

UNIVERSITY OF GOTHENBURG

Evaluation of Test Process Improvement approaches An industrial case study

Master of Science Thesis in the Programme Software Engineering

SNEHAL ALONE KERSTIN GLOCKSIEN

University of Gothenburg Chalmers University of Technology Department of Computer Science and Engineering Göteborg, Sweden, 2013 The Author grants to Chalmers University of Technology and University of Gothenburg the non-exclusive right to publish the Work electronically and in a non-commercial purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a company), acknowledge the third party about this agreement. If the Author has signed a copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she has obtained any necessary permission from this third party to let Chalmers University of Technology and University of Gothenburg store the Work electronically and make it accessible on the Internet.

Evaluation of Test Process Improvement approaches An industrial case study

SNEHAL ALONE KERSTIN GLOCKSIEN

© SNEHAL ALONE & KERSTIN GLOCKSIEN, 2013.

Examiner: CHRISTIAN BERGER

University of Gothenburg Chalmers University of Technology Department of Computer Science and Engineering SE-412 96 Göteborg Sweden Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering Göteborg, Sweden 2013

ACKNOWLEDGEMENTS

This thesis was conducted during spring 2013 within the Software Engineering Master's Programme at Chalmers University of Technology and University of Gothenburg, Sweden. The thesis was carried out as a case study and a project at Volvo IT in Gothenburg. First, we would like to thank Johan Uneman at Volvo IT for initiating this project and giving us the opportunity to conduct the thesis at the company. We would further like to give a special thanks to Anna Thorén and Fredrik Ahlborg who have served as our supervisors at Volvo IT.

Further, we want to thank our supervisor at Gothenburg University, Richard Torkar, whose support, inspiration, and knowledge have been very valuable throughout this thesis work.

As a part of the study, we have conducted numerous interviews at Volvo IT. We would therefore like to thank all Volvo IT employees who we have met during this project and who have shown a great willingness to help and assist in answering all of our questions.

Abstract

Context: Test Process Improvement (TPI) approaches are frameworks or models that guide software development organizations to investigate, assess and improve their software testing process.

Objectives: We extend existing work in the area of Test Process Improvement by identifying available approaches and by evaluating them in regards to their characteristics. Furthermore, two selected approaches are evaluated with respect to their content and assessment results.

Methods: In the first part of this study we use a systematic literature review to identify the existing TPI approaches which are then used in the second part of the study. The second part of the study is an industrial case study in which two TPI approaches are applied in an industrial setting.

Results: We contribute in providing (1) a complete, in our opinion, list of 16 existing TPI approaches and their characteristics, (2) a detailed comparison of the content and the results of the two applied approaches (TPI Next and TMMi) and (3) experience in applying them in industry. As a result of this research we found that the content as well as the assessment results of the two approaches are similar to a great extent.

Conclusions: Numerous Test Process Improvement approaches are available, but not all are generally applicable for industry. One major difference between available approaches is their model representation. Even though, the applied approaches generally show strong similarities, differences in the assessment results are noticeable due to their different model representations.

Contents

1	Intr	oduction 7
	1.1	Background
	1.2	Purpose and aim of the study
	1.3	Research questions
	1.4	Delimitations
	1.5	Outline of the study
2	Rela	ited work 10
3	Stuc	ly design and method selection 11
	3.1	Overall design
	3.2	Systematic literature review
	3.3	Case study
4	Exe	cution of the systematic literature review 15
	4.1	Systematic literature review
		4.1.1 Review questions
		4.1.2 Data sources and search strategy
		4.1.3 Study selection
		4.1.4 Study quality assessment
		4.1.5 Data extraction
		4.1.6 Evaluation criteria
		4.1.7 Validation of results
5	Exe	cution of the case study 27
	5.1	Case study design
	5.2	Case description
	5.3	Selection of TPI approaches 28
		5.3.1 Workshop
	5.4	General information about TPI®NEXT and TMMi®
		5.4.1 Staged vs. continuous model representation
		5.4.2 TPI®NEXT 31
		5.4.3 TMMi® 32
	5.5	Mapping between TPI®NEXT and TMMi® 32
	5.6	Test process assessment using TPI®NEXT and TMMi® 37
		5.6.1 Data collection
		5.6.2 Data analysis
6	Resi	ults 42
	6.1	Research question 1
	6.2	Research question 2
		6.2.1 Research question 2.1
		6.2.2 Research question 2.2
	62	Research question 3 49

	6.4	Research question 4	52
7	Disc	ussion	56
8	Thre	eats to validity	59
	8.1	Construct validity	59
	8.2	Internal validity	59
	8.3	External validity	60
	8.4	Conclusion validity	60
9	Con	clusions	62
A	Sum atic	marized inquiries and responses from contacting authors in system- literature review	70
B	Pilot	t search - Search queries	71
С	Tabl	e of all references found in systematic literature review	73
D	Sum	marized inquiries and responses from internal validation	119
Е	Inte	rview questions	120
F	Cha	racteristics of approaches	122

List of Tables

1	Numeric results of snowball sampling.	17
2	Numeric results of electronic search.	20
3	Results of study selection process.	21
4	Snowball sampling - results of study selection process. (Free indicates	
	availability.)	25
5	Case study design.	28
6	Keywords extracted from TPI NEXT	33
7	Keywords extracted from TMMi	33
8	Interviewee description.	39
9	Found approaches.	43
10	Results from applying cumulative voting.	49
11	Pilot Search ACM	72
12	Pilot Search IEEE	72
13	Pilot Search ScienceDirect	72
14	Pilot Search Springer Link	72
15	Systematic literature review - All references	74
16	Characteristics of TMM.	123
17	Characteristics of TMMi ^(R)	124
18	Characteristics of MND-TMM	125
19	Characteristics of MB-VV-MM	126
20	Characteristics of TIM	127
21	Characteristics of TPI	128
22	Characteristics of TPI®NEXT	129
23	Characteristics of TPI®Automotive	130
24	Characteristics of ATG add-on for TPI	131
25	Characteristics of Emb-TPI	132
26	Characteristics of Test SPICE	133
27	Characteristics of Software Testing Standard ISO/IEC 29119 /ISO 3306	3134
28	Characteristics of Self-Assessment framework for ISO/IEC 29119 based	
	on TIM	135
29	Characteristics of Meta-Measurement approach	136
30	Characteristics of PDCA-based software testing improvement framework	k136
31	Characteristics of Evidence-based Software Engineering	137
32	Characteristics of Observing Practice	138
33	Characteristics of MTPF	139

List of Figures

1	Technology Transfer Model (originally published in [Gorschek et al.,	
	2006])	12
2	Phases of the search strategy.	16
3	Study selection process	19
4	Continuous model representation.	30
5	Staged model representation.	30
6	Mapping between TPI NEXT and TMMi.	36
7	Mapping between TPI NEXT and TMMi—Results Part 1	50
8	Mapping between TPI NEXT and TMMi—Results Part 2	51
9	Mapping between TPI NEXT and TMMi. Comparison of assessment	
	results Part 1	53
10	Mapping between TPI NEXT and TMMi. Comparison of assessment	
	results Part 2	54

1 Introduction

This section gives an introduction to the thesis, starting with a background to the topic. Further, the purpose and aim of the study, the research questions and the delimitations of the study are described. The section finishes by giving an outline of the remaining sections in the report.

1.1 Background

Software testing is an ingrained part in the software development process. It is an important activity to support software quality. Major parts of the resources in a software development project are consumed for testing purpose. Studies show that testing constitutes more than 50% of the overall costs of software development [Harrold, 2000]; and with the increasing complexity of software the proportion of testing costs will still rise unless more effective ways of testing are found. One main focus of investigation in industry, for reducing cycle time and development costs, and at the same time increasing software quality are their testing processes [Collofello et al., 1996]. However, state of practice in testing is sometimes ignored or unknown in software development organizations, and testing is done in an *ad hoc* way [Bertolino, 2007] without designated testing roles being defined.

In the past, several Test Process Improvement (TPI) approaches have been developed to help organizations in assessing and improving their testing processes. Nevertheless, to successfully be able to improve testing processes of a specific organization an appropriate approach has to be found which suits their specific needs and the methodologies used in that company. Obviously, the expectations of the companies differ depending on, e.g., internal goals, maturity awareness and process knowledge.

In conclusion, there is a need in providing an overview of available TPI approaches and their specific characteristics in order to assist organizations in selecting the approach most suitable for them.

1.2 Purpose and aim of the study

The main objective of this study is to evaluate existing TPI approaches. This evaluation is split into two parts. First, a general evaluation is applied to all approaches found by a systematic literature review. Second, a more specific and detailed evaluation is performed on a subset of the approaches in a case study.

The first part starts by finding a sufficient set of TPI approaches available in literature. Then these approaches are evaluated by a set of criteria. Besides providing information about the identified TPI approaches useful for further research, this evaluation constitutes the basis for the selection of appropriate approaches to by applied in the setting of the organization under study in the second part of the project, i.e., the case study.

The second part starts with a pre-selection of applicable approaches based on the results of the first evaluation (inclusion and exclusion criteria). A presentation of the pre-selected approaches to the organization results in two approaches which are decided to be applied in parallel in the organization. The selected approaches are ex-

amined and evaluated in more detail regarding their specific content, and finally, after application of both approaches to the organization their results are compared.

1.3 Research questions

With respect to the first part of the study, the identification and general evaluation of existing TPI approaches, the following research questions are answered:

RQ1 Which different TPI approaches can be found in literature?

The intention of this question is to identify research papers dealing with approaches developed to improve software testing processes.

RQ2 What are the specific characteristics of these Test Process Improvement approaches?

The motivation for this question is to identify the unique characteristics which differentiate the approaches from each other. The answers to this question provide the information needed to answer RQ 2.1 and 2.2.

RQ2.1 Which approaches are generally applicable in industry?

Based on the characteristics identified by RQ2 the general applicability of the approaches is investigated by this question. The applicability might be limited by a limitation of the approach to a specific domain, insufficient information, or not completed development, and thus these approaches are not generally applicable in industry.

In the second part of the study, the case study, the following research questions are then answered:

RQ2.2 Which approaches are valuable for test process improvements in the company under study?

Also based on the characteristics identified by RQ2 the approaches appropriate for application in the case organization are selected by organization representatives based on their expert opinion and expectations.

RQ3 How well can the content of the selected approaches be mapped to each other?

To be able to compare the assessment results of the TPI approaches applied in the case organization the similarities and differences with respect to the content of the selected approaches need to be identified. Besides being important input for RQ4, and thus affects the case study, the answers to this question provide significant information in regards to a general evaluation of the applied TPI approaches.

RQ4 How do the results of the selected approaches differ after applying them?

The intention of this question is to investigate to which extent the approaches provide similar assessment results and in which aspects their results differ.

1.4 Delimitations

As this thesis concentrates on the identification and evaluation of TPI approaches and their assessment results, the actual application process of the approaches plays a subordinate role. Therefore, the application of the approaches is limited to the assessment of the test process. Furthermore, the specific assessment processes of the applied approaches have been adapted to the needs of this study as described in later sections.

1.5 Outline of the study

This report is divided into nine sections.

Section 2 - Related work - provides an overview of literature reviews and case studies conducted in areas related or similar to Test Process Improvement.

Section 3 - Study design and method selection - describes the overall design of the study based on the Technology Transfer Model and gives reasons for the selection of the two mainly applied research methods, systematic literature review and case study.

Section 4 - Execution of the systematic literature review - describes in detail the steps executed in the systematic literature review.

Section 5 - Execution of the case study - describes the case study design, the case and the steps executed in the case study. In addition it provides some information about the two TPI approaches applied in the case study.

Section 6 - Results - provides the answers to the research questions.

Section 7 - Discussion - discusses the results from the systematic literature review and the case study.

Section 8 - Threats to validity - describes the threats to validity of this study and how they have been addressed.

Section 9 - Conclusion - concludes the study.

2 Related work

This section focuses on literature reviews and case studies conducted in areas related or similar to the area of Test Process Improvement. Details on the specific TPI approaches, on the other hand, are provided by the systematic literature review and summarized as the results of RQ1 and RQ2 (see Section 6.1 and 6.2).

The specific research area of Test Process Improvement appears to be insufficiently studied. Even though a sufficient number of test process improvement approaches have been developed in the past, no systematic literature reviews identifying the available approaches, and no independently conducted case studies applying the TPI approaches are known to us. Available studies about the development of new Test Process Improvement approaches sometimes include case studies, experiments or surveys as validation of the approach, as in [Jacobs and Trienekens, 2002], [Heiskanen et al., 2012], [Jung, 2009], [Taipale and Smolander, 2006], [Kasurinen et al., 2011a] and [Karlström et al., 2005]. Comparisons and evaluations of test process improvement approaches are reported in [Swinkels, 2000] and [Farooq and Dumke, 2008]. However, the research described in these papers is not based on a systematic literature review used as input to further validation.

More literature, with respect to literature reviews and case studies, is available in the related area of Software Process Improvement (SPI). Test Process Improvement is strongly related to SPI since the development of TPI approaches arose from the inadequate consideration of testing processes in SPI approaches. Thus, TPI approaches have distinctly been influenced by existing SPI approaches, e.g., CMM/CMMi or SPICE. Available literature reviews in the area of SPI focus on the state of art in SPI [Zil-e-Huma et al., 2012], SPI applied in small and medium enterprises, both, in general [Pino et al., 2008], in a specific domain like web development [Sulayman and Mendes, 2011], and as evaluation strategies and measurements used to assess the impact of different SPI initiatives [Unterkalmsteiner et al., 2012].

Furthermore, several case studies have been conducted with respect to CMM. The focus in these case studies is especially on requirements needed to be fulfilled to reach specific maturity levels of CMM and the actual action of process improvement. The longitudinal study by Fitzgerald and O'Kane [1999] reports how a company achieved each of the CMM maturity levels up to level 4 in a time period of four years. The case studies presented in [Dangle et al., 2005] and [Ilyas and Malik, 2003] focus on the process changes needed to evolve from CMM level 2 to 3 and to adapt a company's existing processes to the processes proposed by CMM level 2. Experiences in actually performing the CMM assessment with regards to a specific process are reported in [Kiiskila, 1998].

Comparisons of multiple SPI approaches are given in [Varkoi and Makinen, 1998] and [Wang et al., 1999]. In the case study presented in [Varkoi and Makinen, 1998] CMM and SPICE assessments are applied in two related software development units. The structures of both models are analyzed and a mapping between both models is performed for a specific process area. Finally, the assessed SPICE process capabilities and CMM maturity levels are compared. A comparison of the assessment results, the robustness and the average time needed for the assessment of the SPI methodologies SPICE, CMM, BOOTSTRAP, ISO 9000, and SPRM is given in [Wang et al., 1999].

3 Study design and method selection

In this section we present the overall study design and the research methods selected for the study. First, the Technology Transfer Model, a model which realizes industry involvement in academic studies, is introduced and the steps needed to be performed in our study are presented based on this model. Second, the main research methodologies used in this study are presented, i.e., a systematic literature review and a case study. Brief introductions to the methods are given, the reasons for selecting them are discussed, and alternative methods and the reasons for disregarding them are presented.

3.1 Overall design

As stated in the introduction the objective of this study is to support industry in finding appropriate TPI approaches that fulfill the specific needs of an organization. For this purpose, a close cooperation between academia and industry within the execution of this study is preferable.

The Technology Transfer Model introduced by [Gorschek et al., 2006] provides a concept to realize this cooperation. The model consists of the following seven consecutive steps, which are performed, both, in industry and academia.

- Step 1 Problems in industry are identified.
- Step 2 Problems are studied in academia and a problem statement is formulated.
- Step 3 Candidate solutions are formulated by academia in close cooperation with industry.
- Step 4 Candidate solutions are validated in academia, e.g., in a lab experiment.
- Step 5 Candidate solutions are statically validated in industry, e.g., through interviews and seminars.
- Step 6 Candidate solutions are dynamically validated in industry, e.g., in pilot projects and small controlled tests.
- Step 7 Solutions are released and fully implemented in industry.

Academia and industry equally benefit from the use of this concept. Researchers receive the opportunity to study industry relevant issues and validate their research results in a real setting. Practitioners, on the other hand, receive first-hand knowledge about new technology which helps them in optimizing their processes.

To adopt the above benefits in our study we based the overall study design on the Technology Transfer Model. However, the individual steps have been slightly adapted to fit the specific needs of our industry partner.

A graphical overview of our study design based on the Technology Transfer Model is shown in Figure 1 and the steps are described as follows:

Figure 1: Technology Transfer Model (originally published in [Gorschek et al., 2006]).

Step 1 - Problem/issue A problem statement given by industry and discussions with company representatives about expectations and needs identify the problem as the unavailability of sufficient knowledge about the practiced testing process and a potential for process improvements.

Step 2 - Problem formulation A preliminary study of the problem indicates the availability of Test Process Improvement approaches providing frameworks and models to assess the current state of a testing process and to identify improvement suggestions. Based on this knowledge and the industry needs the research questions (See Section 1.3) are formulated and appropriate research methodologies to successfully address the different research questions are decided upon.

Step 3 - Candidate solution A systematic literature review is conducted to identify available TPI approaches (RQ1).

The characteristics of the approaches are identified by data extraction from the primary studies (RQ2) and an exclusion process based on the extracted data provides a selection of generally applicable TPI approaches (RQ2.1).

Step 4 - Internal validation The findings from RQs 1, 2, and 2.1 are partly validated by a number of authors of the primary studies identified by the systematic literature review. They are asked to verify the list of available test process improvement approaches

for completeness and the applied exclusion process for correctness.

Step 5 - Static validation The pre-selected generally applicable test process improvement approaches are presented in industry. The \$100 method, a cumulative voting method [Rinkevics and Torkar, 2013], is used to select the approaches to be applied in the organization (RQ2.2)

Step 6 - Dynamic validation The selected TPI approaches are applied in the organization. To assess the testing process, interviews are conducted and the data is analyzed based on the instructions given by the approaches. Afterwards the assessment results are compared (RQ4) based on a prior mapping of the content of the approaches (RQ3).

Step 7 - Release solution The results of the study are collected, documented and presented in academia and industry.

Based on this overall design we decided to conduct the study by using two research methods, a systematic literature review and a case study. The reasons for the selection of these two methods are given in the successor of this section. The systematic literature review covers Steps 3 and 4 of the model, candidate solutions and their characteristics are identified by the systematic review and the results are internally validated. Steps 5 and 6 of the model, the static and dynamic validation, are explicitly covered by the case study.

3.2 Systematic literature review

The first part of the study aims in identifying a comprehensive set of available TPI approaches. We decided to conduct a systematic literature review to achieve this goal.

A systematic literature review provides a mechanism for evaluating, identifying and interpreting "all available research relevant to a particular research question, topic, area or phenomenon of interest" [Kitchenham and Charters, 2007]. It summarizes the existing evidence concerning a technology.

Only thoroughly conducted systematic literature reviews are of scientific value. By following the guidelines for performing a systematic literature review in software engineering by [Kitchenham and Charters, 2007] we ensured that the research was unbiased and repeatable. Especially, the detailed definition and documentation of the search strategy and the study selection process supports the repeatability of the study. Furthermore, it provides the possibility of an assessment of the completeness of the study.

Alternatives to a systematic literature review are systematic mapping studies and tertiary reviews.

A systematic mapping identifies what evidence is available on a topic. It focuses on frequencies and trends in publications regarding the specific topic and by that identifies areas in which more systematic reviews and more primary studies should be conducted in future. Furthermore, it can also help to identify forums in which specific research topics are discussed. Since our focus was on identifying a sufficient set of available Test Process Improvement approaches regardless of the frequency of related primary

studies and the time of publication for example, a systematic mapping was disregarded as a suitable research method.

A tertiary review is a systematic review of systematic reviews. It is less resource intensive than a systematic review or a systematic mapping. But, since we are not aware of any systematic reviews regarding TPI approaches, conducting a tertiary review was out of question.

Another alternative to identify the TPI approaches is a survey, a means for collecting data from a population or a representative sample of it. But due to the fact that a survey result is dependent on the response rate and can be biased by the respondent's knowledge and opinion, this method has been neglected.

3.3 Case study

The second part of the study was a case study. Indirectly, the use of the Technology Transfer Model for the study design already implied the use of a case study. To answer RQs 2.2 and 4 the direct involvement of industry was inevitable. The answers to these questions are significantly influenced by individuals and their processes. In these kinds of multidisciplinary areas case studies are often conducted. Furthermore, this part of the study had an observational character which further indicated the applicability of a case study. The assessment instructions given by the TPI approaches predetermined the use of interviews which are often used for data collection in case studies.

A case study provides a means to study a contemporary phenomenon in its natural context. Even though case studies are often criticized for being of less value, hard to generalize from and being biased by researchers, this criticism can be prevented by the use of proper research methodology practices. In order to alleviate the above criticism, we decided to conduct the case study following Runeson and Höst's [2009] guidelines for conducting and reporting case study research in software engineering.

However, there are alternatives to the case study approach. For example, action research is also conducted in a natural setting. But compared to case studies, in action research the researcher is directly involved in the process of improvement or change intended by the research. The process of research itself influences the outcome of the study. Since RQs 2.2 and 4 only have observational character and do not require actual process changes within the case organization initiated by the researcher, action research was disregarded as an appropriate research method.

A second alternative would be experiments. In experiments particular phenomena are studied in an isolated and controlled setting. They are not used to study phenomena in a natural setting, where the activities and processes are impacted by unpredictable factors. Therefore, an experiment could not have been used to address our research questions, which clearly implied the involvement of industry.

Finally, a survey could have been a possible alternative instead of using interviews as a part of the case study. But since the TPI approaches used interviews as the default means of data collection, we neglected surveys as a viable approach.

4 Execution of the systematic literature review

In this section the execution of the systematic literature review is described in detail.

4.1 Systematic literature review

We followed the guidelines for conducting a systematic literature review as proposed by [Kitchenham and Charters, 2007].

4.1.1 Review questions

Research Question 1 (Which different TPI approaches can be found in literature?), RQ2 (What are the specific characteristics of these TPI approaches?) and RQ2.1 (Which approaches are generally applicable in industry?) are explicitly addressed by the systematic review.

4.1.2 Data sources and search strategy

The search strategy was based on the following steps:

- (i) identification of the first search term: 'Software Testing Process',
- (ii) identification of further search terms from the titles of papers found with the first search term,
- (iii) identification of further search terms from papers already known related to the research question,
- (iv) identification of alternate words and synonyms for terms used in the titles of found papers and
- (v) use of quotation for the complete search string to search for exact words.

This search strategy was developed after conducting a pilot search, which is described at the end of this section.

We used the following search terms:

Software Testing Process, Software Test Process, Testing Process Improvement, Test Process Improvement, Test Maturity Model, Testing Maturity Model, Testing Process Model, Test Process Model, Software Testing Standard, Software Testing Optimization, Test Improvement Model, Testing Improvement Model

The search was divided into three phases (see Figure 2). Each search phase was followed by a detailed study selection phase (see Section 4.1.3 and Figure 3).

Phase 1 In the first phase, we searched electronic databases. The search was not limited in terms of the publication year. Within the following electronic databases we searched in title, abstract and keywords:

• ACM Digital Library,

Search Strategy					
Phase 1	Phase 2	Phase 3			
Electronic search	Contact authors	Snowball sampling: Scan reference list, scan content of paper			
		Contact authors			

Figure 2: Phases of the search strategy.

- IEEE Xplore Digital Library,
- ScienceDirect and
- Springer Link.

In Springer Link a limitation to search only in title, abstract and keywords was not possible, therefore we searched in full-text.

Phase 2 After selecting the first data set we performed the second phase of the search to have a more representative set of candidate studies. In the second phase, we contacted the authors of 22 papers found in the electronic search of the first phase which had been selected as candidate studies to ask them for further suggest papers regarding their research topic. The contact was established using the email addresses mentioned in the candidate study or by email addresses found on the internet.

A total of 34 authors were contacted. For two authors no email address was available. Out of these 34 sent emails, 11 were undeliverable due to expired email addresses. We got a reponse from eight authors, out of which four provided relevant information. A summary of our inquiries and the reponses can be found in Appendix A.

Phase 3 In the third phase, snowball sampling [Goodman, 1961] was conducted. The two researchers performed different means of searches. Researcher *A* scanned the reference list of all the primary studies to identify further papers. Researcher *B* scanned the content of the primary studies to identify referenced papers within the text that deal with TPI approaches. The different searches complemented each other since the titles of some papers in the reference lists did not always clearly indicate that the paper is dealing with TPI approaches. Whereas for these references the relevance regarding the TPI research area was clearly indicated in the context of the text. The number of found papers by snowball sampling are shown in Table 1.

Additionally, the third phase was completed by contacting the authors of the candidate studies identified by snowball sampling that dealt with previously unknown TPI approaches.

Original Reference	Researcher A	Researcher B	Total after duplicate
6			removal
[Ryu et al., 2008]	3	3	3
[Taipale and Smolander, 2006]	1	1	1
[Farooq et al., 2008b]	5	5	6
[Jung, 2009]	10	10	10
[Rana and Ahmad, 2005]	0	0	0
[Saldaña Ramos et al., 2012]	9	6	9
[Burnstein et al., 1996]	2	1	2
[Xu-Xiang and Wen-Ning, 2010]	0	0	0
[Tayamanon et al., 2011]	3	3	3
[Jacobs and Trienekens, 2002]	6	6	6
[Kasoju et al., 2013]	1	0	1
[Kasurinen et al., 2011a]	8	6	8
[Heiskanen et al., 2012]	9	9	9
[Farooq and Dumke, 2008]	8	8	8
[Rasking, 2011]	3	2	3
[Reid, 2012]	0	0	0

Table 1: Numeric results of snowball sampling.

A total of 16 papers were scanned, and the authors of three papers were contacted by email; in the end a total of five authors were contacted this way. Out of these five sent emails, four were not deliverable due to expired email addresses. One author replied but did not provide us with further research papers.

Pilot search The ultimate search strategy was decided after conducting a pilot search using the search string "Software AND Testing AND Process AND Improvement" in all databases mentioned above. The search was restricted to title, abstract and keywords in journals and modified individually to suite the respective style of each database. The detailed search queries along with our findings are shown in Appendix B.

The search results of the pilot search were not satisfactory. We could not proceed with this search and had to modify the search strategy to the one described earlier in this section because of the following reasons:

- The Springer Link database does not provide the same restriction options as the other databases, so that the search resulted in a very large first data set (more than 24,000 papers).
 - It does not have the option to restrict the search only to title, abstract and keywords. It is only possible to have either a full text search or to restrict the search to the title only.
 - The restriction options regarding publication type distinctly differ from the other databases. A restriction to journals is not given, instead the search can be restricted to articles or chapters. But journal publications can be included, both, in articles and chapters.
 - A restriction of the search to specific journals is possible, as also in the other databases. But that was no option since the search should be kept as open as possible.

• The search in ACM, ScienceDirect and IEEE Xplore resulted in a reasonable first data set but only four of these candidate studies were identified as relevant to the research topic in the first exclusion phase of reading title and abstract.

4.1.3 Study selection

For selecting the primary studies in this systematic review, the following inclusion criteria was applied, i.e., we included studies for which any of these questions were answered with 'yes':

- Does the paper talk about TPI approaches?
- Does the paper contain a case study in regards to TPI?
- Does the paper contain a comparison between TPI approaches?
- Does the paper talk about an assessment done in any company with respect to TPI?

Additionally, the following exclusion criteria was applied, i.e., we excluded papers that:

- only relate to Software Process Improvement in general, not TPI in particular and,
- describe general software testing models.

Phase 1 of the search strategy, the electronic database search, resulted in a total of 404 papers. After eliminating duplicates found by more than one electronic database, the number of papers resulted in 396 (see Table 2). A complete list of all references including the results of the study selection process can be found in Table 15 in Appendix C.

The exclusion was done in several steps. Every step of the exclusion process was first performed by two researches independently.

Title and abstract exclusion First, two researchers independently conducted an inclusion and exclusion process by reading title and abstract resulting in one of the three possible remarks for each paper - 'yes' or 'maybe' for further investigation in the next study selection step, and 'no' for exclusion due to irrelevance to the research question. In this first step, the researchers agreed to exclude 320 papers by title and abstract.

To be able to measure the reliability of the inclusion and exclusion process the interrater agreement was calculated using Cohen's kappa coefficient [Cohen et al., 1960]. The coefficient indicates the degree of agreement between two judges that exceeds the expected agreement by chance. The higher the value the more reliable are the results of the judgement and it can be expected that the judgement is reasonably based on knowledge and not made by chance.

The number of observed agreement was 354 (89.39% of the observations). The number of agreements expected by chance was 301.3 (76.08% of the observations).

Figure 3: Study selection process.

Search term	ACM	ScienceDirect	IEEE	Springer Link
Software Testing Process	42	10	81	131
Software Test Process	21	1	28	132
Testing Process Improvement	2	1	5	39
Test Process Improvement	13	1	9	40
Testing Maturity Model	4	0	7	17
Test Maturity Model	5	0	1	17
Software Test Optimization	1	0	0	1
Test Process Model	5	0	12	32
Testing Process Model	3	0	7	32
Test Improvement Model	2	0	0	6
Testing Improvement Model	0	0	0	6
Software Testing Standard	3	0	1	8
Total per database (before duplicate removal)	101	13	151	461
Total per database (after duplicate removal)	74	12	129	187
Total (before duplicate removal)	404			
Total (after duplicate removal)	396			

T 1 1 0	х т ·	1.	c	1	1
Table 2:	Numeric	results	of	electronic	search

The agreement between the two researchers quantified by Cohen's kappa results in 0.557. The strength of this agreement is considered to be 'moderate'. It is significantly higher than the expected agreement by chance and therefore a reliable judgement. For calculation of the agreement the remarks 'yes' and 'maybe' have both been considered as 'yes', so that the agreement was only calculated for two categories - 'yes/maybe' and 'no'.

Introduction and conclusion exclusion Next, the remaining 76 papers were further investigated. The researchers applied the detailed inclusion and exclusion criteria to introduction and conclusion following the same process with three possible remarks for each paper like in the previous step.

The researchers agreed to exclude 38 papers and to include 16 papers. For 22 of the papers a discussion about inclusion or exclusion was needed due to the present disagreement between the two researchers. Unlike in the previous step, the remarks 'yes' and 'maybe' occurring together for one paper have been considered as disagreement and resulted in the need for discussion.

The number of observed agreements was 57 (75.00% of the observations). The number of agreements expected by chance was 35.9 (47.23% of the observations). The agreement between the two researchers quantified by Cohen's kappa results in 0.526. The strength of this agreement is 'moderate' and therefore considered as a reliable judgement. The agreement was calculated for three categories - 'yes', 'maybe' and 'no'.

Within the discussion further 11 papers were then excluded by consensus of the two researchers. This application of detailed exclusion criteria resulted in a number of 27 references.

Quality criteria exclusion Third, two papers were excluded by the application of the quality criteria described in Section 4.1.4.

Year	Reference	Primary Study	Exclusion criteria
2008	[Ryu et al., 2008]	yes	
2006	[Taipale and Smolander, 2006]	yes	
2009	[Meng, 2009]	no	Alleged Plagiarism
2009	[Xin-ke and Xiao-Hui, 2009]	no	Alleged Plagiarism
2008	[Farooq et al., 2008b]	yes	
2010	[Cruz et al., 2010]	no	Software testing process as part of a reference model for software indus- try
2009	[Jung, 2009]	yes	
1997	[Heiser, 1997]	no	General information about software testing
2005	[Rana and Ahmad, 2005]	yes	
2012	[Saldaña Ramos et al., 2012]	no	Necessary skills for software testers
1996	[Burnstein et al., 1996]	yes	
2010	[Kasurinen, 2010]	no	Practicality and applicability of software testing standards
2011	[Kasurinen et al., 2011b]	no	Ability of organizations to change the testing process
2001	[Kikuchi and Kikuno, 2001]	no	Introduction of a new tool to an or- ganization
2000	[He et al., 2000]	no	Software testing metrics
2008	[Oh et al., 2008]	no	Implementation strategy for test process improvements
2010	[Xu-Xiang and Wen-Ning, 2010]	yes	
2011	[Tayamanon et al., 2011]	yes	
2002	[Jacobs and Trienekens, 2002]	yes	
2013	[Kasoju et al., 2013]	yes	
2011	[Kasurinen et al., 2011a]	yes	
2012	[Heiskanen et al., 2012]	yes	
2006	[Bueno et al., 2006]	no	CMMi-based evaluation of a soft-
			ware testing model
2008	[Farooq et al., 2008c]	no	Evaluation of testing processes in service-oriented architecture
2008	[Farooq and Dumke, 2008]	yes	
2011	[Rasking, 2011]	yes	
2012	[Reid, 2012]	yes	

Table 3: Results of study selection process.

Exclusion in the context of contacting authors After applying the quality criteria, Phase 2 of the search strategy - contacting authors - was started in parallel to Phase 1. During preparation for Phase 2 further three papers were excluded by consensus due to the irrelevance to the research topic.

Full text exclusion At the end of Phase 1, the full-text of the remaining 22 papers was read and a further 6 papers were excluded by consensus. The remaining 16 papers identified as relevant to the topic were further considered as basis for conducting Phase 3 - snowball sampling. Finally, we agreed to exclude one more paper based on rereading the full-text.

The detailed exclusion process of Phase 1 of the search strategy resulted in 15 primary studies (See Table 3).

Phase 2 of the search strategy, emailing the authors, resulted in four additional

papers suggested by them, but these were later excluded when applying the exclusion criteria. In Phase 3 of the search strategy, 35 references found by snowball sampling were further investigated. Out of these 35 candidate studies, 12 papers were not freely available and 5 were excluded by reading the full-text. A further three papers were excluded based on the criteria specified for quality assessment (See Section 4.1.4).

Table 4 summarizes the results of the study selection in Phase 3.

In conclusion, the 15 primary studies found by the electronic database search were complemented by 16 primary studies found by snowball sampling. This, we believe indicates the importance of conducting snowball sampling in systematic reviews.

4.1.4 Study quality assessment

As the purpose of the systematic review was to find TPI approaches mentioned in literature we applied few quality criteria.

The first quality assessment was already done within the search in the electronic databases by excluding papers that:

- Were not written in English.
- Were not available as full-text.

During the first study selection, we excluded two papers that seemed to indicate plagiarisms [Meng, 2009] and [Xin-ke and Xiao-Hui, 2009]. Major parts of the papers were completely identical, including title and abstract. Only the content of some smaller sections, parts of the structure and particularly the name of the TPI approaches differed a bit. Since both papers were published in the same year, it was not obvious which one was the original. We contacted the authors of both papers and informed them about this, and that we had to exclude their papers from our research due to this reason.

During the snowball sampling phase three papers were excluded due to quality issues. One paper was excluded because it was not written in English and two references were excluded because they were not peer reviewed papers.

4.1.5 Data extraction

The data extraction was divided into two phases, identifying TPI approaches described by the primary studies (RQ1) and extracting detailed information about the approaches as basis for the evaluation of the approaches (RQ2). During the first phase, the name and, if available, the abbreviation of the TPI approach presented in the investigated paper was extracted.

For the second phase a data extraction form was prepared. For each TPI approach identified in the first phase of data extraction, the following information was extracted: 'Based on/influenced by', 'Domain', 'Developed by', 'Status of development', 'Completeness of information', 'Assessment model', 'Assessment procedure', 'Assessment instrument', 'Improvement suggestions', 'Process reference model', 'Maturity structure', 'Model representation', 'Character of approach', 'Structure/components', 'Addressing', 'Process areas'.

The extracted characteristics of the approaches can be explained as follows:

- **Based on/influenced by** Earlier developed models or frameworks that function as basis or that have influenced the development of this approach.
- **Domain** A specific domain which this approach is addressing. If empty, a specific domain is either not mentioned or it is explicitly said that the approach is universally applicable.
- **Developed by** An institute, foundation or cooperation that developed the approach. If empty, the approach was developed by a single researcher or a smaller group of researchers, and an institute, foundation or cooperation was not explicitly mentioned.
- **Status of development** There are two dimensions of the status of development possible: 'under development' or 'completed'. Status at the time of publication of the primary study or if available, according to the information obtained by contacting the author(s). If the research was validated by case studies, surveys or experiments, this is also mentioned.
- **Completeness of information** There are three dimensions regarding the completeness of the information possible: 'concept', 'brief description' or 'detailed description'. Papers assessed as 'concept' only present the idea of how the approach could look like. Normally, approaches that are assessed as 'under development' are only presented as concepts in the respective study. For approaches with 'detailed descriptions' all the information is available to apply the approach. Detailed information about the assessment process, the components and the structure of the approach is available. 'Brief descriptions' provide more information than concepts but not all elements of the approach are described in detail.
- **Assessment model** It is checked if the approach provides an assessment model. An assessment model provides a framework for the result of the assessment. The assessment results are maturity levels, that determine the state of practice of the assessed organization.
- Assessment procedure It is checked if the approach provides instructions how to perform the assessment.
- **Assessment instrument** It is checked if the approach provides an instrument, e.g., a questionnaire, which is used for the assessment.
- **Improvement suggestions** It is checked if the approach provides information about processes that need improvement to be able to move to a higher maturity level.
- **Process reference model** It is checked if the approach provides a reference model that represents the ideal process which the organizations should be aiming for to reach the highest level of maturity.
- **Maturity structure** It is checked if the approach uses maturity levels to assess an organization's test process. If yes, the maturity levels are listed.

- **Model representation** There are two possible types of model representations, 'continuous' or 'staged'. In an approach with a continuous model, each process area is classified by a number of maturity levels, so that the maturity level of each process area can be assessed and improved separately. In an approach with a staged model a maturity level is composed by a set of specific process areas which are linked only to this specific maturity level. To evolve to the next higher maturity level all requirements of all process areas of this maturity level and the preceding maturity levels have to be satisfied.
- **Character of approach** There are two dimensions, 'qualitative' or 'quantitative'. Qualitative approaches investigate the test process based on qualitative data, e.g., through interviews with employees. Quantitative approaches use quantitative data like metrics for the assessment of the test process.
- Structure/components Describes the structure of the approach and its components.
- **Addressing** If the approach is addressing specific roles in the organization under assessment, these are listed here.
- **Process areas** Lists the aspects of the testing process that are investigated by the approach.

4.1.6 Evaluation criteria

In order to examine the TPI approaches found regarding their applicability for the case study the following exclusion criteria was determined:

- Has the development of the approach been completed?
- Is broad information about the approach available? (The information is more than a description of the concept.)
- Is there an assessment instrument (e.g., a questionnaire) available for this approach?
- Is the approach not specific to a domain?

TPI approaches for which one or more of these questions were answered with 'no', were excluded for the successional part of the study.

4.1.7 Validation of results

The findings of the systematic literature review were validated by the feedback from a set of authors of the selected primary studies. We contacted the authors by email which had replied during Phase 2 of the systematic review as well as the authors of the studies identified by the snowball sampling. A total of seven authors were contacted. Three authors replied and gave feedback to our evaluation. With one author we conducted an interview in which he answered our validation questions.

				Exclus	ion criteria
Year	Reference	Free	Content	Other	Pri-
					mary
					Study
1993	[Chaar et al., 1993]	ves	Technique for assessing the		no
	[J	effectiveness of inspections		
			and test activities		
2003	[Burnstein 2003]	ves	und test dervities		ves
2005	[Faroog et al 2007]	no			no
2008	[Farcog et al. 2008a]	no			no
2000	[Faroog and Dumke 2007]	ves			ves
2010	[IFF 2010]	no			no
1997	[Fricson et al 1997]	ves			ves
2010	[TMMi Foundation 2010]	no			no
2010	[Karlström et al. 2005]	ves			Nes
1005	[Kit and Finzi 1995]	no			yes no
1000	[Rurnstein et al 1000]	ves			Nes
1000	[Kooman and Pol. 1000]	yes			yes
2004	[TDI 2004]	yes			yes
2004	[111, 2004] [Kooman at al. 2006]	yes			yes
2000	[Roomen et al., 2000]	no	Software testing		no
2002	[F0I, 2002]	yes	software testing		110
2012	w Ewills at al. 2012]		memodology		
2015	[v. Ewijk et al., 2015]	yes		Wah	yes
2011		yes		web-	ПО
2009	From Women del 20081			site	
2008	[Van veenendal, 2008]	yes			yes
2005	[Koomen, 2005]	no		D	no
2005	[Miller et al., 2005]	yes		Pre-	no
				senta-	
				uon	
2007				slides	
2007	[Kim and Jang, 2007]	no			no
2000	[Jacobs et al., 2000]	yes			yes
2000	[Swinkels, 2000]	yes		N T . *	yes
2008	[Sanz et al., 2008]	no		Not in	no
				En-	
2010				glish	
2010	[Mala et al., 2010]	yes	Technique for test case		no
2012	FG: 1 00101		generation		
2012	[Steiner et al., 2012]	yes			yes
1996	[Suwannasart, 1996]	yes			yes
1988	[Gelperin and Hetzel, 1988]	yes	Evolution of software testing		no
2006	[Taipale et al., 2006]	no			no
1998	[Homyen, 1998]	yes			yes
2002	[Ham, 2002]	Other	Contribution of software		no
		year	process improvement models		
			to test process improvement		
2001	[Ham and Veenendaal, 2001]	no			no
2006	[Kulkarni, 2006]	yes			yes
2002	[Koomen, 2002]	yes			yes
2004	[Koomen, 2004]	no			no

 Table 4: Snowball sampling - results of study selection process. (Free indicates availability.)

We provided them with a list of all TPI approaches that we found in the systematic literature review and asked them if they think this list is complete. Furthermore, we presented them our exclusion criteria that have been decisive for the pre-selection of applicable approaches for the case study and the particular inclusion/exclusion result for the particular approach presented by the contacted author. Individually, the authors were asked if they agree to the evaluation of their approach.

A summary of the inquiries and responses is given in Appendix D.

5 Execution of the case study

This section describes the case under investigation along with the case study protocol, the case description and the unit of analysis.

5.1 Case study design

The case study was designed and conducted by following Runeson and Höst's [2009] guidelines for conducting and reporting case study research in software engineering.

A good case study design and planning contributes significantly to its success. This study, as it was actually conducted, is characterized by the design presented in Table 5.

Even though a case study is planned beforehand, the design process of a case study is flexible which means that it allows for and even encourages changes of objectives and research questions within the actual execution of the study. In the present study, the possibility for changes during study iterations was further promoted by our overall research design based on the Technology Transfer Model. The study is composed by a number of sequential steps which are dependent on each other. The outcome of the preceding steps influences the research question addressed by the next step.

Especially after performing Step 5 of the Technology Transfer Model (the static validation) we had to change the objective and the following research questions of the study. In the beginning, it was planned to only select one TPI approach that would be applied in the case organization. However, since the selection process in industry resulted in two approaches, we decided to apply both approaches and compare their content and results (more of this is covered later in this section).

5.2 Case description

The organization under study is a part of Volvo IT which is a subsidiary of the Volvo Group, a large Swedish automotive organization. The team develops and maintains information systems within the product development (PD) and purchasing (PU) area for an external customer.

Both areas, PD and PU, consist of several different information systems and applications developed in a number of different programming languages. Systems in the PD area are handling product data needed for product development in automotive industry. PU systems manage, for example, suppliers information. In total, around 45 employees are working in the case organization, of which around 20 are located in Gothenburg (Sweden) and 25 in Bangalore (India).

Apart from line management the following roles could be found within the organization: Maintenance manager, project manager, coordinator, system analyst, business analyst and developer. Smaller teams composed by system and/or business analysts and developers are responsible for one or several of the systems/applications in either the PD or PU area. The developers are mainly located in India.

Testing is not seen as a major activity of the development or maintenance process. Within the team, there are no designated testing roles. Even though a corporate test policy is available for Volvo IT, it is unknown to which extent these guidelines are followed by the team. The processes are rather set in accordance to the requirements

Study characteristics		
Objective	Exploratory	Identify TPI approaches valuable for the case organization, apply them and compare their content and their assessment results
Case	Holistic	Investigating the testing process and the team members involved in testing as a whole
Data collection	Qualitative	Collecting data through interviews, observation and documents
Triangulation	Data triangulation	Several interviews with team members with different roles, working in different areas and locations
	Methodological triangulation	Interviews, observations and document analysis.

Table 5: Case study design.

of the external customer. Moreover, it is perceived that each team member follows her own testing process.

However, there is a general consensus that the quality of development deliverables is good. This notion is mainly based on the lack of frequent or serious complaints from customer side.

The testing policy is provided by a globally operating department of Volvo IT, called ADT (Application Development and Technology). The department is responsible for establishing standard processes in different areas of software development. Furthermore, they offer the service of testing process assessment.

The study is conducted as a holistic case study, the team members involved in testing and their testing process are studied as a whole.

During the whole study key personnel, in the following sections called as 'organization representatives', supported us in all decision making processes, e.g., interviewee selection. The 'organization representatives' are representing different levels of authority within the organization. They are composed of the line manager of the organization, the maintenance manager of each area, and one system/business analyst of each area.

5.3 Selection of TPI approaches

The systematic literature review resulted in a list of available TPI approaches. The use of several exclusion criteria checking the general applicability of the approaches in industry resulted in a narrowed down set of approaches possibly applicable in the case study. The selection of the actual approaches to be applied in the case organization was done during a workshop.

5.3.1 Workshop

The participants of the workshop were composed by the 'organization representatives' and two persons from outside the organization, who had shown interest in participating. Both of the external participants were members of the ADT team within Volvo IT (mentioned in Section 5.2). They worked in the area of testing in general and TPI in particular and had a keen interest in our study.

The workshop consisted of two steps: A presentation held by the two researchers followed by a cumulative voting. Both steps are described in more detail next.

Presentation The presentation started with an introduction to the research process and the objective of conducting the workshop. Then the results of the systematic literature review as well as the exclusion criteria used for the pre-selection of applicable TPI approaches were presented. Finally, the pre-selected approaches were explained in detail. The information provided for each approach was based on the following classifying parameters:

- **Developed by** Which company, organization, research group or individual researcher developed this approach?
- **Based on** Which approach/methodology is the approach based on? For example, it might be based on CMMi.
- **Model representation** Which type of model representation is used in the approach? Continuous or staged?
- **Key elements** What are the key elements of the approach? For example, checkpoints or specific goals and practices.
- **Process areas** Which areas are investigated by the approach? For example, test strategy, stakeholder commitment or test policy.
- Assessment procedure What is the assessment procedure of the approach? For example, interviews with open-ended questions.

Thereafter, detailed content-wise examples of the investigated process areas were provided.

During the presentation of the characteristics of the pre-selected approaches and the content-wise examples particular attention was given on emphasizing the differences between the approaches without rating these as advantages or disadvantages. The approaches were presented in a objective way without emphasizing any specific approach to prevent biased decisions.

After the presentation printed material about each of the presented approaches was handed out to all participants and an open discussion about the approaches was held. The discussion phase was mainly used to answer questions regarding the presentation. The workshop finally ended with a voting to decide which approach(es) should be applied in the organization under study.

Cumulative voting The decision which TPI approach was to be applied in the case organization was done by using the \$100 method.

The \$100 method is a cumulative voting method to make a selection between several alternative options. Each participant of the voting is provided with a virtual \$100 to distribute between the options. The participants can distribute any amount between

Figure 4: Continuous model representation.

Figure 5: Staged model representation.

0 and 100 on any of the options. The only demand is that each participant has to distribute \$100 in total at the end of the voting. The higher an amount spent on an option the more priority this option has. The option with the highest result will be selected.

All participants of the workshop except for the researchers had a vote with equal weighting. Each participant's vote consisted of \$100 which could be distributed arbitrarily between the presented approaches with any amount between 0 and 100.

The selection process of the TPI approaches to be applied in the case organization resulted in two approaches, TPI NEXT and TMMi. We decided to use both approaches simultaneously and compare their results afterwards.

5.4 General information about TPI®NEXT and TMMi®

Here the concepts and especially the specific terminologies of both approaches are introduced to provide better understandability for the remainder of this section. Moreover, further information regarding the approaches is given in the presentation of the results of RQ 2 in Section 6.2.

5.4.1 Staged vs. continuous model representation

One significant difference between TMMi and TPI NEXT is their type of model representation. TMMi represents a staged model, whereas TPI NEXT represents a continuous model.

In a continuous model the main focus lies on the process areas (see Figure 4). Each process area is classified by a number of maturity levels, so that the maturity level of each process area can be assessed separately. This allows to focus on specific process areas during the assessment.

In a staged model the main focus lies on the maturity levels (see Figure 5). A maturity level is composed by a set of specific process areas which are linked only to this specific maturity level. To evolve to the next higher maturity level all requirements of all process areas of this maturity level and the preceding maturity levels have to be satisfied. The ideas for both types of model representation are taken from CMMi, which provides a staged as well as a continuous representation.

5.4.2 TPI®NEXT

The TPI NEXT model consists of seven elements: Key areas, maturity levels, checkpoints, improvement suggestions, enablers and clusters. The final element is then the results of an assessment, which are represented in the test maturity matrix.

Key areas The test process is distributed amongst key areas, which focus on different aspects of the test process. TPI NEXT has 16 key areas. Each key area may have different levels of maturity and the combination of the key areas defines the maturity of the test process as a whole. However, for each key area the maturity is measured individually.

Maturity levels The TPI NEXT model has four maturity levels: Initial, controlled, efficient and optimizing. A higher maturity level can only be reached if the preceding maturity level is fulfilled.

Checkpoints Checkpoints are statements regarding the test process. The question whether these stated requirements are satisfied by the investigated test process have to be answered with simple 'yes' or 'no' replies. A checkpoint always relates to a specific key area and a specific maturity level of the respective key area. A key area is at a certain maturity level when all its checkpoints are satisfied.

Clusters The model enables a stepwise growth from initial to optimizing levels. Each step is indicated by clusters of checkpoints. A cluster is a group of checkpoints from multiple key areas that function as one improvement step. A cluster is used for the purpose of increasing the maturity of the test process. Each cluster is identified by an alphabetic character that represents its position in the improvement path.

Enablers The test process and software development lifecycle model go hand in hand. The enablers help to understand how both processes can benefit from exchanging each others best practices and working closely together.

Improvement suggestions TPI NEXT provides recommendations in terms of improvement suggestions and helps the organization to obtain higher maturity by suggesting them how the checkpoints can be met. The improvement suggestions are practice-based, adaptable and optional to consider.

Test maturity matrix After conducting a test process assessment the analysis result is shown diagrammatically in a test maturity matrix. This matrix provides an overall picture of the current situation of the test process by highlighting the fulfilled checkpoints of all key areas.

Furthermore, the test maturity matrix provides an insight by showing a comparison between its current situation and what level should be achieved in the future to obtain higher maturity.

5.4.3 TMMi®

TMMi consists of five maturity levels: Initial, managed, defined, measured and optimization. Each maturity level is composed by a set of process areas. The process areas are specific aspects of the testing process that are deemed to be significant for the particular level of maturity. These process areas have to be fully considered in an organization's testing process in order to reach the respective level of maturity.

In more depth, process areas are further composed by three groups of components: Required, expected and informative components.

Required components Required components consist of specific and generic goals which must be achieved to fulfill the requirements of the specific process area and the associated maturity level. Specific goals are specific to a process area, whereas generic goals are generally defined statements recurring in all process areas.

Expected components Specific and generic goals are further described by specific and generic practices which belong to the group of expected components. These practices or acceptable alternatives are typically in place to achieve the goals.

Informative components Informative elements can be sub-practices, example work products, notes, examples or references. They serve as further information about specific and generic practices.

5.5 Mapping between TPI®NEXT and TMMi®

In order to compare the results of an assessment it is important to compare the approaches first to see if the two approaches are similar or if they differ to a great extent.

Table 6: Keywords extracted from TPI NEXT

Key area	Keywords
Stakeholder commitment	stakeholder, resource, commitment, product risk, test process
Degree of involvement	involvement, involved, lessons learned
Test strategy	test strategy, test level
Test organization	test organization, test policy
Communication	communication, test team
Reporting	report, product risk, lifecycle, test process
Test process management	test plan, evaluation
Estimation and planning	effort, estimation, test plan, dependency, techniques
Metrics	metrics
Defect management	defect, management, monitor, future
Testware mangement	management, test process, testware, documents
Methodology practice	methodology, test process, test methods, feedback, template
Tester professionalism	tester professionalism, training, test tasks, performance
Test case design	test case, test design, test basis
Test tools	test tool
Test environment	test environment, test environment requirement

Therefore, a mapping between the two selected approaches, TPI NEXT and TMMi, was done before the actual performance of the assessment.

The mapping of TPI NEXT and TMMi consisted of checking similarities or differences between the key areas of TPI NEXT and the process areas of TMMi. To obtain triangulation, this mapping was first performed by the two researchers individually.

Both researchers followed the same process, but they examined the approaches from different perspectives. Researcher A mapped the content of TPI NEXT to TMMi, while Researcher B mapped the content of TMMi to TPI NEXT. The mapping is illustrated in Figure 6 and is described as follows:

• Identification of keywords

Keywords that represent the process areas of TMMi with its specific goals and respectively the key areas TPI NEXT with its checkpoints were identified. The keywords extracted from TMMi are shown in Table 7 and the keywords extracted from TPI NEXT are shown in Table 6.

Goal	Subgoal	Keyword	
Test policy and strategy		test policy, test strategy	
	Establish a test policy	test policy	
	Establish a test strategy	test strategy	
	Establish test performance indica-	performance indicator, perfor-	
	tors	mance, indicator	
Test planning		test planning	
	Perform a product risk sssessment	product risk assessment, risk	
	Establish a test spproach	test approach	
	Establish test estimates	test estimates, estimate, estimating	
	Develop a test plan	test plan	
	Obtain commitment to the test plan	commitment, test plan	
		Continued on next page	

Table	7.	Keywords	extracted	from	TMMi
Table	1.	Reywords	extracted	nom	1 1011011

Goal	Subgoal	Keyword
Test monitoring and con-	Subgour	test monitoring, test control, moni-
trol		toring, control, monitor
	Monitor test progress against plan	progress
	Monitor product quality against	quality
	plan and expectations	
	Manage corrective action to closure	corrective action, closure
Test design and execution	-	test design, test execution, design,
e		execution
	Perform test analysis and design us-	test analysis, analysis, test design
	ing test design techniques	technique, test design
	Perform test implementation	test implementation, implementa-
		tion, implement
	Perform test execution	test execution, execution
	Manage test incidents to closure	test incident, incident, closure
Test environment		test environment
	Develop test environment require-	test environment requirement, test
	ments	environment, requirement
	Perform test environment imple-	test environment implementation,
	mentation	implementation, implement
	Manage and control test environ-	test environment
	ments	
Test organization		test organization
	Establish a test organization	test organization
	Establish test functions for test spe-	test function, test specialist, spe-
	cialists	cialist, function
	Establish test career paths	test career path, career path, career
	Determine, plan and implement test	test process improvement, improve-
	Deploy the enconizational test	ment, improve
	process and incorporate lassons	organizational test process, test pro-
	learned	lessons learned
Test training program	learned	test training program training
rest training program	Establish an organizational test	training program, training
	training capability	training
	Provide test training	training
Test lifecycle and integra-	i iovide test training	test lifecycle, test integration life-
tion		cycle, integration, integrate
	Establish organizational test pro-	organizational test process asset.
	cess sssets	test process asset, test process, as-
		set
	Integrate the test lifecycle models	test lifecycle model, development
	with the development models	model, model
	Establish a master test plan	master test plan, master
Non-functional testing	-	non-functional, non functional
	Perform a non-functional product	product risk assessment, risk
	risk asssessment	
	Establish a non-functional test ap-	test approach
	proach	
	Perform non-functional test analy-	test analysis, analysis, test design,
	sis and design	design
	Perform non-functional test imple-	test implementation, implementa-
	mentation	tion, implement
	Perform non-functional test execu-	test execution, execution
	tion	
Peer reviews		peer review, review
		Continued on next page

Table 7 – continued	from	previous page	
rabic / - continucu	nom	previous page	
Coal	Table 7 – continued from previous	s page Kouword	
-----------------------------	---------------------------------------	--	
Goal	Establish a paer review approach	negworu	
	Derforme maan reviews	peer review, review	
Test messurement	Ferrorini peer reviews	test measurement measurement	
Test measurement		test measurement, measurement	
	Align test measurement and analy-	test measurement, measurement,	
	Sis activities	analysis	
	Provide test measurement results	test measurement result, measure-	
Decident quality avaluation		ment result, measurement, result	
Floduct quality evaluation		avaluation	
	Project goals for product quality	project goal product quality prior	
	and their priorities are established	ity priorities goal quality	
	Actual progress toward achieving	progress product quality goal	
	the project's product quality goals	product quality goal	
	is quantified and managed	product quanty, quanty, goar	
Advanced reviews	is quantified and managed	review	
ravaleed terrews	Coordinate the neer review an-	neer review approach neer review	
	proach with the dynamic test ap-	review dynamic test approach test	
	proach	approach dynamic	
	Measure product quality early in the	product quality, quality, lifecycle.	
	lifecycle by means of peer reviews	peer review, review	
	Adjust the test approach based on	test approach, review result, review,	
	review results early in the lifecycle	lifecycle	
Defect prevention	5 5	defect prevention, defect, preven-	
		tion	
	Determine common causes of de-	cause, defect	
	fects		
	Prioritize and define actions to sys-	root cause	
	tematically eliminate root causes of		
	defects		
Quality control		quality control, quality	
	Establish a statistically controlled	statistic, test process	
	test process		
	Testing is performed using statisti-	statistic	
	cal methods		
Test process optimization		test process optimization, test pro-	
		cess, optimization, optimize	
	Select test process improvements	test process improvement, test pro-	
		cess, improvement, improve	
	New testing technologies are eval-	test process, testing process	
	uated to determine their impact on		
	the testing process		
	Deploy test improvements	improvement, improve	
	Establish re-use of high quality test	test process, re-use, test process as-	
	process assets	set	

Table 7 – continued from previous page

• Search for keywords

The key words identified in one approach were searched in the other approach. Hits were documented in a matrix which showed at which location the key words were found in the searched approach.

For better search results, the data basis for the search was extended to specific goals besides process areas in TMMi and checkpoints besides key areas in TPI

Figure 6: Mapping between TPI NEXT and TMMi.

NEXT. The search of keywords from TPI NEXT in TMMi by Researcher A resulted in 159 hits, and the search of keywords from TMMi in TPI NEXT by Researcher B resulted in 374 hits.

• Inclusion and exclusion of hits based on their context

The contents of the process areas (TMMi) and key areas (TPI NEXT) that contained the identical keywords were checked upon whether they convey the same meaning and appear in the same context in both approaches.

Researcher A excluded 45 keyword hits in which the keywords were not used in the same context in both approaches. Researcher B excluded 270 keyword hits.

• Summary of individually found similarities between TPI NEXT and TMMi

The extended data basis for the keyword search was now narrowed down to process areas and key areas only. Keyword hits from lower levels were transferred to the corresponding higher levels. The results were summarized to 39 similarities found by Researcher A and 64 similarities found by Researcher B.

· Comparison of individually found similarities

The mapping results of both researchers were compared. In total, 25 of the found similarities between TPI NEXT and TMMi had been found by both researchers, while 14 similarities had been only found by Researcher A and 39 had been only found by Researcher B.

• Mutual check of not agreed similarities

All similarities only identified by one researcher were checked by the other researcher. Researcher A checked the 39 similarities that were only identified by Researcher B, and Researcher B checked the 14 similarities that were only identified by Researcher A. In this step Researcher A agreed to include 24 similarities found by Researcher B. Researcher B did not include any similarities in this step.

• Final discussion of not agreed similarities

The remaining 29 similarities found by only one researcher were now discussed by both researchers. Both researchers presented their arguments for exclusion or inclusion of these similarities between TPI NEXT and TMMi. In the discussion, the researchers agreed to exclude 20 and to include 9 alleged similarities.

Finally, a total of 58 similarities between TPI NEXT and TMMi were identified.

5.6 Test process assessment using TPI®NEXT and TMMi®

Besides an independent comparison of the content of TPI NEXT and TMMi, the mapping between the two approaches builds a solid basis for the comparison of the results from the application of the approaches. The assessment of the case organization's testing process using TMMi will result in one test maturity level valuing the process as a whole. The assessment result of TPI NEXT will be a matrix stating the maturity level for each key area separately.

For the application of TPI NEXT and TMMi the instructions given in [v. Ewijk et al., 2013] and [van Veenendal, 2008] were followed. However, both approaches demand for an assessment execution by experienced personal. TPI NEXT either proposes to perform the assessment by an individual who is familiar with the test processes or the BDTPI (Business Driven Test Process Improvement) model or recommends the use of an external expert. In TMMi the requirements in regards to the assessor are even stricter. The TMMi Assessment Method Application Requirements (TAMAR) state that a formal assessment can only be performed by an accredited Lead Assessor. The necessary accreditation can only be gained by the TMMi Foundation.

Assessments without an accredited assessor can only be performed as informal assessments. Formal and informal assessments mainly differ in the presentation of the assessment result. Only formal TMMi assessments allow the statement of the maturity level of the assessed organization. Informal assessments result in a report describing the state of practice in the assessed organization. Due to the absence of an accredited assessor we could base our assessment only on the instructions of an informal assessment. Nevertheless, since the objective of the application of the approaches was to compare their assessment results, we adapted the procedures proposed by the approaches with respect to this aim.

The assessment process of both approaches is generally similar, collection of data through interviews, data analysis and documentation of results.

The use of the two different approaches in this study was split between the researchers. Researcher A was responsible for the TPI NEXT assessment and Researcher B was responsible for the TMMi assessment. However, due to time limits and for the convenience of all participants, we decided to have joint interviews for both approaches.

5.6.1 Data collection

The data needed for the test process assessments was mainly collected through interviews. Additionally, testing documents and processes that were identified during the interviews as relevant for the assessment, were studied and observed. The reason for collecting data from several sources was to include triangulation in our study to make our conclusion stronger and to eliminate chances of only one interpretation.

Interviewee selection The participants were selected with the help of the 'organization representatives'. The selection of a team member as an interviewee was based on her involvement in testing activities. Furthermore, the selected interviewees should present a representative sample of the population. Therefore, both areas, PD and PU, and both development sites, Gothenburg and Bangalore, were covered as well as all roles related to testing activities.

Two members of the group of 'organization representatives' were also selected as interviewees. Besides their professional knowledge of the case organization's testing process they were selected because their interviews served as pilot studies.

PU
PU
PD
PU
PD
PU/PD
PD
PD
PU
PU
PU
PU
PD
_

Table 8: Interviewee description

An anonymized list of all interviewees stating their roles, working area and their current location is specified in Table 8.

Interview design The interview questions were designed with respect to the aim of having joint interviews for both approaches. Due to this objective we decided to have semi-structured interviews with mainly open ended questions. This strategy aimed in getting maximum information from one question. With general phrased, open ended questions we aimed in combining the overall content of all key areas of TPI NEXT and all process areas of TMMi in one common questionnaire. Furthermore, available questionnaires from TPI approaches served as input to the process of interview question development [Taipale and Smolander, 2006] [Kasoju et al., 2013]. The feedback from the interviewees of the two pilot interviews was additionally used to reframe and rephrase the questions after conducting these first two interviews. The semi-structured interview approach allowed us to adjust the course of the interview, the set of asked questions and their level of detail according to the interviewees role and her knowledge.

Basically, the interviews were structured by the following themes:

Introduction A short introduction to research topic and process was given.

- **Warm-up questions** Questions regarding the interviewee's age, educational background, years of experience in the case organization and in IT in general were covered in this theme.
- **Overview of work tasks** Questions regarding the interviewee's usual work tasks and her involvement in testing served as important information for the further course of the interview.
- **Questions specific to testing** This was the major section in which we tried to cover all process areas. Therefore most of the questions were specific to testing such as regression testing, test environment, testing with respect to product risks, test plan, test cases, testing tools, defects and training on testing.

Statistical questions about the interview These questions were ask to get the opinion concerning interview design, questions, duration and the general feeling about the interview.

The complete set of pre-designed questions is given in Appendix E.

Execution of the interview Prior to the interview phase emails were sent to all interviewees briefly describing the purpose and process of the study and the purpose and relevance of the interviews. Except for the two pilot interviews, the duration of the interviews was set to a maximum of 60 minutes. All interviews were recorded in an audio format and, additionally, notes were taken. The interviews were conducted in person with the participants in Gothenburg (Sweden) while telephone interviews were conducted with the interviewees in Bangalore (India).

As basis for the data analysis, the contents of all interviews were briefly transcribed after the interview phase. The individual transcript of each interview was sent to the respective interviewee with the request to check the content for its correctness. Occurring changes were considered later in the data analysis phase.

Observation Observation helps to understand processes better by seeing the actual performance of the process. For some of the processes or system feature the researchers made observation to get in-depth understanding about their processes by sitting next to the interviewees when they were actually executing any tests or related process.

Document analysis Process documents such as test policy, software test description, test cases, test plans, testing reports and all other documents related to testing were studied to gain a deep understanding of the organization processes and standards which in turn helped in understanding and analyzing the interview data.

5.6.2 Data analysis

The data collection phase was followed by data analysis. Since the main focus lay on assessment of state of practice with respect to test process and not the identification and implementation of improvements the instructions regarding improvement suggestions were neglected during data analysis. Especially, the process of TPI NEXT was affected by this decision.

The main element of the assessment with TPI NEXT is the verification of the checkpoints provided by the model. Based on the interview data, the documents studied and the processes observed Researcher A checked the fulfillment of the checkpoints for each key area. Fulfilled checkpoints were marked with 'yes' and not fulfilled checkpoints were marked with 'no'. The results were documented in a spreadsheet provided on the TPI NEXT website. The spreadsheet automatically produces the TPI NEXT Test Maturity Matrix which highlights the fulfilled checkpoints in the respective maturity level of each key area ¹. Due to the limitation to the assessment of the state of practice the consideration of clusters was disregarded.

¹http://www.tmap.net/en/tpi-NEXT/downloads

In a formal assessment of TMMi the result is based on the degree of fulfillment of specific and generic goals. TMMi provides a rating scale which specifies the degree of fulfillment in detail. In an informal assessment, as described by the TMMi Foundation, this procedure is not proposed. However, since we needed to build a basis on which we could compare the results of the TPI NEXT assessment and the TMMi assessment with respect to our mapping of the two approaches we adapted the assessment procedure to this purpose. Based on the interview data Researcher *B* checked the fulfillment of the specific and generic goals associated to the process areas of maturity Level 2. The fulfillment for each specific and generic practice was classified by the following rating: 'fully fulfilled', 'partly fulfilled' or 'not fulfilled'.

If the organization's testing process is performed exactly like the practices proposed by the TMMi model or by an acceptable alternative this practice is marked as 'fully fulfilled'. If only particular steps of the proposed practices are in place in the testing process of the organization this practice is marked as 'partly fulfilled'. If a TMMi practice is not followed at all this practice is marked as 'not fulfilled'. Due to the staged character of the TMMi model an assessment of a higher level is not needed if the goals of the preceding level are not fully fulfilled. Therefore only the process areas and goals of TMMi Level 2 were investigated.

Both, the assessment procedure of TPI NEXT and the informal assessment of TMMi do not require the assessor to provide particularly strong or multiple evidences for her decision if a checkpoint or a goal is fulfilled or not. Hence, the decision relies on the assessor's interpretation of the interview data with respect to the compliance with the model provided by the respective approach. Both researchers agreed upon an analysis procedure in which a checkpoint or a goal was stated as fulfilled if an indication of the fulfillment was given by at least one interviewee.

6 Results

In this section the results of the study are presented. The section is structured by the research questions answered by this study.

6.1 Research question 1

To answer RQ 1 (Which different TPI approaches can be found in literature?), a systematic literature review, as described in Section 4.1, was conducted. The TPI approaches found by the literature review are presented in Table 9.

In total, 18 approaches have been identified. They are described in more detail in Section 6.2.

The studies [Farooq and Dumke, 2008], [Farooq and Dumke, 2007] and [Swinkels, 2000] have been identified as primary studies related to the research question since they are discussing TPI approaches. However, these studies are not listed in Table 9 because they are not explicitly presenting one specific approach but rather comparing several approaches. Most of the approaches presented in these papers are already included in the approaches listed in Table 9. Nevertheless, some approaches mentioned in these papers have not been further considered in this study due to lack of available information or due to generalizability issues (since they have only been developed for a specific company).

6.2 Research question 2

To answer RQ 2 (What are the specific characteristics of these Test Process Improvement approaches?), the data about the approaches presented in Section 4.1.5 was extracted from the primary studies found by the systematic review. The characteristics of each approach are presented in Appendix F.

Based on their main concept the approaches can be grouped into four groups:

- TMM and related approaches.
- TPI and related approaches.
- Standards and related approaches.
- Individual approaches.

In the following paragraphs the identified approaches are described. Brief background information and the most important characteristics are pointed out for each approach. Table 9: Found approaches.

Ref	Approach	Abbreviation
[Ryu et al., 2008]	Ministry of National Defense-Testing Matu-	MND-TMM
	rity Model	
[Taipale and Smolander, 2006]	Observing Practice	
[Farooq et al., 2008b]	Meta-Measurement approach	
[Jung, 2009]	Embedded Test Process Improvement Model	Emb-TPI
[Rana and Ahmad, 2005]	Testing Maturity Model	TMM
[Burnstein et al., 1996]	Testing Maturity Model	TMM
[Xu-Xiang and Wen-Ning, 2010]	Plan-Do-Check-Action (PDCA)-based soft-	
	ware testing improvement framework	
[Tayamanon et al., 2011]	Testing Maturity Model	TMM
[Jacobs and Trienekens, 2002]	Metrics Based Verification and Validation	MB-VV-MM
	Maturity Model	
[Kasoju et al., 2013]	Evidence-based Software Engineering	
[Kasurinen et al., 2011a]	Self-Assessment framework for ISO/IEC	
	29119 based on TIM	
[Heiskanen et al., 2012]	Test Process Improvement Model for Auto-	ATG add-on for TPI
	mated Test Generation	
[Rasking, 2011]	Test Maturity Model integration	TMMi®
[Reid, 2012]	Software Testing Standard ISO/IEC 29119,	
	ISO/IEC 33603	
[Burnstein, 2003]	Testing Maturity Model	TMM
[Farooq and Dumke, 2007]	Several	
[Ericson et al., 1997]	Test Improvement Model	TIM
[Karlström et al., 2005]	Minimal test practice framework	MTPF
[Burnstein et al., 1999]	Testing Maturity Model	TMM
[Koomen and Pol, 1999]	Test Process Improvement	TPI
[TPI, 2004]	TPI®Automotive	TPI®Automotive
[v. Ewijk et al., 2013]	TPI®NEXT	TPI®NEXT
[van Veenendal, 2008]	Test Maturity Model integration	TMMi®
[Jacobs et al., 2000]	Testing Maturity Model	TMM
[Steiner et al., 2012]	Test SPICE	
[Suwannasart, 1996]	Testing Maturity Model	TMM
[Homyen, 1998]	Testing Maturity Model	TMM
[Koomen, 2002]	Test Process Improvement	TPI

TMM and related approaches

TMM - Testing Maturity Model The Testing Maturity Model was developed by a research group at the Illinois Institute of Technology in the late 1990s. Its purpose is to assess and improve testing processes in software development organizations. Furthermore it can be used as a model to represent the ideal incrementally growing testing process. Especially assessments from inside the company are possible. Amongst other sources, the development of TMM was influenced by CMM. The need for the development of the model emerged since existing evaluation frameworks did not address testing in a sufficient way. Especially the structure of TMM is inspired by CMM. It represents a staged model and consists of the following components:

- Five maturity levels: Initial, Phase Definition, Integration, Management and Measurement, Optimization/Defect Prevention and Quality Control,
- maturity goals (MG), maturity subgoals (MSG) and activities and tasks with responsibilities (ATR) and,
- an assessment model (TMM-AM).

TMMi®- Test maturity model integration TMMi is generally known as the successor of TMM. It was developed by the TMMi Foundation. The TMMi Foundation, a non-profit organization, was founded in 2005 by a group of leading test and quality practitioners. Their aim was to develop a testing model which covers the experience and best practices of a broad group of experts and would find acceptance in industry. Besides TMM as development basis, TMMi was influenced by CMMi. TMMi consists of:

- Five maturity levels: Initial, Managed, Defined, Measured, Optimization,
- process areas in each maturity level,
- required components: Specific and generic goals,
- expected components: Specific and generic practices and,
- informative components: Sub-practices, example work products, notes, examples or references.

The TMMi maturity levels have been inspired by the TMM maturity structure but further developed according to industry needs. Whereas the introduction of required, expected and informative components was established due to the influence of CMMi. Most generic goals and practices were even adopted from CMMi. **MND-TMM** - **Ministry of National Defense-Testing Maturity Model** MND-TMM was developed to address the specific needs of weapon software system development. It combines the concepts of several approaches. It was influenced by TMM and TMMi and uses the continuous representation of CMMi. Furthermore, an OWL ontology is used to describe the elements of the model. Most elements of MND-TMM have been adopted from TMMi like specific and generic goals.

The model consists of ten process areas which are summarized in four categories -Military, Process, Infrastructure and Techniques. Each process area has five maturity levels. Due to the use of a continuous model the maturity of each process area can be assessed individually.

MB-VV-MM - Metrics based verification and validation maturity model The MB-VV-MM is a quantitative framework to improve validation and verification processes. Metrics are used to select process improvements and to track and control the implementation of improvement actions. The approach was based on TMM and enhanced by additions to specially support the validation and verification process. Similar to TMM, it consists of five maturity levels.

TIM - Test Improvement Model The Test Improvement Model serves as a guidebook for improvements of the test process and focuses explicitly on cost-effectiveness and risk management. Its intention is to identify the current state of practice with strong and weak elements and to make suggestions how to further strengthen the strong elements and to improve the weak elements. It was inspired by SEIs Capability Maturity Model and Gelperin's Testability Maturity Model.

TIM belongs to the group of continuous models and it is seen as the first step of the PDCA method, the planning phase. The model consists of five key areas. Each key area has five levels of maturity: Initial, baselining, cost-effectiveness, risk-lowering and optimizing, which are each represented by one overall goal and several subgoals.

TPI and related approaches

TPI - Test Process Improvement The Test Process Improvement model was developed in a Dutch company called IQUIP in the late 1990s. The model is based on the test approach TMap. It helps analyzing the current situation and identifying strengths and weaknesses of an organization's test process.

TPI is a continuous approach. It consists of 20 key area which represent different points of view on the test process. Each key area can have up to four levels of maturity. Checkpoints are used to determine the maturity level of each key area. They are requirements that have to be met for a test process to be classified in a specific level of maturity.

A Test Maturity Matrix provides an overview of the testing maturity of the assessed organization by highlighting the satisfied checkpoints and maturity levels per key area.

TPI(**NEXT** TPI NEXT is the successor of TPI, developed by the Dutch company Sogeti (a corporate merger of IQUIP and other companies). Compared to the original TPI approach the number of key areas in TPI NEXT has been reduced to 16 and additional elements— enablers and clusters—have been introduced to the model to more efficiently address industry needs in Test Process Improvement.

TPI Automotive A further approach developed by the Dutch company Sogeti is TPI Automotive. It follows the same principles as TPI but was specifically adapted to the needs of software testing in automotive industry.

ATG add-on for TPI - Test Process Improvement Model for Automated Test Generation This approach represents an add-on for the existing TPI to address the aspects of automated test generation in Test Process Improvement, especially the use of formal methods. The add-on extends TPI by:

- new maturity levels in the key areas of 'Static Test Techniques' and 'Test Specification Techniques',
- new key areas 'Modeling approach', 'Use of models', 'Test confidence', Technological and methodological knowledge' and
- new checkpoints.

Emb-TPI - Embedded Test Process Improvement Model Embedded TPI focuses on improving the testing process for embedded software by especially considering hardware issues of testing. The model consists of the following elements:

- capability model,
- maturity model,
- test evaluation checklist,
- evaluation & improvement procedure and,
- enhanced test evaluation model.

Standards and related approaches

Test SPICE The intention of developing Test SPICE was to provide a process reference model (PRM) and process assessment model (PAM) specific for test process assessment in conformance with the requirements of ISO/IEC 15504 II. Using ISO/IEC 15504 V as a starting point and reusing its structure, the Test SPICE model was developed by:

- identically transferring processes from ISO/IEC 15504 V to Test SPICE,
- replacing original processes from ISO/IEC 15504 V with specific test processes,

- renaming processes of ISO/IEC 15504 V and,
- inserting new specific test processes to Test SPICE.

Software Testing Standard ISO/IEC 29119, ISO/IEC 33063 ISO/IEC 29119 is a testing standard. The need for this standard was identified due to the traditionally poor coverage of testing in standards. Available standards with respect to testing cover only small, particular parts of testing, not the overall testing process.

ISO/IEC 29119 is divided into four parts: concepts and terminology, test process, test documentation and test techniques. By working in accordance to the process proposed in the standard a specific product quality can be guaranteed. In addition, ISO/IEC 33063, the process assessment standard related to the testing standard, provides a means to assess the compliance of a testing process to ISO/IEC 29119.

Self-Assessment framework for ISO/IEC 29119 based on TIM The goal of this approach is to provide an assessment framework that checks the compliance of an organization's test process with the standard ISO/IEC 29919. Therefore, the concept of the Test Improvement Model (TIM) with its maturity levels has been combined with the propositions of the standard. The model is divided into three levels: Organizational, project and execution level. Similar to TIM this approach has five maturity levels: Initial, baseline, cost-effectiveness, risk-lowering and optimizing, and also follows the continuous approach which means that the key areas are assessed separately.

Individual approaches

Meta-Measurement approach This approach focuses on the specification and evaluation of quality aspects of the test process. It is based on the concept of Evaluation Theory [Ares Casal et al., 1998] and it has been adapted to address the test process sufficiently. It consists of the following steps:

- Target(Software Test Processes).
- Evaluation Criteria (Quality Attributes).
- Reference Standard (Process Measurement Profiles).
- Assessment Techniques (Test Process Measurements).
- Synthesis Techniques (Quality Matrix, Quality Indexes).
- Evaluation Process.

Plan-Do-Check-Action (PDCA)-based software testing improvement framework The PDCA-based software testing improvement framework was developed to specifically address test processes provided as services by third party testing centers. The concept of this approach is based on the hypothesis that knowledge management plays an important role in process improvements. The framework is divided into the following phases:

- Build a learning organization through knowledge management.
- Plan the adaptive testing processes.
- Plan implementation and data analysis.
- Continuous improvement.

Evidence-Based Software Engineering In this individual approach, improvements for the test process are identified by the use of evidence-based software engineering. First, challenges in the testing process of an organization are identified by interviews. Then, solutions to these challenges are searched by a systematic literature review. Finally, an improved test process is presented by value-stream mapping.

Observing Practice In this approach the test process is studied by conducting detailed interviews with varying roles involved in testing in several interview rounds. The data gained by the interviews is analyzed by the use of grounded theory. Problems and at the same time possible solutions are identified by the analysis.

MTPF - Minimal test practice framework MTPF is a light-weight approach which addresses smaller organizations. Its goal is to increase acceptance of proposed improvements by the involvement of the entire organization. The framework addresses five categories which correspond to areas in testing. The introduction of process improvement is leveled in three phases which are adapted to the size of the organization.

6.2.1 Research question 2.1

To answer RQ 2.1 (Which approaches are generally applicable in industry?), the exclusion criteria specified in Section 4.1.6 was applied on the 18 TPI approaches identified by the systematic review.

This exclusion procedure led to a set of six approaches generally applicable due to their completed development, the sufficient information provided about the approach, an available assessment instrument and its independency from a specific domain.

These six approaches are TMM, TMMi, TPI, TPI NEXT, Test SPICE and Observing Practice. With regard to the four groups of approaches identified in the previous section, these six approaches represent each group.

Even though TPI NEXT is the successor of TPI, and the concept of TMMi is based on TMM and TMMi is often also seen as the successor of TMM, these approaches are still considered separately in this study.

6.2.2 Research question 2.2

To answer RQ 2.2 (Which approaches are valuable for test process improvements for the company under study?), a workshop was conducted in the case organization in which the approaches identified as generally applicable were presented and two approaches were selected by a cumulative voting. The results of the voting are presented in Table 10.

Table	10:	Results	from	apply	ving	cumu	lative	voting
ruore	10.	results	nom	uppi	1116	cumu.	iuu vo	voung

TPI TPI®NEXT TMM TMMi® TestSPICE Observing Practice Participant 1 0 40 20 39 0 1 Participant 2 0 50 0 50 0 0 Participant 3 0 60 0 40 0 0 Participant 4 0 50 0 50 0 0 Participant 5 0 0 100 0 0													
	TPI	TPI®NEXT	TMM	TMMi®	TestSPICE	Observing Practice							
Participant 1	0	40	20	39	0	1							
Participant 2	0	50	0	50	0	0							
Participant 3	0	60	0	40	0	0							
Participant 4	0	50	0	50	0	0							
Participant 5	0	0	0	100	0	0							
Participant 6	0	100	0	0	0	0							
Participant 7	0	100	0	0	0	0							
Total	0	400	20	279	0	1							

An objective first look at the results shows that TPI NEXT received the highest scores with 400 points and TMMi got the second highest scores with 279 points. Clearly behind are the scores for the third and fourth ranking. On the third rank is TMM with 20 points and Observing Practice reached the fourth rank with only 1 point. TPI and TestSPICE did not get any votes.

Considering the knowledge and experience in the field of Test Process Improvement of two of the participants, the interpretation of the results requires a different perspective. Unlike the other participants of the workshop Participants 6 and 7 already had detailed knowledge about TPI prior to the workshop. One of them even has significant experience in performing test process assessments using TPI.

If the votes of Participants 6 and 7 were disregarded, TMMi would have received the highest scores with 279 points, compared to TPI NEXT with 200, TPI with 20 and Observing Practice with 1 point. Due to the fact that in both perspectives TPI NEXT and TMMi clearly obtained the highest rankings we decided to apply both approaches in the case study.

6.3 Research question 3

To answer RQ 3 (How well can the content of the selected approaches be mapped to each other?), a mapping based on keywords extracted from both approaches respectively and the search of these keywords in the other approach was conducted.

TMMi Speci	TPI Next Key area		Stakeholder			Degree of involvement			Test strategy			Test organization			Communication			Reporting			l est process management			Estimating and	קומוויייש
-	Test policy and strategy	C	E	0	С	E	0	C V	E	0	С	E	0	С	Е	0	С	Е	0	С	Е	0	С	E	0
2	Test policy and strategy	Ŷ				x		Ŷ	Ŷ	^		^					x	x		x	x		x	x	x
2	Test Monitoring and control	ſ^	x			Â		L.	Â					x			^	x		x	Â		ſ^	L ^	<u>^</u>
2	Test Design and Execution																								
2	Test Environment																								
3	Test Organization						х				х	х	х									х			
3	Test Training Program																								
3	Test Lifecycle and Integration										х								х			х			
3	Non-functional Testing																								
3	Peer Reviews																								
4	Test Measurement																х		х						
4	Product Quality Evaluation		х											х											
4	Advanced Reviews																		х						
5	Defect Prevention					х																			
5	Quality Control																								
5	Test Process Optimization												Х						Х			Х			

X Similarity between TMMi and TPI NEXT

Figure 7: Mapping between TPI NEXT and TMMi—Results Part 1.

TMMi Speci	TPI Next Key area		Metrics			Defect management			Testware management			Methodology			Tester nrofessionalism			Test case design			Test tools			Test environment	
2	Test policy and strategy	С	E	0	С	E	0	С	E	0	С	E	0	С	E	0	С	Е	0	С	E	0	С	Е	0
2	Test policy and strategy	x																							
2	Test Monitoring and control				x																		x		
2	Test Design and Execution																x	х							
2	Test Environment																						х	х	
3	Test Organization												х	х	х	х									
3	Test Training Program													х											
3	Test Lifecycle and Integration										х														
3	Non-functional Testing																	х							
3	Peer Reviews																								
4	Test Measurement		х																						
4	Product Quality Evaluation		х																						
4	Advanced Reviews																								
5	Defect Prevention						х												х						
5	Quality Control																								
5	Test Process Optimization												х						х			х			

X Similarity between TMMi and TPI NEXT

Figure 8: Mapping between TPI NEXT and TMMi—Results Part 2.

The similarities between the process areas of both approaches are presented in Figures 7 and 8 as the results of the mapping.

For the interpretation of the results it is crucial to take into consideration the different model representations of TPI NEXT and TMMi. TPI NEXT is a continuous approach. Each key area can be assessed individually by all maturity levels. On the other hand, TMMi is a staged approach. The process areas are linked to the maturity level.

Most of the aspects covered by lower levels of maturity in the key areas of TPI NEXT can by found in the process areas of Maturity Level 2 of TMMi. Exceptions are the key areas 'Testware management', 'Methodology practice', 'Tester professionalism' and 'Test tools'. None of the aspects of these key areas are covered in Maturity Level 2 of TMMi. However, lower maturity aspects of the key areas 'Methodology practice' and 'Tester professionalism' are covered by Maturity Level 3 of TMMi.

The aspects of TPI NEXT's 'Testware management' key area are not covered by TMMi at all. And likewise, the process area 'Quality Control' of TMMi is not addressed by TPI NEXT at all.

On the contrary, even though aspects of all maturity levels of the TPI NEXT key areas 'Test strategy', 'Test organization', 'Reporting', 'Test process management', 'Estimating and planning', 'Tester professionalism' and 'Test case design' are covered by process areas of TMMi, the maturity levels of these TPI NEXT key areas do not exactly correspond to the respective maturity levels in TMMi. While the aspects of all maturity levels of TPI NEXT's key area 'Test strategy' correspond to TMMi's process areas 'Test policy and strategy' and 'Test planning' in Maturity Level 2 and the aspects of all maturity levels of the key area 'Estimating and planning' in TPI NEXT correspond to 'Test planning' also in Maturity Level 2 of TMMi, the aspects of TPI NEXT's 'Tester professionalism' are reflected by the process areas 'Test organization' and 'Test training program' in Maturity Level 3 of TMMi. Furthermore, the aspects of the key areas 'Test organization', 'Reporting', 'Test process management' and 'Test case design' are corresponding to process areas of different maturity levels of TMMi.

However, most aspects addressed by process areas in higher maturity levels of TMMi (Levels 4 and 5) are accordingly addressed by the highest maturity level (optimizing) in the key areas of TPI NEXT. And likewise, most aspects addressed by process areas in lower maturity levels of TMMi (Levels 2 and 3) are addressed by lower maturity levels (controlled and effective) in the key areas of TPI NEXT.

6.4 Research question 4

To answer RQ 4 (How do the results of the selected approaches differ after applying them?), both approaches, TPI NEXT and TMMi, were used in parallel to assess the case organization's test process.

Both assessments came to the result that the maturity of the case organization's test process is still in the initial level.

Since this result is not very meaningful yet, a closer look is taken to the detailed results of both assessments and these results are compared with regards to the earlier performed mapping of the approaches against each other.

Figure 9: Mapping between TPI NEXT and TMMi. Comparison of assessment results Part 1.

Figure 10: Mapping between TPI NEXT and TMMi. Comparison of assessment results Part 2.

The matrices in Figures 9 and 10 illustrate the assessment results of both the TMMi and the TPI NEXT assessment in combination with the mapping results. The fulfillment degree of the process areas in TMMi and the key areas separated by maturity level in TPI NEXT respectively is indicated by three levels, 'FF' (fully fulfilled), 'PF' (partly fulfilled) and 'NF' (not fulfilled). To achieve a rating of 'fully fulfilled', in TMMi, all specific goals of the respective process area, and in TPI NEXT, all checkpoints of the respective key area, have to be fulfilled. TMMi process areas that have not been investigated in the case organization are marked with 'NA' (not applicable).

The staged model representation of TMMi demands the assessment to begin with the investigation of process areas belonging to Maturity Level 2. Only if all process areas of Level 2 are fulfilled the assessment proceeds with the investigation of process areas belonging to Maturity Level 3. Due to the low level of maturity present in the case organization the assessment was therefore limited to the process areas of Maturity Level 2 only.

In the contrary, the continuous approach of TPI NEXT allows for an assessment of all key areas. Therefore, some aspects of the case organization that have been investigated by TPI NEXT and assessed as partly fulfilled, have not been investigated by TMMi, namely some aspects of the TPI NEXT key areas 'Degree of involvement', 'Communication', 'Reporting' 'Test tools'.

The TMMi assessment resulted in all five process areas of Maturity Level 2 being assessed as 'partly fulfilled'. In general, the outcome of the TPI NEXT assessment shows a similar result. However, there are some key areas of TPI NEXT in which similarities with TMMi process areas of Level 2 had been identified by the mapping, but which have been assessed as 'not fulfilled' in the TPI NEXT assessment compared to the 'partly fulfilled' rating in TMMi. These are the efficient level of 'Stakeholder commitment', the optimizing level of 'Test strategy', the efficient level of 'Test organization', the efficient level of 'Reporting', the efficient level of 'Test process management', the efficient and optimizing level of 'Estimating and planning', the controlled level of 'Metrics', the efficient level of 'Test case design' and the efficient level of 'Test environment'.

The TPI NEXT assessment resulted in one key area being fully fulfilled, namely the controlled level of 'Defect management'. The mapping between TMMi and TPI NEXT had shown that the process area in TMMi dealing with similar aspects to this key area was 'Test monitoring and control'. Since the process area belongs to Maturity Level 2 it has also been investigated in the TMMi assessment but it was only assessed as partly fulfilled.

For some specific maturity levels of TPI NEXT, key areas that have been assessed as partly fulfilled for the case organization, the mapping between the two approaches had not identified similarities with TMMi process areas. These are the controlled level of 'Degree of involvement', the efficient level of 'Defect management', the efficient level of 'Testware management', the controlled and efficient level of 'Test tools', and the optimizing level of 'Test environment'.

7 Discussion

In this section the results presented in the previous section are discussed.

The systematic review and the mapping between TMMi and TPI NEXT performed within the case study provide a major general contribution to the body of knowledge with respect to TPI approaches.

Confirmed by researchers working in the area of Test Process Improvement, our systematic review provided a reasonably complete set of approaches. For some of the 18 identified approaches some of the researchers contacted as validation of the review results stated appreciative that they have not been aware of these approaches before. However, many of the research papers about these approaches do not provide sufficient information, or the approaches do not include assessment instruments which makes the approaches difficult to be applied in industry. Many of the identified approaches have even only been developed as concepts. Another limitation to the general applicability of the approaches is their specialization to a specific domain.

Primarily, based on the origin of the approach and the testing model which builds the framework for the assessment, we divided the approaches into four groups.

The first group consists of TMM and approaches that are based on TMM or that have been influenced in their development by TMM. Since TMM itself has been significantly influenced by CMM, one approach, TIM, has been included in this group that has not explicitly been influenced by TMM rather than by CMM. So it could also be considerable to characterize the approaches in this group as influenced by CMM.

In contrast, the formation of the second group, is clearly less ambiguous. It consists exclusively of TPI and TPI-based approaches. The third group represents standards and approaches related to these standards. Here, the classification to this group was again more ambiguous. One approach, the self-assessment framework for ISO/IEC 29119 based on TIM, has been included in this group since the testing model for this approach is provided by the standard ISO/IEC 29119. Viewed from another perspective, this approach could have been also included in the first group since the assessment process is based on TIM. However, the assessment process was not the *primary* criteria of our classification. Finally, the fourth group includes all other approaches that do not have a testing model. They present individual assessments which are not built on a predefined framework.

An alternative classification of the approaches could have been done by their model representation which would result in three groups, approaches without a model, approaches with a continuous model representation and approaches with a staged model representation. In this kind of classification the individual approaches would have been grouped as approaches without a model and the TPI approaches would have been allocated to the group of approaches with continuous model representation. The remaining approaches, however, would have been split between the two groups of continuous or staged model representations. Especially, in the TMM-related approaches, both, continuous and staged model representations are used. This, in turn, emphasizes the influence of CMM to these approaches, since CMM provides both, a continuous and a staged representation.

One further classification would have been conceivable; the distinction between qualitative and quantitative approaches. But surprisingly, only one approach was iden-

tified using quantitative data for the assessment. All the other assessments are done based on qualitative data gained from interviews or surveys. Even though the analysis of qualitative data provides much more space for individual interpretations and less defined structure, it appears to us that the analysis of qualitative is preferred over quantitative data analysis. This tendency to qualitative studies with respect to testing processes corresponds to statements given by interviewees during the interview phase of the assessment. It was claimed that the testing process followed is dependent, e.g., on the current situation, the workload or the tester's experience in an area. This individuality of the process makes an unambiguous interpretation of metrics more difficult and therefore the use of qualitative approaches *more* reasonable.

With respect to the selected TPI approaches to be applied in the case organization, it is clearly reflected, in our opinion, that trust in the provided methodologies plays an important role in industry. Only few of the approaches identified by the systematic review have been known to our industry partner before this study took place. The best known approaches in industry are TMMi and TPI/TPI NEXT, which have actually selected by the case organization. It could be argued that, these are the most commercially promoted ones, therefore the best known in industry. But on the other hand many of the approaches further developed in academia are also based on these approaches. Often a well known approach is further developed for a specific domain. In our opinion, this shows that industry and academia agree to a great extent about the requirements for TPI approaches.

Moreover, industry is to a great extent familiar with the well established concepts CMM/CMMi assessments and asks for similar certificates with respect to testing. A formal assessment performed by a lead assessor accredited by the TMMi Foundation provides this kind of certificate. Therefore, industry trusts in approaches influenced by CMMi. We suppose that the awareness of CMM/CMMi in the case organization and the influence of CMMi on TMMi influenced the voting of at least one participant of the static validation process.

From different points of view, it was also interesting that, firstly, only approaches using a testing reference model have been selected for application in the case organization and, secondly, approaches with different model representations.

Neglecting the individual approach without a reference model could be justified, in our opinion, by the better guidance for the assessment and trust in the best practices provided by approaches with testing reference models.

The selection of one approach with a continuous model representation and one with a staged representation is especially interesting with respect to the performed mapping between the two approaches and comparison of their results. The advantages and disadvantages of these two different representations are often discussed. It is claimed that the continuous approaches, like TPI NEXT, offer more room for improvements in practice. The ability to focus on individually chosen aspects of the test process provides the assessor the freedom to adapt the TPI to the specific needs of the organization; industry seems to deem that as a very valuable characteristic of a TPI approach.

In staged approaches, like TMMi, it seems to be very difficult to fulfill the requirements to achieve the next higher level. Since all aspects of a maturity level have to be fulfilled as a whole, a clear majority of the assessed organizations is still at low levels. An official survey performed by the TMMi Foundation on the organizations assessed by a formal TMMi assessment states that 11% of the assessed organizations are at initial level and 89% are at Level 2².

Therefore, the low TMMi assessment result of the case organization in this study is not surprising. But, on the hand, it might have been expected that the TPI NEXT assessment would have led to a better result. However, due to the results of the mapping between TMMi and TPI NEXT, these similar assessment results are absolutely reasonable.

Despite their different model representations, the mapping between the approaches showed that they principally resemble to a great extent. Apart from smaller differences, they investigate the same aspects of the testing process and they basically categorize specific requirements to the process in the similar level's maturity. On this basis, it is very likely that they come to the same assessment result.

Nevertheless, the mapping and the detailed comparison of the assessment results, indicated that the requirements of the maturity levels in TMMi are much stricter and more difficult to reach than in TPI NEXT. The comparison results showed that some aspects of the testing process covered by lower maturity levels in TPI NEXT and identified as partly fulfilled in the case organization are allocated to much higher maturity levels in TMMi which have not even been investigated due to the non-fulfillment of Maturity Level 2. And furthermore, the mapping showed that some aspects allocated to Maturity Level 2 in TMMi are spread over all three maturity levels of TPI NEXT. Even an achievement of the highest maturity level in TPI NEXT, in regards to these aspects, would still not lead to an achievement of a higher maturity level in TMMi. Moreover, our experience in performing the assessments with both approaches showed that the definitions given for the checkpoints in TPI NEXT are more superficial and provide a lot of freedom for individual interpretations. Whereas, especially, the generic and specific practices, together with the work examples in TMMi give very detailed descriptions of the testing process, which provides a good guidance in conducting the assessment. However, for the successful application of both approaches, extended knowledge in software testing is essential.

²http://www.tmmi.org/pdf/TMMISurvey2012.pdf

8 Threats to validity

This section describes the threats to validity of this study and how they have been addressed. An analysis of validity threats enhances the correctness of a research study by early identifying factors possibly affecting the results and allowing actions to be taken to mitigate or minimize the threats to the finding. The structure of this section is given by the four categories of validity threats considered with respect to this study - threats to construct validity, internal validity, external validity and conclusion validity. The validity threats related to these four categories and possibly affecting this study are introduced with reference to [Wohlin et al., 2012]. For each kind of validity threat it is further discussed how this threat was particularly addressed in the design and performance of this study.

8.1 Construct validity

Construct validity considers how well the results to a concept or theory used behind the study can be generalized. It can be further categorized into design and social type. Design threats cover issues concerning design of the study while social threats are related to the behavior of the subject and the study.

Mono operational bias Mono operational bias refers to the use of only one single independent variable, case subject or treatment in a research study.

With respect to data collection, this threat was delimited by using methodological triangulation. Data collection was done through interviews, observations and document analysis.

Mono method bias Mono method bias means that single measures are used or single observations are done.

This threat was mitigated by the two researchers executing major parts of the research independently and cross checking the results. Furthermore, different methods were used by the two researchers with respect to snowball sampling and the mapping between the approaches. Conclusions were drawn by comparing the results.

Evaluation apprehension Evaluation apprehension is a social threat about a human's tendency to present herself in a better way when being evaluated.

To mitigate this, the interviewees were assured that the data collected in the interviews would be anonymous which helped them to provide honest and realistic information.

8.2 Internal validity

Internal validity refers to the act of establishing a casual relationship between the treatment and the outcome. These threats are further identified as single group threats because the study is applied to a single group. **Maturity** Maturity considers the factors that can affect the reaction of the subject differently (negatively or positively) as time passes. Negative affect being that the subject gets tired or bored during the interview.

To mitigate this threat the duration of the interviews was planned not to exceed one hour.

Selection Selection is the natural variation in human performance and how their behavior is affecting the result.

There are two threats we identified in this regards, first, selection of interviewees who represent the whole population. This threat was minimized by asking the 'organization representatives' for help regarding interviewee selection, since they had very good insight in the organization. The second threat was identified while conducting the workshop for static validation where two external participants tried to put more emphasis on one TPI approach, namely TPI NEXT, due to their experience with this approach. This threat was later mitigated by selecting two approaches for application in the case organization.

Publication bias This threat to validity is related to systematic reviews where publication bias arises due to unpublished or grey literature which is not made available.

To minimize this threat we contacted the authors of the primary studies through email and asked for unpublished literature with respect to TPI approaches.

8.3 External validity

Threats to external validity are conditions that limit the ability to generalize the results of a study to industrial practice.

Interaction of selection and treatment This threat occurs if a wrong subject is selected from the study population and the result cannot be generalized.

This threat was minimized by selecting different interviewees from different areas (PU and PD), roles and locations (Gothenburg and Bangalore).

External validity can also be related to the finding of a systematic review. We say that our exclusion and inclusion criteria and the quality assessments were precisely good to get a good representative set of primary studies.

8.4 Conclusion validity

Conclusion validity is concerned with issues affecting the ability to draw correct conclusion about relations between the treatment and the outcome of an experiment.

Reliability of the treatment implementation This threat refers to the implementation of a treatment to the subject. Treatment in our study would be the basis presented in applying the inclusion and exclusion criteria to select papers as primary studies in the systematic review. To mitigate this threat we defined explicit inclusion and exclusion criteria and provided detailed documentation of the study selection process to be able to prove how the primary studies had been identified.

Random heterogeneity of subject Heterogeneity of subjects means that the subjects of a study belong to a varied group with respect specified characteristics. While homogeneity of subjects means that the subjects belong to the same group based on these characteristics. In our case, the interviewees belong to different areas within the organization, have different roles, and are located in different countries. Thus it can be concluded that we have a chance of facing random heterogeneity.

Threats to the conclusion validity regarding questionnaires used in the interviews were mitigated by conducting pilot interviews with two 'organization representatives'. Furthermore, the interview audio recordings were briefly transcribed and the transcipts were sent back to the respective interviewee to conform if the data had been interpreted correctly.

9 Conclusions

This study was divided into two parts. In the first part, we conducted a systematic literature review to identify available Test Process Improvement (TPI) approaches. A total of 18 approaches have been found. To our knowledge this is the first systematic literature review conducted in this area. Based on information extracted from the identified primary studies with respect to completeness of development, availability of information and assessment instruments, and domain limitations of the approaches, six generally applicable TPI approaches have been identified - TMM, TMMi, TPI, TPI NEXT and Observing practice. These six approaches mainly differ in regards to the use of testing process reference models, and their model representation.

In the second part of this study, we conducted a case study in which, first, two approaches to be applied in the case organization were selected, and second, two parallel assessments of the organization's testing process were performed using these approaches. The approaches used in this case study were TMMi and TPI NEXT. A major distinction between these two approaches is their model representation, TMMi has a staged model and TPI NEXT uses a continuous model. Based on an initially performed mapping between TMMi and TPI NEXT the assessment results were compared. With both approaches the testing process of the case organization was assessed to be in the 'initial' level. Based on the mapping between the approaches and the comparison of their detailed assessment results, we found out that both approaches are very similar. Mostly, they cover the same aspects of the testing process and categorize these aspects to similar levels of maturity. However, a closer look shows that the detailed assessment results differ, particularly caused by the different model representations of the two approaches.

The generalizable results of the systematic review and the mapping between the two TPI approaches provide, on the one hand, a good basis for further research in this area. There is a need to conduct further case studies comparing assessment results to strengthen the findings and to perform similar mappings between further approaches to extend the knowledge. On the other hand, these results essentially support industry in selecting an approach to improve software testing processes.

References

TMMi Foundation website. URL www.tmmifoundation.org/.

TPI Automotive, Version 1.01, 2004. URL http://www.tpiautomotive.de/ Docs/TPI%20automotive%20version%201.01.pdf.

Software and systems engineering - Software testing - Part 2: Test process, 2010.

- J.M. Ares Casal, O. Dieste Tubio, R. Garcia Vazquez, M. Lopez Fernandez, and S. Rodriguez Yanez. Formalising the software evaluation process. In *Computer Science*, 1998. SCCC'98. XVIII International Conference of the Chilean Society of, pages 15–24. IEEE, 1998.
- Antonia Bertolino. Software testing research: Achievements, challenges, dreams. In *Future of Software Engineering*, 2007. FOSE'07, pages 85–103. IEEE, 2007.
- P.M.S. Bueno, A.N. Crespo, and M. Jino. Analysis of an artifact oriented test process model and of testing aspects of CMMI. In *Product-Focused Software Process Improvement*, volume 4034 of *Lecture Notes in Computer Science*, pages 263–277. Springer Berlin Heidelberg, 2006. ISBN 978-3-540-34682-1. doi: 10.1007/11767718_23. URL http://dx.doi.org/10.1007/11767718_23.
- I. Burnstein. Practical Software Testing: A Process-oriented Approach. Springer Inc., New York, NY, USA, 2003.
- I. Burnstein, T. Suwanassart, and R. Carlson. Developing a testing maturity model for software test process evaluation and improvement. In *Test Conference*, 1996. Proceedings., International, pages 581–589, 1996. doi: 10.1109/TEST.1996.557106.
- I. Burnstein, T. Suwannasart A. Homymen, G. Saxena, and R. Grom. A testing maturity model for software test process assessment and improvement. 1999.
- J.K. Chaar, M.J. Halliday, I.S. Bhandari, and R. Chillarege. In-process evaluation for software inspection and test. *Software Engineering, IEEE Transactions on*, 19(11): 1055–1070, 1993. ISSN 0098-5589. doi: 10.1109/32.256853.
- Jacob Cohen et al. A coefficient of agreement for nominal scales. *Educational and psychological measurement*, 20(1):37–46, 1960.
- J.S. Collofello, Z. Yang, J.D. Tvedt, D. Merrill, and I. Rus. Modeling software testing processes. In *Computers and Communications*, 1996., Conference Proceedings of the 1996 IEEE Fifteenth Annual International Phoenix Conference on, pages 289– 293. IEEE, 1996.
- P. Cruz, R. Villarroel, F. Mancilla, and M. Visconti. A software testing process for the reference model of Competisoft. In *Chilean Computer Science Society (SCCC)*, 2010 XXIX International Conference of the, pages 51–59, 2010. doi: 10.1109/SCCC. 2010.39.

- K.C. Dangle, P. Larsen, M. Shaw, and M.V. Zelkowitz. Software process improvement in small organizations: a case study. *Software*, *IEEE*, 22(6):68–75, 2005. ISSN 0740-7459. doi: 10.1109/MS.2005.162.
- T. Ericson, A. Subotic, and S. Ursing. TIM A test improvement model. Software Testing, Verification and Reliability, 7(4):229–246, 1997. ISSN 1099-1689. doi: 10.1002/(SICI)1099-1689(199712)7:4(229::AID-STVR149)3.0.CO;2-M. URL http://dx.doi.org/10.1002/(SICI)1099-1689(199712)7: 4<229::AID-STVR149>3.0.CO;2-M.
- A. Farooq and R.R. Dumke. Evaluation approaches in software testing.
- A. Farooq and R.R. Dumke. Research directions in verification & validation process improvement. SIGSOFT Softw. Eng. Notes, 32(4), July 2007. ISSN 0163-5948. doi: 10.1145/1281421.1281425. URL http://doi.acm.org.proxy.lib. chalmers.se/10.1145/1281421.1281425.
- A. Farooq and R.R. Dumke. Developing and applying a consolidated evaluation framework to analyze test process improvement approaches. In *Software Process and Product Measurement*, volume 4895 of *Lecture Notes in Computer Science*, pages 114–128. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-85552-1. doi: 10.1007/978-3-540-85553-8_10. URL http://dx.doi.org/10.1007/ 978-3-540-85553-8_10.
- A. Farooq, H. Hegewald, and R.R. Dumke. A critical analysis of the testing maturity model. *Metrics News, Journal of GI-Interest Group on Software Metrics, 12(1):35-40, 2007.*
- A. Farooq, R.R. Dumke, A. Schmietendorf, and A. Hegewald. A classification scheme for test process metrics. *In SEETEST 2008: South East European Software Testing Conference, Heidelberg, Germany*, July 2008a.
- A. Farooq, K. Georgieva, and R.R. Dumke. A meta-measurement approach for software test processes. In *Multitopic Conference*, 2008. *INMIC 2008. IEEE International*, pages 333–338, 2008b. doi: 10.1109/INMIC.2008.4777759.
- A. Farooq, K. Georgieva, and R.R. Dumke. Challenges in evaluating SOA test processes. In Software Process and Product Measurement, volume 5338 of Lecture Notes in Computer Science, pages 107–113. Springer Berlin Heidelberg, 2008c. ISBN 978-3-540-89402-5. doi: 10.1007/978-3-540-89403-2_10. URL http://dx.doi.org/10.1007/978-3-540-89403-2_10.
- B. Fitzgerald and T. O'Kane. A longitudinal study of software process improvement. *Software, IEEE*, 16(3):37–45, 1999. ISSN 0740-7459. doi: 10.1109/52.765785.
- D. Gelperin and B. Hetzel. The growth of software testing. Commun. ACM, 31(6): 687–695, June 1988. ISSN 0001-0782. doi: 10.1145/62959.62965. URL http: //doi.acm.org.proxy.lib.chalmers.se/10.1145/62959.62965.

- L. A. Goodman. Snowball sampling. *The Annals of Mathematical Statistics*, 32(1), 1961.
- T. Gorschek, P. Garre, S. Larsson, and C. Wohlin. A model for technology transfer in practice. *IEEE Software*, 23(6):88–95, 2006.
- M. Ham. Testing in software process improvement. *MB-TMM project report*, pages 12–5, 2002.
- M. Ham and E. v. Veenendaal. State of the art literature. part 1, mb-tmm project report 12-1-1-fp-im. 2001.
- M. J. Harrold. Testing: a roadmap. In Proceedings of the Conference on The Future of Software Engineering, ICSE '00, pages 61–72, New York, NY, USA, 2000. ACM. ISBN 1-58113-253-0. doi: 10.1145/336512.336532. URL http://doi.acm. org/10.1145/336512.336532.
- Y. He, H. Hecht, and R.A. Paul. Measuring and assessing software test processes using test data. In *High Assurance Systems Engineering*, 2000, *Fifth IEEE International Symposim on. HASE 2000*, pages 259–264, 2000. doi: 10.1109/HASE.2000.895470.
- J.E. Heiser. An overview of software testing. In AUTOTESTCON, 97. 1997 IEEE Autotestcon Proceedings, pages 204–211, 1997. doi: 10.1109/AUTEST.1997.633613.
- H. Heiskanen, M. Maunumaa, and M. Katara. A test process improvement model for automated test generation. In *Product-Focused Software Process Improvement*, volume 7343 of *Lecture Notes in Computer Science*, pages 17–31. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-31062-1. doi: 10.1007/978-3-642-31063-8_3. URL http://dx.doi.org/10.1007/978-3-642-31063-8_3.
- A. Homyen. An assessment model to determine test process maturity, Ph.D. thesis. 1998.
- F. Ilyas and R. Malik. Adhering to cmm level 2 in medium size software organizations in pakistan. In *Multi Topic Conference*, 2003. *INMIC 2003. 7th International*, pages 434–439, 2003. doi: 10.1109/INMIC.2003.1416766.
- J. Jacobs, J. v. Moll, and T. Stokes. The process of test process improvement. XOOTIC Magazine, 8(2):23–29, 2000.
- J.C. Jacobs and J.J.M. Trienekens. Towards a metrics based verification and validation maturity model. In *Software Technology and Engineering Practice*, 2002. STEP 2002. Proceedings. 10th International Workshop on, pages 123–128, 2002. doi: 10.1109/STEP.2002.1267622.
- E. Jung. A test process improvement model for embedded software developments. In *Quality Software, 2009. QSIC '09. 9th International Conference on*, pages 432–437, 2009. doi: 10.1109/QSIC.2009.64.

- D. Karlström, P. Runeson, and S. Nordén. A minimal test practice framework for emerging software organizations. *Software Testing, Verification and Reliability*, 15 (3):145–166, 2005. ISSN 1099-1689. doi: 10.1002/stvr.317. URL http://dx. doi.org/10.1002/stvr.317.
- A. Kasoju, K. Petersen, and M.V. Mäntylä. Analyzing an automotive testing process with evidence-based software engineering. *Information and Software Technology*, 55(7):1237 1259, 2013. ISSN 0950-5849. doi: http://dx.doi.org/10.1016/j.infsof.2013.01.005. URL http://www.sciencedirect.com/science/article/pii/S0950584913000165.
- J. Kasurinen. Elaborating software test processes and strategies. In Software Testing, Verification and Validation (ICST), 2010 Third International Conference on, pages 355–358, 2010. doi: 10.1109/ICST.2010.25.
- J. Kasurinen, P. Runeson, L. Riungu, and K. Smolander. A self-assessment framework for finding improvement objectives with ISO/IEC 29119 test standard. In Systems, Software and Service Process Improvement, volume 172 of Communications in Computer and Information Science, pages 25–36. Springer Berlin Heidelberg, 2011a. ISBN 978-3-642-22205-4. doi: 10.1007/978-3-642-22206-1_3. URL http://dx.doi.org/10.1007/978-3-642-22206-1_3.
- J. Kasurinen, O. Taipale, and K. Smolander. How test organizations adopt new testing practices and methods? In *Software Testing, Verification and Validation Workshops* (*ICSTW*), 2011 IEEE Fourth International Conference on, pages 553–558, 2011b. doi: 10.1109/ICSTW.2011.63.
- J. Kiiskila. Practical aspects on the assessment of a review process. In *Euromicro Conference*, 1998. Proceedings. 24th, volume 2, pages 867–870 vol.2, 1998. doi: 10.1109/EURMIC.1998.708114.
- N. Kikuchi and T. Kikuno. Improving the testing process by program static analysis. In Software Engineering Conference, 2001. APSEC 2001. Eighth Asia-Pacific, pages 195–201, 2001. doi: 10.1109/APSEC.2001.991477.
- E. Kim and Y. Jang. A test improvement model for embedded software testing. In Proceedings of the 11th IASTED International Conference on Software Engineering and Applications, pages 79–84. ACTA Press, 2007.
- E. Kit and S. Finzi. *Software testing in the real world: Improving the process.* ACM Press/Addison-Wesley Publishing Co., 1995.
- B.A. Kitchenham and S. Charters. Guidelines for performing systematic literature reviews in software engineering. 2007.
- T. Koomen. Worldwide survey on test process improvement. technical report. 2002.
- T. Koomen. Worldwide survey on test process improvement. technical report. 2004.

- T Koomen. Stepwise improvement of the test process using TPI. In *ICS Test Conference*, 2005.
- T. Koomen and M. Pol. *Test process improvement: A practical step-by-step guide to structured testing*. Addison-Wesley, 1999.
- T. Koomen, L. v.d. Aalst, B. Broekman, and M. Vroon. *TMap Next, for result-driven testing*. UTN Publishers, 2006.
- S. Kulkarni. Test process maturity models-yesterday, today and tomorrow. In *Proceedings of the 6th Annual International Software Testing Conference, Delhi, India*, 2006.
- T.O.A. Lehtinen, M.V. Mäntylä, and J. Vanhanen. Development and evaluation of a lightweight root cause analysis method (arca method)–field studies at four software companies. *Information and Software Technology*, 53(10):1045–1061, 2011.
- D.J. Mala, V. Mohan, and M. Kamalapriya. Automated software test optimisation framework - an artificial bee colony optimisation-based approach. *Software, IET*, 4 (5):334–348, 2010. ISSN 1751-8806. doi: 10.1049/iet-sen.2009.0079.
- C.-X. Meng. A goal-driven measurement model for software testing process. In Information Technology and Applications, 2009. IFITA '09. International Forum on, volume 1, pages 656–659, 2009. doi: 10.1109/IFITA.2009.565.
- M. Miller, A. Goslin, and ICS Test-UK. Tmm-a case study. In *Software Quality* Conferences incorporating ICSTEST-UK, London, UK, 2005.
- H. Oh, B. Choi, H. Han, and W.E. Wong. Optimizing test process action plans by blending testing maturity model and design of experiments. In *Quality Software*, 2008. QSIC '08. The Eighth International Conference on, pages 57–66, 2008. doi: 10.1109/QSIC.2008.19.
- F. Pettersson, M. Ivarsson, T. Gorschek, and P. Öhman. A practitioners guide to light weight software process assessment and improvement planning. *Journal of Systems* and Software, 81(6):972–995, 2008.
- F.J. Pino, F. Garca, and M. Piattini. Software process improvement in small and medium software enterprises: a systematic review. *Software Quality Journal*, 16 (2):237–261, 2008. ISSN 0963-9314. doi: 10.1007/s11219-007-9038-z. URL http://dx.doi.org/10.1007/s11219-007-9038-z.
- M. Pol. Software testing: A guide to the TMap approach. Addison-Wesley, 2002.
- K.K.R. Rana and S.S.U. Ahmad. Bringing maturity to test. *Information Professional*, 2(2):30–33, 2005. ISSN 1743-694X.
- M. Rasking. Experiences developing TMMi® as a public model. In Software Process Improvement and Capability Determination, volume 155 of Communications in Computer and Information Science, pages 190–193. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-21232-1. doi: 10.1007/978-3-642-21233-8_18. URL http://dx.doi.org/10.1007/978-3-642-21233-8_18.

- S. Reid. The new software testing standard. In Achieving Systems Safety, pages 237-255. Springer London, 2012. ISBN 978-1-4471-2493-1. doi: 10.1007/978-1-4471-2494-8_17. URL http://dx.doi.org/10.1007/ 978-1-4471-2494-8_17.
- K. Rinkevics and R. Torkar. Equality in cumulative voting: A systematic review with an improvement proposal. *Information & Software Technology*, 55(2):267–287, 2013.
- P. Runeson and M. Höst. Guidelines for conducting and reporting case study research in software engineering. *Empirical Software Engineering*, 14(2):131–164, 2009.
- H. Ryu, D.-K. Ryu, and J. Baik. A strategic test process improvement approach using an ontological description for MND-TMM. In *Computer and Information Science*, 2008. ICIS 08. Seventh IEEE/ACIS International Conference on, pages 561–566, 2008. doi: 10.1109/ICIS.2008.78.
- J. Saldaña Ramos, A. Sanz-Esteban, J. García-Guzmán, and A. Amescua. Design of a competence model for testing teams. *Software*, *IET*, 6(5):405–415, 2012. ISSN 1751-8806. doi: 10.1049/iet-sen.2011.0182.
- A. Sanz, J. Saldaña, J. García, and D. Gaitero. Testpai: A proposal for a testing process area integrated with CMMI. *European Systems and Software Process Improvement* and Innovation (EuroSPI 2008), Dublin, Ireland, 2008.
- M. Steiner, M. Blaschke, M. Philipp, and T. Schweigert. Make test process assessment similar to software process assessment: The Test SPICE approach. *Journal of Software: Evolution and Process*, 24(5):471–480, 2012.
- M. Sulayman and E. Mendes. An extended systematic review of software process improvement in small and medium web companies. In *Evaluation Assessment in Software Engineering (EASE 2011), 15th Annual Conference on*, pages 134–143, 2011. doi: 10.1049/ic.2011.0017.
- T. Suwannasart. Towards the development of a testing maturity model, unpublished Ph.D.thesis. March 1996.
- R. Swinkels. A comparison of TMM and other test process improvement models. MB-TMM Project Report, pages 12–4, 2000.
- O. Taipale and K. Smolander. Improving software testing by observing practice. In Proceedings of the 2006 ACM/IEEE international symposium on Empirical software engineering, ISESE '06, pages 262–271, New York, NY, USA, 2006. ACM. ISBN 1-59593-218-6. doi: 10.1145/1159733.1159773. URL http://doi.acm.org. proxy.lib.chalmers.se/10.1145/1159733.1159773.
- O. Taipale, K., and H. Kälviäinen. Cost reduction and quality improvement in software testing. *In Software Quality Management Conference*, 2006.
- T. Tayamanon, T. Suwannasart, N. Wongchingchai, and A. Methawachananont. TMM appraisal assistant tool. In Systems Engineering (ICSEng), 2011 21st International Conference on, pages 329–333, 2011. doi: 10.1109/ICSEng.2011.65.

- TMMi Foundation. Test maturity model integration(TMMi), version 1, 2010. URL http://www.tmmi.org/pdf/TMMi.Framework.pdf.
- M. Unterkalmsteiner, T. Gorschek, A.K.M.M. Islam, K.C. Chow, R.B. Permadi, and R. Feldt. Evaluation and measurement of software process improvement x02014;a systematic literature review. *Software Engineering, IEEE Transactions on*, 38(2): 398–424, 2012. ISSN 0098-5589. doi: 10.1109/TSE.2011.26.
- A. v. Ewijk, B. Linker, M. van Oosterwijk, and B. Visser. *TPI*(R) *NEXT-Business Driven Test Process Improvement*. SogetiBooks, 2013.
- E. van Veenendal. Test maturity model integration(TMMi), version 1.1. 2008.
- T.K. Varkoi and T.K. Makinen. Case study of cmm and spice comparison in software process assessment. In Engineering and Technology Management, 1998. Pioneering New Technologies: Management Issues and Challenges in the Third Millennium. IEMC '98 Proceedings. International Conference on, pages 477–482, 1998. doi: 10.1109/IEMC.1998.727808.
- Y. Wang, A. Dorling, H. Wickberg, and G. King. Experience in comparative process assessment with multi-process-models. In *EUROMICRO Conference*, 1999. Proceedings. 25th, volume 2, pages 268–273 vol.2, 1999. doi: 10.1109/EURMIC.1999. 794790.
- C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A. Wesson. *Experimentation in software engineering*. Springer Publishing Company, Incorporated, 2012.
- L. Xin-ke and Y. Xiao-Hui. A goal-driven measurement model for software testing process. In *Software Engineering*, 2009. WCSE '09. WRI World Congress on, volume 4, pages 8–12, 2009. doi: 10.1109/WCSE.2009.27.
- L. Xu-Xiang and Z. Wen-Ning. The PDCA-based software testing improvement framework. In *Apperceiving Computing and Intelligence Analysis (ICACIA), 2010 International Conference on*, pages 490–494, 2010. doi: 10.1109/ICACIA.2010. 5709948.
- Zil-e-Huma, M. Bano, and N. Ikram. Software process improvement: A systematic literature review. In *Multitopic Conference (INMIC)*, 2012 15th International, pages 459–464, 2012. doi: 10.1109/INMIC.2012.6511481.

A Summarized inquiries and responses from contacting authors in systematic literature review

The authors of 21 papers were contacted. The email inquiries were structured as follows:

- Introduction as master students of Software Engineering at Gothenburg University.
- Introduction to the thesis topic.
- Stating that paper written by the contact person has been identified as primary study to our thesis topic.
- Asking for further studies conducted in the presented research area.
- If applicable, referring to the development status mentioned in the paper.

We got the following responses:

- One of the authors of [Farooq et al., 2008b], [Farooq et al., 2008c] and [Farooq and Dumke, 2008] provided us with the technical report [Farooq and Dumke].
- One of the authors of [Kasoju et al., 2013] suggested to look into general Software Process Improvement frameworks, lean software development methods and light-weight process improvement approaches related to testing, like presented in [Pettersson et al., 2008] and [Lehtinen et al., 2011].
- One of the authors of [Taipale and Smolander, 2006] provided us with access to data and publications of the project MASTO.
- The author of [Rasking, 2011] offered to conduct an interview.
- The authors of [Burnstein, 2003], [Taipale and Smolander, 2006], [Kasurinen et al., 2011a], [Ryu et al., 2008], [Heiskanen et al., 2012] kindly responded to our email but could not provide us with further research papers.
B Pilot search - Search queries

Table 11: Pilot Searc	h ACM		
Search Query	Publication Type	Hits	Relevant
(((((Abstract:Test AND Abstract:Process AND	Proceeding	52	0
Abstract:Improvement AND			
Abstract:Software))OR((Title:Test AND Title:Process			
AND Title:Improvement AND Title:Software))))) AND			
(PublishedAs:proceeding))			
(((((Abstract:Test AND Abstract:Process AND	Journal	0	0
Abstract:Improvement AND			
Abstract:Software))OR((Title:Test AND Title:Process			
AND Title:Improvement AND Title:Software))))) AND			
(PublishedAs:journal))			

Search Query	Content	Торіс	Hits	Relevant
	Туре			
((((Test) AND Process) AND	Journals and	Computing and Processing	285	3
Improvement) AND Software)	Magazines	(Hardware/Software)		

Table 13: Pilot Search ScienceDirect												
Search Query	Include	Subject	Hits	Relevant								
TITLE-ABSTR-KEY(Test Process	Journals	Computer Science	39	1								
Improvement Software)												

Search Query	Content Type	Discipline	Sub-discipline	Hits	Relevant
Test AND process AND improvement AND software	Article	Computer Science	SWE	4767	not checked
Test AND process AND improvement AND software	Chapter	Computer Science	SWE	20613	not checked

C Table of all references found in systematic literature review

		Title ar	nd abstract	exclusion	Intro	luction a	nd coi	nclusi	on excl	lusion				
Database	Title	Researcher A	Researcher B	Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
Springer	The New Software Testing Stan-	maybe	maybe		yes	yes		Х						Х
Link Springer	dard Experiences Developing TMMi as a	yes	yes		yes	yes		Х						Х
Link	Public Model	NOC	NOC		Vac	NOC		v						v
Link	solidated Evaluation Framework to Analyze Test Process Improvement Approaches	yes	yes		yes	yes		Λ						Λ
Springer Link	A Test Process Improvement Model for Automated Test Generation	yes	maybe		yes	yes		Х						Х
Springer Link	A Self-assessment Framework for Finding Improvement Objectives with ISO/IEC 29119 Test Standard	yes	yes		yes	yes		Х						Х
ScienceDirect	Analyzing an Automotive Testing Process with Evidence-Based Soft- ware Engineering	maybe	yes		yes	yes		Х						Х
IEEE, Springer Link	Towards a metrics based verifica- tion and validation maturity model	yes	yes		yes	yes		Х						Х
IEEE	TMM Appraisal Assistant Tool	yes	yes		yes	yes		Х						Х
IEEE	The PDCA-based software testing improvement framework	no	yes		no	yes			Х					Х
	Continued on nex	t page	-			-			_					

Table 15: Systematic literature review - All references

Т	Title and abstract exclusion				Introduction and conclusion exclusion							
Database Title	Researcher A	Researcher B	Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in mocussion Evoluded by another oritorio	Excluded in Phase 2	Excluded by full-text	Primary study
IEEE Developing a Testing Maturity y	/es	yes		yes	yes		Х					Х
Model for software test process evaluation and improvement		•		2								
IEEE Bringing maturity to test y	/es	yes		yes	yes		Х					Х
IEEE A Test Process Improvement Model y	/es	maybe		no	yes			Х				Х
for Embedded Software Develop- ments												
IEEE A meta-measurement approach for y software test processes	ves	yes		no	yes			Х				Х
ACM Improving software testing by ob- y serving practice	ves	yes		yes	yes		Х					Х
ACM, IEEE A Strategic Test Process Improve- y ment Approach Using an Ontologi- cal Description for MND-TMM	ves	yes		no	yes			Х				Х
IEEE Design of a competence model for n testing teams	10	maybe		no	yes			Х			Х	
Springer Challenges in Evaluating SOA Test n	naybe	no		no	yes			Х			Х	
Springer Analysis of an Artifact Oriented y	ves (no		ves	ves		х				х	
Link Test Process Model and of Testing Aspects of CMMI				J = ~	J-~							
IEEE Measuring and assessing software n test processes using test data	naybe	yes		yes	yes		Х				Х	
Continued on next p	age											

Table 15 – continued from previous page

		Title ar	nd abstract e	exclusion	Introdu	ction and c	onclus	ion exclu	usion				
Database	Title	Researcher A	Researcher B	Excluded	Researcher A	Researcher B Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
IEEE	Improving the testing process by	yes	yes		yes	maybe		Х				Х	
IEEE	program static analysis Elaborating Software Test Pro- cesses and Strategies	yes	yes		yes	yes	Х					х	
IEEE	A Software Testing Process for the Reference Model of Competisoft	maybe	yes		no	yes		Х				Х	
IEEE	Optimizing Test Process Action Plans by Blending Testing Maturity Madel and Design of Europriments	yes	yes		yes	yes	X				X		
IEEE	How Test Organizations Adopt New Testing Practices and Meth- ods?	no	maybe		yes	yes	Х				Х		
IEEE	An overview of software testing	yes	maybe		no	yes		Х			Х		
IEEE	A Goal-Driven Measurement Model for Software Testing Process	maybe	yes		no	yes		Х		Х			
IEEE	A Goal-Driven Measurement Model for Software Testing Process	yes	yes		no	yes		Х		Х			
Springer Link	Towards Software Testing Process	no	yes		yes	no		X	Х				
Springer Link	Test process assessments and im- provement	yes	yes		maybe	maybe		X	Х				
	Continued on nex	t page											

Table 15 – continued from previous page

		Title ar	nd abstrac	et exclusion	Introdu	ction an	d coi	nclusi	on ex	clusion				
Database	Title	Researcher A	Researcher B	Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
Springer	Software Reuse and the Test Devel-	maybe	no		yes	no			Х	Х				
Link	opment Process: A Combined Approach				J									
Springer	Past, Present and Future of Process	yes	yes		no	yes			Х	Х				
Link	Improvement in Ireland An Indus- try View													
Springer	Experiences from Informal Test	maybe	maybe		no	yes			Х	Х				
Link	Process Assessments in Ireland Top 10 Findings													
IEEE	The Definition of a Testing Process to Small-Sized Companies: The Brazilian Scenario	no	maybe		maybe	maybe			Х	Х				
IEEE	The application and research of spaceflight tracking and controlling software testing process new model	no	yes		maybe	maybe			Х	Х				
IEEE	Reflective Architecture Based Soft- ware Testing Management Model	maybe	maybe		yes	maybe			Х	Х				
IEEE	Modeling software testing pro-	no	maybe		yes	no			Х	Х				
	cesses		-		5									
IEEE	A Embedded Software Testing Pro- cess Model	maybe	no		no	maybe			Х	Х				
ACM	A survey on software test maturity	no	yes		yes	maybe			Х	Х				
	in Korean defense industry													
	Continued on nex	t page												

Table 15 – continued from previous page

	· · · ·	Title an	d abstract	Introduction and conclusion exclusion					sion					
Database	Title	Researcher A	Researcher B	Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
Springer	Towards Incorporation of Soft-	maybe	n 0		no	no	X							
Link	ware Security Testing Framework in Software Development	maybe	110		110	110	Λ							
Springer	Towards a Capability Model for the	maybe	no		no	no	Х							
Link	Software Release Planning Process Based on a Multiple Industrial Case Study	·												
Springer Link	The Role of Different Approaches in Inspection Process Improvement	maybe	no		no	no	Х							
Springer Link	The Design of Focus Area Maturity Models	no	maybe		no	no	Х							
Springer Link	The Comparative Study for ENHPP Software Reliability Growth Model Based on Mixture Coverage Func- tion	maybe	no		no	no	Х							
Springer Link	Summaries of PIE Reports	no	maybe		no	no	Х							
Springer Link	Summaries of PIE Reports	no	maybe		no	no	Х							
Springer Link	Software Test Capability Improve- ment Method	yes	yes		no	no	Х							
Springer Link	Software Reliability Modeling	maybe	no		no	no	Х							
2.111	Continued on new	t nage												
	Continued on nex	Puse												

Table 15 – continued from previous page

		Title ar	d abstract	exclusion	Introc	luction a	nd co	nclusi	on exclus	ion				
Database	Title	Researcher A	Researcher B	Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
Springer	Software Analysis and Model	maybe	no		no	no	Х							
Link	Checking													
Springer	Perspectives	no	maybe		no	no	Х							
Link							v							
Springer	in the test development process:	тауре	no		no	no	Х							
LIIK	in the test development process: a													
Springer	Integrating Joint Reviews with Au-	mavbe	no		no	no	х							
Link	tomotive SPICE Assessments Re- sults	,												
Springer	Impacts of the Organizational	maybe	no		no	no	Х							
Link	Model on Testing: Three Industrial Cases													
Springer	Hybrid Modeling of Test-and-Fix	maybe	no		no	no	Х							
Link	Processes in Incremental Develop- ment													
Springer	Experience Reports	no	maybe		no	no	Х							
Link	* *		-											
Springer	Bridge the Gap between Software	yes	maybe		no	no	Х							
Link	Test Process and Business Value: A													
	Case Study						37							
IEEE	VUCAL: a framework for test iden-	yes	maybe		no	no	Х							
	uncation and deployment	t #0.00												
	Continued on nex	a page												

Table 15 – continued from previous page

		Title ar	d abstract	Introduction and conclusion exclusion										
Database	Title	Researcher A	Researcher B	Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
IEEE	Validating and improving test-case effectiveness	maybe	no		no	no	Х							
IEEE	Towards Automation in Software Test Life Cycle Based on Multi- Agent	maybe	no		no	no	Х							
IEEE	Testing IT: an off-the-shelf software testing process	maybe	no		no	no	Х							
IEEE	Research on the measurement framework ISTPM based on MPM	yes	yes		no	no	Х							
IEEE	Research and Implementation of Knowledge Management Methods in Software Testing Process	maybe	no		no	no	Х							
IEEE	Research and Establishment of Quality Cost Oriented Software Testing Model	no	maybe		no	no	Х							
IEEE	Outlining Developers' Testing Pro- cess Model	yes	yes		no	no	Х							
IEEE	Modeling Software Testing Process Using HTCPN	yes	no		no	no	Х							
IEEE	Investigation of Knowledge Man- agement Methods in Software Test- ing Process	no	maybe		no	no	X							
	Continued on nex	rpage												

		Title an	d abstract e	xclusion	Introd	uction a	nd cor	nclusi	on exclusi	ion				
Database	Title	Researcher A	Researcher B	Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
IEEE	Improvement of software testing	yes	yes		no	no	Х							
IEEE	Process of enterprise project An optimal release policy for soft- ware testing process	maybe	no		no	no	х							
IEEE	A Markov Decision Approach to Optimize Testing Profile in Soft-	yes	yes		no	no	х							
IEEE	A lean metric acquisition and pre- sentation environment for the as- sessment of a test process improve- ment experiment	no	maybe		no	no	х							
IEEE	A comparison of software-testing methodologies	maybe	no		no	no	Х							
ACM	Monitoring the software test pro- cess using statistical process con- trol: a logarithmic approach	no	maybe		no	no	Х							
ACM, IEEE	Modeling and controlling the soft- ware test process	maybe	maybe		no	no	Х							
ACM	Experiences of applying SPC tech- niques to software development processes	no	maybe		no	no	Х							
ACM	Effective test metrics for test strat- egy evolution	no	maybe		no	no	Х							
	Continued on nex	t page												

-		Title a	and abstra	act exclusion	Introc	duction a	and co	nclusi	on exclus	sion				
Database	Title	Researcher A	Researcher B	Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
ACM	Chasing rainbows: improving soft-	no	ves		no	no	<u></u>	_	_		_	_	_	
	ware testing in the real world		J =											
ACM	A learning strategy for software testing optimization based on dy- namic programming	no	maybe		no	no	Х							
Springer Link	Who tested my software? Testing as an organizationally cross-cutting activity	no	no	Х										
Springer Link	What Is a Test Case? Revisiting the Software Test Case Concept	no	no	Х										
Springer Link	Verification & Validation in Medi SPICE	no	no	Х										
Springer Link	Web Engineering: Beyond CS, IS and SE Evolutionary and Non- Engineering Perspectives	no	no	Х										
Springer Link	Web Application Testing	no	no	Х										
Springer Link	Using Software Inspection as a Cat- alyst for SPI in a Small Company	no	no	Х										
Springer Link	Using Process Simulation to Assess the Test Design Effort Reduction of a Model-Based Testing Approach	no	no	Х										
	Continued on nex	t page					-				-		-	

Table 15 – continued from previous page

		Title a	and abstr	act e	xclusion	Introd	uction a	ind con	nclusi	on excl	usion				
Database	Title	Researcher A	Researcher B		Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
Springer	Using formal methods for ensuring	no	no	Х											
Link	quality requirements of systems														
Springer	Use of Non-IT Testers in Software	no	no	Х											
Link	Development														
Springer	Usability Engineering Methods	no	no	Х											
Link	Plethora														
Springer	Theory and practice of software	no	no	Х											
Springer	Theoretical Feasibility of Condi-	10	no	x											
Link	tional Invariant Detection	шо	по	Λ											
Springer	The Ten Best Practices for Test	no	no	х											
Link	Case Prioritization														
Springer	The Security Process Model of Em-	no	no	Х											
Link	bedded Systems														
Springer	The Role of Design Components in	no	no	Х											
Link	Test Plan Generation														
Springer	The process modeling cookbook	no	no	Х											
Link	orientation, description and experi-														
a .	ence			v											
Springer	The OOSPICE Assessment Com-	no	no	Х											
LIIIK	cess Assessment to CBD														
	Continued on new	t nage													
	Continued on nex	r puse													

Table 15 – continued from previous page

Database Title V R V R Poptinger Poptinger For marginal value of increased no no No No			Title a	and abstr	act e	xclusion	Introd	uction a	nd con	nclusi	on exc	lusion				
Springer The marginal value of increased no no no N Link testing: An empirical analysis using four code coverage measures no no N Springer The Dynamic Architecture Matu- no no N X Link rity Matrix: Instrument Analysis and Refinement no no N X Springer The Control of IT Risk by Means of no no N X Link Risk-Based Testing no no N X Springer The ability of directed tests to pre- no no N X Link dict software quality no no N X Springer Testing Safety Critical Ada Code no no X X Link Using Non Real Time Testing S S S S S Springer Testing of Service-Oriented Archi- no no No X X Link tectures A Practical Approach S No No X X Link Models S S	Database	Title	Researcher A	Researcher B		Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
Springer The information of the control on the cont	Springer	The marginal value of increased	no	no	X											
Springer The Dynamic Architecture Matu- no no N Link rity Matrix: Instrument Analysis and Refinement Springer The Control of IT Risk by Means of no no N Link Risk-Based Testing no no N Springer The ability of directed tests to pre- no no N Link dict software quality no no N Springer Testing Safety Critical Ada Code no no N Link Using Non Real Time Testing Springer Springer Gestring of Service-Oriented Archi- no no N Springer Testing in Multi-Agent Systems no no X X Link tectures A Practical Approach resting Concurrent Systems: A no no NO X Link Models resting Concurrent Systems: A no no NO X Link Formal Approach resting Approach resting Concurrent Systems: A no no NO Link Formal Approach resting Concurrent Systems: A no no NO X Link	Link	testing: An empirical analysis using four code coverage measures	по	no	21											
Link rity Matrix: Instrument Analysis and Refinement and Refinement Springer The Control of IT Risk by Means of no no X Link Risk-Based Testing Springer The ability of directed tests to pre- no no X Link dict software quality Springer Testing Safety Critical Ada Code no no X Link Using Non Real Time Testing Springer Testing of Service-Oriented Archi- no no X Link tectures A Practical Approach Springer Testing in Multi-Agent Systems no no X Link Springer Springer Testing Coverage and Removal no no X Link Models Springer Testing Concurrent Systems: A no no X Link Formal Approach Springer Test Management Traceability no no X Link Model to Support Software Testing Documentation Documentation	Springer	The Dynamic Architecture Matu-	no	no	Х											
Springer The Control of IT Risk by Means of no no N Link Risk-Based Testing N NO X Springer The ability of directed tests to pre- no no X Link dict software quality N N N Springer Testing Safety Critical Ada Code no no X Link Using Non Real Time Testing No N Springer Testing of Service-Oriented Archi- no no X Link tectures A Practical Approach No N X Springer Testing for Service-Oriented Archi- no no X Link tectures A Practical Approach No No X Link tectures A Practical Approach No no X Link Foringer Testing Coverage and Removal no no X Link Models No no No X Link Formal Approach No No X Link Model to Support Software Testing No No <td< td=""><td>Link</td><td>rity Matrix: Instrument Analysis and Refinement</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Link	rity Matrix: Instrument Analysis and Refinement														
Link Risk-Based Testing Springer The ability of directed tests to pre- no no X Link dict software quality no no X Springer Testing Safety Critical Ada Code no no X Link Using Non Real Time Testing no no X Springer Testing of Service-Oriented Archi- no no X Link tectures A Practical Approach no no X Springer Testing in Multi-Agent Systems no no X Link tectures A Practical Approach springer Testing Coverage and Removal no no X Link Models springer Testing Concurrent Systems: A no no X Link Formal Approach springer Test Management Traceability no no X Link Formal Approach springer Test Management Traceability no no X Link Model to Support Software Testing Documentation no no X	Springer	The Control of IT Risk by Means of	no	no	Х											
Springer The ability of directed tests to pre- no no X Link dict software quality no no No Springer Testing Safety Critical Ada Code no no X Link Using Non Real Time Testing no no X Springer Testing of Service-Oriented Archi- no no X Link tectures A Practical Approach no no X Link footextrage and Removal no no X Link Models springer Testing Concurrent Systems: A no no X Link Formal Approach springer Test Management Traceability no no X Link Model to Support Software Testing pocumentation testing Documentation </td <td>Link</td> <td>Risk-Based Testing</td> <td></td>	Link	Risk-Based Testing														
Link dict software quality Springer Testing Safety Critical Ada Code no no X Link Using Non Real Time Testing Springer Testing of Service-Oriented Archi- no no X Link tectures A Practical Approach Springer Testing in Multi-Agent Systems no no X Link springer Springer Testing Coverage and Removal no no X Link Models Springer Testing Concurrent Systems: A no no X Link Formal Approach Springer Test Management Traceability no no X Link Model to Support Software Testing Documentation Testing Continued on next page	Springer	The ability of directed tests to pre-	no	no	Х											
Springer Testing Safety Critical Ada Code no no X No No X Link Using Non Real Time Testing No No Springer Testing of Service-Oriented Archi- no no X No No Link tectures A Practical Approach No No Springer Testing in Multi-Agent Systems no no X No No Link Testing Coverage and Removal no no X No No Link Models No No X Springer Testing Concurrent Systems: A no no X No No X Link Formal Approach Springer Test Management Traceability no no X No X Link Model to Support Software Testing Documentation No X	Link	dict software quality														
Springer Testing of Service-Oriented Archinon no no X Link tectures A Practical Approach no no X Springer Testing in Multi-Agent Systems no no X Link Image: Springer Testing Coverage and Removal no no X Link Models Springer Testing Concurrent Systems: A no no X Link Formal Approach Springer Test Management Traceability no no X Link Model to Support Software Testing Documentation Testing Testing Testing	Springer Link	Testing Safety Critical Ada Code Using Non Real Time Testing	no	no	Х											
Link tectures A Practical Approach Springer Testing in Multi-Agent Systems no no X Link Springer Testing Coverage and Removal no no X Link Models Springer Testing Concurrent Systems: A no no X Link Formal Approach Springer Test Management Traceability no no X Link Model to Support Software Testing Documentation Continued on next page	Springer	Testing of Service-Oriented Archi-	no	no	Х											
Springer Testing in Multi-Agent Systems no no N Link Springer Testing Coverage and Removal no no N Link Models No No N Springer Testing Concurrent Systems: A no no No X Link Formal Approach Springer Test Management Traceability no no X Link Model to Support Software Testing Documentation Continued on next page No	Link	tectures A Practical Approach														
Springer Testing Coverage and Removal no no X Link Models Springer Testing Concurrent Systems: A no no X Link Formal Approach Springer Test Management Traceability no no X Link Model to Support Software Testing Documentation	Springer Link	Testing in Multi-Agent Systems	no	no	Х											
Springer Testing Concurrent Systems: A no no X Link Formal Approach Springer Test Management Traceability no no X Link Model to Support Software Testing Documentation	Springer Link	Testing Coverage and Removal Models	no	no	Х											
Springer Test Management Traceability no N Link Model to Support Software Testing Documentation Documentation Continued on next page	Springer Link	Testing Concurrent Systems: A Formal Approach	no	no	Х											
Link Model to Support Software Testing Documentation Continued on next page	Springer	Test Management Traceability	no	no	Х											
Documentation Continued on next page	Link	Model to Support Software Testing														
Continued on next page		Documentation														
		Continued on nex	t page													

		Title	and abstr	ract exclusion	Introc	luction a	nd con	nclusi	on exclu	ision				
Database	Title	Researcher A	Researcher B	Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
Springer	Test criteria and coverage measures	no	no	Х										
Link	for software integration testing													
Springer Link	Test based security certifications	no	no	Х										
Springer Link	Technology Review: Adapting Fi- nancial Measures: Making a Busi- ness Case for Software Process Im- provement*	no	no	Х										
Springer Link	Systematic testing and formal ver- ification to validate reactive pro- grams	no	no	Х										
Springer Link	Supplement of Security-Related Parts of ISO/IEC TR 15504	no	no	Х										
Springer Link	Stufen der Durchführung von IT- Projekten	no	no	Х										
Springer Link	Student modeling to support multi- ple instructional approaches	no	no	Х										
Springer Link	Stretching the paradigm for soft- ware reliability assurance	no	no	Х										
Springer Link	Specification of Service Level Agreements: Problems, Principles and Practices	no	no	Х										
	Continued on nex	t page												

Table 15 – continued from previous page

		Title	and abst	ract exclusion	Introd	uction a	nd co	nclusi	on exclusio	on	ia			
Databasa	Title	kesearcher A	kesearcher B	sxcluded	kesearcher A	kesearcher B	Sxcluded	ncluded	Discussion needed 3xcluded in discussion		Excluded by quality criter	Excluded in Phase 2	Excluded by full-text	rimary study
Springer	Software Testing's Place in Devel-	no	no	X	щ	щ	щ	Ι				H	щ	
Link	opment													
Springer	Software Testing Process Automa-	no	no	Х										
Link	tion Based on UTP A Case Study													
Springer	Software Testing Method Consider-	no	no	Х										
Link	ing the Importance of Factor Com- binations in Pair-Wise Testing													
Springer	Software testing for dependability	no	no	Х										
Link	assessment													
Springer Link	Software Testing	no	no	Х										
Springer Link	Software Process Model Blueprints	no	no	Х										
Springer Link	Software Process Measurement Based on Six Sigma	no	no	Х										
Springer Link	Software Process and Testing Mod- els	no	no	Х										
Springer Link	Software Fault Prediction with Object-Oriented Metrics Based Ar- tificial Immune Recognition Sys- tem	no	no	Х										
	Continued on nex	t nage												
	Continued on hex	a page												

Table 15 – continued from previous page

		Title a	and abstr	ract e	xclusion	Introd	uction a	and con	nclusi	on exclu	usion				
Database	Title	Researcher A	Researcher B		Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
Springer	Software Fault Localization Using	no	no	Х											
Link	Elastic Net: A New Statistical Approach		no												
Springer	Software Evolution and the Code	no	no	Х											
Link	Fault Introduction Process														
Springer	Software Engineering Processes	no	no	Х											
Link	and Tools														
Springer Link	Software Engineering	no	no	Х											
Springer Link	Software Dependability Metrics and Analysis Based on AADL Error Model	no	no	Х											
Springer Link	Software Defect Estimations Under	no	no	Х											
Springer	Simple Metrics for Improving Soft-	no	no	x											
Link	ware Process Performance and Ca- pability: A Case Study	по	по												
Springer	Setting a Framework for Trusted	no	no	Х											
Link	Component Trading														
Springer	Separation of Concerns in Teaching	no	no	Х											
Link	Software Engineering														
Springer	Separating sequence overlap for au-	no	no	Х											
Link	tomated test sequence generation														
-	Continued on nex	t page													

Table 15 – continued from previous page

		Title a	and abstr	act e	clusion	Introd	uction a	nd con	nclusi	on excl	usion				
Database	Title	Researcher A	Researcher B		Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
Springer	Search Based Software Engineer-	no	no	Х											
Link	ing: Techniques, Taxonomy, Tuto- rial														
Springer	SAS: A Tool for the	no	no	Х											
Link	GQM+Strategies Grid Deriva- tion Process														
Springer	Safety-Critical Standards for Verifi-	no	no	Х											
Link	cation and Validation														
Springer Link	Runtime Verification in Context: Can Optimizing Error Detection	no	no	Х											
	Improve Fault Diagnosis?														
Springer	Quality Impact of Introducing	no	no	Х											
Link	Component-Level Test Automation and Test-Driven Development														
Springer	Proposing an ISO/IEC 15504-2	no	no	Х											
Link	Compliant Method for Process														
	Capability/Maturity Models Cus- tomization														
Springer	Process Improvement in Require-	no	no	Х											
Link	ments Management: A Method En- gineering Approach														
Springer	Problems and Prospects in Quanti-	no	no	Х											
Link	fying Software Maintainability														
	Continued on new	t page													

Table 15 – continued from previous page

		Title a	and abstr	ract e	xclusion	Introd	luction a	ind co	nclusi	on exc	lusion				
Database	Title	Researcher A	Researcher B		Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
Springer	Prioritizing JUnit Test Cases: An	no	no	Х											
Link	Empirical Assessment and Cost-														
	Benefits Analysis														
Springer	Overview of Software Processes	no	no	Х											
Link	and Software Evolution														
Springer	Optimized Software Process for	no	no	Х											
Link	Fault Handling in Global Software Development														
Springer	Neural Network Based Software	no	no	Х											
Link	Reliability Prediction with the Feed of Testing Process Knowledge														
Springer	Modeling and Analysis of Grid Ser-	no	no	Х											
Link	vice Reliability Considering Fault														
	Recovery														
Springer	Model Checking in Practice: Anal-	no	no	Х											
Link	ysis of Generic Bootloader Using SPIN														
Springer	Life-Cycle E-commerce Testing	no	no	Х											
Link	with OO-TTCN-3														
Springer	Leveraging People-Related Matu-	no	no	Х											
Link	rity Issues for Achieving Higher														
	Maturity and Capability Levels														
	Continued on nex	t page													

Table 15 – continued from previous page

		Title a	and abstr	act excl	usion	Introd	uction a	ind con	nclusi	on excl	usion				
Database	Title	Researcher A	Researcher B	للعمامية	ryonnen	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
Springer	Legal Sufficiency of Testing Pro-	no	no	Х											
Link	cesses														
Springer Link	Jawi Generator Software Using ARM Board Under Linux	no	no	Х											
Springer Link	JadexCloud - An Infrastructure for Enterprise Cloud Applications	no	no	Х											
Springer Link	Introduction	no	no	Х											
Springer Link	Introduction	no	no	Х											
Springer Link	Introduction	no	no	Х											
Springer Link	Introducing the Data Role in Mod- els for Database Assessment	no	no	Х											
Springer Link	Introducing and Developing Profes- sional Standards in the Information Systems Curriculum	no	no	Х											
Springer Link	Integrating Manual and Automatic Risk Assessment for Risk-Based Testing	no	no	Х											
Springer Link	Integrating Knowledge Manage- ment and Quality Management	no	no	Х											
	Continued on nex	t page													

		Title	and abst	ract exclusion	Introdu	uction a	and con	nclusi	on exc	lusion	a			-	
Database	Title	Researcher A	Researcher B	Excluded		Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
Springer	Increasing testing productivity and	no	no	Х											
Link	software quality: A comparison of software testing methodologies within NASA														
Springer Link	Incorporating Software Testing as a Discipline in Curriculum of Com- puting Courses	no	no	Х											
Springer Link	Improving Verification & Valida- tion in the Medical Device Domain	no	no	Х											
Springer Link	Improving the Testing and Testabil- ity of Software Product Lines	no	no	Х											
Springer Link	Improving the ROI of Software Quality Assurance Activities: An Empirical Study	no	no	Х											
Springer Link	Improving software tests using Z Specifications	no	no	Х											
Springer Link	Imperfect-debugging Models	no	no	Х											
Springer Link	Impact of Corporate and Organic Growth on Software Development	no	no	Х											
	Continued on nex	t page													

-		Title a	and abstr	ract exclusion	Intro	duction a	ind con	nclusi	on exclu	ision				
Database	Title	Researcher A	Researcher B	Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
Springer Link	How to get mature global virtual teams: a framework to improve team process management in dis- tributed software teams	no	no	Х										
Springer Link	High Integrity Ada	no	no	Х										
Springer Link	Ginga-J - An Open Java-Based Ap- plication Environment for Interac- tive Digital Television Services	no	no	Х										
Springer Link	Functional, Control and Data Flow, and Mutation Testing: Theory and Practice	no	no	Х										
Springer Link	From Process Programming to Pro- cess Engineering	no	no	Х										
Springer Link	Foundational Issues: Probability and Reliability	no	no	Х										
Springer Link	Formalization and assessment of regulatory requirements for safety- critical software	no	no	Х										
Springer Link	Finding and Ranking Research Di- rections for Software Testing	no	no	Х										
	Continued on nex	t page												

Table 15 – continued from previous page

		Title a	and abstr	act e	xclusion	Introd	luction a	ind con	nclusi	on excl	usion				
		esearcher A	esearcher B		vcluded	esearcher A	esearcher B	kcluded	cluded	iscussion needed	coluded in discussion	ccluded by quality criteria	ccluded in Phase 2	ccluded by full-text	imary study
Database	Title	R	R		н	R	R	Щ	In	D	щ	щ	Щ	Щ	-FT
Springer Link	Factors with Negative Influence on Software Testing Practice in Spain: A Survey	no	no	Х											
Springer Link	Exploratory Study of Scientific Vi- sualization Techniques for Program Visualization	no	no	Х											
Springer Link	Experiences and Challenges of In- troducing Risk-Based Testing in an Industrial Project	no	no	Х											
Springer Link	Evolving a Test Oracle in Black- Box Testing	no	no	Х											
Springer Link	Evaluation of software testing met- rics for NASA's Mission Control Center	no	no	Х											
Springer Link	Evaluation of features to support safety and quality in general prac- tice clinical software	no	no	Х											
Springer	Estimating test effectiveness with	no	no	Х											
Link	aynamic complexity measurement			v											
Link	Windows Mobile-Based Devices	по	110	л											
Springer	Entropy based software processes	no	no	Х											
Link	improvement														
	Continued on nex	t page													

Table 15 – continued from previous page

		Title a	and abstr	act ex	clusion	Introd	uction a	nd con	nclusi	on excl	lusion				
Database	Title	Researcher A	Researcher B		Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
Springer	Effective Bug Hunting with Spin	no	no	Х											
Link	and Modex														
Springer	Effective Black-Box Testing with	no	no	Х											
Link	Genetic Algorithms			v											
Springer	Editorial	по	no	Λ											
Springer Link	Domain Testing	no	no	Х											
Springer Link	Development Site Security Process of ISO/IEC TR 15504	no	no	Х											
Springer Link	Developing control and integration software for flexible manufacturing systems	no	no	Х											
Springer Link	Developing a customizable process modeling environment: Lessons learnt and future prospects	no	no	Х											
Springer	Determining the Improvement Po-	no	no	Х											
Link	tential of a Software Development														
Springer Link	Organization Through Fault Analy- sis: A Method and a Case Study Determining the Effect of Tangible Business Process Modeling	no	no	X											
	Continued on nex	t page													

		Title a	and abstr	act e	xclusion	Introd	uction a	nd cor	nclusi	on exclu	ision				
Database	Title	Researcher A	Researcher B		Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
Springer	Designing and Conducting an Em-	no	no	Х											
Link	pirical Study on Test Management Automation														
Springer Link	Design by Selection: A Reuse- Based Approach for Business Pro-	no	no	Х											
	cess Modeling														
Springer Link	Deriving a Valid Process Simula- tion from Real World Experiences	no	no	Х											
Springer Link	Dependability and Trust in Orga- nizational and Domestic Computer Systems	no	no	Х											
Springer Link	Defining a Requirements Process Improvement Model	no	no	Х											
Springer Link	Dealing with Scalability in an Event-Based Infrastructure to Sup- port Global Software Development	no	no	Х											
Springer Link	Data Mining for Software Testing	no	no	Х											
Springer Link	Conclusion	no	no	Х											
Springer Link	Commitment Nets in Software Pro- cess Improvement	no	no	Х											
	Continued on nex	t page													

Table 15 – continued from previous page

		Title	and abst	ract exclusion	Introd	uction a	and con	nclusi	on exclu	ision				
Database	Title	Researcher A	Researcher B	Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
Springer	Capture-Recapture Methods	no	no	Х										
Link														
Springer	Building Test Cases through Model	no	no	Х										
Link	Driven Engineering													
Springer	Building Reusable Testing Assets	no	no	Х										
Link	for a Software Product Line													
Springer	Building Reusable Testing Assets	no	no	Х										
Link	for a Software Product Line													
Springer	Automating unit and integration	no	no	Х										
Link	testing with partial oracles													
Springer	Automated testing as an aid to sys-	no	no	Х										
Link	tems integration			••										
Springer	Automated Test Reduction Using	no	no	Х										
Link	an Info-Fuzzy Network			V										
Springer	Automated Software Testing with	no	no	Χ										
Link	.NET Assassing the Dependebility of Em			v										
Link	hadded Software Systems Using the	110	110	Λ										
LIIIK	Dynamic Flowgraph Methodology													
Springer	Artificial neural networks as multi-	no	no	x										
Link	networks automated test oracle	110	10	2 k										
Springer	An Open Framework for Managed	no	no	Х										
Link	Regression Testing			-										
	Continued on ney	t page												

		Title a	and abstr	ract exclusion	Intro	luction a	nd con	nclusi	on exclu	ision				
Database	Title	Researcher A	Researcher B	Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
Springer	An ISO/IEC 15504 Security Exten-	no	no	Х										
Link	sion			v										
Link	of Service Requests in Commercial Software Applications	по	по	Λ										
Springer Link	An investigation on the feasibility of cross-project defect prediction	no	no	Х										
Springer Link	An Introduction to Visual Studio Team Test	no	no	Х										
Springer Link	An adaptive and trustworthy soft- ware testing framework on the grid	no	no	Х										
Springer Link	Adapting the Test Process for Web Applications Strategies from Prac- tice	no	no	Х										
Springer Link	Ada for High Integrity	no	no	Х										
Springer Link	A Tool to Create Process-Agents for OEC-SPM from Historical	no	no	Х										
Springer Link	A Software Tool to Support the In- tegrated Management of Software Projects in Mature SMEs	no	no	Х										
	Continued on nex	t page												

Table 15 – continued from previous page

		Thue	and abst	ract exclusion	Inti	oduction a	and con	nclusi	on exclusion	sion	_			
Database	Title	Researcher A	Researcher B	Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
Springer	A set of complexity metrics for	no	no	X										
Link	guiding the software test process													
Springer	A Review of Prominent Work on	no	no	Х										
Link	Agile Processes Software Process Improvement and Process Tailoring Practices													
Springer Link	A Refined Non-parametric Algo- rithm for Sequential Software Reli- ability Estimation	no	no	Х										
Springer Link	A Quantitative Analysis into the Economics of Correcting Software Bugs	no	no	Х										
Springer Link	A Novel BCC Algorithm for Func- tion Optimization	no	no	Х										
Springer Link	A Meta-model Framework for Soft- ware Process Modeling	no	no	Х										
Springer Link	A Maturity Framework for the En- terprise Modeling and Engineering Process	no	no	Х										
Springer	A Goal-Oriented Software Testing	no	no	Х										
Link	Methodology													
Springer	A Formal Technique for Reducing	no	no	Х										
Link	Software Testing Time Complexity													

Table 15 – continued from previous page

-		Title a	and absti	ract e	xclusion	Introd	uction a	nd con	nclusi	on excl	usion				
Database	Title	Researcher A	Researcher B		Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
Springer	A Fault Prediction Model with Lim-	no	no	X											
Link	ited Fault Data to Improve Test Pro-		no												
Link	cess														
Springer	A Coverage Relationship Model for	no	no	x											
Link	Test Case Selection and Ranking	110	по	21											
Link	for Multi-version Software														
Springer	A binomial software reliability	20	no	v											
Link	model based on coverage of struc	110	110	Λ											
LIIIK	tural testing criteria														
ScienceDirect	Transfer learning for cross	20	no	v											
ScienceDirect	anneny software defect mediation	110	110	Λ											
ColonasDinast	Software testing processes as a lin			v											
ScienceDirect	software testing processes as a mi-	110	110	л											
SajanaaDiraat	Software Organizations and Test		20	v											
ScienceDirect	Broass Development	110	110	Λ											
SajanaaDiraat	Process Development		20	v											
ScienceDirect	reliability growth models with	110	110	л											
	testing effort and shange point														
ColonasDinast	Ontimal test acqueres concention			v											
ScienceDirect	Optimal test sequence generation	по	по	л											
C-:	Ortigent and a darting testing for			v											
ScienceDirect	opunnai and adaptive testing for	по	по	А											
	sonware renability assessment														
	Continued on nex	it page													

Table 15 – continued from previous page

-		Title a	and abstr	ract e	xclusion	Introd	uction a	and con	nclusi	on excl	usion				
Database	Title	Researcher A	Researcher B		Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
ScienceDirect	Mathematical modeling of software	no	no	Х											
	reliability testing with imperfect de- bugging														
ScienceDirect	Applying machine learning to soft- ware fault-proneness prediction	no	no	Х											
ScienceDirect	An investigation of artificial neural networks based prediction systems in software project management	no	no	Х											
ScienceDirect	An architectural model for software testing lesson learned systems	no	no	Х											
ScienceDirect	A case study in branch automation	no	no	Х											
IEEE	Workflow-Based Process Manage- ment of Network Management Testing	no	no	Х											
IEEE	What do the software reliability growth model parameters represent?	no	no	Х											
IEEE	Using simulation for assessing the real impact of test coverage on defect coverage	no	no	Х											
IEEE	Using sensitivity analysis to vali- date a state variable model of the software test process	no	no	Х											
	Continued on nex	t page													

Table 15 – continued from previous page

		Title	and abst	ract ex	cclusion	Introd	uction a	ind con	nclusi	on exc	lusion				
Database	Title	Researcher A	Researcher B		Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
IEEE	Using grounded theory to under- stand testing engineers' soft skills of third-party software testing cen- ters	no	no	Х											
IEEE	URL-driven automated testing	no	no	Х											
IEEE	The Sleuth approach to aerospace software testing	no	no	Х											
IEEE	Testing requirements for mobile ap- plications	no	no	Х											
IEEE	Testing process model and classifi- cation of test methods for embed- ded software of electrical products	no	no	Х											
IEEE	Testing of the rapidly developed prototypes	no	no	Х											
IEEE	Testing applications using domain based testing and Sleuth	no	no	Х											
IEEE	Test case generation and reduction by automated input-output analysis	no	no	Х											
IEEE	Tailoring test process by using the component-based development paradigm and the XML technology	no	no	Х											
	Continued on new	kt page													

Table 15 – continued from previous page

		Title a	and abstr	ract e	xclusion	Introd	uction a	and con	nclusi	on excl	usion				
Database	Title	Researcher A	Researcher B		Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
IEEE	Supporting the software testing pro-	no	no	Х											
	cess through specification anima- tion														
IEEE	Study of task profile oriented em- bedded software test aiming to im- prove reliability	no	no	Х											
IEEE	Statistical software debugging: From bug predictors to the main causes of failure	no	no	Х											
IEEE	Software test process control: sta- tus and future directions	no	no	Х											
IEEE	Software reliability model with bathtub-shaped fault detection rate	no	no	Х											
IEEE	Software release control using de- fect based quality estimation	no	no	Х											
IEEE	Sensitivity analysis of a state vari- able model of the Software Test Process	no	no	Х											
IEEE	Selection, Evaluation and Genera- tion of Test Cases in an Industrial Setting: A Process and a Tool	no	no	Х											
IEEE	Secondary Power Supply Universal Test System Based on PXI Bus	no	no	Х											
	Continued on nex	t page		-											

Table 15 – continued from previous page

		Title	Introd	luction a	ind con	nclusi	on excl	usion							
Database	Title	Researcher A	Researcher B		Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
IEEE	Search-based Prediction of Fault-	no	no	Х											
	slip-through in Large Software														
	Projects														
IEEE	Research on a Behavior-Based	no	no	Х											
	Software Test Process Model			•••											
IEEE	Research of Software Defect Pre-	no	no	Х											
	diction Model Based on Gray The-														
IEEE	Reliability Growth Modeling for	no	no	x											
1222	Software Fault Detection Using	no													
	Particle Swarm Optimization														
IEEE	Regression Testing Process Im-	no	no	Х											
	provement for Specification Evolu-														
	tion of Real-World Protocol Soft-														
IFFF	ware			v											
IEEE	Re-engineering the test develop-	no	no	Х											
IEEE	Real-time operating systems tuto-	no	no	x											
ILLL	rial	по	по	21											
IEEE	PSO based test coverage analysis	no	no	Х											
	for event driven software														
IEEE	Programs That Test Themselves	no	no	Х											
	Continued on nex	t page													

Table 15 – continued from previous page

		Title a	and abstr	ract e	xclusion	Introd	uction a	nd con	nclusi	on exc	usion				
Database	Title	Researcher A	Researcher B		Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
IEEE	Proceedings The Eighth Interna-	no	no	Х											
	tional Symposium on Software Re- liability Engineering														
IEEE	Proceedings of the 29th Annual In- ternational Computer Software and Applications Conference (COMP- SAC 2005)	no	no	Х											
IEEE	Performance evaluation model for test process	no	no	Х											
IEEE	Optimal Software Testing Case De- sign Based on Self-Learning Con- trol Algorithm	no	no	Х											
IEEE	On the Trend of Remaining Soft- ware Defect Estimation	no	no	Х											
IEEE	On the determination of an appro- priate time for ending the software testing process	no	no	Х											
IEEE	Modeling and Simulating the Qual- ity of Sequential Iterative Develop- ment Processes	no	no	Х											
IEEE	Modeling and control of the incre- mental software test process	no	no	Х											
	Continued on nex	t page													

Table 15 – continued from previous page

		Title	and abstr	ract exclusion	Introd	Introduction and conclusion exclusion								
Database	Title	Researcher A	Researcher B	Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
IEEE	Model-Based Time Estimate of Software Test Processes	no	no	Х										
IEEE	Implementing Software Test Man- agement Using SpiraTeam Tool	no	no	Х										
IEEE	IDATG: an open tool for automated testing of interactive software	no	no	Х										
IEEE	Genetic algorithm based test data generator	no	no	Х										
IEEE	Fire control radar automatic testing modernization - better, faster, sus- tainable	no	no	Х										
IEEE	Feedback control of the software test process through measurements of software reliability	no	no	Х										
IEEE	Fault exposure ratio estimation and applications	no	no	Х										
IEEE	Extended TTCN in software testing	no	no	Х										
IEEE	Experience of applying statistical control techniques to the function test phase of a large telecommuni-	no	no	Х										
	cations system													
Continued on next page														

		Title	and abstr	ract exclusion	Ι	Introduction and conclusion exclusion									
Database	Title	Researcher A	Researcher B	Excluded		Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
IEEE	Event-Based GUI Testing and Re- liability Assessment Techniques – An Experimental Insight and Pre- liminary Results	no	no	X											
IEEE	Evaluation of software testing pro- cess based on Bayesian networks	no	no	Х											
IEEE	Engineering process for an online testing process of control software in production systems	no	no	Х											
IEEE	Developing a customized software engineering testing for Shared Banking Services (SBS) System	no	no	Х											
IEEE	Confidence-based reliability and statistical coverage estimation	no	no	Х											
IEEE	Composing a framework to auto- mate testing of operational Web- based software	no	no	Х											
IEEE	Category Model of Process of Re- peated Software Testing	no	no	Х											
IEEE	Better testing through oracle selec- tion: (NIER track)	no	no	Х											
Continued on next page															

Table 15 – continued from previous page
		Title a	and abstr	ract e	xclusion	Introd	uction a	ind co	nclusi	on excl	usion				
Database	Title	Researcher A	Researcher B		Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
IEEE	Best Practices for the Formal Soft-	no	no	Х											
	ware Testing Process: A Menu of Testing Tasks [Book Review]														
IEEE	Automation testing process model- ing method of SOA-based isomer- ous software	no	no	Х											
IEEE	Arranging software test cases through an optimization method	no	no	Х											
IEEE	Application of missing data ap- proaches in software testing re- search	no	no	Х											
IEEE	An overview of software cybernet- ics	no	no	Х											
IEEE	An Industrial Survey on Contempo- rary Aspects of Software Testing	no	no	Х											
IEEE	An effective equivalence partition- ing method to design the test case of the WEB application	no	no	Х											
IEEE	An automated testing methodology based on self-checking software	no	no	Х											
IEEE	An Approach Using RUP Test Dis- cipline Process for Shared Banking Services (SBS) System	no	no	Х											
	Continued on nex	t page													

Table 15 – continued from previous page

		Title a	and abstr	ract e	xclusion	Introd	uction a	ind co	nclusi	on excl	usion				
Database	Title	Researcher A	Researcher B		Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
IEEE	Advanced models for software reli-	no	no	Х											
IEEE	Adaptive Software Testing in the Context of an Improved Controlled Markov Chain Model	no	no	Х											
IEEE	A Transformation-Based Approach to Generating Scenario-Oriented Test Cases from UML Activity Dia- grams for Concurrent Applications	no	no	Х											
IEEE	A tool based approach for automa- tion of GUI applications	no	no	Х											
IEEE	A three-dimensional visualization tool for software fault analysis of a distributed system	no	no	Х											
IEEE	A state model for the Software Test Process with automated parameter identification	no	no	Х											
IEEE	A Scenario-Centric Approach for the Definition of the Formal Test Specifications of Reactive Systems	no	no	Х											
IEEE	A quantitative Learning Model for Software Test Process	no	no	Х											
	Continued on nex	t page													

Table 15 – continued from previous page

		Title a	and abstr	ract e	xclusion	Introd	uction a	and co	nclusi	on exc	lusion				
Database	Title	Researcher A	Researcher B		Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
IEEE	A proposed framework for full au-	no	no	Х											
	tomation of software testing pro- cess														
IEEE	A proposal of a process model to create a test factory	no	no	Х											
IEEE	A novel test process modeling method for automatic test	no	no	Х											
IEEE	A new role of graphical simulation: Software testing	no	no	Х											
IEEE	A Model of Third-Party Integra- tion Testing Process for Foundation Software Platform	no	no	Х											
IEEE	A model of knowledge manage- ment system in managing knowl- edge of software testing environ- ment	no	no	Х											
IEEE	A framework for Web applications testing	no	no	Х											
IEEE	A Framework for the Vamp;V Ca- pability Assessment Focused on the Safety-Criticality	no	no	Х											
IEEE	A formal model of the software test process	no	no	Х											
	Continued on nex	t page													

Table 15 – continued from previous page

		Title	and abstr	ract e	xclusion	Introd	uction a	ind co	nclusi	on excl	usion				
Database	Title	Researcher A	Researcher B		Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
IEEE	A Family of Software Reliability Growth Models	no	no	Х											
IEEE	A criticism on the capture-and- recapture method for software reli- ability assurance	no	no	Х											
IEEE	A contract-checking test method for CTCS Hardware-in-the-Loop Sim- ulation system	no	no	Х											
IEEE	A Conceptual Framework to Inte- grate Fault Prediction Sub-Process for Software Product Lines	no	no	Х											
IEEE	A Conceptual Framework for Open Source Software Test Process	no	no	Х											
IEEE	A Comparative Evaluation of Unit Testing Techniques on a Mobile Platform	no	no	Х											
ACM	Virtual framework for testing the reliability of system software on embedded systems	no	no	Х											
ACM	White-box testing for database- driven applications: a requirements analysis	no	no	Х											
	Continued on nex	t page													

Table 15 – continued from previous page

		Title	and absti	ract e	xclusion	Introd	uction a	ind co	nclusi	ion exclu	ision				
Database	Title	Researcher A	Researcher B		Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
ACM	Using the OPT improvement ap-	no	no	Х											
	proach in the SQL/DS development environment														
ACM	Using simulation to support imple- mentation of flexible manufacturing Cell	no	no	Х											
ACM	Using implied scenarios in security testing	no	no	Х											
ACM	Using fault slippage measurement for monitoring software process quality during development	no	no	Х											
ACM	Using an SQL coverage measure- ment for testing database applica- tions	no	no	Х											
ACM	Towards economical software re- lease recommendations	no	no	Х											
ACM	Towards certifying the testing pro- cess of Open-Source Software: New challenges or old methodolo- gies?	no	no	Х											
ACM	Towards a documentation maturity model	no	no	X											
	Continued on nex	kt page													

Table 15 – continued from previous page

		Title a	and abstr	ract e	xclusion	Introd	uction a	and con	nclusi	on excl	usion				
Database	Title	Researcher A	Researcher B		Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
ACM	The influence of multiple artifacts	no	no	Х											
	on the effectiveness of software testing	no													
ACM	The data mining approach to auto- mated software testing	no	no	Х											
ACM	Test prioritization for pairwise in- teraction coverage	no	no	Х											
ACM	Test case selection and prioritiza- tion: risk-based or design-based?	no	no	Х											
ACM	Surveying model based testing ap- proaches characterization attributes	no	no	Х											
ACM	Supporting the selection of model- based testing approaches for soft- ware projects	no	no	Х											
ACM	Specification-based regression test selection with risk analysis	no	no	Х											
ACM	Simulating patient flow through an Emergency Department using process-driven discrete event simu- lation	no	no	Х											
ACM	Selection and execution of user level test cases for energy cost eval- uation of smartphones	no	no	X											
	Continued on nex	tt page													

Table 15 – continued from previous page

		Title	and absti	ract exclusion	Intro	duction a	and con	nclusi	on exclu	usion				
Database	Title	Researcher A	Researcher B	Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
ACM	Security policy testing via auto-	no	no	Х										
ACM, IEEE	mated code generation Search-enhanced testing (NIER) track	no	no	Х										
ACM	Requirements traceability in auto- mated test generation: application to smart card software validation	no	no	Х										
ACM	Requirements elicitation for an in- telligent software test environment for the physically challenged	no	no	Х										
ACM, IEEE	Reliability Analysis of Component Software Based on Testing Data Transformation	no	no	Х										
ACM	Perspectives on automated testing of aspect-oriented programs	no	no	Х										
ACM	Optimal and adaptive testing with cost constraints	no	no	Х										
ACM	Neural nets method for estimation of the software retesting necessity	no	no	Х										
ACM	Model driven transformation be- tween design models to system test models using UML: a survey	no	no	Х										
	Continued on nex	t page												

Table 15 – continued from previous page

		Title a	and abstr	ract e	xclusion	Introd	uction a	ind con	nclusi	on exc	lusion				
Database	Title	Researcher A	Researcher B		Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
ACM	MobileTest: A Tool Supporting Au-	no	no	Х											
	tomatic Black Box Test for Soft- ware on Smart Mobile Devices														
ACM	Mitigating program security vul- nerabilities: Approaches and chal- lenges	no	no	Х											
ACM	Making testing product lines more efficient by improving the testabil- ity of product line architectures	no	no	Х											
ACM	Lessons learnt from the analysis of large-scale corporate databases	no	no	Х											
ACM	Knowledge management and soft- ware testing	no	no	Х											
ACM	Key challenges in software interna- tionalisation	no	no	Х											
ACM	JSXM: a tool for automated test generation	no	no	Х											
ACM	Investigating test-and-fix processes of incremental development using hybrid process simulation	no	no	Х											
ACM	Intelligent user interfaces for corre- spondence domains (panel session): moving IUIs off the desktop	no	no	Х											
	Continued on nex	t page													

Table 15 – continued from previous page

		Title	and abstr	ract ex	xclusion	Introd	uction a	ind co	nclusi	on exclu	ision				
Database	Title	Researcher A	Researcher B		Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
ACM	Improving the handsets network test process via DMAIC concepts	no	no	Х											
ACM	Harmonizing the test support for object-oriented legacy systems us- ing state-of-the-art test tools	no	no	Х											
ACM	GridUnit: software testing on the grid	no	no	Х											
ACM	Generation of improved test cases from UML state diagram using ge- netic algorithm	no	no	Х											
ACM	Exploiting software architecture to support requirements satisfaction testing	no	no	Х											
ACM	Evaluation of model-based testing techniques selection approaches: An external replication	no	no	Х											
ACM	Emergency department simulation and determination of optimal at- tending physician staffing sched- ules	no	no	Х											
ACM	Early estimation of defect density using an in-process Haskell metrics model	no	no	Х											
	Continued on nex	t page													

Table 15 – continued from previous page

		Title a	nd abstr	act ex	clusion	Introd	luction a	and con	nclusi	on exc	lusion				
Database Title		Researcher A	Researcher B		Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
ACM, Development system set	ecurity pro-	no	no	Х											
Springer cess of ISO/IEC TR 15	504 and se-														
Link curity considerations for process improvement	or software														
ACM Developing a synchro seminar application learning	onous web for online	no	no	Х											
ACM Deriving models of sof proneness	tware fault-	no	no	Х											
ACM Demand-driven structu with dynamic instrumer	aral testing	no	no	Х											
ACM Data space testing		no	no	Х											
ACM Choices, choices: between CHOC'LATE classification-tree metho	comparing E and the odology	no	no	Х											
ACM Case-based software re sessment by fault injec procedures	liability as- tion unified	no	no	Х											
ACM Automating software tex tial oracles in integrate ments	sts with par- ed environ-	no	no	Х											
Con	tinued on next	bage													

Table 15 – continued from previous page

		Title a	and abstr	act e	xclusion	Introd	uction a	ind con	nclusi	on excl	usion				
Database	Title	Researcher A	Researcher B		Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
ACM	An empirical study of regres-	no	no	Х											
	sion testing techniques incorporat- ing context and lifetime factors and improved cost-benefit models														
ACM	An empirical comparison between direct and indirect test result check- ing approaches	no	no	Х											
ACM	Adaptive testing of software com- ponents	no	no	Х											
ACM	Adapting model-based testing tech- niques to DEVS models validation	no	no	Х											
ACM	Adapting and adjusting test process reflecting characteristics of embed- ded software and industrial proper- ties based on referential models	no	no	Х											
ACM	Active learning for automatic clas- sification of software behavior	no	no	Х											
ACM	A study on agility and testing pro- cesses in software organizations	no	no	Х											
ACM	A software test documentation stan- dard	no	no	Х											
ACM	A software frame for modeling and	no	no	Х											
	Continued on new	t nage													
	Continued on nex	a page													

Table 15 – continued from previous page

		Title a	and abst	ract exclusion	Introd	uction a	ind co	nclusi	on exclu	sion				
Database	Title	Researcher A	Researcher B	Excluded	Researcher A	Researcher B	Excluded	Included	Discussion needed	Excluded in discussion	Excluded by quality criteria	Excluded in Phase 2	Excluded by full-text	Primary study
ACM	A model-based approach to ongo-	no	no	Х										
ACM	A framework and tool support for the systematic testing of model-	no	no	Х										
ACM	based specifications A case study in system integration using the Build approach	no	no	Х										

Table 15 – continued from previous page

D Summarized inquiries and responses from internal validation

We provided the authors that had been selected for the internal validation with a list of all TPI approaches that had been found in the systematic literature review and asked them if they think this list was complete. Furthermore, we presented them our exclusion criteria that have been decisive for the pre-selection of applicable approaches for the case study and the particular result for the approach presented in the specific author's study. Individually, the authors were asked if they agree to the evaluation of their approach.

The authors of the studies identified by the snowball sampling were also asked for additional papers about their research topic.

One of the authors of [Taipale and Smolander, 2006] validated our list of approaches as "good" and stated that it even contains approaches unknown to him.

The application of our evaluation criteria had first resulted in the exclusion of the TestSPICE approach due to the absence of an assessment instrument and the availability of only a concept. The information given by one of the authors of [Steiner et al., 2012] let us revoke this exclusion. He pointed out that sufficient information on TestSPICE is available on the TestSPICE website ³, and that an process assessment model is available. Therefore, TestSPICE has been included as an generally applicable approach for the further research.

One of the authors of [Heiskanen et al., 2012] agreed to our evaluation regarding the ATG add-on for TPI. He stated that an spreadsheet had been used for the assessment which had not been published.

In a short interview about TMMi conducted with the author of [Rasking, 2011] he agreed to our evaluation results for TMMi and also confirmed the results of our systematic review as "very complete".

³www.testspice.info

E Interview questions

Warm-up questions

- How old are you?
- What is your educational background?
- How many years of working experience do you have within this organization? And in IT in general?

Overview of work tasks

- What is your role in the organization?
- Which systems/applications are you working with?
- Could you please give us an overview of your usual work tasks?

Questions specific to testing

- How is your work related to testing?
- When you think of the testing you are doing, do you follow a specific testing process?
- Do you follow a specific method?
- How are regressiontests and retests done?
- Who is involved in the test processes, inside or outside of your team?
- Do you assign testing tasks to specific persons?
- In which activities is the customer involved?
- Could you please define your stakeholders?
- How is the stakeholder involved in the overall project? And at what time?
- How do you plan for your testing, what are the activities involved in planning, like resource management, etc.?
- Do you have a test plan? What does the test plan include, for example test assignments, test scope, roles or responsibilities?
- Who is involved in planning? Is the customer also involved?
- What are the things you consider when you plan your testing?
- Are you monitoring the testing activities?

- Do you analysis the product risks and do you have a test strategy related to the product risks?
- Could you please explain the differences of your test levels?
- How do you design test cases?
- Do you use specific test design techniques?
- How is the relation between requirements and test cases?
- How do you document the test cases? Do you follow any specific template? Please provide us with an example document.
- Do you have any tools to support the testing?
- Is everyone on the same level of knowledge about testing tools within your team?
- How do you handle communication about the project progress amongst your team? How is the communication with the customer done?
- How do you report the testing? Please provide us with the document.
- Do you have any metrics to estimate or monitor the test process? How do you record them?
- What is the process when you find a defect?
- Do you have a defect document? Please provide us with a template how you report them.
- Do you think every one follows the same process and uses the same resources?
- How does the test environment look like? Who is responsible? How is it maintained?
- Since you dont have any specific role as tester how did you gain knowledge about testing? Do you undergo any training?

Statistical questions about the interview

- How do you feel about the duration of the interview?
- Was it difficult to answer the questions?
- We used open ended questions. Would you have preferred 'yes' and 'no' questions?

F Characteristics of approaches

Characteristics	
Approach	TMM - Testing Maturity Model
Reference	[Rana and Ahmad, 2005], [Burnstein et al., 1996], [Tayamanon et al., 2011], [Burnstein et al., 1999], [Homyen, 1998], [Burnstein, 2003], [Jacobs et al., 2000], [Suwannasart, 1996]
Based on/influenced by	CMM
	Gelperin and Hetzel's evolutionary testing model Industrial testing practices studies
	Beizer's progressive phases of a tester's mental model
	Thayer's management model
Domain	
Developed by	Illinois Institute of Technology, USA
Status of development	Complete
Completence of information	Validated in an experiment
Completeness of information	Detailed description
Assessment model	Additional information: team selection and training
Assessment procedure	ies Avgilable
Assessment instrument	Available
Assessment instrument	Questionnaire
	Mainly ves/no questions + open questions
	Individual interviews after first round of pre-defined questions
Improvement suggestions	Available
1 88	Recommendation of testing tools and test-related metrics
Process reference model	No
Maturity structure	Yes
	1: Initial
	2: Phase-Definition
	3: Integration
	4: Management and Measurement
	5: Optimizing/Defect prevention and quality control
Model representation	Staged
Character of approach	Qualitative
Structure/components	Maturity levels
	Maturity goals (MG)
	Maturity subgoals (MSG)
	Activities, tasks, and responsibilities (ATK)
	Tool recommendations
	Critical views (managers, developers, usersclients)
Addressing	Test managers
ridulessing	Test groups
	Software quality assurance staff
Process areas	Testing and debugging goals and policies
	Test planning process
	Testing techniques and methods
	Test organization
	Technical training program
	Software life cycle
	Controlling and monitoring
	Review
	Test measurement program
	Software quality evaluation
	Defect prevention
	Quality control
	Test process optimization

Table 16: Characteristics of TMM.

Table 17:	Characteristic	s of TMMi®
10010 1/1	Characterious	

Characteristics	
Approach	TMMi®- Test Maturity Model integration
Reference	[Rasking, 2011], [van Veenendal, 2008]
Based on/influenced by	CMMi (staged representation),
	TMM
Domain	-
Developed by	TMMi Foundation
Status of development	Complete
Completeness of information	Detailed description
Assessment model	Yes
Assessment procedure	Available
Assessment instrument	Not available
Improvement suggestions	Available
Process reference model	No
Maturity structure	Yes
-	1: Initial
	2: Managed
	3: Defined
	4: Measured
	5: Optimization
Model representation	Staged
Character of approach	Qualitative
Structure/components	Maturity levels
	Process areas
	Specific goals
	Specific practices
	Generic goals
	Generic practices
Addressing	Test managers
	Test engineers
	Software quality professionals
Process areas	Test policy and strategy
	Test planning
	Test monitoring and control
	Test design and execution
	Test environment
	Test organization
	Test training program
	Test lifecycle and integration
	Non-functional testing
	Peer reviews
	Test measurement
	Product quality evaluation
	Advanced reviews
	Defect prevention
	Quality control
	Test process optimization

	Table 18:	Characteristics	of MND-TM	ΛМ
--	-----------	-----------------	-----------	----

Characteristics	The rot characteristics of white-rivity
Approach	MND-TMM - Ministry of National Defense-Testing Maturity Model
Reference	[Ryu et al., 2008]
Based on/influenced by	TMM
Domain	Defense - military weapon systems
Developed by	Partially supported by Defense Acquisition Program Administration
Status of development	Under development
Completeness of information	Concent
Assessment model	Vas
Assessment procedure	105 Not available
Assessment instrument	Not available
Improvement suggestions	Not available
Dra agos reference model	Not available
Moturity structure	NO Vez
Maturity structure	TCS 5 Javala
Model concentration	Steered L continuous
Model representation	Similar to the continuous approach of CMMi
Character of approach	Qualitative
Structure/components	Maturity levels
	Categories
	Test process areas (TPAs)
	Specific goals
	Specific practices
	Sub practices
	Generic goals
	Common features
Addressing	-
Process areas	Military:
	Software quality evaluation
	Process:
	Test strategy
	Test planning
	Test process management
	Infrastructure:
	Test organization
	Test environment
	Testware management
	Techniques:
	Testing techniques
	Test specification
	Fault management

	Table 19:	Characteristics	of M	B-V	/V-]	MΜ
--	-----------	-----------------	------	-----	------	----

Characteristics	
Approach	MB-VV-MM - Metrics Based Verification and Validation Maturity Model
Reference	[Jacobs and Trienekens, 2002]
Based on/influenced by	TMM
Domain	-
Developed by	Consortium of industrial companies (defense and civil systems, telecommunication and satellites, consumer and professional electronics), consultancy and service agencies (software quality, testing, and related vocational training) and an academic institute (Frits Philips Institute, University of Technology - Eindhoven), Netherlands
Status of development	Under development Validated in various experiments
Completeness of information	Concept
Assessment model	Yes
Assessment procedure	Not available
Assessment instrument	Not available
Improvement suggestions	Not available
Process reference model	No
Maturity structure	Yes
	1: Initial
	2: Repeatable
	3: Defined
	4: Managed and aligned
	5: Optimizing
Model representation	Staged
	Planned to address continuous aspects
Character of approach	Quantitative/qualitative
Structure/components	Maturity levels
	Process areas
	Process goals
	Metrics
	Generic practices
Addressing	
Process areas	
	V&V Design methodology
	V&V Monitor and control
	V&V Policy and goals
	Peer reviews
	V&V Lifecycle embedding
	Training and program
	Organization embedding
	Qualitative process measurement
	Ouality measurement and evaluation
	Organizational alignment
	Process optimization
	Quality management
	Defect prevention

Table 20:	Characteristics	of	TIM

Characteristics	
Approach	TIM - Test Improvement Model
Reference	[Ericson et al., 1997]
Based on/influenced by	CMM
	TMM - Testability Maturity Model
Domain	-
Developed by	-
Status of development	Complete
Completeness of information	Brief description
Assessment model	Yes
Assessment procedure	Not available
Assessment instrument	Not available
	No use of yes/no-questions
Improvement suggestions	Not available
Process reference model	No
Maturity structure	Yes
	Initial
	Baselining
	Cost-effectiveness
	Risk-lowering
	Optimizing
Model representation	Unknown
Character of approach	Qualitative
Structure/components	Key areas
	Maturity levels
	Overall goal for the level
	Subgoals
	Activities
	Checkpoints
Addressing	-
Process areas	Organization
	Planning and tracking
	Test cases
	Testware
	Reviews

Table 21: Characteristics of TPI

Characteristics	
Approach	TDL Test Process Improvement
Deference	[Kaoman and Dol 1000] [Kaoman 2002]
Received on linfly an and by	[KOOIIICH and FOI, 1999], [KOOIIICH, 2002]
based on/influenced by	SPICE
	Tmap
Domain	-
Developed by	Sogeti
Status of development	Complete
Completeness of information	Detailed description
Assessment model	Yes
Assessment procedure	Available
Assessment instrument	Available
	Checkpoints
Improvement suggestions	Available
Process reference model	Yes
Maturity structure	Yes
	Controlled
	Efficient
	Ontimized
Model representation	Continuous
Character of approach	Qualitative
Structure/components	Kay areas (20)
Structure/components	Net valeas (20)
	Charles (200)
	Checkpoints (300)
	Test maturity matrix
	Improvement suggestions
	Dependencies between different levels of the key areas
Addressing	-
Process areas	Test strategy
	Life-cycle model
	Moment of involvement
	Estimation and planning
	Test specification techniques
	Static test techniques
	Metrics
	Test tools
	Test environment
	Office environment
	Commitment and motivation
	Test functions and training
	Scope of methodology
	Communication
	Reporting
	Reporting Defect management
	Testware monogement
	Testware management
	Test process management
	Evaluation
	Low-level testing

Table 22: Ch	aracteristics	of TPI	R)NEXT
--------------	---------------	--------	--------

Characteristics	
Approach	TPI®NEXT
Reference	[v. Ewijk et al., 2013]
Based on/influenced by	Tmap NEXT
Domain	-
Developed by	Sogeti
Status of development	Complete
Completeness of information	Detailed description
Assessment model	Yes
Assessment procedure	Available
Assessment instrument	Available
Improvement suggestions	Available
Process reference model	Yes
Maturity structure	Yes
Model representation	Continuous
Character of approach	Qualitative
Structure/components	Key areas (16)
L.	Maturity levels
	Checkpoints (157)
	Clusters
	Enablers
	Test maturity matrix
	Improvement suggestions
	Dependencies between different levels of the key areas
Addressing	-
Process areas	Stakeholder commitment
	Degree of involvement
	Test strategy
	Test organization
	Communication
	Reporting
	Test process management
	Estimating and planning
	Metrics
	Defect management
	Testware management
	Methodology practice
	Tester professionalism
	Test case design
	Test tools
	Test environment

Table 23: Characteristics of TPI®Automotive

Characteristics	
Approach	TPI(R)Automotive
Reference	[TPI, 2004]
Based on/influenced by	Tmap
5	TPI
Domain	Automotive
Developed by	Sogeti
	German automotive industry
Status of development	Complete
Completeness of information	Detailed description
Assessment model	Yes
Assessment procedure	Available
Assessment instrument	Available
	Checkpoints
Improvement suggestions	Available
Process reference model	Yes
Maturity structure	Yes
	Maximum 4 levels (individual for each key area)
Model representation	Continuous
Character of approach	Qualitative
Structure/components	Key areas (21)
	Maturity levels
	Checkpoints
	Test maturity matrix
	Improvement suggestions
	Dependencies between different levels of the key areas
Addressing	-
Process areas	Test strategy
	Life-cycle model
	Moment of involvement
	Estimation and planning
	Test design techniques
	Static test techniques
	Metrics
	Test automation
	Test environment
	Office and laboratory environment
	Commitment and motivation
	Test functions and training
	Scope of methodology
	Communication
	Reporting Defect monocomput
	Delect management
	Testware management
	Test process management
	Evaluation
	Low-level lesting
	integration testing

Table 24: Characteristics of ATG add-on for TPI

Characteristics	
Approach	ATG add-on for TPI - Test Process Improvement Model for Automated
	Test Generation
Reference	[Heiskanen et al., 2012]
Based on/influenced by	TPI
Domain	Automated testing
Developed by	-
Status of development	Complete
	Validated in a case study
Completeness of information	Brief description
Assessment model	Yes
Assessment procedure	Not available
Assessment instrument	Not available
	Checkpoints
Improvement suggestions	Not available
Process reference model	No
Maturity structure	Yes
	Maximum 4 levels (individual for each key area)
Model representation	Continuous
Character of approach	Qualitative
Structure/components	Key areas
	Maturity levels
	Checkpoints
	Test maturity matrix
	Improvement suggestions
	Dependencies between different levels of the key areas
Addressing	-
Process areas	Test strategy
	Life-cycle model
	Moment of involvement
	Estimation and planning
	Test specification techniques
	Static test techniques
	Metrics
	Test tools
	Test environment
	Office environment
	Commitment and motivation
	Test functions and training
	Scope of methodology
	Communication
	Reporting
	Defect management
	Testware management
	Test process management
	Evaluation
	Low-level testing
	Modeling approach
	Use of models
	Test confidence
	Technological and methodological knowledge

Table 23. Characteristics of Lind-11	Table 25:	Characteristics	of Emb-TP
--------------------------------------	-----------	-----------------	-----------

Characteristics	
Approach	Emb-TPI - Embedded Test Process Improvement Model
Reference	[Jung, 2009]
Based on/influenced by	TPI
Domain	Embedded software
Developed by	-
Status of development	Complete
	Validated in a case study and a survey
Completeness of information	Brief description
Assessment model	Yes
Assessment procedure	Not available
Assessment instrument	Not available
Improvement suggestions	Not available
Process reference model	No
Maturity structure	Yes
Model representation	Continuous
Character of approach	Qualitative
Structure/components	Key areas
	Maturity levels
	Checkpoints
	Test maturity matrix
	Improvement suggestions
	Dependencies between different levels of the key areas
Addressing	-
Process areas	18 key areas with 6 categories:
	Test process
	Test technique
	Test automation
	Test quality
	Test organization
	Test infrastructure

Table 26: Characteristics of Test SPICE

Characteristics	
Approach	Test SPICE
Reference	[Steiner et al., 2012]
Based on/influenced by	ISO 15504 part 5
Domain	-
Developed by	SQS Group
Status of development	Complete
Completeness of information	Detailed description
Assessment model	Yes
Assessment procedure	Not available
Assessment instrument	Not available
Improvement suggestions	Not available
Process reference model	Yes
Maturity structure	No
Model representation	-
Character of approach	Qualitative
Structure/components	Process categories
-	Process groups
	Processes
Addressing	-
Process areas	Process categories and groups:
	Primary life cycle processes
	Test service acquisition
	Test service supply
	Test environment operation
	Testing
	Supporting life cycle processes
	Test process support
	Organizational life cycle processes
	Management
	Resource and infrastructure
	Process improvement for test
	Regression and reuse engineering

 Table 27: Characteristics of Software Testing Standard ISO/IEC 29119 /ISO 33063

 Characteristics

Characteristics	
Approach	Software Testing Standard ISO/IEC 29119 /ISO 33063
Reference	[Reid, 2012]
Based on/influenced by	-
Domain	-
Developed by	ISO/IEC
Status of development	Under development
Completeness of information	Brief description
Assessment model	Yes
Assessment procedure	Not available
Assessment instrument	Not available
Improvement suggestions	Not available
Process reference model	Yes
Maturity structure	No
Model representation	-
Character of approach	Qualitative
Structure/components	Process descriptions
	Test documentation
	Test techniques
Addressing	-
Process areas	Test policy
	Organizational test strategy
	Test plan
	Test status report
	Test completion report
	Test design specification
	Test case specification
	Test procedure specification
	Test data requirements
	Test environment requirements
	Test data readiness report
	Test environment readiness report
	Test execution log
	Incident report
	Test execution log Incident report

Table 28: Characteristics of Self-Assessment framework for ISO/IEC 29119 based on TIM

Approach	Self-Assessment framework for ISO/IEC 29119 based on TIM
Reference	[Kasurinen et al., 2011a]
Based on/influenced by	ISO/IEC 29119 TIM
Domain	-
Developed by	Supported by the ESPA-project
Status of development	Complete
	Validated in pilot study with pre-existing data (four different case organizations)
Completeness of information	Detailed description
Assessment model	Yes
Assessment procedure	Available
Assessment instrument	Available
	Open questions
Improvement suggestions	Not available
	(only individual examples from the case study)
Process reference model	Yes
Maturity structure	Yes
-	0: Initial
	1: Baseline
	2: Cost-effectiveness
	3: Risk-lowering
	4: Optimization
Model representation	Continuous
Character of approach	Qualitative
Structure/components	Processes
	Maturity levels
Addressing	Software designer
	Software architect
	Manager
	Test manager
	Project leader
	Tester
Process areas	Organizational test process (OTP)
	Test management process (TMP)
	Test planning process (TPP)
	Test monitoring and control process (TMCP)
	Test completion process (TCP)
	Static test process (STP)
	Dynamic test process (DTP)

Table 29: Characteristics of Meta-Measurement approach

Characteristics	
Approach	Meta-Measurement approach
Reference	[Farooq et al., 2008b]
Based on/influenced by	Evaluation Theory
Domain	-
Developed by	-
Status of development	Under development
Completeness of information	Concept
Assessment model	Yes
Assessment procedure	Not available
Assessment instrument	Not available
Improvement suggestions	Not available
Process reference model	No
Maturity structure	No
Model representation	-
Character of approach	Quantitative
Structure/components	Target
	Evaluation criteria
	Reference standard
	Assessment techniques
	Synthesis techniques
	Evaluation process
Addressing	-
Process areas	Activities
	Product (document, test cases, etc.)
	Resource (software, hardware, personnel)
	Roles

Table 30: Characteristics of PDCA-based software testing improvement framework from the testing improvement framework and	mework
---	--------

Characteristics	
Approach	PDCA-based software testing improvement framework
Reference	[Xu-Xiang and Wen-Ning, 2010]
Based on/influenced by	PDCA
Domain	Third party testing center
Developed by	-
Status of development	Complete (thesis work)
Completeness of information	Brief description
Assessment model	No
Assessment procedure	Not available
Assessment instrument	Not available
Improvement suggestions	Not available
Process reference model	No
Maturity structure	No
Model representation	-
Character of approach	Unknown
Structure/components	Test improvement framework divided into phases:
	Plan
	Do
	Check
	Action
Addressing	-
Process areas	-

Table 31: Characteristics of Evidence-based Software Engineering

Characteristics	
Approach	Evidence-based Software Engineering
Reference	[Kasoju et al., 2013]
Based on/influenced by	Evidence-based Software Engineering
Domain	Automotive software (applied in this domain, but not necessarily
	limited to it)
Developed by	-
Status of development	Complete
Completeness of information	Brief description
Assessment model	No
Assessment procedure	Not available
Assessment instrument	Not available
Improvement suggestions	Not available (only individual examples from the case study)
Process reference model	No
Maturity structure	No
Model representation	-
Character of approach	Qualitative
Structure/components	Multi-staged evidence-based software engineering research process
	Case study with interviews to identify strengths and weaknesses of the
	testing process
	Domain specific literature review/mapping to find solutions to
	identified problems
	Value stream mapping identify process wastes, show locations of
	improvements
Addressing	-
Process areas	

Characteristics	
Approach	Observing Practice
Reference	[Taipale and Smolander, 2006]
Based on/influenced by	-
Domain	Software products and applications of an advanced technical level, mission critical, real-time-environments (applied in this domain, but not necessarily limited to it)
Developed by	Supported by the ANTI-project
Status of development	Complete Factors affecting testing know-how and organizations have not been addressed yet
	Validated in a case study with 4 organizational units
Completeness of information	Detailed description
Assessment model	No
Assessment procedure	Not available
Assessment instrument	Available
	structured and semi-structured questions, 4 theme-based interview rounds
Improvement suggestions	Not available
	(only individual examples from the case study)
Process reference model	No
Maturity structure	No
Model representation	-
Character of approach	Qualitative
Structure/components	Interviews
-	Grounded theory to analyze data
	Classify data into categories
	Illustrate interdependencies of the categories with cause-effect graphs
	Process improvement propositions
Addressing	Managers of development
e	Managers of testing
	Testers
	System analyst
Process areas	Factors affecting testing, for example:
	Involvement of testing in the development process
	Management of the complexity of testing
	Risk-based testing
	Communication and interaction between development and testing
	Use and testing of software components
	Adjusting testing according to the business orientation of an
	organizations unit
	Catagonias derived from data analysis
	Languines utilited from an analysis:
	Testing schedules
	resung schedules
	Communication and interaction between development and testing
	Planning of testing
	Use of software components
	Complexity of testing

Table 32: Characteristics of Observing Practice

Table 33: Characteristics of MTPF

Characteristics	
Approach	MTDE Minimal test practice framework
Deference	WIFF - Minimar test practice framework
Reference	[Karistrom et al., 2005]
Based on/influenced by	-
Domain	-
Developed by	-
Status of development	Complete
	Validated in a case study and a survey
Completeness of information	Brief description
Assessment model	No
Assessment procedure	Not available
Assessment instrument	Not available
Improvement suggestions	Not available
Process reference model	No
Maturity structure	No
Model representation	-
Character of approach	Qualitative
Structure/components	3 phases depending on the size of the organizational unit
	Introduction phase consisting of 5 steps: prepare, introduce, review,
	perform, evaluate
Addressing	-
Process areas	Problem and experience reporting
	Roles and organization issues
	Verification and validation
	Test administration
	Test planning