Measurement of T₁ relaxation time in lungs Preclinical and clinical MRI applications to COPD

Akademisk avhandling

som för avläggande av medicine doktorsexamen vid Sahlgrenska akademin vid Göteborgs universitet kommer att offentligen försvaras i hörsal Arvid Carlsson, Medicinaregatan 3, Göteborg, fredagen den 9 Oktober 2015 kl 13.00

> ^{av} Daniel Alamidi

Fakultetsopponent Professor Yannick Crémillieux Université Bordeuax, Bordeaux, Frankrike

Avhandlingen baseras på följande arbeten:

- I. Alamidi D, Morgan A, Hubbard Cristinacce P, Nordenmark L, Hockings P, Lagerstrand K.M, Young S, Naish J, Waterton J, Maguire N, Olsson L E., Parker G. *COPD patients have short lung magnetic resonance T₁ relaxation time*. COPD: Journal of Chronic Obstructive Pulmonary Disease, In press, doi: 10.3109/15412555.2015.1048851 (2015).
- II. Alamidi D, Kindvall S, Hubbard Cristinacce P, McGrath D, Young S, Naish J, Waterton J, Diaz S, Wollmer P, Olsson M, Hockings P, Lagerstrand K.M, Parker G, Olsson L E. *T₁ in lungs of healthy smokers*. Manuscript.
- III. Alamidi D, Smailagic A, Bidar A, Parker N, Olsson M, Hockings P, Lagerstrand K.M, Olsson L E. Variable flip angle 3D-UTE T₁ mapping of mouse lung: a repeatability assessment. Manuscript.
- IV. Alamidi D, Smailagic A, Bidar A, Parker N, Olsson M, Jacksson S, Swedin L, Hockings P, Lagerstrand K.M, Olsson L E. *Tobacco smoke shortens T₁ in a mouse model of COPD*. Manuscript.

UNIVERSITY OF GOTHENBURG

Göteborg 2015

Measurement of T_1 relaxation time in lungs Preclinical and clinical MRI applications to COPD

Daniel Alamidi

Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden, 2015

Monitoring of regional lung function in clinical trials of chronic obstructive pulmonary disease (COPD) requires alternative endpoints beyond global pulmonary function tests (PFTs), which is the most common approach for diagnosing lung function abnormalities in humans. A promising magnetic resonance imaging (MRI) biomarker of lung disease in humans and animals is the T_1 relaxation parameter. Only a limited amount of data on native T_1 behaviour in COPD patients and animal models of COPD are available, especially in relation to other relevant markers such as computed tomography (CT) and PFTs in humans; and bronchoalveolar lavage (BAL) fluid analysis and histology in animals. The smoking history in humans and tobacco smoke (TS) exposure in animals are important factors that need to be investigated in relation to lung T_1 since tobacco smoking is the major cause for development of COPD. Therefore, we have investigated whether lung T_1 can be used as a biomarker of COPD in man, if there is a direct effect of TS on lung T_1 in healthy current smokers, and the repeatability of T_1 measurements acquired at two visits. T_1 was also related to smoking history, CT and PFTs. Subsequently, lung T_1 was investigated in a mouse model of COPD and correlated to BAL, lung mechanics and histology to increase the understanding of how T_1 relates to the pathophysiological aspects of COPD. A preclinical three dimensional (3D) ultra-short echo time (UTE) T_1 mapping protocol was developed to enable the COPD study in mouse. We found from the human studies that: lung T_1 shortens in COPD patients, ageing shortens T_1 and that TS exposure does not affect T_1 in healthy smokers. Additionally, lung T_1 was repeatable and correlated with CT lung density and PFT parameters. Lung T_1 was also shortened in the TS exposed mice, most likely due to early signs of disease. In naive mice, high lung T_1 repeatability over one month was found. In conclusion, lung T_1 mapping is an attractive imaging biomarker of COPD in mouse and man for future longitudinal studies. The potential of MRI-based T_1 mapping to evaluate early COPD has been enhanced by the advances in this thesis.

Keywords: Magnetic Resonance Imaging, biomarker, tobacco smoke, mouse, smoking, lung imaging, Chronic Obstructive Pulmonary Disease, ultrashort echo time (UTE), T1 mapping, longitudinal relaxation time ISBN: 978-91-628-9525-9 (print) ISBN: 978-91-628-9526-6 (e-pub) E-publication: http://hdl.handle.net/2077/39543