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Abstract

This Bachelor’s thesis treats the development of ULMO the Star Explorer, a graphi-
cally intensive space-shooter game set in three dimensions, which is developed using
the framework Microsoft XNA. The project was carried out as a case study, and
the thesis presents and compares different techniques that can be used to solve the
problems we identified.

The main focus for this thesis is to present the graphical effects used to create a
graphically intensive game within a limited time frame, but it also presents the
different solutions chosen to create the game engine used by the game. The thesis
covers several common graphical effects used by games, such as Bloom and Motion
Blur, and presents two novel algorithms: one algorithm for lighting of spheres,
and one algorithm to generate the game world including a path within the three-
dimensional space of this world.

ULMO the Star Explorer does not contain all the features that were originally
planned, but is still a fully functional game that can, given the time frame and the
number of project members, be seen as a visually pleasing game.



Sammandrag

Denna kandidatrapport behandlar utvecklingen av ULMO the Star Explorer, ett
grafikintesivt rymdskjutarspel i tre dimensioner, som är utvecklat med hjälp av
ramverket Microsoft XNA. Projektet utfördes i form av en fallstudie, och rapporten
presenterar och jämför därför flera tekniker som kan användas för att lösa de problem
som vi har identifierat.

Rapportens huvudfokus ligger på att presentera de grafikeffekter som användes för
att skapa just ett grafikintensivt spel inom en begränsad tidsram, men den innehåller
även de lösningar vi valde för att skapa spelmotorn som spelet använder. Rapporten
täcker flera vanliga grafikeffekter som används i spel, som till exempel Bloom och
Motion Blur, och presenterar två egenutvecklade algoritmer: en för ljussättning av
sfärer och en för generering av spelvärlden med en rutt i tredimensionell rymd genom
denna värld.

ULMO the Star Explorer innehåller inte alla de funktioner som ursprungligen var
planerade, men är trots det ett fullt fungerande spel och kan, med projektets tidsram
och antal projektmedlemmar i åtanke, ses som ett visuellt tilltalande spel.
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1
Introduction

This thesis discusses the development of a three-dimensional space-shooter game,
and the implementation of several graphical effects and techniques that were used
to make the game look interesting. When developing the game we decided that,
if there is a conflict between visuals and realism, visuals will be prioritized if it
seems likely to result in a more engaging game. This introductory chapter covers
the background, purpose, problems, limitations, and the method of working that
form the basis of this Bachelor’s thesis.

During the development process two novel algorithms were developed: one algorithm
for the generation of levels, and one algorithm to properly light the planets by the
sun, which is in the center of the scene.

1.1 Background

The development of computer games has come a long way since it started. According
to Moore’s law, the number of transistors will double every two years, thus increasing
the computing power, making it possible to create better effects. As power increases,
the public’s demands on the games are rising as well, and the cost to produce a
modern game can stretch to several hundred million dollars with teams consisting
of up to 500 people working on the same game [Cross 2014].

One of the first popular game genres was the space-shooter genre, with games such
as Space Invaders in 1978, or Asteroids, released the year after. This project takes
inspiration for the gameplay from games such as Star Fox, a space-shooter game for
the Super Nintendo Entertainment System console that was released in 1993, where
the player follows a predefined path in third person, shooting enemy ships in front
of the player.

1.2 Purpose

The purpose of this thesis work is to conduct a case study, in which a group of five
team members work for four months, in order to develop a 3D shooter game set in
space, with emphasized focus on graphical effects.
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1. Introduction

1.3 Problem

When creating a game, there are a couple of problems that have to be considered.
For this project, we decided to focus on three different parts, namely how to design
the game engine, what to consider when implementing different graphical effects,
and how to efficiently work as a group on a heavily time-constrained project.

Game Engine. How do we structure the code in order for five people to efficiently
implement features iteratively, seamlessly, and concurrently? How can we solve
common game-programming problems, such as collision, and level generation?

Graphics. How can we implement certain specific graphical effects in a visually
pleasing, yet efficient, manner? Which of these effects are easy to implement, and
which are difficult?

Collaboration. How do we collaborate as a group of five members on the same
software? How do we select which features to implement, and which to skip, with
regards to the time constraint set on the project?

1.4 Limitations

In order to create a game within the given time frame with five members, some
limitations have to be made. Given that the main focus for the project is graphics,
other areas, such as artificial intelligence, audio and advanced gameplay features
have been more restricted than the implementation of graphical features.

Additionally, since no group member has any significant experience in designing 3D
models, it was decided to mainly use free models from external sources, rather than
design models on our own. This limits the amount of models we have at our disposal
and also lowers the consistency of models, since most models come from different
sources and have varying styles.

1.5 Method

While the thesis itself is going to explain and discuss the algorithms and thoughts,
this section covers some of the tools used during the development of this project.

There are many ways to structure the working process of a group; the waterfall
model, spiral model, or extreme programing are just a few alternatives. We decided
to work with an agile process, a spiral model, with prioritized tasks. These tasks
were implemented and tested one by one, iteratively, and structured using Trello,
which is a billboard web application that helps groups easily overview and organize
such tasks.
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1. Introduction

We chose to develop the game in Microsoft’s framework XNA, rather than an existing
game engine, such as Unity or Unreal Engine. The reason for this is that XNA
requires the developer to write most of the game engine and rendering themselves,
while still supplying most of the underlying code for things such as importing models
and textures, gathering input, and setting up for the graphics pipeline. This allows
for more freedom in the specifics of the implementation compared to when using
Unity or Unreal Engine, while it also provides more learning possibilities.
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2
Game Engine

This chapter presents the decisions made when creating the game engine. It dis-
cusses the differences between programming games and programming event-driven
applications, and presents common game engine problems and solutions. It also cov-
ers the techniques used when generating levels for our game. Each section presents
and analyses the results from being implemented into the game.

2.1 Complexity Management

Games are large software projects, and even very small games usually require more
than a thousand lines of code [Schuller 2010]. Thus, it is imperative to use meth-
ods that help manage the resulting code complexity; two such methods are object-
oriented inheritance and entity-component systems.

Standard object-oriented inheritance has the advantage of being familiar to all de-
velopers of the project and is a very well-documented method. However, it has a
disadvantage in that it can, at times, make the code difficult to refactor in later
stages of the project. An entity-component system, on the other hand, favours com-
position over inheritance and reduces this problem by separating objects into entities
and functionality into components [Hall 2014], which adds flexibility; changing and
adding functionality does not grow difficult at the same rate as for standard inheri-
tance. However, one disadvantage is that more code may be required and, thereby,
the implementation time could increase.

Results and Discussion. We decided to use standard inheritance, since the scope
of the project was small and the project was initially believed to not require very
complex logic. This decision turned out to be acceptable, and we did not run
into many problems with the flexibility of the code. However, it may have been
advantageous to implement an entity-component system in case we want to further
develop the game in the future.
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2. Game Engine

2.2 Game Loop

Unlike event-driven software, real-time video games are run continuously. This is
because the game interacts with the player using a tv screen or a computer monitor,
and these are updated at very high frequencies. A normal update frequency is
usually between thirty and sixty frames per second, and when programming a real-
time game that is supposed to run at a frame rate of sixty frames per second, the
computer has only one sixtieth of a second to compute what should happen in the
next frame. Real-time game engines are built around a central loop that is called a
game loop [Schuller 2010], from which most code in the engine is called. This loop
runs as fast as it can in order to reach the target frame rate.

In Microsoft’s framework XNA, the game loop is responsible for calling two methods:
update and draw. Update is responsible for all game logic, such as input and physics,
while draw is responsible for rendering the game to the screen. The game loop can
be set to run in two ways: with a fixed time step, or with a variable time step. If the
game runs with a fixed time step, the game loop will be called at exactly the interval
specified, and after update and draw has been processed, the loop waits until the
next time step is reached and repeats the process. However, if update should take
too long to process, the game loop will skip calling draw until it catches up. If the
game runs with a variable time step, update and draw will be called sequentially as
often as possible, which means that the game can run at wildly varying frame rates.

Results and Discussion. We decided to run our game with a fixed time step
set to sixty frames per second. Unless complicated physics are needed, it may be
worthwhile to run the game in variable time step, but we chose not to implement
this, as it might lead to problems and makes code analysis more difficult. One of
the goals of the project was to have a smoothly running game at this frame rate,
which, depending on hardware, we largely accomplished.

2.3 Game States

A game can usually be divided into several different states, e.g. title menu or
gameplay. This presents an architectural challenge; it should be easy to expand the
code with a new game state, while also avoiding repeating code. Schuller [Schuller
2010] presents a naive implementation using a switch statement, but dismisses it,
since it is neither easily extendable nor does it conform to the DRY (Don’t Repeat
Yourself) principle [Hunt 1999].

The only other approach we found documented is to use a state machine. An
implementation of this could be to use an abstract class, with every state deriving
this class, and having the main game loop keep track of the current game state.
This design allows the developer to easily add new game states, and management
of the state transitions could be delegated to the states themselves, allowing them
to decide when a new state should be entered.
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2. Game Engine

Results and Discussion. We chose the state machine approach and found it suit-
able for our needs. The game does not currently require many states, but one could
speculate that transition management could quickly grow more complicated with
more states, since each state might need to transition to multiple others, possibly
resulting in an exponential growth.

2.4 Input Management

Good input management is important for several reasons;like most other game ar-
chitecture problems, the code needs to be easily extensible and modifiable. It is also
preferable if the input can be customized by the user.

There are two main ways for input to be handled: polling and interrupt requests.
Polling is software driven, and means that the software repeatedly polls, or asks,
the hardware if any input is occurring. In a video game, for example, the game
loop could repeatedly ask the hardware if the space button is pressed, and if so, the
game character is made to jump. The obvious drawback of this method is that the
input is only checked at the rate the game loop is called, so if any input is made
between the game loop iterations, the input will be lost. Fortunately, this should
not occur frequently, since the game loop usually runs very fast. Interrupt requests,
on the other hand, means that the hardware tells the software that something has
happened. This means that input can not be lost, but the software loses some
control. A situation where this might be desired could be when reading the motion
of the mouse pointer, and the game needs to know if the mouse is hovering over a
specific area; if the mouse is moved fast enough, polling might miss this input.

Assuming that polling is used, a common way to handle input might be the following
example:
void HandleInput ( )
{

i f (keyDown(W)) moveForward ( ) ;
e l s e i f (keyDown(S ) ) moveBackward ( ) ;
i f (keyDown( Space ) ) jump ( ) ;

}

This is however not very flexible. For instance, there is no easy way to remap the
input according to the user’s needs. There is also no way to decouple the input
from the functions being called. Nystrom [Nystrom 2014] presents a solution to
the problem called the command pattern, which is a pattern that represents the
function calls as objects. He also presents a comfortable way to associate the input
commands with certain game objects, which can make input-based AI and handling
several player characters easier.

Results and Discussion. We chose to use the polling method, since our game
has no specific situations where input might be missed. We also implemented the
command pattern and found it useful for modifiability of the input. For example,

6



2. Game Engine

we decided to program support for game controllers at a late stage of development,
and the command pattern made this very straightforward since remapping input
becomes trivial when using it.

2.5 Collision

In a game that focuses on shooting down enemies, or avoiding being shot down,
a system to handle collision is essential. This section describes bounding volumes,
a way to detect colliding objects, our reasoning behind collision in a space-shooter
game, results from the game, as well as a discussion about what could have been
done differently.

2.5.1 Bounding Volumes

A common way to detect collision is by using bounding volumes (i.e., shapes that
enclose objects or other bounding volumes) [Akenine-Möller 2008, pp. 647-648].
Bounding volumes can be of any shape, such as a sphere, an axis-aligned bounding
box, an oriented bounding box, or any polytope, where more complex shapes and
higher precision come at the cost of computation time.

In a space-shooter game, where objects move fast and are far away from each other,
the shapes of the bounding volumes do not have to be too precise, as any minor faults
in the collision detection will likely go unnoticed. This means that most objects can
have a bounding volume represented in a simple form, in our case a sphere, since
sphere-sphere intersection is very efficient.

2.5.2 Results and Discussion

The approximate behaviour of our collision detection system is satisfactory, but still
requires a lot of power from the CPU, due to all objects of one type being tested
against all other relevant types (e.g., the player ship tests collision against all enemy
ships, bullets, and asteroids) every update. We decided that, since the game does
not perform any other heavy tasks on the CPU, this is acceptable. Figure 2.5.1
shows the bounding spheres used for collision in our game.

Currently, a lot of collisions are tested each time the game logic updates, and most
of the collision tests are not very relevant. It would be possible to reduce the number
of computations if we were to implement some sort of bounding volume hierarchy
and only test for more relevant collisions.

7
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Figure 2.5.1: A screenshot from the game, displaying bounding spheres around
asteroids and enemy ships.

2.6 Procedural Level Generation

This section covers some basic procedural content generation concepts, our imple-
mentation of procedural level generation, followed by a discussion about the results.

Procedural content generation (PCG) is a concept that we have chosen to define as
creating content through algorithmic means with limited human input, a definition
which is discussed more thoroughly by Togelius et al. [Togelius 2011a], and has
some advantages over manually creating content [Togelius 2011b]. Using PCG it is
possible to, depending on the implementation, automatically generate huge amounts
of content that would have taken a significant amount of time to create manually.

Togelius et al. [Togelius 2011b] propose a number of different classifications of PCG
algorithms. We will focus on two sets of algorithms that can be said to be each others
opposites: constructive algorithms and generate-and-test algorithms. Constructive
algorithms make sure to generate the content in such a way that it always is correct
according to the specifications. Generate-and-test algorithms, on the other hand,
repeatedly generates content, checks it, and throws it away if it does not fulfill the
specifications, until suitable content has been created.

2.6.1 Level Generation

Each level in the game guides the player along a path through a planetary system. It
was decided early on during development that the path should be able to be placed
closely around planets in order to achieve interesting visuals, such as a sun rising
up above the planet’s horizon. Generating levels where the path is placed close to
planets became the main goal for the development of the level generation algorithm.

In order to create a functional level generation algorithm within the project’s time
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2. Game Engine

frame, the levels were kept pretty simple. A level consists only of these elements:
waypoints representing the path the player is moved along, planets which the path
moves around, planets and moons which exist solely for decoration, a sun that acts
as a light source, asteroids for the player to avoid or destroy, and a background.

The final algorithm divided the level generation into three conceptual parts: main
path generation, decoration and debris generation, and content randomization. Main
path refers to the path and the planets it will be placed close to, and is the minimum
requirement for a level. Decoration and debris refer to objects such as the sun,
asteroid belts, and decorative planets that the player will not travel close to. In the
context of content randomization, content refers to the models and textures used by
the models in the level.

2.6.2 Main Path Generation

The main path generation algorithm was developed with some rules for correctness
in mind: the path should not pass through a planet, the path should not move
erratically, and the path should not move between planets in a strange order. An
example of a strange order is when the path starts at a position, A, then moves to
the planet furthest away from A, then back to the planet closest to A.

Two approaches for the main path generation were tried. The first approach was a
generate-and-test algorithm, where all the planets were generated first, followed by
the path. Randomly generating the planets presented no problem, but generating
the path between the planets according to our rules of correctness proved to be
difficult while keeping the complexity of the algorithm low, therefore, this method
was abandoned.

The second approach uses a strictly constructive algorithm; each planet, and con-
sequently the path, depends on the previously generated planet and corresponding
path. Due to this, the position of the first planet is arbitrary and, unlike the previ-
ous approach, this method does not need to test the position of any planet or any
part of the path.

In detail, the algorithm works as follows: first, the number of planets, that will
be part of the path, is randomly chosen from an interval of three to five. The first
planet is then placed at a fixed position, and waypoints are generated in a sine curve
of random length and rotation around the planet. The next step is to generate a
direction vector from the two last generated waypoints and an offset vector from the
first planet’s position to the last waypoint. The direction vector is then offset by
individually randomized (x, y, z) magnitudes of the offset vector. The next planet
is then generated at a bounded random distance in the direction given by the, now
offset, direction vector, as shown in Figure 2.6.1, and waypoints are also randomly
generated in a sine curve around the newly created planet. Finally, waypoints are
generated between the last waypoint of the previous planet and the first waypoint
of the new planet. This is repeated until there are no more planets to generate.
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Figure 2.6.1: This figure shows how and offset vector, represented by the blue
arrow, affects the planet placement. (a) shows the waypoints around the first planet.
The black arrows shows the tangent of the last two waypoints. (b) shows where the
next planet would have been placed if it had been placed on the tangent. (c) shows
the where the planet is placed after offset.

2.6.3 Decoration and Debris Generation

After the main path has been completed, the rest of the level’s objects are generated.

Sun and Decorative Planet Generation. The sun is generated by a generate-
and-test algorithm, by randomizing the size and continuously randomizing the po-
sition within a boundary, specified by the previously generated planets, until the
position is not too close to a planet or the path, after which the sun can be placed.
If the position is not suitable after a certain amount of attempts, the boundary
expands. The decorative planets are generated in the same way, with the only dif-
ference being that they cannot be too close to the sun, and the process repeats until
a random number of planets has been generated.

Asteroid Belt Generation. The asteroid belt is generated in two steps. First,
the asteroid belt is initialized, then the asteroids are positioned. The initialization
function requires two points in space, representing a start point respectively an end
point, as well as a density value between 0.0 and 1.0. Together, these values decide
where the asteroid belt should be located and how many asteroids it should have.
The number of asteroids depends on the distance between the two points and the
density value (see Figure 2.6.2). After initialization, the asteroids can be positioned.

The asteroid positioning is done by generating a random point on the line between
the start and end points, followed by randomly generating a position in a sphere,
where the center is the random point. If the position is too close to another asteroid,
the process is repeated. The radius of the sphere depends on how close to the middle
of the line the random point is, and how many times the algorithm has generated
a position too close to another asteroid. This process is done for all asteroids that
should be created.
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Figure 2.6.2: Two asteroid belts with different density values. Left: A belt with a
density value of 0.0. Right: A belt with a density value of 1.0.

Orbital Asteroid Belt and Moon Generation. Orbital asteroid belts orbit in a
ring shape around a planet, and the number of asteroids generated depends on the
radius of the planet the asteroid belt should orbit. Moons, like the orbital asteroid
belts, orbit around a planet.

2.6.4 Content Randomization

At this stage, the level has already been created, but the models and textures of the
different objects are not set. Each planet, moon, and sun is assigned a model, and a
texture from a pool of planet and sun textures. The models are scaled when the level
is rendered, so that they will have varying sizes. The asteroids in the asteroid belts
have to share models and textures as they may number into the thousands; having
that many unique models and textures is not feasible, both due to the combined file
size and the time that would have to be spent creating or finding the models and
textures. The background texture, randomly chosen from a pool of backgrounds, is
randomly oriented so that the player will not see the same part of the background
if it appears in several levels.

2.6.5 Results and Discussion

Overall, the level generation works as intended; generated levels often produce inter-
esting and pleasing visuals, as can be seen in Figure 2.6.3, and the levels are usually
not strange looking. The main path fulfilled our rules of correctness (see Section
2.6.2 Main Path Generation), and, as a bonus, the levels are also generated very
quickly.

Although attempts were made to make the levels visually distinguishable from each
other, levels quite often look similar to each other. This is likely due to the lack of
different types of objects in the level; having only a few types of elements to put in
a level keeps the level generation algorithm fairly simple, at the cost of variety.

Basing the path of the level on waypoints was a bit of a shortcut. When the player
passes a waypoint, the player is rotated to look directly at the next waypoint. This
means that the path requires many waypoints in order to be sufficiently smooth
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Figure 2.6.3: A visually pleasing level (screenshot taken during actual gameplay).

at curves, such as when orbiting a planet. We do have a very simple smoothing
implementation that can be activated or deactivated on a per waypoint basis. The
smoothing algorithm makes the player rotate slowly towards the next waypoint.
However, the technique is not reliable enough for when orbiting around planets, as
it works best when waypoints are far away from each other, and if the waypoints
are too far from each other when moving around a planet, it is possible that the
smoothing will let you pass straight through planets. We do use smoothing at the
waypoints between two planets, as those paths are straight enough and do not need
many waypoints. Representing the path using some sort of curve, like parametric
curves or Béizer curves [Farin 2001], would have allowed the path to be smooth at
all times and would probably require less waypoints.

Another limitation in the level is that the path does not branch. The player’s action
have no consequences on how the level will play out. Allowing a more dynamic
level would likely make gameplay more fun and rewarding, as interesting scenarios
could be created. One could imagine a situation where depending on if the player
is able to destroy a planet or a giant enemy base, the path changes. Perhaps the
path could loop until the player manages to achieve some objective, for example
destroying an enemy base. However, this would mean that we would have to create
the corresponding types of contents used in the objectives, which would take further
time.
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Graphics

This chapter will begin by briefly introducing some basic rendering concepts as
well as a discussion on the models and textures used in the game, before going into
detail about several techniques that we felt were relevant to explore in order to create
interesting graphical effects. All sections, except for the rendering introduction, will
also present and discuss the results after having been implemented in the game.

3.1 Brief Introduction to Real-Time Rendering

Three-dimensional graphics are typically represented in one of three ways: triangles,
voxels, or curve surfaces. Triangles are probably the most common of the three,
and the graphics hardware is optimized toward processing these. Each triangle is
represented by three vertices, which are points in three-dimensional space. Voxels,
in the context of real-time graphics, are essentially cubes on a grid. In contrast
to triangles, which are very good at representing graphics with large amounts of
empty space, voxels are superior for representing graphics with large amounts of
non-empty space, which makes voxels common for terrain rendering. Curve surfaces
are defined by curves, and can as such represent smooth detail several magnitudes
more complex than triangles and voxels, but lack the flexibility of the previous two
when the surface is not smooth.

When rendering three-dimensional graphics in real-time, there are several steps that
are commonly referred to as the graphics pipeline [Marroquim 2009]. Since this
project uses the XNA framework, and by extension, Direct3D, we did not have
to implement this pipeline ourselves. Direct3D uses a so called shader language
called HLSL (High Level Shader Language). This shader language deals with two
steps of the graphics pipeline and consists of two parts: the vertex shader and the
pixel shader. There is also a third type of shader, called the geometry shader,
which will not be covered here. The vertex shader, as the name implies, deals with
transforming and shading the vertices. This involves transformation of the vertices’
positions from world space to screen space, calculation of normals, and the depth
value of the vertices, among other things. This information is then passed on to
the pixel shader, which is executed for each pixel on the screen that contains any
geometry. The pixel shader outputs color data for each pixel on the screen, and
can generate this color data in a multiple of ways, including looking up data from
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textures that have been input, calculating complex shading operations based on the
information passed on from the vertex shader, and even generating special effects
that can be applied to the whole screen (post-processing).

3.2 Models and Texture Maps

This section briefly covers the basics of 3D models and textures. It also discusses
the results of how models and textures were handled for our game.

Models. There exists many different 3D file formats [McHenry 2008]. The shape
of models used in applications where quick rendering is important are commonly
stored as collections of vertices, vertex indices and vertex normals, which together
are called meshes. The way in which the vertex indices are structured defines the
polygons, i.e., the faces, of the mesh. The detail of polygonal meshes depends on
how many vertices the mesh contains. In addition to one or more meshes, a 3D
model may include other data such as animations, material properties, textures,
and UV coordinates that say how texture maps should be applied to the model.
What is included in a 3D model file depends on the file format.

Texture Maps. Within 3D applications, a texture map is an image file that is
usually mapped to a model according to the model’s UV coordinates [Heckbert
1986]. Texture maps can be used for many different purposes, a common use is
acting as color maps, providing color to a model. A texture is simply represented as
an image, and can be painted in most painting software, and saved as any common
image file format (e.g., PNG, JPEG, or BMP). Other uses for textures include bump
mapping (see Section 3.5 Bump Mapping) to add surface detail, material mapping
to change some material property, and alpha mapping to change the transparency
of some part of the model.

Results and Discussion. No one in our group had any significant previous expe-
rience with 3D modeling or texturing, and since many tasks had to be worked on for
the game, we decided to not have a dedicated modeler. This, combined with time
constraints, forced us to use several free models and textures for items we could not
create ourselves in a timely manner. Therefore, the style of the game is not very
coherent, as finding suitable free models, that may or may not even exist, is difficult
and time consuming. One of the models that was created by us is shown in Figure
3.2.1.
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Figure 3.2.1: A rocket model, created by us, used in the game.

3.3 Shading

An important aspect of making a scene look graphically convincing is how the envi-
ronment is shaded. This section goes through design decisions more specific to this
game, where the light source is not only in the middle of a planetary system, but is
also very large in relation to the other objects, as well as discusses the results.

3.3.1 Lights

There are several different ways to represent light sources, common ones being point
lights, directional lights, spotlights, and area lights. Both the spotlight, and the
directional light sources have defined directions [Akenine-Möller 2008, pp. 100,
220], so when the light source is in the middle of the scene, as in our game, they are
not very suitable; an omnidirectional light source would be preferred. This leaves
the point and area light sources as possible candidates.

A point light source is a light source where all the light comes from an infinitely
small point. This approximates lighting from a light source that is either very small,
or far away. However, when the light source covers a larger area, a point light source
might be too inaccurate, as it will not illuminate the surrounding objects as well as
a large light actually would (see Figure 3.3.1). An area light source would solve this
issue by simulating the larger area, commonly using multiple point light sources,
which results in more proper lighting, but at the cost of computational power. One
way to circumvent this issue is to, for every fragment of the object on which to apply
lighting, choose the best point of the light source, and use only this point, as a point
light, for the light calculations.

In the special case of a spherical light source shading a spherical object, we found
that it is possible to very efficiently approximate this point. This can be done by
simply multiplying the normalized normal vector of the fragment to be lit, by the
light radius of the light source, and finally adding this vector to the position of the
light (see Figure 3.3.2).
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Figure 3.3.1: A large, spherical light illuminating a smaller sphere. Left: A light
represented as a point light source. Right: A more realistic light, giving light to a
larger area of the sphere. The dashed lines represent the outermost rays of light
that hit the sphere.

Figure 3.3.2: A sequence explaining a way for a spherical light to illuminate
another sphere. The normalized normal vector n of the fragment to be shaded is
multiplied by the radius r of the light source, which gives a vector from the center
to the edge of the light source (2). This vector is then added to the position p of
the light source in order to receive the point on the light which is most relevant to
use as a point light for the shading (3).

3.3.2 Shadows

An object that is illuminated by light also casts a shadow, which in computer graph-
ics is commonly achieved by the techniques Shadow Maps or Shadow Volumes. The
Shadow Map algorithm, as introduced by Williams [Williams 1978], renders the
depth buffer from the light source’s viewpoint and stores it in a shadow map. When
rendering the scene, it checks, for each fragment, whether the distance between the
fragment and the light source is greater than the value stored in the shadow map
or not. If the value is greater, the fragment is in shadow, otherwise it is in light.
The first problem that comes with shadow maps in our case is that, when it comes
to an omnidirectional light source, the shadow map is instead rendered to a cube
map, resulting in rendering the shadow map six times rather than one. The second
problem is that, the size of the shadow map directly influences the quality of the
shadows, and the further away the shadow is from the light source in relation to the
camera, the worse the quality of the shadow will be; in order to have high quality
shadow maps in a game with great distances, such as our game, the shadow map
textures would need to be very large for satisfying results.

Shadow Volumes was introduced to computer graphics by Heidmann [Heidmann
1991], and is a technique based on representing shadows with geometry. Assuming
that we draw a line from the position of the light source through each of the corners
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of a triangle, we would form a pyramid that extends to infinity. The pyramid beyond
the triangle’s corners is called a shadow volume, and any geometry that intersects
this shadow volume is in shadow. Once shadow volumes have been generated, the
scene is rendered as normal. For each pixel, a ray is cast from the light’s position
toward that pixel’s position, and the amount of intersections with shadow volumes
is counted. For each shadow volume entered, the counter is increased by one, and
for each exited, the counter is decreased by one. When the pixel is reached, if the
counter is larger than zero, the pixel is in shadow. Heidmann [Heidmann 1991] also
proposes optimizations to this technique using the stencil buffer to do the counting.
Shadow volumes do not have the resolution problems that shadow maps have, but
can be more difficult to implement. In our case, they are also limited in that the
can not comfortably handle area lights.

Due to the limitations of the two presented algorithms, we decided to simply check
whether an object is in shadow or not, using ray-sphere intersection. The algorithm
shoots a ray from the object to be shaded, towards the center of the light source.
If this ray hits a planet in between, the object is considered to be in shadow, as
illustrated in Figure 3.3.3.

Figure 3.3.3: An illustration of how our shadows are determined. Left: An object
shoots a ray towards the center of the light source, but it intersects a shadow caster
in between; the object is determined to be in shadow. Right: The ray shot towards
the light does not intersect anything, so the object is determined to be lit.

3.3.3 Results and Discussion

We currently use the lighting algorithm only for rendering the planets, since these
are the only objects that are too large for traditional light calculations using a point
light, successfully lighting a larger area of the planet, as can be seen in Figure 3.3.4.

The shadow algorithm gives a very crude approximation, and, in general, objects
will commonly be rendered as if in shadow when they should not be. However, since
the shadowing objects are considerably large in comparison to the objects being
shadowed, the low accuracy of the algorithm is not very notable in practice; the
most notable inaccuracy is the transitioning to and from being shadowed since the
shadow is considered per object, not per fragment. The result of the game using
this implementation is shown in Figure 3.3.5.

We are very content with the lighting of the objects, and we have no intention of
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Figure 3.3.4: Left: Shading on a planet, with the light represented as a point light.
Right: Shading on a planet, with the light represented as an area light, using our
planet shading algorithm. As can be seen, the latter method illuminates a larger
area of the planet’s surface.

Figure 3.3.5: Left: The player ship illuminated by a light. Right: The light has
been obstructed by a planet, casting a shadow upon the ship.

any changes there. The shadows, however, could be calculated more accurately.
Our plan was to, after finding out the most relevant shadowing planet, check for
each fragment on the shadowed object, if that specific fragment is in shadow or not.
Due to some complications and time constraints, this was not prioritized, and has
not been implemented. Furthermore, this implementation would not generate soft
shadows, which would be ideal. We did have some ideas about how to implement
this, but we decided to not explore this too deeply before we had, at least, per-
fragment shadows.

3.4 Post-Processing

A post-process effect is an effect that is applied on already rendered images. There
are a wide variety of post-processing effects could be implemented in order to high-
light effects or amplify the player experience. For example, motion blur can be used
to enhance the feeling of speed [Rosado 2007] and depth of field can be used to create
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a greater feeling of depth [Demers 2004]. This section covers several post-processing
effects used in the game, and discusses their results.

3.4.1 Motion Blur

When an object moves quickly across the field of view, it appears blurry. This effect
is called motion blur, and is often simulated in computer graphics to gain more
realism, feeling of speed, as well as smoother transitions between rendered frames.

Without post-processing, this can be achieved by, for example, solving temporal
visibility and shading from an equation describing pixel intensity [Sung 2002]. Post-
processing solutions to apply the effect have been done for example by time con-
volution [Potmesil 1983], convolution along a vector (Line Integral Convolution)
[Cabral 1993], or by blending previously rendered images together with the current
one [Chen 1993].

Time Convolution. Time convolution simulates the effect of an object moving
during the time of exposure for one frame through a camera lens, as in an object
moving during the time of which the shutter of a camera is open [Potmesil 1983].
For time convolution algorithms, sample points of moving objects are processed
separately. The object path, the exposure time, and the exposure length of the
camera are factors taken into account to calculate the motion blur to be produced
from the moving objects.

Line Integral Convolution. The line integral convolution algorithms can, with a
velocity buffer, generate motion blur [Cabral 1993]. This buffer can be generated by
the shader, through passing a velocity vector for every vertex to the pixel shader,
which then writes it out to the buffer [Akenine-Möller 2008, pp. 490-496]. By
filtering one-dimensionally along the vectors, motion is apparent in the resulting
image when applying the algorithm.

Image Interpolation. By storing images rendered from previous frames in an
accumulation buffer, and interpolating them together with the image of the current
frame, a resulting image with a motion blur effect can be achieved [Chen 1993].
Considering only images are required to use an image interpolation algorithm, the
complexity of the scene does not necessarily affect the computation needed to apply
the algorithm.

Results and Discussion. The algorithm that was chosen for our game makes use
of Line Integral Convolution. This means that it makes use of a velocity buffer,
which needs to be made for this purpose. In order to calculate the velocity of
an object in a pixel, the shader compares the current position of that object with
the position it had at the previous frame. To make this calculation possible for
the shader, we pass in the inverse of the current model-view-projection matrix and
the model-view-projection matrix it had at the previous frame into the shader as
uniforms. This information, together with information from the depth buffer, is
enough to calculate and compare these positions, and thereby decide the velocity
between these two frames. Once the velocity map is created, the motion blur can
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be done by taking samples along the velocity vector for the pixel, and interpolating
the color of these samples with the color of the current pixel [Rosado 2007].

This algorithm was chosen because it is relatively easy to implement, and our scene
is not very complex, so an accumulation buffer approach (image interpolation) would
not be as fitting as for complex scenes. Since our shaders already output to multiple
textures, and since the depth buffer is also needed for other techniques that we
have implemented, not much further implementation is needed for a line integral
convolution algorithm. An approach to image interpolation was briefly looked into,
but line integral convolution was decided to be more fitting in this case.

Sadly, the algorithm was only partially implemented due to time constraints, and
as such, we can not show any pictures of the results.

3.4.2 Bloom

Bloom, also commonly referred to as glow, is a post-processing effect that simulates
the glowing nature of bright light [James 2004]. In natural circumstances, it is
caused by the scattering of light in the atmosphere or the eye; however, it is worth
to note that this effect does not occur when bright light is displayed on a computer
screen [Nakamae 1990]. There are several techniques that can be used to provide
a bloom effect, two such techniques are presented by James and O’Rorke [James
2004]; one suitable for small objects, using blurred billboards, which is not suitable
for our game due to the many large objects and the fast movement through the
world, and one post-processing algorithm suitable for dynamic objects.

The post-processing algorithm has three steps: isolation of glowing areas, blurring,
and combining. When isolating the glowing areas, a glow source mask is included in
the alpha channel of the rendered object’s texture, which allows copying the already
rendered screen into a second render target, that will now contain the glow areas
and nothing else. The next step is the blurring step. This is done using a gaussian
blur approximation, and can be done efficiently using a two-pass blur filter at a
lower resolution [Akenine-Möller 2008, pp. 482-486]. The final step combines the
blurred image of the glow areas with the originally rendered image, using additive
alpha blending, to produce the glow effect.

Our implementation is similar to the one described above, but is different in the
isolation step. Instead of using a glow source mask to identify what areas to blur,
we use a shader-pass that discards all color with less than a certain brightness. This
allows us to also apply bloom to things that are rendered with transparency, such
as the fire from the engine of the space ship. It does, however, require an additional
render pass, which is more computationally expensive.

Results and Discussion. The bloom effect increased the visual quality of the
game by a large amount. It helped make other effects, such as the fire from the
engine and the laser look more believable, as can be seen in Figure 3.4.1. The
effect is versatile and can be adjusted to convey different moods and settings, and it
was also not particularly difficult to implement. Bloom is not very computationally
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expensive due to downsampling, but it does require an additional render pass, which
is noteworthy. We did, however, have some problems with the bloom effect applying
to objects we did not want to glow, such as the background. This not only caused
the background to become unintentionally bright in some areas, but also caused it
to sometimes bleed over onto other objects, such as the planets.

Figure 3.4.1: Top Left: An image with no bloom effect. Top Right: The isolated
bright areas of the original image. Bottom Left: The previous image, blurred. Bot-
tom Right: The combination of the blurred and original images, showing the result
of the bloom.

3.4.3 Volumetric Light Scattering

Volumetric light scattering, also known as god rays, is an effect used to imitate how
rays of light can sometimes be seen in dense air particles. There are several ways
of achieving this, common methods using ray marching to solve the light scattering
integral described by Nishita et al. [Nishita 1987]. One way to implement volumetric
light scattering without the heavily computational ray marching, is proposed by
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Billeter et al. [Billeter 2010]. This method, however, requires a shadow map, which
is something we chose to avoid, as discussed in Section 3.3.2 Shadows.

Since we do not have a shadow map, we chose to implement a technique using ray
marching. First, all occluding objects, as seen from view space, are rendered into
a pre-pass frame buffer. This can then be used, when rendering the scene, to, for
each pixel, cast a ray from the pixel to the view space light position, and check at a
number of sample points along the ray, whether it is occluded or not. The number
of unoccluded samples determines how much lighting will be additively blended into
the pixel. This method is explained in more detail by Mitchell [Mitchell 2007]. While
this algorithm does not require a shadow map, it is less accurate than if it were,
since it does not take into account if an occluding object is in front, or behind, of
the light source, resulting in rays of light occasionally appearing in front of objects
in the foreground [Mitchell 2007].

Results and discussion. Our implementation of volumetric light scattering per-
forms well with computers with mid range or better graphics hardware, but not
as well with low-end computers, or computers without a dedicated graphics card.
The effect in action can be seen in Figure 3.4.2. We are content with the results
we achieved, but due to performance issues, we decided to implement the option to
toggle volumetric light scattering on or off.

Figure 3.4.2: Left: A screenshot from the game without the volumetric light
scattering effect. Right: A screenshot showing the same scene, but with volumetric
light scattering activated

3.4.4 Depth of Field

Depth of field is a graphical effect that is applied to simulate the functionality of a
real lens, such as a camera lens or the lenses in our eyes, in regards of focusing on a
set distance. There are several different techniques and approaches used to achieve
this within computer graphics, for example by using ray-tracing [Cook 1984] or an
accumulation buffer [Haeberli 1990], as well as algorithms that divide the scene into
layers [Scofield 1992]. When it comes to applying depth of field by post-processing,
there are algorithms making use of mapped depth buffers [Potmesil 1982].

The depth-of-field effect occurring in reality is caused by the physical properties of
a lens. In this context, we will treat these lenses as convex, and because of this they
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redirect the light passing through them inwards towards a so called image plane; for
example in the case of an eye this would be the retina. Let us, to exemplify, assume
a point of an object on the other side of a lens projects light hitting all over the
whole lens. In order for said point of the object to be in perfect focus, the case has
to be that the lens converges the light to hit one single point of the image plane.
This is only the case for a specific distance from the lens to the object, depending
on the properties of the lens and the distance between the lens and the image plane.
These properties of the lens also affect how far away something has to be in a scene
in order to be in focus. The plane in focus is the plane which is in perfect focus
for the lens; any light coming from further away than the plane in focus will not
be converged sharply enough by the lens to hit the image plane at a single point.
Instead, this light will hit the image plane spread evenly over a circular area on the
image plane, with the radius of this circle depending on how much out of focus the
light source is. This circle is called the circle of confusion. Likewise, if the light
source is closer to the lens than the plane in focus, the lens will not make all of the
light hit a single point on the image plane, but will instead spread it over a circle of
confusion. The circle of confusion phenomenon is visualized in Figure 3.4.3.

Figure 3.4.3: An object (1) being projected onto an image plane (2) through a
lens (3). The image plane has a certain distance (a) from the lens. Because the
distance (b) from the lens to the object is shorter than from the lens to the focus
plane (4), the light emitted from the object through the lens will not get converged
onto a single point onto the image plane. Instead, it will be projected over a circle of
confusion with a diameter (c) proportional to the distance between the object and
the focus plane. The focal distance (d) depends on the properties of the lens.

The focal point is defined as the point behind the lens, for which parallel rays of light
hitting the lens orthogonally would converge into. The distance between the lens
and this focal point is called the focal distance. Assuming the properties of a lens
do not change, the focal distance is constant for that lens. Let D be the distance
from the lens to the light source, V be the distance from the lens to the image plane,
and F be the focal distance; then there is a relation such that 1

D
+ 1

V
= 1

F
. This is

the thin lens equation.
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In computer graphics, shortcuts are often made when implementing the depth of field
effect in order to scale down the required calculations and balance physical accuracy
with performance. For example, a lot of algorithms assume a pinhole camera lens
with zero diameter, causing a light source to have exactly one path for its light to
travel through the lens. When doing this, physically correct calculations of depth
of field can not be done, so approximations are used instead [Demers 2004]. This
section will now explain a few techniques used to simulate depth of field.

Ray-Tracing Algorithms. Depth of field can be implemented by tracing rays
that are cast from the image plane through the lens. While these algorithms are
relatively realistic, and are relatively accurate in terms of physics, they are also not
processing the images at a speed suitable for real-time graphical computations [Cook
1984].

Accumulation Buffer. Another technique is based on using an accumulation
buffer. This buffer is created by rendering the scene from slightly different positions
through the lens and adding every resulting image to that buffer [Haeberli 1990].
The images are then blended together, resulting in an image with a depth of field
effect. Naturally, the more images rendered and added to the accumulation buffer,
the more accurate the resulting image will be, but the computational cost increases
accordingly.

Layered Depth of Field. With Layered Depth of Field, the scene is required to
be divided into layers [Scofield 1992]. These layers can then be blurred separately,
based on how their depths relate to each other. Though these algorithms aren’t
taking the physical properties of the lens into account, the resulting images appear
to have the effect of depth of field. Dividing the scene into layers can be quite tricky,
as there might not always be obvious depth ranges to divide it into.

Forward-Mapped Z-Buffer Depth of Field. With this post-processing tech-
nique, a source image, containing pixel colors, is used [Potmesil 1982]. A Z-buffer
is also needed to determine the depth for each pixel. Then for every pixel, a circle,
with a size based on the calculated circle of confusion, is rendered to a target image.
This circle is blended together with the circles drawn based from all the other pixels
in the source image, so that the result is an image blurred to represent depth of
field. This requires a lot of rendering since one circle is rendered per pixel.

Reverse-Mapped Z-Buffer Depth of Field. This technique is similar to the
previous one; the difference between the reverse-mapped technique and the forward-
mapped, is that this one does not create a blurred circle based on each source pixel
[Demers 2004]. Instead, for each pixel it samples the surrounding ones in order to
calculate how much they affect the current pixel by blurring into it. This allows the
GPU to bypass having to render out a circle for every pixel.

Results and Discussion. The depth of field algorithm that we used is a variant
of the Reverse-mapped Z-Buffer Depth-of-Field technique. It is divided into stages
that together practically layer the scene in a layer behind the focus plane, and a
layer in front of the focus plane [Hammon 2007]. First, the thin lens equation is
applied in a pixel shader to evaluate which pixels are too far away to be in focus
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and which ones are too close to be in focus, as well as how much out of focus that
they would be. From this, a so called confusion map is created. The confusion map
is then blurred out by applying a gaussian blur. The pixels in the original image
which are too far away to be in focus according to the non-blurred confusion map,
are blurred out. In a separate stage, pixels that are too close to the camera according
to the blurred out confusion map are blurred out with a specific algorithm in order
to achieve a blur that looks relatively realistic close up. The results from these two
blurs are then merged into one resulting image.

A reverse-mapped Z-Buffer Depth of Field algorithm was chosen for our game be-
cause it yields good performance relative to the other algorithms without sacrificing
too much quality [Demers 2004]. An interesting choice of algorithm could also have
been one that implements depth of field by straight off layering the scene a bit more.
Due to the vast differences of distance between objects in our scenes, the layering
itself could most likely be implemented with relatively simple effort. The necessity
of spending extra computations to accurately blur objects close to the camera can
also be discussed, considering objects rarely get between the player and the camera.
If they do, they tend to not be there for a longer extent of time.

3.5 Bump Mapping

This section covers the concept of bump mapping, several bump mapping techniques,
and evaluation of our results from implementing normal mapping.

The basic concept of bump mapping is to use data stored in textures to fake surface
detail, like wrinkles and bumps, by modifying the normal used during per pixel
lighting calculations [Blinn 1978]. Rather than interpolating the normal from the
vertices, as is normally done, the normal is modified, or replaced, by the bump map,
as shown in Figure 3.5.1. Since only the normals are changed, the bumps will not
occlude what is behind them, nor will they cast shadows or modify the silhouette of
the object. Rendering a model with bump mapping is less computationally expensive
compared to rendering geometry with similar surface detail, as the model would
necessarily have to be significantly complicated.

Figure 3.5.1: This figure shows a bump map being applied to a surface, by replac-
ing the surface’s normals with normals from the bump map.

BumpMapping. Bump mapping was introduced by Blinn [Blinn 1978]. He showed
two methods for bump mapping, vector offset bump mapping, and bump mapping
using a heightmap. Vector offset bump mapping uses a texture that stores two
values, which represent offsets in two directions. These values modify the normal
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used during lighting calculations by offsetting it accordingly. Bump mapping using
a heightmap, which we will refer to as standard bump mapping, uses a monochrome
texture where the gray values represents the height. By looking at the neighboring
texture values, the slopes, and thus the offsets, can be derived and used to modify
the normal. See Figure 3.5.2. for an example of standard bump mapping.

Figure 3.5.2: Left: A bump map. Center: A red cube without any bump mapping.
Right: The red cube with the bump map applied.

Normal Mapping. Normal mapping [Cohen 1998] is a commonly used bump map-
ping technique where, unlike the previously mentioned bump mapping techniques,
the normals are stored directly in the bump map, henceforth called normal map.
A normal map can be seen as a precomputed bump map, and should, depending
on the implementation, produce the same result. Due to this connection, we can
convert bump maps into normal maps (see Figure 3.5.3) where the (r, g, b) values
of the normal map represent the (x, y, z) values of the normal. For an 8-bit normal
map, the components of the normals are mapped from [-1, 1] to [0, 255] onto the
colors in the image, where (128, 128, 255) represents an unchanged normal (0, 0, 1).
Storing the normals directly takes extra memory compared to a heightmap, but has
the benefit of simplifying the rendering calculations.

Figure 3.5.3: A normal map conversion of the bump map shown in Figure 3.5.2.
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Parallax Mapping. Parallax mapping [Kaneko 2001] is a bump mapping technique
which attempts to approximate parallax, that is, when moving, objects further away
appear to move more slowly than objects closer. As parallax can be observed in
non-flat surfaces, simulating parallax further enhances the surface detail by making
bumps observable. In contrast to normal mapping, rather than changing the surface
normals, parallax mapping simulates bumps by offsetting the sampling of textures
by taking the viewing angle and height in an associated heightmap into account.
Depending on the angle and the height, the texture is sampled at different locations.
Parallax mapping, as introduced by Kaneko et al. [Kaneko 2001], has problems at
shallow viewing angles. The texture sampling can be offset so much that the result
does not at all resemble the original texture [Welsh 2004], so Welsh proposed limiting
the offset, which reduces the parallax effect but produces less artifacts.

Relief Mapping. Relief mapping [Policarpo 2005] is an advanced bump mapping
technique that samples a ray, shot from the camera position to the surface, at regular
intervals to see if the ray intersects with a heightmap. Relief mapping supports
self-occlusion, self-shadowing, and variations of relief mapping can produce correct
silhouettes [Oliviera 2005].

Both parallax mapping and relief mapping are more computationally expensive than
normal mapping, and relief mapping in particular is quite expensive due to the ray
tracing. We chose to implement normal mapping due to the simplicity, speed, and
availability of helpful resources.

3.5.1 Results and Discussion

Generally, objects in the game are either too far away or move too quickly for the
effect to be noticeable. For this reason, the number of game objects for which normal
mapping would significantly increase the visual quality is very limited. Normal
mapping is therefore only implemented for the spaceships, as at least the player’s
ship is visible at all times, and even then it is not particularly noticeable (see Figure
3.5.4). Normal mapping could have been implemented for the planets, however, the
planets use very high resolution textures, and adding another set of textures for the
planets would increase the memory usage considerably.

Implementing some other, more advanced, bump mapping technique, like relief map-
ping, would likely have yielded greater effects, at the expense of performance. How-
ever, as game objects would still be far away, or be moving quickly, considering the
performance loss compared to what is gained graphically, it would likely not have
been worth it.
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Figure 3.5.4: Left: A spaceship without normal mapping. Right: The spaceship
with normal mapping. Note the added detail by the exhaust.

3.6 Particle System

Certain effects, such as smoke, fire and explosions, are in general difficult to create
due to their irregular, and perceptually random, shapes and behaviour. A common
way to create convincing effects in real time is to generate and transform them using
a particle system, as introduced by Reeves [Reeves 1983]. This section explains the
algorithm used in our game, as well as the results, and discusses our decision.

3.6.1 Algorithm

A particle system can be designed to run on the CPU, the GPU, or in a combination
of both. For this project, the particle system has been decided to mostly run on the
GPU due to significant difference in calculation speed between the two units.

The basic concept of a particle system is that, in order to generate an effect, it
creates a number of particles, small images, with different properties such as velocity,
gravitational force, color, size, some of which are constant, and some which change
depending on the desired results. The idea is to make all of these individual particles
behave slightly differently from each other, and together make up an effect that
behaves coherently, but varying in time.

In this particular project, it was decided that Microsoft’s 3D particle system sample
for XNA would be used. Every particle effect that is to be implemented into the
particle system requires a sub-system of its own, defining its properties. Some of
these attributes are global for the whole effect, while some are randomized per
particle, once the particle effect is instantiated. Examples of global properties are
the texture to be used, the maximum number of particles than can be active, and
how to blend this particle effect into the scene. Some particle-specific attributes
include velocity, color, rotation, and size, and while chosen randomly, their possible
ranges have to be specified as part of the sub-system.

When rendering the particles, these particle-specific attributes are passed along with
the vertices to the shader, which then computes the position, size, and rotation of
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the particles, using a uniform variable that holds the time.

3.6.2 Results and Discussion

The effects that are being generated by the particle system are explosions with
smoke, fire from the jet engines of the player ship, and laser collisions (see Figure
3.6.1).

Figure 3.6.1: A screenshot showcasing the particle effects we use for explosions,
laser collision, and fire from the ship’s engines.

Due to the large amount particle effects generated at times, and due to the player
moving towards and through these effects, there are occasions when hundreds of
overlapping images that cover most of the screen have to be rendered in a single
frame. This results in notable framerate drops, something that has been slightly
improved, but not completely removed, by reducing the lifetime and amount of
particles generated and instead making the individual particles more prominent.

It seems that the large amount of texture lookups that a particle system can result
in can be difficult for most computers without a dedicated graphics card to render,
so it might have been a good idea to look more into other available particle systems,
and see if they would have performed better.
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3.7 Terrain Generation

This section discusses a feature that was not completely implemented in the game
due to time constraints, but that we still find interesting enough to discuss in this
thesis. Initially, we wanted to allow players to occasionally descend to a planet’s
surface and fly over varying terrain; this would give players a change of scenery. In
order to accomplish this, we researched a few different techniques to procedurally
generate terrain.

There are several techniques that can be used to generate terrain. The most com-
mon approaches are heightfield based [Fishman 1980], often created using fractal
subdivision techniques [Fournier 1982, Gardner 1984] as well as Poisson Faulting
[Mandelbrot 1982]. Noise [Perlin 1985] can be used to break the repeating nature of
these techniques [Miller 1986, Musgrave 1989]. However, heightfields hold a limita-
tion in that they cannot represent arbitrary three-dimensional curvature, e.g. caves
or overhangs; to overcome this limitation, one must step into a third dimension.
This can be done by using an algorithm called Marching Cubes [Lorensen 1987].
Marching Cubes takes volumetric data, which in turn can be generated from noise,
and polygonizes the surface [Geiss 2007].

3.7.1 Heightfields

A heightfield, also commonly referred to as a heightmap, is a mapping from a two-
dimensional coordinate to a height value. This value can then be used to create
terrain, where the height value corresponds to how high up the surface of the terrain
should be from some pre-determined base value. Creation of this heightfield can be
accomplished in several ways, and, considering that many features of terrain are
fractal in nature [Mandelbrot 1982], it makes sense to take a fractal approach to
procedurally generating them. Fractals can be modeled by, among other things,
subdivision techniques and combinations of Perlin Noise [Perlin 1985].

One of the most common subdivision techniques for creating fractal terrain is the
Diamond-square algorithm. The algorithm is divided into two steps: the square
step and the diamond step. The square step takes a square of points with a scalar
value at each corner, and places a new scalar value, based on the corner values, in
the middle of the square. The diamond step uses the middle point from the square
step to form diamonds, and places a new scalar value, based on the corner values, in
the middle of the diamond. The algorithm starts with a square grid with a seeded
value at each corner. Then it recursively applies the square step and the diamond
step to assign values to each point. Once a sufficiently large amount of iterations
have been made, or the grid has been filled, the algorithm stops. The process can
be seen in Figure 3.7.1.

Miller [Miller 1986] argues that the diamond-square algorithm is flawed, criticising
the visible creasing problem and the artifacts it produces. Musgrave et al. [Musgrave
1989] proposes a technique based on summing band-limited noise, which removes
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Figure 3.7.1: An image showing the diamond-square algorithm. The red points
are added in each step, using the already present black points. Note how in the
diamond step shown in the second and last image, the algorithm wraps around the
edges to find the black points needed.

these issues, and this will be presented in the next section.

3.7.2 Perlin Noise

Perlin noise is a gradient-based noise function that maps a relation between Rn → R,
invented by Perlin [Perlin 1985], that can be used to generate height fields. It has sev-
eral useful characteristics, one of the most important being that it is pseudorandom;
the output is only dependent on the input, and will not vary between executions.
Another important feature is that several samples of noise can be summed together
to create fractal noise.

The parameters of fractal noise are usually called frequency and amplitude. The
frequency of the function is a multiplier of the input, where higher frequencies means
that it varies faster, while the amplitude is a multiplier of the output, where a higher
amplitude means a larger output. A single sample of the noise function with some
frequency and amplitude is called an octave. High amplitude combined with low
frequency gives the shape of large hills and mountains, while low amplitude combined
with high frequency gives the details of rocky texture; summing up several octaves
of noise, with varying frequencies and amplitudes, can yield convincing terrain, and
is highly customisable for different scenarios. The output of these octaves can be
rendered in the same way one would render a heightfield, but can also be used for
a wide range of techniques. For more information about Perlin Noise and its uses,
see [Perlin 1985, Perlin 1989].

Heightfields, regardless of method used to generate them, do however have an innate
problem. Since every two-dimensional coordinate corresponds to exactly one height
value, there is no way to represent concavities such as caves and overhangs. This
is not a trivial problem to overcome, and we will now present a solution called
Marching Cubes.
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3.7.3 Marching Cubes

The Marching Cubes algorithm is an algorithm that creates a polygonal mesh from
a scalar field. It was originally developed by Lorensen and Cline [Lorensen 1987] to
visualize data from medical scans such as CT or MRI scans, but has later been used
to create polygon representations for isosurfaces of any origin. In our case, we are
interested in using it to create the surface of terrain.

When generating terrain, the scalar field can be seen as the density values of the
terrain, where a negative value for a point represents non-terrain volume, such as
air or water, and a positive value for a point represents solid material, such as rock
or soil. We want to create a polygonal representation along the border between
positive and negative points, which is what the Marching Cubes algorithm does.
The algorithm uses the scalar field as input and traverses it as a cubic grid. At each
cube, the vertices are looked at, and it is identified what edges, if any, have one
vertex in solid material and the other in empty space. Triangles are then generated,
with one triangle vertex on each of the identified edges. This will, however, only
be a rough approximation, since the actual surface value might be closer to one of
the vertices on the edge than the other. To solve this, we need to interpolate the
triangle vertex positions using the scalar values corresponding to each vertex.

Lastly, the triangles need a unit normal for shading. The normal for a triangle
can be obtained by using the cross product of two of the edges, but this will only
produce hard edges between triangles. Lorensen & Cline [Lorensen 1987] showed
that smooth edges can be obtained by finding the derivative of the scalar field at
the point; this can be estimated using numerical differentiation. Lorensen and Cline
[Lorensen 1987] stated that “since there are only two states for each vertex and eight
vertices per cube, there are 28 = 256 ways that the surface can intersect the cube”,
and also showed that these 256 cases can be reduced to 14 patterns. The vertices
for the cube can be arranged into a byte and used to access an edge table to get the
edge intersections. This vastly improves the running-time, since accessing a table is
always faster than computing the information again.

We have now described an algorithm for generating a surface based on volumetric
data. However, we must obtain this volumetric data somehow. Fortunately, this
can be done using the same perlin noise techniques described in the previous section
[Geiss 2007]. However, since Marching Cubes requires a three-dimensional scalar
field, we need to sample noise in three dimensions. This technique has a few major
drawbacks. It produces visual artifacts, as noted by Lengyel [Lengyel 2010]. It’s
also rather computationally expensive compared to the heightfield techniques since
it operates in three dimensions instead of two.

3.7.4 Results and Discussion

For our game, we wanted to have the possibilities of overhangs, arches and cavities.
For example, we thought it would be beneficial for the game’s visual fidelity to be
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able to fly through canyons with arches overhead. Because of this, we decided to
put further research into the Marching Cubes approach.

This was fully implemented to work on the CPU, and we were able to generate
relatively complex geometry using this. However, since the game moves at rather
high speeds, the world size of the terrain generated needs to be rather big, and the
Marching Cubes algorithm does not scale as well as a heightfield. Our implementa-
tion is able to generate geometry consisting of 120k triangles, for a scalar field with
a resolution of 2.8M voxels, in approximately nine seconds using a 1.8GHz Intel i3
processor. This can be made to run faster; for example, we could utilize the GPU.
Since the Marching Cubes algorithm operates on one cube at a time, and each step
is independent of all other cubes, it is highly parallelizable [Geiss 2007]. Our results
are shown in Figure 3.7.2.

Figure 3.7.2: Top: A terrain field using Marching Cubes. Bottom: The kind of
terrain that can not be represented by heightfields.
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The terrain generated by this algorithm is, however, only large enough to cover the
playable area and does not span a large enough area to be used for the surrounding
world. Expanding the scalar field would be too costly, so we would have to use
another technique to generate this. Since we do not specifically require arbitrary
concavities, we could use heightfield methods.

The problem with generating the terrain for the planet then lies in seamlessly stitch-
ing these solutions together. Since there is no way for the heightfield solution to
conform to the potential edges of the Marching Cubes terrain, we have to make the
edges of the playable terrain be within the range of the heightfield. The easiest way
to do this would be to have the amplitude of the terrain fade toward the base value
on the sides of the terrain, i.e., when x is close to zero or the width of the terrain.
This can be done using the power function and gives the result shown in Figure
3.7.3.

Figure 3.7.3: Left: A height field rendering. Right: A combination of a height
field and Marching Cubes terrain.

We did find issues with artifacts, particularly noticeable floating rocks, which can
be seen in Figure 3.7.4. Lengyel [Lengyel 2010] proposes some solutions to these
problems, but we did not have time to implement this. We also had problems
finding suitable normals for the triangles generated, which gave the terrain a very
low resolution look.
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Figure 3.7.4: A floating rock artifact.
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Conclusion

There has been a lot of explanation of what has been and what has not been im-
plemented, followed by short discussions. The last part of the thesis is going to
focus solely on the group’s thoughts of the results, as well as our thoughts regarding
further development.

4.1 Results

After four months of work, a visually pleasing space shooter game has been created..
Even though the game might not keep up with the standards of many commercial
games, given the resources and time frame, we are still proud of the outcome.

The game is easy to play and the visual effects make the game look good. Each
effect contributes to the look of the game, for example, the Bloom effect makes light
sources seem brighter/glow, and the particle engine provides explosions and gives the
spaceship a good looking thruster effect. Something that turned out exceptionally
well was the volumetric light scattering the sun emits, especially when travelling
through an asteroid field, this makes for a very good looking effect as well as a
better feeling for traveling in space.

Unfortunately, the game does not run as smoothly as it was initially supposed to do.
The goal was to have a steady 60 frames per second on most hardware, but unless
the computer at least has a mid-range graphics card this might be hard to achieve
without lowering the quality of some graphical effects, something that can be done
from the settings menu in the game.

4.2 Discussion

At the start of this project the ambition might have been somewhat optimistic, and
since problems usually take longer than expected to solve, some features had to be
dropped during development. Some of these dropped features will be discussed in
more detail in Section 4.3 Future Work.

Microsoft XNA has been quite easy to work with and we encountered relatively few
problems, and even though the framework is a few years old, and might not be able
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to keep up with modern game engines such as Unity and Unreal Engine, the end
result is quite good. Had we used such a game engine instead, the game would
likely have been developed faster; however, we would probably have missed several
learning opportunities.

One thing that was decided in early development was that the game had to be
procedurally generated to increase replayability; it is much more efficient to let
the game generate a new level and increase difficulty of the enemies as the game
progresses instead of letting one team member design lots of levels. The levels
generated are quite similar to each other, which is primarily due to the lack of
content; there are only a few enemies and other obstacles, such as asteroid fields
implemented, which does not make for much variation.

The group did not spend much time together when implementing this project, and
the reason for this was that not every group member had their own laptops. There
are a lot of positive aspects to working together: when problems occur everyone
can help, ideas can be discussed right away, and you get to know each other better,
making it more motivating and fun to work on a project. In hindsight, we should
probably have utilised the rooms with computers provided by Chalmers in order to
increase productivity.

4.3 Future Work

There are, of course, features that had to be dropped during the development of this
project due to the lack of time. If the group were to continue further development,
some of these features would be reconsidered and implemented into the game.

More content is something that would be the first thing to be added to the game,
since this is something that the game is lacking at the moment. For example,
we would like to have greater diversity in enemies with different behaviors and
formations they attack in, as well as in their ship and weapon models. Some sort
of boss or tough enemy, with a wider range of weapons and higher health than the
normal enemies, would be nice to have implemented as well; difficult enemies would
give the player a tougher fight and a sense of achievement when beating the stronger
opponent.

A proper progression system, where the player receives better weapons or more
health over time, has also been discussed. This could be implemented in a number
of ways, either by collecting upgrades dropped by enemies or by receiving an upgrade
when a certain number of enemies have been defeated by the player. Regardless of
the specifics, this will give the player a feeling of progression and thus will inspire
them to keep on playing.

Another thing that we would like to implement, but did not have the time for, is
generated terrain, something that has been mentioned earlier in this thesis but is
worth mentioning again. Not only would entering a planet’s atmosphere and flying
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through the hills and valleys heighten the gameplay experience, it would also add new
good-looking environments as well as diversity to the standard space environment.

Having the camera angle change during gameplay was something that we discussed
for a long time, before it was finally dropped due to lack of time and the potential
problems that comes along with the perspective changes. Nevertheless, the idea
itself is still solid and would add a range of new possibilities in terms of gameplay;
screenshots of how it might look can be seen in Figure 4.3.1.

Figure 4.3.1: Left: An image showing the game from above. Right: An image
showing the game from the side.

There would also be more time put into the user interface since it is quite basic at
the moment; it shows the information needed, but not in an aesthetically pleasing
way. There would also be more time spent on models, textures, and sound. This
is due to a lack of variation at the moment, with limited resources repetition is
inevitable and it does not make for good gameplay.
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