
!

 !!
Evaluation of Face Recognition APIs and Libraries	

B.Sc. Software Engineering and Management Thesis	
!!!!!
Philip Masek
Magnus Thulin !

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, June 2014

!
The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law. !
The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet. !!!!
Evaluation of Face Recognition APIs and Libraries !!
P. Masek	

M. Thulin	

[NAME B. FAMILYNAME,]	
!
© P. Masek, June 2014.	

© M. Thulin, June 2014.	
!
Examiner: M. Ericsson	
!
University of Gothenburg	

Chalmers University of Technology	

Department of Computer Science and Engineering	

SE-412 96 Gothenburg	

Sweden	

Telephone + 46 (0)31-772 1000	
!!!!
Department of Computer Science and Engineering	

Gothenburg, Sweden June 2014

Evaluation of Face Recognition APIs & Libraries
Magnus Thulin

B.Sc. Software Engineering
Gothenburg University
Gothenburg, Sweden

Email: magnus2lin@gmail.com

Philip Masek
B.Sc. Software Engineering
Gothenburg University
Gothenburg, Sweden

Email: philip.masek@gmail.com

Abstract—After years of research, the commercial-
ization of face recognition technology is apparent with
the emergence of several face recognition libraries and
APIs. Organizations and developers are faced with
identifying critical success factors when selecting a
face-recognition API or library to be used within the
development of a product. This study aims to (1)
understand which quality characteristics derived from
the ISO/IEC 25010 standard are important for an
organization adopting the technology and (2) evaluate
two client-side libraries and two cloud based APIs
according to the quality characteristics identified. Data
was extracted by interviewing a company investigating
face recognition technology for software-reuse and an
experiment was carried out to evaluate the chosen
software by extracting metrics from the ISO 9126 stan-
dard. An organization adopting face recognition tech-
nology prioritised reliability, functional suitability and
maintainability as the most important. The experiment
concluded the chosen cloud-based APIs were more
computationally accurate than the client-side libraries.
However, the data collected concluded that the chosen
client-side libraries have less failure density than cloud-
based APIs.

I. Introduction

Face recognition is fast becoming a familiar feature
across software applications. After years of research,
widespread commercialization of the technology is ap-
parent where face recognition is being increasingly inte-
grated into consumer products [1]. The commercialization
of the technology has led to the availability of several
Application Programming Interfaces (APIs) and software
libraries. Cloud based face recognition APIs offer easy
to use server-side solutions for monthly subscriptions.
Moreover, client-side libraries are available to integrate
face recognition technology into custom software products.
Face recognition spans several complex disciplines such
as pattern recognition and computer vision [2]. Orga-
nizations and developers can integrate face recognition
software through reuse. However, with the emergence of
several face-recognition APIs and libraries, organizations
are faced with identifying critical success factors when
selecting a face-recognition API or library to be used
within the development of a product.

A. Problem Domain & Motivation

To identify critical success factors when adopting soft-
ware for reuse an evaluation of software quality should
be carried out. Software can be evaluated with respect
to different aspects such as functionality and usability,
namely, quality requirements (QR) or quality characteris-
tics [3]. Quality characteristics may have a number of sub-
characteristics, such as learnability is a sub-characteristic
of usability. In order to carry out an effective evalua-
tion the most important quality requirements specific to
the field will be captured. The most important quality
characteristics sub-characteristics will then be assessed by
applying software evaluation metrics. This study aims to
address the following research questions identified in Table
III.

TABLE I
Research Questions

RQ1: What software quality characteristics for face-
recognition libraries and APIs are important to an
organisation adopting the technology?

RQ2: How do face recognition libraries and APIs fulfil the
quality requirements in regards to the industrial use
case?

B. Research Process & Data Collection

This paper presents the results of an empirical study
that includes data collected through in-depth interviews
and data resulted by applying an experiment. Personal
interviews with various stakeholders at a company were
conducted to gain insight as to which quality character-
istics the organization prioritize over when adopting face-
recognition software. Two open-source libraries and two
commercial face-recognition APIs were evaluated in an
experiment. Software evaluation metrics were extracted
from an ISO standard and applied in an experiment
to evaluate how each API and library fulfils one sub-
characteristic of quality requirements identified by the
case company. The resulting data from the experiment
will assist in recommending the case company an API
that values the quality requirements defined in Research
Question 1.

C. Contribution
There are several methodologies and datasets that exist

for evaluating face recognition (e.g FERET [4], FRVT [5],
LFW [6]). In current research, the evaluation typically
assesses the accuracy of identifying and recognizing faces
in different circumstances such as pose, illumination and
expression. Since quality requirements play a central role
when developing a successful product [7], the study will
contribute by presenting a method to evaluate the quality
of face-recognition software and present the results of the
evaluation.

D. Scope
In this paper we perform a lean software evaluation

of face-recognition APIs and libraries. The quality re-
quirements are idenfitied by the industrial use case. This
study will evaluate the most popular face-recognition
APIs and libraries in current research, as evaluating all
of them are out of scope for this paper. Similarly, sub-
characteristics of the three most important quality re-
quirements will be assessed. Although an assessment of all
the sub-characteristics would be necessary to encompass a
complete evaluation of the software, this study aims as a
preliminary study for future work.

E. Structure of the Paper
The remainder of the paper is organized as follows: In

Section 2 the background and related work is presented.
The research methodology is described in Section 3 and
the deviations from the experiment plan in Section 4.
Section 5 introduces the results and analysis, section 6
the research threats to validity, where the discussion and
conclusions are presented in Section 7 and Section 8.

II. Background & Related Work
In this section we outline face-recognition technology,

current research on the evaluation of face-recognition soft-
ware, quality requirements in software engineering and
software evaluations metrics.

A. Face Recognition Technology
Overview: The input to a face recognition system is

always an image or a video stream. The output is the
identification or verification of one or more subjects that
appear in the frame. Some approaches define face recog-
nition systems as depicted in Fig. 1 where face detection
and feature extraction may run simultaneously.

Face detection is defined as finding the location of
a human face within the scene of an image or video
stream. Face detection can be used in several application
domains such as face tracking, pose estimation and human
computing interaction systems. Feature extraction consists
of finding relevant facial features from a detected face. The
extracted data results in face regions, variations, angles or
measure which may or may not be human relevant, such
as eye spacing [8]. Feature extraction has other application

Fig. 1. The configuration of a generic face recognition system [2].

areas such as gender recognition, emotion recognition and
gaze estimation. Face recognition attempts to recognize a
detected subject by comparing the detected face against a
database of known faces. The system can report back the
identity of the person if it has been found. The process
typically involves a comparison model, a classification
algorithm and an accuracy measure [8].

There are many approaches to face recognition. Yang
et al. [9] categorise various methods into four categories,
however appearance-based methods have been showing
superior performance to others methods [10]. Face recogni-
tion software typically uses an appearance-based methods
which adopt a certain machine learning algorithm that
learn the model of a human face. The algorithm is trained
by collecting a large set of face and non-face examples.
In answering Research Question 2, the evaluation will
assess face detection and feature extraction, excluding face
recognition, since this is in-line with the industrial use-case
described in section 3.
Evaluation in current Research: There are a number

of research papers benchmarking and evaluating the ac-
curacy of face recognition software [1], [11], [12], [13],
however there are none evaluating the software quality in
particular. There is a wide variety of datasets that are
used in research to carry out an evaluation, however there
lacks a clear training and testing protocol [11]. Without
a clear training and testing protocol, it is difficult to
carry out exact comparisons of the results derived from
various research papers. In similarity to this paper, B.
Becker and E. Ortiz [1] evaluate face recognition supplied
by three client side libraries, two cloud-based APIs and
two consumer applications. The paper concluded that the
cloud-based APIs had significantly worse performance.
The paper hypothesizes that factors such as the focus on
smaller datasets and the ability to train the algorithm
with a small amount of images contributed to the poor
performance. They further hypothesize that online APIs
are designed to be lightweight, prioritizing speed over

accuracy. The client side libraries performed relatively well
compared to the online APIs. This may be apparent due to
the fact that the client side libraries are capable of being
trained.

The evaluation of face recognition in current research
assess the functional requirements. Berntsson Svensson
et al. argue that non-functional requirements, namely
quality requirements, are equally important to functional
requirements. Hence, this paper will evaluate the sub-
characteristics of quality in regards to available face recog-
nition software.

In research presented in [1], [11], [12] and [13] we
extracted commonly evaluated face-recognition software
and compiled the findings in Table II. This table was used
when selecting the libraries and APIs to be evaluated in
answering Research Question two (RQ2).

TABLE II
Face Recognition Libraries & APIs

Name Type Available
OpenCV Open Source Library Yes
OpenBR Open Source Library Yes
PittPatt Open Source Library No
LambdaLabs Cloud Based API Yes
ReKognition Cloud Based API Yes
SkyBiometry Cloud Based API Yes
Face++ Cloud Based API Yes

B. The Prioritization of Quality Requirements in Industry
In software engineering there are a number of quality

models such as ISO/IEC 9126 (revised to ISO/IEC 25010),
McCalls, FURPS, Boehms and Dromeys which each have
a variety of features, factors and characteristics of quality
[14]. Quality models provide a framework to define, predict
and assess software quality during development and post
development [15]. Comprehensive specification and evalu-
ation of software quality is a key factor in ensuring value to
stakeholders [16]. This can be achieved by defining quality
characteristics that are associated with stakeholders’ goals
and objectives for a system.

In a study presented by Berntsson Svensson et al. [7],
the researchers investigate the prioritization of quality
requirements at 11 companies. The prioritization of the
quality characteristics were derived by semi-structured
interviews and the quality characteristics were based on
Lauesens’ comparison of ISO9126 and McCalls quality
factors [17].The three most important quality characteris-
tics resulted by the study were usability, performance and
reliability. The prioritization of usability and performance
are in line with the findings in Berntsson Svensson et al.
[18]. However, the results from a similar study in [19]
were quite different from the findings in [7] and [18]. B.
Philips et al. believe the results may be different due
to cultural differences in organizations [19]. B. Philips et
al. further suggest that even though clear definitions of
quality characteristics are formulated by ISO standards,

participants in the interview interpret them differently in
their company context [19].

C. Software Quality Metrics
Software metrics and quality models play a critical role

in the measurement of software quality. By reviewing the
quality models presented by Samadhiya et al. [14] and
Berander et al. [20] the ISO 9126 standard supports all
of the perspectives of quality and supports both bottom-
up and top-down approaches [14]. The ISO/IEC 9126
has been revised to ISO/IEC 25010, however it does
incorporate the same software quality characteristics with
some amendments [16]. The ISO/IEC 25010 standard
includes 8 quality characteristics with corresponding sub-
characteristics as displayed in Fig. 2. The quality charac-
teristics were extracted from the ISO/IEC 25010 standard
and applied in answering Research Question 1 (RQ1). The
subsequent metrics that follow the sub-characteristics were
used in the experiment in answering Research Question 2
(RQ2).

Fig. 2. ISO/IEC 25010 Product Quality Model [16].

III. Methodology
The study was conducted in cooperation with a

company. The company develops and sells software and

hardware equipment for counting people. They are part
of a growing business intelligence sector that specializes
in visitor traffic information systems for stores, shopping
centres and public places. Visitor traffic information
systems improve organizational performance by analysing
foot-traffic, identifying trends and to use as historical
data. The company is the leading provider of visitor
traffic information systems in Scandinavia. Outside of
Scandinavia, the company has over 11,000 installations
in 40 countries. The compnay is investigating face
recognition technology to determine the age and gender
of visitors which will introduce an additional level of
detail to their existing visitor traffic information system.
The company outsources as much software as possible in
order to remain focused on their main business objective
of counting people. Adopting face-recognition technology
through reuse is very attractive to the company, however
they are faced with the problem of effectively evaluating
APIs in order to make the right decision.

A. Interviews

To answer research question one, a qualitative re-
search approach was carried out, namely, in-depth semi-
structured interviews [21]. Qualitative research aims to
investigate and understand phenomena [22]. A qualitative
research approach is useful when interviewing individuals
in order to capture their motivation and understanding of
a particular phenomena [22]. Since there was a potential
for receiving a wide range of rich and diverse data, a semi
structured approach was used. Semi-structured interviews
ensure data is collected from predefined topics but also
allows the interviewer to probe deeper when required. We
chose to do interviews instead of a large scale survey,
since quality characteristics can be tailored to any subject
domain and the understanding of the quality characteris-
tics can differ amongst individuals. Therefore, we found
it important to be present when eliciting data to make it
possible to elaborate on the purpose of the study and our
objectives. Several times we found we had to take extra
time in explaining the quality characteristics extracted
from the ISO/IEC 25010 standard, especially when we
were faced with interviewing employees from different
departments, such as technical and non-technical inter-
viewees. The decision to interview people with different
roles was taken to give an overall perspective of the quality
prioritization of the company as a full entity, rather than a
focused opinion of the technical personnel as suggested by
Wong [23]. The researchers did not have an influence on
the selection of interviewees, instead the researchers inter-
viewed all of the employees at the case company. Fifteen
employees at the company participated in the interview.
Two groups derived from the fifteen employees, one group
of ten employees from the development department, and
the remaining five from the administrative department.

Development team: Head of development
System Architect
Back-end developers
Font-end developers
System administrator
Image analyst
Face recognition developer

The second group being the administrative team, with
people working with customer relations and support.

Administrative team: CEO/Business Developer
Support Manager
Sales Manager
Customer supports

1) Data collection: Two interviewers and one
interviewee attended all of the interviews that were
performed on sight at the case company. During the
interview, the purpose of the study, the control questions
and the $100 Test were presented to the interviewee.
The interview was structured in two parts. Firstly,
control questions were asked to allow the interviewee to
familiarize themselves with the topic in order to limit the
potential for answers to drift from the subject of software
within the field of image processing and analysis. This
was apparent while we ran pilot tests of the interview.
Interviewees would typically drift from the subject area
and begin answering questions from the perspective of the
company or from their past experiences. In second part of
the interview, interviewees were presented with a list of
quality characteristics derived from the ISO/IEC 25010
[16] standard accompanied with suitable explanations.
The interviewees were instructed to prioritize the quality
characteristics according to a virtual $100. The $100 Test
is a cumulative voting technique, where the highest total
reflects the most important requirement [24]. Following
the $100 Test, the interviewee was instructed to motivate
their prioritization. The interviews varied between 15 to
20 minutes are were recorded with an audio device.

2) Data analysis: The data analysis started after con-
ducting the interviews and was split into two phases.
The analysis was firstly done by transcribing the audio
recordings to be able to revise the answers and validate
the data. The transcriptions provided a qualitative result
from the interviews that was later compared and used for
validating the $100 Test results. After transcribing the
interviews, a phase of organizing and processing the results
from the $100 Test began. Firstly the answers from each
interviewee was put together into a table to see the total
amount spent on a quality characteristics sorted by teams.
This was later transferred to a percentage based result.
The formula for calculating the quality characteristics
priority percentage is:

QA weight % = QA spending

total team budget

To gather the overall opinion of the company, both teams’
results were combined to form a table where the result was
calculated by using the same formula stated above.

B. Experiment
To answer Research Question two (RQ2), an experiment

was carried out following the guidelines presented by Shull
et al. [25].
1) Goals: The goal of the experiment is to evaluate

face recognition libraries and APIs with respect to the
quality characteristics identified in Research Question one
(RQ1). Namely, metrics derived from sub-characteristics
of the most important quality characteristics will give an
indication on how each face recognition system fulfils the
sub-characteristic. The experiment will firstly establish if
there is a difference in quality between client-side libraries
and cloud-based APIs and then uncover the individual
differences between the chosen experimental units.

TABLE III
Experiment Goals

Goal 1 Analyse the computational accuracy of the face recog-
nition libraries and APIs in respect to the number
of inaccurate computations encountered by the user
within a certain operation time.

Goal 2 Analyse the failure density of the face recognition
libraries and APIs in respect to the number of failures
that are detected during a defined trial period.

Goal 3 Analyse the change cycle efficiency of the face recog-
nition libraries in respect to how a users problem can
be solved within an acceptable time scale.

2) Experimental Units: The most popular face recogni-
tion libraries and APIs in current research are presented
in Table II. In this paper we have selected to evaluate
two open-source client-side libraries and two commercial
cloud-based APIs.

OpenCV (version 2.4.5) is an open-source computer vi-
sion library used extensively in companies, research groups
and by governmental bodies. OpenCV released its own face
recognition module (cv::FaceRecognizer), however it uses
older algorithms and is not as powerful as newly developed
algorithms [1]. The face recognition module supports built
in functions for training the algorithms.

OpenBR (version 0.5.0) is a open biometrics frame-
work that supports the development of face recognition
algorithms and reproducible evaluations. OpenBR is cur-
rently in a beta version. The algorithms used in OpenBR
are described in Klontz et al [11] and OpenBR does
support functions for algorithm training.

Face++ (www.faceplusplus.com) is a cloud based API
that offers face detection, face analysis and face recog-
nition. Face++ has received first place in the FDDB
[26], 300-W challenge [27] and LFW [28] dataset and
benchmarking tests.

ReKognition (www.rekognition.com) is a cloud based
API that performs face, scene and concept recognition.
It is unknown as to which algorithm the API uses and
supports limited training of the algorithm.
3) Experimental Material: The experimental materials

consist of sample test data and algorithm training
data. The sample test data is used as input to the face
recognition libraries and APIs, whereas the training data
is used to train the algorithms.

Sample Test Data: Labelled Faces in the Wild (LFW) [6]
is a databased consisting of face images of people published
by the University of Massachusetts. The experiment used
LFW as test-data and training material. The dataset was
chosen for the experiment since the sample images are
images of faces from unconstrained environments, which
is in line with the use case of the company. Images of
faces in unconstrained environments ensure there are no
restrictions over environmental conditions such as scale,
pose, lighting, focus, resolution, facial expression etc.

The database consists of 13,233 images. Of the 13,233
images there are 5,749 people. The database does not
include metadata describing the gender of the subject in
the image, however the name of the person is supplied.
Therefore, the database was modified to be suitable for
the experiment. Firstly, the gender of each image was
determined by using a service that converts a persons
name to a suitable gender by supplying a confidence level.
Once the images were classified into male and female,
the images were sorted accordingly. Only images with
a gender confidence level of at least 90% were used.
Images with a less confidence rate or an unknown gender
were discarded. The resulting database after manipulating
LFW is displayed in Fig. 3.

64%

19%
17%

Male
Female
Discarded

Fig. 3. The sample test database after the manipulation of the LFW
database.

The sample test database was finalized by filtering out
unique names and evenly balancing the number of sample
images. This resulted in a test data pool of 499 unique
images of female faces and 501 unique images of male faces.
The resulting training data and test data extracted from
the LFW database is shown in Fig. 4.
Algorithmic Training Data: The training data images

was extracted from LFW and excluded from the sample

www.faceplusplus.com
www.rekognition.com

1.4%
9%

89.6%

Training Data
Test Data
Unused

Fig. 4. The overall data used from the LFW database.

test dataset. The training data was created by cropping
out the face, applying a histogram equalization to com-
pensate for uneven illuminations on the face and resizing
the image into 52x52 pixels. The training dataset consists
of 160 images, 80 being female faces and 80 being male
faces.
Tasks: The two open-source face recognition libraries

were trained by applying the training dataset. Built-in
functions in both libraries were used to train the algo-
rithms and no modifications to the source code was made.
The two client side libraries and two cloud based APIs
were tasked with, (1) locate the face in the image and (2)
determine the gender of the detected face. If no face is
detected the gender classification cannot be performed.
4) Hypotheses, Parameters and Variables: Three types

of variables are defined for the experiment, independent,
parameter and dependent variables.
Independent Variable: The independent variable is face

recognition software. The face recognition software is
grouped respectively as cloud-based APIs and client-side
libraries.
Parameters: The parameters subject to the experiment

is the training data. The results of the experiment will
be particular to the condition of training the client-side
libraries [29] as well as the data used for the training pro-
cedure. The functionality of the cloud-based APIs cannot
be modified in any way, whereas the client-side libraries
are open-source with available access to the source code.
However, no modification to the source code was made.
Dependent Variable: The results from Research Ques-

tions one (RQ1) identify functional suitability, reliability
and maintainability as the three most important quality
characteristics the organization prioritize over. Quality
evaluation metrics for evaluating the sub-characteristics
of three most important quality characteristics were at-
tempted to be extracted from the ISO/IEC 25010 stan-
dard, however the standard has not yet released a revised
version of the quality metrics. Therefore, the evaluation
metrics in the experiment were extracted from ISO/IEC
9126-2:2003 [30].
The three dependent variables measured are the sub-

characteristics of the quality requirements identified in

Research Question 1. They are functional correctness,
maturity and changeability. Functional correctness is a
sub-characteristic of functional suitability, maturity is a
sub-characteristic of reliability and changeability is a sub-
characteristic of maintainability. Changeability has been
removed as a sub-characteristic from the revised ISO/IEC
25010 standard. However, since the experiment is evalu-
ating both open-source and cloud-based APIs the access
to source code is limited. Therefore, an exception was
made in adopting the changeability metric as this was the
only metric within maintainability the experiment could
attempt to carry out. In Table IV the dependent variables
and following metrics are presented.
Hypotheses: The dependent variables are analysed to

evaluate the hypotheses of the experiment. The null and
alternative hypotheses [31] are state below. The null hy-
pothesis is denoted H0ij , and the corresponding alterna-
tive hypothesis is denoted H1ij

. The i corresponds to the
goal identifier and the j is a counter for cases where more
than one hypothesis is formulated per goal [25].

• H011 — There is no difference in functional accuracy
between client-side libraries and cloud-based APIs for
gender classification..

• H111 — There is a difference in functional accuracy
between client-side libraries and cloud-based APIs for
gender classification.

• H012 — There is no difference in functional accuracy
between client-side libraries and cloud-based APIs for
face detection.

• H112 — There is a difference in functional accuracy
between client-side libraries and cloud-based APIs for
face detection.

• H02 — There is no difference in failure density be-
tween client-side libraries and cloud-based APIs.

• H12 — There is a difference in failure density between
client-side libraries and cloud-based APIs.

• H03 —There is no difference in change cycle efficiency
between client-side libraries.

• H13 — There is a difference in change cycle efficiency
between client-side libraries.

5) Design: A Quasi experiment design is used since
random assignment is not applicable in this case. The
experimental units, being face-recognition software, are
formally categorized as client-side libraries and cloud-
based APIs. A Quasi experiment is useful when random
assignment to treatment groups is impossible [32]. The
experiment is not aimed to establish a cause and effect
relationship, but rather an observation on how the soft-
ware under evaluation perform.
6) Procedure: A self developed application named

FacE1 was used for performing the test case in Table
V. The self developed application schedules the test case
(TC1) and assigns a randomized set of 20 images to the
experimental units. The test case was run 50 times which

1http://github.com/Pletron/facE

http://github.com/Pletron/facE

TABLE IV
Dependent Variables

Dependent
Variable

ISO 9126
Characteristic Metric Name Purpose of the

Metric
Method of
Application

Measurement
Formula

Interpretation of
Measured Value

Accuracy Metric Functionality Computational
accuracy

How often does the
end users encounter
inaccurate results?

Record the number
of inaccurate

computations based
on specifications.

X =
A

T

A=Number of
inaccurate

computations
encountered by

users.
T=Operation time.

0 ≤ X

The closer to 0 the
better.

Maturity Metric Reliability Failure density
against a test case.

How many failures
were detected

during defined trial
period?

Count the number
of detected failures
and performed test

cases.

X =
A

B

A = Number of
detected failures. B

= Number of
performed test

cases.

0 ≤ X

It depends on stage
of testing. However,
at the later stage,
the closer to 0

better.

Changeability
Metric Maintainability Change cycle

efficiency

Can the user’s
problem be solved
to his satisfaction

within an
acceptable time

scale?

Monitor interaction
between user and
supplier. Record
the time taken

from initial user’s
request to

resolution of
problem.

Average time =

Tav =
T u

N

T u = Trc − Tsn

Tsn =

Time at which the
user finished to
send request for
maintenance to
supplier with

problem report.

Trc =

Time at which user
received the revised
version release (or
status report).
N=Number of
revised versions

0 ≤ Tav

The shorter the
better unless the
number of revised
versions is large.

The metrics are derived from ISO 9126-2:2003. [30]

resulted in 1000 unique images that were applied to each
experimental unit.

TABLE V
Test Case (TC1) Procedure

1. Randomly select 20 images from the database.
2. Flag the 20 images to avoid testing the same image twice.
3. In sequence, select an image from the set of 20 images and
send it to all the experimental units.
4. Capture the results from the experimental units.
5. Record test data such as processing time and any errors that
may occur.
6. Store the results and test data in a database.

To achieve goal one and two of the experiment, FaceE
was run on a virtual machine in VirtualBox running
Ubuntu Raring Ringtail (13.04), 4 gigabytes of memory,
an Intel Core i7 processor and with graphics acceleration
enabled. The data collected in each execution of the test
case (TC1) was (1) the execution time for each experi-
mental unit, (2) the computed gender, (3) the location of
the detected face and (4) error messages such as time-outs
or critical failure. The computed gender and the location
of the face was then translated into success or failure
depending on the ground truth value, as further explained
in Table VI. To achieve goal three of the experiment, the
data was collected be means of investigating bug-reports
on each systems’ bug-tracker and applying the dependent
variable metric. The time of open and close for all issues
posted on each issue tracker respectively was collected,
regardless of the priority or risk.
7) Analysis Procedure: A statistical analysis procedure

was carried out in the experiment. The data collected
was applied to the metrics associated to each dependent
variable where the results from the metrics are on a
ratio scale. An implementation of the categorized nominal
Pearson’s chi-squared test generated the results for the hy-
pothesis testing. Pearson’s chi-squared test is a statistical
hypothesis test that is applied to categorized data [33]. As
the study categorizes the face recognition and the gender
recognition as failed or successful, the chi-test suited the
research goals. The conventional .05 significance level was
adopted throughout each hypothesis test [33].

IV. Deviations from the Experiment Plan
In analysing the maintainability of both client-side li-

braries and cloud-based APIs, it was noticed that the
cloud-based APIs do not expose a public issue tracking
system, which was needed during the data collection pro-
cess. Therefore, goal three and the corresponding hypothe-
ses were altered to only analyse the maintainability of
client-side libraries, which do expose a public issue tracker.

V. Results and Analysis
This section provides the analysis of the data extracted

from the interviews and from the experiment to answer
the research questions.

A. Case company’s quality prioritization

In analysing Research Question 1 (RQ1), this section
presents the most important quality characteristics the
company prioritise over when adopting face recognition
technology for reuse. In Figure 5 we can see the top ranked
quality characteristics that the development team and
the administrative team prioritize over. The development
team prioritizes reliability as the most important quality
characteristic, followed by functional suitability and main-
tainability. Moreover, the administrative team prioritize
the same quality characteristics as the development team,
however reliability is presented as the most important,
followed maintainability and functional suitability.

Fu
nc
tio
na
l S
uit
ab
ilit
y

Re
lia
bil
ity

Pe
rfo
rm
an
ce
effi
cie
nc
y

Us
ab
ilit
y

Se
cu
rit
y

Co
mp
ati
bil
ity

Ma
int
ain
ab
ilit
y

Po
rta
bil
ity

0

10

20

30

15
.8

% 18
.6

%

9.
7%

12
.1

%

12
.9

%

9.
1%

13
.6

%

8.
1%

12
.4

%

30
.5

%

6.
7%

11
.4

%

8.
6%

12
.4

%

13
.3

%

4.
8%

%
w
ei
gh

t
of

qu
al
ity

ch
ar
ac
te
ris

tic Development team
Administrative team

Fig. 5. Chart illustrating the prioritization of quality characteristics
from the perspective of the development team and the administrative
team

In Figure 6, the total prioritization of quality
characteristics for the case company is presented.
Reliability has been prioritized the highest amongst both
groups. Functional suitability follows as the second most
important quality characteristic for the company, where
maintainability is not far behind.

Fu
nc
tio
na
l S
uit
ab
ilit
y

Re
lia
bil
ity

Pe
rfo
rm
an
ce
effi
cie
nc
y

Us
ab
ilit
y

Se
cu
rit
y

Co
mp
ati
bil
ity

Ma
int
ain
ab
ilit
y

Po
rta
bil
ity

0

10

20

30

14
.6

6%

22
.6

7%

8.
66

%

11
.8

9%

11
.4

%

10
.2

3%

13
.5

2%

6.
97

%

%
w
ei
gh

t
of

qu
al
ity

ch
ar
ac
te
ris

tic

Fig. 6. Chart illustrating the prioritization of the whole company

TABLE VI
Experiment Data Collection Description

(1)Successful
gender
estimations

A correct estimation is based on face detection
that is not a false positive and that the esti-
mated gender is equal to the image’s gender
ground truth.

(2)Failed
gender
estimations

If the detected face is a false positive or the
gender estimated is not equal to the image’s
ground truth, then it is counted as a failed
gender estimation.

(3)Successful
face detection

A successful detection is a non false-positive
face, where the number of successful face de-
tection is calculated by taking the amount of
recognized faces subtracted by the amount of
failed face recognitions.

(4)Failed face
detection

A failed face detection is when there is no face
detected or that the face detected is a false-
positive.

(5)Successful
API calls

A successful API call is when there is a re-
sponse to the request that is equal to either
no detected faces or a detected faces.

(6)Failed API
calls

A failed API call is if the response to the
request is equal to a timeout, crash or unex-
pected behaviour.

(7)Average bug
fix time

Average bug fix time was extracted by apply-
ing the formula for the maintainability metric
explained in Table IV.

B. The Software Quality of Face Recognition APIs and
Libraries

In analysing Research Question 2 (RQ2), this section
presents the results from the hypotheses tests for goal one,
two and three of the experiment. The data collected from
each experimental unit is shown in Table VII where the
processing of each data attribute is described in Table VI.

TABLE VII
Experiment Data Collection

Client side Cloud
based Totals

Successful gender
estimations(1) 1327 1767 3094
Failed gender
estimations(2) 672 75 747

Total images 1999 1842 3841

Successful face
recognitions(3) 1999 1823 3822
Failed face

recognitions(4) 0 19 19

Total images 1999 1842 3841

Successful API
calls(5) 1999 1928 3927

Failed API
calls(6) 0 158 158

Total calls 1999 2086 4085

For hypotheses H011, H012, H02, a Pearson’s Chi-
square test [34] was applied. To calculate the chi-
squared statistical value (χ2) formulas provided by the
Pearson’s Chi-square test [34] was used. The critical value
χ2

crit = 3.841 was derived by combining the significance
value of 0.05 and by having a degree of freedom of 1.
If χ2 < 3.841 would be true the null hypothesis cannot
be rejected. The following displayed the results from the
statistical test;

H011 With χ2 = 534.1683 it shows that H011 can be
rejected by at least 95% accuracy by implying
that χ2 < 3.841 is not true.

H012 With χ2 = 20.7219 it shows that H012 can be
rejected by at least 95% accuracy by implying
that χ2 < 3.841 is not true.

H02 With χ2 = 144.1609 it shows that H02 can be
rejected by at least 95% accuracy by implying
that χ2 < 3.841 is not true.

For hypothesis H03 a two tailed Mann Whitney U-test
[35] was used due to the uneven distribution of the sample
data seen in Fig. 7.

TABLE VIII
Bug fix data

OpenBR OpenCV
Avg. bug fix
time(7)

275h 3312h

The H0 hypothesis is rejected if the z-score is below
or above the +-zcrit value. This value was calculated by
using formulas provided from the Mann Whitney U-test
[35]. The zcrit is extracted with the chosen (α) significance
value. In this case zcrit = (-)1.96 was extracted at a
significance value of 0.05 and a sample size of 21 from
OpenBR and 1633 from OpenCV.

0 500 1,000 1,500 2,000 2,500 3,000

OpenBR

0 0.5 1 1.5 2 2.5
·104

OpenCV

Fig. 7. Box plot normality test

H03 With z-score = −4.340481 it shows thatH03 can
be rejected by at least 95% accuracy by implying
that the z-score value is below the value of zcrit.

The results of the hypothesis tests shows that there is
a difference between client side software and cloud based
software in terms of computational accuracy and failure
density. All the hypotheses that addressed these quality
sub-characteristics were clearly rejected. Further details
are shown in Fig. 8 where the cloud based API ReKonition
resulted as the most computationally accurate due to its
gender estimation and face recognition success rate. With
a 91.4% accuracy it clearly has the lead compared to
the most accurate client side software, OpenCV, with its
73.7% accuracy. Fig. 8 reflects a merge between H011 and
H012 where both gender estimation and face recognition
have been taken into account.

Op
en
BR

Op
en
CV

Fa
ce+

+

Re
Ko
gn
itio

n
0

20

40

60

80

100

59.1%

73.67%
78.2%

91.44%

Su
cc
es
s
ra
te

Fig. 8. Chart illustrating success rate for face recognition and gender
estimation.

Further analysis in Fig. 9 shows the amount of failures
each API encountered throughout the experiment. Failures
such as time-outs, a response of server overload, software

crashes or unexpected behaviour were taken into account.
No API had any failures except for Face++, with a total
failure rate of 15.8%. These failures were strictly time-outs
or a response of server overload.

Op
en
BR

Op
en
CV

Fa
ce+

+

Re
Ko
gn
itio

n
0

5

10

15

20

0% 0%

15.8%

0%

Fa
ilu

re
ra
te

Fig. 9. Chart illustrating response failure rate.

VI. Threats to Validity
In this section, threats to validity to the findings of this

research are discussed . The four perspectives of validity
and threats are discussed as presented in Shull et al. [25].

A. Construct Validity
Construct validity refers to the degree to which the

research and the observations are in relation to theories
or constructs. The open-ended semi-structured interview
allowed the interviewees to express their own opinions.
The qualitative data that was extracted from the $100
Test is subjective to the understanding and interpretation
of the interviewees. The $100 test was used instead of
numerical assignment since Berntsson Svensson et al. [24]
suggests numerical assignment, such as high, medium and
low may be subject to interpretation by an interviewee.
The dependent variables in the experiment are subject to
mono-operation bias, since the FaceE testing application
was run over a two day period. Even though the LFW
database was modified to be suitable for the experiment,
from our own findings the database is widely used and
accepted in research. The metrics used in the experiment
were derived from a well establish ISO standard.

B. Internal Validity
Internal validity refers to the extent to which issues may

affect the relationship between treatment and outcome.
The experiment results derived from the client-side li-
braries are subject to the treatment in the form of training
the algorithms. Since there is no well establish training

data-set and protocol, we used a training dataset that
suited the use case. The test data LFW was modified to be
suitable for the experiment. The classifying of the gender
in each images was not manually verified.

C. External Validity
External validity refers to the degree to which the find-

ings can be generalized beyond the actual study. Since the
research strategy for the interviews in Research Question
one was qualitative, we did not aim to generalise the
findings. Moreover, the results from the experiment are
subject to the training and testing material which are in
line with the use case of the company. Hence, we did not
aim to generalise the findings for the experiment either.
The nature of the research would be difficult to replicate
by the way the testing and training materials were derived.

D. Conclusion Validity
Conclusion validity refers to the degree to which the

conclusions reached in the study are correct. The inter-
views were conducted at the case company over a two
week period. There were no discussion that would influence
on the results from the interviewees. Pilot testing the
interview was done to avoid poor questions and explana-
tions prior to conducting the interviews. In respect to the
experiment, no source code of the experimental units were
not manipulated. A pilot test of the FaceE application
was run to ensure data was being collected and stored
correctly. The pilot test of the FacE was run over a four
day period.

VII. Discussion
This study shows that a company looking to adopt

face recognition technology has a clear vision of which
quality attributes are of importance. When interviewing
the company, it was clear that reliability is highly valued
throughout the company. A reoccurring statement was
that software as well as the hardware needs to be reliable
in order to satisfy customer needs. It became obvious that
with 11,000 installations in 40 countries, the company can-
not afford to have an unreliable system that would require
constant support and service. The importance of reliability
was further motivated by one interviewee, [reliability is
important] "because it costs so much to recover from errors
for a small development department". The importance of
reliability are in line with the findings in Johansson et
al. [36] and in Berntsson Svensson et al. [7], which carried
out interviews on the prioritization of quality requirements
at a number of companies. By adequately interviewing
the company to understand which quality characteristics
are the most important, this study could execute tests
that would address the quality concerns before suggesting
the reuse of software. If the software would meet the
expectations of the case company’s quality preferences
then the reuse of software would be of more interest than
developing an in house solution.

The results derived from the experiment may indicate
that client-side libraries are more reliable, in terms of fail-
ure density explicitly, than cloud-based APIs. The cloud-
based APIs had a mean failure rate of 7.9%, however this
assumption would not be fair as there was only one cloud-
based API that provided a failure rate to the mean. In
particular, Face++ failed 158 times during the experiment
but performed relatively well in regards to computational
accuracy. This is a clear indication of why functional
requirements are equally important to quality require-
ments. Even though Face++ performs relatively well, if
the system is not reliable the system is not very usable.
During the experiment, we did not expect the client-side
libraries to fail. However, for cloud-based APIs there is an
additional factor. Failures can occur when communicating
over the internet such as packet loss or loss of connectivity.
However, in order to ensure our expectations on whether
the client-side libraries would fail during operation, the
experiment provided valuable data.

The second observation is that the cloud-based APIs
had a significantly higher computational accuracy in terms
of functional suitability where a greater amount of faces
were recognized. This can be a result of a vast amount of
training images that the cloud-based software can make
use of to finely adjust the algorithms used. Whereas,
during the experiment there was no extensive training
performed on the client-side libraries.

After analysing the results of experimental units, it was
clear that the difference in execution time was significant
and that client side libraries provided the results by at
least the 10th of the execution time compared to that of the
cloud based APIs. This was expected as the cloud based
software would be limited due to the network speed which
is in line with the study by Becker and Ortiz [1].

Unfortunately, the changeability of the cloud-based
APIs could be not analysed. However, the average time
for an issue to be resolved for the client-side libraries are
relatively slow. OpenCV is a large project that comprises
of a big community of developers where issues took long
to be closed. Even though OpenBR has a much smaller
community compared to OpenCV, they were much faster
in closing issues. This may be because OpenBR is focused
on face recognition whereas OpenCV is a large computer
vision library focusing on several aspects. The two client
side libraries are not comparable due to the size of each
project, but from the perspective of a user it may be a
good indication on how long one should expect a defect to
be resolved.

According to the results derived from the experiment,
ReKognition is the clear choice due to its low failure
density and high success rate in terms of recognizing
both face and gender in a picture. In the case of the
company, ReKognition would allow a quick to market
implementation where minimum development effort would
be required. ReKognition did not encounter any failures
during the experiment, however if the environment, which

the software would run in, has limited network access
a client side library would be a more natural choice.
Therefore, OpenCV would be the more suitable choice
for this case where it may be more versatile compared to
OpenBR with a higher success rate.

VIII. Conclusion

This paper sets out to understand the prioritization
of software quality characteristics when adopting face
recognition software and to identify how a quality eval-
uation can be applied. Through interviews with employ-
ees of a company investigating face recognition technol-
ogy, we have found that reliability, functional suitability,
and maintainability are the three most important qual-
ity characteristics when adopting the technology. Sub-
characteristics of the three most important quality charac-
teristics were assessed to evaluate two client side libraries
and two cloud based APIs by applying an experiment. The
study has found that cloud-based face-recognition software
will allow organizations and developers a quick to market
implementation. Although cloud-based APIs are highly
dependent on network access with a costly subscription,
they offer high computational accuracy. The quality of
both the client side libraries and the cloud-based APIs may
have a significant difference, favouring client side libraries
with less probability to fail and better customization
possibilities due to access to the source code, whereas
cloud-based services ships with fixed functionality. These
findings are important contributions to organizations and
developers since they uncover the importance of doing
a quality evaluation in order to identify critical success
factors, as well as providing data on the current software
quality of the chosen libraries and APIs. While we have
specifically focused on quality evaluation, the evaluation
of face recognition software implies that our findings are
likely to be of importance to the computer vision commu-
nity. In terms of future research, we particularly suggest
that further investigation of all quality characteristics
and sub-characteristics should be carried out with a goal
to create a clear training and testing protocol for face
recognition software and services.

Acknowledgement

We thank Christian Berger and Richard Berntsson
Svensson as well as all the participants that helped in
making the data collection possible.

References

[1] B. Becker and E. Ortiz, “Evaluating open-universe face identifi-
cation on the web,” in Computer Vision and Pattern Recognition
Workshops (CVPRW), 2013 IEEE Conference on, June 2013,
pp. 904–911.

[2] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face
recognition: A literature survey,” ACM Comput. Surv., vol. 35,
no. 4, pp. 399–458, Dec. 2003.

[3] G. Gediga, K.-C. Hamborg, and I. Düntsch, “Evaluation of
software systems,” in Encyclopedia of Computer Science and
Technology. Marcel Dekker, 2002, vol. 45, pp. 127 – 153,
Also appeared in volume 72 of the Encyclopedia of Library
and Information Science (2002), 166–192. [Online]. Available:
"http://www.cosc.brocku.ca/~duentsch/archive/softeval.pdf"

[4] P. Phillips, H. Moon, P. Rauss, and S. Rizvi, “The feret evalua-
tion methodology for face-recognition algorithms,” in Computer
Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE
Computer Society Conference on, Jun 1997, pp. 137–143.

[5] P. Phillips, P. Grother, R. Micheals, D. Blackburn, E. Tabassi,
and M. Bone, “Face recognition vendor test 2002,” in Analysis
and Modeling of Faces and Gestures, 2003. AMFG 2003. IEEE
International Workshop on, Oct 2003, pp. 44–.

[6] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “La-
beled faces in the wild: A database for studying face recognition
in unconstrained environments,” University of Massachusetts,
Amherst, Tech. Rep. 07-49, October 2007.

[7] R. Berntsson Svensson, T. Gorschek, B. Regnell, R. Torkar,
A. Shahrokni, and R. Feldt, “Quality requirements in industrial
practice - an extended interview study at eleven companies,”
Software Engineering, IEEE Transactions on, vol. 38, no. 4, pp.
923–935, July 2012.

[8] I. Marqués, “Face recognition algorithms,” Tech. Rep.,
June 2010. [Online]. Available: http://www.ehu.es/ccwintco/
uploads/e/eb/PFC-IonMarques.pdf

[9] M.-H. Yang, D. Kriegman, and N. Ahuja, “Detecting faces in
images: a survey,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 24, no. 1, pp. 34–58, Jan 2002.

[10] C. Zhang and Z. Zhang, “A Survey of Recent Advances in Face
detection,” Tech. Rep., 2010.

[11] J. Klontz, B. Klare, S. Klum, A. Jain, and M. Burge, “Open
source biometric recognition,” in Biometrics: Theory, Appli-
cations and Systems (BTAS), 2013 IEEE Sixth International
Conference on, Sept 2013, pp. 1–8.

[12] E. Zhou, H. Fan, Z. Cao, Y. Jiang, and Q. Yin, “Extensive
facial landmark localization with coarse-to-fine convolutional
network cascade,” in Computer Vision Workshops (ICCVW),
2013 IEEE International Conference on, Dec 2013, pp. 386–391.

[13] J. Klontz and A. Jain, “A case study of automated face recog-
nition: The boston marathon bombings suspects,” Computer,
vol. 46, no. 11, pp. 91–94, Nov 2013.

[14] D. Samadhiya, S.-H. Wang, and D. Chen, “Quality models: Role
and value in software engineering,” in Software Technology and
Engineering (ICSTE), 2010 2nd International Conference on,
vol. 1, Oct 2010, pp. V1–320–V1–324.

[15] F. Deissenboeck, E. Juergens, K. Lochmann, and S. Wag-
ner, “Software quality models: Purposes, usage scenarios and
requirements,” in Software Quality, 2009. WOSQ ’09. ICSE
Workshop on, May 2009, pp. 9–14.

[16] ISO/IEC, “ISO/IEC 25010 - Systems and software engineering
- Systems and software Quality Requirements and Evaluation
(SQuaRE) - System and software quality models,” Tech. Rep.,
2010.

[17] S. Lauesen, Software Requirements: Styles and Techniques.
Addison-Wesley, 2002.

[18] R. Berntsson Svensson, T. Gorschek, and B. Regnell, “Quality
requirements in practice: An interview study in requirements
engineering for embedded systems,” in Requirements Engineer-
ing: Foundation for Software Quality, ser. Lecture Notes in
Computer Science, M. Glinz and P. Heymans, Eds. Springer
Berlin Heidelberg, 2009, vol. 5512, pp. 218–232.

[19] L. Phillips, A. Aurum, and R. Berntsson Svensson, “Managing
software quality requirements,” in Software Engineering and
Advanced Applications (SEAA), 2012 38th EUROMICRO Con-
ference on, Sept 2012, pp. 349–356.

[20] P. Berander, L. O. Damm, J. Eriksson, T. Gorschek,
K. Henningsson, P. Jönsson, S. Kågström, D. Milicic,
F. Mårtensson, K. Rönkkö, and P. Tomaszewski, Software
quality attributes and trade-offs, L. Lundberg, M. Mattsson,
and C. Wohlin, Eds. Blekinge Institute of Technology, June
2005. [Online]. Available: http://www.bth.se/tek/besq.nsf/
pages/017bd879b7c9165dc12570680047aae2!OpenDocument

"http://www.cosc.brocku.ca/~duentsch/archive/softeval.pdf"
http://www.ehu.es/ccwintco/uploads/e/eb/PFC-IonMarques.pdf
http://www.ehu.es/ccwintco/uploads/e/eb/PFC-IonMarques.pdf
http://www.bth.se/tek/besq.nsf/pages/017bd879b7c9165dc12570680047aae2!OpenDocument
http://www.bth.se/tek/besq.nsf/pages/017bd879b7c9165dc12570680047aae2!OpenDocument

[21] T. Wengraf, Qualitative Research Interviewing: Biographic Nar-
rative and Semi-Structured Methods. SAGE Publications, 2001.

[22] C. Seaman, “Qualitative methods in empirical studies of soft-
ware engineering,” Software Engineering, IEEE Transactions
on, vol. 25, no. 4, pp. 557–572, Jul 1999.

[23] B. Wong, “Measurements used in software quality evaluation,”
2003.

[24] R. Berntsson Svensson, T. Gorschek, B. Regnell, R. Torkar,
A. Shahrokni, R. Feldt, and A. Aurum, “Prioritization of qual-
ity requirements: State of practice in eleven companies,” in
Requirements Engineering Conference (RE), 2011 19th IEEE
International, Aug 2011, pp. 69–78.

[25] F. Shull, J. Singer, and D. I. Sjøberg, Guide to Advanced
Empirical Software Engineering. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2007.

[26] V. Jain and E. Learned-Miller, “Fddb: A benchmark for face de-
tection in unconstrained settings,” University of Massachusetts,
Amherst, Tech. Rep. UM-CS-2010-009, 2010.

[27] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic, “300
faces in-the-wild challenge: The first facial landmark localization
challenge,” in Proceedings of IEEE Int’l Conf. on Computer
Vision (ICCV-W 2013), 300 Faces in-the-Wild Challenge (300-
W), Sydney, Australia, December 2013.

[28] H. Fan, Z. Cao, Y. Jiang, Q. Yin, and C. Doudou, “Learning
deep face representation,” CoRR, vol. abs/1403.2802, 2014.

[29] N. Juristo and A. M. Moreno, Basics of Software Engineering
Experimentation, 1st ed. Springer Publishing Company, Incor-
porated, 2010.

[30] ISO/IEC, ISO/IEC 9126. Software engineering – Product qual-
ity. ISO/IEC, 2001.

[31] D. Montgomery, Design and Analysis of Experiments, ser. Stu-
dent solutions manual. John Wiley & Sons, 2008.

[32] N. Juristo and A. Moreno, Lecture Notes on Empirical Software
Engineering, ser. Series on software engineering and knowledge
engineering. World Scientific, 2003.

[33] V. B. Kampenes, T. Dybå, J. E. Hannay, and D. I. K.
Sjøberg, “Systematic review: A systematic review of effect
size in software engineering experiments,” Inf. Softw. Technol.,
vol. 49, no. 11-12, pp. 1073–1086, Nov. 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2007.02.015

[34] K. Pearson, “X. on the criterion that a given system of devi-
ations from the probable in the case of a correlated system of
variables is such that it can be reasonably supposed to have
arisen from random sampling,” Philosophical Magazine Series
5, vol. 50, no. 302, pp. 157–175, 1900.

[35] D. J. Sheskin, Handbook of Parametric and Nonparametric
Statistical Procedures, 4th ed. Chapman & Hall/CRC, 2007.

[36] E. Johansson, A. Wesslen, L. Bratthall, and M. Host, “The
importance of quality requirements in software platform
development-a survey,” in System Sciences, 2001. Proceedings of
the 34th Annual Hawaii International Conference on, Jan 2001,
pp. 10 pp.–.

http://dx.doi.org/10.1016/j.infsof.2007.02.015

	Introduction
	Problem Domain & Motivation
	Research Process & Data Collection
	Contribution
	Scope
	Structure of the Paper

	Background & Related Work
	Face Recognition Technology
	The Prioritization of Quality Requirements in Industry
	Software Quality Metrics

	Methodology
	Interviews
	Data collection
	Data analysis

	Experiment
	Goals
	Experimental Units
	Experimental Material
	Hypotheses, Parameters and Variables
	Design
	Procedure
	Analysis Procedure

	Deviations from the Experiment Plan
	Results and Analysis
	Case company's quality prioritization
	The Software Quality of Face Recognition APIs and Libraries

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Discussion
	Conclusion
	References

