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ABSTRACT

Our ability to conduct detailed molecular investigations on tissue samples
have, during the past decade, enabled the formation of databases contain-
ing measurements from thousands of cancer tumors. To harness the po-
tential of the amassing data sets, we introduce new modeling techniques
and generalise existing methods for large-scale integration of cancer data.
These methods aim to construct network models that link genetic, epige-
netic, transcriptional and phenotypic events, by combining genome-wide
measurements of multiple kinds.

In paper I we constructed a modeling framework, EPoC, for creating
causal networks between gene copy number levels and mRNA expression,
and applied it to data from the brain tumor glioblastoma. Some of the
predicted regulators were tested in four glioblastoma-derived cell lines and
confirmed that the network model could be used to find unknown regulators
of cell growth in glioblastoma.

In paper II we used data integrative network modeling to identify novel
genomic, epigenetic and transcriptional regulators of glioblastoma sub-
types. In addition to confirming known regulators of gliomagenesis, the
model also predicted that Annexin A2 (ANXA2) promoter methylation and
mRNA expression were linked to the signature target genes of the clinically
aggressive mesenchymal molecular subtype. Our findings were validated by
knockdown of ANXA2 in glioblastoma-derived cell cultures.

Paper III presents an extension of sparse inverse covariance selection
(SICS), which is adapted and optimized for modeling of genetic, epigenetic,
and transcriptional data across multiple cancer types. To evaluate the po-
tential of the method, we applied it to data from eight cancers available in
The Cancer Genome Atlas and published the model online at cancerland-
scapes.org for anyone to explore. The derived multi-cancer model detected
known interactions and contained interesting predictions, including func-
tionally coupled network structures shared between cancers.

In summary, we use network modeling of cancer to identify possible drug
targets, drivers of molecular subclasses, and reveal similarities and differ-
ences between cancer types. The developed tools for network construction
can assist in further investigation of the cancer genome, potentially includ-
ing other data sources and additional cancer diagnoses.

Keywords: network modeling, data integration, glioblastoma, pan-
cancer analysis, The Cancer Genome Atlas
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SAMMANFATTNING PÅ SVENSKA

Under det senaste decenniet har stora nationella och internationella pro-
jekt genomförts, som samlat in mätningar fr̊an tusentals cancertumörer.
Syftet är att kartlägga genetiska och molekylära förändringar i cancerceller
jämfört med frisk vävnad. Genom dessa mätningar försöker man bl.a. hitta
mutationer (förändringar i DNA-sekvensen), kopieantalsförändringar (hela
eller delar av kromosomer som försvunnit eller blivit kopierade till fler av
misstag) och s̊a kallade epigenetiska förändringar som p̊averkar hur DNA
avläses och uttrycks. Man mäter ocks̊a niv̊aer av transkriberad mRNA, dvs
den enkelsträngade molekyl som är mellansteg i översättningen fr̊an DNA
till protein. Dessutom h̊aller man reda p̊a kliniska fakta om patientern,
som ålder, kön och hur länge de överlevt med sin tumör.

För att kunna utnyttja potentialen hos denna mycket stora datamängd
behövs avancerade statistiska modeller som klarar av att hantera och kop-
pla samman data av olika typer och fr̊an olika källor. I denna avhandling
generaliserar vi existerande metoder för storskalig databearbetning och kon-
struerar nätverksmodeller som kopplar ihop olika typer av molekylär can-
cerdata. Nätverksmodeller best̊ar av noder som symboliserar datavariabler.
Noderna är sammankopplade av länkar som representerar att noderna kan
associeras till varandra, baserat p̊a mätdata. Syftet är att skapa en visuellt
överblickbar modell över kopplingar mellan ett stort antal variabler, och
för att p̊askynda identifiering av viktiga samband.

De tv̊a första artiklarna inriktar sig p̊a tv̊a olika tillämpningar av nätverks-
modeller p̊a hjärntumören glioblastom. Artikel I fokuserar p̊a sambandet
mellan kopieantalsförändringar i DNA och niv̊aer av mRNA. Artikel II in-
volverar ocks̊a fler datatyper och koncentrerar sig p̊a deras inverkan p̊a en
specifik undergrupp till glioblastom. Artikel III introducerar modeller som
kan användas till att hantera data fr̊an flera cancertyper samtidigt, och
tillämpar metoden p̊a data fr̊an åtta cancertyper som finns i den publika
databasen The Cancer Genome Atlas.

Sammanfattningsvis visar avhandlingen att statistiska nätverksmod-
eller kan användas som verktyg för att finna möjliga m̊altavlor för nya
mediciner, identifiera potentiella cancerdrivande mekanismer och visa p̊a
likheter och skillnader mellan cancertyper. De utvecklade metoderna för
nätverkskonstruktion kan framöver användas för ytterligare forskning kring
cancergenomik, förhoppningsvis genom att ocks̊a involvera fler datatyper
och cancerdiagnoser.
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1 Introduction

Cancer is the umbrella term for more than 200 diseases1 having in common
that cells start to grow and divide uncontrollably, and with the potential to
invade neighboring tissue. The term itself, cancer, originates in the Latin
word for crab, from the veins surrounding a breast tumor visually resem-
bling the legs of a crab. The modern science of cancer genetics began with
Boveri in the beginning of the 20th century2, who hypothesized that chro-
mosomal defects in a cell underlay the process of tumor formation. During
the coming decades, experiments on animals to investigate the formation
of tumors suggested that multiple alterations were needed for tumors to be
able to form. For instance, the sequential exposure to two different car-
cinogens highly increased tumor incidence rates compared to exposure to
only one3,4,5,6. Also, the application of tar followed by cutting of the skin
of mice7 and rabbit8 showed that tar and wound in combination increased
the number of tumors. Ashley (19699) and Knudson (197110) compared
the age patterns of incidence of inherited and non-inherited forms of colon
cancer and retinoblastoma respectively, and concluded that the later onset
of cancer for the non-inherited forms was due to the fact that the patients
with inherited mutations already had acquired one necessary event for can-
cer to initiate. An early example of mathematical modeling in the field is
estimations based on incidence curves of the number of independent events
required for cancer to initiate, first being introduced by Fisher and Hol-
lomon 195111,6.

It was clear that mutations were involved in the formation of tumors,
but it was not until 1982 that the first cancer-causing mutation was local-
ized in the RAS gene in bladder carcinoma by the Weinberg, Wigler and
Barvacid research groups12,13,14. The rest of the 1980s established the con-
cept of oncogenes and tumor suppressors, and also made clear that several
different types of genetic rearrangements can be the source of activating an
oncogene or turn off a tumor suppressor15. During the 1990s, technologies
began to emerge for doing measurements and analyses on larger parts of the
genome simultaneously, resulting in the discovery of for example activating
mutations in the oncogene BRAF in a wide range of cancers16, and the
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1 Introduction

oncogene EGFR in lung cancer17,18,19. Also, in 1990, The Human Genome
Project (HGP) was started, partly to create a reference genome sequence
for easier findings of cancer mutations, and was finished in the early 2000s.

One study in 200420 estimated the number of found tumor-driving genes
to 291, using the criteria that at least two independent studies should have
reported the gene to be genetically altered and cancer causing. A more
recent estimate in 2013, based on 3284 sequenced tumors, reported 138
genes as being driver genes of tumorigenesis21. These genes were assigned
to 12 different pathways and three core cellular processes, and the authors
speculated that it is enough for a cell to accumulate 2-8 of these alterations
for cancer to develop. Furthermore, Hanahan and Weinberg describe eight
different traits that have to be acquired for cancer to develop, titled Hall-
marks of Cancer. These traits are assumed to be common for all cancers
but are not achieved by the same aberrations for all patients and cancer
types22,23. Nonetheless, it remains a challenge to understand how muta-
tions in several pathways combine to modulate the phenotype of cancer
cells, resulting in the acquired phenotypes that are essential for cancer.

In spite of these advances in understanding the underlying causes and
the development of tumors, cancer remains a significant health burden af-
fecting all parts of the world. In 2012 there were 14.1 million new cancer
cases reported, and 8.2 million people died because of a cancer disease,
which correspond to almost 16 deaths per minute24. The lifetime risk,
globally, of being diagnosed with cancer is around 43% for men and 38%
for women25, and the lifetime risk of dying from a cancer disease is 23%
and 19% for men and women respectively. In Sweden, cancer is the second
most common cause of death after cardiovascular diseases26. Depending
on the type of cancer, the 10-year survival differs between as low as 1% for
pancreatic cancer to 98% for testicular cancer27. The development of treat-
ment options has improved the survival rates by as much as around 40%
over the last 40 years for malignant melanoma, non-Hodgkin lymphoma,
leukemia, bowel cancer and female breast cancer27. However, for cancers
of the pancreas, esophagus, lung and adult brain, very little improvement
in survival can be seen during the same period of time27. Risk factors also
vary between cancer types, but includes inherited genetic predisposition,
old age, environment such as sun or radon exposure, and lifestyle such as
level of physical activity, smoking, overweight, diet and alcohol habits24.

In order to address this huge health problem, one important component
will be to leverage our molecular insight of cancer genomics into new thera-

2



pies. Analysis and modeling of cancer genomic datasets from many samples
will provide important tools towards this goal. The subject of this thesis is
to adapt statistical network modeling tools, including data preparation and
normalization, for the context of large scale cancer genomic data of multi-
ple types, and apply the developed tools on tumor data from The Cancer
Genome Atlas. The created cancer network models can then be used to
identify prognostic biomarkers, possible drug targets, drivers of molecular
subclasses, and reveal similarities and differences between cancer types.
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2 Cancer genomics

2.1 Comprehensive molecular profiling of cancers

Cancer genomics is a broad field oriented towards mapping and understand-
ing changes in the structure or activity of genes in cancer. One important
trend in the last decade has been the transition from application of a single
method to characterize a set of samples (such as transcript profiling), to
broader application of several methods. Applicable in both basic research
and clinical settings, the resulting data from such comprehensive profiling
gives a high-dimensional view of cancer, revealing the joint presence of
acquired mutations, localized chromosomal copy number aberrations, pro-
moter hypermethylations, transcriptional alterations affecting microRNA
and mRNA levels etc. Details of some of the molecules and genetic abnor-
malities that are commonly being investigated are discussed next, and the
properties of the technologies to detect such changes and their implication
on data analysis are discussed separately in Chapter 5.

i) Observable genetic alterations in DNA can be as small as one nu-
cleotide (A, G, C or T) or up to a whole chromosome, Figure 1A-C.

• Somatic point mutations that occur in a cell are passed on in
the next cell division and can sometimes contribute to the pro-
cess of tumor formation. These mutations are acquired anytime,
as opposed to germline mutations which are inherited or appear
early in development and exist in all cells in the body. A point
mutation is a change, a deletion, or an addition of one base in
the DNA sequence, on one or both copies of the gene. A tumor
suppressor can be silenced by a mutation causing the resulting
protein to be non-functional. Alternatively, a mutation can al-
ter the protein structure or affect the regulation of the gene by
being located in the promoter region. Mutations in oncogenes
normally occur recurrently in the same amino acid positions,
whereas mutations of tumor suppressors occur anywhere in the
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2 Cancer genomics
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Figure 1: Some potential differences between normal and tumor
cells A-C: Genetic alterations. D: Epigenetic modifications. M denotes
methylation. E: Silencing of mRNA levels by miRNA.

sequence of the gene21. A mutation having no effect on the pro-
tein or its regulation is called silent.

• The event when either parts of, or a whole, chromosome exist
in other numbers rather than the normal two copies is referred
to as a Copy Number Aberration (CNA). The loss of one or
two copies is referred to as a deletion and the gain of extra copies
is referred to as duplication or amplification. Typically, tumor
suppressors are deleted and oncogenes are amplified in cancer
cells. There is often a positive correlation between the number
of copies of a chromosomal region and the amount of mRNA for
the genes located there.

ii) Epigenetic modifications affect gene expression or the phenotype
of cells, without altering the DNA sequence.

6



2.1 Comprehensive molecular profiling of cancers

• DNA methylation is the process of the addition of a methyl
group to the adenine (A) or cytosine (C) nucleotides of the DNA,
Figure 1D. Decreased levels of methylation are referred to as
hypomethylation and increased levels are referred to as hyper-
methylation. In cancer, hypomethylation of DNA regions with
repeated elements can lead to chromosomal instability. Also,
methylation levels of the promoter region of a gene has been
shown to sometimes correlate with the amounts of transcribed
mRNA28. Thus, alterations in the methylome is another way
for the tumor to regulate the cellular activity.

• Modifications to the histones, around which the DNA double
strands are wrapped, affect the DNA replication and the tran-
scription levels of closely located genes.

iii) Expression profiling measure levels of RNA or protein in the cells.

• mRNA (messenger RNA) are the RNA molecules that carry
the template for protein construction in the cell. The DNA en-
coding a gene is transcribed into mRNA inside the nucleus, the
mRNA is then transported out to the cytoplasm and is used as
a template by the ribosome during protein formation, a process
called translation. mRNA molecules are more easily measured
than proteins, and mRNA is thus used as a proxy for the protein
levels in a cell, although this notion is being debated29.

• miRNAs (microRNA) are small non-coding RNA molecules of
around 23 nucleotides. They regulate gene expression by desta-
bilisation of the mRNA molecule or by decreasing the efficiency
of the translation process, Figure 1E30. miRNAs bind to mRNA
molecules by complementary sequences. This sequence match-
ing does not have to be perfect, meaning that the same miRNA
can have multiple mRNA targets and can be involved in several
processes. Also, a single mRNA can be regulated by multiple
miRNAs.

• Proteins are the end product of the genes encoded by the DNA.
They are large molecules built from combinations of 20 different
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2 Cancer genomics

amino acids, put together in chains. These chains fold into three-
dimensional structures, can carry out very diverse functions and
are involved in a majority of all cellular processes.

2.2 Cancer genome projects

One of the large scale cancer biobanking initiatives is The Cancer Genome
Atlas (TCGA, http://cancergenome.nih.gov31, see Section 2.2.1). The goal
is to create a map of human cancer, by doing large-scale measurements on
500 or more patients from each of 25-30 different human cancers. Cur-
rently available data sets in TCGA include mRNA and miRNA expres-
sion, copy number alterations (CNAs), DNA methylation patterns, so-
matic point mutations and protein expression of selected genes. In ad-
dition, clinical information, like gender, age, treatment and survival time
for patients is collected. Other similar projects include the Cancer Genome
Project (CGP, http://www.sanger.ac.uk/genetics/CGP/), and the Interna-
tional Cancer Genome Consortium (ICGC, http://www.icgc.org/). CGP
collects sequencing data and aims to present mutations together with other
cancer-related information in a public database. ICGC aims to collect and
put together data from all different large cancer genome projects around
the world.

Apart from these projects covering many cancer types there are mul-
tiple examples of initiatives gathering larger number of samples for one
specific diagnosis, e.g. the METABRIC project which has collected and
analyzed around 2000 breast tumor samples from five hospitals in the UK
and Canada32. Additionally, programs around the world have been initi-
ated to integrate genomics with national healthcare, for example U-CAN
(http://www.u-can.uu.se) which collects and profiles tumor and blood sam-
ples before, during and after treatment from patients with a wide range of
cancer diagnoses in Sweden. The aim is to develop better diagnostics and
characterization of cancer tumors, and to evaluate the performance of new
and established treatment options.

2.2.1 TCGA

The Cancer Genome Atlas has been one of the catalyzers moving the cancer
genomics field forward by making a huge amount of data publicly available
for the researcher community. This has enabled the application of estab-
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2.2 Cancer genome projects

lished analysis methods on the collected data for individual cancers. By us-
ing clustering, new tumor subclasses based on molecular profiles have been
identified for example for breast33, ovarian34, uterine35 and brain36 can-
cer, having implications on prognosis and treatment options. In contrast,
an attempt to combine TCGA data with pathway information concluded
that most of the tumors of the two different diagnoses colon and rectal can-
cer have similar genetic alterations37. The same study also, for example,
identified the potential drug target ERBB2 as being frequently amplified
in these cancers. By correlating mRNA and copy number measurements
of ovarian tumors, the NACC1 gene has been found as a biomarker of
early recurrence38. In kidney cancer, remodeled cellular metabolism has
been proposed to be a characteristic of aggressive tumors, by integrating
multiple data types with patient survival39, and other studies have iden-
tified the expression profile of a small set of miRNAs to be associated to
prognosis40,41. By investigating mutational patterns of squamous cell lung
tumors, several new potential drug targets have been identified42. The re-
sults of systematic molecular profiling can further be illustrated by research
that has for example found a number of copy number aberrations that pre-
dict response to therapy in metastatic colorectal cancer43. Despite these
and more results, there is still room for development of new integrative
methods that successfully model and enable interpretation of the full set of
measurements and data collected for each cancer.

In 2012 the Cancer Genome Atlas Pan-Cancer analysis project was ini-
tiated44, presenting, in a structured manner, the first 12 tumor types that
had been profiled by TCGA. The Pan-Cancer project engage researchers,
including ourselves, around the world to develop methods for the simultane-
ous analysis and interpretation of multiple cancers. The hopes are that the
project will cast new light on similarities and differences between cancers
of many types and tissues of origin. The joint analysis of multiple cancers
has already resulted in the identification of 127 significantly mutated genes
across the set of 12 pan-cancer tumor types45. A similar attempt iden-
tified 291 cancer driving genes across the 12 cancer types, by combining
five different analysis methods46. In another study, 10% of the investigated
tumors were shown, when studied on the molecular level47, to belong to a
different type of cancer than the histological classification indicated. Mul-
tiple Pan-Cancer studies have been performed focusing on one data type.
For example, the investigation of copy number data across 11 of the Pan-
Cancer diagnoses revealed that the same genomic regions often are being
affected by copy number aberrations, across multiple cancer types48. De-
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2 Cancer genomics

spite these advances, the full potential of the Pan-Cancer data set remains
to be investigated, most likely by the invention of new advanced analysis
methods adapted to the scale and high dimensionality of the data. This in-
volve creating new infrastructure for data transfer and storage, developing
normalization protocols, and producing analysis and statistical modeling
techniques that reveal the full potential of the huge amount of data.

10



3 Cancers of the brain and the central

nervous system

In paper I and II of this thesis, the central focus is data analytical problems
associated with the particular type of tumor called glioblastoma, which be-
longs to a group of cancers localized in the brain or central nervous system
(CNS). Malignant primary brain and CNS tumors are rare (incidence rates
in USA 8.93 per 100,000 population) compared to the most common cancer
types of the prostate, breast and lung (incidence rates 215.96, 173.65 and
95.40 per 100,000 population respectively). Nonetheless, these tumors are
the second leading cause to die from cancer in men aged 20 to 39 years and
the fifth leading cause in women aged 20 to 39 years49. The only found
risk factors for developing brain tumors involve exposure to therapeutic
radiation given to treat other conditions, and rare genetic diseases caused
by mutations i.e. Li-Fraumeni Syndrome, Neurofibromatosis Type 1 and 2,
and Turcot Syndrome50. Brain tumors are named by the type of cells they
are thought to originate from, or sometimes from their growing location.
Gliomas are a group of tumors that originate from glial cells, and include
Ependymomas, Oligodendrogliomas and Astrocytomas. Astrocytomas are
the most common, and originate from astrocytes (or astroglia), which func-
tion as support cells around the neurons in the brain51. They are divided
into four grades, of which Astrocytoma grade I is regarded as benign, and
prognosis decreases with increasing grade.

3.1 Glioblastoma

Glioblastoma (GBM), or grade IV astrocytoma, is the most common pri-
mary malignant brain tumor in adults, with a median age of diagnosis of
6452. It is highly aggressive and is characterized by cell proliferation, dif-
fuse infiltration, necrosis i.e. unnatural cell death, and angiogenesis i.e.
the formation of new blood vessels supplying the tumor with blood53. Me-
dian survival time after diagnosis is around 15 months, despite treatment
including surgery, radiotherapy and chemotherapy54. There is therefore
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3 Cancers of the brain and the central nervous system

great room for improvement when it comes to treatment of glioblastoma
patients. A majority of the glioblastomas arises without being developed
from a less malignant tumor type. However a small amount, termed sec-
ondary glioblastomas, are developed from lower grade astrocytomas and
normally occurs in younger patients53.

3.2 Glioblastoma subtypes

Verhaak et al.36 defined four subtypes of glioblastoma, based on the molec-
ular profiles of the tumors. The characteristics of the Classical subtype
include amplification of chromosome 7 together with deletion of chromo-
some 10, highly increased levels of EGFR, deletions of the CDKN2A gene
and lack of mutations of TP53. The Mesenchymal subtype is characterized
by decreased expression of the NF1 gene, increased expression of genes in
the tumor necrosis family and is associated with poor survival. The Neural
subtype displays high expression of neural markers. The Proneural sub-
type harbors increased expression of PDGFRA and OLIG2, and mutations
of TP53. A subgroup of the Proneural samples also has mutations in the
IDH1 gene, and is further classified as belonging to the glioma-CpG island
methylator phenotype (G-CIMP) and thus displays hypermethylation in
very many locations55. The G-CIMP subgroup is associated with better
survival compared to the other subtypes. Both the Classical and Mesenchy-
mal subtypes showed response to aggressive therapy by increased survival
times, which was not seen in the Proneural subtype36. This illustrates that
molecular profiles of tumors can have an important role in determining
when it is worthwhile to proceed with aggressive treatment.

The development of new statistical analysis methods that help to deepen
the understanding of how the different layers of data are connected will as-
sist in gaining knowledge of the biology underlying the formation of glioblas-
toma tumors. The end goal is to be able to offer new treatment and diag-
nostic options that improve the chances for longer survival for glioblastoma
patients.
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4 Network modeling of cancer

To make sense of all the collected data in the cancer genome projects, and
actually make a difference for cancer patients, the data needs to be thor-
oughly analyzed. Through new visualization tools and modeling methods
of the complex data structure, the hope is to gain better understanding of
the mechanisms of cancer formation and progression and thereby also iden-
tify new possible drug targets. Other aims are to make better predictions of
the likelihood of tumor recurrence and metastasis and find new biomarkers
for early detection of cancer disease. Ultimately these efforts aim to offer
improved prognosis estimates and the possibility to make individualized
treatment decisions.

In the papers of this thesis we have chosen to use network estimation
as a tool for exploration of large heterogeneous cancer genomic data sets.
A network model, Figure 2, consists of nodes, representing data variables,
connected by links (edges) representing associations between the nodes.
Depending on the method, see below, and underlying data it is sometimes
possible to infer causality represented by a directed network56. Mostly
however, it is only possible to infer association (undirected network). The
links can also be signed, indicating negative or positive associations between
the variables.

Undirected network Directed network

Figure 2: Black link = positive association, grey link = negative associa-
tion.

13
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Network models are suitable for several of the aims of cancer genome
research by being able to capture associations between a large set of vari-
ables and present multidimensional data in a visually explorable way. The
models have the potential of resulting in the proposal of new drug targets,
pinpointing of groups of variables being predictive of survival, discovery of
new associations between data points, and identification of common and
individual properties across cancer types. This chapter presents the frame-
work for the network modeling methods used in this thesis. Practical issues
regarding data handling, preparation and normalization are discussed in
Chapter 5.

4.1 Network estimation methods

There are several families of network estimation methods, of which some
are presented below:

Information-theory-based methods use mutual information, which
is a statistical measure that gives information about how much knowl-
edge of one random variable reduces uncertainty about another variable
and vice versa. One such method is ARACNE (Algorithm for the Re-
construction of Accurate Cellular Networks57). According to their propo-
nents, information-theory methods are suited for biological applications,
since they do not assume linear relationships between the variables56.

A Bayesian network represents the probabilistic relationships be-
tween the variables and is constructed by searching for a network with a
high posterior probability58. Some advantages of Bayesian networks are
that they naturally handle missing values and, unlike the other methods,
infer causal relationships. The application are mainly focused on smaller
networks or structures as the construction of Bayesian networks is compu-
tationally heavy compared to for example correlation-based methods59.

Correlation-based methods calculate the correlation coefficient (e.g.
Pearson or rank correlation) between all pairs of variables and retain only
the strongest associations, after different types of thresholding59. Advan-
tages of correlation-based methods include that they often are fast and able
to handle large data sets. As further discussed in the next section, the re-
sulting networks will contain both indirect and direct associations between
the variables, potentially resulting in dense networks that are hard to in-
terpret. One example of a correlation-based method is WGCNA (Weighted
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Correlation Network Analysis60).

4.2 Partial correlation estimation

Partial-correlation estimation methods are based on the theory of Gaus-
sian Graphical Models (GGM). When the partial correlation between two
variables is zero the variables are conditionally independent, given all other
variables. If the partial correlation is non-zero and therefore represented
by a link in the network, there is a direct interaction between the vari-
ables, when the effect of all other variables is controlled for. As opposed to
correlation methods, which measure both direct and indirect associations,
the partial correlation network will only include direct interactions between
variables. A link is represented by a non-zero entry in the so-called preci-
sion matrix, which is equal to the inverse of the correlation matrix between
all variables.

When the number of samples n is much smaller than the number of vari-
ables p, which is the case when working with genome-scale measurements,
finding the precision matrix through direct inversion of the correlation ma-
trix is not possible since the correlation matrix is singular. One option then
is to enforce a sparse estimate of the precision matrix, i.e. it has few non-
zero elements. This is also attractive for the interpretation of the resulting
networks; we want the strongest interactions to emerge to be able to infer
relevant biology from the model and because a fully connected network is
uninformative.

Different methods have been presented for efficient estimation of the
sparse precision matrix. Meinshausen and Bühlmann61 presented an ap-
proximation that uses penalized regression on each node. Element ij of the
precision matrix is set to be nonzero if either the coefficient of variable i on
j, or the coefficient of variable j on i, is estimated to be nonzero. Another
option, used in Paper II and III, is to estimate the sparse inverse correlation
matrix by maximizing the penalized log likelihood62:

l(Θ) = ln(det(Θ))− tr(SΘ)− P (λ,Θ), (4.1)

where S = 1/nXTX is the empirical correlation matrix, X is the n × p
N(0,Σ)-data matrix, here assumed to be centered, and Θ = Σ−1. P is
the penalization function which constrains Θ and is tuned by the variable
λ. Different suggestions for the optimal penalization function P have been
presented, of which some are outlined next.
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The lasso 63 penalty is in the case of graphical models (graphical lasso,
Glasso 62) defined by:

P (λ,Θ) = λ1||Θ||1 = λ1

∑
i 6=j
|θij | (4.2)

This penalty controls the number of non-zero partial correlations in the
model, with increasing values of λ resulting in increasing number of zeros.
Glasso was applied in Paper II on a correlation matrix, S, based on mRNA,
CNA, methylation, miRNA, mutation and clinical data from glioblastoma.
The construction of S, in practice, with data of multiple types is discussed
in the summary of Paper II, Chapter 7.

The Elastic Net 64 penalty is defined by:

P (λ, α,Θ) = λ1

∑
i 6=j

(α|θij |+ (1− α)θ2
ij) (4.3)

This penalty is beneficial when variables are strongly correlated; by using
the Elastic Net these variables tend to be zero or not simultaneously. α = 1
is equivalent to the Glasso model and α = 0 to the Ridge penalty.

The Ridge penalty 65 does not produce a sparse model but only shrinks
the variables towards zero, and is therefore not as suitable for estimation
of sparse models.

Several methods for simultaneous estimation of network models for mul-
tiple classes of samples, e.g. cancer types, have been presented during that
last couple of years. This can be done under the assumption that all, say
K, classes share the same parameters. To simultaneously analyze multiple
classes aims to highlight common structures at the same time as capturing
the diversity between the classes.

Danaher et al.66 presented the fused graphical lasso that encourages
links to be equal across classes, by adding a term to the glasso penalty
function so that the penalized log likelihood becomes:

l({Θ}) =
K∑
k=1

nk[ln(det(Θk))−tr(SkΘk)]−λ1

K∑
k=1

∑
i 6=j
|θ(k)
ij |+λ2

∑
k<k′

∑
i 6=j
|θ(k)
ij −θ

(k′)
ij |,

(4.4)
where λ2 also is a tunable parameter that regulates how similar the net-
works for the different classes should be. For large λ2-values all links are
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equal between the K estimated networks. The fused graphical lasso prob-
lem can efficiently be solved by a method called Alternating Directions
Method of Multipliers (ADMM), presented in Section 6.3.

In paper III we substitute the usual lasso penalty with the Elastic net
and, following Danaher, add a fused penalty, resulting in:

P (Θ) = λ1

K∑
k=1

∑
i 6=j

(α|θkij |+ (1− α)(θkij)
2) + λ2

∑
k<k′

∑
i 6=j
|θkij − θk

′
ij | (4.5)

We applied this model on mRNA, CNA, methylation, miRNA and mutation
data from eight cancers publicly available in TCGA.
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5 Cancer as a big data problem

5.1 Data types

This chapter presents the data types used in the papers of this thesis and
discuss general and data type specific complications of handling large cancer
datasets. Confounding factors regarding the quality of measurements on
samples from tumors include tumor heterogeneity which both can dilute
signals and mean that data from different parts of the tumor may represent
different subclones. Another factor is the potential mixture of non-tumor
cells in the samples67. The biological functions of the measured entities are
also discussed in Section 2.1.

5.1.1 mRNA

Established methods for measuring mRNA levels include the use of hy-
bridization microarrays, a technique introduced in 199568. Short probe
sequences of DNA or RNA, designed to match specific genes, are printed
on a solid surface, or attached to small beads. Complementary nucleotides
(cDNA or cRNA), converted from mRNA of the sample, is hybridized to
the probe surface under high-stringency conditions. A perfect probe-target
hybridization match is detected by fluorophore or chemiluminescence.

In the last couple of years, sequencing of DNA and RNA have dropped in
cost, and now RNA sequencing (RNAseq) is commonly used for measuring
levels of mRNA. Briefly69, RNA is converted to cDNA of which the exact
sequence is determined using high-throughput sequencing. In paper I, only
microarray data has been used, but in paper II and III both microarray
and RNA sequencing data has been used.

In paper II and III, apart from the normalization done by TCGA, all
RNAseq data has been log2 transformed and all mRNA arrays have been
quantile normalized, across samples from the same cancer and platform.
Quantile normalization ensures that the distributions of values for all ar-
rays are the same. Furthermore, the amplitude of the mRNA levels were
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standardized, each gene was centered around its mean expression level and
divided by its standard deviation across the samples for the same cancer and
experiment platform. We evaluated the effect of each transformation step
by studying the distributions of the mRNA values and the cross-correlations
between them.

5.1.2 miRNA

miRNAs can be detected in the same manners as mRNAs, by designed mi-
croarrays or by RNA sequencing. As miRNAs are involved in silencing of
mRNAs a negative correlation between them can be expected. The predic-
tion of miRNA targets can be done by sequence matching70. One summary
database for target predictions is miRbase71, using the method miRanda72

that uses a scoring system to grade how well the miRNA sequence match
the target and subsequently looks for target sequence conservation of at
least 90% across mammal species.

5.1.3 CNA

Copy number aberrations (CNAs) are measured by microarrays, where the
probe DNA sequences are designed to be more or less evenly spread across
the genome. The chromosomal DNA is cut in smaller pieces and are allowed
to attach to the probe sequences. The amount of emitted light is measured
and the quantity of attached DNA to each probe is inferred. The data is
noisy, so computational methods are used to judge where the duplicated or
deleted segment starts and ends, and how many copies there are.

In paper I, CNA data from Agilents 244k CGH (Comparative Genomic
Hybridization) array was used. In paper II and III, copy number data from
Affymetrix Genome-Wide Human SNP Array 6.0 was used. SNP arrays
are designed to detect single nucleotide polymorphisms, i.e. the probes
are designed to match locations in the genome where there is a nucleotide
known to vary between individuals, but are also being used to find CNAs
from the intensity measures of the probes.

TCGA level 3 data supplies information about start, end and amplitude
of CNA segments in each sample. As we want the copy number of each gene
we have mapped the gene positions (of NCBI build 36.1) to the segments
and assigned the amplitude to each gene. A correlation-based model in-
cluding variables defined as the copy number of separate genes will consist
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of a large number of links between genes located in the same CNA segment.
Another approach would have been to use the segment as variable instead
of the gene. Unfortunately it is then hard to define the variables, as most
patients have differing start and end positions of the CNA segments.

5.1.4 DNA point mutations

DNA point mutations are on a large scale found by DNA sequencing. In the
TCGA case, three centers, Broad Institute, Baylor College of Medicine and
Washington University School of Medicine, are separately performing whole
exome sequencing on both tumor sample and either blood or non-malignant
tissue from the same patient. The normal sample are used as a reference to
distinguish somatic mutations from germline. The discrepancies in muta-
tion calls between the different centers are substantial73, and are a problem
yet to be resolved. Furthermore, the information provided from the centers
regarding how the analysis were performed are very limited. We chose to
be deliberately inclusive and used the union of mutation calls done by the
three centers. Silent mutations were ignored in the analysis, and a gene
was flagged whether or not it contained a mutation.

5.1.5 DNA methylation

DNA methylation levels are measured large scale for the TCGA project by
Illumina Infinium Methylation assays. These arrays have earlier contained
27000 probes; the current version consists of 485000 probes spread out on
gene-populated areas in the genome. The arrays use a two-color technique,
where unmethylated attached DNA emits one color and methylated DNA
emits the other color. The relationship between methylated and unmethy-
lated DNA is measured as74:

β =
max(ymeth, 0)

max(yunmeth, 0) + max(ymeth, 0) + 100
, (5.1)

where ymeth and yunmeth are the emission intensities, β = 0 means com-
pletely unmethylated, and β = 1 means 100% methylated. As the methy-
lation data consequently not follows a normal distribution, we have chosen
in paper II to BoxCox transform the β-values, and in paper III to use rank
correlation instead of Pearson correlation. As many methylation sites are
not varying at all across samples, we chose to keep probes in the analysis
with a standard deviation across the patients > 0.05.
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5 Cancer as a big data problem

5.2 Data magnitude

One challenge that arise before construction of the cancer network models
is the practical handling of the very large datasets on a personal computer.
One downloaded folder from TCGA, including all 450k methylation data
for all patients from, for example, breast cancer is as large as around 17
GB. To avoid having to harbor data from multiple cancers on a personal
computer hard drive, we instead downloaded the available data from TCGA
and stored it in a mySQL database on a local server. It was then possi-
ble to query the database, at any given time, to get the currently needed
data matrices. The mySQL database also helped to increase speed of data
preparation, since it enabled extraction of a subset of the data.

5.3 Heterogeneity of data

In addition to data magnitude, a second complicating factor is the hetero-
geneity of the data. Since the application of the methods in this thesis
focuses on data from The Cancer Genome Atlas, examples will be taken
from that particular setup.

As the data collection for TCGA has been going on since before 2008,
the techniques for large scale measuring have improved and dropped in
cost massively during the project. For the cancers being investigated in the
beginning of the project, e.g. glioblastoma, the used platforms are older,
and the samples have not been reanalyzed with new methods at the time
of the preparation of data for the papers of this thesis. The variation in
coverage of different platforms complicates the comparison between cancers,
as decisions have to be made on how to handle data that is not present
everywhere. Additionally, TCGA provides the results given the gene names
provided by the supplier of the platform technology. Unfortunately, since
gene nomenclature is not completely unified, the result is that the same
gene can be named in different ways depending on which platform the data
comes from, reflecting when the annotation files were constructed. Where
multiple mRNA platforms have been used, we have used the intersect of
the included variables to ensure that all genes in the model are available
in all platforms. The CNA gene variables were then selected to match the
mRNA set.

The NCBI (National Center for Biotechnology Information) currently
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is responsible for the genome assembly containing the human reference se-
quence. A genome assembly is the attempt to align together the short DNA
sequences read by sequencing technology into the correct chromosomes and
order. This assembly is then the basis for where on a chromosome a gene
is situated. As many genomes include repeated sequences, the assemblies
are continually updated when additional measurements are done. These
assemblies are, in the human case, referred to as NCBI builds, and are
labeled e.g. Human Annotation Release 101 or NCBI Human Build 38.1.
Results from different platforms are not always presented in TCGA using
the same versions of the human genome build. This complicates compar-
ison regarding data types that are dependent on position on the genome,
like methylation and CNA. One workaround is to use a map translating the
chromosomal positions between the builds. Nevertheless, this is a potential
source of error.

Often, the data collected from a patient is not complete; instead there is
a lack of measurements for one or several types of data. The tumor sample
might have been too small or of too low quality, or some other laboratory
step may have failed. In the correlation matrices we have chosen to use
the maximum number of patients available for the specific combination of
variables, even if some patients have missing data for other variables.
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6 Estimation of network models

The previous chapter discussed practical issues regarding preparation, uni-
fication and handling of the large heterogeneous cancer data sets. This
chapter address the central problems that needed to be solved for the net-
work construction to be feasible. These problems include how to be able
to produce a robust result and present balanced models with respect to
datatype. Another central issue has been the time complexity of the esti-
mation of the networks.

6.1 The bootstrap

To improve robustness of the network estimates we make use of bootstrap-
ping (Paper I and III) and aggregate the results. Network estimation is
repeated 500 or 1000 times with randomly chosen samples from the full
set (details in papers). For each link, the proportion of network estimates
where it is present is calculated. A link is then included in the final network
if this proportion exceeds a threshold T .

To investigate how the number of bootstraps affected the stability of the
networks, we, for Paper III, compared two networks summarized from 10 to
250 bootstrapped data sets. The Jaccard index, measuring the similarity in
link presence between the two network estimates, reached a plateau of 0.85
at around 200 bootstraps, indicating that construction of the final network
from 500 bootstrapped data sets was sufficient.

Bootstrapped networks can also be used in the validation of choice of
penalty parameters (Paper II), where the stability between network solu-
tions, based on different bootstrapped data sets, was used as a measure for
how to tune the penalty.

The ability to perform many bootstraps is highly limited by the avail-
able computer power, and the dimension of a single network. Since the
network estimation can be done independently for each bootstrap it is an
easily parallelizable problem. Parallelization using cluster computers is fur-
ther discussed in Section 6.4.
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6.2 Introduction of priors in penalties

In the partial correlation models for Paper II and III we combine large
data sets from multiple sources, which can result in models that are hard
to survey due to dimensionality and complexity. To highlight associations
that are more likely based on biological knowledge, or of more interest,
we introduce a link-specific prior in the the glasso penalty (Paper II) and
the fused graphical lasso penalty with elastic net (Paper III). The prior is
introduced in the lasso penalty part, by replacing the scalar λ1 by a matrix
of size p× p:

P (λ,Θ) =
∑
i 6=j

λ1,ij |θij |, (6.1)

where λ1,ij = λ1vij . vij assumes different values depending on the type
of link, e.g. ∞ for implausible/irrelevant associations, 1 for neutral asso-
ciations, and u < 1 for associations that are biologically plausible. The
number of different values of u in a given λ1-matrix should be small for the
sake of simplicity and for the possibility of validation of tunable parameters.

In Paper II we evaluate the stability of the network model for different
prior parameter settings by calculating Kendalls W75 (Kendalls coefficient
of concordance) over network estimates based on bootstrapped data sets.
For Paper III we investigated the sensitivity of the model with respect to
the tuning parameter u and established that mild tuning of u had moderate
effects on the resulting networks.

As previously have been mentioned in Section 5.1.3, the variables repre-
senting the copy number level of genes localized closely in the genome will
generate many links, as these variables are likely to be highly correlated.
To avoid that clusters of that kind dominate the models and balance the
models with respect to data type representation we also use the penalty
matrix to remove such links by setting vij =∞.

6.3 ADMM algorithm

The Alternating Directions Method of Multipliers (ADMM) algorithm76,77

builds on a concept where a complex objective function, hard to solve as
a whole, is decomposed into components that are relatively easily solved
separately. Danaher et al.66 present an adaption of the ADMM algorithm
to solve the fused graphical lasso problem for comparative networks, used in
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paper III. This section briefly present the framework for ADMM algorithms
in general, details of the adapted version for paper III can be found in the
Appendix.

The ADMM algorithm was constructed to solve convex optimization
problems of the form

minimize f(x)
subject to x ∈ C

with variables x ∈ Rn and f and C are convex. This problem can be
rewritten as:

minimize f(x) + g(z) (6.2)
subject to x = z

where g is the indicator function of C (i.e. g(z) = 0 if x ∈ C,∞ otherwise).

This problem can be rewritten in the form of a scaled augmented La-
grangian 77:

Lρ(x, z, u) = f(x) + g(z) + (ρ/2)||x− z + u||2F (6.3)

where u is a so-called Lagrangian multiplier vector or dual variable.

The ADMM algorithm consists of iterating through three steps. An
approximate solution is achieved by first minimizing L for x holding z
fixed, and then solving for z holding x fixed. In Step 3, the dual is updated,
ensuring that x and z converge towards each other:

1 : xm ← argmin
x

Lρ(xm−1, zm−1, um−1) (6.4)

2 : zm ← argmin
z

Lρ(xm, zm−1, um−1) (6.5)

3 : um ← um−1 + xm − zm (6.6)

In the adaption of the ADMM algorithm to the fused graphical lasso
problem, see Appendix, the main bottleneck is Step 1 including eigende-
composition of large matrices. As we chose to implement the algorithm in
Matlab, the most effective method to solve the eigendecomposition turned
out to be the Matlab inbuilt function eig. Step 2 includes elementwise op-
erations on all the matrix elements. Appendix includes a sketch on how
vectorization can be used to rewrite Step 2 as matrix operations instead
of loops going through p × p elements. As Matlab is slow at elementwise
looping and fast at making matrix calculations, the vectorization led to
massive speedup of Step 2.
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6.4 Parallelization

As mentioned above, the bottleneck of the algorithm for paper III was the
step of calculating the eigenvalue decomposition. Yang et al.78 show that
if the matrices θ(k) can be reordered in such a way that they become block-
diagonal (with the same size of the blocks for all classes k) with

Θ(k) =

(
θ

(k)
1 0
0 θ

(k)
2

)
, (6.7)

then one can solve the optimization problem for each of the blocks. This
greatly reduces the computational time as the calculation time for the eigen-
value function eig grows exponentially with number of variables. Sufficient
conditions for dividing the problem into subblocks θ1 and θ2 are78:

|
∑t

k=1 S
(k)
ij | ≤ tλ1 + λ2,

|
∑t−1

k=0 S
(r+k)
ij | ≤ tλ1 + 2λ2, 2 ≤ r ≤ K − t,

|
∑t

k=1 S
(K−t+k)
ij | ≤ tλ1 + λ2,

|
∑K

k=1 S
(k)
ij | ≤ Kλ1

(6.8)

for all i ∈ θ1, j ∈ θ2, t = 1, . . . ,K − 1.

This not only enables faster calculations, it also means that each prob-
lem can be run in parallel on different processors. For this, either a personal
computer with multiple processors with e.g. Matlab’s inbuilt parallelization
program, or a computer cluster can be used. Benchmarking tests is called
for, however, in the case of using a personal computer, to check that the
overhead time of sending data do not exceed the time gained in the calcula-
tions. On a computer cluster it is suitable to send each bootstrap network
to a separate cluster node, and in that way remove the need of sending data
between the nodes. The execution time per bootstrap for a sequence of 12
values for λ1 and 8 values for λ2 varied between 24 and 30 hours, using a
computer cluster located at Chalmers University of Technology consisting
of 268 nodes, with 8 cores each.
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7.1 I: Network modeling of the transcriptional ef-
fects of copy number aberrations in glioblas-
toma

When the work for paper I started, the collection of data for The Cancer
Genome Atlas had just begun. The first available data were mRNA and
CNA measurements and clinical data for a set of 186 glioblastoma patients.
Given the opportunity to analyze these data, we set out to create a network
model that connects the DNA copy number aberrations to the transcrip-
tome. The goal was not only to investigate the well-documented direct local
effects of increased or decreased copy number on the expression of the genes
in the same locus in form of increased or decreased expression79,80,81. Our
models instead also aimed to catch regulation of expression of genes local-
ized outside the CNA by indirect mechanisms, for example by the deletion
of a transcriptional repressor that increases the expression of its targets
or the amplification of a kinase that drives a signaling cascade. Global
network models based on the combined data of mRNA and CNA from the
same samples could potentially be used to identify genes whose copy num-
ber aberration have an impact on expression levels of other genes, propose
possible drug targets by matching model-identified regulators or their tar-
gets to pharmacological databases, and pinpoint CNA and mRNA features
that are predictive of patient prognosis.

The framework for creating the network models required preprocessed
and normalized data matrices in a format that the developed algorithm
could use. Furthermore, in the case of mRNA, we were presented with
data from two different platforms, Agilent 44k and Affymetrix U133. As it
has been shown to stabilize the signals36, the mRNA levels were averaged
across the two platforms. In the case of CNA, we used discretized estimates
of the copy number of each gene. The datasets were synced in matter of
patients and genes, so that patients and genes not present in all datasets
were discarded from the analysis.
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We introduced a set of differential equations modeling the change rate
of mRNA levels as the difference between the synthesis rate, proportional
to the genes own copy number and regulatory effects of other mRNAs, and
the decay rate, proportional to regulatory effects of other mRNAs. The
steady state solution to the set of differential equations could be seen as
two linear systems, both of which could be represented by a network with
different interpretation:

1. A∆Y + ∆U +R = 0

2. ∆Y = G∆U + Γ,

where ∆Y and ∆U denote matrices containing the log-transformed and
centered mRNA and CNA profiles, respectively. R and Γ are treated as
noise in the estimations. A represents the transcriptional network of inter-
actions aij between transcript i and transcript j, after correcting for the
impact of the CNA of each gene. G represents the CNA-driven transcrip-
tional activation or inhibition gij of CNA i on transcript j. A relates to G
by G = −A−1.

In short, the G network was estimated by gene-level lasso regression,
repeated 1000 times on pseudo-bootstrap data sets to improve robustness.
First, the direct effect of each genes CNA on its transcript was estimated
by

d = max(0,∆UTi ∆Yi), (7.1)

where ∆Ui, ∆Yi represent the transposed row i of ∆U , ∆Y .

Second, the following lasso problem was solved for each gene i:

min
Gi

||(∆Yi − d∆Ui)−∆UTH\iGi||
2
F + λ

∑
j∈H\i

|Gi[j]|, (7.2)

where H is a set of candidate hub CNA genes, where CNAs that show no
selection towards either deletion or amplification have been filtered out.

After estimation of the network models, experimental follow-up was
done in four glioblastoma-derived cell-lines on a small subnetwork, includ-
ing the recurrently copy number deleted gene NDN (Necdin) which was
connected to five mRNA transcripts in the G network. NDN belongs to
the melanoma-associated antigen (MAGE) family and is shown to interact
with the p53 protein82. To investigate the importance of NDN in glioblas-
toma, NDN was overexpressed and the growth of treated and untreated
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7.2 II: Integrative modeling reveals ANXA2 as a determinant of
mesenchymal transformation in glioblastoma

cells was estimated. To test for difference in growth we used a t-statistic:

T =
kCTRL − kNDN√
s2
CTRL + s2

NDN

∼ t2n−4, (7.3)

where k is the slope of the log transformed growth curve:

log2(h(t)) = log2(h0) + kt, (7.4)

t = time in days, h is proportional to number of cells, h0 is number of cells
at t = 0, and s is the standard deviation of k.

Overexpression of NDN was shown to decrease cell cycling time in three
of four cell lines, and it was confirmed as a hub in the network. Thus, the
CNA-driven network model could be used to find unknown regulators of
cell growth in glioblastoma.

7.2 II: Integrative modeling reveals ANXA2 as a
determinant of mesenchymal transformation
in glioblastoma

The collection and publication of data in TCGA moved forward and the
full set of measurements for around 600 glioblastoma patients was pre-
sented. The data included not only mRNA and CNA estimates, but also
measurements of methylation, miRNA, and mutations. We developed a
more general network model for integration of all presented data types,
including clinical data such as survival and affiliation to subtype36. The
aim of the model was to identify possible genomic, epigenetic and tran-
scriptional regulators of the four glioblastoma subtypes; classical, neural,
proneural, mesenchymal. As the subtypes have different properties in term
of aggressiveness and response to therapy, it is of importance to learn about
underlying mechanisms by, for example, finding candidate drivers. Previous
research on the activation of the mesenchymal gene signature has identified
the transcription factors C/EBP-β and STAT383, and overexpression of
TAZ84 and RHPN285 as being associated with the mesenchymal subtype.
Additionally, the miRNAs miR-128a and miR-50486 have been identified
to negatively correlate with mesenchymal marker genes.

For network construction to be feasible in Matlab, the data was stored
in data type specific matrices, of size number of variables × number of
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patients. The full correlation matrix was then built up of blocks:

S =

S11 . . . S1d
...

. . .
...

Sd1 . . . Sdd

 , (7.5)

where each block Sab is the cross-correlation matrix between data type a
and b, and which uses the maximum number of patients available for that
combination of data types.

The network models are created using glasso 62, with the addition of a
datatype-specific prior implemented in a link-specific λ1-penalty variable.
This model can be seen as a modified single-cancer version of the aSICS
model presented in Paper III. The prior is necessary for balancing the model
when including multiple data types. The specific prior used in this paper
was:

Λij = λ1λ
block
ab λlinkij , (7.6)

where λ1 is a general sparsity parameter, tuning the global sparsity of the
network. λab is used to tune the sparsity of variables from different data
types a and b; when a = b, then λab = 1. λij is a link specific sparsity
parameter, allowing to alter the penalty for specific pairs of variables i and
j, e.g. when i is the variable for promoter methylation of a gene with
mRNA j.

The resulting network model included 19 potential regulators of glioblas-
toma subtypes, defined as a methylation, miRNA or mutation node con-
nected to an mRNA, subsequently linked to a subtype. We chose to further
investigate, and experimentally validate, one of these regulators, Annexin
A2 (ANXA2) which was linked in the network to the mesenchymal subtype
and a methylation site located in the ANXA2 promoter.

We investigated the expression and methylation status of ANXA2 in
TCGA lower grade glioma (LGG) and GBM datasets, and showed that ex-
pression increases and methylation decreases with grade of glioma. RNAseq
values were used for the expression comparison, since other platforms were
not available for LGG; although it meant there were fewer patients available
for GBM, illustrating the trade off that sometimes has to be done to be able
to compare datasets. We also compared ANXA2 expression of glioblastoma
cell lines and tumor samples from University of Freiburg and there was a
significant difference between mesenchymal and not mesenchymal samples,
where mesenchymal had higher expression.
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7.3 III: Efficient exploration of pan-cancer networks by generalized
covariance selection and interactive web content

Gene Set Enrichment Analysis (GSEA87,88) is a computational method
used to investigate whether a defined set of genes differs significantly be-
tween two groups of samples, e.g. before and after treatment. We used
GSEA to investigate the effect on mesenchymal subtype signature mRNAs
before and after knockdown of ANXA2 with shRNA in two glioblastoma-
derived cell lines, and showed that there was a significant downregulation
of the group of mesenchymal signature transcripts after knockdown. The
mesenchymal signature genes were taken from the subtype definition by
Verhaak36. Knockdown of ANXA2 by shRNA also reduced cell prolifera-
tion and invasiveness.

In summary, network modeling of multiple data types and the inclusion
of subtypes as nodes made new interesting predictions about potential sub-
type regulators in glioblastoma. As the knockdown experiments displayed
both an effect on the mesenchymal signature genes, and on physical proper-
ties like proliferation and invasiveness, ANXA2 might have the potential of
being a new therapeutic target. Since the mesenchymal phenotype is asso-
ciated with poor survival, the hope is that a reduction of the mesenchymal
profile genes possibly could decrease the tumor invasiveness and thereby
improve prognosis for the patients.

7.3 III: Efficient exploration of pan-cancer net-
works by generalized covariance selection and
interactive web content

Following the publishing of the full data set for glioblastoma, TCGA col-
lected and presented a series of other cancer diagnoses, which eventually
became part of the Pan-Cancer initiative44 (see Section 2.2.1). By the time
of eight published cancer types with at least 200 patients each, we devel-
oped a network model harboring not only multiple data types, but also
multiple cancer types. Our application of partial correlation-based model-
ing presents a variable focused alternative to multi-platform analyses that
use patient-based clustering methods47.

The model is based on an extension of sparse inverse covariance se-
lection (SICS), which was adapted and optimized for modeling of genetic,
epigenetic, and transcriptional data across cancers, see Section 4.2, Chapter
6, and Appendix. To evaluate the potential of the method, we applied it
to the eight TCGA cancers and published the model online at cancerland-
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scapes.org, using a web interface that was designed to enable navigation
and exploration of the networks. The resulting network models showed
good performance in terms of enrichment of known interactions in Path-
wayCommons (http://www.pathwaycommons.org), also when compared to
the correlation based network estimation method WGCNA60.

Simultaneous analysis of multiple cancer types aims to highlight simi-
larities and differences between them. To be able to conduct the network
construction it is absolutely necessary to align all the different datasets so
that the same variables are present across the cancers. As described above,
the discrepancies between data coming from different platforms enforce a
sequence of choices. These choices include what to do with missing data,
both regarding variables and samples, which normalization to choose and
how to filter variables to reduce data dimensionality. A select choice of
stability analyses of parameters included in the network construction were
done, including sensitivity analysis with respect to the elastic net parameter
α and the choice of prior strength u (Section 6.2), and stability of networks
with respect to the number of bootstraps (Section 6.1). Nonetheless, since
the dependencies are complex in this kind of multi-step procedure, this
issue warrant further study in future work.

The derived multi-cancer network detected known interactions in path-
way databases and contained interesting predictions, including function-
ally coupled network structures shared between cancers. Examples in-
clude a network module enriched for mitosis related genes mainly shared
by glioblastoma, head and neck, kidney and uterine cancers, and a network
module enriched for immune response dominated by head and neck, uter-
ine and lung cancer. The network model also contained modules specific to
singular cancers, e.g. TP53 point mutation linked to a number of TP53 tar-
gets in uterine cancer. Another cancer specific network module represents
mutation of IDH1 linked to over 600 methylation probes in glioblastoma,
probably reflecting the IDH1 driven hypermethylated G-CIMP phenotype
discussed in Section 3.2. The same module also proposes a link between
loss at the end of the short arm of chromosome 11 and mutation of IDH1.
Furthermore, overlaying the network with survival association and drug
target information highlighted for example the estrogen receptor ESR1 in
breast and ovarian cancer, linked to the known modulators of estrogen
receptor signaling (GATA3, EYA2)89,90 and the gene GPR77 previously
being unreported in the context of the estrogen receptor.

Pan-Cancer studies focusing on one datatype have resulted in estima-
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covariance selection and interactive web content

tions of the number of significantly mutated cancer driving genes45,46, com-
mon patterns of copy number alterations48, and similarities in miRNA reg-
ulation across cancers91. Our multi-cancer network model has the potential
of giving new insight to cancer biology and aid in the hunt for similarities
and differences across cancers also by connecting the different data types
to each other.
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8 Conclusion and future perspectives

The papers of this thesis show that network modeling of cancer genomics
data from multiple sources can aid in the search for unknown regulators,
and that simultaneous analysis of multiple cancers enable identification of
common and unique properties across diagnoses. The developed methods
should be regarded as one addition to the range of analysis tools that assist
in the creation of a map covering the whole variation of diseases that is
cancer. Unless large parts of the map are explored, it is not possible to
pinpoint the location of the single individual and reach the ultimate goal
of being able to offer personalized medicine where the treatment is adapted
to the aberrations and conditions of each patient.

The modeling framework of paper II and III make it possible to add
more types of data, the most obvious being protein level measurements of
tumors. As the number of samples and cancer diagnoses increase in TCGA,
it will be interesting to further develop the models to encompass not only
more types of cancer but allow for division into molecular subtypes, as
subsets of tumors have been shown to molecularly resemble tumors with
another histological classification47. The aim is also that the models in the
future should be able to incorporate data from other databases and sources
than TCGA.

Towards the goal of creating network models encompassing more vari-
ables and diagnoses, and that are surveyable and informative, there is po-
tentially a need both to redesign the models, for example by redefining what
a variable represents, and to finetune the presentation and communication
of the results. It would be interesting to investigate the use of alternative
types of association summaries such as low order partial correlations, that
condition on a subset of the other variables rather than the full set92. An-
other option is the estimation of directed acyclic graphs (DAG), using for
example the PC algorithm93, that instead of measuring the effect on vari-
able i of variable j by keeping all the covariates fixed, includes the indirect
effect of all variables. Further alternatives include to introduce more data
types in a regression based model with genetic and epigenetic alterations
as input and mRNA or proteins as output. Another idea would be to also
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account for diverse cellular composition of different tumor types in models
that compare multiple cancer classes.

Regarding improvement of data quality lies the possibility of full genome
sequencing, which will reveal mutations not only in gene coding regions
but also in other possibly regulatory segments of the DNA, such as in long
non-coding RNAs. Also, improvements in mass spectrometry analysis or
array technologies will enable more global measurements of protein levels,
which will provide a new level of insight to cancer mechanisms29. However,
although computer power increases fast, and solutions for using the capacity
of cloud computers emerge, a challenge lies in the development of data-
handling algorithms to match the speed of data collection and hardware
development.

Further ahead is the possibility of cancer genome studies that also har-
bor recurred tumors, metastasis and treatment information, which would
open for modeling of treatment efficiency in patients with different molec-
ular profiles. The development of measuring techniques that requires less
tumor material could possibly enable separate analysis of several parts of
a tumor, or even multi-platform analysis of tumor biopsies. Also, paired
samples of for example blood will possibly aid in the finding of new biomark-
ers, to be used in screening programs for early detection of different cancer
diagnoses.
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Tajana Tešan Tomić thanks for the talks about life in general and kids
in particular.

To all of my colleagues who, depending on your expertise, scrutinized
different parts of the text, thank you for the support and the feedback!

Thanks to the people at Sahlgrenska Cancer Center for making me feel
welcome and for all the nice lunches.

To friends outside of academia for being just friends, not caring partic-
ularly about my research or when I will be finished.

My parents Berit and Ingolf, thank you for always having very strong
faith in my abilities and capacity. Thanks also to my brothers Olof and
Alexander with families, and Einar, whom I know I can always rely on.

Finally, the biggest thanks to the three loves of my life. Emanuel, my life
companion, for being my very steady rock during my storms. Leonora, my
brilliant, beautiful girl, who keeps me alert by asking all the right questions.
Valdemar, my stubborn, gorgeous boy, who constantly reminds me what is
truly important in life.

41



References

[1] Cancer Research UK. All cancers combined key stats. Cancer Research
UK 2014, http://publications.cancerresearchuk.org, 2015-06-24, 2014.

[2] Theodor Boveri. Concerning the origin of malignant tumours by
theodor boveri. translated and annotated by henry harris. Journal
of cell science, 121(Supplement 1):1–84, 2008.

[3] CC Twort and JM Twort. Observations on the reaction of the skin to
oils and tars. Journal of Hygiene, 28(03):219–227, 1928.

[4] JM Twort and CC Twort. Comparative activity of some carcinogenic
hydrocarbons. The American Journal of Cancer, 35(1):80–85, 1939.

[5] Ii Berenblum. The cocarcinogenic action of croton resin. Cancer Re-
search, 1(1):44–48, 1941.

[6] Steven A Frank. Dynamics of cancer. Princeton University Press,
2007.

[7] HT Deelman. The part played by injury and repair in the development
of cancer; with some remarks on the growth of experimental cancers.
Proceedings of the Royal Society of Medicine, 20(7):1157, 1927.

[8] Ian MacKenzie and Peyton Rous. The experimental disclosure of la-
tent neoplastic changes in tarred skin. The Journal of experimental
medicine, 73(3):391–416, 1941.

[9] DJ Ashley. Colonic cancer arising in polyposis coli. Journal of medical
genetics, 6(4):376, 1969.

[10] Alfred G Knudson. Mutation and cancer: statistical study of
retinoblastoma. Proceedings of the National Academy of Sciences,
68(4):820–823, 1971.

[11] JC Fisher and JH Hollomon. A hypothesis for the origin of cancer foci.
Cancer, 4(5):916–918, 1951.

42



References

[12] Clifford J Tabin, Scott M Bradley, Cornelia I Bargmann, Robert A
Weinberg, Alex G Papageorge, Edward M Scolnick, Ravi Dhar, Dou-
glas R Lowy, and Esther H Chang. Mechanism of activation of a human
oncogene. Nature, 300(5888):143–149, 1982.

[13] Elizabeth Taparowsky, Yolande Suard, Ottavio Fasano, Kenji Shimizu,
Mitchell Goldfarb, and Michael Wigler. Activation of the t24 bladder
carcinoma transforming gene is linked to a single amino acid change.
Nature, 300(5894):762–765, 1982.

[14] E Premkumar Reddy, Roberta K Reynolds, Eugenio Santos, and Mar-
iano Barbacid. A point mutation is responsible for the acquisition of
transforming properties by the t24 human bladder carcinoma onco-
gene. Nature, 300(5888):149–152, 1982.

[15] Laura E MacConaill and Levi A Garraway. Clinical implications of
the cancer genome. Journal of Clinical Oncology, 28(35):5219–5228,
2010.

[16] Helen Davies, Graham R Bignell, Charles Cox, Philip Stephens, Sarah
Edkins, Sheila Clegg, Jon Teague, Hayley Woffendin, Mathew J Gar-
nett, William Bottomley, et al. Mutations of the braf gene in human
cancer. Nature, 417(6892):949–954, 2002.

[17] Thomas J Lynch, Daphne W Bell, Raffaella Sordella, Sarada Gurub-
hagavatula, Ross A Okimoto, Brian W Brannigan, Patricia L Harris,
Sara M Haserlat, Jeffrey G Supko, Frank G Haluska, et al. Acti-
vating mutations in the epidermal growth factor receptor underlying
responsiveness of non–small-cell lung cancer to gefitinib. New England
Journal of Medicine, 350(21):2129–2139, 2004.

[18] J Guillermo Paez, Pasi A Jänne, Jeffrey C Lee, Sean Tracy, Heidi
Greulich, Stacey Gabriel, Paula Herman, Frederic J Kaye, Neal Linde-
man, Titus J Boggon, et al. Egfr mutations in lung cancer: correlation
with clinical response to gefitinib therapy. Science, 304(5676):1497–
1500, 2004.

[19] William Pao, Vincent Miller, Maureen Zakowski, Jennifer Doherty,
Katerina Politi, Inderpal Sarkaria, Bhuvanesh Singh, Robert Heelan,
Valerie Rusch, Lucinda Fulton, et al. Egf receptor gene mutations
are common in lung cancers from never smokers and are associated
with sensitivity of tumors to gefitinib and erlotinib. Proceedings of

43



References

the National Academy of Sciences of the United States of America,
101(36):13306–13311, 2004.

[20] P Andrew Futreal, Lachlan Coin, Mhairi Marshall, Thomas
Down, Timothy Hubbard, Richard Wooster, Nazneen Rahman, and
Michael R Stratton. A census of human cancer genes. Nature Reviews
Cancer, 4(3):177–183, 2004.

[21] Bert Vogelstein, Nickolas Papadopoulos, Victor E Velculescu, Shibin
Zhou, Luis A Diaz, and Kenneth W Kinzler. Cancer genome land-
scapes. Science, 339(6127):1546–1558, 2013.

[22] Douglas Hanahan and Robert A Weinberg. The hallmarks of cancer.
Cell, 100(1):57–70, 2000.

[23] Douglas Hanahan and Robert A Weinberg. Hallmarks of cancer: the
next generation. cell, 144(5):646–674, 2011.

[24] Olle Bergman, Lotta Fredholm, Micke Jaresand, Elizabeth
Johansson, and Sara Nilsson. Cancerfondsrapporten 2015.
http://www.cancerfonden.se/publikationer/cancerfondsrapporten,
2015-08-10, 2015.

[25] N Howlader, AM Noone, M Krapcho, J Garshell, D Miller, SF Al-
tekruse, CL Kosary, M Yu, J Ruhl, Z Tatalovich, et al. Seer cancer
statistics review, 1975–2011. bethesda, md: National cancer institute,
2014.
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Appendix

ADMM algorithm

In the case of the fused graphical lasso problem with elastic net the opti-
mization problem 6.2 can be written as:

minimize
{Θ},{Z}

f{Θ}) + g(λ, {Z})

subject to Θk = Zk, k = 1, . . . ,K

where Sk is the empirical correlation matrix for cancer type k, and

f({Θ}) =
K∑
k=1

nk[ln(det(Θk))− tr(SkΘk)]

g(λ, {Z}) = λ1

K∑
k=1

∑
i 6=j

(α|Zkij |+ (1− α)(Zkij)
2) + λ2

∑
k<k′

∑
i 6=j
|Zkij − Zk

′
ij |

The augmented Lagrangian, corresponding to Equation 6.3, becomes:

L({Θ}, {Z}, {U}) = f({Θ}) + g(λ, {Z}) +
ρ

2

K∑
k=1

||Θk − Zk + Uk||2F

The three steps of the ADMM algorithm becomes:

STEP 1: Θk
(m) ← argmin

{Θ}
{L({Θ(m−1)}, {Z(m−1)}, {U(m−1)}))

It has been shown that this step can be solved with the help of

an eigendecomposition94, see line 10-11 in algorithm below.

STEP 2: Zk(m) ← argmin
{Z}

{L({Θ(m)}, {Z(m−1)}, {U(m−1)}))

This step is separable for each element (i, j). A faster
implementation using vectorization is sketched in the next section.

STEP 3: Uk(m) ← Uk(m−1) + Θk
(m) − Z

k
(m)

The algorithm is outlined in detail next.
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Variable initialization:
(Zk, Uk becomes matrices of the same size as Sk, I is the identity
matrix)

1: l← 0
2: for k = 1, . . . ,K, where K = # cancer classes do
3: Zk(0) ← (Sk + ε ∗ I)−1

4: Uk(0) ← 0
5: end for
6: Select a scalar ρ > 0 (e.g. ρ = n̄ or 2n̄)

Algorithm:
7: while not converged do
8: m← m+ 1
9: for k = 1, . . . ,K do

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STEP 1:

10: Let V DV T = eigendecomposition of
[Sk − ρ/nk(Zk(m−1) + Uk(m−1))]

11: Θk
(m) ← V D̃V T , where D̃ is a diagonal matrix with element jj =

nk
2ρ (−Djj +

√
D2
jj + 4ρ/nk)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STEP 2:

12: Ak ← Θk
(m) + Uk(m−1) . Introduce helper matrix A.

13: for all i,j do
14: Assume A1

ij ≤ A2
ij ≤ ... ≤ Akij

15: Z̃kij ← Akij − λ2(2k − (K + 1))
16: if Z̃k0ij > Z̃k0+1

ij then
17: Z̃k0ij = Z̃k0+1

ij ← (Z̃k0ij + Z̃k0+1
ij )/2

18: end if
19: Zk(m)ij ← α sign(Z̃kij) max(|Z̃kij | − λ1,ij)/(1 + (1− α)λ1,ij)
20: end for

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STEP 3:

21: Uk(m) ← Uk(m−1) + Θk
(m) − Z

k
(m)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22: end for
23: end while
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Vectorization

Lines 13-20 in the ADMM algorithm above include elementwise operations.
Instead of looping through all p × p elements for the K matrices we used
vectorization for massive speed up in Matlab, algorithm is sketched below.

1: Let B (size p(p− 1)/2×K) be the rearranged version of A (size
p × p), where column k of B corresponds to the lower triangular part
of A(k) (A is symmetrical, i.e. only half is needed for the calculations):

B ←

A1
11 A2

11 . . . AK11

A1
21 A2

21 . . . AK21
...

...
. . .

...
A1
p(p−1) A2

p(p−1) . . . AKp(p−1)

2: B ← sort each row of B. Save the order of the sorting.

3: H ←
1 2 . . . K
...

...
. . .

...
1 2 . . . K

. H is size p(p− 1)/2×K

4: B ← B − λ2(2H − (K + 1))

Initialize:
5: b = FALSE . boolean matrix size p(p− 1)/2×K
6: m = 0 . vector size p(p− 1)/2× 1
7: l = 1 . vector size p(p− 1)/2× 1
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8: for iter = 1→ K do
9: for k = 1→ K − 1 do

10: f ← B.k > B.k+1 . boolean vector
11: b.k = b.k+1 ← f
12: lf==1 ← lf==1 + 1 . Counter of number of fused classes
13: lf==0 ← 1

14: Calculate the new values for the fused elements:
mf==1 ← [bf==1,k(lf==1 − 1) + bf==1,k+1)]/lf==1,k

15: m←
m1 . . . m1
...

. . .
...

mp(p−1)/2 . . . mp(p−1)/2

. matrix size p(p− 1)/2×K

16: Bb==1 ← mb==1

17: end for
18: end for

19: B ← reorder B with the help of the sorting stored in step 2.
20: for all i, j, k do
21: Z

(k)
ij ← Bcorresponding row element,k

22: end for
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