

Providing Automated Feedback on Software Design
for Novice Designers

Bachelor of Science Thesis in the Programme Software Engineering and
Management

HELEN ANCKAR

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, June 2015

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Providing Automated Feedback on Software Design for Novice Designers

 HELEN ANCKAR, June 2015,

© HELEN ANCKAR, June 2015.

Examiner: JAN-PHILIPP STEGHÖFER

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden June 2015

Providing Automated Feedback on
Software Design for Novice Designers

Helen Anckar

Department of Computer Science and Software Engineering

University of Gothenburg

Gothenburg, Sweden

gusanche@student.gu.se

Abstract. In this paper we describe the design and implementation of

a pedagogical feedback agent, designed to provide on-demand feedback on

software design. The implemented feedback agent was integrated with an

online UML editor, and novice designers can design UML class diagrams

within this environment and request formative feedback from the feedback

agent. Tool evaluations were conducted with the purpose of improving the

system and as way to observe how users respond to the provided feedback.

Results from this research are encouraging and most of the evaluation

participants found the automated feedback on design to be helpful.

Keywords: Computer supported collaborative learning, Interactive Learn-

ing Environment, Pedagogical Agent, Formative Feedback, Cognitive

Load.

1 Introduction

The Unified Modeling Language (UML) has evolved into a standard
object-oriented modeling notation for designing quality conceptual
models of software systems [1]. As a result of today’s fast evolving
technological advancements, and the standardisation and exuberant
growth of UML, the variety in UML modeling tools has increased
over the last decade. While these tools are equipped with a wealth
of features to enable the design and development of basic to com-
plex software systems, constructing complex UML diagrams such
as class diagrams, use case diagrams and system sequence diagrams

2 Helen Anckar

can be quite a challenging and complex process, especially for novice
software system designers [2]. These UML modeling tools normally
employ functionalities that are too extensive and too complex for
novice designers to use, which may consequently lead to cognitive
overload in students with low prior knowledge in UML design [12,
21]. Some examples of the most common UML modeling tools cur-
rently available include Umodel1 by Altova, IBM Rational Rhapsody
by IBM, Papyrus2, Enterprise Architect3 by Sparx Systems, Visual
Paradigm 4, and IntelliUML Teresa5 by Beto Software.

Since UML has grown to become the de facto standard lan-
guage for designing software artefacts produced by many established
software development companies, software engineering and program-
ming students at higher education institutions are expected to learn
UML design well enough to e↵ectively design higher quality soft-
ware in industry. In an e↵ort to help students learn UML design
more e↵ectively, researchers have developed a variety of Computer
Supported Collaborative Learning systems for UML, for example
[2, 5]. These CSCL systems employ pedagogical agents that help
novice designers learn UML modeling skills by providing advice and
domain-level feedback on design through hypertext, glossaries, and
on collaboration [4, 12]. CSCL systems for UML are designed to
support collaborative learning and are not developed with the aim
of providing especially designed feedback on UML design to single-
user designers. To the best of our knowledge, no feedback agent(FA)
for UML has been designed to provide especially designed forma-
tive feedback to novices in online Interactive Learning Environment
(ILE).

This paper presents a web based UML feedback agent that pro-
vides formative feedback on software design to novice designers based
on the results from a comparative validation of the students solution
against an ideal solution provided by an educator. An Interactive
Learning Environment [29], is created by integrating the feedback

1
(http://www.altova.com/products_umodel.html)

2 (https://www.eclipse.org/papyrus/)
3 (http://www.sparxsystems.com/products/ea/)
4 (http://www.visual-paradigm.com)
5 (http://www.betosoftware.com/teresa/)

Providing Automated Feedback on Software Design for Novice Designers 3

agent with an already existing online UML editor called WebUML
[14] that was designed and created by professor Dave Stikkolorum.

Our main objective with this research design study was to find
out how an online UML modelling technology can support giving au-
tomated e↵ective feedback to novice designers and how this feedback
mechanism can best be designed and developed. More specifically:

RQ.1What properties should a feedback agent for an online
Interactive Learning Environment for UML novice designers have?
RQ.2 How does such an agent e↵ectively provide e↵ective
feedback?

2 Related Work

This section presents areas of research concerning i) computer sup-
ported collaborative learning systems for UML that are similar to
our area of research; ii) help-seeking behaviour in ILE’s; and iii)
pedagogical agents. We also explore the concept of feedback, and
the di↵erent levels of feedback as elaborated in the feedback model
by Hattie and Timperley [13].

2.1 Tooling

Chen and colleagues designed and developed CoLeMo [2], a dis-
tributed collaborative UML modeling environment designed to help
remotely situated students learn UML software design in groups [2].
The CoLeMo system is designed to provide advice pertaining to
UML designs rules, as well as advice regarding group collaboration.
CoLeMo is also designed to monitor designer activities (e.g which
students are active during a modeling session), and to regulate and
coordinate user participation.

Nilufar Baghaei et al. [23], present COLLECT UML, another
collaborative learning environment that uses a meta constraint-based
model to teach object oriented analysis and design. Like CoLeMo,
COLLECT UML also provides designers with domain level feedback
and as well as feedback on collaboration work. COLLECT UML
was first designed to support single users before it was turned into
a collaboration system. This system also provides a chat window

4 Helen Anckar

were collaborating students can communicate with each other while
working on a common task.

Tourtoglou and Virvou [5] present AUTO-COLLEAGUE, a col-
laborative learning environment for UML designed to help novice de-
signers (trainees) learn UML skills through collaboration with their
peers and trainers (administer, supervisor or teachers). The tool is
developed around a user-modelling component where students char-
acteristics such as performance and personality are evaluated and
accounted for as a basis for providing feedback on e↵ective collabo-
ration.

2.2 Help-Seeking in ILE’s

The concept of help-seeking in any social context is one that a lot
of people know too well, however the process behind this concept is
rather complex. According to the help-seeking model presented by
Nelson-Le Gall [24], help-seeking is a five step process that involves
the following stages :

i) Became aware of the need for help: The student must know when
to seek help; understand that he or she is struggling and will need
help in order to progress with the task at hand.

ii) Decide to seek help: The student must look at available
information and decide whether to elicit help.

iii) Identify potential helpers: In this step, the student must
identify who to elicit help from. This could be from peers, teachers
or by asking a question online.

iv) Use strategies to elicit help: The question must be formulated
in an appropriate way to match the subject matter [25].

v) Evaluate help-seeking episode: In the final step, the learner must
evaluate the help they received and determine whether it was useful
or not. If the help was not useful, the student must seek further help
and this may involve the identification of a new helper.

Although this model was built around the study of help-seeking
in a social context such as classrooms, it can also be applied to help-
seeking behaviour presented in Interactive Learning Environments

Providing Automated Feedback on Software Design for Novice Designers 5

(ILE) as the di↵erent stages that students take during a help-seeking
episode are very similar in both environments [12]. The only di↵er-
ence is that in an ILE, a helper (e.g help feature) would have already
been identified. However, one can also argue that even in an ILE, a
student would still have the choice to seek help from other sources
e.g an external web page that contains detailed domain-related in-
formation.

Help in ILE systems can be designed to be accessible to students
either on demand (i.e at a student’s request) or whenever the system
deems it necessary to provide help. Researchers argue that students
who receive system initiated help are primarily less likely to receive
the appropriate type of help they need as the system’s help functions
would not be able know a student’s current cognitive state or pick
up on any of the students verbal cues [28, 26]. Furthermore, students
are less likely to use system initiated help in knowledge construction
as the help message may have been presented at a time when they
are least receptive to new information [27].

2.3 Providing Feedback

Hattie and Timperley conceptualise feedback as information that
one receives from agents such as teachers, parents, friends and other
sources regarding performance and or understanding [13]. They ex-
plain that for feedback to be e↵ective, it must provide answers to
three critical feedback questions: ”Where am I going?”, ”How am I
going?”, and ”Where to next?”. They also present a feedback model
that consists of four di↵erent levels:

i) The task (FT): This level involves feedback regarding a
performed task, and whether the task is correct or incorrect.
ii) The Processing (FP): Focuses more on helping students learn
the necessary processes required for completing a task.
iii) The Regulatory (FR): Here, feedback is directed at
self-regulation such as instilling confidence in a student to
encourage further engagement on a task.
iv) The Self (FS): This is the least e↵ective feedback level of the
four and involves giving feedback to students in the form of praise

6 Helen Anckar

through phrases such as ”great job!” or ”Well done”. It is the least
e↵ective because feedback at this level alone rarely contains
information about the task itself.

The most e↵ective feedback involves a combination of the task
performance level, the processing level and the regulatory level [13].
Students move through these levels in a sequential manner. This
combination makes it possible for a student to know where he or she
is, how he or she is doing and what he or she should focus on next in
order to make progress with a task. This also consequently reduces
frustration and trial-and-error behaviour in students.

2.4 Pedagogical Agents

Pedagogical agents are software agents such as autonomous or inter-
face agents that support learning and provide assistance to students
in for instance Interactive Learning Environments [15] or CSCLs
such as CoLeMo and AUTO-COLLEAGUE [2, 5]. In short, ”peda-
gogical agents are software agents with a pedagogical agenda” [16].
Pedagogical agents have been employed in a variety of intelligent tu-
toring systems (ITS) and are presented either as text-based agents
(displaying only text in the user interface) or animated agents for ex-
ample [18, 19]. Some agents are specifically designed for educational
purposes and play specific roles where they exhibit expert knowl-
edge in specific domains such as, facilitating collaboration in ITSs
for example [2, 5] or providing assistance in ILEs [15].

While the above mentioned systems are all designed to help
novice designers learn UML design skills, these systems may present
some challenges for students who find it hard to seek help in social
environments. Firstly, these systems are designed to employ collabo-
ration between peers, which in itself is not a bad thing. However, this
may defeat the very purpose of simplifying the learning experience
for UML novices by employing way too many functionalities. Using a
chat in a UML learning environment may present similar challenges
to the ones that students in social settings such as classrooms are
faced with [12]. Students working in collaborative learning environ-
ments may become reluctant to seek help as they do not want to be
perceived as incompetent or weak by their peers or instructors [12].

Providing Automated Feedback on Software Design for Novice Designers 7

The CSCL systems mentioned above are very similar in nature.
They provide domain-level knowledge feedback and feedback on col-
laboration. However they do present one particular limitation: The
domain-level feedback that they provide is limited to the feedback
at task level (FT). According to Hattie and Timperley, too much
feedback based solely on this feedback level can be detrimental to a
student’s performance [13]. We propose using UML constraints and
combining three di↵erent levels of feedback (i.e the FT level, FP level
and FR level) as the most e↵ective way of modeling and presenting
automated feedback.

Using our knowledge in the di↵erent kinds of help seeking be-
haviour that students may present in ILE’s, one of our goals was to
design a system that could support students who would otherwise
not seek help in for example classroom settings, to seek help from the
system. In order to provide e↵ective feedback to novice designers, we
designed a system that provides the kind of feedback that aims to
answer the three critical questions ”where am I going?”, ”how am I
going?” and ”where to next?”. We combine three di↵erent feedback
levels, i.e the FT level, FP level and FR level to produce the most
e↵ective type of feedback as presented by [13].

Unlike the CSCL’s mentioned above, our focus with this research
was not only about providing feedback to students using UML-based
constraints, rather we also focused on exploring help-seeking be-
haviour in ILE’s, the di↵erent types of feedback, as well as ways in
which to provide e↵ective feedback to support students in attaining
their goals in UML design.

3 Method

A design research approach was used for this study [8]. Research
Design was the most suitable for this research because the study
involved the implementation and evaluation of a designed software
artefact to address a specific problem domain [8]. The study was
conducted iteratively and incrementally, and included observational
field studies (monitoring the use of the developed feedback agent) as
the evaluation method of our choice.

Evaluations involving 5 participants were conducted and neces-
sary improvements were made to the tool based on the feedback

8 Helen Anckar

Fig. 1. Overall Research Framework

that we received. A UML design task about a tank game was used
as a modelling task by students who modelled all the student design
solutions explored during this research and as a modelling task for
tool evaluators during the evaluation processes. Fig. 1 presents the
di↵erent phases of our research process.

3.1 Identifying Design Mistakes and Possible ’Synonyms’

A total of 59 UML design solutions of the tank game were manually
investigated with the purpose of identifying common design errors
made by students when designing class diagrams. The discovered
mistakes represented areas where students needed learning support,
and the following requirements were developed around them to sup-
port learning:

– O↵er domain-level feedback on UML naming conventions and
general design principles.

– Inform designers of missing interface classes.
– Provide advice on missing classes

Providing Automated Feedback on Software Design for Novice Designers 9

– Provide advice on missing attributes
– Provide advice on missing operations
– Provide advice regarding inheritance

We also manually investigated these models to identify the most
commonly used names by students for classes, associations, attributes
and operations. The common names were then used to build a ’syn-
onyms’ database of possible names that students could use when
implementing the task in the ILE. The possible names were used
for the synonyms database as there is no single best solution for a
problem, and there are often several possible class names, attributes
or operation names for the same requirements. For example some
class names such as PlayerController are not ’real’ words and would
therefore have no real synonyms. Therefore, creating possible ’syn-
onyms’ based on the most frequently used names for classes seemed
the most plausible approach to take. The UML models were collected
from three di↵erent sources as follows:

Makerere university, Uganda. 27 of the models we studied were
designed by software engineering students at Makerere university in
Kampala, Uganda. The data from Uganda was subset data
collected for a separate research experiment. However, since the
task in the experiment was the same as the task given to students
for this research, and to increase the external validity of this
research by increasing the number of data points used, we decided
to use the models submitted by the students in Uganda as data for
this research. The students modelled and submitted their task
solutions on-online using WebUML.

Leiden University, Netherlands. A further 28 models were designed
by software engineering students at the university of Leiden in the
Netherlands. These models were retrievd from a free online UML
repository (http://models-db.com/).

Gothenburg University, Sweden. And finally, 4 of the models that
we studied were designed by software engineering students at the
university of Gothenburg.

10 Helen Anckar

3.2 Design and Development

We developed a pedagogical agent designed to provide guidance and
feedback to novice designers during design sessions. The feedback
agent takes in as input, an ideal solution designed by an educator
and uses this solution as part of the basis (the other being design
principles) for providing feedback to novice designers. Feedback is
triggered on-demand when a student presses the validation button.

Fig. 2. The Main Components

Once feedback is requested, the pedagogical feedback agent first
compares class names, associations, inheritance association direc-
tion, attribute names and method names in the student’s solution
against the same parameters in the ideal solution for direct hits. If
some parameters are still missing, the FA goes through a ’database’
of allowed possible class element names. The possible names are not
only limited to possible synonyms, rather we also created a list of
possible names using the most common names in the class diagrams

Providing Automated Feedback on Software Design for Novice Designers 11

Fig. 3. System Sequence Diagram

that we studied in the elicited data from the Uganda experiment,
UML repository and the Gothenburg university students. We cre-
ated the homemade synonyms for cases where students use names
that are not real words or cannot be synonyms of any existing words
for example Iplayer, or PlayerController. An example of the possible
classes extracted from the elicited data is shown in Fig.3. below:

Fig. 4. Possible class names

The FA also checks student solution’s class names, attribute
names, and operations names for uppercase (first letter in a class
name) or lowercase (first letter in attributes and operations names).
If class names starting with lower case letter are found, appropriate
feedback is provided (e.g ”class names must always start with a cap-

12 Helen Anckar

ital letter”). Operation names starting with an uppercase letter are
also checked before necessary feedback is provided.

A method called globalPercent is also updated every time the
feedback agent makes a correct ’diagnosis’ and the result from this
method is presented as a progress bar in the user interface to indicate
progress towards the ideal solution.

Feedback Messages

Feedback has the power to influence how people learn and achieve
their goals [13]. However, providing feedback directed at the wrong
level, in the wrong way or at the wrong time may result in undesired
consequences [13]. Since our aim was to design feedback that was
directed at the right level, presented well and at the right time, we
thought it a necessary step to investigate how people process new
information by trying to understand the concepts of cognitive load,
and how best to present feedback to students that are learning new
design skills.

Research on cognitive learning has demonstrated the importance
of considering cognitive load when designing e�cient Interactive
Learning Environments [20, 21]. Kalyuga [21] explains that the hu-
man cognitive architecture has limitations and these limitations must
be carefully considered since such environments are expected to sup-
port the construction of new knowledge in students as a consequence
of deep cognitive processes. As humans, despite our long term mem-
ories (LTM) ability to store unlimited amounts of data for unlimited
amounts of time, our cognitive systems employ a restrictive mech-
anism functionality that limits the range of immediate changes to
our LTM [21]. Working memory (WM) is responsible for process-
ing newly acquired knowledge and for integrating this knowledge
with the knowledge that already exists in LTM. And unlike LTM,
its capacity is very limited and is easily overloaded when exposed
to too much new information [21]. Extraneous cognitive load can
result from poorly designed instructional systems where too many
new elements of information are introduced into working memory
and/or are introduced too fast to be successfully incorporated into
LTM structures. [21].

Providing Automated Feedback on Software Design for Novice Designers 13

In order to minimise the risk of causing extraneous cognitive load
and to support e�cient learning in students, we designed the FA to
dispense feedback messages in sequential stages [21]. Feedback about
a particular task element implementation is only released once the
student has a particular number of class diagram elements imple-
mented in his or her solution. For example, a student solution con-
taining more than 10% of correctly implemented class names and
less than 20% of expected operations names, triggers a feedback re-
sponse containing feedback information regarding class names only,
and zero feedback on implemented operations.

Table 1. Feedback Design

FeedackMessages FeedbackLevel

Your classes Tank, Centurion look good but you are

still missing

some important classes.

FT Level

Read the task carefully and see if you can find the

remaining classes by identifying

nouns, preferably complete

singular nouns.

FP Level

Class name(s) Tank look good FR Level

Table 1 presents an example of the di↵erent levels of feedback
that are presented to a novice designer regarding classes during a
help-seeking episode in the ILE. We employ a combination of three
di↵erent feedback levels (i.e the task performance level, the process-
ing level and the regulatory level) to provide the most e↵ective feed-
back to novices as explained by [13]. With these levels of feedback,
novice designers can see where they are, how they are doing and how
they can move forward to attain their goal of completing a task. Our
aim with this feedback is to move the designer sequentially from task
to processing, and then to regulation [13]. According to Hattie and
Timperley, feedback that is presented in this manner has the most
e↵ect on how students learn [13].

14 Helen Anckar

Initially, the feedback agent only provided information that was
directed at the task level (FT). However, during a couple of eval-
uation sessions we noticed that students who after some attempts
to complete the task but got stuck, seemed to quickly reduce their
cognitive e↵ort, and turned to trial-and-error tactics to complete
their design task. Fortunately, since our system development was
done iteratively, we managed to optimise our feedback messages to
increase e↵ectiveness and reduce frustrations-levels in students. Im-
provements to the FA’s feedback messages were conducted iteratively
as follows:

Phase 1: The first stage of improvements were conducted to
include more feedback about which important classes or class
elements were missing from the students solution as the first
feedback the feedback agent provided was mostly directed at the
task level and seemed to induce trial-and-error strategies in the
evaluators.

Phase 2: The second phase of improvements were conducted to
include feedback that advises novices to either rename or delete
class diagram elements names that were considered wrong or
irrelevant to the task by the feedback agent.

Phase 3: And finally, feedback specifying where and what
students could look for in the text was included during the third
phase of improvements implementation.

User Interface

The user interface is very simple and minimalistic. An icon button
with a link to a textual description of the task to be implemented
and a feedback request button are provided at the top of the screen.
Students can read the text describing the task and construct their
design solutions in the workspace. They can switch back and forth
from the text to editing mode whenever they want. Students decide
when to submit their solutions and request feedback from the FA.
Once feedback is requested, the agent displays the appropriate level
of feedback in the left column of the screen. Novice designers can go

Providing Automated Feedback on Software Design for Novice Designers 15

Fig. 5. User Interface

through this information, and continue with the task when they feel
they have understood the feedback.

A feedback progress bar was also added to the bottom part of the
user interface. It indicates overall progress and reflects data about
matched classes, attributes, and operations. Progress bars or ’per-
cent done indicators’ are a graphical technique of informing users
on how the task their currently undertaking (or that the system is
undertaking) is proceeding [20]. Progress bars are used in a lot of
systems to indicate for instance, the progress of a file transfer, or as
a way to provide an estimation of the time remaining before a long
task is completed. Research on progress bars indicates just how im-
portant it is to use them in user interfaces [20]. According to Myers
[20], users would much rather use a system that provides a progress
indicator as a feature in its user interface than one without.

The progress bar implemented in this system is by no means a
grading system, it only reflects how the student is doing with regards
to whether or not he or she has implemented the most important
elements of the given task. It is a type of feedback that serves as
progress reassurance and helps students feel better about the system
[20]. At a quick glance, students can see just how far they are from

16 Helen Anckar

the ideal solution and decide whether to seek more help by reading
the feedback displayed on the same window more closely.

3.3 Data Collection and Evaluation

The data were collected qualitatively through an observational de-
sign evaluation method with the purpose of uncovering new require-
ments, collecting feedback on how students feel about the tool’s us-
ability, the feedback they received from the feedback agent, and what
they felt needed to be improved. Five first and third-year software
engineering students enrolled at the university of Gothenburg vol-
unteered to take part in the evaluations. The students learned UML
modeling concepts during their first year at university and had a
good idea of what UML is about. The students were given a UML
design task to implement under observation and new improvements
were iteratively made to the FA based on the feedback.

The Task

For the evaluation, students were given a task to model. The task
involved modeling a tank game which required the realisation of
requirements such as di↵erent types of tanks, world, levels, a player,
di↵erent types of bullets and a way to manage the recording of scores.

Data Collection Methods

The data were collected iteratively using qualitative methods i.e in-
terviews, and observations. Evaluation participants were asked to
construct design solutions of the tank game and there was no set
time frame for completing the task. Participants were free to stop
whenever they felt they were done.

Observations: Observations were conducted in order to observe
how the students used the online UML editor to design the task
and how they respond to feedback.

Interviews: The participants were also interviewed using open
ended questions and the interview sessions were recorded with their
consent. The interview sessions were aimed at having the students

Providing Automated Feedback on Software Design for Novice Designers 17

help us identify any problems with the tool, verify the results
obtained from the observations and to evaluate the artefact [8].
The following questions were asked during the interview sessions:

1. What kind of feedback do you think would be have been great to
see now?

2. What do you like about the implemented features?
3. What do you like about the tool as a whole?
4. What do you think about the progress bar?
5. How do you think the tool could be improved?
6. Which part of the feedback helped you solve the problem?

Data Analysis

The collected data were analysed thematically, as this allowed us
to go deeper into the information that we got from the evaluations.
Thematic analysis is a qualitative data analysis approach that can
be used to analyse, identify, assign and describe themes within data
in research [11]. All units of data from the interviews (transcripts)
were given a particular code and examined in more detail. Themes
were later developed around these codes. The data were analysed
qualitatively [9, 10] in four steps as follows:

Step 1: Reading Through Transcripts: Transcripts were thoroughly
read through several times. Notes about our first impression of the
data were recorded.

Step 2: Coding Relevant Data: Relevant data such as sections,
phrases or sentences that shared commonalities were labelled using
the same colour. For instance, sentences that contained the words
’progress bar’ were colour coded with the colour ’yellow’ to
represent features that the students found useful regarding the
progress bar located at the bottom of the user interface, and
’underlined yellow’ text was used to represent user interface
improvements suggested by the students. Fig.5 below shows the
di↵erent colour themes that were used to organise the data before
major themes were assigned.

18 Helen Anckar

Fig. 6. Colour coded data

Step 3: Selecting the Most Important Codes: The coded text was
read through again and the codes that we thought were of most
relevance or occurred more than once (e.g most common interview
questions responses or recurring words, sentences or phrases) were
selected for labelling.

Step 4: Labelling the Themes: Finally in step 4, all the collected
themes were labelled and the relations between these themes were
noted. Any data concerned with user interface improvements such a
changing the colour of the progress bar were placed under the ’UI’
label. Data that suggested that the students would have wanted
more help than was provided by the feedback agent were organised
under the ’Pedagogical Agent’ label, and all sentences that seemed
to suggest how the tool could be improved or how easy the tool
features are to use were organised under the ’Usability’ label. We
ended up with three major categories i.e ’Usability’, ’Pedagogical
Agent’ and ’User interface’, each of which has two sub-categories
namely ’useful features’ (what the students found useful) and
’improvement suggestions’ (improvement suggestions). Fig.6
illustrates two of the three major themes, and their subthemes.

3.4 Internal and External Threats to Validity

External: Our study focused on a small group of students. There
could be an ocean of data out there that we could not reach due to
our limited number of participants and resources. Because of this,
although the feedback agent was implemented using requirements
and feedback data provided by software engineering students at the
university of Gothenburg, the views and expressions about how the
tool works and whether or not it helps students learn UML
modeling skills more e�ciently and e↵ectively because of the type
of feedback provided cannot really be generalised. We tried to

Providing Automated Feedback on Software Design for Novice Designers 19

Fig. 7. Thermatic Analysis

avoid this by staying as open- minded as possible and by accepting
as many improvement suggestions as was possible to implement
from the small number of participants that we had.

Internal: There is a possibility that only the features that we
thought were worth implementing would be implemented, despite
an indication of other more important features in the data collected
from the students. We tried to overcome this by studying the
improvement suggestions carefully and selecting the ones that
occurred most frequently for improvement iterations and by
discussing these with the students who had participated in the
evaluations and with other stakeholders.

4 Results

Five software engineering students from the university of Gothen-
burg volunteered to participate in the evaluation of the tool. The
participants were third year students who were familiar with UML
design albeit with varying proficiency. The evaluations were aimed
at investigating what the students felt about the system, how useful
they found the feedback messages to be, what they thought about the
user interface and the general usability and feel of the ILE. Themes
obtained from the thematic analysis are key to determining what all
the participants think about the feedback presented by the pedagog-
ical agent as well what they think about performing a UML task in
the online learning environment.

20 Helen Anckar

During data analysis, each labelled theme was assigned a total
of 2 subthemes, ’useful features and ’improvement suggestions’. The
subthemes ’useful features’ describe the benefits experienced by the
students through the use a particular feature of the ILE. The sub-
theme ’improvement suggestions’ was assigned to characteristics of
data referring to improvements in the pedagogical agent, the us-
ability of the system as well as suggested improvements in the user
interface.

4.1 Pedagogical Agent

The Pedagogical agent theme contained the largest number of codes.
A total of eleven codes were identified under this theme. The theme
presented here reflects two things:

i) By reading the feedback presented by the pedagogical agent, the
participant’s showed the ability to identify what they needed to do
next in order to complete or make any progress with the task.

Five out five participants were pleased to receive a�rmation
about which classes, attributes or methods that they constructed
were correct. They also expressed satisfaction on the pedagogical
agents ability to advise them on what they needed to do next in
order to move forward with the task. It is fair to say that all of
the participants benefited from getting feedback that informed them
of their current status, and as well as feedback that pointed them
towards where to go next with the task.

I: Which part of the feedback helped you solve the problem?

*: “The feedback is good, I like that it shows correct classes. The
part where it says, classes Tank, centurion and the others look good.
I know that these classes are correct. Also, the part that says find
classes by identifying nouns in the text.”

Some mixed messages where also noted. Despite acknowledging
the benefits of knowing which elements of the class diagrams were
correct, we observed that some of participants remained adamant

Providing Automated Feedback on Software Design for Novice Designers 21

about deleting or renaming some of their ’incorrect’ class diagram el-
ements and neglected to follow some of the advice from the feedback
agent. We also noticed a few participants switch to trial-error-tactics,
but what we found particularly interesting was that the students who
switched to trial-and-error tactics also admittedly had lower UML
proficiency, and were also more willing to modify their class diagram
elements completely in accordance to the feedback provided by the
pedagogical agent. The participants that seemed to have more higher
prior knowledge in design, maintained some parts of their solutions
that they felt were correct despite them not being confirmed as good
solutions by the feedback agent.

ii) The participant’s need for more help in the form of hints from
the feedback agent.

Almost all participants expressed the need for more help in the
form of hints. Suggested improvements included adding a bit more
information about the missing classes, irrelevant classes or class el-
ements and hints related to them. The requests for hints or more
help is likely to be because of the way feedback is designed to be
presented (i.e a little feedback at a time and then increasing from
there to minimise or even avoid extraneous cognitive load), however
we cannot draw anything conclusive given the small sample size of
the evaluation participants.

*: “Someone like me who’s not good at UML, I need more hints”.

4.2 Tool Usability

We identified the second largest number of codes in the area of us-
ability. A total of nine codes were identified in the area of usability.
This theme reflects the student’s experience with using the features
provided in ILE and what they feel could be improved. There were
aspects of the transcript that highlighted that the majority of the
participants thought that the tool was easy to use. This was also
confirmed during observation. Participants showed no indication of
struggling with either switching between reading the task and re-
turning to the editing pane, or dragging and dropping the di↵erent

22 Helen Anckar

class elements. They found the tool to be relatively easy to use.

I: What do you like about the tool as a whole?

*: “Its quite easy to use”.

From the observations and interviews, we noted how some of the
participants seemed to want to expand the width of the class af-
ter constructing long class names or attribute names and declaring
types. The majority of participants also expressed the wish to have
the tool support the locking of classes so as to enable them to move
the whole model around the modeling pane.

*:“There should be a way to move the model. Find a way to resize
the class.”
*: “ Make it possible to expand class width.”

4.3 User Interface

This theme contained the least amount of codes. These codes all re-
ferred to how di�cult or easy it was for the participants to notice
the progress bar and what the participants thought about having a
progress bar in the user interface. Most of the participants did not
notice the progress bar. This is evidence enough to suggest that the
progress bar design needs to be improved. The participants seemed
to either not see the progress bar or mistook it for a normal scroll
bar. This could have been due its colour as one participant suggested
or its position within the user interface.

I: What do you think about the progress bar?

*: “The progress bar is very vague, colour-wise. I thought it was
a scroll bar. Maybe add percent or something? ”

The majority of the participants did not notice the progress
bar, and only a few suggested improvement changes. The suggested
changes included using a stronger, bolder colour and including some

Providing Automated Feedback on Software Design for Novice Designers 23

text that indicated progress by either labelling the progress bar with
a word or phrase or by including a percent-done numeric symbol.

5 Discussion

The objective of this study was to explore how a feedback agent for
an online ILE for UML for novice designers could be developed, as
well as how the feedback agent would best be designed to e↵ectively
provide feedback to novice designers. To meet this objective, we first
had to investigate and understand what feedback means, what influ-
ence feedback has on students and which di↵erent types of feedback
exist. We also had to understand help-seeking behaviour in ILE’s,
cognitive load in students and how feedback would be presented as
this would benefit the design of the agent. For instance, we designed
the agent to present feedback messages in a sequential manner to
minimise extraneous load in students [21]. In order to provide e↵ec-
tive feedback and to enhance learning, we designed and implemented
a pedagogical agent that combines three di↵erent types of feedback
levels (i.e FT, FP and FR). When combined, these levels of feed-
back provide the most e↵ective feedback aimed at answering three
critical questions as elaborated by Hattie and Timperley [13]. The
pedagogical feedback agent was developed incrementally and iter-
atively and was integrated with an online UML editor to create a
learning environment where novice designers could solve tasks and
receive on-demand formative feedback. Qualitative evaluations were
then carried out and the data were analysed using thematic analysis.

The Feedback Agent

The results detailed in section 4 highlight important findings as to
how students respond to receiving automated feedback. We received
mostly positive feedback about the feedback provided by the peda-
gogical agent. What seems particularly important in terms of which
parts of the feedback helped the participants attain their task goals
was their ability to identify what they needed to do next in order
to move forward in their task. However, because the initial feedback
design contained no information about which class diagram elements
were irrelevant to the task, some participants seemed to switch to

24 Helen Anckar

trial-and-error tactics to ’find’ the classes or class elements whose
names did not appear in the feedback message. The trial-and-error
strategies displayed by some participants during the evaluation high-
lighted the need to fine tune the feedback design, and structure. The
feedback that these students received from the pedagogical agent was
mostly at task level (FT). Hattie and Timperley [13], stress that too
much feedback at this level may remove a student’s focus on the
strategies necessary to attaining their goal, to focusing on their im-
mediate goal. Improvements in the way feedback is presented were
made to provide more formative feedback in order to reduce frustra-
tion, trial-and-error tactics and to encourage more cognitive e↵ort
from the students [13].

Why did some students maintain their ’incorrect’ answers
despite feedback to suggest otherwise?

Aleven et al. [12], explain how academic goal orientation plays an
import role in the willingness of students to seek help. Students who
possess a high level of intrinsic orientation show an interest in the
subject matter and aim to understand and learn. Having an interest
in a subject encourages students to ask questions when they feel the
need for help. On the other hand, students with extrinsic orientation
also want to learn, but are usually mostly interested in achieving
high scores and making a good impression on their teachers or peers
[12]. Although one cannot draw generalised conclusions because of
the small number of participants, in our study intrinsic and extrinsic
behaviours were typified by some of students willingness to seek more
help from the agent and by the reluctance to change their “correct”
models in the other students. It should also be noted, however, that
the participants modelled their tasks under observation. This may
have created a social climate and may have a↵ected the way that
the participants responded to feedback and their behaviour towards
seeking help. The response regarding the tool’s usability as a whole
was mostly positive. The participants found the tools features to be
relatively easy to use.

Providing Automated Feedback on Software Design for Novice Designers 25

The Progress Bar

Feedback regarding the progress bar indicated that most of the stu-
dents did not notice it in the user interface and as such merits further
consideration for improvements. Based on [20], we believe that im-
plementing a progress bar correctly would be beneficial. Progress
bars “help novices feel better about the system by showing that a
command has been accepted and the task is progressing successfully”
[20]. Furthermore, the design of the progress bar, its colour, size and
its location within the user interface may be important factors to
consider.

Locking of Classes into One Moveable Model

With the feedback regarding the tool as a whole, the students sug-
gested the locking of classes into one moveable model. Although the
locking of classes into one model may seem a separate issue from the
feedback agent, the evaluators responses indicated otherwise. The
response signified the importance of having a seamless interaction of
all features involved in the learning environment to minimise frus-
tration in students and to make students feel that they are indeed
working in this one environment. When students interact with the
modelling tool (i.e WebUML), they interact with one tool and not
with the feedback agent alone as separate tool; they implement their
design solutions by directly interacting with the modelling tool be-
fore requesting feedback from an agent that is embedded within the
modelling tool. If tasks take long to implement because students
have to move things around the workspace one at a time to fit in
more items (perhaps as advised by the feedback agent), frustration
issues may come into play. Locking the classes together could help
serve as an indirect beneficial support for learning by allowing stu-
dents to focus more on the task at hand and not on issues they feel
are getting in the way of implementing their task.

6 Conclusion

This paper describes the implementation of a feedback agent de-
signed to provide automated feedback on software design to novice

26 Helen Anckar

designers. We designed a pedagogical agent and integrated it with
an already existing online UML modeling tool called WebUML [14].
With the goal of providing e↵ective feedback to support learning, we
designed a system that could provide on-demand formative feedback
that gradually increases in detail to support learning and reduce any
chances of extraneous cognitive load [21]. We conducted evaluations
with the purpose of discovering how students respond to the auto-
mated feedback presented by the pedagogical agent, how they felt
about the learning environment as a whole, and to elicit improvement
suggestions for the tool. The results from this research are encour-
aging and most of the evaluation participants thought it would be
useful to use such a tool when solving UML assignments.

7 Future Work and Limitations

Although we received mostly positive feedback about the pedagogical
agent from the evaluations, there are still some issues that merit
further careful thought.

– How to have the model provide hints, when to provide these hints
and what type of hints to provide? Many of the evaluation par-
ticipants seemed to suggest the implementation of ’hints’ to aid
in their strategies for constructing their solutions. Hints could ei-
ther be system initiated after a set number requests for feedback
by the student, or user initiated.

– A way to measure the e↵ectiveness of the feedback provided?
Although the feedback about the pedagogical agent was mostly
positive, statistically testing its e↵ectiveness by conducting an
experiment would have been desirable. However, due to the time
limitations we had, we thought it wise to leave this type of evalua-
tion for future research. An experiment with a reasonable enough
sample size would give us more insight as to how e↵ective provid-
ing formative feedback is. We would then base our final findings
not only on qualitative results but on quantitative results of a
large sample size too. This could also a↵ect the generalizability
of our findings.

Providing Automated Feedback on Software Design for Novice Designers 27

– Lock classes for easier manageability of the model within the
editing pane. We strongly feel that locking the classes together
into one movable diagram would improve user experience and
minimise frustration in students.

– How to adapt the feedback agent to evaluate other tasks besides
the tank game? The feedback agent discussed in this paper was
built around a specific UML modelling task (i.e the tank game).
Adapting it to evaluate a variety of di↵erent UML design tasks
and solutions is definitely worth careful thought.

Automated Insertion of ’Synonyms’. One possible way of
achieving this would be to have an educator enter data about a
UML design task (i.e possible class diagram element names) into
a Google Spreadsheet. Since the feedback agent is designed to per-
form a comparative validation of the students solution against an
ideal solution by checking specified UML class diagram parame-
ters (checks any UML class diagram in xml format), the only data
that an educator would have to provide in the spreadsheet would
be data regarding allowable alternative names that students can
use for a given task. The alternative names would then be con-
verted into a Ta↵y-DB compatible data file that the feedback
agent currently makes use of. This conversion process could be
automated using a tool called Google Apps Script. With Google
App Scripts one can manipulate the provided Google spreadsheet
data using JavaScript. A url to the spreadsheet could be added
to the querying source code of the feedback agent for querying of
future insertions and automated conversions. The small snippet
of code in Fig.7 below demonstrates how a Google spreadsheet is
read before an automated conversion of data can be performed.
A user page where educators can upload ideal solutions in xml
format to a database could also be implemented.

Acknowledgments. I would especially like to thank Dr. Michel
Chaudron, professor Dave Stikkolorum and Ho Quang Truong for
their invaluable support and guidance during this research. I would
also like to thank the volunteers who participated in the evaluations
for their time and constructive feedback.

28 Helen Anckar

Fig. 8. Spread Sheet querying

References

[1] Budgen, D., Burn, A.J., Brereton, O.P., Kitchenham, B.A., Pretorius, A.: Empirical

evidence about the UML: A systematic literature review. Software - Practice and

Experience (2010)

[2] Chen, W., Pedersen, R.H., Perttersen, ..: CoLeMo: A collaborative learning en-

vironment for UML modeling. Interactive Learning Environments. Vol. 14. No. 3,

233–249 (2006)

[3] Auer, M., Tschurtschenthaler, T.,Bi✏.: A Flyweight UML Modeling Tool for Soft-

ware Development in Heterogeneous Environments. In: 29th IEEE EUROMICRO

Conference New Waves in System Architecture (2003)

[4] Baghaei, N., Antonija, M., Irwin, W.: Supporting collaborative learning and

problem-solving in a constraint-based CSCL environment for UML class diagrams

LNAI 4511, 147, 217–2007 (2007)

[5] Tourtoglou, K., Virvou M..: User Modeling in a Collaborative Learning Environ-

ment for UML IEEE Computer Society (2008)

[6] Eshuis, R., Wieringa, R.: Tool Support for Verifying UML Activity Diagrams. In:

IEEE Transactions on Software Engineering Vol.30, No.7, (2004).

[7] Tessmer, M..: Planning and conducting formative evaluations. IEEE Kogan Page

Limited (1993).

[8] Hevner, A.R., March, S.T., Park , J., Ram, S.: Design Science in Information

Systems Research. IEEE MIS Quarterly, Vol.28, No.1, 75–105. IEEE Press, New

York (2001)

[9] Bryman, A.: Social Research Methods. Oxford University Press, (2012)

[10] Kvale, S., Brinkmann, S.: Learning the Craft of Qualitative Research Interview-

ing.SAGE(2015)

[11] Tessmer, M.: Recommended Steps for Thematic Synthesis in Software Engineering

In: International Symposium on Empirical Software Engineering and Measuremen

(2011)

Providing Automated Feedback on Software Design for Novice Designers 29

[12] Aleven, V., Stahl, E., Schworm, S., Fischer, F., Wallace, R.: Help Seeking and Help

Design in Interactive Learning Environments. In: Review of Educational Research.

Vol. 73, No. 3277–320. IEEE Press, New York (2003)

[13] Hattie, J., Timperley, H.: The power of Feedback. In: Review of Educational

Research, Vol. 77, No. 1, 81–112. (2007)

[14] Dave, R., Stikkolorum, Truong, H., Chaudron, M.R.V.: Revealing Students UML

Class Diagram Modelling Strategies with WebUML and LogViz. Accepted for pre-

sentation at the Euromicro SEAA conference, August 26-28th and publication in

the conference proceedings (2015)

[15] Morch, A., ondahl, S., Dolonen, J.A.: Supporting Conceptual Awareness with

Pedagogical Agents. In: Information Systems Frontiers, Springer Verlag (Germany),

Vol 7. No. 1, 39–53 (2005)

[16] Haake, M.: Embodied Pedagogical Agents: From Visual Impact to Pedagogical

Implications. ISRN LUTMDN/TMAT –1032–SE EAT (2009)

[17] Ayala, G., Yano, Y.: GRACILE: A framework for collaborative intelligent learning

environments. In: Journal of the Japanese Society of Artificial Intelligence, Vol.10,

No.6, 157–170(1995)

[18] Cassell, J., Bickmore, T., Billinghurst, M., Campbell, L., Chang, K., Vilhja lms-

son, H., et al.: Embodiment in conversational interfaces. In: Proceedings of CHI 99,

Pittsburgh, PA: ACM Press (1999)

[19] Mayer, R.E., Moreno, R.: Nine Ways to Reduce Cognitive Load in Multimedia

Learning. In: EDUCATIONAL PSYCHOLOGIST, Vol. 38, No.1, 43-52 (2003)

[20] Myers, B.A., The Importance of Percent-Done Indicators for Computer-Human

Interfaces. In: Proceedings of CHI 85, April (1985)

[21] Kalyuga, S.: Enhancing Instructional E�ciency of Interactive E-learning En-

vironments: A Cognitive Load Perspective. Educ Psychol Rev, 19:387-399 DOI

10.1007/s10648-007-9051-6 (2007)

[22] Martens, R.L., Valcke, M.M.A, PORTIER, S.J.: Interactive Learning Environ-

ments to Support Independent Learning: The Impact of Discernibility of Embedded

Support Devices. Science Educ. Vol.28, No.3, 185 – 197

[23] Baghaei, N., Mitrovic, A., Warwick, I.: Supporting collaborative learning and

problem-solving in a constraint-based CSCL environment for UML class diagrams.

Computer-Supported Collaborative Learning 2:159 –190,DOI 10.1007/s11412-007-

9018-0 (1997)

[24] S, Nelson-Le Gall,.: Help-seeking: An understudied problem-solving skill in chil-

dren. In: Developmental Review, Vol.1, 224-246 (1981)

[25] Stahl, E., Bromme, R.: Not everybody needs help to seek help: Surprising e↵ects of

metacognitive instructions to foster help-seeking in an online-learning environment.

In: Computers and Education, Vol.53 1020–1028 (2009)

30 Helen Anckar

[26] Wood, H., Wood, D.: Help-seeking, learning and contingent tutoring. Computers

and Education, Vol.33 153–169 (1999)

[27] Schworm, S., Renkl, A.: Learning by solved example problems: Instructional ex-

planations reduce self-explanation activity. In:W. D. Gray & C. D. Schunn (Eds.),

Proceedings of the 24th Annual Conference of the Cognitive Science Society, 816–

821(2002)

[28] Anderson, J.R.: Rules of the mind. Hillsdale, NJ: Erlbaum.

[29] Mastho↵, J., VanHoe R.: Appeal: A Multi-Agent Approach to Interactive Learning

Environments. European Workshop on Modeling Autonomous Agents, MAAMAW.

Berlin, Springer-Verlag (1996)

