams and returns warnings of the results. Essentially, RADAR uses a
combination of some existing software design (SD) metrics and rules of the anti-patterns,
moreover provides a flexible algorithmic procedure. Since each class diagrams are
structured uniquely, meaning that those consists of a different number of classes; where
each classes are variedly sized; and sometimes the classes are purposely implements
large number of attributes and operations, thereby causing hasty judgements in the
detection procedure due to the characteristics of some anti-patterns, which can be
detected specifically by the large number of attributes and operations of a class.
Therefore, we are providing a supplementation for the detection algorithms to compare
the size of each classes inside the diagrams with the calculations of quartiles and
average. The purpose of this approach is not only the detection of anti-patterns, but the
measurement of significance. The computations are used to analyze each classes in a
class diagram, where the resulted values will be unique for every diagrams. Taking these
uniquenesses into the detection rules, we enabled a more accurate decision-making for
our algorithms in RADAR, such as the measurement of significance whether the
suspected element is still considerable as an anti-pattern after the comparisons made
against to the other classes. Hence, as the name of our approach indicates, RADAR
“sees” the size of the suspects, but only “warns” in case of necessity. This research was
carried out by the application of design research methodology with the induction of
statistical analysis made on the test results compared to Ptidej tool suite v5.8.1. The test

was performed on the same test materials and anti-pattern types, whereas the
measurement- regarding to the test coverage from the aspect of what percentage can our
RADAR approach locate from those classes per anti-pattern categories that Ptidej does-
resulted to the average of 26% accuracy for RADAR in the detection of Complex Class,
and 61% for the detection of Lazy Class symptoms. Unfortunately, this measurement
could not be made for Large Class and MFABNC anti-patterns based on the reason that
Ptidej tool could not detect those. We claimed this problem as due to code generation
procedure by the software we used regarding to the arbitrarily generated lines of code
(LOC), which is if is long, is actually one of the main symptom of the latter mentioned
two anti-patterns. To compensate the deficiencies of the measurement regarding to the
detection accuracy of the four anti-patterns, we requested a review for RADAR from
various people in the person of PhD students. Based on their feedback, the accuracy of
RADAR in the detection of Large Class is between the averages of 38%-75%, and 55%-
80% for MFABNC. Regarding to the average accuracy of the other two anti-patterns,
the detection of Complex Class is determined as between 68%-70%, and 80%-99% for
Lazy Class.

Keywords—Anti-pattern; UML class diagram; Software design metric; Detection rule;
Detection algorithm; Testing; Statistical analysis.

1. Introduction
In the past years, Unified Model Language (UML) has been widely accepted in the field of
software engineering, as much as it has become ubiquitous in many design contexts especially
[1]. As the definition indicates, UML is a standard language to specify, construct, document
and visualize artifacts of a software system. The core of UML is to visualize an architectural
blueprint by drawing out individual components of the system including relationships among
them. Since the blueprint represent a design of how the system is supposed to be at the end,
therefore it should capture its characteristics in such way that is visually perceptive and
interpretable to the viewers. Advantageously in reverse engineering, the construction of the
architecture is usually precedes the code-writing and code debugging processes, thus this
procedure enables the designer to preview the system s/he is about to build and make
modifications before writing the actual code in cases of mistakes are found, for example
within the composition of the models, or inaccurate relationships between components [2].
The early prevention of problems seems like an optimal act in theory, however the discovery
of those is limited in practice, with a great emphasis on the designer’s competence of Object-
Oriented (OO) design. There are rules, patterns, and concepts that are necessary to acquire for
designing good architectural models [3]. As we are interested in UML class diagrams, these
patterns are then regarding to the declaration of classes with the rules of defining inter alia,
the stereotypes for classes, class members (attributes and functions), abstractions,
associations, types of the relationships, navigability and aggregations, stereotypes for
dependency, and constraints by using the proper syntax and design. To efficiently utilize these
design patterns, the developer is required to have an adequate understanding of them in order
to properly create suitable instances for a software or a system. For example, a well-designed
UML class diagram is also dependent of whether its designer has properly defined the
interlinking of- just as the strength of the classes in the diagram [2][4]. These two inseparably
cited concepts are called coupling and cohesion, where coupling is the measurement of
relative interdepency between classes as one is associated with another class, while cohesion
is regarding to the strength of attributes as how those are linked inside a class. If the coupling
is high, and the cohesion is low, then it is considered as a non-optimal, highly complex OO

design. In parallel to design patterns, the existence of anti-patterns are notorious for being
their undesirable contradictions meaning that, anti-patterns are the “collections” of
consequential poor solutions to problems of frequent-occurrence [5][6]. For example, the lack
of aforementioned competence of the designer regarding to the UML and OO design concepts
could mistakenly provoke anti-patterns in the system. The outcome of the bad design choices
could take formations as one or more types of known anti-patterns, which may occur at
variety levels of the system [7][10], and knowing about their exact location is difficult due to
the fact that the commitment of anti-patterns was unintentional. Moreover, working with an
OO system that is large and complex raised the difficulty of the discovery of anti-patterns due
to its size, meaning that it is an exceedingly time consuming procedure to look through
manually [8-10], but should not be neglected to a later-maintenance, since anti-patterns could
lead to issues that are related to software testing and database [11][12]. Although the current
CASE tools just as StarUML, Visual Paradigm and Enterprise Architect that support many
features, they do not have any anti-pattern detection feature. On the other hand, there are
various anti-pattern detection solutions exists to moderate the work of the designer, which are
mostly metric based and semi-automatic approaches [1,5,8,10,11][15-19] that unburdens the
discovery procedure and realization of anti-patterns by overtaking most of the work via the
automatic localization of those. Unfortunately, these solutions does not considering the
detection of anti-patterns in UML class diagrams.

2. Background and Related Work
In this section we present the theory of anti-patterns. Moreover, we cite here the collection of
those detection techniques, which served as the basis of this research project.

2.1. Theory of Anti-Patterns

According to Budgen [6], software design patterns suggest “good” solutions to the recurring
design problems. To efficiently utilize the design pattern, a developer is required to have an
adequate understanding of the design patterns in order to properly create suitable instances for
the software. The lack of such a high-advanced proficiency usually result in anti-patterns in
the software (code level or design level). The anti-pattern is indicated as a literary form that
describes a commonly occurring solution to a problem, but generates decidedly negative
results.

McCormick et al. [7] also describes the anti-pattern phenomenome as “code smell” at
the source code level in software design, which he considers as a bad programming practice
that impacts the readability and reusability of the source code. Likewise, the anti-pattern at the
design level, which he indicates as the poor choices of the software architecture model, alias
“design smell” that fails to represent the essence of the software structure. To some extent,
the anti-pattern is a miscalculated or immature blueprint for the software.

Guéhéneuc [10] distinguishes between the variety of patterns and defects, such as:
idioms, as programming languages or the implementation of class characteristics are low-level
patterns, where the so-called intra-class patterns are describing the relationships and object
containment of them. Micro-patterns are well-defined idioms related to the design of classes
in object-oriented programming. Design patterns are iterative inter-class patterns, which are
defined in terms of classes and relationships by using idioms, the task of the design patterns is
to provide solutions to common design problems regarding to the disposition of classes.
Eventually, he consider design defects as the “opposite” of design patterns, since they
describe “bad solutions” to recurring design problems.

Back to the work of McCormick et al. [7], the book draws the attention to the menace of these
multiform anti-patterns that are likely to be scattered at different levels of the software system.
Anti-patterns usually occurs when developers of inexperienced in OO are attempting to
implement applications using OO language in an inadequate way. For example, when
developers create classes for each subroutines and by that ignoring the hierarchy of the class.
Thereby, the code becomes similar to the solution of a structural language, however, it differs
since its structuredness is provided from the structure of the class. A typical sign of this
ignorance if the classes contains only one method per class for example. An anti-pattern can
also be a class which contains an overwhelming number of attributes, functions, and/or even
associated with many other data-object classes as well. Consequently, this type of anti-pattern
causes the complexity of code or design, which then affects the degree of fulfillment of the
functional requirements. The most common occurrence of this anti-pattern is when a class
expropriates the process, while the task of the remaining classes is mainly the unification of
the data. The problem with this “task-division” is that a single controller class (also called as a
God Class) takes the most responsibilities, thereby growing its requirement regarding to the
memory usage. Moreover, testing this class would be complicated and expensive due to the
number of resources that might needed to accomplish a simple operation. Contrary to a large
class, there can be classes that were implemented previously, but became unused, thus new
functionality was never added. The consequences of having classes without furthermore
purposes causes unnecessary costs in the system maintenance therefore should be eliminated
according to Munro [14]. On the other hand, anti-patterns can also mean a program or a
system which contains very little software structure. The main attribution of that if it has an
exiguous amount of objects that contains methods with enormous implementations. These
methods can trigger multistage processing. Consequently, such anti-pattern causes
inflexibility in making changes to the code, which then limits the further development and
maintenance of the system. Please note that these are only a few examples that we used for
describing anti-patterns since these are the most commonly occurring ones usually, therefore,
we have included a complete list of them in Appendix A.

2. 2. Existing Solutions to Detect Anti-Patterns

In 1997, Grotehen et al. [18] proposed their approach called METHOOD, which was the first
one with the idea behind to measure size, hiding, coupling and cohesion to find anti-patterns
in UML designs. However their approach have been implemented in a tool named MEX, yet it
have not been experimentally tested or evaluated, and the procedure of anti-pattern detection
mostly remained as the golden age of investigation approaches at the source code level till the
next decade.

Manual detection and refactoring solutions, for example Refactoring of
Responsibilities, Object−Oriented Reengineering, and Ghostbusting were proposed by
McCormick et al. [7], as recommendations to deal with anti-patterns at code level.

Khomh et al. [10] and Gueheneuc [11] claimed that the manual detection of anti-
patterns is not only sounds as an awfully exhaustive procedure, but indeed complicated in the
case of looking through a large scale OO system, which is time consuming to the extent that it
takes 75 percent of the maintainers work.

In 2004, Marinescu and Trifu et al. suggested their semi-automatic approaches to
detect design flaws with the tools iPlasma [15] and jGoose [16] design database creator.
Essentially in both techniques, the definitions of anti-patterns are implemented as rules to
analyze the code, then basic metrics are used to filter the code for symptoms just as, high
coupling, the complexity of methods, lines of code, and the entire control flow. However in
Trifu’s approach, the design database that was created by the tool jGoose is then stored as an
XMI model (using XQuery to access into design flaws).

In 2006, AliKacem et al. [17] recommends an approach, which uses a meta-model to represent
the source code and detect violations against quality rules in OO programs. They have
classified the quality rules into three subcategories: (1) metric-based rules, (2) structural
information-based rules and (3) rules expressing abstract notions. These rules are then
expressed in a language called Backus Normal Form (BNF) that is independent of the
programming language.

Moha et al. [8][1] introduced the first approach, which uses the specification of design
defects expressed by rule cards. Each rule card is a representation of a “code smell”, just as a
defect that can be tracked down by measurable, structural, and lexical properties. Similarly to
AliKacem et al. [17], Moha’s rule cards are expressed by the BNF grammar that can
determine the exact syntax for a language, where an auto-generated algorithm is responsible
for detecting and correcting the design defects. This approach is beneficial from the aspect of
reducing the time spent for discovering anti-patterns, however, the specification of a rule
cards is still depending on the competence of the designer in the correct declaration of those to
detect specific design defects. In the year of 2007, Montréal and Guéhéneuc [10] have offered
pattern identification algorithms with their tool, Ptidej, which implements the improvements
they made based on their previous work [8][1]. Essentially, this solution includes PADL
(Pattern and Abstract-level Description Language) meta-model that represents OO systems
and patterns with a unified language. PADL is then used to analyze the system on three
different levels: (1) analysis directly on models of the systems and patterns, (2) UI-related
analyses on models of the systems and patterns to change their graphical representation, and
(3) analysis of UI extensions, allowing a richer interaction between the analyses and the user.
The purpose of this tool is to warn system maintainers for bad design choices. The detection
procedure can be started by the user through a checklist that is provided by the interface. The
elements of the checklist are anti-patterns, and can be selected one by one or all-together. The
back-end then runs the appropriate algorithms that are based on rules that are dedicated to
recognize and capture anti-patterns. At the end of the detection procedure, the tool uses a red
signal that indicates the location of the anti-pattern(s) detected, and generates textural reports
as well.

A year later, Ballis et al. [19] offers a solution to detect anti-patterns at design level
instead of code level by inspecting those in diagrams via rules, which are defined texturally or
in a graphical language that extends UML with a few graphical primitives. The detection
procedure involves graphical notation as a warning service similarly to Ptidej tool [11].
Unfortunately, the success rate of this approach is dependent of how well is the diagram
defined and structured that is being tested.

Fourati et al. [5] introduced a metric-based approach that can successfully detect five
anti-patterns in sequence diagrams by the measurements of (1) coupling, (2) cohesion, (3)
complexity and (4) inheritance. This solution including the examination of both structural and
behavioral information of the testable diagram, which are necessary steps from the aspect of
detecting anti-pattern symptoms at design level. To begin the examination procedure, they
have applied those of the OO software metrics, which can be used to measure quantifiable
properties of sequence diagrams, and are grabbing the relevant types of information regarding
to the characteristics of those anti-patterns, which they have selected. See Table 1.

Coupling CBO Coupling Between Objects
RFC Response For Call

Cohesion

LCOM Lack Of Cohesion in Methods
TCC Tight Class Cohesion
LCC Loose Class Cohesion
Coh For class with N methods

WMC Weighted Method per Class
NAtt The Number of Attributes of a class

Complexity

NPrAtt The Number of Private Attributes.
NOM The Number of Methods of a class including the constructor.
NII The Number of Imported Interfaces.

Inheritance

DIT Depth of Inheritance of a class.
NOC Number Of Children.
NAcc The Number of Accessors in a class.
NAss The Number of Associations.
NInvoc The Number of Invoked methods (Call Action in the sequence

diagram) of a class.
NReceive The Number of Received messages that invoke methods of this class.

Table 1. Useful OO software metrics (Resource reference: Fourati et al. [5]).

For example, to detect Blob symptoms (large controller class, surrounded by many data
classes) of a sequence diagram, the implementation of the following metrics are suggested by
Fourati et al. [5]. NAtt high and NOM high and Coh low and Coh1 is true and Coh2 is true
and DIT low and NOC low and RFC high and CBO high and IsController is true. NAcc high
and NOM low and DIT low and NOC low and IsAccessor is true. Similarly to this
implementation of the metrics, their approach can successfully detect Lava Flow, Functional
Decomposition, Poltergeists and Swiss Army Knife anti-patterns besides Blob. However,
different metrics are used or combined together for the detection of others, since all of the
anti-patterns have their own characteristics (symptoms) that could be either unique or partially
true for others.

These metric based and semi-automated techniques we mentioned above mostly
performs at code level, and out of the few that operates at design level does not consider the
detection of anti-patterns in UML class diagrams yet.

3. Project Aim

3. 1. Objectives

We have set the detection of anti-patterns in UML class diagrams as our project aim, since
there were no approach that could operate on those before, however, is claimed as it could be
especially needful for complex OO system designs from the aspect of maintenance, regarding
to difficulties in the management of changes and time [7,10,11]. As our motivation was to
help software designers to locate design defects in his/her UML class diagram, our primary
sub goal was to (1) write such algorithms that can detect the anti-patterns, inter alias, the
Complex Class, Large Class, Lazy Class, and ManyFieldAttributesButNotComplex. The
purpose of choice regarding to the quantitative selection of anti-pattern types to be detected
was not considered as one of the goals for our solution. We selected these few out of the
multiform types rather to serve as examples for the introduction of algorithmic procedures
required to scan for symptoms in class diagram designs, with the intention to provide initial
guidance to the readers. On the other hand, we did not consider to detect the more widely
known anti-patterns just as Blob or Spaghetti Code due to those were exhaustively used as
examples by various authors of other approaches, however the symptoms of Large and
Complex Class shares similar attributes with the latter mentioned ones. To define the
detection rules, first we gathered the appropriate software design (SD) metrics e.g.: NumAttr,
and NumOps, that could be used to measure properties of UML class diagrams, which are as
well relevant to examine the symptoms of these four anti-patterns. The secondary sub goal
was to (2) improve the detection procedure with the consideration of size in order to measure
the significance of the found anti-pattern(s). Since each class diagrams are structured
uniquely, meaning that those consists of a different number of classes; where each classes are
variedly sized; and sometimes the classes are purposely implements large number of attributes
and operations, thereby causing hasty judgements in the detection procedure due to the

characteristics of some anti-patterns, which can be detected specifically by the large number
of attributes and operations of a class. Finally, the third sub goal was then to (3) provide
warnings of the results with the textural output of the detected anti-pattern name.
The expected outcome of this research was to work out an algorithmic solution, which enables
the detection of the selected anti-patterns in UML class diagrams.

3. 2. Research Questions

Main RQ How to detect anti-patterns in UML class diagrams? There are several approaches
already proposed to deal with anti-patterns in both code and design level, however, none of
the propositions considers the detection of anti-patterns in UML class diagrams yet, and the
fact that the solution was unknown made us the pioneers from this aspect. To provide an
appropriate answer for the main research question, first we have conducted a deeper
investigation, which was an imperative step in order to put together the pieces of the puzzle.
For that, we have applied design research methodology [21][22] that we could use to
accommodate different techniques to find answers for the following questions.

RQ1 Which of the existing software designs metrics are useful to examine properties of UML
class diagrams to measure anti-pattern symptoms of the selected ones? We study the
definition and characteristics of the selected anti-patterns in order to know which SD metrics
are relevant. By following that, we write conceptual rules for each anti-pattern by using the
appropriate SD metrics. After that, we implement the conceptually designed rules into basic
functions, and run tests.

RQ2 What procedure could help to measure the significance of the found anti-pattern(s)
uniquely for all the classes of a diagram, thereby raising the accuracy of the detection
results? For this question, we investigate which mathematical solution could we use to
compare each classes of a UML class diagram, and by that to decide upon whether is indeed
an anti-pattern suspicious element.

RQ3 Does the detection with our RADAR approach showing significantly different results
than a test made with Ptidej tool in a comparison? This question involves the conduction of a
test against a trusted anti-pattern detection tool, Ptidej tool suite v5.8.1, which action can be
considered as a small experiment to compare the accuracy of the RADAR approach. For that,
we have selected 63 test materials of anti-pattern suspicious UML class diagrams regarding to
either Complex Class, Large Class, Lazy Class or ManyFieldAttributesButNotComplex
symptoms. These test materials were then segregated into two data sets, models41 and
models22 due to different file formats, which selection we explain in the next section. Our
general hypothesis was that the RADAR approach could also detect those anti-patterns that
Ptidej tool does. The alternative hypotheses for the test [20] are stated below:

• H0 Set1 – There is no difference in the result (i.e. found number of anti-
patterns/category) between the tests performed with RADAR and Ptidej tool on
data set models41.

• H1 Set1 – There is a difference in the result (i.e. found number of anti-
patterns/category) between the tests performed with RADAR and Ptidej tool on
data set models41.

• H0 Set2 – There is no difference in the result (i.e. found number of anti-
patterns/category) between the tests performed with RADAR and Ptidej tool on
data set models22.

• H1 Set2 – There is a difference in the result (i.e. found number of anti-
patterns/category) between the tests performed with RADAR and Ptidej tool on
data set models22.

RQ4 What is the average accuracy of RADAR in the detection of the four anti-pattern types?
The last question involves the evaluation of RADAR by experts.
In the next section, we describe our research strategy in more detail that we applied to carry
out this project. After that, we present the solution that we provide with our RADAR
approach and how it performs in a test compared to Ptidej tool, and present the accuracy of
RADAR in section 5. Ultimately we express our conclusion in section 6.

4. Research Methodology
In this section we describe the research strategy we have chosen to conduct this research, just
as how did we plan each of the steps to study the topic, develop and evaluate the RADAR
solution.

4. 1. Research Strategy

We conducted this project under academic setting and with the application of design research
methodology [21][22]. The decision of using design research was mainly due to the reason
that the accomplishment of RADAR required flexibility, which concerned three major phases,
(1) data gathering stage, (2) design and implementation stage, finally the (3) validation stage.
Design research was then engaging from the perspective that it has no formal rules, thereby
allowing the flexibility for us to apply different techniques. Thus we accommodated both
quantitative and qualitative strategies this study. Due to the academic setting and the aim of
the project, the design research approach is selected as the guideline for our project
development. Although some quantitative research approaches were considered in the initial
stage as we planned to send out surveys and questionnaires in the campus to gather students’
opinion towards our solution to evaluate the accuracy of RADAR. Then we realized the
students may not be equipped with enough profound knowledge to give us professional
results. Hence we shifted our focus on other quantitative methods such as statistical analysis
made on the test results between RADAR compared to Ptidej tool, and a review of the
feedback received from PhD students upon the accuracy of RADAR. The design research
methodology is a perfect fit for the one kind of development, which is meant to provide clear
and verifiable contributions [24]. And this trait exactly agrees with the idea of our research: to
provide a verifiable anti-pattern detection algorithm for software developers.

In the first stage, we have conducted a deeper investigation to study and collect
materials that we found useful to design and test our RADAR approach, which can be
understood as an imperative step in order to put together the pieces of the puzzle.

In the design and implementation stage, we used the knowledge we gained from the
first phase when we implemented the basic detection algorithms, which we later improved in
order to not only to analyze the test material for anti-pattern symptoms, but as well compare
each classes of the UML class diagram, and by that to decide upon whether the detected
element is indeed an anti-pattern suspicious element.

In the validation phase, we have conducted a test with a trusted anti-pattern detection
tool, Ptidej tool suite v5.8.1, which action can be considered as a small experiment to compare
the accuracy of our approach. To measure that, we feed the tool with the same materials we
used for RADAR. By following that, we compared the results under the application of
statistical analysis. The entire research have been conducted under the assistance of an

academic supervisor, who were continuously asked to accompany us with his approval. On
the other hand, we have requested experts of the field, such as PhD students to give us their
fruitful feedback in order to assist us in the determination of the accuracy level of RADAR
solution.

4. 2. Data Collection Plan

In the beginning of this research project, we have started reviewing papers to study the
multiform anti-patterns including the root causes and possible consequences of its appearance,
but most importantly, to explore the existing metric based approaches regarding to the
detection of anti-pattern symptoms in general. We have gathered qualitative data mainly with
the facilitation of digital libraries such as IEEE Xplore, where we entered keywords to see the
selective output of such reliable papers that are in pursuance of our research topic and to our
research questions. However, we did not set hard inclusion-exclusion criteria and quality
assessment of the paper selections as we would strongly consider in the application of
systematic literature review (SLR) method [23]. The reason why we “committed this
violation” against the rules of SLR was due to that our contribution was an intention to
provide an innovation, a reform of the former anti-pattern detection approaches, which as well
the first approach to detect anti-patterns in UML class diagrams as those have not been
considered before. Based on this reason and to gain an adequate amount of information that
we can use, we were venturous to review websites and forums as well. The data we gathered
in this phase was then stored in an excel spreadsheets for organization purposes, and placed
under the following categories: (a) list of anti-patterns, (b) useful existing detection
techniques, and (c) relevant SD metrics to design level detection, along with the resource
references. After we have gained enough competence to the recognition of different anti-
patterns by looking at pictures, we were ready to browse for test materials of anti-pattern
suspicious UML class diagrams. Only those diagrams were selected, which were at least
suspicious for one of the four types of anti-patterns (Complex Class, Large Class, Lazy Class,
and ManyFieldAttributeButNotComplex) that we have selected as the goal to detect. The
result was the collection of 41 UML class diagrams in both JPG and XMI formats, which we
downloaded from the online repository www.models-db.com. Moreover, we received files
from our academic supervisor including C++ source code of another 22 class diagrams.
Thereby, we gathered 63 UML class diagrams in total, which we saved into a file collection.
As next, we recorded down the collected diagrams and manually stored them into Mircosoft
Excel 2013 spreadsheet where we created two main tables, models_41 and models_22.
Initially, these two tables were then used to isolate all diagrams of the two sets, where we
organize them under Model No. as integers, and Class Name as strings. Since each model
contained different number of classes, therefore the same model number was entered to those.
Eventually, we have extended the categories of the tables with the previously collected SD
metrics, where the data entries were integers. See Table 2.

Model	 No.	 Class	 Name	 NumAttr	 NumOps	 Metric	 N	
1 Configurator 3 2 ..
1 DBManager 3 1 ..
1 EventTimer 4 8 ..
2 Publication 21 2 ..

ModelIntN NameStringN MetricIntN MetricIntN MetricIntN

Table 2. Categorized UML class diagrams with SD metrics.

For testing our RADAR approach, we have implemented the categories for the anti-patterns
we intended to detect. The detection rules we created were entered as functions, which selects
entries of Model No. column along with entries of relevant SD metrics columns to measure

symptoms of those anti-patterns. If the functions returned true, the entry for that anti-pattern
category - on the appropriate row for the class - automatically changed to “Anti-pattern
name”, meaning that the measurement of the symptoms indicated the appearance of that anti-
pattern for that class, otherwise changes to “Not+anti-pattern name”. Designing and testing
of the functions was a repetitive step till we reached the desired results, including more than
one function to catch the same types of anti-patterns. The excel sheet then contained the test
results made with RADAR approach of the 63 UML class diagrams, with a clear indication of
which classes are the problematic ones.
On the other hand, we performed tests for detecting the same anti-patterns with Ptidej tool
suite (v5.8.1) on the same class diagrams. However, this action required the preliminary steps
of code generation regarding to the inappropriate file format of the 41 diagrams. The reason
for that was due to Ptidej tool cannot import XMI files, and can only detect anti-patterns in the
source code, which caused us the necessity to generate source code from the 41 class diagrams
since we only had them in XMI format. To overcome this barrier, we used StartUML tool to
generate both Java and C++ code out of the XMI files, which we saved into the file collection
that we created before. In the following step, we tested the 41 diagrams by feeding Ptidej tool
with the (1) generated Java and (2) generated C++ code separately. Testing the other 22
diagrams did not require code generation procedure since we had the appropriate file format
previously, therefore we could import and test the (3) C++ code effortlessly. At the end of the
test, we took the detection result that Ptidej tool generated as text files, which were
automatically categorized by anti-pattern types, and saved them into the file collection we
created before. Eventually, we extended our excel spreadsheet (models_41 and models_22)
tables with the test generated results of Ptidej by taking those and manually store each of them
under the extension columns for anti-pattern categories, where the entries of positive and
negative result were associated with the appropriate id and class name of the diagrams.
Ultimately, we emailed our excel spreadsheet to our academic supervisor for approval, which
contained inter alia, all the 63 diagrams, metrics and algorithms used by RADAR, and the test
results including Ptidej ones. Moreover, we as well attached our file collection to that email in
order to show the evidences.

For the evaluation of our solution, we have contacted with PhD students of those who
are equipped with profound knowledge of anti-patterns, but were not involved in any other
phases of our research project. The first contact with them was made verbally then via email
to formalize the agreement between us. The email then contained the attachment of our (1)
Excel file of RADAR solution, and the (2) file collection containing all the test materials.
Moreover, they have been asked to examine all the class diagrams and by following that, to
extend our Excel file with their judgments by giving marks “agree” and “ disagree” regarding
to positive, negative, false positive and false negative results of ours. Their ultimate task was
then to send their extended Excel file back to us via email.

Item Purpose Reference / Resource
Anti-pattern definitions and
examples

To collect textural description and visual examples of
Complex Class, Large Class, Lazy Class, and
ManyFieldAttributesButNotComplex anti-patterns.

[1], [5], [7],[9], also accessible at url:
http://wiki.ptidej.net/doku.php?id=sad

Rules for anti-pattern detection To collect rules for we could use to express our rules for the
four anti-patterns.

[8], [13],also accessible at url:
http://www.ptidej.net/search?Searcha
bleText=rule+card

SD metrics To collect software design metrics for UML class diagrams. [5], also accessible at url:
http://www.sdmetrics.com/LoM.html

UML repository of class diagrams To collect anti-pattern suspicious test materials in XMI
and JPG file formats.

Accessible at url: http://modelsdb.com/

Anti-pattern detection test results
with Ptidej tool

To perform tests on the selected class diagrams, and to
collect generated test reports out of them.

See in the results section of this paper.
The tool can be downloaded at url:
http://www.ptidej.net/tools/designpatt
erns/.

Anti-pattern detection test results
with RADAR approach.

To perform tests on the same class diagrams, and to
collect the textural output e.g.: the results.

See in the results section of this paper.

Table 3. Summary of the collected data.

4.3. Data Analysis Plan

In the previous paragraph, we described how we collected the data that preceded the
conduction of tests with RADAR and Ptidej, moreover how we stored the test results.
However, the conduction of tests and the approval from our mentor did not give us enough
confidence to provide answer to the main research question, neither to conclude a high
accuracy of our anti-pattern detection algorithms. Therefore, we performed statistical analysis
[25] on the test results in a manner of percentage of the test coverage by RADAR compared to
Ptidej.

Before we begun the statistical data analysis procedure, first we cloned our
spreadsheet tables and modified the entries of the anti-pattern categories from String data type
to Integers by giving number 1 for positive, and number 0 for negative test results. By
following that, we computed the number of found anti-patterns individually for all categories
per RADAR and per Ptidej, and as well for both data sets (Models41, Models22). We then
created a table of summary. However, as we originally provided more than just one strategy
per category for RADAR to detect the same anti-pattern types differently, those mostly
returned same results nonetheless. Correspondingly, this was true to the results of Ptidej
regarding to the model set 41, which we tested twice by feeding the tool with the source code
of two different programming languages, which were in fact generated from the same XMI
files. Therefore, we have considered the fact that the synthesization of the data per anti-pattern
category would contain duplicates in our newly created table of summary. However, we were
not interested to compare between the particular detection strategies of anti-pattern categories
in RADAR, neither in Ptidej, we considered this as a necessary preceding step to partially
answer research question 3. Meaning that the outcome of this step, i.e. the table of summary,
served as the evidence for the later presentation of the statistical measurement of the test
results between the two approaches. More explicitly, to the second step, which was a
measurement regarding to the test coverage from the aspect of what percentage could our
RADAR detector approach locate from those anti-patterns that Ptidej did. In order to find that
out, first it was necessary to eliminate the duplicates due to the reason that those would
influence the measurement of the coverage to the extent, that either positively or negatively,
but would cause distortion to the facts. Therefore as the next procedure, we planned to
eliminate those by uniting of various detection strategies per same anti-pattern category into
one. For that, we filtered the different anti-pattern detection strategies for entries where equals
to 1 (true), and if the same Model No. and Class Name was associated to more than one entry
from these strategies per same category, then we counted it once. On the other hand, if at least
one of the detection strategies of that anti-pattern type resulted 1, then it is also considered as
1. See Table 4 as an example.

From	 this	 table,	

Model
No.

Class Name Strategy1
AntipA

Strategy2
AntipA

Strategy3
AntipA

Strategy1
AntipB

Strategy2
AntipB

1 Configurator 1 1 0 0 0
2 DBManager 1 0 1 0 1

we created the following table

Model
No.

Class Name AntipatternCategoryA AntipatternCategoryB

1 Configurator 1 0
2 DBManager 1 1

Table 4. The conjunction of different detection techniques per anti-pattern categories.

We have merged the different strategies per anti-pattern types in both model set 41 and 22.
However in modelset22, we also merged Java and C++ results the same way to eliminate
duplicates. This conjunction was then the recapitulation of the data, which we prepared for to
begin the statistical analysis. By following that, we planned to analyze the above mentioned
table (similarly to the previous filtering method) by taking all the Model No. and Class Name
from Ptidej per anti-pattern categories, distinguished between data set 41 and 22, where the
entry was number 1(true). This step was relevant in order to see which classes were judged as
the ones containing anti-pattern(s) by Ptidej tool. Taken the same information, we filtered the
results from RADAR as well. Finally, we created the last table to present the identification of
those classes of the UML class diagrams that RADAR could find from the ones that Ptidej
did, thereby providing answer to research question 3. On the other hand, we computed the
sum of the number of found anti-patterns per categories (types) for Models41, Models22, and
for both RADAR and Ptidej. This data represented the “observed” data from which we used to
calculate the differences (the deviation) regarding to the detection of the number of anti-
patterns per UML class diagrams. To measure the data distribution regarding to the
hypotheses, we calculated the p-values for both data sets via the formula of the Chi Square
test [26]. See Figure 1.

𝒙𝟐 =
(𝑶 − 𝑬)𝟐

𝑬

 Fig. 1. Chi Square formula.
Where O = Observed frequency and E = Expected frequency.

However, we believed that another test should be performed in order to confidently disclosure
whether the p-value is significant. Therefore in this last step, we have performed the Mann
Whitney U test [27] to see the difference between the results (i.e. found number of anti-
patterns/category). Our main reason of choice to conduct this test is that this test could be
used to compare differences between two independent groups when the dependent variable is
either ordinal or continuous. For the conduction of this test, we have the formula on Figure 2.

𝑼𝟏 + 𝑼𝟐 = 𝒏𝟏𝒏𝟐 +
𝒏𝟏(𝒏𝟏 + 𝟏)

𝟐 = 𝑹𝟏 + 𝒏𝟏𝒏𝟐 +
𝒏𝟐(𝒏𝟐 + 𝟏)

𝟐 − 𝑹𝟐

Fig. 2. Mann-Whitney U formula.
Where n1= Sample size for sample 1, R1= Sum of ranks in sample 1, and n2=

Sample size for sample 2, R2= Sum of ranks in sample 2.

After we have interpreted the results of the Chi Square test to get the p-values, and we
performed the Mann-Whitney U test to get the p-values and u-values, then these u-values
were used to verify the significance level. The general rule of the p-value is that if the result is
less than the critical 0.05, then there is no significant difference in the distribution of the data
sets. Hence, the value we got from the calculations compared to this critical 0.05 played the
dominant role when we were deciding whether we should reject or not the hypotheses.
Eventually, we planned to present statistical results in forms of tables and charts.

The ultimate step of the data analysis was then the interpretation of the feedback we
received from the experts. In order to answer research question 4, first we opened the

extended Excel file to read the occurrence of each “agree” and “disagree”. Then similarly to
the previous procedures, we created a table containing the numeric representation of their
feedback that we categorized under “agreed”, “disagreed”, and “commented (neither agreed
nor disagreed)” in a matrix of detection strategies per anti-pattern categories. By having the
summary of their feedback in numeric format, we then compared the numbers of “strongly
agreed” to the sum of the anti-patterns that our test resulted previously, then we calculated the
percentage of the coverage for each detection strategies. By having the percentage of coverage
for each, we then computed the average number in order to declare the accuracy of RADAR
in the four anti-pattern categories where the different strategies per detection categories were
merged.
For answering research question 1, we present the SD metrics we used to measure properties
of UML class diagrams, while for research question 2, we describe our solution for the
detection procedure we designed for the four anti-pattern categories by providing those in
pseudo code written algorithms.

4.4. Validity Threats

Several validity threats were identified during our development. The first issue is the selection
of our candidate class diagrams, which could be with anti-pattern behavior. Under the
consideration of time, we prone to choose the problematic class diagrams instead of randomly
selecting class diagrams. One thought behind that is we have tested with a number of
diagrams in the beginning, and frustratingly we discovered that most of them are without any
anti-patterns. Then we realized that spending too much time on randomly selecting class
diagrams would purposelessly waste our energy and may not provide direct and effective
contribution to our research goal. Therefore, we decided to lay our emphasis mainly on the
problematic diagrams when we were searching for those to test our algorithms. The second
issue is the hardship in keeping the alignment between our test results and Ptidej tool. As we
mentioned before we know Ptidej tool performs the detection at code level, and although the
tool uses the same definition as ours to detect the anti-patterns, however the metrics between
these two tools vary at some level. The reason could be the different characteristics within the
source code and UML model. On the other hand, the quantum of measurement is what we
identified as the most critical aspect of the validity regarding to the accuracy of our algorithms
that we heralded next to the fabrication of a solution. Hence, the “solution” to be loyal to its
meaning requires multitude measurements before we could declare it as indeed one, withal the
involvement of people evidently to decrease the impression of a bias. Subsequently, another
threat to the validity can be address here that is the determination of which group of people is
equipped with the profound knowledge. We have considered the persons of professors and/or
PhD students of software engineering, who has some degrees of competence in the field of
reverse engineering, and familiar with the phenomenon of anti-patterns as appropriate
candidates for participating in the evaluation of our solution. However, as we raised our
expectations regarding to the skills of people, as decreased the number of selected participants
in parallel. Knowing that the lack of measurement can strongly question the validity,
therefore, we decided to carefully phrase our sentences to prevent any misleading conclusion
that is associated with the accuracy of our solution in such case.

5. The RADAR Solution
In this section we present the results of the rules we applied to detect the different types of
anti-patterns on the selected UML class diagrams as test materials for our project. Moreover,
here we compare our test results with the results we received from Ptidej tool and ultimately,
we present the evaluation of our approach.

As the outcome of the data collection regarding to which metrics could be useful to detect for
anti-pattern symptoms in UML class diagrams, we have gathered the following SD metrics:

• NumAttr: Number of attributes in a class.
• NumOps: Number of operations in a class.
• NAss: Number of associations (coupling) with that class.
• NOC: Number of children of that class.

However, we realized that using only these SD metrics could not consider the uniqueness of
each class diagrams from the aspect of size differences when declaring the detection rules for
anti-pattern symptoms. For example: given the rule of the gauge “high” is >=8, while
analyzing a class in a diagram. The class have the characteristics of NumOps = 11 and NAss =
16. These metrics (excluding these specific integers) are used to measure symptoms of the
Large Class anti-pattern, where the former detection rule would be: if NumOps high is true
and NAss high is true, then the class is a Large Class in the inspected diagram. But this raised
the question in us regarding to what happens in such case, when other classes also having
similar characteristics in the inspected diagram. The former detection rule by using these basic
SD metrics would declare them all as infected with Large Class anti-pattern, meanwhile as
well not considering the possibility such as the diagram was designed to be large on purpose.

5.1. RADAR Detection Algorithms for Anti-patterns in UML class diagrams

To precisely catch the anti-pattern in UML class diagrams, numerous testing and comparing
works are involved in this process. In the beginning phase, the hardest task is to find a suitable
threshold to evaluate our approach. For example, High No. Attributes and High No.
Operations together determine whether or not the target class of the diagram is a Complex
Class. But to what extent it can give us evidence about that this class has a higher number of
attributes and operations than other classes is not a one-day-to-answer question. The very first
idea that occurred to us is to use “one-third” as the detection threshold. Take how we check
the high number of attributes as an example, we first get the sum of all attributes in one entire
diagram and compute the average value of it. Then we compare the each number of attributes
in one single diagram with the previously gained one-third value. If it is higher than the one-
third value then we consider it as the high number of attributes. To implement these
calculations, we have created the following SD metrics to RADAR:

• NumAttr Quartile 25% = Calculate the 1st quartile from the number of attributes
taken from the classes of the diagram.

• NumAttr Quartile 75% = Calculate the 3rd quartile from the number of attributes
taken from the classes of the diagram.

• Low No. Attributes (Quartile) = Compare if the number of attributes in the selected
class is less or equals to the value of NumAtrr Quartile 25%, then return true else
false.

• High No. of Attributes (Quartile) = Compare if the number of attributes in the
selected class is larger than the value of the NumAtrr Quartile 75%, then return true
else false.

• No. Attr/ No. Classes = Calculate the average number for the diagram from the
number of attributes taken from the classes.

• No. Attr/ No. Classes that contains attributes = Calculate the average number of
attributes for classes with at least one attribute in the class.

• NumOps Quartile 25% = Calculate the 1st quartile from the number of operations
taken from the classes of the diagram.

• NumOps Quartile 75% = Calculate the 3rd quartile from the number of operations
taken from the classes of the diagram.

• Low No. of Operations (Quartile) = Compare if the number of operations in the
selected class is less or equals to the value of NumOps Quartile 25%, then return true
else false.

• High No. Operations (Quartile) = Compare if the number of operations in the
selected class is larger than the value of the NumOps Quartile 75%, then return true
else false.

• New High No. Operations (Quartile) = Number of operations is not zero and also
larger or equal to the rounded down integer sum of the NumOps Quartile 75% and
Average No. Operations.

• No. Opr/ No. Classes = Calculate the average number of operations for all the classes
in the diagram.

• No. Opr/No. classes with at least one operation = Calculate the average number of
operations for classes with at least one operation in the class.

• Coupling Quartile 25% = Calculate the 1st quartile from the number of associations
in the diagram.

• Coupling Quartile 75% = Calculate the 3rd quartile from the number of associations
in the diagram.

• Average No. Coupling = Calculate the average number for the diagram from the
number of associations with the classes.

• Low No. of Coupling (Quartile) = Compare if the number of associations with the
selected class is less or equals to the value of Coupling Quartile 25%, then return true
else false.

• High No. Coupling (Quartile) = Compare if the number of associations with the
selected class is larger than the value of the Coupling Quartile 75%, then return true
else false.

• New High No. Coupling (Quartile) = Number of associations is not zero and also
larger or equal to the rounded down integer sum of the Coupling Quartile 75% and
Average No. Coupling.

See the computations in pseudo code written algorithms in Appendix B.

5. 1. 1. The Detection of Complex Class

The characteristics of Complex class is that it consist of a large number of operations while as
well the number of coupling (associations) is high. We have used four different detection
strategies to measure for these symptoms. Also see Appendix B. 1.

• C1: According to this rule, if New High No. Operations (Quartile) is true and New
High No. Coupling (Quartile) is true and NumOps is larger than No. Opr/ No.
Classes, then the class is infected with the Complex Class anti-pattern.

• C2: According to this rule, if New High No. Operations (Quartile) is true and New
High No. Coupling (Quartile) is true and NumOps is larger than No. Opr/No.

classes with at least one operation, then the class is infected with the Complex Class
anti-pattern.

• C3: According to this rule, if New High No. of Operations (Quartile) is true and
New High No. Coupling(Quartile) is true, then the class is infected with the
Complex Class anti-pattern.

• C4: According to this rule, if High No. of Operations (Quartile) is true and High
No. of Coupling (Quartile) is true, then the class is infected with the Complex Class
anti-pattern.

5. 1. 2. The Detection of Large Class

Large Class, just as its name describes, is a class that contains an overwhelming number of
methods stuffed with hundreds of lines of code. We have used four different detection
strategies to measure for these symptoms. Also see Appendix B. 2.

• LAR1: According to this rule, if New High No. of Operations (Quartile) is true and
New High No. of Coupling (Quartile) is false and NumOps is larger than No. Opr/
No. Classes, then the class is infected with the Large Class anti-pattern.

• LAR2: According to this rule, if New High No. of Operations (Quartile) is true and
New High No. of Coupling (Quartile) is false and NumOps is larger than No.
Opr/No. classes with at least one operation, then the class is infected with the Large
Class anti-pattern.

• LAR3: According to this rule, if High No. of Operations (Quartile) is true and New
High No. Coupling (Quartile) is false, then the class is infected with the Large Class
anti-pattern.

• LAR4: According to this rule, if High No. of Operations (Quartile) is true and High
No. of Coupling (Quartile) is false, then the class is infected with the Large Class
anti-pattern.

5. 1. 3. The Detection of Lazy Class

Lazy Class anti-pattern is a class that is in lack of children and fields just as attributes and
operations. We have used the following detection strategy to measure for these symptoms.
Also see Appendix B. 3.

• LAZ: According to this rule, if Low No. of Attributes (Quartile) is true and Low No.
of Operations (Quartile) is true and Low No. of Coupling (Quartile) is true and
NOC is 0, then the class is infected with the Lazy Class anti-pattern.

5. 1. 4. The Detection of ManyFieldAttributesButNotComplex (MFABNC)

MFABNC is a class with high number of attributes but low number of operations. We have
used three different detection strategies to measure for these symptoms. Also see Appendix B.
4.

• M1: According to this rule, if High No. of Attributes (Quartile) is true and Low No.
of Operations (Quartile) is true and Low No. of Coupling (Quartile) is true, then
the class is infected with the MFABNC anti-pattern.

• M2: According to this rule, if High No. of Attributes (Quartile) is true and Low No.
of Operations (Quartile) is true and Low No. of Coupling (Quartile) is true and
NAtt is larger than No.Atrr/ No. Classes, then the class is infected with the
MFABNC anti-pattern.

• M3: According to this rule, if High No. of Attributes (Quartile) is true and Low No.
of Operations (Quartile) is true and Low No. of Coupling (Quartile) is true and
NAtt is larger than No. Attr/ No. Classes that contains attributes, then the class is
infected with the MFABNC anti-pattern.

Fig. 3. Anti-pattern detection example.

Figure 3 showing a real example of a UML class diagram that is infected by the detection-desired anti-patterns of ours.
According to our detection algorithms, the conclusion was based on the follwoing calculations: since in this diagram, the 1st

quartile of the (attributes/operations/coupling) is (5/2/1), the 3rd quartile is (20/6/2), and the average number is (15/5/2),
therefore when the detection rules of the anti-patterns compared these metric values to the metrics of each classes-those that have

been found over or under the range- were concluded true.

	 Anti-pattern name Complex Large Class Lazy Class MFABNC
Class

Detection rule applied C1, C2, C3, C4 LAR1, LAR2,
LAR3, LAR4

LAZ M1, M2, M3

Table 5. Summary of RADAR detection rules applied for anti-patterns.

5.2. The Comparison of RADAR Detection to Ptidej Detection

Table 6 below represent the total number of found anti-patterns in both data sets, where the
results including duplicates regarding to those classes of the diagrams that were caught more
than once by different strategies per anti-pattern category. See Table 6.

 Data set Models41 Data set Models22

 RADAR test Ptidej test RADAR test Ptidej test

C1 C2 C3 C4 Complex Class C1 C2 C3 C4 Complex Class
8 8 8 41 18 4 4 4 11 11

LAR1 LAR 2 LAR 3 LAR 4 Large Class LAR1 LAR2 LAR 3 LAR 4 Large Class
20 17 55 33 0 19 16 61 53 0

LAZ Lazy Class LAZ Lazy Class

139 18 146 0
M 1 M 2 M 3 MFABNC M 1 M 2 M 3 MFABNC
14 13 10 0 0

Table 6. Total number of observed anti-patterns.
The anti-pattern categories are represented by the type of strategies under RADAR. Therefore C (1-4) stands for Complex Class, LAR (1-4)
for Large Class, LAZ for Lazy Class and M (1-3) is for ManyFieldAttributesButNotComplex. While under the results of Ptidej, the last anti-

pattern type MFABNC is an abbreviation of the latter mentioned.

After the elimination of the duplicates, we have interpreted the following results. RADAR
could detect a total of 249 anti-patterns out from the 575 classes from Models41 data set,
where the division regarding to the four types of anti-patterns is 41 Complex Class, 55 Large
Class, 139 Lazy Class, and 14 ManyFieldAttributesButNotComplex (BFABNC). While in
Models22 data set, this total number is 220 with the division of 11 Complex Class, 59 Large
Class, 146 Lazy Class, and 4 MFABNC anti-patterns. On the other hand, we have observed
the following results from Ptidej test. 18 Complex Class and 18 Lazy Class for Models41 data
set, which sums up a total of 36 anti-patterns only. Regarding to Models22 data set, the total
number is 11 by the detection of Complex Class. The tests we performed with Ptidej tool
regarding to the detection of Large Class and MFABNC were completely unsuccessful.
However, we have unintentionally discovered the fact that this undesired outcome is due to
code generation. As we generated source code from the XMI files of UML class diagrams,
some information such as the lines of code (LOC SD metric) was arbitrarily generated (e.g. to
one single line) by the software we used. The lack of the LOC then caused trouble for Ptidej
tool when its detection technique attempted to measure that, which if is long, is actually one
of the main symptom of Large Class and MFABNC anti-patterns. Therefore, we could only
compare the test results between Complex Class and Lazy Class anti-patterns. Regarding to
the percentage of coverage from the aspect of detecting the same classes per anti-pattern type,
we interpreted the following results. Out from the 18 classes that Ptidej judged as containing
the Complex Class anti-pattern RADAR found its 16.67%, while from the 18 Lazy Class
symptomed classes by Ptidej, RADAR located 61.11% of the same classes in Models41. On
the other hand, Ptidej could only find 18 Complex Class symptomed classes in Models22,
therefore we could only compare the same results of Complex Class in the second data set,
where RADAR covered 36.36% of those. See Appendix C. 1. Regarding to the hypotheses,
the tests resulted the following:

• H0 Set1: Since the P-value from Chi Square test is less than 0.05, we can reject the
H0 Set1 and there are differences between two result sets. However, from Mann-
Whitney U test result we could only disapprove H0 Set1 for Lazy Class.

• H1 Set1: Since the P-value from Chi Square test is less than 0.05, we can approve

H1 and there are differences between two result sets. However, from Mann-
Whitney U test result we could only approve H1 for Lazy class.

• H0 Set2: Since the P-value from Chi Square test is less than 0.05, we can reject H0

Set2 and there are differences between two result sets. However, from Mann-
Whitney U test result we failed to reject H0 Set2.

• H1 Set2: Since the P-value from Chi Square test is less than 0.05, we can approve
H1 Set2 and there are differences between two result sets. However, from Mann-
Whitney U test result we failed to approve H1 Set2. See Appendix C. 2. And C. 3.

5.3. The Evaluation of RADAR Approach

Regarding to the feedback we received from student A, he judged the average accuracy of
RADAR regarding to the detection of Complex Class as 68%, 75 % for Large Class, 99% for
Lazy Class, and the accuracy of 55% for MFABNC. Meanwhile he gave comments in four
cases instead of a decision whether he agrees or disagrees with our results. According to the
feedback from student B, he assessed the average detection accuracy regarding to Complex
Class as 70%, 38% for Large Class, 80% for Lazy Class, and the accuracy of 80% for
detecting the MFABNC anti-pattern. On the other hand, he did not provide any answer in 17
cases and unfortunately we could not request another assessment due to the reason that we
received his answer on the same day as the end of the deadline that was determined to this
thesis project. According to the occurrence of agreement from the reviewers, the average
accuracy of RADAR in the detection of Complex Class is between 68%-70%, 38%-75% of
Large Class, 80%-99% of Lazy Class, and the accuracy between 55%-80% for the detection
of MFABNC anti-pattern. See Figure 4 and Appendix D.

Fig. 4. Summary of the accuracy denoted to the detection strategies.

A UML model could be meant to be the blueprint of the system, therefore the design should
be not only error-free, but as well capably and thoughtfully designed in order to reduce the
possibility of issues that anti-pattern may cause with their presence [2,3,4,11,12]. Authors
claimed that it is difficult to realize the creation of anti-patterns, especially when that was
unintentionally caused by designers of inexperienced in OO language. On the other hand,
writing the source code of UML designs for large scale and complex OO systems is generally
a challenging task, therefore is why the realization and capture of anti-patterns is laying upon
the involvement of system maintainers [6,7,10,11]. The issue of that is not only that their
work takes place in a later time of the software development process, but as well claimed as
very time consuming procedure that requires high level of management regarding to resources
and budget. There are various anti-pattern detection solutions exists to moderate the work of
the designer, which are mostly metric based and semi-automatic approaches [1,5,8,10,11][15-
19] that unburdens the discovery procedure and realization of anti-patterns by overtaking
most of the work via the automatic localization of those. However, these solutions do not
consider the detection of anti-patterns in UML class diagrams. These are the reasons that
inspired us to come up with our solution that could be used to bring forward the actions to

avert anti-patterns. Hence the benefits of running detection on UML class diagrams at the
design level could enable the designer to avoid anti-patterns during the design time. With the
appropriate warnings such as which class is infected, s/he could facilely interpret and correct
those due to visual appearance provided by the model view of the editor software in use. The
solution of RADAR could be implemented as a plugin for visual modeling editor tools such as
Enterprise Architect, StarUML or Visual Paradigm, where the designer could run a quick
detection even on small increments of the class diagrams since our algorithms automatically
handles the flexibility regarding to the sizes. On the other hand, the drawback of the design
level detection is the lack of measurable properties, meaning that we will not be able to see
the amount of code implemented in the operations, which could be one of the symptoms of
some anti-pattern types. This issue was found when we were generating source code to run
detection tests with Ptidej tool. The tool uses the measurement of the SD metric called LOC,
which stands for the lines of code, and concludes some anti-patterns depending on the length
of these lines. The problem with this is that software tools may arbitrarily generate the lines of
code, which can be generated on one single line, thereby causing false measurement.

6. Conclusion

This paper is oriented to contribute with a solution to the detection of anti-patterns in UML
class diagrams. Therefore, we introduced our approach called RADAR that is designed for
detecting the anti-patterns inter alia, Complex Class, Large Class, Lazy Class, and
ManyFieldAttributesButNotComplex (MFABNC). The purpose of choice regarding to the
quantitative selection of anti-pattern types to be detected was not considered as one of the
goals for our solution. We selected these few out of the multiform types rather to serve as
examples for the introduction of algorithmic procedures required to scan for symptoms in
class diagram designs, with the intention to provide initial guidance to the readers. With the
aim of our research, we investigated the pieces of the puzzle in order to present the
combination of those SD metrics and mathematical solutions that we used to measure
properties of UML class diagrams in the capture of anti-patterns based on their symptoms,
while as well considering the size of classes relative to one another in each diagrams. The
solution we provided with RADAR is then the use of SD metrics regarding to the number of
(attributes, operation, associations, children) as numeric representation of UML class
diagram properties into the detection algorithms, while the algorithms as well perform the
calculations of quartile and average on those unique values to compare the sizes differences in
each class diagrams. Eventually, we have imposed RADAR for a statistical analysis in order
to measure its accuracy compared to a trusted anti-pattern detection tool, Ptidej v5.8.1. The
statistical analysis, regarding to the test coverage from the aspect of what percentage can our
RADAR approach locate from those classes per anti-pattern categories that Ptidej does,
resulted to the average of 26% accuracy for RADAR in the detection of Complex Class, and
61% for the detection of Lazy Class symptoms. Unfortunately, this measurement could not be
made for Large Class and MFABNC anti-patterns based on the reason that Ptidej tool could
not detect those. We claimed this problem as due to code generation procedure by the
software we used regarding to the arbitrarily generated lines of code (LOC), which is if is
long, is actually one of the main symptom of the latter mentioned two anti-patterns.
Therefore, we cannot confirm the correctness of RADAR based on this comparison. To
compensate the deficiencies of the measurement, we requested a review for RADAR from
PhD students. Regarding to the feedback we received from them, the average accuracy of
RADAR in the detection of the four anti-patterns is somewhat high. However, due to the low

number of participants we cannot strongly confirm the correctness of our RADAR solution,
and our conclusion is that furthermore measurements will be required to take based on this
reason. On the other hand, the future project could be the implementation of RADAR
algorithms as plugin for Enterprise Architect visual modeling and design tool, and the
conduction of a software experiment involving large group of people.

7. Acknowledgements
We thank Michel Chaudron and Bilal Karasneh for assisted us with their guidance toward this
project, moreover to Rodi Jolak and Truong Ho Quang for their feedback.

8. References

[1] Moha, N., Gueheneuc, Y. G., Duchien, L., & Le Meur, A. (2010). DECOR: A method for
the specification and detection of code and design smells. Software Engineering, IEEE
Transactions on, 36(1), 20-36.

[2] V. Rompaey, B. D. Bois, S. Demeyer, and M. Rieger, “On the detection of test smells: A
metrics-based approach for general fixture and eager test,” IEEE Transactions on
Software Engineering, vol. 33, no. 12, pp. 800–817, 2007 [3] David, V. (2006). UML
class diagrams.

[4] Saxena, V., & Kumar, S. (2012). Impact of Coupling and Cohesion in Object-Oriented
Technology. Journal of Software Engineering and Applications, 5(09), 671.

[5] Fourati, R., Bouassida, N., & Abdallah, H. B. (2011). A metric-based approach for
antipattern detection in UML designs. In Computer and Information Science 2011 (pp.
17-33). Springer Berlin Heidelberg.

[6] Budgen, D. (2003). Software design. Pearson Education.

[7] McCormick, H. W., Mowbray, T. J., & Malveau, R. C. (1998). AntiPatterns: refactoring
software, architectures, and projects in crisis.

[8] Moha, N., Gueheneuc, Y. G., & Leduc, P. (2006, September). Automatic generation of
detection algorithms for design defects. In Automated Software Engineering, 2006.
ASE'06. 21st IEEE/ACM International Conference on (pp. 297-300). IEEE.

[9] Khomh, F., Vaucher, S., Guéhéneuc, Y. G., & Sahraoui, H. (2011). BDTEX: A GQM-
based Bayesian approach for the detection of antipatterns. Journal of Systems and
Software, 84(4), 559-572.

[10] Guéhéneuc, Y. (2007, October). Ptidej: A flexible reverse engineering tool suite. In
Software Maintenance, 2007. ICSM 2007. IEEE International Conference on(pp. 529-
530). IEEE.

[11] G. Bruno, P. Garza, E. Quintarelli, and R. Rossato, “Anomaly detection in xml databases
by means of association rules,” in DEXA ’07: Proceedings of the 18th International

Conference on Database and Expert Systems Applications. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 387–391

[12] S. Jorwekar, A. Fekete, K. Ramamritham, and S. Sudarshan, “Automating the detection
of snapshot isolation anomalies,” in VLDB ’07: Proceedings of the 33rd international
conference on Very large data bases. VLDB Endowment, 2007, pp. 1263–1274.

[13] Moha, N., Guéhéneuc, Y. G., Le Meur, A. F., Duchien, L., & Tiberghien, A. (2010).
From a domain analysis to the specification and detection of code and design smells.
Formal Aspects of Computing, 22(3-4), 345-361.

[14] Munro, M. J. (2005, September). Product metrics for automatic identification of" bad
smell" design problems in java source-code. In Software Metrics, 2005. 11th IEEE
International Symposium (pp. 15-15). IEEE.

[15] Marinescu, R. (2004, September). Detection strategies: Metrics-based rules for detecting
design flaws. In Software Maintenance, 2004. Proceedings. 20th IEEE International
Conference on (pp. 350-359). IEEE.

[16] Trifu, A., Seng, O., & Genssler, T. (2004, March). Automated design flaw correction in
object-oriented systems. In Software Maintenance and Reengineering, 2004. CSMR
2004. Proceedings. Eighth European Conference on (pp. 174-183). IEEE.

[17] AliKacem, H., & Sahraoui, H. (2006). Détection d’anomalies utilisant un langage de
description de règle de qualité, in actes du 12e colloque LMO. LMO, Ed.

[18] Grotehen, T., & Dittrich, K. R. (1997). The methood approach: Measures, transformation
rules and heuristics for object-oriented design.

[19] Ballis, D., Baruzzo, A., & Comini, M. (2008). A rule-based method to match Software
Patterns against UML Models. Electronic Notes in Theoretical Computer Science, 219,
51-66.

[20] Montgomery, D., Design and Analysis of Experiments, John Wiley & Sons, USA, 2000.

[21] AvAlan Hevner,Samir Chatterjee. (2010). Design Research in Information Systems:

Theory and Practice. (pp. 270-271).

[22] Blessing, L. T., & Chakrabarti, A. (2009). DRM, a design research methodology.
Springer Science & Business Media.

[23] Keele, S. (2007). Guidelines for performing systematic literature reviews in software
engineering (pp. 1-57). Technical report, EBSE Technical Report EBSE-2007-01.

[24] Jones, J. C. (1963). A method of systematic design. In Conference on design methods
(pp. 53-73). Pergamon Press, Oxford/New York.

[25] Box, G. E., Hunter, W. G., & Hunter, J. S. (1978). Statistics for experimenters.

[26] Satorra, A., & Bentler, P. M. (2001). A scaled difference chi-square test statistic for
moment structure analysis. Psychometrika, 66(4), 507-514.

[27] McKnight, P. E., & Najab, J. (2010). Mann Whitney U Test. Corsini Encyclopedia of
Psychology.

Appendix A. Existing Anti-patterns

Anti-pattern name Most applicable
scale

Root causes Unbalanced forces

 Development anti-patterns
Blob Application Sloth, Haste Management of Functionality,

Performance, Complexity
Lava Flow Application Avarice, Greed, Sloth Management of Functionality,

Performance, Complexity
Functional Decomposition Application Avarice, Greed, Sloth Management of Complexity, Change
Poltergeists Application Sloth, Ignorance Management of Functionality,

Complexity
Golden Hammer Application Ignorance, Pride,

Narrow−Mindedness
Management of Technology Transfer

Spaghetti Code Application Ignorance, Sloth Management of Complexity, Change
Cut−and−Paste
Programming

Application Sloth Management of Resources, Technology
Transfer

 Software architecture anti-patterns
Stovepipe Enterprise Enterprise Haste, Apathy, Narrow−Mindedness Management of Change, Resources,

Technology Transfer
Stovepipe System System Haste, Avarice, Ignorance, Sloth Management of Complexity, Change
Vendor Lock−In System Sloth, Apathy, Pride/Ignorance

(Gullibility)
Management of Technology Transfer,
Management of Change

Architecture by Implication System Pride, Sloth Management of Complexity, Change,
and Risk

Design by Committee Global Pride, Avarice Management of Functionality,
Complexity, and Resources

Reinvent the Wheel System Pride, Ignorance Management of Change, Technology
Transfer

 Software project management anti-patterns
Analysis Paralysis System Pride, Narrow−Mindedness Management of Complexity
Death by Planning Enterprise Avarice, Ignorance, Haste Management of Complexity
Corncob Enterprise Avarice, Pride, Narrow−Mindedness Management of Resources, Technology

Transfer
Irrational Management Enterprise Responsibility (the universal cause) Management of Resources
Project Mismanagement Enterprise Responsibility (the universal cause) Management of Risk (the universal

force)
 Mini anti-Patterns

Ambiguous Viewpoint, Autogenerated Stovepipe, Blowhard Jamboree, Boat Anchor, Continuous Obsolescence, Cover Your Assets, Dead
End, E−mail Is Dangerous, Fear of Success, The Feud, Fire Drill, The Grand Old Duke of York, Input Kludge, Intellectual Violence,
Jumble, Mushroom Management, Smoke and Mirrors, Swiss Army Knife, Throw It over the Wall, Viewgraph Engineering, Walking

through a Mine Field, Warm Bodies, Wolf Ticket.

Table 7. Collection of existing anti-patterns. (Resource reference: McCormick et al. [7]).

Appendix B. Algorithms of RADAR

RADAR detection solution:

• Given that we have defined a function to calculate quartile:
function quartileCalc(quartile, array):
m_index = (quartile/4)*(array.length-1)+1
remainder = m_index % 1
m_index = m_index - remainder
result = array[m_index]+(remainder*(array[m_index+1]-array[m_index]))return result.

• Calculations from the number of attributes:

§ NumAttr Quartile 25% = quartileCalc(1, numberOfAttributeArray)
§ NumAttr Quartile 75% = quartileCalc(3, numberOfAttributeArray)
§ Low No. Attributes (Quartile) = (numberOfAttributes<=quartileCalc(1,numberOfAttributeArray)
§ High No. of Attributes (Quartile) = (numberOfAttributes>quartileCalc(3,numberOfAttributeArray)

&&numberOfAttributes>quartileCalc(1, numberOfAttributeArray))
§ No. Attr/ No. Classes = totalNumberOfAttributesInModel/totalNumberOfClassesInModel
§ No. Attr/ No. Classes that contains attributes =

totalNumberOfAttributesInModel/totalNumberOfClassesContainsAttributesInModel

• Calculations from the number of operations:
§ NumOps Quartile 25% = quartileCalc(1, numberOfOperationsArray)
§ NumOps Quartile 75% = quartileCalc(3, numberOfOperationsArray)
§ Low No. of Operations (Quartile) = (numberOfOpetaions<=quartileCalc(1,

numberOfOperationsArray))
§ High No. Operations (Quartile) = (numberOfOpetaions>=quartileCalc(3, numberOfOperationsArray)
§ && numberOfOpetaions>quartileCalc(1, numberOfOperationsArray))
§ Average No. Operation = totalNumberOfOperations/totalNumberOfClassesContainsOperationsInModel
§ New High No. Operations (Quartile) = (numberOfOpetaions>=round(High No.

Operations(Quartile)+Average No. Operation))

• Calculations from the number of coupling:
§ Coupling Quartile 25% = quartileCalc(1, numberOfCouplingsArray)
§ Coupling Quartile 75% = quartileCalc(3, numberOfCouplingsArray)
§ Low No. of Coupling (Quartile) = (numberOfCouplings<=quartileCalc(1, numberOfCouplingsArray))
§ High No. Coupling (Quartile) = (numberOfCouplings>=quartileCalc(3, numberOfCouplingsArray) &&

numberOfCouplings>quartileCalc(1, numberOfCouplingsArray))
§ Average No. Coupling = totalNumberOfCouplings/totalNumberOfClassesContainsCouplingsInModel
§ New High No. Coupling (Quartile)= (numberOfCouplings>=round(High No.

Couplings(Quartile)+Average No. Couplings))

B. 1. Complex Class

C1:
if (numberOfOpetaions>=round(High No. Operations(Quartile)+Average No. Operation) &&
 numberOfCouplings>=round(HighNo.Couplings(Quartile)+AverageNo.Couplings)&&
 numberOfOpetaions>totalNumberOfOperations/totalNumberOfClassesInModel)
{
 print(“is complex 1”);
} else {
 print(“is not complex 1”);
}

C2:
if (numberOfOpetaions>=round(High No. Operations(Quartile)+Average No. Operation) &&
 numberOfCouplings>=round(HighNo.Couplings(Quartile)+AverageNo.Couplings)&&
 numberOfOpetaions>totalNumberOfOperations/totalNumberOfClassesContainsOperationsInModel)
{
 print(“is complex 2”);
} else {
 print(“is not complex 2”);
}

C3:
if (numberOfOpetaions>=round(High No. Operations(Quartile)+
Average No.Operation) &&

 numberOfCouplings>=round(HighNo.Couplings(Quartile)+AverageNo.Couplings))
{
 print(“is complex 3”);
} else {
 print(“is not complex 3”);
}

C4:
if ((numberOfOpetaions>=quartileCalc(3, numberOfOperationsArray)&& numberOfOpetaions>quartileCalc(1,
numberOfOperationsArray)) &&
 (numberOfCouplings>=quartileCalc(3, numberOfCouplingsArray) && numberOfCouplings>quartileCalc(1,
numberOfCouplingsArray)))
{
 print(“is complex 4”);
} else {
 print(“is not complex 4”);
}

B. 2. Large Class

LAR1:
if (numberOfOpetaions>=round(High No. Operations(Quartile)+Average No. Operation)&&
 numberOfCouplings<round(High No. Couplings(Quartile)+Average No. Couplings)&&
 numberOfOperations>totalNumberOfOperations/totalNumberOfClassesInModel)
{
 print(“is large class 1”);
} else {
 print(“is not large class 1”);
}

LAR2:
if (numberOfOpetaions>=round(High No. Operations(Quartile)+Average No. Operation)&&
 numberOfCouplings<round(High No. Couplings(Quartile)+Average No. Couplings)&&
 numberOfOperations>totalNumberOfClassesContainsOperationsInModel)
{
 print(“is large class 2”);
} else {
 print(“is not large class 2”);
}

LAR3:
if (numberOfOpetaions>=round(High No. Operations(Quartile)+Average No. Operation) &&
 numberOfCouplings<round(High No. Couplings(Quartile)+Average No. Couplings))
{
 print(“is large class 3”);
} else {
 print(“is not large class 3”);
}

LAR4:
if (numberOfOpetaions>=quartileCalc(3,numberOfOperationsArray)&&numberOfOpetaions>quartileCalc(1,
numberOfOperationsArray) &&
 !(numberOfCouplings>=quartileCalc(3,numberOfCouplingsArray)&&numberOfCouplings>quartileCalc(1,
numberOfCouplingsArray)))
{
 print(“is large class 4”);
} else {

 print(“is not large class 4”);
}

B. 3. Lazy Class

LAZ:
if ((numberOfAttributes<=quartileCalc(1, numberOfAttributeArray)&&numberOfOpetaions<=quartileCalc(1,
numberOfOperationsArray)&&numberOfCouplings<=quartileCalc(1, numberOfCouplingsArray)&&
numberOfChildren==0)
{
 print(“is lazy class 1”);
} else { print(“is not lazy
class 1”); }

B. 4. ManyFieldAttributesButNotComplex(MFABNC)

M1:
if((numberOfAttributes>quartileCalc(3,numberOfAttributeArray)&&numberOfAttributes>quartileCalc(1,
numberOfAttributeArray))&&numberOfOpetaions<=quartileCalc(1, numberOfOperationsArray)&&
numberOfCouplings<=quartileCalc(1, numberOfCouplingsArray))
{
 print(“is MFABNC 1”);
} else {
 print(“is not MFABNC 1”);
}

M2:
if(numberOfAttributes>quartileCalc(3, numberOfAttributeArray)&&numberOfAttributes>quartileCalc(1,
numberOfAttributeArray)&&numberOfOpetaions<=quartileCalc(1, numberOfOperationsArray)&&
numberOfCouplings<=quartileCalc(1, numberOfCouplingsArray)&&
numberOfAttributes>totalNumberOfAttributesInModel/totalNumberOfClassesInModel)
{
 print(“is MFABNC 2”);
} else {
 print(“is not MFABNC 2”);
}

M3:
if(numberOfAttributes>quartileCalc(3, numberOfAttributeArray)&&numberOfAttributes>quartileCalc(1,
numberOfAttributeArray)&&numberOfOpetaions<=quartileCalc(1, numberOfOperationsArray)
&&numberOfCouplings<=quartileCalc(1, numberOfCouplingsArray)&&
numberOfAttributes>totalNumberOfAttributesInModel/totalNumberOfClassesContainsAttributesInModel)
{
 print(“is MFABNC 3”);
} else {
 print(“is not MFABNC 3”);

}

Appendix C. Test Results

C. 1. Matches between RADAR and Ptidej

Lazy Classes in models41 set
(found by both)	

Complex Classes in models41
set (found by both)	

XMI_ID Class Name XMI_ID Class Name

1 Timer 1 DBManager
1 AutoResetEvent 4 Controller
1 TimerCallback 17 OrderHolon
1 SmtpClient Complex Classes in models22

set (found by both)	
1 SqlConnection XMI_ID Class Name
1 Object 8 CImage
1 XmlDocument 8 CPrimitive
3 NativeMethods 8 CObject3D

18 Block 10
	 	

Annoyme
	 	 27 ParamError

27 CircuitError

Table 8. Matches found between RADAR and Ptidej.

C. 2. Chi Square test results between RADAR and Ptidej

Test	 	
type	

RADAR	

In data set Models41 In data set Models22

Observed (O) Anti-Pattern Types Observed (O) Anti-Pattern Types

Complex
Class 	 Large Class Lazy Class MFABNC Complex

Class Large Class Lazy Class MFABNC

41 	 55 139 14 11 	 59 146 4
Ptidej	

	 	

RADAR	

18 	 0 18 0 11 	 0 0 0
 Expected (E) Anti-Pattern Types Expected (E) Anti-Pattern Types

Complex
Class 	 Large Class Lazy Class MFABNC Complex

Class 	 Large Class Lazy Class MFABNC
51.54736842 	 48.052632 137.1684211 12.2315789 20.952381 	 56.190476 139.04762 3.8095238

Ptidej	 7.452631579 	 6.9473684 19.83157895 1.76842105 1.047619 	 2.8095238 6.952381 0.1904762
	 	

RADAR	

 (O-E) Anti-Pattern Types (O-E) Anti-Pattern Types

Complex
Class 	 Large Class Lazy Class MFABNC Complex

Class 	 Large Class Lazy Class MFABNC
-10.54736842 	 6.9473684 1.831578947 1.76842105 -9.952381 	 2.8095238 6.952381 0.1904762

Ptidej	 10.54736842 	 -6.9473684 -1.83157895 1.76842105 9.952381 	 -2.8095238 -6.952381 -0.1904762
	 	

RADAR	

 ((O - E)𝟐) Anti-Pattern Types ((O - E)𝟐) Anti-Pattern Types
Complex

Class
Large Class Lazy Class MFABNC Complex

Class
	 Large Class Lazy Class MFABNC

111.2469806 48.265928 3.35468144 3.12731302 99.049887 	 7.893424 48.335601 0.0362812
Ptidej	 111.2469806 48.265928 3.35468144 3.12731302 99.049887 	 7.893424 48.335601 0.0362812

	 	

RADAR	

 ((O - E)𝟐 / E) Anti-pattern Types ((O - E)𝟐 / E) Anti-Pattern Types

Complex
Class

Large Class Lazy Class MFABNC Complex
Class

	 Large Class Lazy Class MFABNC

2.158150533 1.0044388 0.02445666 0.25567533 4.727381 	 0.1404762 0.3476191 0.0095238
Ptidej	 14.92720785 6.9473684 0.169158565 1.76842105 94.547619 	 2.8095238 6.952381 0.1904762

 𝒙𝟐 = 27.25487722
P = 0.00000520569

𝒙𝟐 = 109.725
P = 0.0000000000000000000000125753

Table 9. Chi Square test result of the data sets regarding to the detection of anti-pattern types
between RADAR and Ptidej.

C. 3. Mann Whitney-U test results between RADAR and Ptidej
Hypothesis Hypothesis P-value P and U-value by Result
 No. by Chi Mann-Whitney U test

Square test
H0 Set1 There is no difference in the

result (i.e found number of
anti-patterns/category)
between the tests performed
with RADAR and Ptidej tool
on data set models41.

P =
0.00000520
569

For Complex Class:
The U-value is 634, which is less than
expected U-value 840.5 and the data
sets are normal distributed. However,
the Z-Score is 1.9104 with a p-value
0.05614, so the result is not
significant at p≤ 0.05. We failed to
reject that there is no differences
between complex classes found in two
test results.

Since the P-value from Chi
Square test is less than 0.05, we
can reject the H0 and there is
differences between two result
sets. However, from Mann
Whitney U test result we could
only disapprove H0 for Lazy
Class.

 For Lazy Class:
The U-value is 226.5, which is less
than expected U-value 1578 and the
data sets are normal distributed.
Furthermore, the Z-Score is
5.6896with a p-value 0, so the result is
significant at p≤ 0.05. Therefore we
successfully rejected H0. There is
differences between lazy classes
found in two test results.

H1 Set1

There is a difference in the
result (i.e. found number of
anti-patterns/category)
between the tests performed
with RADAR and Ptidej tool
on data set models41.

P=0.000005
20569

For Complex Class:
The U-value is 634, which is less than
expected U-value 840.5 and the data
sets are normal distributed. However,
the Z-Score is 1.9104 with a p-value
0.05614, so the result is not
significant at p≤ 0.05. We failed to
approve that there is differences
between complex classes found in two
test results.
For Lazy Class:
The U-value is 226.5, which is less
than expected U-value 1578 and the
data sets are normal distributed.
Furthermore, the Z-Score is
5.6896with a p-value 0, so the result is
significant at p≤ 0.05. Therefore we
successfully accepted H1. There is
differences between lazy classes
found in two test results.

Since the P-value from Chi
Square test is less than 0.05, we
can approve H1 and there is
differences between two result
sets. However, from Mann
Whitney U test result we could
only approve H1 for Lazy
Class.

H0 Set2 There is no difference in the
result (i.e. found number of
anti-patterns/category)
between the tests performed
with RADAR and Ptidej tool
on data set models22.

P =
0.00000000
000000000
000001257
53

The U-value is 218.5, which is less
than expected U-value 242 and the
data sets are normal distributed.
However, the Z-Score is 0.5399 with
a p-value 0.05892, so the result is not
significant at p≤ 0.05. We failed to
reject that there is no differences
between two test results.

Since the P-value from Chi
Square test is less than 0.05, we
can reject H0 and there is
differences between two result
sets. However, from Mann-
Whitney U test result we failed
to reject H0.

H1 Set2 There is a difference in the
result (i.e. found number of
anti-patterns/category)
between the tests performed
with RADAR and Ptidej tool
on data set models22.

P =
0.00000000
000000000
000001257
53

The U-value is 218.5, which is less
than expected U-value 242 and the
data sets are normal distributed.
However, the Z-Score is 0.5399 with
a p-value 0.05892, so the result is not
significant at p≤ 0.05. We failed to
approve that there is differences
between two test results.

Since the P-value from Chi
Square test is less than 0.05, we
can approve H1 and there is
differences between two result
sets. However, from Mann-
Whitney U test result we failed
to approve H1.

Table 10. Testing the hypotheses.

D. The evaluation of RADAR by Reviewers

C1
C2

C3
C4

From Agreed Disagreed Commented (Neither agreed or disagreed)
Percentage

of
Accuracy

Average of
(%)

Accuracy
8 6 - “No. of operations is not so high and the coupling is

somehow low in respect to the number of the classes
within the model”, “no. of operations is low, but however
the coupling is high regarding the no. of the classes of the
model”.

75%
Complex

Class
68%

8 6 - 75%

8 6 -
75%

41 19 15 46.34%
LAR1
LAR2
LAR3
LAR4

20 14 6

70%
Large Class

75%
17 14 3 82.35%
55 40 15 72.73%
33 25 8 75.76%

LAZ 139 138 1
99.28% Lazy Class

99 %
M1
M2
M3

15 9 5 “Not so many attributes”.

60%
MFABNC

55 %
13 9 3 69.23%
10 9 1 90%

Table 11. Summary of the percentage of accuracy in Models41 by reviewer A.

RADAR
Results

Agreed Disagreed Not
Answered

Percentage of
Accuracy

Average of (%)
Accuracy

C1
C2
C3
C4

8 6 2 - 75%
Complex class

70 %
8 6 2 - 75%
8 6 2 - 75%

41 23 18 - 56.1%
LAR1
LAR2
LAR3
LAR4

20 7 13 - 35%
Large Class

38 %
17 7 10 - 41.18%
55 16 39 - 29.09%
33 16 7 7 48.48%

LAZ 139 111 20 8
79.86% Lazy Class

80 %
M1
M2
M3

15 11 4 - 73.33%
MFABNC

80%
13 11 1 1 84.62%
10 8 1 1 80%

Table 12. Summary of the percentage of accuracy in Models41 by reviewer B.

