

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

Göteborg, Sweden, June 2015

Reverse Architecting: Automatic labelling of

Concerns in Reverse Engineered Software Systems

Bachelor of Science Thesis in the Programme Software Engineering and

Management

BERIMA K. ANDAM

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Reverse Architecting:
Automatic labelling of Concerns in Reverse Engineered Software Systems

BERIMA K. ANDAM,

© BERIMA K. ANDAM, June 2015.

Examiner: JAN-PHILIPP. STEGHÖFER

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden June 2015

Reverse Architecting: Automatic labelling of
Concerns in Reverse Engineered Software Systems

(Student)
Berima Kweku Andam

Department of Computer Science and Engineering
Chalmers Univ. of Technology and Gothenburg University

Gothenburg, Sweden
vision.ami4@gmail.com

(Supervisors)
Michel R. V. Chaudron,

Truong Ho Quang
Department of Computer Science and Engineering

Chalmers Univ. of Technology and Gothenburg University
Gothenburg, Sweden

{truongh,chaudron}@chalmers.se

Abstract—A significantly large fraction of time during devel-
opment and maintenance is spent on understanding unfamiliar
parts of software systems. The existence of software documen-
tation, such as software architecture design documentation can
significantly reduce the amount of time spent on this task.
However in reality, few software systems have an up-to-date doc-
umentation because project time pressure makes it impractical to
do so. During comprehension therefore, software engineers often
try to recover these lost design documentation through reverse
engineering. However, current reverse engineered diagrams show
only one perspective of a software system; the components that
exist in the system and the relationship between them. Often,
software engineers require additional perspectives in order to
understand how a system works. In this research, we aim to
solve this problem by providing one such perspective on top
of reverse engineered diagrams. We provide a framework and
tool for automatically identifying common system concerns that
are found in modern software systems, and then map them
back to the software components in the system that implement
them. An example of such system concerns are user interfaces,
persistence, security etc. A regular question that comes up
during comprehension is which software components in a system
implement these concerns. We propose a taxonomy of these
common concerns, and a framework and tool for automatically
identifying and labelling system components that implement
them. Our framework is based one lightweight static analysis. It
calculates three metrics that are then used during identification.
An evaluation of the Concern Detector tool (and in essence the
framework) on 4 software systems showed that, authors of the
systems agreed 65.5% - 76.8% with the tool’s classification of
components in their systems. This indicates that, the tool is
useful for describing the roles of these components in terms of
implementing these concerns. The current implementation is for
the java programming language; however the approach is de-
signed to be generalizable for most object oriented programming
languages.

Keywords—Reverse engineering, program comprehension, con-
cern, static analysis, software metrics

I. INTRODUCTION

Comprehending large software systems is often a non-
trivial task[1]. This task is made even harder when an up-to-
date documentation of the system is unavailable. In practice
however, very few software systems have an up-to-date doc-
umentation. This is due in part to the fact that most useful

software systems undergo a brief period of development in
which time pressures make it impractical to do so[2][3].

This period is then followed by a longer period of mainte-
nance, feature addition and adaptation, during which software
engineers spend a significant portion of their time trying
to comprehend unknown parts of the software system [4]
[5]. With inadequate documentation and a large system, this
comprehension task can become even more time-consuming,
expensive and difficult [6] [7].

Reverse engineering source code into class diagrams, is
one way developers try to recover lost design in order to
simplify this comprehension task. Researchers[8] have how-
ever found that developers find the use of reverse engineered
class diagrams limited for system comprehension. During an
experiment[9], developers were found using strategies such as
interacting with the user interface to test program behaviour
and using debuggers to elicit runtime information. This is
so that they can identify starting points in the code for
maintenance tasks and then manually read and filter out the
code, based on experience. By doing this they also tried to
map software features they needed to fix to components in the
system that implement them.

The problems with the above strategies, however are that,
attempting comprehension through manual code reading can be
both tiring, expensive or even impossible if the system is really
large[9]. It is also just as inefficient to try to figure out which
software components implement what system ”concerns” by
manual code reading[9].

Even though reverse engineered class diagrams do a fairly
good job of giving an overview of the components in a system
and the relationships between them, its failure to provide other
perspectives of the system that software engineers look for
when trying to understand unknown software systems, may be
the reason why developers avoid using them. Previous research
in the area of software visualization has shown that, providing
multiple perspectives of software systems can improve its
comprehensibility [10].

In this work, we aim to provide an automatic way to
add one such perspective on top of reverse engineered class
diagrams, in order to improve its usefulness for program com-
prehension. We aim to do this by abstracting a systems reverse

engineered class diagram, to show cross project, cross platform
concerns that are common in modern software systems.

These concerns include common system properties, for
example User Interfaces, databases, multi-threading, security
and authentication and so on. These properties are so common
that most programing languages provide libraries to help build
them.

Modern applications may provide all or a subset of these
properties depending on their purpose. When trying to com-
prehend software systems, regular questions that come up
are centred around which software components in the system
implement these properties. In the context of program compre-
hension, the possibility to have this automatically mapped to
software components that implement them, can save time that
would otherwise be used reading source code in order to get
similar information. The fact that these broad functionalities
are found in most programming languages and across software
platforms, could thus provide a very system independent and
cross platform way to provide a useful perspective of software
systems for program comprehension.

The aim of this research work is thus, to provide a cross
project, cross platform, abstraction mechanism that would give
a software engineer the ability to view a system, from the
perspective of which of these concerns a system has, and which
classes in the system implement them. We do this by providing
a tool supported framework that uses light-weight static anal-
ysis of source code properties to automatically identify these
concerns. The tool then visualizes this by labelling each class
in a reverse engineered diagram (produced by another tool
in our previous research)1 with the concerns in the system
that it implements. We envision two scenarios where such a
perspective could be useful for code comprehension:

• A new developer has to maintain a system with 5000
classes. He understands that the system has a graphical
user interface, saves user data to a server, and provides
security and authentication. But has the difficult task
of figuring out which of these 5000 classes implement
each of these concerns. This perspective could help
with this mapping.

• Our developer is now faced with the task of fixing
a bug that results in faulty entries to the database.
Instead of manually opening and reading each of the
files to find the source of the fault, with our approach it
is possible to narrow down to only classes that perform
database entries.

In this work, we have mostly focused on realizing the ap-
proach for one object oriented programming language (Java).
Even though we have designed the approach to be largely
generalizable to most object oriented programming languages.
It is worth mentioning that our tool is built on-top of an already
existing software abstraction too (SAAbs)[11]. More about this
tool is presented in section III.

The contributions of this paper are to:

• Introduce of a taxonomy of common cross-project,
cross platform concerns that software engineers look
for during comprehension.

1More about this in III

• Propose 3 software metrics (based on light weight
static analysis) for automatic identification of these
concerns.

• Provide an implementation of this framework and
an evaluation of the approach that can serve as a
benchmark for further studies.

The remainder of this paper is structured as follows:
Section II defines concerns, and introduces our taxonomy
of common concerns found in modern software systems. It
also talks about the software properties that are used by our
metrics for automatic identification of these concerns. Section
III discusses related research and Section IV Indicates our
research questions. In Section V, a description of our approach
is given whiles Section VI describes our experiment. We
present the analysis of results in Section VII and discuss our
finding in Section VIII. Finally, conclusion and talk about
future work is presented Section IX.

II. CONCERNS AND PROPERTIES FOR IDENTIFYING THEM

We follow Sutton and Rouvellou’s[12] definition of con-
cern as ”any matter of interest in a software system”. In the
context of our research, the matter of interest is any one of
these cross project, cross platform software properties that
programmers look for when trying to understand a software
system.

In table I we present a taxonomy of these concerns. This list
was generated by analysing all the packages that are provided
in the JavaSE, JaveEE and Android API. The concerns are
however generalized so that they are not specific to the java
platform. In fact most of them are concerns that other re-
searchers have attempted to automatically identify using other
approaches[12][13].

Concern Description
User Interface Display of interface to interact with end user
Persistence Saves data to permanent storage, such as in

Databases or files.
Object Model Defines an object in the application domain (e.g.

Room in a hotel booking system)
Security Performs activities related to security such user

authentication; password checking, encryption etc.
I/O Input output operations such as reading and writ-

ing to files, printing
Concurrency Performs actions related to multithreading
Exception/Exception
Handling

Actions related to creating, throwing, catching and
handling of errors.

Network/Web Performs actions related to accessing Network and
web resources.

Parser/Interpreter Responsible for parsing interpreting files from one
format to another, for example converting XML to
objects.

Messaging Performs actions related to messaging
Event/Event Handler Performs actions related to Creating, throwing and

handling of events in the system.
Geo Location Performs actions related to location tracking

TABLE I. CONCERNS AND DESCRIPTIONS

We propose two metrics to automatically identify these
concerns in software systems. A third metric is deduced from
these initial two.

• Library Imports and variable types used (LIB metric)

• Text Analysis (Text metric)

• Deduced (Combined metric)

The subsections II-A, II-B and II-C describe source code
properties extracted to calculate these metrics and section V
presents the algorithms used in the actual calculation of the
metrics.

A. The LIB metric

Modern object oriented programming languages such as
Java, C++ have native and 3rd party libraries that are designed
to be very cohesive. For instance, the Java package java.swing
is a known package for creating user interfaces. This cohesion
is also true for other Java packages for example java.security
which provides an API for introducing security into an ap-
plication. It is possible therefore, from looking at the list of
packages that a class uses, to deduce what concerns a class
implements to a reasonable degree. To be more accurate with
this deduction, we can also analyse the proportions of different
types of known variables that are declared inside the classes.
For instance the proportion of actual objects declared that are
associated with a certain concern. This should give a much
more accurate picture of the class since it is possible to find
scenarios where packages are imported and yet not used in the
body of a class definition.

B. The Text Metric

Another property that we identified as useful for identifying
concerns in a class is the type of words used in the source code
of the class. It is quite intuitive to try to figure out what a class
does by looking at the class’ name and the names of methods
inside it. Words found inside the definition of a class thus, may
be a good indication of concerns that are implemented by the
class. In our approach we therefore analysed such words found
in a class, for links with commonly used words associated with
each concern.

In order to assemble such a list of words that are commonly
associated each concern, we analysed the descriptions of
packages that are associated with these concerns and extracted
the most frequently used words in the descriptions. This word
list is then cleaned of regular English stop words as well as
java key words that have no meaning in the context of concern
identification. Examples of such words include class, public
etc. A complete list of the stop words can be made available on
demand. Figure 1 shows a diagrammatic view of this process.

Fig. 1. Extraction of regularly used word for a concern

C. The Combined Metric

In order to mitigate the weakness of the two identified
metrics we came up with a third metric which combines the
predictive power of the two metrics identified above. This
metric is basically an average of the two previous metrics,
therefore halve of its classification information comes from
each of the previous metrics.

The approach to calculating these metrics is presented in
section V.

D. Extracting Source Code elements

In order to easily extract these source code properties used
in the calculation of the above metrics, described in the sub-
sections II-A, II-B and II-C above, we built an infrastructure to
support querying and fact extraction that are based on srcML
(Source Code Mark-up Language), XPath and WordNet.

srcML is an XML representation of source code that
supports both data and document views of source code. The
srcML format supports querying of source code elements
using standard XML tools. A useful and efficient tool that
was used for translating Java source code to scrML is freely
available2[14].

In order to find the source code elements within the
transformed srcML file, we used XPath; an XML standard
for addressing locations in XML.

During, extraction of words for calculating the Text metric
II-B, it was common to find multiple forms of the same word
used in a class. We solved this problem by stemming each
word in order to get their root form using WordNet3[15].

III. RELATED WORK

The core subject of our research is the abstraction of
reverse engineered class diagrams in order to improve its
usefulness for program comprehension. Thus in this section
we discuss previous research work in the area of abstracting
reverse engineered class diagrams and the approaches used in
relation to our own.

Dragan[16] worked on the classification of classes into
Boundary, Control and Entity. His classification was based on
the prominence of certain method stereotypes in the classes,
which tell their main role in the system. Validation of their
approach was carried out on 5 open source projects. 95% of
the classes in the system were stereotyped by the approach
and developers via manual inspection agreed with the results.

Aditya Budi et al [17] also worked on a similar classi-
fication but focused on the identification so that they could
give feedback on design flaws that may exist in the system.
Evaluation of their approach was done by analysing programs
written by novices and expert developer to show robustness
of their approach. Another researcher, [18] worked on the
classification of classes into roles such as: Service Provider,
Controller, Coordinator, Interface etc. but also used lexical
analysis of class names and other cues in the code as the
basis for the classification. Zaidman et al. [19] worked on

2See: www.sdml.info for translator tool download
3Available at: https://wordnet.princeton.edu/

a technique based on coupling and web mining to identify
classes that had a lot of ”control” in an application.

Other researchers have shifted entirely from the identifica-
tion of known patterns to condensing the often huge outputs
of reverse engineering tools. The goal is to give the user
the ability to scale the class for abstraction based on the
”most important” classes in the system. One such research[11]
produced a tool supported framework that uses a machine
learning algorithm to rank classes based on a score of predicted
importance. This ranking is then used as the basis for software
architecture abstraction and visualization. The developer is
able to interactively explore a reverse engineered class diagram
at scalable levels of abstraction. Hence enabling them to
understand and learn the software architecture from the bottom
up view or from top to bottom view depending on what is
useful for performing a specific task.

These afore mentioned work attempt to recover lost de-
sign of software systems by identifying patterns, ”important
classes” and class intents. They are then used to re-document
or abstract reverse engineered class diagrams in order to
improve their comprehensiveness. In contrast our approach
to abstraction is to use broad software features to provide
a feature perspective of the system that can be used during
maintains or for general comprehension. We also build on the
tool produced by Osman et al[11] in order to add the concern
perspective to the tool.

IV. RESEARCH QUESTION

In this section we describe our main research question and
our 2 sub-questions. The main research question is: How can
concerns be automatically identified in source code. In order
to provide an answer to this research question the following
sub-questions need to be answered:

RQ1: What is the performance of the LIB metric, text
metric and combined metric for automatically labelling class
concerns?

RQ2: How does the performance of the 3 metrics compare?

V. APPROACH

Our approach to conducting this experiment is described
in this section.

A. Overall Framework

The overall framework for identifying the concerns a class
implements, regardless of the concern metric chosen is shown
in figure 2.

The process begins with a systems source code as the input
(Step 1). The source code is then transformed to a srcML file
representation (Step 2). For each class in the system, library
imports and object types or class and method names are then
extracted depending on the concern metric selected (Step 3).
The output of this phase depending on the metric selected is
either a list of words or a list of libraries and variable types
used.

In the concern extraction phase (Step 4), concerns im-
plemented by each class are identified by using different

algorithms depending on the concern metric selected. The
algorithms map the properties extracted from the classes in
the previous phase to either the list of words describing a con-
cern(in the case of the text metric) or a list of known libraries
(in the case of the LIB metric). In this step, the proportion
of each concern found is also recorded as a percentage of the
total class.

Finally the class is labelled with the concern with the
biggest percentage when the result is rendered as a class
diagram. However the class retains the list of all identified
concerns so that it is possible to re-label the diagram depending
on what concern a user is interested in. Figure 4 shows the
results of such a classification. The subsections V-B, V-C, V-D
describe the process for each individual metric in detail.

Fig. 2. Overall framework

B. Identifying concerns using the LIB metric

The process for automatically detecting concerns using the
LIB metric approach is summarized in the steps below.

1) The process begins with the source code of the
system.

2) Convert the source code to a srcML file representation
to make it easy to query the code to retrieve specific
code structures.

3) Run XPath queries on the srcML to extract the
package imports and types and frequency of variables
declared in each class.

4) Load a list of known libraries and variable types
associated with each concern.

5) Compare the extracted packages and types from the
class to the known libraries and types.

6) Record each identified concern along with it fre-
quency in the class.

7) If a Variable type refers to a type defined in the
system, add all concerns found in that class, to the
list of found concerns in this class.

8) Finally, divide each concerns total by the total of all
concerns to derive how much of the implementation
of the class goes towards each identified concern.

A visualization of the process is shown in figure 3 below:

Fig. 3. Identifying Concerns using LIB metric

C. Identifying Concerns using the Text Metric

Just as for the package imports, analysing the classes using
the Text analysis approach follows these steps:

1) The process begins with the source code of the
system.

2) Convert the source code for the system to a srcML
format.

3) Execute XPath queries on the XML representation to
extract the class name and variable names for each
class.

4) Convert the list of names into a wordlist by splitting
camel cased words into multiple words, according to
java naming conventions.

5) Remove English stop words and other java key words
are that have no meaning in this context.

6) Stem the words using WordNet[15].
7) Record unique words alongside their frequencies in

order to establish the weight of each word in the list.
8) Load a list of words that describes each concern.
9) In order to find concerns present in each class,

compare the list of words found in the class with the
list of words that describe each concern. If a word
matches a concern then the weight of the word in the
concern is multiplied by the frequency that it occurs
in the class to get the weight of the concern in the
class.
An equation to describe the calculation of the weight
of each concern in a class as described is given below.

WCIC =
∑

w1...wi

(WWIC ∗ FWIC) (1)

w - Word in class that matches word in
concern description list.
WCIC - Weight of concern in class.
WWIC - Weight of word in class.

FWIC - Frequency of Word in Class.

10) Finally, the list of identified concerns is normalized
by dividing the weight of each concern found by the
total weight of all concerns. Just as for the package
import classification the class is decorated with the
colour of largest concern found when a class diagram
visualization of the project is generated. The list of all
identified concerns is also maintained for each class.

A graphical visualization of the process is show in figure
5 below.

D. Identifying Concerns using the Combined Metric

Since the combined metric is an average of the classifi-
cations of the LIB metric and the Text metric the process
for calculating it includes first calculating the metrics for the
afore mentioned and then averaging the results. The process
is described in the following steps.

1) Calculate the LIB metric
2) Calculate the Text metric.
3) For each class add all Concerns found by both the

Text metric and the LIB metric along with their
frequencies to the list of concerns found for the
Combined metric. If a concern is found by both, only
combine their frequencies but add the concern once.

4) For each concern in the list divide the frequencies by
two to get the average weight of the concern in the
class.

An equation to describe the calculation of the weight of
each concern in a class as described is given below.

WCICcm = (
WCIClm +WCICtm

2
) ∗ 100 (2)

Fig. 4. System with concern perspective visualization

WCIC - Weight of concern in class.

cm - Combined metric.

lm - LIB metric.

tm - Text metric.

E. The Concern Detector Tool

The Concern Detector tool is implemented as a component
on top of the SAAbs tool [11]. Its general mechanism for
identifying concerns is implemented in accordance with the
steps described in the overall framework; figure 2, section V.

In order to extract data for the calculation of the metrics,
the source code must be converted to a srcML file outside
the tool. Extraction of the source code properties is then done

using XPath and WordNet as described in section II-D. At run
time, the user has the option to select which of the metrics to
use for concern detection. Implementation of the identification
of concerns using each of the metrics was also done as
described in subsections V-B, V-C and V-D respectively.

Finally, the Concern Detector labels the classes with the
identified concerns and passes it on to the SAAbs tool for
visualization as a class diagram.

VI. EXPERIMENT DESCRIPTION

In this section we describe our case studies and the
evaluation measures used for analysing the results of the
classifications.

Fig. 5. Identifying Concerns using Text metric

A. Case Studies

In order to assess the performance of the ”Concern Detec-
tor” tool and indirectly the framework we applied the ”Concern
Detector” tool to 4 projects implemented in Java and developed
for two different platforms. Two of the projects are Android
apps and the other 2 are stand-alone desktop apps. We tried
to analyse these different applications in order to assess the
generalizability of the framework. The Size of the projects
and the number of classes used in the validation are shown in
table II. The projects include:

• Finite Automata Simulator - UML case tool

• SAAbs - Reverse Engineering tool 4

• WineTracker - Android App

• Mappish - Android App

Project Total Classes Total Classes Validated
Mappish 28 12
Finite Auto 36 12
SAAbs 19 7
Wine Tracker 36 31

TABLE II. CLASSES VALIDATED FOR EACH PROJECT

B. Evaluation Settings

The validation study applies a semi-structured interview
method. Subjects are first asked questions from the first part
of the questionnaire (subject background). They are then asked
to describe the purpose of their software. Then, they are
introduces to a demonstration of the tool (Concern Detector)
and then to the classification the tool has made of their
software. An explanation of what each concern means is also
given to the subject. Then they are asked to explain how
their software works to the researcher, starting from the most
important classes that a developer needs to know in order to
be able to understand their system. We had budgeted for one

4Available online at: https://github.com/aislimau/SAAbs

hour per interview so the subjects were asked to start from
”the most important” classes in the system. After they explain
the purpose of a class, they are asked to look at the results of 3
diagrams that represent the classifications from the 3 concern
metrics. They then have to select which of the classifications
best describes what concerns the class implements and to what
degree the classification is accurate from a scale of 0-100%.
They are also allowed a choice of none of them, if none of
them describes the class’s responsibility. The entire period of
the interview is voice recorded.

C. Subject Selection

In order to get as accurate feedback as possible from
the validations, subjects selected were developers who imple-
mented the systems that are analysed. Three of the subjects
were researchers, and one was a student. All subject had at
least 2 years experience developing systems with the Java
programming language. With regards to experience with UML,
one subject had more than 8 years experience, 2 had 5-6
experience and 1 had 1-2 years experience. All subjects were
members of the same department as the researchers but were
not directly involved in the implementation, development or
discussion of this research.

There were two other case studies that were bigger systems;
however we weren’t able to get an expert who was part
of the development team or who knows the system well.
Consequently those systems were not included in our study.

D. Data Collection Instrument

Data collection was done by administering a semi-
structured questionnaire specially designed for this study [20].
The questionnaire was divided in two parts and includes:

1) Part A: Respondents Background: In this part we gath-
ered information about the subjects knowledge of reverse
engineering, their experience of using UML and whether they
were authors of the system under analysis or not.

2) Part B: Concern Classification: The final part of the
questionnaire is aimed at gathering information about the
author’s evaluation of the classifications of the metrics. The
author is asked to select and explain important classes in the
system. After they explain the purpose of a class, they are
asked to look at the results of 3 diagrams that represent the
classifications from the 3 concern metrics. They then have to
select which of the classifications best describes what metrics
the class implements and to what degree the classification is
accurate from a scale of 0-100. They can also select none
if none of them best describes the class. A sample of the
questionnaire is shown in the appendix; section X.

3) Questionnaire Administration: Questionnaire adminis-
tration was done in person by the researcher after the partici-
pant had been introduced to the tool.

VII. ANALYSIS OF RESULT

In this section we describe the analysis of results of
our experiment. Each subsection is structured to answer the
research questions specified in Section IV. In order to find
out the performance of the metrics, we recorded for each
metric, the frequency with which the author agreed with its
classification out of the total of all classes validated in each
project. We also recorded for each agreement if the author
agreed with the classification 100% or lower. We then compare
the results of the metrics’ scores to each other.

A. RQ1: What is the performance of the LIB metric, text
metric and combined metric for automatically labelling class
concerns?

The overall results of the evaluation of the metrics on our
case studies are shown in the figures that follow. Figure 6
shows the average levels at which the authors agreed with
the results of each metric’s classification for all projects. The
average levels of agreement with each metric’s classification
for individual projects is shown in figure 7.

The average frequency with which the authors selected
each individual metric as better than the others is show in
figure 8. The average frequencies for individual projects are
show in figure 9 below.

Fig. 6. Average Levels of Agreement - All Projects

As seen in figure 6, overall all the concern metrics were de-
cently accurate at identifying concerns that a class implements

Fig. 7. Subject Agreement Level - All Projects

Fig. 8. Average Frequency of Subject Agreement

(Average Agreement>60%). Across all the projects in our case
study, the LIB metric was the most accurate at identifying
concerns with 76.8% author agreements with its classifications.
The combined metric was the second most accurate with
71.9% agreements and finally the Text metric with the least
accuracy of 65.5% agreements. Average agreement levels for
each metric for individual projects is shown in figure 7.

It is worth noting that the average accuracies stated above
are affected by the number of times a metric is chosen as
the best classifier for a class. As seen in figure 8, the authors
agreed 43% of the time with the LIB metric’s classifications.
The Text metric follows with 28.6% of total analysed classes
and the Combined metric is the least with the number of best
classifications with 28.4%. Average frequencies of agreement
with each metric’s classification for individual projects is
shown in figure 9.

B. RQ2: How does the performance of the 3 metric compare?

The metrics’ accuracies were also found to vary slightly for
each of the software platforms. For the systems implemented
for the android platform (figure 6), the LIB metric was still
the most accurate with 80.3% average agreement with its
classifications for the classes in the android systems. Again
the combined metric followed closely with 71.8% agreement,
and the text metric was the least accurate with 50% agreement.

Fig. 9. Frequency of Subject Agreement with Metric - All Projects

Average agreement level for each metric for individual projects
in this domain is shown in figure 10.

However, for the desktop applications (figure 6), the text
metric performed slightly better than the combined and LIB
metrics with agreement of 73.2%, 72 and 70 on average
respectively. Agreement level for each metric for individual
projects in this domain is shown in figure 11.

Again it is worth noting that the average accuracies of
the metrics were affected by the number of times a metric
is chosen as the best classifier for a class. For the systems
developed for the android platform as seen in figure 8, the
authors agreed 69.4% of the time with classifications done
by the LIB metric. The Combined metric follows with 27.6%
of total analysed classes and the Text metric is the least
with 3%. Average frequencies of agreement with each metrics
classification for individual projects in this domain is shown
in figure 12.

For the Desktop Applications (figure 8), the Text metric
was the most frequently agreed with metric with 54.2% of
analysed classes. The combined metric was next most frequent
with 29.2% and the LIB metric was least frequent with 17% of
analysed classes. Average frequencies of agreement with each
metrics classification for individual projects in this domain is
shown in figure 13.

VIII. DISCUSSION

A. Results from validation

Results from the analysis of our case studies, from Sec-
tion VII show that by applying our light-weight analysis
framework, we obtain accurate information about the concerns
present in a system and also about which classes provide the
implementations of these concerns. We also obtain useful in-
formation about the percentage of each class’s implementation
that goes towards the implementation of each concern.

Our simple graphical visualization of this concern per-
spective of the system on top of a reverse engineered class
diagram, gives a useful brief overview of the system that can
aid developers during program comprehension. In addition to
this, it also provides the user with information concerning what

Fig. 10. Subject Agreement Level - Android Apps

Fig. 11. Subject Agreement Level - Desktop Apps

combination of concerns each individual class implements, and
what percentage of each class’ implementation goes towards
each of these concerns. Just as discussed in the introduction,
the concern perspective is also useful for maintenance tasks
where the developer has to find the source of a bug related
to a specific concern. Equally it will also help them if they
are looking to extend a system feature related to a specific
concern.

Performance of our 3 proposed metrics for automatic
identification of these concerns were generally very good,
with accuracies ranging between 65% and 77% across all
case studies. From analysing the reasons given by the authors
for not agreeing entirely with the results of the metrics, we
realized that there was a correlation between when classes
had a relatively high number of concerns detected and when
authors disagreed with the results. From figure 15 we can see
that across all projects, the authors selected the metrics with
the least number of concerns 57.3% of the time. However, they
also selected the metrics that detected the highest number of
concerns for each class 42.7% of the time. This shows that
the performances of the metrics were not severely affected
by how well concerns were separated in a class. A conclusion
that can be drawn from this is that, the metrics perform slightly
better in cases where the separation of concerns in a system is

Fig. 12. Frequency of Subject Agreement - Android Apps

Fig. 13. Frequency of Subject Agreement - Desktop Apps

clear, even though its performance is not severely affected if
this is not the case. Generally, the Text metric identified more
concerns per class than the LIB metric as shown by figure
14. Authors found during validation that the Text metric also
falsely identified concerns. Weakness of the metric that could
cause such a problem is discussed in the next paragraphs.

Overall the LIB metric performed best in terms of accuracy
of concern identification. However, it is worth noting here also
that, the performance of the LIB metric relies on knowing
the libraries and object types used in a system. Therefore,
when a substantial amount of the libraries used in the system
are unknown, the results of this metric could be significantly
affected. It may result in unreliable or even non-existent
results. Even though a fair amount of libraries were loaded
to the lib metric during classification of the systems in our
case study(as shown in figure 16), in a realistic context, there
will always be new libraries that are unknown to the tool.
This is because new libraries are implemented all the time.
Therefore, we have provided a mechanism to feed additional
mappings (of libraries and associated concerns) to the LIB
metric through a simple text file. A user adds new libraries
by inserting additional lines to the text file. Each line must
contain the name of the library/object type, and the associated
concern separated by a comma. A complete list of the libraries

Fig. 14. Average Number of Concerns Detected by Metric

Fig. 15. Number of times authors chose the metric with the least or highest
number of detected concerns

feed to the lib metric is provided in tables III, IV,V,VI in the
appendix.

The Text metric was the best metric for the desktop apps
but overall the least most accurate metric. Its strength lies
in using the semantic meaning of words used in the class,
such as class and method names. Similar to the weakness of
the LIB metric, the accuracy of the classification of the Text
metric could be significantly affected if words used in the
method names do not match the wordlist that are regularly
used to describe a concern(As described in section II-B).
We believe that the existence of some ”noise” words in the
wordlist generated for each concern affected the performance
of the Text metric. The words were detected upon manual
inspection of the list (The complete list of words used for
each concern are found in tables VIII, IX, X, XI, XII, XIII,
XIV, XV, XVI, XVII, XVIII, XIX in the appendix). Since the
problem is related to the amount of descriptions of concerns
analysed to generate this list, a natural solution to this problem
would be to include more description text for each concern,
in the analysis process. However, we werent able to do this
due to time constraints. In future work this, could be done to
improve the quality of the wordlist and in turn the quality of
the results of the Text metric.

Fig. 16. Percentage of Libraries known by the LIB metric

The Combined metric as expected was the most stable of
the metrics. This is no surprise since it an average of the other
two metrics. Even though the two other metric can be very
accurate in specific domain or when their perquisites are met,
the combined metric is probably the safest bet for mitigating
the weakness of the two.

B. Threats to Validity

The assessment of the Concern Detector tool is subject to
a number of threats to validity.

1) Internal Validity: The classification of the LIB metric
relies on the list of known libraries and object. In the case
when this is not available, it relies on the users knowledge of
the concerns these libraries implement and thus being able to
add it to the list of know libraries. If this is not the case, the
results of the classification can be adversely affected. In order
to mitigate the effect of this threat we have included a feature
to download from an online repository where all other users
contribute such knowledge.

Also one of the subjects used for the validation is a close
acquaintance of the researcher. Even though subjects were
made to understand that feedback could help improve the work.
This relationship might still affect the results of the validation.

Also, all subject involved in the validation were either
researchers or student. This may have affected the style of
programming and thus the separation of concerns in the class
and then in effect the results of the metrics’ classification.
Since the objective is to be able to generalize the results to
even code in commercial software developed by professional
software engineers this might be a validity threat. We aim to
solve this in future research by including more professional
developers.

2) External Validity: Only 4 systems of relatively small
size were used in the validation as such no statistical analysis
to significance of the results could be employed. However in
order to reduce this threat and increase the generalizability
of the approach, we tried to analyse projects from different
domains and those implemented for different software plat-

forms. In future research we plan to reduce this threat further
by including more projects in the validation.

The approach has only been implemented for the java
programming language in this study even though it has been
designed to generalizable to other object oriented programming
languages. Until it has been implemented in other languages,
claims of the approachs generalizability to other programming
maybe subject to validity threat.

3) Construct Validity: During validation we asked the user
to select one metric that was best for each class, this resulted
in some data lose as we are not able to tell how much worse
the others were. Thus accuracy predictions were affected by
how many times a metric is chosen as best. In future work we
plan to reduce this threat by collecting agreement data for each
metric for all classes and then deciding which is best from it.

IX. CONCLUSION AND FUTURE WORK

Current static reverse engineering techniques produce huge,
complete class diagrams that tend to focus on system compo-
nents and the relationship between them. Even though this
is useful in some contexts, researcher realised that developers
find the use of the diagram limited for program comprehension.
One reason for this is because they don’t provide other per-
spectives of system that are vital when trying to comprehension
unknown software systems. According to researchers, one such
perspective that frequently comes up during maintenance and
extension tasks is the mapping of system concerns to the
software components that implement them.

In this work, we present a framework and tool(Concern
Detector) for automatically detecting these common concerns
that are found in modern software systems (E.g. User inter-
faces, databases, concurrency, security & authentication) and
map them to software components that implement them. The
goal is to provide a concern perspective of the system on
top of reverse engineered class diagrams in order to increase
the diagram’s usefulness for program comprehension. To do
this, we proposed 3 metrics for automatically identifying
these concerns in software systems. Our assessments show
that our metrics were effective at this task. Our taxonomy
of concerns was also found to be useful for describing the
overall functionality of the system in our case study as well as
the responsibilities of each class in the system. The Concern
Detector tool based on light weight static program analysis is
efficient and useable whiles still giving good results.

The accuracies however of the 3 metrics were affected by a
number of factors, which we believe when improved in future
work, could increase the performance of the metrics and in
effect the result produced by the Concern Detector tool as
well. The Text metric’s performance was affected by the small
number of descriptions of concerns that were used to generate
the word list to describe each concern. This could be improved
by analysing more descriptions to improve the word list.
The LIB metric’s performance is dependent on knowing the
libraries and object types used in a class. Therefore, it suffers
when such knowledge is not available. A way to improve this
is it to keep an online database of library and object types with
associated concerns, which would be updated each time a user
labels an object or library to be of a certain concern type.

Even though the framework is designed to be general, our
current implementation is designed for the Java programming
language. Therefore, the performance of the framework for
systems implemented in other programming languages is still
open. We also believe that, for a user to benefit from the
concern perspective that the tool provides, it is important that
they have previous knowledge of the domain and purpose of
the system being studied. If this precondition is met, then the
concern perspective can provide more insight into the internal
mapping of the system components to the concerns that they
implement.

One other area that could be improved in future work is
the visualization of the concerns found on the class diagram.
Currently, the tool labels each class with the concern with
the biggest weight and then lists other concerns found along
with their weight on top of each class, in order to give the
user an overall picture of the responsibilities of the class. In
future work we would like the user to have the possibility
to show only classes that implement a certain concern, or to
group classes into packages based on the concerns that they
implement.

ACKNOWLEDGMENT

I would like to thank my supervisors Dr. Michel Chaudron,
and Mr. Truong Ho Quang for the wonderful support and
guidance throughout the duration of this work. I would also
like to thank Mr. Grischa Liebel and Mr. Einar Sundgren for
being kind enough to share their projects that are used in the
validation and for the time they took out of their busy schedules
to give us feedback.

REFERENCES

[1] K. Mens and T. Tourwé, “Delving source code with formal concept
analysis,” Comput. Lang. Syst. Struct., vol. 31, no. 3-4, pp. 183–197,
Oct. 2005. [Online]. Available: http://dx.doi.org/10.1016/j.cl.2004.11.
004

[2] B. Boehm, “Software engineering,” IEEE Transactions on Computers,
vol. 25, no. 12, pp. 1226–1241, 1976.

[3] M. M. Lehman and L. A. Belady, Eds., Program Evolution: Processes of
Software Change. San Diego, CA, USA: Academic Press Professional,
Inc., 1985.

[4] A. Dunsmore, M. Roper, and M. Wood, “The role of comprehension
in software inspection,” Journal of Systems and Software, vol. 52, no.
23, pp. 121 – 129, 2000.

[5] H. B. O. H. Mohd, M. Chaudron, and P. v. d. Putten, “Interactive
scalable abstraction of reverse engineered uml class diagrams,” 2014.

[6] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus,
“Does code decay? assessing the evidence from change management
data,” IEEE Trans. Softw. Eng., vol. 27, no. 1, pp. 1–12, Jan. 2001.

[7] T. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models: a
study of developer work habits,” New York, NY, USA, 2006//, pp. 492
– 501, developer work habits;design documents;code duplication;code
snippets;code ownership;agile software development;.

[8] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional
developers comprehend software?” in Proceedings of the 34th Interna-
tional Conference on Software Engineering, ser. ICSE ’12. Piscataway,
NJ, USA: IEEE Press, 2012, pp. 255–265.

[9] A. Ko, B. Myers, M. Coblenz, and H. Aung, “An exploratory study
of how developers seek, relate, and collect relevant information during
software maintenance tasks,” Software Engineering, IEEE Transactions
on, vol. 32, no. 12, pp. 971–987, Dec 2006.

[10] P. Caserta and O. Zendra, “Visualization of the static aspects of
software: a survey,” IEEE transactions on visualization and computer
graphics, vol. 17, no. 7, pp. 913–933, 2011.

[11] H. B. O. H. Mohd, M. Chaudron, and P. v. d. Putten, “Interactive
scalable abstraction of reverse engineered uml class diagrams,” 2014.

[12] M. Marin, A. V. Deursen, and L. Moonen, “Identifying crosscutting
concerns using fan-in analysis,” ACM Trans. Softw. Eng. Methodol.,
vol. 17, no. 1, pp. 3:1–3:37, Dec. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1314493.1314496

[13] A. Mesbah and A. van Deursen, “Crosscutting concerns in j2ee
applications,” in Proceedings of the Seventh IEEE International
Symposium on Web Site Evolution, ser. WSE ’05. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 14–21. [Online]. Available:
http://dx.doi.org/10.1109/WSE.2005.4

[14] M. L. Collard, J. I. Maletic, and A. Marcus, “Supporting document and
data views of source code,” in Proceedings of the 2002 ACM Symposium
on Document Engineering, ser. DocEng ’02. New York, NY, USA:
ACM, 2002, pp. 34–41.

[15] G. A. Miller, “Wordnet: A lexical database for english,” COMMUNI-
CATIONS OF THE ACM, vol. 38, pp. 39–41, 1995.

[16] N. Dragan, “Emergent laws of method and class stereotypes in object
oriented software,” in Software Maintenance (ICSM), 2011 27th IEEE
International Conference on, Sept 2011, pp. 550–555.

[17] A. Budi, D. L. Lucia, L. Jiang, and S. Wang, “Automated detection of
likely design flaws in layered architectures,” Research Collection School
of Information Systems, 2011.

[18] R. J. Wirfs-Brock, “Characterizing classes,” IEEE Software, vol. 23,
no. 2, pp. 9–11, 2006.

[19] A. Zaidman, “Automatic identification of key classes in a software sys-
tem using webmining techniques,” in Journal of Software Maintenance
& Evolution, 20(6):387417. (Cited on. IEEE Computer Society Press,
2008, p. 158.

[20] E. R. Babbie, The practice of social research. Wadsworth Thomson
Learning, 2007.

X. APPENDIX

A. Example of concern classification of class shown to authors
during validation

http://dx.doi.org/10.1016/j.cl.2004.11.004
http://dx.doi.org/10.1016/j.cl.2004.11.004
http://doi.acm.org/10.1145/1314493.1314496
http://dx.doi.org/10.1109/WSE.2005.4

TABLE III. LIB METRIC CONCERN LIBRARY

Library Concern
java.applet User Interface
java.awt User Interface
java.awt.color User Interface
java.awt.datatransfer User Interface
java.awt.dnd User Interface
java.awt.event Event/Event

Handling
java.awt.font User Interface
java.awt.geom User Interface
java.awt.im User Interface
java.awt.im.spi User Interface
java.awt.image User Interface
java.awt.image.renderable User Interface
java.awt.print User Interface
android.view.LayoutInflater User Interface
android.view.View User Interface
android.view.ViewGroup User Interface
android.widget.BaseAdapter User Interface
android.widget.TextView User Interface
java.beans Object Model
java.beans.beancontext Object Model
java.lang.annotation Program Logic
java.lang.reflect Program Logic
java.net Network/Web
org.apache.http.client.HttpClient Network/Web
android.net.ParseException Network/Web
org.apache.http.client.entity.UrlEncodedFormEntity Network/Web
org.apache.http.client.methods.HttpPost Network/Web
org.apache.http.impl.client.DefaultHttpClient Network/Web
org.apache.http.params.BasicHttpParams Network/Web
org.apache.http.params.HttpParams Network/Web
org.apache.http.params.HttpProtocolParams Network/Web
org.apache.http.protocol.HTTP Network/Web
org.apache.http.util.EntityUtils Network/Web
org.apache.http.HttpResponse Network/Web
org.apache.http.HttpVersion Network/Web
org.json.JSONArray Parser/Interpreter
org.json.JSONException Parser/Interpreter
org.json.JSONObject Parser/Interpreter
java.rmi Third Party System

Call
java.rmi.activation Third Party System

Call
java.rmi.dgc Third Party System

Call
java.rmi.registry Third Party System

Call
java.rmi.server Third Party System

Call
java.security Security/Validator
java.security.acl Security/Validator
java.security.cert Security/Validator
java.security.interfaces Security/Validator
java.security.spec Security/Validator
java.sql Persistence
java.text Data Manupulator
java.text.spi Data Manupulator
java.time Time/Date/Zone
java.time.chrono Time/Date/Zone
java.time.format Time/Date/Zone
java.time.temporal Time/Date/Zone
java.time.zone Time/Date/Zone
java.util.Date Time/Date/Zone
java.util.Calendar Time/Date/Zone
java.util.GregorianCalendar Time/Date/Zone
java.util.concurrent Concurrency
java.util.concurrent.atomic Concurrency
java.util.concurrent.locks Concurrency
java.util.function Logic
java.util.jar application packag-

ing
java.util.regex Logic
java.util.stream Data Manupulator
java.util.zip application packag-

ing
javax.activation Security/Validator
javax.activity Exception Handling
javax.annotation Program Logic
javax.annotation.processing Program Logic
javax.crypto Security/Validator
javax.crypto.interfaces Security/Validator
javax.crypto.spec Security/Validator
javax.imageio User Interface
javax.imageio.event User Interface

TABLE IV. LIB METRIC CONCERN LIBRARY

Library Concern
javax.imageio.metadata User Interface
javax.imageio.plugins.bmp User Interface
javax.imageio.plugins.jpeg User Interface
javax.imageio.spi User Interface
javax.imageio.stream User Interface
javax.jws Network/Web
javax.jws.soap Network/Web
javax.lang.model Object Model
javax.lang.model.element Object Model
javax.lang.model.type Object Model
javax.lang.model.util Object Model
javax.management.remote Network/Web
javax.management.remote.rmi Network/Web
javax.management.timer Event/Event

Handling
javax.net Network/Web
javax.net.ssl Network/Web
javax.print.attribute I/O
FileWriter I/O
FileInputStream I/O
FileChannel I/O
javax.print.attribute.standard I/O
javax.print.event I/O
javax.rmi Network/Web
javax.rmi.CORBA Network/Web
javax.rmi.ssl Network/Web
javax.script Parser/Interpreter
javax.security.auth Security/Validator
javax.security.auth.callback Security/Validator
javax.security.auth.kerberos Security/Validator
javax.security.auth.login Security/Validator
javax.security.auth.spi Security/Validator
javax.security.auth.x500 Security/Validator
javax.security.cert Security/Validator
javax.security.sasl Security/Validator
javax.sound.midi User Interface
javax.sound.midi.spi User Interface
javax.sound.sampled User Interface
javax.sound.sampled.spi User Interface
javax.sql Persistence
javax.sql.rowset Persistence
javax.sql.rowset.serial Persistence
javax.sql.rowset.spi Persistence
javax.swing User Interface
javax.swing.border User Interface
javax.swing.colorchooser User Interface
javax.swing.event User Interface
javax.swing.filechooser User Interface
javax.swing.plaf User Interface
javax.swing.plaf.basic User Interface
javax.swing.plaf.metal User Interface
javax.swing.plaf.multi User Interface
javax.swing.plaf.nimbus User Interface
javax.swing.plaf.synth User Interface
javax.swing.table User Interface
javax.swing.text User Interface
javax.swing.text.html User Interface
javax.swing.text.html.parser User Interface
javax.swing.text.rtf User Interface
javax.swing.tree User Interface
javax.swing.undo User Interface
android.graphics.Canvas User Interface
android.graphics.Color User Interface
android.graphics.Paint User Interface

TABLE V. LIB METRIC CONCERN LIBRARY

Library Concern
android.graphics.Path User Interface
android.graphics.Point User Interface
com.google.android.maps.GeoPoint User Interface
com.google.android.maps.MapController Geo Location
com.google.android.maps.MapView Geo Location
com.google.android.maps.Overlay Geo Location
com.google.android.maps.Projection Geo Location
javax.transaction Transaction

Handling
javax.transaction.xa Transaction

Handling
javax.xml Parser/Interpreter
javax.xml.bind Parser/Interpreter
javax.xml.bind.annotation Parser/Interpreter
javax.xml.bind.annotation.adapters Parser/Interpreter
javax.xml.bind.attachment Parser/Interpreter
javax.xml.bind.helpers Parser/Interpreter
javax.xml.bind.util Parser/Interpreter
javax.xml.crypto Parser/Interpreter
javax.xml.crypto.dom Parser/Interpreter
javax.xml.crypto.dsig Parser/Interpreter
javax.xml.crypto.dsig.dom Parser/Interpreter
javax.xml.crypto.dsig.keyinfo Parser/Interpreter
javax.xml.crypto.dsig.spec Parser/Interpreter
javax.xml.datatype Parser/Interpreter
javax.xml.namespace Parser/Interpreter
javax.xml.parsers Parser/Interpreter
javax.xml.soap Parser/Interpreter
javax.xml.stream Parser/Interpreter
javax.xml.stream.events Parser/Interpreter
javax.xml.stream.util Parser/Interpreter
javax.xml.transform Parser/Interpreter
javax.xml.transform.dom Parser/Interpreter
javax.xml.transform.sax Parser/Interpreter
javax.xml.transform.stax Parser/Interpreter
javax.xml.transform.stream Parser/Interpreter
javax.xml.validation Parser/Interpreter
javax.xml.ws Parser/Interpreter
javax.xml.ws.handler Parser/Interpreter
javax.xml.ws.handler.soap Parser/Interpreter
javax.xml.ws.http Parser/Interpreter
javax.xml.ws.soap Parser/Interpreter
javax.xml.ws.spi Parser/Interpreter
javax.xml.ws.spi.http Parser/Interpreter
javax.xml.ws.wsaddressing Parser/Interpreter
javax.xml.xpath Parser/Interpreter
javax.validation Security/Validator
Color User Interface
URL Network/Web
URI I/O
JEditorPane User Interface
JMenuBar User Interface
JPanel User Interface
JToolBar User Interface
JMenuItem User Interface
JTextArea User Interface
Separator User Interface
JToggleButton User Interface
JScrollPane User Interface
JButton User Interface
JLabel User Interface
JCheckBox User Interface
GroupLayout User Interface
Dimension User Interface
JComboBox User Interface
JTextField User Interface
BufferedImage User Interface
Graphics2D User Interface
QuadCurve2D User Interface
File Persistence
ImageIcon User Interface
Image User Interface
JFileChooser User Interface

TABLE VI. LIB METRIC CONCERN LIBRARY

Library Concern
ObjectOutputStream I/O
JSplitPane User Interface
LayoutInflater User Interface
EventListener Event/Event

Handling
Formattable I/O
Observer Event/Event

Handling
Base64 Parser/Interpreter
Base64.Decoder Parser/Interpreter
Base64.Encoder Parser/Interpreter
EventListenerProxy Event/Event

Handling
EventObject Event/Event

Handling
Observable Event/Event

Handling
PropertyPermission Security/Validator
Timer Event/Event

Handling
TimerTask Event/Event

Handling
JSONObject Parser/Interpreter
HttpResponse Network/Web
JSONArray Parser/Interpreter
HttpClient Network/Web
HttpParams Network/Web
HttpPost Network/Web
UrlEncodedFormEntity Network/Web
android.content.Intent Messaging
android.os.Environment I/O
Intent Messaging
GeoPoint User Interface
Projection User Interface
Path User Interface
Paint User Interface
Point User Interface
android.location.GpsStatus Geo Location
android.location.Location Geo Location
android.location.LocationListener Geo Location
android.location.LocationManager Geo Location
android.media.MediaPlayer User Interface
android.os.Bundle Messaging
LocationManager Geo Location
LocationListener Geo Location
Location Geo Location
Notification User Interface
PendingIntent Messaging
NotificationManager Messaging
MediaPlayer User Interface
android.widget.Button User Interface
android.widget.EditText User Interface
android.widget.Toast User Interface
android.content.BroadcastReceiver Messaging
android.content.DialogInterface User Interface
android.content.IntentFilter Messaging
RegisterResponseReceiver Messaging
EditText User Interface
Button User Interface
TextView User Interface
IntentFilter User Interface
com.google.android.gms.maps. model.LatLng Object Model
com.google.android.gms.maps.
model.LatLngBounds

Object Model

com.google.android.gms.maps.
model.PolygonOptions

Object Model

com.google.android.gms.maps. CameraUpdate Geo Location
com.google.android.gms.maps. CameraUpdate-
Factory

Geo Location

TABLE VII. LIB METRIC CONCERN LIBRARY

Library Concern
com.google.android.gms.maps. GoogleMap Geo Location
com.google.android.gms.maps. GoogleMapOp-
tions

Geo Location

com.google.android.gms.maps. SupportMapFrag-
ment

Geo Location

com.google.android.gms.common. GooglePlay-
ServicesUtil

Transaction
Handling

com.google.android.gms.common. ConnectionRe-
sult

Network/Web

GoogleMap Geo Location
Bundle Messaging
GoogleMapOptions Geo Location
FragmentManager User Interface
Fragment User Interface
SupportMapFragment User Interface
PolygonOptions Object Model
Builder User Interface
DisplayMetrics User Interface
Display User Interface
CameraUpdate Geo Location
AlertDialog User Interface
android.app.AlertDialog User Interface
android.widget.ArrayAdapter User Interface
android.widget.Spinner User Interface
Spinner User Interface
RecordResponseReceiver Network/Web
android.app.AlertDialog User Interface
android.app.ListActivity User Interface
android.view.ContextMenu User Interface
android.view.ContextMenu. ContextMenuInfo User Interface
android.view.MenuInflater User Interface
android.view.MenuItem User Interface
android.widget.AdapterView. AdapterCon-
textMenuInfo

User Interface

MenuInflater User Interface
AdapterContextMenuInfo User Interface
android.app.TabActivity User Interface
android.content.res.Resources I/O
android.widget.TabHost User Interface
android.util.DisplayMetrics User Interface
android.view.Menu User Interface
Resources I/O
TabHost User Interface
TabSpec User Interface
android.os.AsyncTask Concurrency
android.os.Message Messaging
Message Messaging
android.support.v4.app.Fragment User Interface
android.support.v4.app.FragmentActivity User Interface
android.support.v4.app. FragmentManager User Interface
android.content.SharedPreferences Messaging
android.preference.PreferenceManager Persistence
Editor User Interface
SharedPreferences Persistence
android.app.DatePickerDialog User Interface
android.app.Dialog User Interface
android.widget.DatePicker User Interface
CheckBox User Interface
android.app.NotificationManager User Interface
android.app.PendingIntent Messaging
android.support.v4.app. NotificationCompat User Interface
android.app.Notification User Interface
android.widget.CheckBox User Interface
JSeparator User Interface
JMenu User Interface
JTextPane User Interface
JPopupMenu User Interface
Font User Interface
Polygon User Interface
java.util.Observer Event/Event

Handling
java.util.Observable Event/Event

Handling

TABLE VIII. FREQUENT WORDS USED TO DESCRIBE CONCERNS

Concurrency
Word Weight In Concern
lock 176
thread 99
executor 55
queue 52
task 44
concurrent 41
blocking 36
acquire 31
write 30
pool 29
time 28
interrupt 28
action 27
read 25
condition 25
service 24
join 23
map 23
fork 22
future 22
return 21
operation 21
happen 19
wait 19
current 19
synchronization 18
synchronize 17
reentrant 17
object 16
list 16

TABLE IX. FREQUENT WORDS USED TO DESCRIBE CONCERNS

Event/Event Handling
Word Weight In Concern
listener 178
event 171
basic 117
ui 99
action 56
change 56
pane 53
tree 44
mouse 39
ui 38
editor 38
accessible 37
synth 34
naming 33
context 31
adapter 29
menu 27
receive 27
frame 24
combo 23
text 23
list 22
focus 22
awt 22
object 21
bar 20
property 20
box 20
kit 19
input 18

TABLE X. FREQUENT WORDS USED TO DESCRIBE CONCERNS

Exception Handling
Word Weight In Concern
cause 61
message 55
detail 34
get 20
stack 18
construct 18
trace 18
throwable 16
specify 14
null 13
constructor 12
(which 11
new 10
public 10
retrieval 8
late 8
enable 8
save 8
since 7
print 7
unknown 7
parameter 7
value 7
object 6
writable 6
unsupported 6
suppression 6
wait 6
format 6
disabled 5

TABLE XI. FREQUENT WORDS USED TO DESCRIBE CONCERNS

I/O
Word Weight In Concern
file 224
stream 188
print 105
input 105
object 75
doc 61
byte 60
datum 56
read 55
writer 49
output 47
service 43
flavor 43
character 36
descriptor 28
write 26
job 26
skip 21
specify 19
buffer 19
array 19
return 18
attribute 17
exist 17
create 17
public 17
close 16
open 16
reading 16
reader 15

TABLE XII. FREQUENT WORDS USED TO DESCRIBE CONCERNS

Messaging
Word Weight In Concern
message 54
jms 42
messaging 18
queue 18
service 15
web 14
provider 12
receive 10
model 9
client 8
server 7
subscriber 7
jump 6
publish 6
open 6
middleware 6
software 6
topic 6
create 5
process 5
register 4
management 4
bean 4
orient 4
publisher 4
send 4
community 3
scheme 3
jsr 3
term 3

TABLE XIII. FREQUENT WORDS USED TO DESCRIBE CONCERNS

Network/Web
Word Weight In Concern
http 198
protocol 106
request 105
parameter 102
response 91
url 75
client 70
socket 64
connection 62
address 55
connector 55
server 52
jmx 52
execute 49
params 48
deprecate 47
set 46
network 46
context 45
value 43
action 40
entity 39
content 38
get 35
input 31
core 31
names 29
return 29
static 28
form 28

TABLE XIV. FREQUENT WORDS USED TO DESCRIBE CONCERNS

Object Model
Word Weight In Concern
set 1
get 1

TABLE XV. FREQUENT WORDS USED TO DESCRIBE CONCERNS

Parser/Interpreter
Word Weight In Concern
json 93
byte 65
object 59
script 58
array 39
model 35
engine 34
encode 33
stream 30
parser 28
base 25
output 24
datum 20
encoding 19
streaming 18
processing 18
result 15
create 15
factory 15
return 14
event 14
public 14
value 14
write 13
buffer 13
scheme 12
specify 12
encoder 12
code 12
description 11

Fig. 17. Questionnaire Sample

Fig. 18. Questionnaire Sample

TABLE XVI. FREQUENT WORDS USED TO DESCRIBE CONCERNS

Persistence
Word Weight In Concern
set 895
parameter 776
sql 560
database 534
object 433
datum 357
value 299
row 276
stream 259
driver 239
void 206
designate 172
given 163
reader 148
access 148
index 144
get 138
connection 137
jdbc 132
statement 122
update 108
input 103
source 103
model 102
character 98
doe 90
command 90
call 82
length 77
object’s 71

TABLE XVII. FREQUENT WORDS USED TO DESCRIBE CONCERNS

Security/Validator
Word Weight In Concern
key 91
provider 43
constraint 33
datum 32
parameter 30
object 29
permission 26
description 25
algorithm 24
context 22
certificate 22
store 22
security 21
service 19
cipher 18
spi 18
access 18
stream 16
spi 16
message 15
entry 15
validator 15
file 14
configuration 14
generator 14
factory 14
digest 13
code 13
cryptographic 13
private 12

TABLE XVIII. FREQUENT WORDS USED TO DESCRIBE CONCERNS

Transaction Handling
Word Weight In Concern
transaction 48
manager 10
transactional 8
annotation 7
rollback 6
heuristic 6
description 6
manage 6
bean 6
commit 5
roll 5
update 5
back 5
server 5
datum 5
information 4
operation 4
request 4
make 4
decision 3
party 3
multiple 3
mark 3
context 3
status 3
scoped 3
report 3
relevant 3
boundary 3
synchronization 3

TABLE XIX. FREQUENT WORDS USED TO DESCRIBE CONCERNS

User Interface
Word Weight In Concern
view 285
layout 143
menu 103
listener 99
list 88
event 88
text 76
adapter 70
object 64
callback 63
window 58
item 58
display 56
model 56
color 49
change 49
control 49
button 47
line 47
manager 46
user 45
file 42
datum 42
filter 42
invoke 41
action 40
focus 38
container 38
scroll 38
definition 37

	Introduction
	Concerns and properties for identifying them
	The LIB metric
	The Text Metric
	The Combined Metric
	Extracting Source Code elements

	Related work
	Research Question
	Approach
	Overall Framework
	Identifying concerns using the LIB metric
	Identifying Concerns using the Text Metric
	Identifying Concerns using the Combined Metric
	The Concern Detector Tool

	Experiment Description
	Case Studies
	Evaluation Settings
	Subject Selection
	Data Collection Instrument
	Part A: Respondents Background
	Part B: Concern Classification
	Questionnaire Administration

	Analysis of result
	RQ1: What is the performance of the LIB metric, text metric and combined metric for automatically labelling class concerns?
	RQ2: How does the performance of the 3 metric compare?

	Discussion
	Results from validation
	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Conclusion and Future Work
	References
	Appendix
	Example of concern classification of class shown to authors during validation

