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Abstract

A finite element Galerkin spatial discretization together with a backward Euler
scheme is implemented to simulate strong error rates of the homogeneous stochastic
heat equation with multiplicative trace class noise in one dimension. For the noise,
two different operators displaying different degrees of regularity are considered, one
of which is of Nemytskii type. The discretization scheme is extended to include dis-
cretization of the covariance operator of the Q-Wiener process driving the equation.
The results agree with the theory. Furthermore, for exploratory reasons, weak error
rates are also simulated using the classical Monte Carlo method and the multilevel
Monte Carlo method.
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1 Introduction

In this thesis, we are concerned with the implementation of numerical approximation
schemes of stochastic partial differential equations of evolutionary type, driven by mul-
tiplicative noise. These are partial differential equations where we have introduced a
random noise term so that the solutions become stochastic processes taking values in
some function space. Such equations are interesting for a number of reasons (see e.g. [13]
or [16] for examples of applications) and we analyze them by considering the abstract
problem of finding a solution X : [0, T ]× Ω → H to

dX(t) +AX(t)dt = G(X(t))dW (t), for 0 ≤ t ≤ T
X(0) = X0.

In the main part of this thesis, we will take A = −∆, where ∆ is the Laplacian,
H = L2([0, 1], R) and W is a Q-Wiener process where Q is of finite trace. As
the operator G controlling how the noise affects X also depend on X we say that
this equation, which we refer to as as the homogeneous stochastic heat equation, has
multiplicative trace class noise. It holds that under sufficient constraints on G and X0

the equation admits a so called mild solution

X(t) = E(t)X0 −
∫ t

0
E(t− s)G(X(s))dW (s)

which we want to approximate by some other process X̂` that we can compute. Here
E is the so called C0-semigroup generate by A and the integrals are of Bochner and Itô
type respectively. We are interested in the strong error

||X(T )− X̂`||L2(Ω;H)

and the weak error ∣∣∣E[φ(X(T ))]− E[φ(X̂`)]
∣∣∣

where φ : H → R is some smooth functional.

When we want to implement this theory in a computer program, we have to be able to
represent the solution X(T ) as an approximation X̂` on finite partitions in space and
time. For this we implement a spatio-temporal discretization scheme described in [11],
which is the main source of the theory used in this thesis. The particular discretizations
in this case are a Galerkin finite element method when discretizing with respect to
H and a backward Euler-Maruyama scheme with respect to [0, T ]. We are not aware
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of previously published simulation results on SPDE with multiplicative noise using an
implementation of this particular spatio-temporal scheme. The theory of Galerkin finite
element methods is well-established and they do not require knowledge of the eigenvalues
and eigenvectors of the operator A. We extend the discretization scheme slightly by
proving results on a discretization of the covariance operator Q of the underlying Q-
Wiener process, using an approach that is similar to the one used in [4].

The error estimate of this scheme given in [11] is in the form of strong errors. Since we
are not aware of any papers providing results on the weak convergence rates when we
consider SPDE with multiplicative noise with a discretization in both time and space
we choose to simply note that we have weak convergence of this scheme since the weak
error is bounded by the strong error:∣∣∣E[φ(X(T ))]− E[φ(X̂`)]

∣∣∣ ≤ ||X(T )− X̂`||L2(Ω;H)

for sufficiently smooth φ. However, many authors (see in particular [1] and [7] and
the references therein for a setting similar to ours) have considered weak convergence
in a semidiscrete setting (with respect to either space or time) and in anticipation of
a combination of these we do an exploratory simulation on weak convergence rates of
this spatio-temporal discretization scheme in the particular setting of the heat equation.
There is a common rule of thumb [11, page 9] that in many situations the weak rate of
convergence is almost twice the strong rate of convergence, and we wanted to see if we
could find an indication of whether this was true in this case as well.

To actually simulate the expectations involved in the weak and strong errors above, we
have to use estimators such as the classical Monte Carlo estimator and the so called
multilevel Monte Carlo estimator. The multilevel Monte Carlo estimator can often
reduce the computational work compared to the classical, or singlelevel, Monte Carlo
estimator and its application to SPDE has been the subject of a number of recent papers
(e.g. [3], [4]). We give proofs on the L2-convergence of the obtained estimates to the
true strong and weak error rates.

The computations involved in the simulations of these error rates are often very expen-
sive. Fortunately, we were granted access to the cluster Glenn of the Chalmers Centre
for Computational Science and Engineering (C3SE), and so we were able to also consider
quite costly simulations.

In the end, our simulations of the strong error rates are consistent with the theory. The
simulations of the weak error rates are also to some extent consistent with the before-
mentioned rule of thumb, which can be of interest for future research. Furthermore,
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we are able to achieve similar results on the simulations of the weak error when using
multilevel estimators to a smaller computational cost compared to singlelevel estima-
tors.

1.1 Outline of the thesis

Chapter 2 is intended as an introduction to some notions needed from functional analysis
that may be new to some readers. In particular we focus on Hilbert-Schmidt operators,
trace class operators and fractional operators along with selected properties of them.
We also give a short introduction to parts of stochastic calculus in infinite dimensions,
especially the Q-Wiener process and the stochastic integral driven by it.

In Chapter 3 we present a semilinear SPDE of evolutionary type, different notions of
solutions of it, as well as the main assumptions we make on the parameters involved.
We also recapitulate an existence and uniqueness result on the mild solution.

Chapter 4 contains a brief summary of the spatio-temporal discretization scheme of [11]
along with strong error estimates of this. In the last part of this chapter we prove a
strong error estimate with respect to discretization of the covariance operator of the
Q-Wiener process.

In Chapter 5 we describe the Monte Carlo method and prove results on its application
to simulation of strong and weak rates of convergence. We also describe the multilevel
Monte Carlo method and its application to estimating weak convergence rates.

Chapter 6 contains our implementation of the theory of the previous chapters. We esti-
mate strong convergence rates and compare single- and multilevel Monte Carlo results
on the estimation of the weak convergence rate.

1.2 On notation

In this thesis we mostly follow the notation of [11], with one notable exception in the
form of Hilbert-Schmidt spaces. These we denote by LHS(·; ·). We also mention that we
use generic constants denoted by C. These may vary from line to line in, for example,
an equation and are always assumed not to depend on the spatial and temporal step
sizes. Finally, we note that when we for real variables x, y write x ' y we mean that
there exists strictly positive constants C1 and C2 such that C1x ≤ y ≤ C2x.
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2 Stochastic calculus in Hilbert spaces

The purpose of this chapter is to introduce some basic concepts needed for the definition
of a stochastic partial differential equation (SPDE). It is assumed that the reader has
some basic familiarity with measure theory and functional analysis. For an introduction
to the material which presupposes less familiarity, [13] is an excellent resource. However,
for details on the construction of the Q-Wiener process and the Itô integral, we follow
the slightly different approach of [16], which is also a good introductory text.

In this whole chapter, let 0 < T <∞ and let (Ω,F , (Ft)t∈[0,T ], P ) be a filtered probability
space where (Ft)t∈[0,T ] is a so called normal filtration, i.e.

(i) F0 contains all null sets of F , and

(ii) Ft =
⋂
s>t

.

Furthermore, let H be a real separable Hilbert space with inner product 〈·, ·〉H endowed
with the Borel σ-algebra B(H). Let {ei}i∈N be an orthonormal basis (ONB) of H.

2.1 Hilbert-Schmidt spaces and trace class operators

This subsection serves to introduce concepts from functional analysis that may be new
to some readers. We start with the definition of compactness of operators.

Definition 2.1. Given two Banach spaces B1 and B2 with G : X → Y being linear,
we say that G is compact if whenever a sequence (xi)i∈N is bounded in B1 then (Gxi)i∈N
has a convergent subsequence in B2.

We now introduce so called Hilbert-Schmidt operators, which are a subset of linear
bounded operators. They will play a very important role throughout the thesis.

Definition 2.2. Let U be another real separable Hilbert space with ONB (fi)i∈N and
let G ∈ L(U ;H). Then we refer to G as an Hilbert-Schmidt operator if

∞∑
i=1

||Gfi||2H <∞.

The collection of all such operators is denoted by LHS(U ;H) or LHS(H) if U = H. It
holds that LHS(U ;H) is a separable Hilbert space when it is equipped with the inner
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product 〈
G, G̃

〉
LHS(U ;H)

:=
∞∑
i=1

〈
Gfi, G̃fi

〉
H
.

Next, we prove that the norm defined by this inner product is an upper bound of the
operator norm.

Lemma 2.3. Let A ∈ LHS(U ;H). Then

||A||L(U ;H) ≤ ||A||LHS(U ;H).

Proof. Take any x ∈ U such that ||x||U = 1. Then, by the Cauchy–Schwarz inequality
in the sequence space `2,

||Ax||H = ||
∑
i∈N
〈x, fi〉U Afi||H

≤ (
∑
i∈N
〈x, fi〉2U )

1
2 (
∑
i∈N
||Afi||2H)

1
2 = ||A||LHS(U ;H)

which implies the inequality by definition of the operator norm.

Another important notion is that of the trace of an operator:

Definition 2.4. Let Q ∈ L(U) be self-adjoint and positive definite. We define the
trace of G by

tr(Q) :=
∑
i∈N
〈Qfi, fi〉U

Whenever this quantity exists it is independent of the choice of the orthonormal basis,
see e.g. [9, page 18]. In this case we refer to Q as an operator of finite trace or a trace
class operator.

Reasoning as in [11, page 12], from [6, Prop. C.3] it follows that such operators are
compact. Therefore, by the Spectral Theorem [14, Theorem 4.24], Q diagonalizes with
respect to an ONB (fi)i∈N of U , i.e.

Qfi = µifi (1)

for all i ∈ N with µi ∈ R+. We therefore have tr(Q) =
∑∞

i=1 µi. Similarly, given the
eigenbasis (fi)i∈N, we can construct a trace class operator by choosing a positive real
sequence (µi)i∈N of eigenvalues such that

∑∞
i=1 µi < ∞.

We will also use the following result.
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Proposition 2.5. [11, Proposition 2.6] Let Q ∈ L(U) be positive definite and self-

adjoint. Then there exists a unique self-adjoint and positive definite operator Q
1
2 ∈ L(U)

such that Q
1
2 ◦Q

1
2 = Q.

Given the relation (1), it is easy to see that

Q
1
2 fi = µ

1
2
i fi (2)

for the ONB (fi)i∈N of U . Hence, we have the following relationship between this
operator and the trace of Q:

||Q
1
2 ||2LHS(U) = tr(Q). (3)

2.2 Semigroups and fractional powers of operators

In this section, we will consider densely defined, linear, self-adjoint positive definite
operators A with compact inverse which are not necessarily bounded. An example is
−∆ when H = L2([0, 1];R). Here ∆ is the Laplace operator, which will play a vital part
in the SPDE considered in later parts of the thesis.

We first define the semigroups that such operators generate. They can be thought of
as extensions of the exponential operator. The definitions come from [11, Appendix
B.1].

Definition 2.6. Consider a Banach space B. A family (E(t))t∈[0,∞) with E(t) ∈ L(B)
for all t ∈ [0,∞) is called a strongly continuous semigroup or a C0-semigroup if

(i) E(0) = I, the identity operator,

(ii) E(t+ s) = E(t)E(s) for all t, s ≥ 0 and

(iii) lim
t↘0

E(t)b = b for all b ∈ B.

If in addition,

(iv) ||E(t)||L(B) ≤ 1 for all t > 0,

then E is called a semigroup of contractions.
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Definition 2.7. Let (E(t))t∈[0,∞) and B be as in the previous definition. The linear
operator −A defined by

−Ab = lim
h↘0

E(h)b− b
h

with domain

dom(−A) =

{
b ∈ B : lim

h↘0

E(h)b− b
h

exists in B

}
is called the inifinitesimal generator of the semigroup (E(t))t∈[0,∞).

For our choice of A (again, think of the Laplace operator) the following two results on
fractional operators hold. Here we take B = H, the Hilbert space considered in the
beginning of this chapter.

Proposition 2.8. [11, Appendix B.2] Let A : dom(A) ⊆ H → H be a densely defined,
linear, self-adjoint and positive definite operator with compact inverse A−1. Then A
diagonalizes with respect to an eigenbasis of H (ei)i∈N in H with an increasing sequence
of eigenvalues (λi)i∈N. Furthermore, for r ≥ 0, the fractional operators A

r
2 : dom(A

r
2 ) ⊆

H → H are defined by

A
r
2x :=

∞∑
n=1

λ
r
2
i 〈x, ei〉H ei for x ∈ dom(A

r
2 ).

It also holds that

Ḣr := dom(A
r
2 ) =

{
x ∈ H : ||x||2r :=

∞∑
i=1

λri 〈x, ei〉
2
H

}

are separable Hilbert spaces when equipped with the inner product

〈·, ·〉r :=
〈
A
r
2 ·, A

r
2 ·
〉
H
.

The operator −A generates a C0-semigroup of contractions, which is explicitly expressed
in the next corollary that finishes this section.

Corollary 2.9. [13, Lemma 3.21] Let A : dom(A) ⊆ H → H be a densely defined,
linear, self-adjoint and positive definite operator with compact inverse A−1. Then, the
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family (E(t))t∈[0,∞) with E(t) ∈ L(H) defined by

E(t)h :=
∞∑
i=1

e−λit 〈h, ei〉H ei

is a C0-semigroup of contractions, generated by −A.

2.3 Random variables

In this section, we generalize some common notions from real-valued probability theory
to our setting. The solution X to the SPDE considered later will have to take values in a
general Hilbert space, therefore the common definition of a real valued random variable
must be extended to a more general notion.

Definition 2.10. Let (B, || · ||B) be any Banach space. An F − B(B) measurable
function X : Ω→ B is called a B-valued random variable. If B = R then we refer to it
as a random variable.

Definition 2.11. Let (Ei)i∈I be a (possibly uncountable) family of sub-σ-algebras of
F . These are said to be independent if for any finite subset J ⊆ I and every family
(Ej)j∈J with Ej ∈ Ej we have

P

⋂
j∈J

Ej

 =
∏
j∈J

P (Ej).

A family of B-valued random variables (Xi)i∈I is called independent if the corresponding
family of generated σ-algebras (σ(Xi))i∈I is independent.

To define the expectation of X, one needs the so called Bochner integral, an exten-
sion of the Lebesgue integral to functions taking values in any Banach space. For the
construction of it, we refer to [8, pages 156 and 179].

Definition 2.12. The expectation of a B-valued random variable X is given by

E [X] :=

∫
ω∈Ω

X(ω)dP (ω)

whenever E [||X||B] <∞ .
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We note one important property of the Bochner integral:

||E [X] ||B ≤ E [||X||B] . (4)

One can go on and define a covariance that takes values in Hilbert Spaces, but for
our purposes we will incorporate this in the definition of a Gaussian H-valued random
variable. There are several equivalent definitions of Gaussian law in Hilbert spaces, here
we follow that of [16].

Definition 2.13. A probability measure µ on (H,B(H)) is called Gaussian if for
each h ∈ H, the bounded linear mapping 〈·, h〉H has a Gaussian law, i.e. there exist real
numbers mh and σh ≥ 0 such that if σh > 0

µ({u ∈ H : 〈u, h〉H ∈ D)}) =
1√

2πσ2
h

∫
A
e
− (x−mh)

2

2σ2
h dx

for all D ∈ B(R), and if σh = 0,

µ({u ∈ H : 〈u, h〉H ∈ D)}) = 1D(mh)

for all D ∈ B(R), where 1D is the indicator function of D.

Theorem 2.14. [16, Theorem 2.1.2] A probability measure µ on (H,B(H)) is Gaus-
sian if and only if its characteristic function

µ̂(h) :=

∫
H
ei〈u,h〉Hµ(du) = ei〈h,m〉H−

1
2
〈Qh,h〉H (5)

for all h ∈ H where m ∈ H and Q ∈ L(H) is of trace class.

Conversely, we have:

Theorem 2.15. [16, Corollary 2.1.7] Let Q ∈ L(H) be of trace class and let m ∈ H.
Then there exists a Gaussian measure µ fulfilling (5).

Definition 2.16. Let X be an H-valued random variable. X is called a Gaussian H-
valued random variable if its image measure P ◦X−1 is a Gaussian probability measure.
In this case, Q in Theorem 2.14 is called the covariance (operator) of X, and we write
X ∼ N(m,Q).

In connection to this, we also mention that by [16, Proposition 2.16]

E [X] = m.
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2.4 Q-Wiener Processes

In this section, we define an infinite-dimensional analogue to the Wiener process. First
we need to introduce stochastic processes.

Definition 2.17. Given a Banach space B, a family of B-valued random variables
(X(t))t∈[0,T ] is called a B-valued stochastic process. It is said to be adapted if X(t) is
Ft-measurable for all t ∈ [0, T ].

We can equally well think of a stochastic process as a function X : [0, T ]× Ω→ B and
we will mostly use this notation. The next definition follows the lines of [16].

Definition 2.18. Let Q be a trace class operator Q ∈ L(H). A stochastic process
W : [0, T ]× Ω→ H on (Ω,F , (Ft)t∈[0,T ], P ) is called a (standard) Q-Wiener process if

� W (0) = 0,

� W has P -a.s. continuous trajectories,

� W has independent increments and

� for all 0 ≤ s < t ≤ T the increment W (t)−W (s) ∼ N(0, (t− s)Q).

If also the following holds,

� W is adapted to (Ft)t∈[0,T ] and

� W (t)−W (s) is independent of Fs for all 0 ≤ s < t ≤ T ,

then W is called a Q-Wiener process with respect to the filtration (Ft)t∈[0,T ].

When H = R we allow for Q = I. In this case we call W a real-valued (standard)
Wiener process or a Brownian motion and we denote it by β. Using this process, we
mention another representation of the general Q-Wiener process. This is called the
Karhunen–Loève expansion.

Theorem 2.19. [13, Theorem 10.7] Let Q be as above with eigenvectors (ei)i∈N and
eigenvalues (µi)i∈N. Then W : [0, T ]× Ω→ H is a Q-Wiener process if and only if

W (t) =
∞∑
i=1

µ
1
2
i βi(t)ej , P -a.s.

where (βj)
∞
j=1 is a sequence of independent identically distributed real-valued Wiener

processes on (Ω,F , (Ft)t∈[0,T ], P ). The series converges in L2(Ω, H) and even in
L2(Ω, C([0, T ], H)).
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2.5 Stochastic integrals

Before defining the stochastic Itô integral which takes values in Hilbert spaces, it is
useful to, as in [11], introduce the separable Hilbert space H0 := Q

1
2 (H) together with

the inner product

〈·, ·〉H0
:=
〈
Q−

1
2 ·, Q−

1
2 ·
〉
H

(6)

If Q is not one-to-one, Q−
1
2 denotes the pseudoinverse of Q

1
2 .

Now note that if H is a Hilbert space, then so is L(H) when equipped with the operator
norm [14, Proposition 2.3]. This allows us to consider Bochner integrals with respect
to L(H)−valued stochastic processes. We denote the H-valued stochastic Itô integral of
a stochastic process Φ : [0, T ] × Ω → L(H) with respect to the Q-Wiener process W
as ∫ T

0
Φ(s)dW (s).

As stated in [11, page 17], this is a well defined H-valued random variable if Φ is
integrable, that is, if,

Φ ∈ L2([0, T ]× Ω,PT ,dt⊗ P ;LHS(H0, H))

where PT is the σ-algebra of predictable stochastic processes,

PT := σ({(s, t]× Fs|0 ≤ s < t ≤ T, Fs ∈ Fs} ∩ {{0} × F0|F0 ∈ F0}).

We will not go into the construction of it here but refer to [16] for this. We will, however,
mention two key properties of it, from [11, Chapter 2.2].

Theorem 2.20 (Itô isometry). For all integrable stochastic processes Φ : [0, T ]×Ω→
L(H) the following holds:

E

[∣∣∣∣∣∣∣∣∫ t

0
Φ(s) dW (s)

∣∣∣∣∣∣∣∣2
]

=

∫ t

0
||Φ(s)||2LHS(H0;H) ds

for t ∈ [0, T ].
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Theorem 2.21 (Burkholder-Davis-Gundy-type inequality). For any p ∈ [2,∞),
0 ≤ t1 < t2 ≤ T and for any predictable process Φ : [0, T ] × Ω → LHS(H0;H)
satisfying

E

[(∫ t2

t1

||Φ(s)||2LHS(H0;H)ds

) p
2

]
<∞,

there exists a constant C > 0 depending only on p such that

E
[∣∣∣∣∣∣∣∣∫ t2

t1

Φ(s)dW (s)

∣∣∣∣∣∣∣∣p ] ≤ CE
[(∫ t2

t1

||Φ(s)||2LHS(H0;H)ds

) p
2

]
.

We end by proving the following upper bound on ||Φ(s)||LHS(H0;H).

Lemma 2.22. Let Φ : [0, T ]× Ω→ L(H) be an integrable stochastic process. Then

||Φ(s)||LHS(H0;H) ≤ tr(Q)
1
2 ||Φ(s)||L(H) (7)

Proof. By (6), we have that

||Φ(s)||2LHS(H0;H) = ||Φ(s)Q
1
2 ||2LHS(H) =

∑
i∈N
||Φ(s)Q

1
2 ei||2H

Since Φ(s) ∈ L(H), ∑
i∈N
||Φ(s)Q

1
2 ei||2H ≤ ||Φ(s)||2L(H)

∑
i∈N
||Q

1
2 ei||2H

= ||Φ(s)||2L(H) tr(Q)

where the equality follows by equation (3).

12



3 Semilinear stochastic partial differential equations

In this chapter, we introduce the stochastic partial differential equation treated in the
remainder of this thesis. We consider a simplified version of the setting used in [11],
which will be outlined in the next section.

3.1 Setting and assumptions

From now on, we consider the separable Hilbert space H = L2([0, 1];R). For the prob-
ability space, the same assumptions as in Chapter 2 apply.

We consider the equation

dX(t) + [AX(t) + F (X(t)]dt = G(X(t))dW (t), for 0 ≤ t ≤ T
X(0) = X0.

(8)

This is to be understood as the integral equation

X(t) = X0 −
∫ t

0
[AX(s) + F (X(s))]ds+

∫ t

0
G(X(S))dW (s),

where the left integral is of Bochner type while the second is an Itô integral, so that
X(t) is H-valued for all t ∈ [0, T ]. We will return to what we mean by a solution to (8)
in Section 3.2, but first we will describe our assumptions on the terms of the equation.
We refer to r below as the regularity parameter.

Assumption 3.1.

(i) W is a Q-Wiener process adapted to the filtration (Ft)t∈[0,T ]. Given the ONB

(ei)i∈N with ei =
√

2 sin(iπx), the trace class operator Q on H is defined through
the relation Qei = µiei where µi = Cµi

−η for some constants Cµ > 0 and η > 1.

(ii) The linear operator −A : dom(A) → H is the Laplacian with zero boundary
conditions.

(iii) Only the homogenous case is considered, i.e. F = 0.

(iv) Fix a parameter r ∈ [0, 1). The mapping G : H → LHS(H0;H) satisfies for a
constant C > 0

(a) G(h) ∈ LHS(H0, Ḣ
r) for all h ∈ Ḣr,
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(b) ||A
r
2G(h)||LHS(H0;H) ≤ C(1 + ||h||r) for all h ∈ Ḣr ,

(c) ||G(h1)−G(h2)||LHS(H0;H) ≤ C||h1 − h2||H for all h1, h2 ∈ H and

(d) ||G(h)ei||H ≤ C||h||H for all basis vectors ei and h ∈ H.

(v) For r ∈ [0, 1) we assume that X0 ∈ Ḣ1+r is the deterministic initial value of the
SPDE.

Regarding the choice of the linear operator A, we note that it is known (see e.g. [13, Ex-
ample 1.90]) that Proposition 2.8 holds for A with the eigenbasis {ei}i∈N and eigenvalues
λi = i2π2.

3.2 Strong and mild solutions

There are several notions of solutions to (8), two of which we will list here: the strong
solution and the mild solution. In general, we expect that a strong solution is also mild
but not vice versa [13, page 449] . The definition of the strong solution comes from
[6].

Definition 3.2 (Strong solution). A predictable H-valued process X : [0, T ]×Ω→ H
is called a strong solution of (8) if for all t ∈ [0, T ]:

(i) X(t) ∈ Ḣ2 PT -almost surely,

(ii) P
(∫ T

0 |X(s)|+ |AX(s)| ds <∞
)

= 1,

(iii) P
(∫ T

0 ||G(X(S))||2LHS(H0;H) ds <∞
)

= 1 and

(iv) X(t) = X0 −
∫ t

0 [AX(s) + F (X(s))]ds+
∫ t

0 G(X(S))dW (s).

Under Assumption 3.1(ii) −A is the generator of the semigroup E of Corollary 2.9. Now,
for the mild solution, we follow the definition in [11].

Definition 3.3 (Mild solution). A predictable H-valued process X : [0, T ]× Ω→ H
is called a p-fold integrable mild solution of (8) if

sup
t∈[0,T ]

||X(t)||Lp(Ω;H) <∞

and for all t ∈ [0, T ] and h ∈ H, we have that P -a.s.

X(t) = E(t)X0 −
∫ t

0
E(t− s)F (X(s))ds+

∫ t

0
E(t− s)G(X(s))dW (s). (9)
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This last definition is the one we will consider in this thesis, and in the next section, we
cite an existence and uniqueness result.

3.3 Existence and uniqueness of the mild solution

Assumption 3.1 is stronger than Assumptions 2.13 to 2.17 of [11, Chapter 2] and hence we
can use the corresponding result on existence and uniqueness of the mild solution.

Theorem 3.4. [11, Theorem 2.25] Let Assumption 3.1 hold. Then there exists a
unique (up to a modification) integrable mild solution X : [0, T ] × Ω → H to (8) such
that for every t ∈ [0, T ] and every s ∈ [0, 1) it holds that P (X(t) ∈ Ḣs) = 1 with

sup
t∈[0,T ]

||X(t)||L2(Ω;Ḣs) <∞ (10)

Furthermore, for every δ ∈ (0, 1
2) there exists a constant C > 0 such that

||X(t1)−X(t2)||L2(Ω;H) ≤ C|t1 − t2|δ (11)

for all t1, t2 ∈ [0, T ].

We also mention that due to the stronger assumptions made here, Assumption 2.19 and
2.20 of [11, Chapter 2] are also satisfied, and so the temporal regularity in Theorem 3.4
also holds for δ = 1

2 , by Theorem 2.31 of [11]. Uniqueness is understood in the sense
that if
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4 Discretization methods for SPDE

In this chapter, we show how one can discretize the solution of (8) so that it can be
simulated on a computer. From now on, we assume the conditions of Assumption 3.1
and consider approximations of the mild solution. Throughout the sections 4.1 and 4.2
we follow closely the approach of [11] but after that we leave this context and consider
how the covariance operator Q can be discretized.

4.1 Galerkin finite element methods

In this section, we briefly describe the Galerkin finite element method, which is our first
step in the discretization of (8). Here finite dimensional subspaces of H are considered,
and so we speak of spatial discretizations.

Let (Vh)h∈(0,1] be a sequence of finite dimensional subspaces such that Vh ⊂ Ḣ1 ⊂ H.
For these spaces, we follow the notation of [11] and consider two orthogonal projections:
the usual Ph : H → Vh and the Ritz projection Rh : Ḣ1 → Vh. These are defined by the
relations

〈Phx, yh〉H = 〈x, yh〉H for all x ∈ H, yh ∈ Vh
and

〈Rhx, yh〉1 = 〈x, yh〉1 for all x ∈ Ḣ1, yh ∈ Vh.

As in [11, Chapter 3.2], we make the following assumptions on these projections:

Assumption 4.1. For the given family of subspaces (Vh)h∈(0,1] and all h ∈ (0, 1] there
exists a constant C such that

(i) ||Phx||1 ≤ C||x||1 for all x ∈ Ḣ1 and

(ii) ||Rhx− x||1 ≤ Chs||x||1 for all x ∈ Ḣs with s ∈ {1, 2}.

We will consider an explicit choice of (Vh)h∈(0,1] later on. Next we introduce the discrete
version of the operator A, Ah : Vh → Vh. For each xh ∈ Vh we define Ahxh to be the
unique element of Vh such that

〈Axh, yh〉H = 〈xh, yh〉1 = 〈Ahxh, yh〉H

for all yh ∈ Vh. By using this relation with the properties of the inner product 〈·, ·〉1
one sees that Ah also is self-adjoint and positive definite on Vh. Therefore, as before, it
is the generator of an analytic semigroup of contractions which we denote by Eh(t) and
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one can show (see e.g. [11, Section 3.4]) that there exists a unique stochastic process
Xh : [0, T ]× Ω→ Vh which is the mild solution to the stochastic equation

dXh(t) +AhXh(t)dt = PhG(Xh(t))dW (t), for 0 ≤ t ≤ T
Xh(0) = PhX0.

This is called the semidiscrete approximation of the solution to (8), but we will not
consider it in detail in this thesis. The interested reader is referred to [11] for this.
Instead, we will focus on the fully discrete approximation in which we also consider a
discretization with respect to time.

4.2 The implicit Euler scheme

In this section, we mirror the approach of [11, Section 3.5] who in turn draws from
[19, Chapter 7]. We refer to these sources for more details and generalizations of our
informal introduction to the implicit (or backward) Euler–Maruyama scheme.

Let again (Vh)h∈(0,1] be a sequence of finite dimensional subspaces such that for all

h ∈ (0, 1], Vh ⊂ Ḣ1 ⊂ H. Consider the homogenous equation

du(t) +Ahu(t)dt = 0

with inital value u(0) = u0 ∈ Vh for t > 0 and some fixed h ∈ (0, 1]. One can then show
(see e.g. [19]) that the solution to this is given by the semigroup generated by −Ah,
namely Eh(t). We may approximate this equation by defining the recursion

ûj − ûj−1 + kAhûj = 0, j ∈ N

for some fixed time step k ∈ (0, 1] where ûj denotes the approximation of u(tj) with
tj := jk. A closed form of this is then given by

ûj = (I + kAh)−ju0, j ∈ N0

Now, following the notation of [11, Section 3.5] we write

Ek,h(t) := (I + kAh)−j if t ∈ [tj−1, tj) for j ∈ N

and we call this operator the rational approximation of the semigroup E(t) generated
by −A. We end this section by citing the following smoothing property of the scheme,
from [11, page 67]:

||AρhEk,h(t)xh|| ≤ Ct−ρj ||xh|| (12)

which holds for any t ∈ [tj−1, tj), ρ ∈ [0, 1] and xh ∈ Vh.

17



4.3 A fully discrete strong approximation of the SPDE

In this section, we combine the Galerkin method with the linearly implicit Euler–
Maruyama scheme and cite a convergence rate of the fully discrete approximation Xj

h

of X(tj), where X is the mild solution of (8).

For this, consider the same sequence of subspaces (Vh)h∈(0,1] as before and let T > 0 be
the fixed final time. Define a uniform timegrid with a time step k ∈ (0, 1] by tj = jk,
j = 0, 1, ..., Nk with Nkk = T . Denote the fully discrete approximation of X(tj), where

X is the mild solution of (8), by Xj
h. The recursion scheme that approximates X is

Xj
h −X

j−1
h + k(AhX

j
h) = PhG(Xj−1

h )∆W j for j = 1, ..., Nk

X0
h = PhX0

(13)

where ∆W j are the Wiener increments W (tj)−W (tj−1).

In terms of the operator Ek,h(t) one may equally well express this as

Xj
h = Ek,h(tj−1)PhX0 +

∫ tj

0
Ek,h(tj − s)PhGh(s) dW (s) (14)

where

Gh(s) :=

{
G(Xj−1

h ) if s ∈ (tj−1, tj ],

G(PhX0) if s = 0.

The following key theorem on convergence of the fully discrete approximation from [11]
holds.

Theorem 4.2. [11, Theorem 3.14] Under Assumptions 3.1 with r ∈ [0, 1) and 4.1,
for all p ∈ [2,∞) there exists a constant C independent of k, h ∈ (0, 1] such that

||Xj
h −X(tj)||Lp(Ω;H) ≤ C(h1+r + k

1
2 ). (15)

4.4 Noise approximation

An issue remaining when one wants to simulate a realisation of X(t) for some t ∈ [0, T ]
is how to simulate the Q-Wiener process W . We know that this can be expressed as
an infinite sum of Brownian motions (see Theorem 2.19, the Karhunen–Loève expan-
sion), but we cannot simulate an infinite number of Brownian motions on the computer.
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Therefore, if one wants to use this expansion, one needs to truncate it at some point
κ ∈ N. We then end up with a new Q-Wiener process:

W κ(t) =
κ∑
j=1

µ
1
2
j βj(t)ej

with the corresponding covariance operator Qκ defined by the relation

Qκej = 1{j≤κ}µjej .

In the same way as before, we have a mild solution to (8) but now with truncated noise,
and as in (14) it can be represented by

Xj
κ,h = Ek,h(tj−1)PhX0 +

∫ tj

0
Ek,h(tj − s)PhGκ,h(s) dW κ(s) (16)

where

Gκ,h(s) :=

{
G(Xj

κ,h) if s ∈ (tj−1, tj ]

G(PhX0) if s = 0.

We also introduce

W cκ(t) := W (t)−W κ(t) =
∞∑

j=κ+1

µ
1
2
j βj(t)ej (17)

which also is a Q-Wiener process with covariance operator Qcκ = Q − Qκ. It can be
seen that for the stochastic integral it holds∫ t

0
φ(s)dW (s)−

∫ t

0
φ(s)dW κ(s) =

∫ t

0
φ(s)dW cκ(s).

In the following proof, we use these notions to give an error bound for Xj
κ,h, c.f. Theo-

rem 4.2, when κ ∈ N is chosen appropriately, to reflect the decay η, of the eigenvalues
µj of Q, (see 3.1(i)). For this we take an approach that is very similar to the one found
in [2].
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Theorem 4.3. Assume that Assumption 3.1 with r ∈ [0, 1) and Assumption 4.1

hold. Assume also that κ ' h−β for some β > 0. Furthermore, if h1+r ' k
1
2 and

β(η − 1) = 2(1 + r), for all p ∈ [2,∞) it holds that

||X(tj)−Xj
κ,h||Lp(Ω;H) ≤ Ch1+r.

for some constant C > 0.

Proof. Throughout this proof, we will use C to refer to any constant. First we split the
error, by using Lemma A.2:

||X(tj)−Xj
κ,h||

2
Lp(Ω;H) ≤ 2(||X(tj)−Xj

h||
2
Lp(Ω;H) + ||Xj

h −X
j
κ,h||

2
Lp(Ω;H))

=: 2(I + II)

For the first term, it holds that

I ≤ C(h1+r + k
1
2 )2 ' Ch2(1+r) (18)

by Theorem 4.2. By Lemma A.2 and the representation of the fully discrete approxi-
mation (14) and its truncated version (16) we have for II:∣∣∣∣∣∣∣∣∫ tj

0
Ek,h(tj − s)PhGh(s) dW (s)−

∫ tj

0
Ek,h(tj − s)PhGκ,h(s) dW k(s)

∣∣∣∣∣∣∣∣2
Lp(Ω;H)

≤ 2

∣∣∣∣∣∣∣∣∫ tj

0
Ek,h(tj − s)Ph(Gh(s)−Gκ,h(s)) dW (s)

∣∣∣∣∣∣∣∣2
Lp(Ω;H)

+ 2
∣∣∣∣∣∣∫ tj

0
Ek,h(tj − s)PhGκ,h(s) dW (s)

−
∫ tj

0
Ek,h(tj − s)PhGκ,h(s) dW κ(s)

∣∣∣∣∣∣2
Lp(Ω;H)

=: 2IIa + 2IIb
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Now, by Theorem 2.21:

IIa = E
[∣∣∣∣∣∣∣∣∫ tj

0
Ek,h(tj − s)Ph(Gh(s)−Gκ,h(s)) dW (s)

∣∣∣∣∣∣∣∣p
H

] 2
p

≤ C E

[(∫ tj

0
||Ek,h(tj − s)Ph(Gh(s)−Gκ,h(s))||2LHS(H0;H) ds

) p
2

] 2
p

= C E

(∫ tj

0

∑
i∈N
||Ek,h(tj − s)Ph(Gh(s)−Gκ,h(s))Qei||2H ds

) p
2

 2
p

≤ C E

(∫ tj

0

∑
i∈N
||(Gh(s)−Gκ,h(s))Qei||2H ds

) p
2

 2
p

= C E

[(∫ tj

0
||(Gh(s)−Gκ,h(s))||2LHS(H0;H) ds

) p
2

] 2
p

≤ CE

(k j∑
n=1

||Xn−1
h −Xn−1

κ,h ||
2
H

) p
2


2
p

≤ Ck
j∑

n=1

||(||Xn−1
h −Xn−1

κ,h ||
2
H)||

L
p
2 (Ω;R)

= Ck

j∑
n=1

||Xn−1
h −Xn−1

κ,h ||
2
Lp(Ω;R),

where the second inequality follows from the smoothing result (12) with ρ = 0, while
the third follows from Assumption 3.1(iv)(c) and the fourth is the triangle inequality.
For the other term, by the discussion preceeding this theorem and the representation
(2) of (Qcκ)

1
2 :

IIb =

∣∣∣∣∣∣∣∣∫ tj

0
Ek,h(tj − s)PhGκ,h(s) dW cκ(s)

∣∣∣∣∣∣∣∣2
Lp(Ω;H)

≤ C E

[(∫ tj

0
||Ek,h(tj − s)PhGκ,h(s)||2

LHS((Qcκ)
1
2 [H];H)

ds

) p
2

] 2
p

= C E

(∫ tj

0

∞∑
i=κ+1

µi||Ek,h(tj − s)PhGκ,h(s)ei||2H ds

) p
2

 2
p
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≤ C E

(∫ tj

0

∞∑
i=κ+1

µi||Gκ,h(s)ei||2H ds

) p
2

 2
p

where we have used Theorem 2.21 and (12) with ρ = 0 again. Now we note that, using
Assumption 3.1(i) we have:

∞∑
i=κ+1

µi = Cµ

∞∑
i=1

(i+ κ)−η ≤ Cµ
∫ ∞

0
(x+ κ)−η dx ≤ Chβ(η−1) (19)

where we have used the fact that κ ' h−β. We now use this observation along with
the fact that due to Assumption 3.1(iv)(d) we have ||Gκ,h(s)ei||H ≤ C||Xj

κ,h||H if
s ∈ (tj−1, tj ] to see that

E

(∫ tj

0

∞∑
i=κ+1

µi||Gκ,h(s)ei||2H ds

) p
2

 2
p

≤ E

((

∞∑
i=κ+1

µi)k

j∑
n=1

||Xn−1
κ,h ||

2
H ds

) p
2


2
p

≤ (
∞∑

i=κ+1

µi)k

j∑
n=1

||Xn−1
κ,h ||

2
Lp(Ω;H) ≤ Ch

β(η−1)k

j∑
n=1

||Xn−1
κ,h ||

2
Lp(Ω;H)

≤ Chβ(η−1)k

j∑
n=1

(
||Xn−1

κ,h −X
n−1
h ||2Lp(Ω;H)

+ ||Xn−1
h −X(tkn−1)||2Lp(Ω;H) + ||X(tkn−1)||2Lp(Ω;H)

)
≤ Chβ(η−1)(k

j∑
n=1

||Xn−1
κ,h −X

n−1
h ||2Lp(Ω;H) + (h1+r + k

1
2 )2 + 1)

where the second inequality is the triangle inequality for L
p
2 (Ω;H), the third follows

from (19) the fourth follows from Lemma A.2 and the fifth from Theorem 4.2 and (10),
noting that jk ≤ T .

Using the bounds on IIa and IIb, we get

II ≤ Ck(1 + hβ(η−1))

j∑
n=1

||Xn−1
κ,h −X

n−1
h ||2Lp(Ω;H) + Chβ(η−1)((h1+r + k

1
2 )2 + 1).
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Now we can use the discrete Grönwall inequality, Theorem A.1, with an = ||Xn
κ,h −

Xn
h ||2Lp(Ω;H) to get:

II ≤ Chβ(η−1)((h1+r + k
1
2 )2 + 1)(1 + Ck(1 + hβ(η−1)))j

≤ Chβ(η−1)((h1+r + k
1
2 )2 + 1)eCkj(1+hβ(η−1))

≤ Chβ(η−1)((h1+r + k
1
2 )2 + 1)e2CT

= Chβ(η−1)((h1+r + k
1
2 )2 + 1) ≤ Ch2(1+r),

where we have used that hα ≤ 1 for α > 0 and also the assumption β(η − 1) = 2(1 + r).
Taken together with (18), we have the result.
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5 Monte Carlo methods

In this chapter, we will describe how one can estimate quantities involving X(t). We
start by defining the two types of errors we will analyse. Throughout this chapter, we
use the notation Xj

κ,h to refer to the truncated fully discrete approximation defined
in (16).

5.1 Strong and weak errors

We refer to the error ||X(tj) −Xj
κ,h||L2(Ω;H) of Theorem 4.3 as the strong error of the

truncated fully discrete approximation Xj
κ,h.

Often, one may not be interested in the paths of the solution to our SPDE (8) but rather
the average value of some functional of its value at the final time T . Therefore, one is
then interested in the weak error

|E[φ(X(T )]− E[φ(XNk
h,κ)]| (20)

where φ : H → R can be any sufficiently smooth test function.

In our case, we set Φ := || · ||2 and refer to the expression

|E[||X(T )||2H ]− E[||XNk
h,κ||

2
H ]| (21)

as the weak error of our truncated fully discrete approximation of X(T ).

Before we continue, we need to briefly mention the definition of a Fréchet differentiable
operator.

Definition 5.1. Let B1 and B2 be Banach spaces and let U ⊆ B1 be an open set.
A function φ : U → B1 is called Fréchet differentiable at x ∈ U if there exists φ′(x) ∈
L(B1;B2) such that

lim
h→0

||φ(x+ h)− φ(x)− φ′(x)h||B2

||h||B1

= 0.

Then φ′(x) is referred to as the Fréchet derivative of φ at x ∈ U .

The weak error is weaker than the strong error in the sense that (as is mentioned in e.g.
[11, page 3]):

|E[φ(X(T )]− E[φ(XNk
h,κ)]| ≤ C||X(T )−XNk

κ,h||L2(Ω;H). (22)
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This holds true when φ is Fréchet differentiable and

||φ′(x)||L(H) ≤ C(1 + ||x||p−1
H ).

Our choice of φ indeed fulfils this condition for all p ≥ 2, as:

||φ′(x)||L(H) = || 〈·, x〉H ||L(H) ≤ ||x||H

by the Cauchy–Schwarz inequality. Therefore, every strongly convergent approximation
is also weakly convergent.

5.2 The Monte Carlo method

We first briefly review what the (ordinary) Monte Carlo method entails. Let (Ŷi)i∈N be
a sequence of independent, identically distributed (i.i.d.) U -valued random variables,
where U may be any Hilbert space. Then, for large enough N ∈ N, one could as in the
real case expect to have

EN (Y ) :=
1

N

N∑
i=1

Ŷi ≈ E [Y ] .

That this is true is made clear by the following. We cite a simple form of the law of
large numbers that holds true in general Hilbert spaces.

Lemma 5.2. [4, Lemma 4.1] For N ∈ N and for Y ∈ L2(Ω;U) it holds that

||E [Y ]− EN [Y ]||L2(Ω;U) ≤
1√
N
||Y ||L2(Ω;U).

Using this lemma, we can estimate the additional error when estimating the strong
(L2-)error.

Proposition 5.3. Let the assumptions of Theorem 4.3 be fulfilled. Then, the Monte
Carlo estimator with N ∈ N of ||X(tj)−Xj

κ,h||L2(Ω;H) satisfies∣∣∣∣∣∣∣∣EN [||X(tj)−Xj
κ,h||

2
H

] 1
2 − ||X(tj)−Xj

κ,h||L2(Ω;H)

∣∣∣∣∣∣∣∣
L2(Ω;R)

≤ 1

N
1
4

||X(tj)−Xj
κ,h||L4(Ω;H).
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Proof. We have that∣∣∣∣∣∣∣∣EN [||X(tj)−Xj
κ,h||

2
H

] 1
2 − ||X(tj)−Xj

κ,h||L2(Ω;H)

∣∣∣∣∣∣∣∣2
L2(Ω;R)

=

∣∣∣∣∣∣∣∣EN [||X(tj)−Xj
κ,h||

2
H

] 1
2 − E

[
||X(tj)−Xj

κ,h||
2
H

] 1
2

∣∣∣∣∣∣∣∣2
L2(Ω;R)

≤
∣∣∣∣∣∣∣∣∣∣∣EN [||X(tj)−Xj

κ,h||
2
H

]
− E

[
||X(tj)−Xj

κ,h||
2
H

]∣∣∣ 12 ∣∣∣∣∣∣∣∣2
L2(Ω;R)

=
∣∣∣∣∣∣EN [||X(tj)−Xj

κ,h||
2
H

]
− E

[
||X(tj)−Xj

κ,h||
2
H

]∣∣∣∣∣∣
L1(Ω;R)

≤
∣∣∣∣∣∣EN [||X(tj)−Xj

κ,h||
2
H

]
− E

[
||X(tj)−Xj

κ,h||
2
H

]∣∣∣∣∣∣
L2(Ω;R)

≤ 1√
N

E
[
||X(tj)−Xj

κ,h||
4
H

] 1
2

=
1√
N
||X(tj)−Xj

κ,h||
2
L4(Ω;R),

where the first inequality follows from the fact that |
√
a −
√
b| ≤

√
|a− b| for a, b ≥ 0.

The second inequality is the Hölder inequality while the third follows from Lemma 5.2.

When it comes to the weak error, there are (at least) two ways of approximating it with
a Monte Carlo method, namely∣∣∣E [||X(T )||2H

]
− EN

[
||XNk

h,κ||
2
H

]∣∣∣ (23)

and ∣∣∣EN [||X(T )||2H − ||X
Nk
h,κ||

2
H

]∣∣∣ . (24)

In practice, neither E[||X(T )||2H ] nor ||X(T )||2H will be known exactly, so one has to
estimate them. However, there is an important distinction. The quantity E[||X(T )||2H ]

is a real number that can be estimated independently of EN

[
||XNk

h,κ||
2
H

]
while ||X(T )||2H

is a real-valued random variable that must be simulated using the same realisation of
the Q-Wiener process as ||XNk

h,κ||
2
H . We will return to this in more detail in later sections.

For now, we prove the following result, analogously to Proposition 5.3.
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Proposition 5.4. Let the assumptions of Theorem 4.3 be fulfilled. Then, the Monte
Carlo estimators (23) and (24) with N ∈ N of |E[||X(T )||2H ]− E[||XNk

h,κ||
2
H ]| satisfy:∣∣∣∣∣∣|E [||X(T )||2H

]
− EN

[
||XNk

h,κ||
2
H

]
| − |E

[
||X(T )||2H − ||X

Nk
h,κ||

2
H

]
|
∣∣∣∣∣∣
L2(Ω;R)

≤ C√
N

(25)

and ∣∣∣∣∣∣|EN [||X(T )||2H − ||X
Nk
h,κ||

2
H

]
| − |E

[
||X(T )||2H − ||X

Nk
h,κ||

2
H

]
|
∣∣∣∣∣∣
L2(Ω;R)

≤ C√
N

∣∣∣∣∣∣X(T )−XNk
κ,h

∣∣∣∣∣∣
L2(Ω;H)

.
(26)

Proof. By the reverse triangle inequality, the left hand side of (25) is bounded by

||E
[
||XNk

h,κ||
2
H

]
− EN

[
||XNk

h,κ||
2
H

]
||L2(Ω;R). The inequality now follows from Lemma 5.2

and the fact that ||XNk
h,κ||L2(Ω;H) ≤ C < ∞ for some C > 0, which in turn is a conse-

quence of Theorem 4.3 and (10).

Next, we again use the reverse triangle inequality to see that the left hand side of (26)
is bounded by∣∣∣∣∣∣EN [||X(T )||2H − ||X

Nk
h,κ||

2
H

]
− E

[
||X(T )||2H − ||X

Nk
h,κ||

2
H

]∣∣∣∣∣∣
L2(Ω;R)

≤ 1√
N

∣∣∣∣∣∣||X(T )||2H − ||X
Nk
h,κ||

2
H

∣∣∣∣∣∣
L2(Ω;R)

=
1√
N

∣∣∣∣∣∣〈X(T ) +XNk
h,κ, X(T )−XNk

h,κ

〉
H

∣∣∣∣∣∣
L2(Ω;R)

≤ C√
N

∣∣∣∣∣∣X(T )−XNk
h,κ

∣∣∣∣∣∣
L2(Ω;H)

Here, the first inequality follows from Lemma 5.2, while the second follows from the
Cauchy–Schwarz inequality along with the fact that ||XNk

h,κ||L2(Ω;H) ≤ C < ∞ and
||X(T )||L2(Ω;H) ≤ C <∞ for some C > 0.
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5.3 The Multilevel Monte Carlo method

One problem with the Monte Carlo estimator of the strong and weak errors described
in the previous section is the large number of samples needed for a good estimate. This
is not a problem when the approximation in time and space is rough, since it is compu-
tationally relatively cheap. However, this estimator has a high bias. A compromise is
not to solve all samples on the same discretization level - we want to generate a large
number of samples on a coarse grid and fewer samples on a fine grid and then add them
together to get an estimator that has both low variance and bias and is computationally
cheaper than the estimator EN (Y ), which we from now on will refer to as the singlelevel
Monte Carlo estimator. In this section, we introduce the multilevel Monte Carlo in a
general framework, similar to that of [3].

Assume that (Y`)`∈N0 is a sequence of approximations of the U -valued random variable
Y , where we have denoted the set of non-negative integers by N0 as opposed by the set
of positive integers which we denote by N. For any L ∈ N it holds that

YL = Y0 +

L∑
`=1

(Y` − Y`−1)

and by the linearity of the expectation operator

E [YL] = E [Y0] +

L∑
l=1

E [(Y` − Y`−1)] . (27)

This motivates the multilevel Monte Carlo estimator

EL[YL] := EN0 [Y0] +
L∑
`=1

EN`(Y` − Y`−1)

where EN`(Y` − Y`−1) is the singlelevel Monte Carlo estimator with a number of inde-
pendent samples N` depending on the level `.

We prove the following slightly modified version of [3, Lemma 2.2].

Lemma 5.5. Let (Y`)l∈N0 be a sequence of approximations to Y ∈ L2(Ω,R) and
assume further that Y` ∈ L2(Ω;R) for all ` ∈ N0. Then it holds that

||E [Y ]− EL[YL]||L2(Ω,R)

≤ |E [Y − YL] |+

(
1

N0
||Y0||2L2(Ω;R) +

L∑
l=1

1

N`
||Y` − Y`−1||2L2(Ω;R)

) 1
2
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Proof. By the triangle inequality

||E [Y ]− EL[Y ]||L2(Ω,R) ≤ ||E [Y ]− E [YL] ||L2(Ω,R) + ||E [YL]− EL[YL]||L2(Ω,R)

= |E [Y − YL] |+ ||E [YL]− EL[YL]||L2(Ω,R).

For the second term, we have using the telescoping sum at the right hand side of (27),

||E [YL]− EL[YL]||2L2(Ω,R)

= ||E [Y0]− EN0 [Y0] +
L∑
l=1

(E [Y` − Y`−1]− EN` [Y` − Y`−1])||2L2(Ω,R)

= ||E [Y0]− EN0 [Y0]||2L2(Ω,R) +

L∑
l=1

||(E [Y` − Y`−1]− EN` [Y` − Y`−1])||2L2(Ω,R),

where the last equality follows from the linearity of the ||·||2L2(Ω;R)-operator for real-valued
independent zero-mean random variables. The result now follows from Lemma 5.2.

We now make an explicit application of this multilevel Monte Carlo estimator. Recalling
the notation and setting of Theorem 4.3, we set h` = h02−` for ` ∈ N0 with some real

h0 > 0. Let X̂` := X
Nk`
κ`,h`

where k` = h2
` and κ` = h

2
η−1

` . Then we get a series of

H-valued random variables such that X̂` ∈ L2(Ω, H), and by Theorem 4.3, for all p ≥ 2
there exists a constant C > 0 independent of h`, κ` and k` such that:

||X̂` −X(T )||L2(Ω;H) ≤ Ch` = Ch02−`. (28)

We now apply Lemma 5.5 to this sequence of H-valued random variables.

Proposition 5.6. Let X̂` := X
Nk`
κ`,h`

where for some real h0 > 0, h` = h02−`, k` = h2
`

and κ` = h
2

η−1

` . Let δ > 0 and for ` ≤ L with L, ` ∈ N0 let N` of the multilevel estimator

EL fulfil N` ' h
2(1−α)
0 `1+δ22(αL−`) for ` ≥ 1 and N0 ' h−2α

0 22αL. Assuming that there
exists constants C1, α > 0 such that for all ` ∈ N0 the weak error satisfies

|E
[
||X(T )||2H − ||X̂`||2H

]
| ≤ C1h

α
0 2−α`,

then there exists a constant C2 not depending on L such that

||E
[
||X(T )||2H

]
− EL[||X̂L||2H ]||L2(Ω,R) ≤ C2h

α
0 2−αL.
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Proof. By Lemma 5.5 we have

||E
[
||X(T )||2H

]
− EL[||X̂L||2H ]||L2(Ω,R)

≤ |E
[
||X(T )||2H − ||X̂L||2H

]
|

+ C

(
1

N0
||X̂0||4L4(Ω;R) +

L∑
l=1

1

N`

∣∣∣∣∣∣||X̂`||2H − ||X̂`−1||2H
∣∣∣∣∣∣2
L2(Ω;R)

) 1
2

.

Furthermore,∣∣∣∣∣∣||X̂`||2H − ||X̂`−1||2H
∣∣∣∣∣∣2
L2(Ω;R)

=
∣∣∣∣∣∣〈X̂` + X̂`−1, X̂` − X̂`−1

〉
H

∣∣∣∣∣∣2
L2(Ω;R)

≤ C
∣∣∣∣∣∣X̂` − X̂`−1

∣∣∣∣∣∣2
L2(Ω;H)

≤ 2C

(∣∣∣∣∣∣X(T )− X̂`

∣∣∣∣∣∣2
L2(Ω;H)

+
∣∣∣∣∣∣X(T )− X̂`−1

∣∣∣∣∣∣2
L2(Ω;H)

)
≤ Ch2

0(2−2` + 2−2(`−1)) = Ch2
0(2−2` + 4 · 2−2`) ≤ Ch2

02−2`,

where the first inequality follows from the Cauchy–Schwarz inequality and the fact that
the truncated fully approximations are bounded (c.f. the proof of Proposition 5.4). The
second inequality is Lemma A.2 while the third is the convergence rate of the strong
error, as outlined above. Therefore, using the fact that the truncated fully discrete
approximations are bounded once again:

1

N0
||X̂0||4L4(Ω;R) +

L∑
`=1

1

N`

∣∣∣∣∣∣||X̂`||2H − ||X̂`−1||2H
∣∣∣∣∣∣2
L2(Ω;R)

≤ C

(
1

N0
+

L∑
`=1

1

N`
h2

02−2`

)
≤ Ch2α

0

(
2−2αL + 2−2αL

L∑
`=1

`−(1+δ)

)
≤ Ch2α

0 (1 + ζ(1 + δ))2−2αL ≤ Ch2α
0 2−2αL,

where ζ denotes the Riemann zeta function. Summing up, using the assumption on the
weak convergence, we get our result

||E
[
||X(T )||2H

]
− EL[||X̂L||2H ]||L2(Ω,R)

≤ C(hα0 2−αL + (h2α
0 2−2αL)

1
2 ) ≤ Chα0 2−αL.

We remark that the assumption on the weak convergence rate of Proposition 5.6 holds
true at least for α = 1 since the weak error is bounded by the strong error.
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6 Simulations

In this chapter, some numerical experiments in connection to the results of the previous
chapters will be described. We will focus on the simulation of the strong and weak
approximation errors.

However, we start by defining two noise operators (the term G in (8)), G1 and G2,
which, we recall, are functions on H = L2([0, 1];R) taking values in LHS(H0;H).

6.1 Geometric Brownian motion in infinite dimensions

The first operator G1 is taken from [11, Section 6.4]. For h ∈ H and h0 ∈ H0 it is
defined by

G1(h)h0 :=

∞∑
j=1

〈h, ej〉H 〈h0, ej〉H ej .

We have to check the conditions of Assumption 3.1(iv) to see that they hold. To see
that for all h ∈ H, G1(h) ∈ LHS(H0; Ḣr), note that

||G1(h)||LHS(H0;Ḣr) = ||A
r
2G1(h)||LHS(H0;H) ≤ tr(Q)

1
2 ||A

r
2G1(h)||L(H)

by Lemma 2.22 and that by Lemma 2.3

||A
r
2G1(h)||2L(H) ≤ ||A

r
2G1(h)||2LHS(H) =

∞∑
i=1

||A
r
2 〈h, ei〉H ei||

2
H

=
∞∑
i=1

||A
r
2 〈h, ei〉H ei||

2
H =

∞∑
i=1

||λ
r
2
i 〈h, ei〉H ei||

2
H

=
∞∑
i=1

λri 〈h, ei〉
2
H = ||h||2r

using Parseval’s identity and Proposition 2.8. Therefore for all r ≥ 0 we have

||G1(h)||LHS(H0;Ḣr) ≤ tr(Q)||h||r,

which shows the first two assumptions of Assumption 3.1(iv) - the third also follows
from this since for h1, h2 ∈ H:

||G(h1)−G(h2)||LHS(H0;H) = ||G(h1 − h2)||LHS(H0;H)

≤ tr(Q)||h1 − h2||H .
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Finally, the fourth assumption follows from the fact that the ONB of H (see Assump-
tion 3.1(i)) is uniformly bounded.

Now, this choice of G admits an analytical solution of (8), as is shown in [11, Section
6.4] - for t ∈ [0, T ] we get

X(t) =

∞∑
i=1

〈X0, ei〉H exp

(
−(λi +

µi
2

)t+ µ
1
2
i βi(t)

)
ei. (29)

So on each basis function of H, the process follows a geometric Brownian motion, which
is the reason for the name of this section and this process.

Since βi(T ) ∼ N(0, T ), it is easy to show that E
[
exp

(
2µ

1
2
i βi(T )

)]
= exp (2µiT ) and

so by Parseval’s identity we have

E
[
||X(T )||2H

]
=

∞∑
i=1

〈X0, ei〉2H exp (−(2λi + µi)T ) . (30)

6.2 The heat equation with multiplicative Nemytskii-type noise

The next operator G2 is analysed in detail in [10]. For this, we let γ : R → R be a
Lipschitz continuous function and we then define G2 : H → LHS(H0;H) for h ∈ H,
h0 ∈ H0 and x ∈ [0, 1] by

(G2(h)h0)[x] := γ(h(x))h0(x).

As it is noted in [11, Example 2.23], the analysis of [10, Section 4] shows that G2 is
globally Lipschitz and that there furthermore exists a constant C > 0 such that for
h ∈ H

||G2(h)||LHS(H0;H) ≤ C tr(Q) (1 + ||h||H)

and under the additional assumption

∞∑
i=1

µi sup
x∈[0,1]

|e′i(x)|2 <∞ (31)

there exists a constant C > 0 such that

||A
r
2G(h)||LHS(H0;H) ≤ C(1 + ||h||r)
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for all r ∈ [0, 1
2) and h ∈ Ḣr. Since e′i(x) =

√
2iπ cos(iπx), (31) holds if η > 3. This

shows the first three assumptions of Assumption 3.1(iv) for any r ∈ [0, 1
2) while the last

one again follows from the uniform bound of the ONB of H. In the remainder of the
thesis we take γ(x) to be sin(x).

6.3 Simulation setting

In the next few sections, we will use the single level Monte Carlo method to simulate
both strong and weak error rates and use the multilevel Monte Carlo method to simulate
weak error rates of the equation (8). The computations will be done in MATLAB�, in
part on a desktop computer and in part on a computer cluster.

We now consider equidistant partitions in space on the domain [0, 1] with h = 1
Nh

,
xj := jh, j = 0, 1, 2, ..., Nh. For each such partition we let Vh be given by the set of
all continuous functions on [0, 1] that are piecewise linear on the intervals [xj , xj+1] for
j = 0, 1, 2, ...Nh−1 and zero at the boundary of the domain. From [11, Example 3.6] we
see that this choice of Vh fulfils Assumption 4.1. The sequence of hat functions (Φj)

Nh−1
j=1

defined by their nodal values

Φj(xi) =

{
1, if i = j,

0, if i 6= j

forms a basis for Vh.

We will compute the numerical approximations XNk
κ,h by recursively solving the numerical

equation

Xj
κ,h −X

j−1
κ,h + k(AhX

j
κ,h) = Ghi (Xj−1

κ,h )∆W κ,j for j = 1, ..., Nk

X0
κ,h = IhX0.

(32)

where ∆W κ,j are the Wiener increments W κ(tj) − W κ(tj−1) and the interpolation
operator Ih : H → Vh is defined by

Ihf(x) =

Nh−1∑
j=1

f(xj)Φj(x)

and for Ghi : Vh → LHS(H0;Vh), i ∈ {1, 2} we set

Gh1(v)[h0] :=
κ∑
i=1

〈v, Ihei〉H 〈Ihh0, Ihei〉H Ihei
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and
Gh2(v)[h0] := IhG2(v)Ihh0.

We do not exactly know how or if these changes of projections from Ph to different
constellations of interpolation operators Ih affect the order of convergence. However,
this kind of replacement of projectors seems to be quite common in practice and they
make the computation easier. We leave this choice unjustified, subject to future re-
search.

We now fix η = 5, T = 1 and for ` ∈ N0 we set h` = 2−`, k` = h2
` and κ` = h−1

` to get a

series of solutions to (32) which we denote by X̂` := X
Nk`
κ`,h`

. We note that by our choice

of η it would have been sufficient to set κ` = h
−1/2
` and still have, by Theorem 4.3 with

r = 0,
||X(T )− X̂`||L2(Ω;H) ≤ 2−` (33)

but for computational reasons we abstain from this and note that still (33) holds with this
choice. We also set X0(x) := x−x2 and note that this satisfies Assumption 3.1(v).

We end this section by remarking that in practice, given a finite element space Vh, we

will estimate the norm in H by ||f ||H ≈
√∑Nh−1

j=1 |f(xj)|2.

6.4 Results: Strong convergence rates

We start by using the singlelevel Monte Carlo estimator to try to estimate the strong
error rate. When we say that the strong error converges with a rate of α, we mean in
this context that there exists a constant C > 0 such that

||X(T )− X̂`||L2(Ω;H) ≤ Chαl = C2−αl. (34)

In general, when simulating the quantity on the left hand side of this expression, we do
not have access to the exact value of X(T ) for a given realisation of X. This is true even
when, for the case of G = G1, we can use the expression (29) for t = T , since we cannot
generate an infinite number of Brownian motions. Instead, we use a so called reference
solution, that is, we replace the expression ||X(T ) − X̂`||L2(Ω;H) by ||X̃L − X̂`||L2(Ω;H)

where we let X̃L = X̂L for L > ` when we consider G = G2 while we let X̃L be given
by the expression (29) truncated at κL = 2L when we consider the case G = G1.

Now we investigate the strong rate of convergence for different choices of Cµ, which
influence the overall level of variance in the realisations of X (recall that the eigenvalues
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of Q are µi = Cµi
−5). For M = 2 · 104, ` = 1, 2, 3, 4, 5 and L = 6 we compute the

quantities

EM

[
||X̃L − X̂`||2H

] 1
2

for G1 and G2. Informed by Proposition 5.3 we hope that these will approximate the
strong error well.

In Figure 1 we plot these values against 2` for ` = 1, 2, 3, 4, 5 where we use a logarithmic
scale for both axes: a so called log-log plot. By [18] it holds that in this graph a
convergence of order α corresponds to a line with slope −α.

It should be noted that given a fixed Cµ all observations of X̃L and X̂` are computed
on the same M instances of Q-Wiener processes W κL . Therefore, the variance will be
much lower than if we for each level ` had generated X̂` independently of the other levels.
Also, the same set of Q-Wiener processes was used for the strong error corresponding to
G1 and the strong error corresponding to G2, so in Figure 1 the paths are independent
of one another with respect to different values of Cµ, but for the same value of Cµ a
path in the lower picture is not independent of the corresponding path in the upper
picture.

The theoretical results of Chapters 3 and 4 make us expect a convergence rate of order 1
as noted in (34). Furthermore, when Cµ = 0, the equation reduces to the deterministic
case, and from [12, Chapter 10] we expect a convergence of order 2 in this case. The
results of Figure 1 seem to be more or less in line with this. For small values of Cµ
we appear to get a rate of order 2 but asymptotically it seems reasonable to expect a
convergence of order 1 in this case. When Cµ > 10 the variance is so great that the
curves appear very erratic, despite the use of a single set of Q-Wiener processes for all
levels `.

Next, we choose to look more closely at how the strong convergence behaves when
Cµ = 10, so we take levels ` up to ` = 7 with L = 8 and set M = 3 · 103. Despite the
relatively low number of samples, this computation takes a very long time if we were to
run it on a typical desktop computer.

Fortunately, we have access to the Glenn cluster at Chalmers Centre for Computational
Science and Engineering (C3SE). The system consists of 379 compute nodes with a total
of 6080 cores [17]. With ` and M as above, the total computation for all levels takes
10 hours and 32 seconds using 8 computing nodes with 128 cores. The result is shown
in Figure 2. From this we can see that the trend of a convergence of order 1 seems to
hold, even with this somewhat low number of samples.
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Figure 1: Approximations of the strong error rate for ` = 1, 2, 3, 4, 5 and different values
of Cµ. The upper image shows the case G = G1 and the lower image G = G2. For
each Cµ, all levels of error approximations have been computed using the same set of
M = 2 · 104 realisations of the Q-Wiener processes.



To utilize the resources of the cluster in an optimal way, it is crucial to make sure that
the code can run in parallel. In our case, this essentially amounts to changing the for
loop of our Monte Carlo computation to a so called parfor loop, which is a feature of the
MATLAB Distributed Computing Server�, installed on the cluster. In the user manual
of the Parallel Computing Toolbox� [15] we can read:

A parfor-loop is useful in situations where you need many loop iterations
of a simple calculation, such as a Monte Carlo simulation. parfor divides the
loop iterations into groups so that each worker executes some portion of the
total number of iterations. parfor-loops are also useful when you have loop
iterations that take a long time to execute, because the workers can execute
iterations simultaneously.

From this manual we also note that each worker is assigned a unique random number
stream so we can be sure that we are getting M independent samples of the Q-Wiener
process.

The code used to produce the results of Figure 1 and 2 can be found in Section B.

6.5 Results: Weak convergence rates

Next, we compare the strong convergence rates to the weak rates. These are defined
completely analogously to how we defined the strong rate in (34). To our knowledge,
no simulations of the weak convergence rates of fully discrete approximations (using
the FEM) of SPDE with multiplicative noise have been published, so this could be of
interest for future research. A common ”rule of thumb” (see e.g. the introduction of
[11]) within this field is that the weak rate of convergence is twice that of the strong
rate. Therefore, in particular we investigate whether one can achieve a rate of order 2
in the same context as the previous simulation, that is, when we consider ` from 1 to 7,
L = 8 and we take M = 3 · 103.

Now, as we recall from Section 5 there are (at least) two ways of approximating it with
a Monte Carlo method, namely∣∣∣E [||X̃L||2H

]
− EM

[
||X̂`||2H

]∣∣∣
and ∣∣∣EM [||X̃L||2H − ||X̂`||2H

]∣∣∣ .
which we refer to as the weak error rate of type I and type II respectively.
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All levels of error approximations has been computed using the same set of M = 2 · 104

realizations of the Q-Wiener processes with a reference solution at level L = 8.



For the weak error of type I we choose to estimate the quantity E
[
||X̃L||2H

]
for the case

G = G1 by the deterministic quantity

106∑
i=1

〈X0, ei〉2H exp (−(2λi + µi)) (35)

since we have access to the analytical solution as expressed in (30). For the case of

G = G2 we do not have this, so we instead estimate E
[
||X̃L||2H

]
by EM

[
||X̂L||H

]
. In

this case we will estimate E
[
||X̃L||2H

]
on a different set of Q-Wiener processes than that

used to generate EM

[
||X̂`||2H

]
.

For the weak error of type II we generate both ||X̃L||2H and ||X̂`||2H on the same set of
Q-Wiener processes where we again make use of (29) truncated at κ = h−1

L and h−1
`

respectively to generate these in the case of G = G1. The resulting simulation is shown
in Figure 3. In this case we see that the error is much smaller than when we simulated
the strong error in Figure 2 which is what we expect. However, it is hard to gauge any
particular rate of convergence since the variance seems to dominate the weak error rate.
We also note that we appear to have no rate of convergence at all when we consider the
case G = G1 and an independent (in this case deterministic) reference solution, an issue
that we will return to shortly. For G = G2, the addition of an independent estimate
of the reference solution seems to have little to no influence on the behaviour of the
simulation of the weak rate of convergence. The behaviour of the last two points could
be due to the fact that we consider a reference solution at the next (L=8) level instead
of taking the exact solution. The computation to create this picture takes 19 hours, 59
minutes and 32 seconds using 8 computing nodes with 128 cores.

In Figure 4 we repeat these simulations for Cµ = 5. We note that we get clearer indica-
tions of a rate of convergence which is somewhere between a rate of 1 and 2. We now also

include the case of the type I error when all of the approximations of EM

[
||X̂`||2H

]
are

independent of one another. In this case we have increased M to 105, but despite this,
the noise is so great that it is impossible to say anything about the order of convergence.
The computation time for these is presented in Table 1.

Remark 6.1. The complete lack of convergence in the case of a deterministic reference
solution in Figure 3 needs to be addressed. To do this purpose we can use the fact that

we have an analytical expression of X(T ) to investigate the behaviour of EM

[
||X̂L||2H

]
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Figure 3: Approximations of the weak error rate for ` = 1, 2, 3, 4, 5, 6, 7 and Cµ = 10.
In one set of cases the reference solution has been generated on an independent set
of Q-Wiener processes and in one set it has been generated on the same set as the
observations for the levels ` = 1, 2, 3, 4, 5, 6, 7.

Level ` Time for G = G1 Time for G = G2

2 00:01:28 00:00:49

3 00:01:09 00:00:38

4 00:00:51 00:00:51

5 00:02:31 00:02:14

6 00:21:09 00:16:28

7 07:13:20 04:57:38

Table 1: Time needed to compute the independent weak error estimates in Figure 4
using 8 computing nodes with 128 cores. The time for ` = 1 was not recorded. 105

samples were taken at each level.
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when M is large and L = 8. Using (29) and the fact that for all i ∈ N, βi(T ) ∼ N(0, 1),
we estimate ||X̂L||2H by

||
NhL∑
i=1

〈X0, ei〉H exp

(
−(λi +

µi
2

) + µ
1
2
i Zi

)
IhLei||

2
H

where Zi ∼ N(0, 1) i.i.d. and we use this to compute EM

[
||X̂L||2H

]
which we plot

against M ranging from 1 to 106 in Figure 5 (note that for an increase in M we just
add another observation of ||X̂L||2H as opposed to generating another M + 1 number

of observations). We see that for the final value of M the value of EM

[
||X̂L||2H

]
is

almost entirely attributable to one single observation of ||X̂L||2H . This indicates that the
distribution is highly skewed, so that a large number of observations will be very close to
zero but the sample mean will be much larger due to the presence of very large outliers.

Another (not entirely rigorous) way to think about this is to realize that since 〈X0, ei〉2H
decreases rapidly with increasing values of i and λi + µi

2 is increasing in i, we should
often have

||
NhL∑
i=1

〈X0, ei〉H exp

(
−(λi +

µi
2

) + µ
1
2
i Zi

)
IhLei||

2
H

≈ || 〈X0, e1〉H exp

(
−(λi +

µ1

2
) + µ

1
2
1 Z1

)
IhLe1||2H

which has a log-normal distribution. A well-known fact of the log-normal distribution is
that it is highly skewed to the right when the variance of the underlying normal distributed
variable (in this case µ1Z1) is big, so we should expect the presence of a small number
of very large outliers which in turn means that in the majority of cases, for reasonable

values of M , EM

[
||X̂L||2H

]
will be relatively far from the true mean.

6.6 Results: Multilevel Monte Carlo estimations

We end our numerical exploration by implementing the multilevel Monte Carlo estimator
for the weak error. As in Figure 4 we let Cµ = 5 and for ` = 0, 1, 2, ... we set h` = h02−`,

k` = h2
` and κ` = h−1

` to get a series of solutions to (32) which we denote by X̂` := X
Nk`
κ`,h`

.

For computational reasons we let h0 = 2−1.
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Let us make the bold assumption that the weak error rate actually is twice that of the
strong error rate. Then we have

|E
[
||X(T )||2H − ||X̂`||2H

]
| ≤ C1h

2
02−2`

and so, from Proposition 5.6 we get

||E
[
||X(T )||2H

]
− EL[||X̂L||2H ]||L2(Ω,R) ≤ C2h

2
02−2L.

Let us now test this for L = 1, 2, 3, 4, 5. As in Section 6.5, we replace E
[
||X(T )||2H

]
by (35) in the case of G = G1 and in the case of G = G2 we replace it by a reference
solution EM [||X̂7||2H ] where we let M = 104. We generate all quantities independently

of one another, but when computing a single multilevel estimate EL[||X̂L||2H it is vital

to let the differences ||X̂`||2H − ||X̂`−1||2H be computed on the same Q-Wiener process.
In the case of G = G1, the total computation time for all levels was 10 minutes and
39 seconds and in the case of G = G2, the total computation time was 9 minutes. The
computation time is thus reduced by more than a factor of two when compared to taking
M = 105 in the singlelevel estimator.

The errors
∣∣∣E [||X(T )||2H

]
− EL[||X̂L||2H ]

∣∣∣ are shown in the upper part of Figure 6. For

comparison purposes, we have also included the independent weak errors from Figure 4.
We note that for both noise operators, we are able to achieve similar results to a smaller
computational cost using the multilevel estimator. In the lower part of Figure 6 we take
the L2-average of 100 realizations of the multilevel algorithm, that is we plot

E100

[∣∣∣E [||X(T )||2H
]
− EL[||X̂L||2H ]

∣∣∣2] 1
2

and we see that we get an order of convergence which is very close to 2.

6.7 Concluding discussion

In the numerical experiments outlined above, we first tried to simulate the strong rate of
convergence predicted by the theory of the previous chapters of this thesis. The results
seem to be consistent with this theory, although the noise makes it hard to say anything
for certain about this.

In the case of weak convergence, we noted that when we tried to estimate the weak
errors using the same set of Q-Wiener processes there were indications that the rule of
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thumb stating that the weak rate often is twice the strong rate seemed to hold. However,
especially in the analytical case, when comparing the estimates to a reference solution
which had been computed independently of these, the pattern was not very clear. When
we finally had all the estimates computed independently of one another there were close
to no indications of convergence, despite the relatively expensive computations. This
shows how it, even in these relatively simple cases, can be hard to actually estimate
quantities of the solution in practice due to the variance of these, and perhaps due to
properties of their distribution as well.

However, in the case of the multilevel estimates, we were able to get a rate of convergence
that seems to be close to 2 despite having each level estimate be independent of one
another. The pattern was much clearer, though, when an average of multiple runs of the
multilevel algorithm was taken. We stress, though, that the application of the multilevel
algorithm assumes that the weak rate of convergence actually is two, something that we
have not provided theory for. The result nevertheless shows the practical value of the
multilevel algorithm and together with the results on the singlelevel weak error rates,
may indicate some interesting directions for future research.
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A Appendix

This appendix contains two useful inequalities that do not fit in well elsewhere. We
start with the following discrete Grönwall inequality from [5].

Lemma A.1. [5, page 280] Let (an)n∈N, (bn)n∈N and (cn)n∈N be non-negative se-
quences such that

an ≤ bn +
n−1∑
k=0

ckak

for n ≥ 0. Then

an ≤ max
θ∈{0,1,...,n}

bθ

n−1∏
k=0

(1 + ck)

The second result is an arithmetic inequality which we use in several places throughout
the thesis and prove below.

Lemma A.2. Let n ∈ N and let ai, i = 1, 2, ...n be non-negative numbers. Then(
n∑
i=1

ai

)p
≤ np−1

n∑
i=1

api

Proof. Consider the measure space (Ω̃,A, µc) with Ω̃ = {1, 2, ..., n},
A = P(Ω̃), the power set of Ω̃, and µc being the counting measure. Let f, g : Ω̃→ R be
defined by f(k) = 1 and g(k) = ak. Then, by Hölder’s inequality:

n∑
i=1

ai = ||fg||1 ≤ ||f ||q||g||p = n
1
q

(
n∑
i=1

api

) 1
p

where p−1 + q−1 = 1. The result now follows by raising each side of the inequality to
the p-th power.
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B Source code

B.1 HSHE strong errors

This function is used to produce the results of Figure 1 and 2.

function [strong errors G1, ...
strong errors G2]=HSHE strong errors(maximum ell, M, eigenconstant, ...
eigendecay)

% Produces the strong error approximations for the homogeneous of Figure X.
% Uses M realizations of the $Q$-Wiener process with
% Qe j=eigenconstant*jˆ(-eigendecay) to compute approximations for h
% ranging from 2ˆ-1 to 2ˆ-maximum ell.
% A reference level of maximum ell+1 is used to compute the reference
% solution which is exact for G 1 and approximated for G 2.

%M samples of the error in L2-norm squared
error samples G1=zeros(M,maximum ell);
error samples G2=zeros(M,maximum ell);

ref N h=2ˆ(maximum ell+1); % Inverse space step size for reference level

rng('shuffle');
parfor m = 1:M

% Generate a Wiener process - each row is a realisation of \beta j
W=cumsum([ zeros(ref N h-1,1), randn(ref N h-1,ref N hˆ2)],2)./ref N h;
% Generate the 'exact' reference solution for G=G 1
ref X G1 = zeros(ref N h+1,1);
start = ((-1).ˆ((1:ref N h-1)+1)+1)'.*(1:ref N h-1).ˆ(-3)'; % Initial ...

value is x-xˆ2
start = sqrt(8)/piˆ3*start;
xgrid = linspace(0,1,ref N h+1);
E = sqrt(2)*sin(pi*xgrid(2:end-1)'*(1:(ref N h-1))); % E ij=e j(x i), ...

symmetric
ref X G1(2:end-1) = E*(start.*exp(-piˆ2*(1:(ref N h-1))' .ˆ ...

2-eigenconstant/2 * (1:(ref N h-1))' .ˆ ...
(-eigendecay)+(sqrt(eigenconstant) * (1:(ref N h-1))' .ˆ ...
(-eigendecay/2)) .* W(:,end)));

% Generate the reference solution for G=G 2
[~,ref X G2] = solve HSHE(ref N h, ref N hˆ2, eigenconstant, ...

eigendecay, W, ref N hˆ2);
% For each level, calculate the fully discrete approximation and record
% the sample of the errors
for level=1:maximum ell
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[Xpath G1, Xpath G2] = solve HSHE(2ˆlevel, 2ˆ(2*level), ...
eigenconstant, eigendecay, W, ref N hˆ2);

error samples G1(m,level) = sum( (interp1( ...
linspace(0,1,2ˆlevel+1), Xpath G1(:,end), ...
linspace(0,1,ref N h+1))'-ref X G1(:)).ˆ2 ) / ref N h;

error samples G2(m,level) = sum( ( ...
interp1(linspace(0,1,2ˆlevel+1), Xpath G2(:,end), ...
linspace(0,1,ref N h+1))'-ref X G2(:,end)).ˆ2 ) / ref N h;

end
end
% Take the square of the mean value of the errors to get the final estimate
strong errors G1 = sqrt(mean(error samples G1));
strong errors G2 = sqrt(mean(error samples G2));
end

function [Xpath G1, Xpath G2] = solve HSHE(spacesteps, coarsetimesteps, ...
eigenconstant, eigendecay, Wfine, finetimesteps)

% Given a realisation of W, solves HSHE for G1 and G2 by implementing the
% backwards Euler scheme.

h = 1/coarsetimesteps; % time step size
xgrid = linspace(0,1,spacesteps+1);
% Initialize memory for output variable
Xpath G1 = zeros(spacesteps+1, coarsetimesteps+1);
Xpath G2 = zeros(spacesteps+1, coarsetimesteps+1);

% Translate the brownian motions to coarsetimesteps, truncate the ...
Karhunen-Loeve expansion

Wcoarse=zeros(spacesteps-1,coarsetimesteps+1);
for j=1:(spacesteps-1)

Wcoarse(j,:)=interp1(linspace(0,1,finetimesteps+1), Wfine(j,:), ...
linspace(0,1,coarsetimesteps+1));

end

% Generate matrices
A = spacesteps*(2*diag(ones(spacesteps-1,1)) - ...

diag(ones(spacesteps-2,1),1) - diag(ones(spacesteps-2,1),-1)); % ...
stiffness

M = (6*spacesteps)ˆ-1*(4*diag(ones(spacesteps-1,1)) + ...
diag(ones(spacesteps-2,1),1) + diag(ones(spacesteps-2,1),-1)); % mass

E = sqrt(2)*sin(pi*xgrid(2:end-1)'*(1:(spacesteps-1))); % E ij=e j(x i), ...
symmetric

D = sqrt(eigenconstant)*diag((1:(spacesteps-1)).ˆ(-eigendecay/2)); % ...
eigenvalues of Q

P = E*D; O = E*M; % for efficiency
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% Evaluate initial condition
Xpath G1(:,1) = initial(xgrid)';
Xpath G2(:,1) = initial(xgrid)';

% Compute exact path implementing the backward Euler scheme
for j = 1:coarsetimesteps

Xpath G1(2:end-1,j+1) = (M + h*A) \ (M*(Xpath G1(2:end-1,j) + ...
P*diag(Wcoarse(:,j+1)-Wcoarse(:,j))*O*Xpath G1(2:end-1,j)));

Xpath G2(2:end-1,j+1) = (M + h*A) \ (M*(Xpath G2(2:end-1,j) + ...
sin(Xpath G2(2:end-1,j)) .* ...
(P*diag(Wcoarse(:,j+1)-Wcoarse(:,j))*ones(spacesteps-1,1))));

end

end

function init = initial(xgrid)
% Returns X(0) on a given xgrid
init = xgrid-xgrid.ˆ2;
end

B.2 multilevel estimate G2

This function computes the multilevel estimate used in 6.6 in the case of G = G2. The
code for the case G = G1 is entirely analogous and is therefore not provided here.

function [MLMC]=multilevel estimate G2(L, eigenconstant, eigendecay)

delta = 0;
h0=1/2; %
space list = (h0)ˆ(-1)*2.ˆ((0:L)); % List of space steps, h 0=2ˆ{-1}
time list = space list.ˆ2; % List of time steps
M list = round([space list(end)ˆ4, ...

space list(2:end).ˆ(-2).*space list(end)ˆ4.*(1:L).ˆ(1*(1+delta))]); % ...
Monte Carlo iterations

MC = 0; % MC estimate at each level
tic;
% X 0 :
parfor m = 1:M list(1)

% Generate a Wiener process - each row is a realisation of \beta j
W=cumsum([ zeros(space list(1)-1,1), ...

randn(space list(1)-1,time list(1))],2)./space list(1);
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X = solve HSHE(space list(1),time list(1), eigenconstant, ...
eigendecay,W);

L2norm = sum( X(:,end).ˆ2 )/(space list(1));
MC = MC + L2norm/M list(1);

end
MLMC = MC;
% X 1 to X L
for k = 2:length(space list)

MC = 0;
finetimesteps=time list(k);
coarsetimesteps=time list(k-1);
finespacesteps=space list(k);
coarsespacesteps=space list(k-1);
M=M list(k);
parfor m = 1:M

% Generate a Wiener process - each row is a realisation of \beta j
fineW=cumsum([ zeros(finespacesteps-1,1), ...

randn(finespacesteps-1,finetimesteps)],2)./finespacesteps;
% Interpolate Wiener process to the coarser time grid
coarseW=zeros(coarsespacesteps-1,coarsetimesteps+1);
for j=1:(coarsespacesteps-1)

coarseW(j,:)=interp1(linspace(0,1,finetimesteps+1), ...
fineW(j,:),linspace(0,1,coarsetimesteps+1));

end
X = solve HSHE(finespacesteps,finetimesteps, eigenconstant, ...

eigendecay,fineW);
Y = solve HSHE(coarsespacesteps,coarsetimesteps, eigenconstant, ...

eigendecay,coarseW);
L2normX = sum( X(:,end).ˆ2 )/finespacesteps;
L2normY = sum( Y(:,end).ˆ2 )/coarsespacesteps;
L2norm = L2normX-L2normY;
MC = MC +L2norm/M; % Singlelevel estimate of difference

end
%toc
MLMC = MLMC+MC; % Update multilevel estimate

end
toc
end

function [Xpath] = solve HSHE(spacesteps, timesteps, eigenconstant, ...
eigendecay, W)

% Given a realisation of W, solves HSHE for G1 and G2 by implementing the
% backwards Euler scheme.

h = 1/timesteps; % time step size
xgrid = linspace(0,1,spacesteps+1);
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% Initialize memory for output variable
Xpath = zeros(spacesteps+1, timesteps+1);

% Generate matrices
A = spacesteps*(2*diag(ones(spacesteps-1,1)) - ...

diag(ones(spacesteps-2,1),1) - diag(ones(spacesteps-2,1),-1)); % ...
stiffness

M = (6*spacesteps)ˆ-1*(4*diag(ones(spacesteps-1,1)) + ...
diag(ones(spacesteps-2,1),1) + diag(ones(spacesteps-2,1),-1)); % mass

E = sqrt(2)*sin(pi*xgrid(2:end-1)'*(1:(spacesteps-1))); % E ij=e j(x i), ...
symmetric

D = sqrt(eigenconstant)*diag((1:(spacesteps-1)).ˆ(-eigendecay/2)); % ...
eigenvalues of Q

P = E*D;

% Evaluate initial condition
Xpath(:,1) = initial(xgrid)';

% Compute exact path implementing the backward Euler scheme
for j = 1:timesteps

Xpath(2:end-1,j+1) = (M + h*A) \ (M*(Xpath(2:end-1,j) + ...
sin(Xpath(2:end-1,j)) .* ...
(P*diag(W(:,j+1)-W(:,j))*ones(spacesteps-1,1))));

end

end
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