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Abstract

In this thesis, we perform a robustness test of the interesting findings by

in particular Artavanis (2013), but also Ang et al. (2006) and others,

who find evidence that a downside beta outperforms the CAPM beta in

its ability to explain excess stock returns in a test developed by Fama

and French (1992). Stating that the CAPM beta is outperformed by the

less known downside beta is a bold statement, and could indicate that

information of a downside beta can be used to achieve abnormal excess

returns on the stock market. These findings deserve robustness tests to

either strengthen their case or show that the results are inconsistent across

different markets or time periods, which is the motivation for writing this

thesis. Our main findings show that there is no difference in the ability

of the CAPM beta and the downside beta to explain excess returns in a

Fama and French (1992) test during the years 2000-2014 on the Frank-

furt, London and Stockholm stock exchanges. Thus, the results of the

robustness test are demotivating, weakening the case for the downside

beta rather than accepting its superiority.
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1 Introduction

Portfolio optimization is an important part of financial theory, still to this day

heavily influenced by early financial theorists such as Harry Markowitz and

William Sharpe, amongst others. In a seminal article, Markowitz (1952) intro-

duces the portfolio selection problem as a two-stage process where the individual

seeks to maximize expected returns while minimizing the variance of returns.

Markowitz’s model is widely accepted within the literature, and was the founda-

tion for the famous Capital Asset Pricing Model (CAPM) developed by Sharpe

(1964), Lintner (1965) and Black (1972) (SLB). SLB show that the expected

return of any security can be compared to the risk free return and the expected

market return by means of the security’s beta value, where beta is the correla-

tion of a security’s excess return to the excess return achieved by the market

portfolio.

The beta value has had a large impact on financial theory and on the financial

industry. It is one of the key statistics used to present or describe a particular

stock (for example, Yahoo Finance presents 15 statistics of which beta is one,

in its stock overview).

By taking a step back, rather than accepting the popular mean —variance

and CAPM theories, and focusing on what an investor actually wants to achieve

with portfolio optimization, it is relevant to ask whether or not Markowitz

(1952/1959) was right in using the return —variance trade-off. The ultimate

aim for someone building an investment portfolio must be to optimize the return

relative to the risk. Markowitz (and subsequently SLB in the CAPM model)

used variance as the measure of risk, and this is where some see a weakness

of the model. Variance includes both gains and losses, and the models see

both large gains and large losses as equally bad. Why would an investor be

equally worried about large gains and large losses? In fact, Markowitz (1959)

proposes an alternative measure, called semi-variance, which only focuses on

downside variance as a measure of risk. Although pointing out several benefits

with semi-variance, Markowitz (1959) bases his theory on normal variance due

to its easier computation and it being more well-known than semi-variance.

However, research of portfolio optimization based on semi-variance did not end

with Markowitz (1959). Several authors have dwelled into the subject, among

the more well known, Hogan and Warren (1974) develop a downside beta value

based on semi-covariance.
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The CAPM beta value has been criticized by Fama and French (1992), who

show that when one controls for firm size and book-to-market value of equity,

the beta value does not explain the excess returns on the US stock market in

the years 1963-1990. Several authors have since looked into other risk measures,

and in particular conditional beta and downside beta, which has been found to

better explain excess return than the CAPM beta, see for example Howton &

Peterson (1998), Ang et al. (2006), Pettengill, Sundaram & Mathur (2002) and

Artavanis (2013).

To either strengthen the validity of the downside beta or to weaken its case

against the CAPM beta, we perform a robustness test of the findings of Ar-

tavanis (2013) and Ang et al. (2006) who both use the US market in their

studies. We develop the research further by testing whether a downside beta

approach for estimating risk better explains excess return than the CAPM beta

on the Frankfurt, London and Stockholm stock exchanges in order to test if the

superiority of the downside beta is consistent across different markets.

To summarize, the thesis tests the following research question:

• Does a downside beta better explain excess returns than the CAPM beta

on the Swedish, German and Brittish stock markets?

We find no evidence that suggests that the (Hogan-Warren) downside beta out-

performs the CAPM beta in its ability to explain cross-sectional excess returns

in a Fama and French (1992) test on the Frankfurt, London and Stockholm

stock exchanges in the years 2000-2014. In the cross-sectional regressions, the

coeffi cients for the downside beta and the CAPM are similar in magnitude and

statistical significance, in no occasion is one statistically significant when the

other is not. Thus, the results of the robustness test are demotivating, weaken-

ing the case for the downside beta rather than accepting its superiority.

We also find that size is positively related to excess returns in Frankfurt and

Stockholm during the years 2000-2014, whereas the size effect is insignificant

in London. Conversely, the book-to-market value is positively related to excess

returns in London and Stockholm, but not in Frankfurt. The fact that the results

differ in the different markets is proof that the results of Fama and French (1992)

are not universal across markets. The analysis shows some weaknesses of the

test itself. In particular, the results are sensitive to the market performance in

the tested time period.
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The remainder of this thesis is organized as follows: In order to familiarize

the reader with the subject, Chapter 2 presents the relevant literature sub-

sectioned in a chronological order, including the return —variance trade-off in

portfolio optimization, the capital asset pricing model, critique of the CAPM

and semi-variance and downside beta. Chapter 3 expands the theories presented

in Chapter 2 in a mathematical format. The data and the methodology are

discussed in Chapter 4. Chapter 5 presents and analyses the results obtained in

the study, and the thesis is concluded in Chapter 6.
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2 Literature Review

This chapter summarizes relevant literature in order to set the frame for the

subsequent chapters of the thesis. The relevant literature has been divided into

four parts; Return —variance trade-off in portfolio optimization, The Capital

Asset Pricing Model, Critique of the CAPM and Semi-variance and downside

beta.

2.1 Return —variance trade-off in portfolio optimization

Markowitz (1952) defines the portfolio selection process in two steps, where in

a first step an investor forms his beliefs about future performance, and in the

second step chooses his portfolio based on those beliefs. How such beliefs are

formed is not thoroughly discussed by Markowitz (1952), who rather focuses on

the second step —that of portfolio selection.

The aim of portfolio optimization is to minimize the risk given an expected

level of return, or analogously maximize expected return given an expected level

of risk, which Markowitz (1952) defines as the variance in returns around its ex-

pected value. An effi cient portfolio is a portfolio in the attainable set (all possible

combinations of securities) such that the expected return cannot be increased

without increasing the expected variance, and the expected variance cannot be

decreased without decreasing the expected return. Figure 1 plots expected re-

turn versus expected variance, where the effi cient portfolios are the ones on the

border of the top left part of the attainable set (Markowitz, 1952/1959).

The rationale in Markowitz (1952/1959) for reducing risk when pooling sev-

eral securities in a portfolio is (perhaps self-evidently) that returns across secu-

rities are not perfectly correlated. That is, when one security increases in value,

another might decrease, which when aggregated into a portfolio decreases the to-

tal variance of the portfolio returns. However, since security returns are almost

always positively correlated, aggregating securities into a portfolio can never

completely eliminate the risk. The systematic risk will always be present even

in an optimized portfolio (Sharpe, 1964). Further, due to market limitations,

not even the idiosyncratic risk can be completely diversified away.
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Figure 1: The return —variance trade-off. The attainable set of portfolios
depicting the return — variance trade-off for investors choosing portfolios. If
investors are rational, allowed to borrow at the risk free rate, rf , and agree on
preferences, favouring high returns and low variance, the market portfolio must
be the tangency portfolio M. Based on the work by Markowitz (1952/1959),
Sharpe (1964) and Lintner (1965).

In the final part of his book, Markowitz (1959) shows his analysis based on

semi-variance rather than variance. Semi-variance is defined as the variance

measured as the average of the squared negative deviations from the expected

returns only (more on this in a later chapter). Markowitz (1959) argues that

this approach focuses on reducing losses, rather than reducing pure volatility,

and even proceeds to state that:

“Analyses based on S [semi-variance] tend to produce better portfolios than

those based on V [variance]” (Markowitz, 1959)

However, among the downsides of using semi-variance are its larger com-

plexity, it being less well-known and its more demanding computing methods,

taking two to four times longer to perform on a “high speed electronic computer”

(Markowitz, 1959).

2.2 The Capital Asset Pricing Model

Markowitz (1952/1959) does not discuss in detail what particular portfolio in

the effi cient set an investor should choose. Sharpe (1964) and Lintner (1965)

use the model of Markowitz and add a risk free security and the assumption

that all investors agree on expected returns, variances and covariances. When an
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investor can lend and borrow at the risk free rate, Sharpe (1964) shows that there

will only be one particular portfolio chosen by each and every investor. Given

that an investor has a utility function that increases in expected return and

decreases in expected variance, where both inputs have a marginally decreasing

effect on the utility, the optimum portfolio is the one in the effi cient set that is

tangent to a straight line between the effi cient set and the risk free rate, as seen

in Figure 1. This line is commonly referred to as the Capital Market Line. The

total risk level is adjusted by lending or borrowing at the risk free rate (Sharpe,

1964).

The portfolio called M in Figure 1 is shown by Lintner (1965) to be the

market portfolio. Since all investors agree on future prospects, they all invest

in portfolio M and adjust their level of risk by lending or borrowing at the risk

free rate. Thus in order to achieve market equilibrium, portfolio M must be the

market portfolio. The weights of each particular stock in the market portfolio

are the market values of each individual stock divided by the aggregate market

value of all stocks (Lintner, 1965).

Having defined the optimal portfolio choice, Sharpe (1964) shows that since

a portfolio is a linear combination of a number of securities, and that, in theory,

all non-systematic risk can be diversified away, the only risk that should be

considered for a particular stock is how it covaries with the market. That is, for

a relatively safe security, which is rather independent of the market performance,

an investor can accept a low expected return. On the other hand, for an investor

to accept a security that covaries strongly with the market, an investor requires a

large expected return. Although not using the word beta, Sharpe (1964) defines

the movement in relation to the effi cient portfolio as the correlation between the

returns of the security and the returns of the market, which has later become

the well-known CAPM beta.

2.3 Critique of the CAPM

Sharpe (1964), Lintner (1965) and Black (1972) concluded that stocks with a

high beta value should be rewarded with a large expected return, and that

no other risk measure should be necessary, a conclusion that has received cri-

tique from several academics since. Fama and MacBeth (1973) test the CAPM

model by regressing monthly returns on beta values, squared beta values and

the residuals from the market model, which in turn regresses individual excess

stock returns solely on the market excess return.
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The dataset used by Fama and MacBeth (1973) stretches from 1926 to 1968

and contains approximately 700 stocks divided into 20 portfolios throughout the

period. The whole sample is needed to show a statistically significant positive

coeffi cient for the beta value. For shorter periods, such as five to ten years, the

coeffi cient for the beta value is generally not statistically significant.

From their results, Fama and MacBeth (1973) cannot reject the hypothesis

that a higher beta yields linearly higher expected returns. However, although

the results are not clear-cut, Fama and MacBeth (1973) show that the constant

term in the regressions is statistically significantly different from the risk free

rate, in contrast to what is predicted by the CAPM.

In a later and well-known test of the CAPM, Fama and French (1992) en-

hance the Fama-MacBeth regressions with additional explanatory variables, us-

ing US data from 1963 to 1990, which yields different results than was obtained

by Fama and MacBeth (1973). Fama and French (1992) argue that stocks of

different size (market value) have different betas. When controlling for mar-

ket value of equity (ME) as a proxy for size, book-to-market value of equity

(BE/ME), leverage and the earnings-to-price ratio (E/P ), Fama and French

(1992) find no statistical significance for the coeffi cient of the beta value in the

Fama-MacBeth regressions, and the authors state that:

“In a nutshell, market β seems to have no role in explaining the average

returns on NYSE, AMEX, and NASDAQ stocks for 1963-1990, while size and

book-to-market equity capture the cross-sectional variation in average stock re-

turns that is related to leverage and E/P”

2.4 Semi-variance and downside beta

As was already noted by Markowitz (1959), there might be other measures of

risk that are more appropriate for portfolio optimization than pure variance. In

particular, Markowitz (1959) suggested semi-variance as an alternative measure

of risk. Unlike unconditional variance, semi-variance considers only observations

below a certain threshold, normally; zero, the risk free rate or the expected

return of the market.

If the return distribution is symmetrical, the variance and the semi-variance

framework produce the same results. However, when the return distribution

is asymmetrical, especially shown for a lognormal distribution by Price et al.

(1982), the two frameworks diverge.
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A downside beta risk measure based on semi-covariance is appealing be-

cause a security is not necessarily considered more risky by an investor when

performing extraordinarily well at the same time as the market, as the CAPM

beta based on covariance would have us believe. Nor does it consider poor se-

curity performance while the market is performing well risk reducing, as the

conventional beta does (Artavanis, 2013). Hence, downside beta only attributes

adverse outcomes as risk increasing. Even though an investor might consider

abnormal positive returns as risk increasing, he will put more emphasis on neg-

ative abnormal returns due to decreasing absolute risk aversion as shown by

Post and van Vliet (2004), and loss aversion (Artavanis, 2013). Figure 2 shows

how the CAPM beta (all four quadrants) and the Hogan-Warren downside beta

(the leftmost quadrants) are affected by different co-movements of the portfolio

returns and the market returns.

A
(+)

C
(+)

D
()

B
()

Rp

RM

Figure 2: Covariance and beta. The different quadrants show how the
CAPM beta is affected by different observations of the relation between portfo-
lio returns, Rp, and the market returns, Rm. In quadrant B and D, the portfolio
covaries negatively with the market, which decreases the CAPM beta and thus
the perceived risk of the portfolio decreases. In quadrants A and C, the portfo-
lio covaries with the market and the CAPM beta increases. The fact that the
CAPM risk measure increases (decreases) in quadrant A (D) is unintuitive as in-
vestors generally prefer profits over losses regardless of the market performance.
The Hogan-Warren downside beta, based on semi-covariance, ignores outcomes
when the market return is positive and is thus alleviated from the unintuitive
quadrants A and D.
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Over the years, a few different versions of downside beta have emerged.

Hogan and Warren (1974) use the risk free rate of return (which can be seen

as an opportunity cost of capital) as the threshold when they show that semi-

variance can replace variance to measure portfolio risk without losing the fun-

damental structure of the CAPM. In this setting, the effi cient portfolios are

those that minimize the semi-variance given the expected return, and the only

risk that rewards higher expected return is the co-movement with the market

when the market performs below the threshold (Hogan and Warren, 1974). The

corresponding downside beta is known as the Hogan-Warren downside beta.

Estrada (2002) presents a different version of the downside beta, where the

numerator is given by the covariance of the security return and the market

return conditional on both the security and the market performing below their

expected returns. A reason for this specification is to avoid the inconvenience

of an asymmetrical semi-covariance matrix that for example the Hogan-Warren

approach produces (Artavanis, 2013).

In a framework similar to that of Hogan andWarren (1974), Ang et al. (2006)

build their model on a representative agent with a “rational disappointment

aversion utility function”. In the framework of Ang et al. (2006), an investor

would be disappointed if he does not get at least his certainty equivalent (the

risk free rate of return) back from an investment. In addition, the authors

condition the semi-covariance on the market performing worse than its average

excess return.

In his treatise on downside risk, Artavanis (2013) methodologically examines

and compares the different recipes of downside beta with each other and the

CAPM beta. Artavanis (2013) finds that the Hogan-Warren beta is the only

specification that is consistent with the CAPM framework and state-preference

theory.

In Estrada’s (2002) framework, all risk reducing observations when the mar-

ket underperforms while the security outperforms the threshold are excluded

from the sample. Thus, the framework systematically overestimates the down-

side risk and it additionally strips the available dataset of observations resulting

in increased estimation errors (Artavanis, 2013).

The inclusion of two separate thresholds for the estimation of semi-covariance

in the framework of Ang et al. (2006) is shown by Artavanis (2013) to violate

state-preference theory. In particular, the problem arises from what he describes

as a “region-sign bias”, where in marginally bad states the return of the security

has the opposite effect on the risk premium than what would seem logical.
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After having theoretically presented why the Hogan-Warren beta is prefer-

able, Artavanis (2013) also presents empirical evidence of its superiority contra

both its semi-covariant challengers and the CAPM beta by the use of Fama-

MacBeth regressions on US data from 1926 to 2010.

Howton and Peterson (1998) perform a Fama and French (1992) test on

US data from 1977 to 1993 on both the CAPM beta and a dual-beta model

developed by Bhardwaj and Brooks (1993). Howton and Peterson (1998) divide

the sample into two sub-samples; up markets and down markets. Up markets are

defined as months when the market return is higher than the median market

return, and down markets are defined as months when the market return is

lower than the median market return. Howton and Peterson (1998) find that

a beta value calculated during months with market returns below the average

market return is statistically significantly negatively related to excess returns

in bear markets, whereas the opposite holds in bull markets for beta values

calculated in months with market excess returns above their average. Pettengil,

Sundaram and Mathur (2002) perform a similar test to Howton and Peterson

(1998), although dividing the sample into sub-samples according to; up markets

— when the monthly market return minus the US one-month treasury bill is

larger than zero, and down markets —when the monthly market return minus

the US one-month treasury bill is smaller than zero. PSM (2002) find that the

CAPM beta is not statistically significantly related to excess returns across the

entire sample period. In accordance with Howton and Peterson (1998), PSM

(2002) find that when the sample is divided into sub-samples, bear (bull) beta

is statistically significantly negatively (positively) related to excess returns in

down (up) markets. However, in the same sub-samples, the CAPM beta is even

more significant. Thus, PSM (2002) come to the conclusion that sub-sampling

is suffi cient for beta to become significantly related to excess returns.
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3 Theory

This chapter presents the theories discussed in Chapter 2 in a mathematical

format.

3.1 Mean —variance and mean —semi-variance

An effi cient portfolio is one that minimizes the expected variance, given the

expected return. Markowitz (1959) presents a general example with n securities.

The expected return of a portfolio is defined as

E =

n∑
i=1

Xiµi (1)

where µi is the expected return of security i and Xi is the relative amount

invested in security i, such that

n∑
i=1

Xi = 1 (2)

and

Xi ≥ 0 ∀ i (3)

which ensures no short-selling. The expected variance of a portfolio is therefore

V =

n∑
i=1

n∑
j=1

XiXjσij (4)

where σij is the covariance of the returns of security i and security j.

The problem of determining the effi cient frontier is then to maximize ex-

pected return
∑n
i=1Xiµi given the expected variance V =

∑n
i=1

∑n
j=1XiXjσij ,

or likewise minimize expected variance given the expected return. This can be

achieved by a number of programming techniques, for example a linear pro-

gramming model or Monte Carlo techniques (Markowitz, 1959). The resulting

effi cient frontier can then be plotted in the return —variance space as in Figure

1 above.
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When analyzing a mean — semi-variance effi cient frontier, Equations (1)-

(3) are used as defined above, although Equation (4) needs to be rewritten.

Markowitz (1959) defines

r− =

{
r if r ≤ 0

0 if r > 0
(5)

where r is returns. A portfolio’s semi-variance is then defined as

So =
∑
i

∑
j

sij (t1, ..., tk)XiXj (6)

where the semi-covariance between security i and j is calculated by

sij (t1, ..., tk) =
1

T

K∑
k=1

ritkrjtk (7)

where the index t represents time period (year, month etc.), T is the total

number of time periods studied and K is the number of time periods where the

market has negative returns.

Markowitz (1959) shows the rationale for using semi-variance rather than

variance by a discussion of distributions. Consider the two distributions of

returns in Figure 3 below.

x
x x x x

4 % 3% 2 % 1 % 1 % 2 % 3 % 4 %

x
x x x x

4 % 3 % 2 % 1 % 1 % 2 % 3 % 4 %

A

B

Figure 3: Distribution, variance and semi-variance. The variance of the
observations (denoted by x in the figure) is the same for both distribution A
and its reflection B, whereas the downside semi-variance is larger in distribution
B as it is negatively skewed due to the larger outlier. Thus, an investor who
bases his portfolio decision on variance would be indifferent between the two
portfolios, whereas if he uses semi-variance he would prefer portfolio A.

12



The variance of distribution A is the same as that of distribution B, whereas

the semi-variance is larger for distribution B than for distribution A. A mean

—variance analysis considers the two cases equally desirable, whereas a semi-

variance analysis would favor distribution A. In short, an analysis based on semi-

variance choses the distribution most skewed to the right (positively skewed) for

each given expected return.

3.2 Beta and downside beta

The classical CAPM equation developed by Sharpe (1964), Lintner (1965) and

Black (1972) is defined as

E (Ri) = Rf + βi [E (Rm −Rf )] (8)

where index i represents security i, index f represents the risk free asset and

index m represents the market portfolio. In Equation 8, βi is defined as

βi =
cov (Ri, Rm)

var (Rm)
(9)

There are several definitions of downside beta, an early version is the Hogan-

Warren downside beta developed by Hogan and Warren (1974), which according

to Artavanis (2013) is the only specification consistent with the framework pre-

scribed by Markowitz (1959) and state-preference theory. The Hogan-Warren

equivalent to Equation 9 is

β−i =
cov ((Ri −Rf ) ·min (Rm −Rf , 0))

var (min (Rm −Rf , 0))
(10)

3.3 Tests of the CAPM beta and the downside beta

Fama and MacBeth (1973) regress monthly portfolio returns on portfolio beta

values (expressed as the average of the betas of the individual securities in each

portfolio), the average of the squared security beta values for each portfolio

and the average of the standard error of the residuals in each market model

regression for each portfolio. Fama and MacBeth (1973) use the market model

Ri,t = αi + βiRm,t + εi,t (11)
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where Rm,t is the excess market return in period t, Ri,t is the excess return of

security i in period t and εi,t is the residual of the regression in period t. Since

βi = cov(Ri,Rm)
var(Rm)

and by construction cov (εi, Rm) = 0, then

var (Ri) = β2i var (Rm) + var (εi,t) + 2βicov (Rm, εi,t) (12)

i.e, from Equation 12, var (εi,t) is the only factor determining the distribution

of the returns that is not related to beta for security i.

The Fama-MacBeth regressions in their full form are then defined as

Rpt = γ̂0t + γ̂1tβ̂p,t−1 + γ̂2tβ̂
2

p,t−1 + γ̂3ts̄p,t−1 (ε̂i) + η̂p,t (13)

where β̂p,t−1 is the average of the betas in portfolio p derived from Equation 11

in period t−1 and s̄p,t−1 (ε̂i) is the standard error of the residuals also obtained

from Equation 11. Fama and MacBeth (1973) find that the coeffi cients for

β̂
2

p,t−1 and s̄p,t−1 (ε̂i) are insignificantly different from zero.

The test statistic used to test the significance of the coeffi cients of regression

13 in Fama and MacBeth (1973) is

t
(
¯̂γj
)

=
¯̂γj

s(γ̂j)√
n

(14)

where n is the number of months in the test period.

Fama and French (1992) build on the research of Fama and MacBeth (1973)

by adding additional explanatory variables to the Fama-MacBeth regressions.

Market value of equity, book-to-market value of equity, leverage and the earnings-

to-price ratio are all included as additional risk factors. To distinguish between

the effects of size and beta in average returns, Fama and French (1992) adopt

a double sorting procedure by first sorting the securities according to size, and

then, within each size category, an additional sorting on pre-ranking betas for

the individual stocks. Thus, Fama and French (1992) use a similar sorting pro-

cedure as Fama and MacBeth (1973) with the addition of the initial sorting on

size (ME). The average betas within each size —beta sorted portfolio are then

given to each individual security within the particular portfolio in order to avoid

imprecise beta estimates for individual securities. These beta values are used

along with security specific data on ME, BE/ME, E/P and leverage in cross-

security regressions. Portfolios are updated yearly, as well as ME, BE/ME,

14



leverage and E/P for each security. The beta values and the natural logarithms

of the other explanatory variables are then regressed on the next twelve monthly

returns for each security. The process is repeated for each year, and time-series

averages of each cross-sectional coeffi cient are calculated along with t-statistics

according to Equation 14 (Fama and French, 1992).

Fama and French (1992) find that the coeffi cient for beta is not statistically

significant, with a t-statistic of only -0.46. Further, they find that the coeffi cients

for log(ME) and log (BE/ME) are significantly different from zero and that

these variables combined absorb the explanatory power of leverage and E/P .

Thus, Fama and French (1992) find no evidence that supports using the

CAPMmodel to explain excess returns in cross-sections. Artavanis (2013) shows

that when performing the Fama-MacBeth regressions on downside beta instead

of the CAPM beta, the downside beta remains statistically significant even in

Fama and French (1992) regressions.
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4 Data and Methodology

This chapter presents the data sources and the specific data, as well as the econo-

metric techniques used to answer the research question in Chapter 1. Although

this chapter only describes the process of sorting on size and beta, sorting has

also been performed equivalently on the BE/ME and beta.

4.1 Data sources and the dataset

We use Bloomberg to obtain the monthly returns adjusted for dividends and

all other corporate actions, the market value of equity (ME) and the book-to-

market value (BE/ME) for all traded stocks included in the all-share indices

on the Frankfurt, London and Stockholm stock exchanges from 1995 to 2014.

Securities with missing data throughout the entire time period of either ME,

BE/ME or returns are excluded from the data set. Further, securities with

recordings of negative book values are also excluded from the data set, as in

Fama and French (1992), the number of such securities is small. Only the

most frequently traded security of each company is included in the data set, i.e.

usually shares of class B. The risk free rates are the one-month interbank rates

for the respective markets, also obtained from Bloomberg.

4.2 The Fama-French test

For the three markets specified above, we test if the CAPM beta and the Hogan-

Warren downside beta explain cross-sectional excess returns in the presence of

the logarithm of the market value of equity and the logarithm of the book-to-

market ratio. Based on the results of Fama and French (1992), we do not include

the earnings-to-price ratio or the leverage. The cross-sectional regressions in

their full form are specified as

Ri,t = γ̂0t + γ̂1tβ̂p + γ̂2t ln (MEi,Dec) + γ̂3t ln (BE/MEi,Dec) + εt (15)

where Dec refers to that the explanatory variables are taken from December in

the year before the returns (the dependent variable) were observed. The cross-

sectional regressions are performed monthly over the entire time period, except

for the first five years that are used for pre-ranking security betas. A detailed

description of the process follows below.
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4.2.1 The sorting process

For each year, after an initial security beta pre-ranking period of five years,

the different securities are first sorted into septiles depending on their market

capitalization in December of the previous year. Since the number of securities is

not usually divisible by the number of size sorted portfolios, the largest and the

smallest size portfolios receive one extra security. Fama and French (1992) use

fixed market capitalization limits to sort into size sorted portfolios rather than

using our approach of assigning an equal number of stocks into each portfolio.

The size sorting approach by Fama and French (1992) yields too few securities

in some of the size sorted portfolios, which prevents further beta sorting and is

thus not used in our analysis. This difference in sorting methodology is unlikely

to affect the outcome of the analysis. Security betas are calculated from a

pre-ranking period of 60 months, using Equation 9. Within each size sorted

portfolio, a sorting of the pre-ranking betas is performed. The same method of

dealing with indivisibility as when sorting on size is applied to the beta sorting.

In order for a security to be included in this sorting, it must have data on

market value for December of the year in which the pre-ranking of the beta

values ends and monthly returns for the pre-ranking period and the following

twelve months. By performing this check yearly, we avoid any survivorship bias

from the easier solution to only analyze securities with data for the full sample

period.

4.2.2 Estimating the portfolio betas

The equal weighted monthly excess returns are calculated for each portfolio and

month in the data set after the initial pre-ranking period. The post-ranking

portfolio excess returns are regressed across the entire data set, using the market

excess return for each month and its first lag as explanatory variables.

Rp,t = θ0 + θ1RM,t + θ2RM,t−1 + εt (16)

The market return at time t for each market is defined as the value weighted

returns of the securities in the data set without missing data on either returns

or market capitalization at time t. The CAPM portfolio beta is calculated,

identically to the specification in Fama and French (1992), as the sum of the

slopes of the regression coeffi cients for the market excess return, θ1, and the
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coeffi cient of its first lag, θ2. For Downside beta, Equation 10 is used to define

the post-ranking portfolio downside betas.

4.2.3 The Fama-MacBeth regressions

Fama-MacBeth regressions specified according to Equation 15 are performed for

each month of the dataset after the initial pre-ranking period. For each year,

securities are sorted into portfolios as was described in chapter 4.2.1 and are then

assigned the post-ranking beta of the portfolio to which they are assigned. By

re-sorting the portfolios yearly, a security can move across portfolios depending

on changes in its pre-ranking beta and its size. This allows some variation in

security beta while avoiding the estimation errors that follow from using security

betas directly (Fama and MacBeth, 1973; Fama and French, 1992). The cross-

sectional Fama-MacBeth regressions are run for all securities with suffi cient data

for each month, using security specific values of ME and BE/ME, for which

there is no error in the estimates. By rolling the regressions monthly, a total

of 180 regressions per market are performed with an average of 344 securities

per regression. The Fama-MacBeth coeffi cients are calculated as the time-series

averages of the cross-sectional regressions, and the standard errors are calculated

as in Equation 14.

4.2.4 Criterions for answering the research question

The results of the Fama-MacBeth regressions are presented in tables, and the

sign of the coeffi cients as well as their t-statistics are compared to the results of

Fama and French (1992), Artavanis (2013) and Ang et al. (2006). Although the

main purpose of the thesis is to test whether a downside beta better explains

excess returns than the CAPM beta, the fact that a Fama and French (1992)

analysis is performed on three different markets also allows the thesis to test

the robustness of the resluts obtained by Fama and French (1992).

In short, if the coeffi cient for downside beta consistently has a larger t-

statistic than the coeffi cient for the CAPM beta in the cross-sectional regressions

including the additional risk factors log(ME) and log(BE/ME), the downside

beta is deemed to better explain excess returns than the CAPM beta. Further, if

the results of the analysis are similar to the results of Fama and French (1992) in

the different markets, the Fama and French (1992) results are considered robust

across markets and different time periods.
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5 Results and Analysis

This chapter first presents summary statistics of the data. Thereafter, the

results of the Fama-MacBeth regressions are presented and analyzed.

5.1 Summary statistics of the dataset and the portfolios

The size of the dataset changes for each year depending on delistings and the

quality of the data, i.e. missing values. Table 1 shows the minimum, average

and maximum number of securities used in the Fama-MacBeth regressions. It

is apparent that both the number of stocks and the quality of the data are

increasing with time. For instance, the book value of equity is not available for

most stocks in the Bloomberg database prior to the year 2000, which is also

why we limit our dataset from 1995 to 2014. Since we start our analysis with

a pre-ranking period of five years, where we are only interested in returns, the

absence of book value data until the year 2000 has no impact on the results.

Table 1: Sample sizes. Minimum, average and maximum number of securities
used in the cross-sectional Fama-MacBeth regressions for the different markets.

Frankfurt London Stockholm
Minimum 207 336 51
Average 363 364 165
Maximum 463 402 207

A description of the market performance in the different markets is shown in

Table 2, including the value weighted dividend adjusted returns of the sample

securities and the equal weighted returns of the securities in the sample. The

equal weighted index is calculated as the arithmetic mean of the returns of the

securities without missing data in the dataset, it is not used in the regressions

but will be commented upon in the discussion below.

Table 2: The market performance. Value weighted and equal weighted
return index for the different markets and the average number of securities used
to calculate the indices.

Frankfurt London Stockholm
Value weighted 0.55 0.48 0.62
Equal weighted -1.10 0.02 -0.17
Average stocks in index 513 460 241
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The size and beta sorted portfolios’ average excess returns for the entire

sample period excluding the initial pre-ranking period are presented in Table 3,

Table 4 and Table 5 for the Frankfurt, London and Stockholm stock exchanges,

respectively. The smallest stocks with the lowest betas are found in the North-

west corner and the largest stocks with the highest betas are in the Southeast

corner, this logic applies to all tables in the remainder of this sub-chapter.

Table 3: Portfolio returns —Frankfurt. Monthly returns in percent for
equal weighted double sorted portfolios sorted on size and pre-ranking betas.

Low β1 β2 β3 β4 β5 β6 High β7
Small ME1 -1.00 -0.46 -1.36 -1.49 -1.27 -1.75 -3.59

ME2 -1.26 -1.39 -0.30 -0.57 -0.52 -0.50 -2.00
ME3 -0.15 -0.42 0.56 0.02 -0.44 0.53 -0.07
ME4 -0.16 -0.45 -0.23 0.45 -0.39 0.57 -0.78
ME5 0.12 -0.13 0.25 0.45 0.83 0.52 -1.54
ME6 0.39 0.51 0.73 0.47 -0.19 0.50 -0.48

Large ME7 0.31 0.11 0.61 0.06 -0.37 -0.09 0.04

Table 4: Portfolio returns —London. Monthly returns in percent for equal
weighted double sorted portfolios sorted on size and pre-ranking betas.

Low β1 β2 β3 β4 β5 β6 High β7
Small ME1 0.15 0.36 0.78 0.44 -0.02 0.26 0.37

ME2 0.54 0.50 0.36 0.01 -0.35 -0.79 -0.14
ME3 0.38 0.13 -0.14 -0.16 0.14 -0.50 -0.43
ME4 -0.14 0.19 0.36 0.73 0.03 -0.29 0.06
ME5 0.15 0.13 0.22 0.39 -0.20 0.02 -0.48
ME6 0.22 0.14 0.84 0.17 -0.14 -0.16 0.12

Large ME7 0.42 0.66 -0.11 -0.23 -0.21 0.20 0.06

Table 5: Portfolio returns —Stockholm. Monthly returns in percent for
equal weighted double sorted portfolios sorted on size and pre-ranking betas.

Low β1 β2 β3 β4 β5 β6 High β7
Small ME1 -0.18 0.13 1.15 -0.33 0.57 -0.87 -2.41

ME2 0.81 1.01 0.40 -0.16 -0.45 -1.01 -1.18
ME3 -0.16 -0.26 1.02 -0.31 0.69 -0.11 0.37
ME4 0.74 -0.11 0.63 -1.09 -0.78 -1.69 -0.92
ME5 1.00 1.26 -0.05 0.87 0.18 -0.61 1.06
ME6 1.12 1.07 0.38 0.59 1.08 0.68 -0.33

Large ME7 0.07 0.46 0.62 0.32 0.71 0.24 0.03
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As can be seen from Table 3 and Table 5, there seems to be a positive

relation between size and excess returns in Sweden and Germany, while Table 4

shows the opposite relationship for the UK. The relationship between beta and

excess returns is not as easily seen in the tables, although a larger beta certainly

does not seem to be correlated with higher returns, as was found by Fama and

French (1992). When comparing Table 3-5 to the equivalent table by Fama and

French (1992) for stocks on the NYSE, AMEX and Nasdaq in the time period

of 1963 to 1990, there is a striking difference in the clarity of the patterns. The

table in Fama and French (1992) shows a perfect pattern of increasing returns

for decreasing size, whereas the existence of such a pattern is hard to see at a

first glance in our tables describing Frankfurt and Stockholm, and the opposite

relation seems to hold for London. Both in Fama and French (1992) and in our

study, the relationship between beta and returns is not obvious from looking at

the tables above.

Table 6-8 presents the portfolio betas of the size pre-ranking beta sorted

portfolios. In general, the portfolio betas increase with pre-ranking beta, which

indicates a rather good persistency in the beta values. In the equivalent table of

Fama and French (1992), the pattern with regard to pre-ranking betas is similar

to ours. Further, Fama and French (1992) find an almost uncanny pattern of

decreasing beta with increasing size. In fact, this pattern is much clearer than

the pattern we find between pre-ranking beta and post-ranking portfolio beta.

In comparison to the size —beta pattern observed in Fama and French (1992),

our results resemble a random walk.

For the London stock exchange it is hard to identify any pattern at all, but

it seems like the medium sized firms are the ones with the highest betas. In

both London and Frankfurt, the range of the beta values increases with firm

size, where the low betas tend to get lower and the high betas grow higher. The

range effect is not observed in Stockholm.

The beta values, in general, are lower in Frankfurt than in the other observed

markets, while London clearly has the highest values. Size-wise, the data for

the Stockholm stock exchange is most similar to the results in Fama and French

(1992). Interestingly, almost all beta values in Frankfurt are below one (average

0.72), whereas almost all are above one in London (average 1.34). This is

explained by the bottom row of the two tables, where the very largest firms

have low (high) betas in London (Frankfurt) and thus have a larger impact on a

value-weighted index and therefore balance the equation. In Stockholm, the beta

values are more balanced (average 0.93). However, it should be noted that the
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average portfolio beta values mentioned above are calculated as the arithmetic

mean of the portfolio betas. If value weighted betas are used instead, the average

betas in Frankfurt are 1.10, in London 1.14 and in Stockholm 1.02. One would

expect the value weighted average of the betas to equal one. The observed

discrepancy is explained by the fact that the stocks used in the regressions are

not exact replicas of the stocks used to construct the indices, due to missing

data.

Table 6: Portfolio betas —Frankfurt. Estimated betas for equal weighted
double sorted portfolios sorted on size and pre-ranking betas.

Low β1 β2 β3 β4 β5 β6 High β7
Small ME1 0.37 0.51 0.59 0.90 0.69 0.65 0.31

ME2 0.42 0.44 0.53 0.53 0.61 0.85 0.76
ME3 0.30 0.54 0.75 0.62 0.63 0.85 0.75
ME4 0.44 0.46 0.64 0.51 0.62 0.77 1.22
ME5 0.30 0.46 0.58 0.66 0.83 0.89 1.31
ME6 0.25 0.42 0.61 0.80 0.91 1.16 1.41

Large ME7 0.46 0.72 0.70 1.09 1.30 1.47 1.51

Table 7: Portfolio betas —London. Estimated betas for equal weighted
double sorted portfolios sorted on size and pre-ranking betas.

Low β1 β2 β3 β4 β5 β6 High β7
Small ME1 1.11 1.18 1.44 1.12 1.47 1.58 1.74

ME2 1.03 1.02 1.40 1.47 1.51 1.75 1.83
ME3 0.93 0.90 1.45 1.26 1.37 1.67 2.10
ME4 0.90 1.09 1.23 1.47 1.57 1.49 2.02
ME5 1.27 0.96 1.24 1.43 1.45 1.65 2.02
ME6 0.58 1.06 1.03 1.32 1.41 1.75 1.95

Large ME7 0.53 0.66 0.72 1.18 1.38 1.49 1.64

Table 8: Portfolio betas —Stockholm. Estimated betas for equal weighted
double sorted portfolios sorted on size and pre-ranking betas.

Low β1 β2 β3 β4 β5 β6 High β7
Small ME1 0.67 0.78 0.88 0.78 0.60 1.14 1.38

ME2 0.62 0.67 0.77 0.56 0.70 1.12 1.00
ME3 0.77 0.57 0.79 1.03 0.97 1.18 1.46
ME4 0.63 0.75 0.83 0.91 1.10 1.42 1.65
ME5 0.63 0.73 0.80 0.82 0.89 1.27 1.52
ME6 0.60 0.69 0.80 0.76 0.88 0.97 1.18

Large ME7 0.79 0.90 0.98 0.86 1.03 1.08 1.55
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The equivalents of Table 3-5 sorted on ME and downside beta, BE/ME

and CAPM beta and BE/ME and downside beta are found in Appendix A,

Appendix B and Appendix C, respectively. These tables show similar, but less

obvious patterns than the size and pre-ranking CAPM beta sorted portfolios.

5.2 The Fama-MacBeth regressions

The averages of the coeffi cients in the monthly Fama-MacBeth regressions, along

with their t-statistics according to Equation 14, are presented in Table 9. In

line with Fama and French (1992), the regressions generate negative coeffi cients

for the betas, both for the CAPM betas and the Hogan-Warren downside betas.

About half of our results, show that the coeffi cients for the betas are statistically

significant at the 5 % level, whereas Fama and French (1992) do not find any

significance.

When regressing excess returns on beta and log (ME) alone, we find that a

stock on the Frankfurt stock exchange is rewarded with 0.23 % larger monthly

excess returns when log (ME) is increased by one. A slightly lower effect is

seen in Stockholm (0.16 %), whereas in London an increase in log (ME) by one

decreases excess monthly returns by 0.04 %, although not statistically signifi-

cant. Thus, as was expected from observing Table 3, Table 4 and Table 5, the

effect of size is different in the different markets, and the results in Stockholm

and Frankfurt are opposites to those found by Fama and French (1992). The

book-to-market ratio has no significant effect on the excess returns in Frankfurt,

whereas in Stockholm and London the log (BE/ME) coeffi cient is positive and

statistically significant at the 5 % level, yielding an additional 0.4 % to 0.5 %

excess return per month and unit. When using the downside beta in the regres-

sions rather than the CAPM beta, the results change somewhat, although the

signs of all coeffi cients remain the same.

When running the Fama-MacBeth regressions including both log (ME) and

log (BE/ME), the results differ strongly between the different markets. The

coeffi cients for both the CAPM beta and the downside beta are statistically

insignificant in Frankfurt and London, which is in line with the results of Fama

and French (1992). However the coeffi cients of both the CAPM beta and the

downside beta in Stockholm are negative and statistically significant at the 5 %

level.

The differences in the statistical significance of the CAPM betas and the

downside betas are negligible and, for instance, in London the downside be-
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Table 9: Results of the Fama-MacBeth regressions. After a beta pre-
ranking period of five years, a total of 180 cross-sectional regressions, one for
each month in 2000-2014 are run, and then the time-series averages of the co-
effi cients.The t-statistics are calculated according to equation 14 and presented
in the parenthesis. The cross-sectional regressions are run on 49 size-beta dou-
ble sorted portfolios. The portfolios are re-sorted yearly, which allows variation
in beta-estimates of the individual securities. Data for market value of equity
and book-to-market value is taken at the firm specific level. The regression
coeffi cients are expressed in percent.

β β− log (ME) log (BE/ME)
Frankfurt -0.64 (-1.36) 0.23 (3.56)

-0.11 (-0.23) -0.29 (-1.87)
-0.60 (-1.26) 0.25 (5.25) -0.01 (-0.04)

-0.43 (-1.21) 0.24 (3.63)
-0.17 (-0.47) -0.31 (-2.02)
-0.43 (-1.19) 0.26 (5.25) 0.02 (0.12)

London -0.46 (-1.36) -0.04 (-0.75)
-0.80 (-2.38) 0.52 (3.44)
-0.50 (-1.61) 0.01 (0.20) 0.33 (2.24)

-0.43 (-1.45) -0.01 (-0.12)
-0.68 (-2.38) 0.40 (2.68)
-0.47 (-1.72) 0.05 (0.90) 0.35 (2.33)

Stockholm -2.27 (-3.39) 0.16 (2.57)
-1.87 (-2.49) 0.42 (2.67)
-1.70 (-2.58) 0.19 (2.71) 0.52 (2.98)

-1.33 (-2.66) 0.20 (3.03)
-1.20 (-2.33) 0.39 (2.42)
-1.16 (-2.58) 0.25 (3.28) 0.59 (3.20)

tas are on average slightly more significant than the CAPM betas, whereas

the opposite holds for Frankfurt and Stockholm. The fact that there hardly

is any difference between the two beta measures is a strong contradiction to

the findings of Artavanis (2013), who finds that the CAPM beta is statistically

insignificant in the presence of log (ME) and log (BE/ME), whereas the down-

side beta is highly statistically significant. In Sweden, the coeffi cients for both

log (BE/ME) and log (ME) are positive and statistically significant at the 5 %

level. In Frankfurt, the log (BE/ME) coeffi cient is completely subsumed by the

positive log (ME) coeffi cient, whereas the opposite is true for London, where

there is a statistically significant positive relation between log (BE/ME) and

excess returns and log (ME) adds nothing to the explanation of excess returns.

The results of the regressions with both log (ME) and log (BE/ME) as ex-
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planatory variables differ from the results in Fama and French (1992), who find

a hihgly significant relation between both of the variables and excess returns.

5.3 Analysis and discussion

The research question of this thesis is to test whether a downside beta better

explains cross-sectional excess returns than the CAPM beta. By applying the

Fama and French (1992) test to three different markets, we test the results of

Artavanis (2013) and Ang et al. (2006) who find a stronger relation between

excess returns and downside beta than between excess returns and the CAPM

beta. Artavanis (2013) also finds that while the CAPM beta is subsumed in the

presence of size and a proxy for the book-to-market value, the Hogan-Warren

downside beta remains strongly statistically significant in the Fama-MacBeth

regressions. The findings of Artavanis (2013) and the appealing logic behind

the Hogan-Warrren downside beta were what initially sparked our interest in

the topic. As Markowtiz (1959) mentioned, variance as a risk measure is the

most commonly used due to its ease of computation and its familiarity, although

an analysis based on semi-covariance tends to give better portfolios than one

based on covariance. By testing the conclusion of Artavanis (2013) on several

markets we hoped to strengthen the case for the downside beta and increase the

familiarity of a semi-covariance based analysis.

However, the results of our analysis differed from those that we expected

and hoped for. While both Artavanis (2013) and Ang et al. (2006) find highly

statistically significant positive coeffi cients for the downside beta (Ang et al.

(2006) even find a t-statistic of 8), our downside betas (and CAPM betas) all

had negative coeffi cients in the Fama-MacBeth regressions. By comparing Table

9 to the findings of Artavanis (2013), our result is a much less convincing case

for the downside beta. In Table 9, there is hardly any difference between neither

the size of nor the statistical significance of the different beta measures. This

inconsistency with the results of other authors working with downside betas

caused confusion about our results, which led to extensive robustness tests of

our analysis. For example, although only monthly returns are presented in

this thesis, we also did the analysis using daily data according to the process

described by Ang et al. (2006), which yielded similar results as when using

monthly data (not shown).

Howton and Peterson (1998) test the CAPM model with Fama-MacBeth

regressions on US data from 1977 to 1993, although using a dual beta model
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developed by Bhardwaj and Brooks (1993). They find that a beta value cal-

culated during months with market returns below the average market return is

statistically significantly negatively related to excess returns in down markets,

whereas the opposite holds in up markets for beta values calculated in months

with market excess returns above their average. PSM (2002) come to similar

conclusions in a very similar test. These results are logical, and follow from

the specification of the Fama and MacBeth (1973) regressions, where the coeffi -

cient of beta in the Fama-MacBeth regression with beta as the only explanatory

variable should be the market return. Thus, by dividing the sample into two

sub-samples with only positive (negative) market excess returns, it should by

definition be that the coeffi cient for beta in the Fama-MacBeth regressions is

large and positive (negative). The CAPM beta explains how a particular stock

follows the market index, thus by conditioning on the market returns, it should

be no surprise that the CAPM beta has very high explanatory power in the tests

of PSM (2002) and Howton and Peterson (1998), where the sample is divided

according to up and down markets.

We perform a simple test to mimic the procedure by PSM (2002) on our

dataset by simply changing the sign on all observations of the market return

and the stock returns for observations when the market return is negative and

perform our analysis on this modified dataset. This data snooping procedure

yields a beta coeffi cient of 0.0305 with a t-statistic of 8.03 for Frankfurt, similar

to the results of Ang et al. (2006). Although this weakness of the test explains

the results of Howton and Peterson (1998) and PSM (2002), the strong results

of Artavanis (2013) and Ang et al. (2006) are left unexplained by this nuance.

By failing to reproduce the results of Artavanis (2013), and not finding

any significant difference between the CAPM beta and the downside beta, our

results is a blow to the downside beta advocates, and yet more proof that there

is no such thing as a free lunch. It seems unlikely that an investor who uses

a downside beta based investing approach will achieve returns in excess of the

market consistently.

In addition to testing whether the downside beta is a superior risk measure to

the CAPM beta, our analysis can also be used to draw inferences from the Fama

and French (1992) test. By applying the same test to three different markets,

we find different results. While Fama and French (1992) find that smaller firms

outperform larger ones, the opposite holds for our findings in Frankfurt and

Stockholm, but not in London. This discrepancy is proof that the results in

Fama and French (1992) are not robust across different times and markets, and
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the explanation for the difference in our results is likely explained by the market

performance in the testing period. We run our Fama-MacBeth regressions in

the years 2000-2014. During that period, two large crises have struck the market

economy, both the burst of the IT bubble in the beginning of the century, and

the more recent 2007-2008 financial crisis.

In Table 2, the equal weighted index of Frankfurt and Stockholm performed

much worse than the value weighted one, while the difference was smaller in

London. We hypothesize that the explanation for this is that in both Sweden

and Germany, there were many small firms that went bankrupt or saw large

declines in their market value during the burst of the IT bubble, which could

explain why smaller firms perform worse than larger firms in these markets.

The fact that we do not consistently find similar results in the different mar-

kets is not necessarily proof that the cross-sectional Fama and French (1992)

testing methodology is inappropriate. However, it shows that the conclusions

of Fama and French (1992) are not general, but change in different times and

markets. A first observation on the methodology is that it is sensitive to the

performance of the market during the testing period. When regressing excess

returns on beta, the resulting coeffi cient is almost entirely explained by the mar-

ket return throughout the estimation period (remember the t-statistic of 8 that

we got in the data snooping test explained above). Thus, to test whether beta

explains cross-sectional excess returns, one must not investigate a time period

where the market returns are close to zero. Further, as was discussed above,

the difference between a value weighted index and an equal weighted index can

be used to explain the relation between excess returns and market capitaliza-

tion much more easily than by using Fama-MacBeth regressions, although on

an entirely ex-post basis. Our observations are also confirmed by Howton and

Peterson (1998), who conclude that the results in the cross-sectional regressions

are market and time sensitive.
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6 Conclusion

The validity of the influential CAPM model has been discussed and analyzed

since its birth in the 1960s. One of the most common techniques to test the

proposition that the CAPM beta is the only necessary explanatory factor for

excess returns is to use cross-sectional Fama and MacBeth (1973) regressions.

In a famous article, Fama and French (1992) add the explanatory variables

log (ME), log (BE/ME), E/P and leverage to the Fama-MacBeth regressions

and find that in the presence of log (ME) and log (BE/ME), the CAPM beta

does not explain excess returns with any statistical significance. Some authors

have used a conditional beta and a downside beta in the CAPM model, and

tests have shown that these alternative risk measures survive even in Fama and

French (1992) regressions (Ang et al. 2006; Artavanis, 2013; PSM, 2002; Howton

and Peterson, 1998).

We perform a robustness test of the findings regarding downside betas of

Artavanis (2013) and Ang et al. (2006) by performing Fama and French (1992)

regressions on monthly stock returns on the stock exchanges in Frankfurt, Lon-

don and Stockholm in the time period of 2000-2014. In essence, we find no

difference between the CAPM beta and the (Hogan-Warren) downside beta in

their ability to explain excess returns, a clear contradiction to in particular the

results of Artavanis (2013). Thus, information of a downside beta parameter

cannot consistently be used to achieve abnormal excess returns.

Additionally, by applying a Fama and French (1992) test on three different

markets, we find that the results of the test differ across different markets. This

adds to the observation of Howton and Peterson (1998), who find that the Fama

and French (1992) results are not robust across different times. In particular,

the market performance during the test period explains much of the effect of

the CAPM beta, which from our standpoint is a weakness of the methodology.

Further research could focus on the development of new tests of the relation

between beta and excess returns that are not as sensitive to the market perfor-

mance as the Fama and French (1992) test, which could strengthen the intuition

and understanding of the beta measure as a risk factor.
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A Portfolio returns sorted on size and downside

beta

Table 10: Portfolio returns —Frankfurt. Monthly returns in percent for
equal weighted double sorted portfolios sorted on size and pre-ranking Hogan-
Warren downside betas

Low β−1 β−2 β−3 β−4 β−5 β−6 High β−7
Small ME1 -1.78 -0.25 -0.75 -1.50 -1.20 -2.89 -2.57

ME2 -1.68 -0.70 0.20 -0.74 -0.78 -0.54 -1.74
ME3 -0.25 -0.32 -0.16 0.03 0.15 0.84 -0.43
ME4 -0.71 0.04 0.04 0.10 -0.05 0.64 -1.05
ME5 0.05 0.12 0.08 0.34 1.00 0.05 -0.97
ME6 0.32 0.57 0.41 0.10 0.60 0.46 -0.53

Large ME7 0.19 0.32 0.14 0.33 -0.30 -0.01 -0.04

Table 11: Portfolio returns —London. Monthly returns in percent for equal
weighted double sorted portfolios sorted on size and pre-ranking Hogan-Warren
downside betas

Low β−1 β−2 β−3 β−4 β−5 β−6 High β−7
Small ME1 0.45 -0.02 0.87 0.61 0.21 0.12 0.12

ME2 0.65 0.06 0.79 -0.31 -0.27 -0.38 -0.41
ME3 0.19 0.27 -0.13 -0.21 -0.17 0.08 -0.59
ME4 0.32 -0.23 0.04 0.65 0.26 -0.33 0.18
ME5 0.04 0.45 -0.11 0.26 -0.90 0.14 -0.52
ME6 0.34 0.26 0.41 0.09 -0.17 0.11 0.13

Large ME7 0.30 0.24 0.18 0.06 -0.13 -0.28 0.41

Table 12: Portfolio returns —Stockholm. Monthly returns in percent for
equal weighted double sorted portfolios sorted on size and pre-ranking Hogan-
Warren downside betas

Low β−1 β−2 β−3 β−4 β−5 β−6 High β−7
Small ME1 -0.24 -0.07 0.71 -0.55 0.77 -1.82 -1.15

ME2 0.86 0.85 -0.58 0.35 0.69 -1.74 -0.92
ME3 -0.12 0.68 -0.12 0.29 0.18 0.18 0.28
ME4 0.03 0.87 -0.09 0.04 -1.79 -0.38 -1.31
ME5 1.15 0.61 0.47 0.90 -0.30 0.08 -1.30
ME6 0.61 0.83 0.55 0.28 1.32 1.26 -0.29

Large ME7 0.24 0.31 0.09 0.77 0.61 0.40 0.00
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B Portfolio returns sorted on BE/ME and CAPM

beta

Table 13: Portfolio returns —Frankfurt. Monthly returns in percent for
equal weighted double sorted portfolios sorted on book-to-market value and
pre-ranking betas

Low β1 β2 β3 β4 β5 β6 High β7
Small BE/ME1 -0.82 -0.07 0.28 0.46 -1.58 0.24 -1.03

BE/ME2 -0.15 0.11 -0.22 -0.12 0.02 -0.95 -0.52
BE/ME3 -0.69 0.39 0.51 0.70 0.53 0.61 -1.04
BE/ME4 -0.25 0.34 0.72 0.39 0.27 -0.30 -0.58
BE/ME5 0.16 -0.65 0.72 0.62 0.59 0.13 -0.11
BE/ME6 -0.24 0.71 -0.80 -0.58 -1.53 0.60 -0.60

Large BE/ME7 -1.00 -1.50 -1.43 -0.79 -1.09 -2.83 -3.00

Table 14: Portfolio returns —London. Monthly returns in percent for
equal weighted double sorted portfolios sorted on book-to-market value and
pre-ranking betas

Low β1 β2 β3 β4 β5 β6 High β7
Small BE/ME1 -0.30 -0.23 0.44 -0.05 -0.75 -1.59 -1.44

BE/ME2 0.15 0.21 -0.24 0.47 -0.57 0.02 -0.57
BE/ME3 0.05 0.35 0.54 0.25 0.37 0.00 0.33
BE/ME4 0.51 -0.05 0.52 0.56 0.60 -0.65 -0.13
BE/ME5 0.43 0.23 0.53 0.27 0.09 0.35 -0.20
BE/ME6 0.01 -0.10 0.24 0.47 0.38 0.15 -0.03

Large BE/ME7 0.46 1.48 0.34 0.26 0.28 -0.16 0.12

Table 15: Portfolio returns — Stockholm. Monthly returns in percent
for equal weighted double sorted portfolios sorted on book-to-market value and
pre-ranking betas

Low β1 β2 β3 β4 High β5
Small BE/ME1 0.08 0.16 -1.27 -1.15 -1.48

BE/ME2 0.93 0.32 0.26 -0.26 -0.79
BE/ME3 0.54 0.64 0.88 0.52 -0.13
BE/ME4 0.70 0.69 0.26 -0.05 -0.47

Large BE/ME5 0.69 0.56 1.10 0.05 -0.55
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C Portfolio returns sorted on BE/ME and down-

side beta

Table 16: Portfolio returns —Frankfurt. Monthly returns in percent for
equal weighted double sorted portfolios sorted on book-to-market value and
pre-ranking Hogan-Warren downside betas

Low β−1 β−2 β−3 β−4 β−5 β−6 High β−7
Small BE/ME1 -1.23 0.40 0.22 -0.28 0.10 -0.01 -1.56

BE/ME2 -0.58 0.44 -0.09 -0.14 -0.09 0.08 -1.51
BE/ME3 -0.54 -0.28 0.38 0.53 0.60 0.56 -0.44
BE/ME4 -0.16 0.35 0.41 0.52 -0.11 -0.12 -0.30
BE/ME5 0.06 0.48 -0.24 0.91 0.68 0.19 -0.54
BE/ME6 -0.14 -0.08 -0.23 -0.82 -0.15 -0.62 -0.24

Large BE/ME7 -1.82 -1.17 -0.88 -1.85 -1.17 -2.34 -2.37

Table 17: Portfolio returns —London. Monthly returns in percent for
equal weighted double sorted portfolios sorted on book-to-market value and
pre-ranking Hogan-Warren downside betas

Low β−1 β−2 β−3 β−4 β−5 β−6 High β−7
Small BE/ME1 -0.15 0.18 -0.34 -0.38 -0.83 -0.94 -1.48

BE/ME2 0.44 -0.50 0.09 0.17 -0.17 0.20 0.75
BE/ME3 0.13 0.27 -0.05 0.78 0.03 0.31 0.43
BE/ME4 0.70 -0.10 0.52 0.20 0.28 -0.12 -0.17
BE/ME5 0.18 0.32 0.96 0.36 -0.33 0.12 0.10
BE/ME6 -0.14 0.11 0.16 0.71 -0.10 0.57 -0.19

Large BE/ME7 0.79 1.36 0.37 0.08 -0.01 0.04 0.07

Table 18: Portfolio returns — Stockholm. Monthly returns in percent
for equal weighted double sorted portfolios sorted on book-to-market value and
pre-ranking Hogan-Warren downside betas

Low β−1 β−2 β−3 β−4 High β−5
Small BE/ME1 0.06 -0.24 -0.68 -1.06 -1.61

BE/ME2 0.78 0.34 0.06 0.27 -0.95
BE/ME3 0.52 0.57 0.63 0.65 0.04
BE/ME4 0.75 0.42 0.16 0.63 -0.80

Large BE/ME5 0.56 0.38 0.83 0.18 -0.31
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