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Abstract 

Until now, software architects could create an architecture for a future system and analyze its 

software and hardware components to see if it meets the quality requirements. They also can 

use automated tools to optimize the initial design and find the best alternative architectures 

which meet the quality requirements. If the system is also part of a family of similar systems 

(software product line), then this means that it implements some features of this family. 

Moreover, it means that any additional similar systems could reuse some components from 

the initial system. However, if there is a need for other similar systems (products), then the 

software architect would have to design different architectures to meet the different quality 

requirements of those products. The architect would not be able to reuse the old architecture 

to create the new one and they would also need to optimize the architecture of every product. 

The existing optimization tools are unable to optimize one architecture to cover many 

products. 

This work proposes a new automated method, which optimizes a software architecture based 

on the feature model it belongs and the selected products. In this approach, the optimization 

runs only for the architectures that support the defined products and then it performs 

commonality analysis to find the optimal architectures that can support all the selected 

products. 

The method is tested on an industrial case study with 480 different possible products, and 

found many sufficiently similar common solutions, which can support all of the selected 

products. 

 

Keywords: 

Software Product Line (SPL), Multi-objective Optimization, Genetic Algorithms, Feature 

Models, Software Architecture  
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Chapter 1: Introduction 

1.1 Introduction 

Component-based architecture is an architectural approach where the system to be developed 

is considered a set of hardware and software components linked together. Thus it is possible 

to measure and analyze certain aspects of the system, such as its quality properties (cost, 

safety, availability, etc.), before any implementation takes place, allowing the architect to 

revise the original plan and to find another architecture that fulfills the system requirements. 

(Li, et al., 2011) 

Finding and generating alternative architectures is a complex optimization problem, called 

single objective or multi-objective optimization problem depending on whether the 

architecture has to be optimized for only one property or many. The research community 

addresses this problem using various methods, such as genetic / evolutionary algorithms. 

These algorithms mimic the natural process of evolution according to which the fittest genes 

are passed to the next generation. Tools have been developed for single objective optimization 

(Grunske, et al. 2007) and tools, such as the AQOSA framework (Etemaadi, et al., 2013), for 

multi-objective optimization. 

However, a system can also be part of a series of systems with common characteristics or 

features. The set of features that the system should include usually is modeled in a tree-like 

diagram and called “feature model” (Lee, Kang and Lee, 2002). None of the component-

based architectures or tools considers the feature model in order to find and generate the 

alternative architectures. This thesis work aims to bridge this gap by extending the AQOSA 

framework to be able to link the feature model with the architectural design. This 

functionality will enable AQOSA to find the optimal design based on the feature model and to 

find the solutions that are common for many feature configurations. 

1.2 Problem Description 

As described in introduction, most of the optimization and architecture analysis tools use the 

component-based architecture as input and consider it as a set of software and hardware 

components and a relation between them. This enables them to analyze or optimize an 

architecture based only on software and hardware, for only a specific product. The few tools 

that consider the notion of feature are either exclusive for feature analysis or use mathematical 

formulas and assumptions that are problem specific. 

However, none of the existing tools consider the notion of system features as components 

combined with the software and hardware. Even though it is possible to find the most optimal 

architecture for a system, it is still unknown if this architecture is suitable for the selected 

feature model and if it can support multiple feature configurations. 

The research question that this work is trying to answer is: “Given a feature model, which 

architecture supports the most features?” This study will use the problem solving case-study 
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research approach to answer the research question, because it is focused on a practical 

problem (Yin, 1994) 

1.3 Contribution 

The purpose of this study is to provide an extension to the AQOSA framework, which will 

enable the generation of alternative architectures based on a given feature model. This would 

allow someone, not only find the most suitable architecture for a selected configuration, but 

also to find which architecture can support the most features or similar top-bottom analysis. 

This extension aims to bridge the gap between the software product line community and the 

software architecture community, in the sense that the architecture community currently 

benefits from the existing optimization approaches but not when they apply software product 

line methods for their systems. 

It is expected to be used by practitioners that use the tool to find optimized architectures and 

would like to also add software product line nature in their architecture. Moreover, the 

mapping between an architecture and a feature model provides a starting ground for 

researchers who would like to research on multi-objective optimization techniques for product 

lines. 

1.4 Outline 

This thesis is divided into eight chapters. Each chapter builds upon the previous ones to 

develop a knowledge basis, necessary for interpreting the results in Chapter 7. The remaining 

chapters are as follows: 

 Chapter 2 describes the related work and the tools that were tested. 

 Chapter 3 describes the notion of features and feature-based software engineering, which 

is the core addition of this work. 

 Chapter 4 explains how the genetic algorithms work and how they find alternative 

solutions. They are used by AQOSA to find alternative optimized architectures. 

 Chapter 5 presents an overview of the AQOSA framework and how it is used. 

 Chapter 6 describes the extension of AQOSA by this work: what tools, processes and 

algorithms were used, along with a discussion of their weaknesses. 

 Chapter 7 shows what case study was used to test the proposed method and how the 

experiment was set up. It also presents the results with an interpretation of them. 

 Chapter 8 is the conclusion of this work. It contains a summary of this thesis and 

concludes with possible future work. 
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Chapter 2: Related Work 

2.1 Optimization Tools 

2.1.1 AQOSA 

This work is based on the AQOSA framework initially proposed by Li, et al. (2011) and 

evolved by Etemaadi, et al. (2013). As mentioned before, the problem at hand was that while 

component-based architecture designs enable the analysis of quality properties, which may be 

in conflict with each other, finding alternative architectures that fulfill all the properties 

simultaneously was done manually, for small-scale systems only. 

Their contribution was the introduction of a tool which automated this procedure of finding 

alternative solutions in respect to all quality attributes and performed analysis, too. The tool 

considers four quality attributes for every architecture: cost, safety, utilization, and 

performace, though caters for more. It uses 3 different evolutionary optimization algorithms 

to find optimized solutions and produces a Pareto front of these solutions to choose from. It 

was initially tested on a small-scale example but Etemaadi, et al. (2013) applied AQOSA on a 

real world example, a case study by SAAB. The results show that AQOSA is able to find 

better architectures, for all quality attributes, than the initial one. They also provide an 

extensive overview of the tool. 

These two papers were the primary papers this study relied on, because they explain 

everything about the tool, which is the only that performs multi-objective optimization for 

many quality attributes. They also describe the context in which it can be used. 

2.1.2 ArcheOpterix 

ArcheOpterix (Aleti, et al., 2009) is a tool very similar to AQOSA. It tries to address the 

problem of finding the best alternative software architecture (esp. in the embedded systems 

domain) among conflicting quality requirements. 

They introduce a platform to implement different architecture evaluation and optimization 

algorithms to mitigate that problem. It is an Eclipse-plugin and works with the AADL 

language. The tool uses genetic algorithms to optimize the architecture and uses two methods 

to rank the solutions: mapping all the objectives into a single objective function and finding 

the Pareto front line of non-dominated solutions. The tool evaluates the constraints (memory, 

localization, co-localization) and quality attributes (data transmission reliability and 

communication overhead) of an architecture. 

The experiment results show that the tool produces sufficient evidence that it can find better 

quality architectures. The tool is very similar to AQOSA and it addresses the same problem 

but it only uses two quality attributes for optimization which may make the optimization 
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problem easier. AQOSA uses four quality attributes which makes the problem more realistic 

though more difficult, too. 

2.1.3 PerOpteryx 

PerOpteryx (Koziolek, Koziolek and Reussner, 2010) is another tool similar to AQOSA. They 

address the same problem of finding alternative architectures based on many quality 

attributes. They propose a hybrid tool of Rule-based and Metaheuristic approach. In 

particular, they make use of predefined architectural tactics and multi-objective evolutionary 

optimization to find and optimize the solutions. These tactics run in the reproduction step of 

the genetic algorithm to modify a solution towards a better candidate solution. From their 

results, it seems that the use of these tactics, in the searching the solution space, has reduced 

optimization runtime by at least 50%. The hybrid genetic algorithm also managed to find 

meaningful quality architectures to choose from. 

AQOSA differs due to the lack of these tactics but could definitely benefit from that. In 

addition, these domain specific tactics could potentially hinder the generalization of the tool. 

2.2 Feature Model Optimization Tools 

None of the aforementioned tools consider the features of the system in their optimization 

process. There are tools that evaluate and optimize feature models but none of them consider 

the architecture level at the same time. The most related work is that of Etxeberria and 

Sagardui (2008), where they measure the quality of a software product line architecture by 

introducing quality properties as features in the architecture. They use mathematical formulas 

for quantification and evaluation of the product line quality. However, the similarities with 

this work are few. They evaluate only the software product line architecture (set of features) 

and they don't consider the system architecture at all. Through mathematical formulas, they 

map the quality features to other features, while this study tries to map features to 

components. 

2.3 Feature Modeling Tools 

The first step of this work was to find a tool in order to model the feature model for the case 

study and also to be able to find all the different configurations of this feature model. So, there 

was a need for a feature modeler and a configurator with parsing capabilities, to handle the 

features with code. After some research, the tools that were tested were: S2T2 Configurator, 

Software Product Lines Online Tool, Palladio Feature Model, EMF Feature Model, Clafer 

Tools and Alloy Analyzer. The following sub-sections provide a brief description of every 

considered tool. 

2.3.1 S2T2 Configurator 

This is a plug-in for the Eclipse IDE made by the LERO group, the Irish Software 

Engineering Research Center (Botterweck, Janota and Schneeweiss, 2009), (Botterweck and 



12 

 

Pleuss, 2012). It is possible to create feature models through the visual editor and select 

configurations manually. The tool has a formal reasoning engine running in the background 

so one can know due to which constraints some features can or cannot be selected from the 

feature model. This engine produces a formal representation of the feature model in order to 

be used by SAT solvers to find the different possible configurations. Although it is very easy 

to install and to use the graphical editor, it has many bugs and it is very time consuming to 

create a simple model, because it needs many XMI elements to represent a few elements in 

the editor. Moreover, the lack of documentation made it even more unappealing and 

eventually was ruled out. 

2.3.2 Software Product Lines Online Tools (SPLOT) 

The Software Product Lines Online Tools, or SPLOT, is a family of tools from the University 

of Waterloo, Canada. (Mendonca, Branco, and Cowan, 2009). It allows somebody to create 

and save their feature models online. It is easy and very fast to use, with good documentation. 

It can export the feature model in a .sxfm file, which stands for (Simple XML Feature Model) 

and they provide a Java parser for it. One minor drawback is that the cross-tree constraints, 

such as mutual exclusiveness, have to be implemented in CNF logical clauses, which are not 

very intuitive. This tool came close second, because the SXFM parser provides neither a 

configurator nor an appropriate output for a solver. 

2.3.3 Palladio Feature Model 

Palladio is a program that can predicts quality of software properties from software 

architecture models. It comes as a plug-in for Eclipse with a graphical editor and it is made by 

the Karlsruhe Institute of Technology (2012). The program exports to XMI files that can be 

easily read by existing parsers and it is easy to create a feature model. Even though it is easier 

to use than S2T2, it is less expressive making it more difficult to develop complex feature 

models. The major disadvantages are the lack of good documentation and that the graphical 

editor seems to be broken. 

2.3.4 EMF Feature Model 

This is another Eclipse tool (EMF Feature Model, 2013) that it is supposed to help with 

feature modeling. Instead, it is hard to find it and it seems that it is an incubation project / 

alpha version. There is no documentation, except for a mailing list, and it was impossible to 

create any model at all with it. 
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2.3.5 Clafer Tools 

 

Clafer (Antkiewicz, et. al, 2013) is a lightweight language developed at GSD lab at University 

of Waterloo and MODELS group at IT university of Copenhagen. Clafer stands for Class - 

Feature – Reference, it has simple syntax and it is used for creating feature models, class 

diagrams, meta-models and similar diagrams with complex constraints (Figure 1). Clafer tools 

are a group of tools which provide more functionality, such as the compiler, instance 

generator, configurator, multi-objective optimizer and visualizer. Unfortunately, the only tool 

that was able to run was the compiler, which can compile the Clafer instructions to 

instructions for the Alloy tool. 

2.3.6 Alloy 

Alloy, like Clafer, is a language for describing structures as a collection of constraints (Alloy, 

2012). Alloy syntax is not as easy and straightforward as Clafer syntax, but it comes with a 

tool, Alloy Analyzer. This tool is a solver that tries to find the structures that satisfy the 

constraints of the original structure. For example, the solver can find all configurations of a 

feature model and display each individual configuration. This tool comes in a jar file, so that 

it can be used within a Java program. 

  

Figure 1: Example of using Clafer language to represent a feature model (Clafer: Lightweight Modeling 

Language, 2013) 
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Chapter 3: Features 

3.1 Definition 

The notion of features in software systems was initially introduced by Kang, et al., at the 

Software Engineering Institute of Carnegie Mellon University, in an effort to create a new 

analysis method for identifying features in a domain. A feature is “a prominent or distinctive 

user-visible aspect, quality, or characteristic of a software system or system“ (Kang, et al., 

1990, p.3). Therefore, a software system can have many features that describe it. 

3.2 Software Product Lines 

Features are the core of Software Product Lines (SPL). According to the Software 

Engineering Institute, a SPL is a software engineering paradigm and defined as “a set of 

software-intensive systems that share a common, managed set of features satisfying the 

specific needs of a particular market segment or mission and that are developed from a 

common set of core assets in a prescribed way” (SEI, 2013). In other words, a SPL is a family 

of related programs, all defined by their set of features they implement. 

The idea behind SPL is to build similar software systems that share certain features from a 

single set of features, called product line. It is inspired by the techniques the big 

manufacturers in the automotive and airspace industry used for mass production. These 

techniques involved the reuse of parts in different products in order to reduce cost and 

production time. SPL apply these techniques on software production, by reusing code and 

other assets to build similar software systems. Unlike the big manufacturers however, in SPL 

the assets can even come from other external software or markets, such as the so-called 

commercial-off-the-shelf product (COTS products). (Clements and Northrop, 2001) 

In the past, software development hoped for opportunistic code reuse, meaning that general 

code would be used in hope that future opportunities for reuse will arise. SPL allow for 

targeted decisions to be made, on when and which asset will be created and reused. This 

leads, in the long run, to quicker development time, easier maintenance and easier transition 

from one product to the other. 

3.3 Feature Model 

In SPL, features may have certain variations, constraints and dependencies. All these are 

included in a model, called feature model. Feature models are usually displayed with a 

hierarchical tree-like diagram, as seen in Figure 2, starting from a root feature which is 

usually the kind of products the SPL produces. (Lee, Kang and Lee, 2002) 
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Features have parent-child relationships with each other, which are displayed as connecting 

lines. A candidate product can select features from this model but it should be done according 

to their constraints. Features can be mandatory or optional, marked by black or white circles 

above their name, respectively. Mandatory features mean that a product must always include 

these features if their parent feature is selected, while optional features can be left unselected. 

Another constraint can be which features can be selected from a parent feature. In this case 

there is the OR selection and ALTERNATIVE (XOR) selection. The OR selection allows the 

selection of any of the sub-features, even all of them. The XOR selection allows the selection 

of only one of the sub-features, implying the selection of one mutually excludes the others. 

Moreover, there can be constraints between features that cannot be modeled as a parent-child 

relationship. These are called cross-tree constraints, because they relate two sibling features 

across the tree model. The cross-tree constraints can be any logical clause between two 

features but they are usually used for implies and excludes relationships. Implies is a relation 

between two features where one feature requires the other in order to be implemented and 

therefore if the one is selected then the other must also be selected. The excludes relationship 

means that the selection of one feature excludes the use of the other and therefore cannot be 

selected together, in the same product. 

3.4 Feature configurations 

As mentioned before, a product must implement some features from its SPL. A product can 

select any number of features from the feature model, provided they satisfy the constraints. 

The set of features that are selected for a product is called feature configuration and therefore, 

a different feature configuration implies a different product. The number of different feature 

configurations that can be selected (different products), can grow very big because of the 

feature combinations. In automotive industry, they can have minimum 500 different 

configurations. 

Figure 2 showed an example feature model from an e-shop SPL. This model contains 

mandatory features (catalogue, payment, security) and one optional feature (search). An e-

Figure 2: Feature Model with selected features (Segura, 2009) 
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shop can have any of these payment methods: bank transfer and/or credit card payment. It 

can also have either standard or high security, but not both. However, if the credit card 

payment method is used then it must come with high security. This is a cross-tree constraint. 

The circled features mark a potential feature configuration, where the mandatory features 

must be selected and the selection of credit card must come with high security. 

3.5 Conclusion 

This chapter described what a feature is. A feature is a characteristic of a software system and 

a system can have many features that describe it. Next, it described the paradigm of software 

product lines in which a system can be part of a series of similar systems and they are all 

defined by their set of features they implement. The idea is to massively reuse assets to build 

similar systems. 

The features of a product line are usually displayed in a tree-like diagram with parent-child 

relations and selection constraints. Every product from this product line must select which 

features it will implement, as long as they satisfy their constraints. This selection is called 

feature configuration and it defines the product. 
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Chapter 4: Genetic Algorithms 

4.1 How they work 

Genetic algorithms are algorithms that mimic the process of evolution, in order to solve 

search and optimization problems. Optimization is the problem of finding the optimal element 

from a set of feasible elements. In other words, it is about finding the maximum or minimum 

of a function by choosing various values and satisfying its constraints (INFORMS Computing 

Society, 2010). The evolution works on genes of species using various mechanisms, such as 

reproduction, mutation, combination and selection (survival of the fittest). These algorithms 

use these mechanisms to evolve a solution until it satisfies the conditions of the problem. 

(Goldberg, 1989) 

In nature, every living being or individual has some set of characteristics, which is called 

phenotype and distinguishes it from other individuals. The phenotype is specified by the 

individual’s set of chromosomes, the genotype. The genotype tells, by the order of the 

chromosomes, which characteristics an individual should have. Every individual inherits 

some chromosomes from one parent and some from the other and can also pass its genes to 

the next generation through its offspring. 

In genetic programming, an optimization problem might have several potential solutions, 

which are called individuals or phenotypes. Each individual has a set of properties, which are 

called genotype or chromosomes and are usually represented as a series of binary zeros and 

ones though other representations are also possible (Whitley, 1994, p.66). The genotype is a 

combination or mutation of chromosomes from the two parents of the individual. The genetic 

algorithm starts by generating some random individuals and forms an initial population. This 

population consists the initial generation, too. The algorithm evaluates every individual with a 

score using a fitness function and this score is usually the value of the function to be 

maximized / minimized. Then it selects some of the fittest individuals to generate offsprings 

for the next generation / iteration, applying the evolution mechanisms (crossover, mutate) to 

parents. The offsprings form the next generation and the steps start again until the termination 

criteria are satisfied, such as a maximum number of iterations (Prebys, 2007). The number of 

the children two parents can produce can vary but it is usually two. 

Even though it is difficult to measure the complexity of the genetic algorithms, it is perceived 

that the computational complexity of the problems they have to solve is related to the search 

space of the solutions (Rylander and Foster, 2001). Therefore, they converge slower to a 

solution when the problem is big or complex and need extra computational power to keep 

their execution time as low as possible. 
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4.2 Genetic Operators 

Genetic operators are operators that are used in order to alter, transfer or combine genetic 

code to other individuals. Two operators are going to be explained because they are the ones 

mostly used. 

4.2.1 Crossover 

Crossover (Bajpai and Kumar, 2010) is an operator for selecting which chromosomes from 

the parents are going to be transferred to the offspring. There are several methods to do this 

but the simplest is the one-point crossover. In this method, a single crossover point is set on 

the chromosome series of both parents. The children should inherit the chromosomes (or bits) 

from the first parent up until the crossover point and the rest from the second parent, after its 

crossover point. Figures 3a and 3b illustrate an example. 

 
 

Example with bits: 

 

Parent 1: 10001001110010010  

Parent 2: 01010001001000011 

 

Child  1: 10001001101000011 

Child  2: 01010001010010010 

 

4.2.2 Mutate 

The mutation operator (Bajpai and Kumar, 2010) flips one chromosome from its initial value 

to something else. The reason is to ensure the diversity of the population; otherwise the 

solutions would become too similar to each other. There various methods for this operator as 

well, but only the bit string mutation is going to be explained since it is the one implemented 

in this work. Bit string mutation is to flip a bit to its opposite state, for example from 0 to 1 or 

from 1 to 0. The number of mutations in every bit string is defined by a probability value, 

which is usually quite low. The algorithm performs first the crossover function and then for 

every bit in the string it calculates, based on the chance, whether a mutation operation should 

be applied. A mutation example is illustrated below (Wikipedia, 2013): 

 

Example: 

1 0 1 0 0 1 0 

    
↓ 

  
1 0 1 0 1 1 0 

Figure 3: a) Chromosome inheritance with crossover operator (One Point Crossover, 2013), b) Same example in 

bit string format (Ai-junkie, n.d.) 
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The probability of mutation here is only 1 per string or (1 / string length). 

4.3 Conclusion 

This chapter described what genetic algorithms are and how they work. They are algorithms 

that encode a solution of a problem into a bit string and then with various operators (copy, 

mutate, crossover) they pass certain bits to a child solution. The best solutions towards a goal 

are passed to the next generation which repeats the same steps. The operators were described 

individually at the end of this chapter.  
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Chapter 5: AQOSA framework 

5.1 Overview 

This work is based on the AQOSA framework by Etemaadi, et al. (2013), which stands for 

Automated Quality-driven Optimization of Software Architecture. The purpose of this tool is 

to find architecture designs automatically. The research community converges to two kinds of 

solutions to achieve this:  Rule-based solutions and Metaheuristic-based solutions. Rule-based 

solutions rely on standard rules and tactics in order to fix and certain ill-performing parts of 

the architecture. Metaheuristic-based solutions (Blum and Roli, 2003 cited in Etemaadi, et al., 

2013, p.2560) try to optimize architecture towards its quality goals, in subsequent iterations, 

until a good enough solution is found. Every iteration can generate a lot of potential solutions 

to be optimized in the next iteration, which is called the design space. In order to effectively 

search this space there are various techniques, such as: genetic algorithms, neural networks 

and more. AQOSA is a metaheuristic-based tool for many quality objectives. Its search 

method is genetic algorithms that optimize the software architectures. 

5.2 Process 

 
Figure 4: Overview of AQOSA architecture (Etemaadi, et al., 2013) 

AQOSA is written in Java and it is built based on a modular architecture as seen in Figure 4. 

It uses an internal representation (IR) for describing the architectural problem, which is the 

basis for its core and for the modeling editor. AQOSA works on an input file which contains: 

1) the components of the architecture (software, hardware), 2) usage scenarios, 3) the 

objective function, indicating which quality properties should be considered, 4) the 

components’ specifications. The user can model their input with the model editor and then the 

AQOSA follows these steps: 
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1. Create new potential architectures / solutions using genetic algorithms. 

2. Evaluate the new solutions based on the selected quality properties. 

3. Choose some Pareto-optimal solutions. 

4. Repeat step 1 until the quality objectives or the maximum number of generations has 

been reached. 

5.3 Architecture Modeling 

In the beginning, the user has to create the input file by modeling the architecture and the 

problem in the visual editor. What the user can model is defined by the AQOSA-IR. The IR is 

simply holder classes that hold the elements of the model after parsing and it is defined by a 

meta-model. The meta-model can be seen later in Figure 9, in section 6.3. The meta-model 

contains, among others, the four parts required for the input file. 

 Assembly: It contains the software components, their services, their flows for 

interacting with other components and the actions for these interactions. 

 Repository: It contains the hardware components (processors and buses) available for 

usage in the architecture. It also contains the implementation of the software 

components and their assignment on the hardware components. The optimization 

phase actually starts from this place. Moreover, it stores various specifications of the 

software and hardware (i.e. CPU cycles, bus bandwidth, etc.). 

 Scenarios: They are the different scenarios the system might run on. They contain time 

constraints and deadlines. 

 Objectives: The quality objectives to be used for optimization. 

5.4 Architecture Optimization 

The optimization process can be done with various genetic algorithms. The case study of this 

work is based on the NSGA-II algorithm (Deb, et al., 2002 cited in Etemaadi, et al., 2013, 

p.2562) (non-dominated sorting based multi-objective evolutionary algorithm), which is 

implemented based on the Opt4J optimization framework (Lukasiewycz, et al., 2011). 

The genotype, used for optimization, includes: the software components, the hardware nodes, 

the allocation of the former on the latter, the communication (bus) lines and the connection of 

hardware nodes with these lines. The genotype can be seen in Figure 5. 

During the optimization, many alternative architectures are produced using the copy, mutate 

and crossover genetic operators. However, it can happen that an alternative architecture 

consists of invalid topology or allocation, for example nodes with no bus lines etc. Therefore, 

AQOSA filters out these invalid architectures. 
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Figure 5: Genotype of an architecture in AQOSA (Etemaadi, et al., 2013) 



23 

 

5.5 Output 

The tool optimizes the architectures with regard to 5 quality attributes: 1) Cost, 2) Processor 

utilization, 3) Communication line utilization, 4) Response time, 5) Safety. However, the 

framework’s open architecture allows the addition of more custom quality attributes. After the 

optimization, the tool produces diagrams which show the alternative architectures in respect 

to pairs of quality attributes, the Pareto fronts. Figure 6 shows an example Pareto front of 

solutions in respect to Response time and Cost. 

5.6 Conclusion 

This chapter provided an overview of the AQOSA framework, which this work aims to 

extend. AQOSA uses genetic algorithms to iteratively optimize an initial architecture towards 

multiple quality objectives. A user can model the architecture (software and hardware 

components), as well as its specifications, usage scenarios and the quality objectives. The 

optimization works by changing the allocation of software components on hardware 

components and the connection of communication lines to hardware components. At the end, 

the tool displays the resulting architectures in diagrams, such as the Pareto front for two 

objectives (Figure 6). 

 

Figure 6: Example of a Pareto front of optimized solutions for Cost and Response time 
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Chapter 6: Methodology 

The methodology of this work consists of code contributions, such as the addition of parsers, 

the implementation of three algorithms, the addition of various helper methods and the 

modification of some existing code. Moreover, it consists of modifications of the framework’s 

meta-model, as well as of the creation of the case study and feature model. Certain third party 

libraries were used for the creation of the feature model and for visualization purposes. 

In particular, the extension of the AQOSA tool required: 1) the modification of its workflow 

process, in order to add a feature modeling step and to repeat the optimization process for 

every configuration, 2) the use and integration of feature modeling tools, 3) the modification 

of the framework’s intermediate representation (IR) to include features inside the model, 4) 

commonality analysis, as a last step in the process, in order to find common solutions in all 

Pareto fronts. 

6.1 New process 

This work introduces a new workflow process for the tool, which is shown in Figure 7. The 

new process includes the following steps: 

1. Feature Modeling 

2. Architecture Modeling 

3. Mapping of features to software components 

4. Selecting the configurations (products) for optimization 

5. Optimization for every product 

6. Commonality Analysis 

Step 1 is the step where the user has to create the feature model of the product line. The 

modeling can be done with certain feature modeling tools, which are described in the next 

section. Step 2 regards the modeling of the system architecture with its software and hardware 

components and it is not different from the previous process version. The third step is about 

connecting the features from the feature model to the software components of the architecture. 

Step 4 is optional and it is used when optimization is needed for specific products only. Step 5 

is the ordinary AQOSA optimization tweaked to run for every defined product and producing 

the respective result sets. Step 6 is the last step of this process and it is where the 

commonality analysis takes place. The algorithms try to find the solutions that are common in 

all the result sets and display them. 



25 

 

 

  

Figure 7: The new proposed process of AQOSA 
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6.2 Feature modeling tools 

Step 1 of the new process requires some tools to model the feature model and find all of its 

different configurations. After trying several tools, the ones chosen were: Clafer and Alloy. 

These tools found to be the easiest to use, work great together, have good documentation and 

can be handled by Java code without having to implement anything (parsers etc.). The only 

problem is that Clafer cannot be used from inside a Java program, so the user has to write the 

feature model externally in a file, compile it to Alloy, and then feed this file to AQOSA to 

find the different configurations with the Alloy Analyzer. However, the way of modeling a 

feature model is out of the scope of this work and other methods could be used. Figure 8 

shows the feature model, written in Clafer, that was used in the case study and whose 

corresponding diagram is depicted later in Figure 13. 

 
Figure 8: Representation, in Clafer, of the feature model used in the case study 
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6.3 How to link features 

The AQOSA framework works by using an internal representation of the system architecture 

under test. Therefore, a user models their architecture (software and hardware components) 

based on AQOSA’s meta-model, which can be done using the Eclipse’s EMF editor. The 

question now becomes: how this architecture can connect with the features from Alloy? 

The solution is to allow the user to model the same features in AQOSA, while modeling the 

architecture. The first step was to extend the original meta-model with the notion of features 

that should be modeled in a hierarchical way (parent-child relation). This allows the user to 

add the same features, as the Clafer model, in the architecture and relate them to appropriate 

software components. Practically, the only features that can relate to components are the leaf 

features so this work considers only them for its calculations. The new meta-model is shown 

in Figure 9. 

The second step was to create a map between the Alloy features and the features modeled in 

AQOSA. For the sake of simplicity, this work enforces that the Alloy and AQOSA features 

should be named the same but allows the use of different case of letters for clarity reasons. 

This work uses lower-cased letters for Alloy features and upper-cased letters for AQOSA 

features. The need of this mapping is essential because the Alloy Analyzer produces the 

different configurations using the Alloy features, but the optimization work of AQOSA is 

done using the model, based on its internal representation. 
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Figure 9: The new AQOSA meta-model showing the addition of features and their relations 
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6.4 Optimization for multiple products 

Next, there was the need to make AQOSA generate alternative architectures for every 

selected feature configuration. This was done by running the optimization process as before, 

one time for every configuration. The tool simply keeps the alternative architectures that their 

software components were strictly related to the features of the current configuration, while 

filtering out the rest. After the end of the optimizations, the tool produces one set of 

alternative software architectures (Pareto front) for every selected feature configuration. 

These fronts are the input of the Commonality Analysis step and its algorithms. 

6.5 Commonality analysis of solutions 

In order to answer the research question: which software architecture solution can support all 

the given feature configurations, two algorithms have been created which can find common 

solutions among the Pareto fronts. The one is called “minimum distance” algorithm and the 

other “given (fixed) delta” algorithm. The equality or commonality of the solutions is 

measured by their hardware differences, which is called distance. The tool uses a distance 

algorithm, as the core of the two aforementioned algorithms, to compare two solutions and 

therefore it will be explained first. The AQOSA tool, by its nature, produces solutions that can 

vary a lot from each other and it is rare for two solutions to have exactly zero distance. For 

this reason, two solutions are considered almost equal when they vary within some distance 

score, Δ (delta). 

6.5.1 Solutions distance algorithm (DA) 

Each solution object contains a list of CPUs and a list of buses that connects them. Two 

solutions are considered equal when they do not require any hardware changes in order to 

have the same hardware. On the other hand, two solutions are not equal when they require 

some change of hardware in order to match the hardware of the other. This number of changes 

required from one solution to the other is the distance. Our algorithm is inspired by the 

Levenshtein distance algorithm (Dictionary of Algorithms and Data Structures, 2013), which 

measures the distance between two words / strings. The Levenshtein distance algorithm is 

used in:  

 Spell checking  

 Speech recognition  

 DNA analysis  

 Plagiarism detection  

Our approach is simpler, because the order of the hardware in the list does not matter, unlike 

the aforementioned algorithm where the order of letters does matter. The DA works by 

comparing if each element of one list is contained in the other list and rules them out. The 

number of the remaining elements is the simple distance, because they show how many of 

them need to be changed.  
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In addition, DA considers how these changes are going to be applied. A change can be 

implemented with one of the following operators: substitution, addition and removal. The 

costs of these operators are not the same because changing a component with another is 

always easier than modifying (add/remove) an existing topology, which can also lead to 

modification of the buses and their connections. Therefore, the algorithm adds weights to the 

operators so that the cost of Substitution operator is always lower than the cost of an Addition 

plus a Removal operator. In particular, this work adds to the addition 3 units of difficulty 

while the Substitution has 1. The algorithm’s pseudo code follows below. 

 

The algorithm works as follows: 

1. Find which list is longer than the other 

2. Create a copy of each list. (e.g. longList, shortList) 

3. For every number in the longList search if it is contained in the shortList 

4. If it is contained then delete it from both lists 

5. After the loop, the distance is the remaining numbers in the longList 

In step 3, the iteration of the long list and the search in the short list is convenient, because the 

other way around would require to search again in the long list for the remaining numbers. 

Example 

Solution1 is based on processors with power [10, 20, 30] and solution2 is based on processors 

with power [10, 10, 20, 40]. In this case the distance is 4 because two operations are needed in 

order to convert one list to the other (1 substitution and 1 addition). From the point of view of 

Figure 10:  Pseudo code of distance algorithm 
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solution1, 1 CPU change and 1 additional CPU are required and from the point of view of 

solution2 it is required 1 removal and 1 substitution. Similarly, the distance score can be 

calculated for the list of buses that connect the CPUs. The final distance score of the solution 

is the summary of these two scores. 

Based on the previous example: 

 Iteration 1 Iteration 2 Iteration 3 Iteration 4 

Long list [10, 10, 20, 40] [10, 10, 20, 40] [10, 10, 20, 40] [10, 10, 20, 40] 

Short list [10, 20, 30] [10, 20, 30] [10, 20, 30] [10, 20, 30] 
 

Table 1: Example showing the steps of the distance algorithm working on two lists of processors 

 

6.5.2 Sum of minimum distances algorithm (SMDA) 

The concept of this algorithm is to find the total number of minimum steps needed (distance) 

for one solution to match the some other solution in every other Pareto front. The solution that 

has the smallest sum of distances can be considered whether it can satisfy the research 

question or not. In other words, one has to find the minimum distances between one Pareto 

front and all the others.  

Practically, this means that one has to find the minimum distance between one solution and 

another solution of another Pareto front. Doing the same for all the other Pareto fronts, it sums 

all the minimum distances and stores the sum in a list. At the end, it sorts the list and one can 

see if the smallest sum of minimum distances is acceptable. The pseudo code is given in 

Figure 11. 

The algorithm works as follows: 

1. For each solution in a Pareto front 

2. Calculate and store its distance from each and every solution in another Pareto front 

3. Choose and store the minimum distance 

4. Do the same (step 2 and 3) for the remaining Pareto fronts 

5. After all Pareto fronts are iterated (step 4), sum the minimum distances 

6. Store the sum in a final list 

7. Repeat step 1 for all Pareto fronts 

8. Sort the final list in ascending order. 

The outcome of this algorithm is a sorted list of distances, which means that one solution can 

be common for all Pareto fronts within X number of hardware changes. It is up to the user to 

decide whether the distance is too much for the solution to be considered common or not. 
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Example 

The algorithm works by iterating over all Pareto fronts (A, B, C for brevity) and checking all 

solutions (A1, A2, B1, B2, C1). 

A1   B1   C1 

A2   B2 

 

At first it will iterate over Pareto A and will check every solution. For example A1 with all 

solutions from the next Pareto front. It will fist measure the distance between A1-B1 (store 

this result) and then A1-B2 (store result). When it is done with Pareto B then it will find the 

minimum of these distances. Let's say that the minimum is A1-B1 with distance 0. If there are 

other Pareto fronts it will check them subsequently and add all these minimum distances 

between A1 and the other Pareto fronts. In this case, it is only A1-C1 (i.e. distance 1), which 

is the minimum distance between Pareto A and C, and it is added to the previous minimum 

distance. So in the final list it stores the sum of minimum distances of the pairs A1-B1 and 

A1-C1, which is 1. Then it does the same for A2. It checks A2-B1 and then A2-B2. Let's say 

the minimum here is A2-B2 with distance 1, and then A2-C1 again with distance 1. Their sum 

is stored in the final list as A2-B2 and A2-C1. 

Figure 11: Pseudo code of SMDA 
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Then it does the same for Pareto B. It checks B1-A1 and then B1-A2, which we have already 

measured from previous iteration of Pareto A. So again the minimum here is B1-A1 (distance 

0). Then it checks the remaining Pareto C with B1-C1 having distance 1 and the sum (0+1) is 

stored in the final list. For B2 similarly we have B2-A2 as the minimum and the same process 

for Pareto C. 

At the end of all iterations we have the final list: 

[ (A1-B1 & A1-C1), (A2-B2 & A2-C1), (B1-A1 & B1-C1), (B2-A2 & B2-C1), …] 

or showing by total distance: 

[1,2,1,2, …] 

after sort: 

[1,1,2,2, …] 

6.5.3 Common solutions within given delta (GDA) 

This algorithm is simpler and faster, but requires a Δ value to be manually set before running. 

The concept is to find a solution which is equal in all Pareto fronts or that can differ within a 

range (Δ). As discussed earlier, it is rare for two solutions to be exactly equal so one can 

allow a small deviation in their distance and consider them sufficiently equal, same as double 

numbers comparison. The pseudo code is displayed below. 

The algorithm works as follows: 

1. For every solution in the first Pareto front only  

2. Check if it is common with any solution of the next Pareto front (distance <= delta) 

3. If common is found then continue searching in the next Pareto front and repeat step 2 

and 3 until no other fronts exist. If no common is found then do not bother checking 

the next fronts and repeat step 1 for next solution. 

Figure 12: Pseudo code of GDA 
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4. If a solution is common in all fronts then store it in a list 

The product of this algorithm is a list of solutions that are common in all Pareto fronts within 

a deviation delta. This algorithm does not bother to check the rest of the fronts if no common 

solution is found between a solution and one Pareto front because the commonality is broken. 

The SMDA checks all the possible combinations regardless of delta, making it slower than 

GDA. This algorithm can be used when an upper boundary for commonality is needed or 

when there is sufficient domain and empirical knowledge to determine the appropriate delta 

deviation. 

Example 

Suppose that the allowed delta is 1 and that there are 3 Pareto fronts with solutions as follows: 

A1   B1   C1 

A2   B2 

GDA will iterate over solutions in Pareto A and for every solution it will check in the next 

Pareto (B) for common solutions. At first it will check A1-B1 (say distance here is 2) and then 

A1-B2 (distance here is 3). No common solution is found so it does not check Pareto C. For 

A2 it checks A2-B1 (distance 2) and then A2-B2 (distance 1). This is a common solution so 

now it can check Pareto C. A2-C1 (distance 0) shows another common solution. At the end 

A2 is stored in the final list of common solutions. 

6.5.4 Weaknesses 

The DA is currently using only the processors’ distance and not using the bus distance at all. 

This is approach is chosen mostly for demonstration and validation purposes of this work, as 

it is easier to see which specific changes are required by a solution. The addition of the bus 

distance only increases the distance score but makes it harder to see which change operators 

apply. For example a distance score of 3, could be interpreted as 3 CPU substitutions, or 3 bus 

substitutions, or 1 CPU addition, or 1 bus addition, etc., but using only the CPU distance it 

would mean only two things. This algorithm could be improved by explicitly providing a list 

of operators for every distance score. 

Another concern for the same algorithm is the fact that it assumes that the calculation of CPU 

and bus (hardware) distance is sufficient to compare two architectures. Further study is 

needed to investigate whether some other parameters should also be considered, such as the 

software components per CPU. The reason this work does not consider software components 

is that it assumes that a software change, in an architecture solution, is fairly easier and 

cheaper compared to a hardware change. 

The SMDA contains a small bug, though it is not very difficult to fix. As one can notice in the 

example of that algorithm, the problem is that both ones and both twos refer to the same 

combination. So it calculates and displays them two times. It is easier to be noticed if one tries 

to read the example without having the third Pareto C. At the end of all iterations the final list 
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would be: [(A1-B1), (A2-B2), (B1-A1), (B2-A2)] but A1-B1 and B1-A1 is the same 

combination / distance. It's like it calculates the permutations of the solutions while it only 

need the combination, where order does not matter. It's an annoying but not grave error. The 

solutions would be to implement some kind of history log where all the searched 

combinations are stored. 

6.6 Conclusion 

This chapter described the work of this thesis; how the tool was extended, what modifications 

were made and what tools were used. The work introduced a new process for the tool, which 

involves the new steps of feature modeling, mapping features with software components, 

running the optimization for the selected products and performing commonality analysis on 

the results. In order to model features, two external tools were used and three algorithms were 

created for finding the common solutions. At the end of the chapter there is a discussion about 

the identified weaknesses of the algorithms.  
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Chapter 7: Case Study 

7.1 Forming the case study 

The feasibility of the proposed method was tested using a case study. Since this work is an 

extension of a previous work, it was naturally based on the old case study. This way the 

results are coherent, easily comparable and easy to validate. The old case study is a real-world 

study from the automotive industry (Etemaadi, et al., 2013) but it does not provide neither 

many nor interesting feature configurations. For this reason, another case study from the 

automotive industry (González-Huerta, 2012), which uses many features and cross-tree 

constraints, was integrated to the old case study. The new features that were added include: 

cruise control system, park assist system, airbag system, etc. and they make the optimization 

problem more challenging and complex. 

The goal is to run the optimization procedure for all the defined products (feature 

configurations) in the product line and find the optimal solutions that are common in all 

products, within the minimum changes.  

The feature model of this study is shown in Figure 13. The root element of this model is a car, 

since this product line targets the automotive industry. Any car product is mandatory to have 

an ignition switch, interior light and a dashboard. It may optionally have: airbag system, park 

assist system, theft alarm, cruise control system, stability control system, traction control 

system and anti-lock breaking system. Some features may come in different variations, for 

example: the ignition switch can only be either key ignition or button ignition; the dashboard 

can be either simple or extended. The airbag system, if chosen, must always provide front 

airbags and optionally side and/or passengers’ airbags. The cruise control can either be basic, 

adaptive or fully adaptive. The stability control system can either be of basic or extended 

form. There are also cross-tree constraints marked by green and red arrows in the figure. 

Green arrows show dependency constraints and red arrows show mutually exclusive features 

(i.e. button ignition with simple dashboard). 
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Figure 13: The feature model of the case study 
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The features are mapped on the software components under the following schema: 

Feature Component 

Interior Lights SC_InteriorLights 

Theft Alarm SC_TheftAlarm 

Park Assist SC_ParkAssistSystem 

Key Ignition SC_IgnitionKey 

Button Ignition SC_IgnitionButton 

Simple Dashboard ProvidePowerModeInfo 

ControlEngineSpeedGauge 

ReadWheelSpeedSensors 

ControlWheelSpeadSensors 

EngineVehicleInterface 

ControlVehicleSpeedGauge 

Gauge_Engine 

ControlOdometer 

Display_Engine 

ReadDriverDoorAjarSwitch 

ReadTripStemButton 

Extended Dashboard ControlCoolantTempGauge 

ControlEngineSpeedGauge 

ControlGearSelectedIndication 

ControlOdometer 

ControlOutsideAirTemp 

ControlVehicleSpeedGauge 

ControlWasherLevelIndication 

ControlWheelSpeed 

Display_Engine 

EngineVehicleInterface 

Gauge_Engine 

ProvidePowerModeInfo 

ReadDriverDoorAjarSwitch 
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ReadLowWasherLevel 

ReadOATSensor 

ReadTripStemButton 

ReadWheelSpeedSensors 

TransmissionVehicleInterface 

Antilock Braking System SC_ABS 

Traction Control System SC_TractionControlSystem 

Basic Skid Control SC_BasicSkidControl 

Extended Skid Control SC_ExtendedSkidControl 

Basic Cruise Control SC_BasicCC_CalculateVelocity 

SC_BasicCC_ComputeDesiredSpeed 

SC_BasicCC_ComputeThrottleSetting 

SC_BasicCC_InControl 

Adaptive Cruise Control SC_AdaptiveCC_CalculateVelocity 

SC_AdaptiveCC_ComputeBrakingSetting 

SC_AdaptiveCC_ComputeDesiredSpeed 

SC_AdaptiveCC_ComputeThrottleSetting 

SC_AdaptiveCC_InControl 

Fully Adaptive Cruise Control SC_FullyAdaptiveCC_CalculateVelocity 

SC_FullyAdaptiveCC_ComputeBrakingSetting 

SC_FullyAdaptiveCC_ComputeAirbagSetting 

SC_FullyAdaptiveCC_ComputeDesiredSpeed 

SC_FullyAdaptiveCC_ComputeSeatbeltSetting 

SC_FullyAdaptiveCC_ComputeThrottleSetting 

SC_FullyAdaptiveCC_InControl 

Front Airbag SC_AirbagSystemFront 

Sides Airbag SC_AirbagSystemSides 

Passengers Airbag SC_AirbagSystemPassengers 

Table 2: Relation of features with the software components 

In this table someone can see the whole set of the software components used in this case 

study. The old components are the ones which correspond to simple and extended dashboard,
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 while the new ones have the prefix SC. However, AQOSA works by simulating information 

flow across components, which cannot be seen in Table 2. Several flows were created - at 

least one for every feature – and they are best illustrated in sequence diagrams. One flow 

example can be seen in Figure 14 which depicts the Fully Adaptive Cruise Control 

calculation. One can see how the different software components communicate with each other 

and with the input and output devices. Extra timing constraints, important to AQOSA, are 

also visible in the diagram. For brevity, the different input and output devices where grouped. 

Figure 14: Sequence diagram of FullyAdaptiveCruiseControl system operation 
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7.2 Products 

The feature model allows for 480 different feature configurations that satisfy its constraints. 

Although this number is considered low for real-world industrial cases, it is prohibiting for 

running the optimization for all of them since one optimization may take hours. For this 

reason, only five different cars (products) were selected to be optimized. The five cars were 

selected in a way that they evenly and gradually cover the whole spectrum of features without 

being irrational or infeasible. The selection was also based on their resource needs. The tool 

calculated for all configurations, the total processing power and bandwidth their hardware 

components need. Then, the configurations were sorted based on those values and five were 

picked to cover the whole range of values. The claims are displayed in frequency graphs in 

Figure 15 and Figure 16. The results show that the five selected cars rank 5, 104, 264, 389 and 

480 respectively. Feature-wise, the cars vary from simple low-end car to full-featured luxury 

car, as can be seen next. 

 

Figure 15: Frequency graph of configurations classified by the bandwidth needs of their related components 
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Figure 16: Frequency graph of configurations classified by the processing needs of their related components 

 

7.2.1 Car1 

The first selected car does not include many features and its feature configuration is displayed 

in Figure 17. Like every car from that product line, it contains the mandatory features: interior 

lights, ignition switch and dashboard. Car1 is a simple car so it comes with a simple 

dashboard and a key ignition because the simple dashboard excludes the use of button 

ignition. Moreover, it has the optional feature airbags, with just front airbag deployment. 

 

Figure 17: Selected features of Car 1 
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7.2.2 Car2 

Car2 extends Car1 with the addition of the following features: basic skid control, traction 

control and anti-lock braking system. Figure 18 describes this configuration. 

 

Figure 18: Selected features of Car 2 
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7.2.3 Car3 

Car3 differs from Car2 by having extended dashboard with key ignition and by adding the 

basic cruise control feature, as can be seen in Figure 19. 

 

Figure 19: Selected features of Car 3 
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7.2.4 Car4 

This is a more luxurious car because it extends Car3 by adding theft alarm and switching to 

button ignition and adaptive cruise control. Its feature configuration is displayed in Figure 20. 

 

Figure 20: Selected features of Car 4 
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7.2.5 Car5 

Car5 is the most feature-rich car of the line. In Figure 21, it is shown that it implements all the 

features and selecting the best ones in mutually exclusive cases. 

 

Figure 21: Selected features of Car 5 

 

7.3 Experiment 

In order to test the proposed method, an experiment needs to be run for optimization and 

commonality analysis later. AQOSA works by targeting quality objectives, so in order to run 

the experiment these objectives have to be set. This experiment considers five quality 

objectives: 

1. Response time 

2. Bus utilization 

3. CPU utilization 

4. Cost 

5. Safety 

In addition to the software components defined in the case study, the hardware components 

needed are based on the old case study (Etemaadi, et al., 2013) but tweaked in order to 

support more software components: 

 10 Processors: 10, 40, 60, 80, 100 MIPS with various failure rates (safety). The cost 

increases with the CPU power and / or with safety. 
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 4 Buses: 10, 33, 125 and 500 kbps. Their latencies: 50, 16, 8 and 2 ms. The cost increases 

with the bandwidth. 

AQOSA ran 30 times based on NSGA-II algorithm with the following parameters: 

 Initial population size = 2000 

 Parent population size = 100 

 Number of offspring = 50 

 Archive size (max number of optimized solutions per iteration) = 25 

 Number of generations = 500 

 All quality objectives were aimed to be minimized. 

After the optimization, the commonality analysis was run for all Δ values [0-9]. The GDA 

was configured with different weights for the change operators. w = 1 for the substitution 

operator and w = 3 for the addition operator. 

7.4 Results 

The experiment was run for all the five products and produced 5 different Pareto fronts, one 

for every product. Each front contained the 25 most optimal solutions for its product, as 

limited by the experiment parameters, making a total search space of 125 solutions. 

After the optimizations, AQOSA performed the commonality analysis on the results. It tried 

to find common solutions across all five configurations using the GDA. The commonality 

analysis performed for every delta value between [0 – 9]. The algorithm found the following 

number of common solutions per delta value: 

Delta 0 1 2 3 4 5 6 - 9 

Solutions 0 6 14 20 21 21 22 

 

Table 3: Number of common solutions found by GDA in various delta values 

This means that GDA did not find any architecture that is exactly the same (distance-wise) in 

all fronts. However, it found 6 architectures that are close enough to be considered common. 

The following excerpt (Figure 23), from the results of GDA, shows that solution 3, from Car 

1, has distance 0 from solutions of Car 2, Car 4 and Car 5 and distance 1 from solution of Car 

3. This shows that the algorithm can find nearly true common solutions which can be left to 

the architect for further consideration. 

Next, the AQOSA ran the SMDA to find the minimum total number of changes of the 

common solutions. Figure 24 shows an excerpt of the best results of SMDA. The algorithm 

produced a sorted list of sums of minimum distances. It managed to find solutions that need, 

in total, less number of changes (distance), than the GDA. In most cases it found at minimum, 
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a total distance of 1 while the previous algorithm showed only one total distance of 1. A more 

detailed view is shown in Table 4, which provides a comparison between the two algorithms. 

The table shows that 3 experiments were run using both algorithms and the total distance of 

the common solutions found by the two algorithms is displayed. Since the GDA runs many 

times during an experiment for different delta values, the comparison is done using the 

number of common solutions found by the lowest possible delta against the equivalent best 

SMDA solutions. It is obvious that SMDA always finds closer common solutions than GDA. 

GDA SMDA GDA SMDA GDA SMDA

4 2 5 1 4 1

3 2 5 1 4 1

4 2 5 1 1 1

3 2 5 1 4 3

4 2 5 1 4 3

3 2 4 1 4 3

4 2

AVG 3.571429 2 4.833333 1 3.5 2

Experiment 1 Experiment 2 Experiment 3

 
Table 4: Comparative results of the total distance of the best common solutions 

 

7.4.1 Interpretation of results 

AQOSA displays every solution as a series of lists and numbers, as in Figure 22 below. Every 

solution consists of a list that shows on which processor the various software components are 

deployed. In this example the first component is deployed to processor 1, the second and third 

component to processor 2 and so on. Moreover, the tool displays a summary and a description 

of the processors, a summary and a description of the buses that connect the processors and 

lastly a boolean mask-table showing which processors the buses connect. 

 

 

Figure 22: Explanation of an optimized architecture (solution) as displayed by AQOSA 

A typical output of the algorithms (Figure 23) consists of a numbered solution, which is the 

current common solution, followed by its related solutions in the other Pareto fronts in the 

indented lines. The related solutions have the distance from the common solution as a prefix 

and adding these distances results in the total distance of the common solution. In this 

example, one can see that the first common solution differ by distance 1 from the second 
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solution, in the second Pareto front, distance 1 from the third, etc., and total distance is 

1+1+1+1 = 4 

 
Figure 23: An extract from the results of GDA showing the 3 closest common solutions 

 

 

Figure 24: An extract from the results of SMDA, showing the total distance of the common solutions in a sorted 

list, and the 3 best common solutions below 

For clarity, some common solutions of bigger distance are visualized, to see how the DA 

works and how the string output visually corresponds to an actual architecture. Figure 25 

shows the string output of the common solutions and Figures 26-27 the visualization of their 

architectures. To keep it simple this example shows only the CPU distance, so the only 

important part of the output is the distance score and the CPU description. 

Figure 25: A string output of a common solution and its related ones, found by GDA 
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The common solution comes from the optimization, so it refers to Car1. Its hardware 

architecture is visualized in Figure 26. It can be seen that the three processors (100, 100, 600) 

match the ones in the string output. The related solutions are depicted in Figure 27. 

 

 

Figure 26: Graphical display of the architecture of the common solution (Car1) in Figure 23. Note the 3 

processors of 100, 600 and 100 MHz 

 

 

Figure 27: Architectures of a) Car2, b) Car3, c) Car4, d) Car5 
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Car1 differs from Car2 by distance of 2 because they only need to change 2 CPUs in order to 

match. Car1 differs from Car3 by distance of 3 because the latter has 2 CPUs in common but 

lacks the third. So it needs to add another CPU and this operation costs 3 according to the 

weight. Similarly, the same patterns are can be seen in the other architectures. 

The tool also produced JavaScript files, which help visualize the connections between the 

common solutions and their related ones. It uses the Protovis visualization library (Bostock 

and Heer, 2009; 2010). Figure 28 shows the common and related solutions of the results of 

GDA with Δ = 1. Solutions with distance 0 have no lines and solutions with bigger distance 

have bolder lines. 

In conclusion, the results show that the tool finds alternative solutions that are efficient in all 

their quality attributes, as expected. Moreover, with the extended functionality it finds the 

solutions that are common in all the selected products of the product line. Even though the 

common solutions are not exactly equal, they are still sufficiently close to their related ones 

and answer the research question. 

7.5 Limitations 

The results of this work show reveal some limitations and threats to its validity. The most 

obvious problem is that the tool failed to find any common solution with exactly equal (zero 

distance) from its related ones. Although, it found pretty close distances, it would be nice to 

see zero distance in some experiment. The problem may lie in the case study simply not 

having a common solution, or the evolutionary nature of AQOSA, making it improbable to 

generate 5 identical solutions. Regardless of which problem applies even if there was a zero 

distance finding which would mathematically prove the case, in a real-world scenario it is 

unrealistic to expect exactly the same common solution across all configurations. That is due 

to hundreds of features and thousands of configurations in such cases. Even if there were 

some common solutions of zero distance, they would be so few that a software architect 

would still have to choose some that are not exactly zero-distance. In fact, the software 

Figure 28: Common solutions connected to their related solutions. The lines show the distance between them 
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architects expect to choose sufficiently close commons solutions which can be altered with 

little effort to fit their needs and for this reason this problem can hardly be considered as one. 

The most serious threat to validity is that this work has not been reviewed by a domain expert. 

This case study is an extension of a real-world case study and the parameters of the new 

components are set intuitively, based on the old components. The original case study was 

reviewed by experts but this one still needs validation in order to reflect a real-world example. 

However, it should be noted that this is primarily a proof of concept work which produced 

evidence that allows it to be applied in more domain-specific problem. 

The use of case-studies in this work is also a threat to external validity because it could limit 

the ability to generalize the findings of this work. Although it is unavoidable for this kind of 

research, the threat can be minimized by creating a generic design and trying it against many 

case studies (Torkar, 2012). In that sense, this work provided the functionality and design for 

the tool to handle any case study. More case studies remain to be seen using this tool. 

Another limitation, of practical nature, is that the experiment needs big computational power 

in order to be executed. The experiment was run on a supercomputer because it was too time-

consuming for a laptop. It is noteworthy to mention that on the laptop it was incomplete after 

3 hours, but on the supercomputer it was done in slightly more than thirty minutes. The reason 

is that multi-objective optimization is a computational demanding task by itself. The addition 

of an extra dimension for features grows the search space even more and makes the tool to 

execute many times, one time for every configuration under test. 

7.4 Conclusion 

This chapter presented the case study that was used for testing the proposed approach. The 

case study is based on the old study used by AQOSA, extended with more features and 

components. The feature model can give 480 different products, but only 5 were selected 

because it was too time-consuming (if possible at all) to test them all. The selection was made 

in a way that the products would be representative of all feature configurations and resource 

claims. As a final step, the experiment was set up using parameters from the old case study. 

Moreover, this chapter presented the results of the experiment. The experiment was run for 5 

different products, using the GDA and SMDA to find common solutions. Excerpts from the 

results of both algorithms were presented, which indicate that both algorithms can find 

sufficiently close common solutions across all products that apply to all products. However, 

no identical solutions were found in either algorithm, but it is due to the nature of the 

optimization process to rarely give identical solutions. Comparing the two algorithms, it is 

clear that the SMDA gives better results overall than GDA, because it finds related solutions 

with less total distance. The DA works also fine but whether the hardware distance score is 

sufficient measure remains to be seen. 
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Chapter 8: Conclusion 

8.1 Summary 

The purpose of this work was to generate alternative software architectures of a system, based 

on its feature model and find those solutions which were applicable to many products. In the 

past, the software architects could analyze all the components of their architecture and 

measure its quality characteristics. If it failed to meet the requirements then another 

architecture had to be optimized by hand. Some tools have been developed to automate the 

process of finding alternative architectures. Tools, such as AQOSA, use genetic algorithms to 

optimize an initial architecture towards the quality goals. However, the optimization of these 

tools regards the software and hardware components but not any features of the system. 

This work extended the AQOSA framework with the notion of features, in order to perform 

feature-based architecture optimization. This extension aims to bridge the gap between the 

software product line community and the software architecture community, in the sense that 

the architecture community currently benefits from the existing optimization approaches but 

not when they apply software product line methods for their systems. 

The research question answered by this work is: “Given a feature model, which architecture 

supports the most features?” The proposed approach was tested on an industrial case study, 

previously used by AQOSA. The case study was extended with more features, in order to 

approach the number of configurations used in real cases. The tool itself was modified to be 

able to model features and run the optimization for all the selected products. Two algorithms 

were implemented and used for finding common optimal architectures for all products. 

The results show that not only the optimizations can find efficient solutions in respect to all 

quality attributes as before, but also the proposed method identifies similar optimal 

architectures which are applicable to the range of the selected products in the software 

product line. 

8.2 Future Work 

The addition of the extra level of features to the optimization problem makes it even more 

difficult, since the amount of potential feature combinations can grow very fast. Future work 

in this area is the use of a smart technique to search the vast search space, because checking 

every single combination is not efficient. Moreover, a new optimization process could 

possibly handle more efficiently the problem, as a two-level optimization problem (features 

and architecture). 

The accuracy of the results could be improved if other optimization techniques could be used. 

The co-evolving Pareto fronts is a technique where optimal solutions could be transferred 

from one population to another. This could give better or more common solutions among the 
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Pareto fronts. One other approach would be to use some graph distance algorithm to measure 

two solutions. 

Another possible improvement would be to make the tool run faster, ideally on PCs. As it is 

now, the tool needs to run on a super computer for medium number of feature configurations. 

For this reason, it is very difficult to test the tool properly and for software architects to use it. 

One solution would be to try to parallelize the code, besides using different search techniques. 

On another note, more research is needed on some assumptions this work has made. One 

assumption is that the calculation of hardware distance is sufficient to compare two 

architectures. This assumption is based on the idea that it is easier to change software 

allocations on hardware than changing the hardware itself. Further study is needed to 

investigate whether some other parameters should also be considered, such as software 

components or even features. 

Another assumption is that a conversion of a common solution to its related one, does not 

affect the distance from the rest of its related solutions. Suppose, for example, that there is the 

triple of related solutions: (A, B, C) where A is the common solution and its distance from B 

and C is 1 and 0 accordingly. Nothing guarantees that, when A changes to B, the distance B-C 

will remain the same.  
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