
Metrics to measure the impact of continuous integration:
An empirical case study

Bachelor of Science Thesis [in the Programme Software engineering and
management]

NAHID VAFAIE
MIKAEL ARVISDSSON

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, augusti 2013

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Metrics to measure the impact of continuous integration:
An empirical case study

Nahid Vafaie
Mikael Arvidsson

© Nahid Vafaie, June 2013.
© Mikael Arvidsson, June 2013.

Examiner: Ana Magazinius

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden June 2013

Metrics to measure the impact of continuous integration:
An empirical case study

Mikael Arvidsson
Dept. Software Engineering & Management

Gothenburg University
Gothenburg, Sweden

mikael @ apper . nu

Nahid Vafaie
Dept. Software Engineering & Management

Gothenburg University
Gothenburg, Sweden
n . vafaie @ gmail . com

Abstract

The purpose of this paper is to investigate the impact of the continuous integration in large global
organizations and find suitable metrics to measure these impacts. Continuous integration is a practice
within agile movement in which members of a team integrate their work frequently, at least daily.
Metrics are needed to measure the impacts of the continuous integration and compare them with other
development process. This measurement allows managers within the organizations to assess the
progress and impact of process changes and make data driven decisions. The research has been
conducted as an empirical case study in a large software organization using a qualitative research
approach and the result has been analyzed using thematic analysis. A total of 12 interviews were
conducted with highly qualified software professionals about the impact of continuous integration in
their organization. Several experienced positive and negative impacts are identified and ways to
measure these impacts are investigated. The findings in this paper can be used by organizations to
justify their continuous integration process or to predict and counter problems already during the
introduction stage of that process.

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, May 2013

mailto:nvafaie@gmail.com
mailto:nvafaie@gmail.com
mailto:nvafaie@gmail.com
mailto:nvafaie@gmail.com
mailto:nvafaie@gmail.com
mailto:nvafaie@gmail.com
mailto:nvafaie@gmail.com
mailto:mikael@apper.nu
mailto:mikael@apper.nu
mailto:mikael@apper.nu
mailto:mikael@apper.nu
mailto:mikael@apper.nu

1. Introduction

Continuous integration is an agile development practice that have been around since the 90’s (Fowler
and Foemmel, 2006, Bosch, 2013), but has recently increased in popularity with the agile movement. In
the term continuous integration, integration refers to assembly of software parts and continuous refers to
the absence of time-constraints (Holck and Jørgensen, 2007). Continuous integration originated in the
eXtreme Programming development method (Beck, 2000). The Unified Process method also labels
certain activities as continuous integration (Holck and Jørgensen, 2007). However, the principles of
continuous integration can be applied to any iterative programming model in the agile development
methodology (ibid). In the continuous integration practice, members of a team integrate their work
frequently, usually at least daily, leading to multiple integrations per day. Each integration is verified by
an automated build to detect integration errors as quickly as possible (Fowler and Foemmel, 2006).

To successfully measure the impact of the continuous integration process and compare it with the
previous development process, suitable metrics are needed. The usage of quantitative measurements can
be important and are often used within all sciences in order to validate the research and draw
conclusions from the findings. This is true within computer science, and researchers have put major
effort into finding suitable metrics for evaluating different aspects of software development. Futrell,
Shafer and Safer (2000) describe a metric as a quantifiable measurement of a software product, process
or project that can be directly observed, calculated or predicted. According to Basili et al. (1988)
measurement is a process by which numbers are assigned to attributes of entities in the real world in a
way that attribute them according to defined rules. Metrics are standards that define measurable
attributes of entities, their units and their scopes. Software measurement allows managers to make
timely, data driven decisions, to assess the progress and impact of process changes. It helps project
managers by giving them a baseline to understand in what stage of the process they currently are, and to
have a precise plan for the future of the process based on the goals and the results they gain by this
measurement.

The contribution of this paper is to gain knowledge about the impact of continuous integration in large
software organizations and then to explore suitable metrics in order to measure the impacts of
continuous integration. The scope of this paper does not include any psychological or social impact
aspects of continuous integration.

Research questions:
RQ1: What is the impact of implementing continuous integration in an organization?
RQ2: What metrics are most suitable to measure the impact of continuous integration in an organization?

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, May 2013

2. Related research

In this section we review the concept of positive and negative impacts of continuous integration as well
as metrics to measure these impacts in an organization, in the related literature.

2.1 Positive impact of continuous integration
Continuous integration implies communication. Everyone in the organization will be able to get the
latest executable version of the software and run it for the purpose of testing, demonstration or to
observe the recent changes (Duvall et al., 2007, Fowler and Foemmel, 2006, Paul, 2007, Ståhl and
Bosch, 2013). Ståhl and Bosch (2013) also state that continuous integration has a positive effect on
communication, not only within the team but in larger projects also between teams. Continuous
integration provides just-in-time information on the recent build status and quality metrics which will
help everyone in the team to make effective decisions (Duvall et al., 2007).

Immediate feedback is one of the most positive impacts of continuous integration (Duvall et al., 2007,
Paul, 2007, Rogers, 2004). This is usually shown when the developers make changes to their code so
that a test case or a build fails. When this happens, the developer receives feedback about the failures so
that these failures can be addressed directly (ibid). Both Fowler and Foemmel (2006) and Duvall et al.
(2007) agree that continuous integration does not guarantee bug-free software, but it provides the
possibility to continuously test and inspect it. Thus it makes it easier to find and remove bugs before
they become widespread within the organization.

Fowler and Foemmel (2006) as well as Holck and Jørgensen (2007) believe that a greater benefit of
continuous integration is reduced integration risks, due to the errors being found early in the process.
According to Fowler and Foemmel (2006) the problem with deferred integration is that it is very hard to
predict how long it will take to finish, and worse, it is very hard to see where you are in the process.
This situation creates a blind spot in one of the most essential parts of the process. Continuous
integration has the ability to completely solve this problem through integrating several times daily. In
the continuous integration process, there are no long integration spawns so it can eliminate the blind
spot (ibid). Continuous integration is also an alternative to ‘big bang’ integration where all modules are
combined once. Big bang integration usually results in large number of errors which will be hard to
address and correct (Holck et al., 2007).

Continuous integration can enable an organization to release deployable software at any point in time
(Duvall et al., 2007, Fowler and Foemmel, 2006, Paul, 2007). With the help of continuous integration
there will be small changes to the source code, and these changes will be integrated with the rest of the
code base on a regular basis. If a problem occurs, the team members will be notified and then their
solution will be applied to the software immediately. Fowler and Foemmel (2006) also state that
continuous integration removes one of the biggest barriers to frequent deployment. Frequent deployment
allows customers to get new features more rapidly, to give more rapid feedback on those features and
become more collaborative in the development cycle (ibid).

According to Humble and Farley (2010) another positive impact of continuous integration may include
a reduction of stress in all the people involved with the software release. They argue that a key to
University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, May 2013

reduced stress is to actively perform the automated deployment process as frequently as possible (ibid).
But this has not been confirmed by other literature, in fact Fowler and Foemmel (2006) and Holck and
Jørgensen (2007) state that the responsibilities of each individual will increase, so it can be interpreted
that the stress level will not be decreased.

Continuous integration helps to reduce repetitive manual processes (Duvall et al., 2007). It affects all
project activities including code compilation, database integration, function and system testing,
deployment and feedback. The process will run the same way every time a commit occurs in the version
control repository.

Continuous integration creates motivation (Duvall et al., 2007, Holck and Jørgensen, 2007). Continuous
integration motivates all the members of the teams working with it to try to fix the faults as soon as
possible in order to keep the build clean and unbroken. Everyone is motivated to find and try to fix the
error regardless of who introduced it (Holck et al., 2007). By rebuilding and testing software in a clean
environment using the same process and scripts on a continual basis, the amount of assumptions will be
reduced (Duvall et al., 2007), and therefore project predictability will be improved (Ståhl and Bosch,
2013). It will also increase the product confidence. With every build, every member in the team will
know that tests are run to verify the build, that project coding and design standards are met and that the
result is a functionally testable product. Continuous integration can help the team members to be
confident enough to make changes in the code, since they will be informed when something goes wrong
(Duvall et al., 2007).
Team member also will be able to track the general health and complexity of the product over time
(Fowler and Foemmel, 2006) and therefore find the courage to innovate new improvements (Ståhl and
Bosch, 2013 and Duvall et al., 2007).

2.2 Negative impact of continuous integration
We could not find as many articles describing “disadvantages of continuous integration” or “negative
impact of continuous integration”. However there are some problems that prevent organizations from
implementing continuous integration as part of their software process. In this section these problems, as
they are described in literature, are being discussed.

Increased overhead in maintaining the continuous integration system is usually considered as an
obstacle against using continuous integration (Duvall et al., 2007, Rogers, 2004). Regardless of whether
continuous integration is used or not, there is still a need to integrate, test, inspect and deploy the
software. So it is better to manage a robust continuous integration process with automatic builds than to
manage manual processes. However complicated multi platform projects are the ones that need
continuous integration the most, and still these projects often have more resistance toward applying
continuous integration because they think it is too much work (Duvall et al., 2007). This is contradicting
Rogers (2004) that argue that continuous integration is about people more than about the tools that they
use. It is easy to forget that continuous integration is a practice and that it is about what people do, not
what tools they use to help them (ibid).

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, May 2013

One of the barriers toward implementing continuous integration is that some people feel that in order to
implement continuous integration they need to go through many changes for their legacy project. But in
this case, incremental approach toward continuous integration is most effective (Duvall et al., 2007).

If developers do not perform a private build prior to commit their code to the version control repository,
the result can be too many failed builds and is usually because a developer forgets to check in or have
some failed tests. But in this case, when using continuous integration, rapid response is imperative due
to the frequency of changes. (Duvall et al., 2007).

2.3 Metrics to measure the impacts of continuous integration
Generally, project metrics are measured to determine the current state of the health of a project
(Tsourveloudis and Valavanis, 2002, Kassim and Zain, 2004). The identification and measurement of
valid parameters that affect software development have been a lacking factor in many software projects
(Pádua, 2010). The followings reasons can be used to explain why metrics are useful in software
development (Misra and Omorodion, 2011):
• To make decisions in business
• To challenge team members
• Team members can be proud of the results
• To determine success
• It increases satisfaction
• It helps to change the behavior of team mates
• It increases decision making process
The important question is, what should be measured? Whatever is chosen to be measured, will have an
enormous influence on the behavior of the team (Humble and Farley, 2010). For example if the area of
measurement is the number of code lines that each developer writes, the impact might be that the
developers place focus on writing many short lines of code instead of smart code. Measuring the number
of defects fixed, has the effect on testers to log bugs that could be fixed by a quick discussion with a
developer. So according to the lean philosophy it is important to have a global metric that can be used to
determine if the delivery process as a whole has a problem (Humble and Farley, 2010).

With the development of the Agile software development techniques, there is a need for metrics that suit
the measurement of the processes, products and projects involved in this new system. Metrics are
basically selected based on the needs of the firm and the kind of software project. A team can design its
own set of metrics based on the general classification of metrics available and use them to evaluate its
activities and measure value depending on the kind of project and their needs. These are some core
Agile metrics, their uses and measurements that are taken under them (Misra and Omorodion, 2011):
• Product Metrics deal with size metrics, architecture metrics, structure metrics, quality metrics and
complexity metrics.
• Resource Metrics deal with personnel metrics (effort metrics, etc), software metrics and hardware
metrics, and performance metrics.
• Process Metrics: Maturity metrics, management metrics and life cycle metrics are in this category.
• Project Metrics: Earned business value, cost, time, quality, risk and etc.
• Strategic metrics (net present value, earned business value, return on investment, etc).
University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, May 2013

• Engineer metrics (scope burn up, cost per iteration, etc).
• Test metrics (unit tests per user story, acceptance tests per user story, defect counts per user story. test
times to run, time to fix tests, etc).
• Iteration metrics (velocity based on story points velocity based on the ideal engineering hours,
backlog size, etc).
• Automation metrics (code coverage, number of builds per day, number of failed and succeeded builds,
etc).
• Code metrics (lines of code size, code duplication, escaped bugs, etc).
• Project management metrics (schedule variance, performance variance, cycle time, etc).
Each sub-metric also defines a range of metrics such as velocity, running tested feature, story points,
function points, earned business value, return on investment, effort estimates, downtime and etc. A
developer or tester can define more metrics based on all the above metrics, based on the needs of the
team, development process or other factors. These metrics include velocity history, user stories, stories
completed, bugs open today, sprints with stories incomplete, progress in a release, exact progress in an
iteration, on-time-delivery and etc (Misra and Omorodion, 2011).

Almost all of the above metrics result into quantitative measures based on the piece of software or
collected data from the process. These metrics are not always equally applicable throughout all
development methodologies, especially when moving from waterfall towards agile development (Misra
and Omorodion, 2011). Agile development techniques indicates that the technique used for
measurement for the traditional development processes may not apply. There are other aspects such as
motivation, commitment and satisfaction which are always hard to find quantifiable measures for them
(ibid).

It was not easy to find metrics to measure the impact of continuous integration specifically, in related
research reviewed so far, but since continuous integration is a practice within Agile software process, it
can be assumed that some of the metrics within Agile software process area such as quality metrics,
process metrics and project management metrics can be applied to continuous integration too. One of
the metrics suggested by Williams, Krebs, Layman, Anton and Abrahamsson (2004) is response to
customer change (the number of user stories added and removed based on customer priority and
preference change). This metric is important because it shows the degree of flexibility or agility among
the teams. Internally-visible quality which is based upon the defects identified prior to release to
customer and externally-visible quality assessed by the customer are good metrics to measure the quality
of the project and product (Williams et al., 2004). According to Kan (2003) and (Williams et al., 2004)
Customer satisfaction is another metric that can show how much a software process is successful. Pre
release defect density (number and lifetime of defects) and defect removal efficiency are also good
indicators of the quality (Shen and Ju, 2007). Kan (2003) suggests that the Mean time to failure, defect
density, and customer problems are suitable metrics to measure the quality of the product. To measure
the software delivery process, the most important global metric is cycle time (Humble and Farley, 2010).
Cycle time is the time starting with the time deciding that a feature needs to be implemented until this
feature is released to the customer. This metric is hard to measure because it covers many parts of the
software process, from analysis, through development, testing, to release, but it still tells more about the
process than any other metric (ibid).

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, May 2013

3. Methodology

3.1 Research site
The research has been conducted in a large organization currently located in Gothenburg, Sweden. The
site that was the base of the case study for this research had started implementing continuous integration
as a pilot in one area of their organization involving only few teams. So the process of continuous
integration was at the beginning stage. The implementation was not in full scale but the plan was to
involve more products and teams in the next coming sprint.

3.2 Research approach
The focus of the study was to investigate the impact of continuous integration. The study has therefore
been conducted using a qualitative research approach, which can be used to answer the research
questions stated.

3.3 Data collection
A total of 12 employees from the teams working with continuous integration, were interviewed with a
semi-structured interview approach .This approach allows for improvisation, which was used during the
interviews to ask follow-up questions. The roles of the participants were managers and developers.
About 60 minutes was spent on each interview and all the interviews were recorded using an audio
recording device. The interview was focused on the impact of continuous integration and the possibility
to measure the impact.
The interview guide (see appendix A for the interview guide) was written to guide the interview and
make sure that all the questions were covered if the interview got off track.
All the interviewees were selected using a convenience sample because of the limited resources that was
available. In the final stage of the data collection, only 10 of the interviews were fully transcribed due to
time constraints, but the findings of all the 12 interviews were used in the paper. The transcription of the
recorded interviews was done to ensure that the data collected was correct. The alternative way was to
transcribe directly during the interview, but direct transcription could lead to misinterpreted data.

3.4 Data analysis
The data gathered from the interviews has been analyzed using the thematic analysis approach. The
following steps were taken to analyze the data:

1. Transcription step:
In the transcription step we familiarized ourselves with the data that we got from the interviews. The
data was transformed from verbal sound from the recordings, to text that was much easier to process
further.

2. Finding the initial codes:
In this step we decoded the data from the perspective of our research questions. The information was
considered as “code” when it could be used to partly or fully answer one of our research questions.

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, May 2013

3. Finding themes:
At this step we grouped the codes into different groups based on the similarities. These themes/groups
were then considered impact areas and were spitted into positive impact, negative impact and impact
measurement categories.

4. Cross checking the themes:
In this step we reviewed the themes that we had found from the analyzed codes to make sure that all the
themes corresponded correctly to the data.

3.5 Data validation strategy
To provide more validity to the research we decided to take the findings back to the participants to see if
they agreed with the results presented. We also tried to give a rich description of the process and
findings so that the reader could get a better understanding and therefore gain more credibility. In the
paper we tried to present all negative or contradictory information with the purpose of creating more
credibility for the reader.

We tried to anticipate the potential ethical issues that could occur during the research. When
interviewing the participants in the site, we asked for the participants’ permission to record the interview
and at the same time we assured them that the interview would be held confidential if they wished so.
The identification and confidentiality of the organization and interviewees are not disclosed in the paper.

The weakness of this paper lies mostly on this fact that the interviewees were not familiar with the
process of continuous integration, so the information they provided could be partly incorrect or
insufficient.

4. Results

In this section we interpret the results of our interviews. This section is structured according to the same
categories identified in related research.

4.1 Positive impacts of continuous integration
Data about the positive impact of implementing continuous integration were gathered from
interviewees. They were asked about the impact of the continuous integration in their organization.
Table 1 displays a summary of all positive impacts that the interviewees have experienced with the
introduction of continuous integration at their workplace.

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, May 2013

Table 1. Positive impacts of continuous integration found in the interviews

Theme Positive impact

Feedback - Immediate feedback
- Real-time information helps to make better decisions
- Visibility at any time to everyone
- Improved visualization of the code quality
- Gaining the ability to measure the quality continuously
- Faster feedback from the customer

Performance - Quick fixation of faults
- Faster integration
- Fast fault finding
- Increased team performance
- Increased integration capability with the main flow
- Less time to market
- Customer satisfaction

Responsibility - Increased responsibility awareness toward quality and fixing the
faults
- Less dependency on other teams
- Increased author pride
- Easier to pinpoint the fault owner

Code quality - Always have the latest version of the code (rebasing)
- Less customer fault reports
- The majority of small faults are found early
- Automatic execution of tests
- Tests are performed where its important to test
- Small merges decrease severity of the conflicts
- Always have a stable build
- Number of faults decreased

Work environment - Less stress
- More communication between coworkers
- Easier to plan work
- Sprint plans
- Change direction fast

Feedback was a category of advantages mentioned by interviewees. Almost all of the interviewees stated
that immediate feedback was the most important advantage of continuous integration. According to one
of the managers, faults could be major and could affect a lot of other test cases that they were
developing. So it was very helpful that they could get quick feedback in order to solve the problems fast.
According to the interviewees Real time information was another positive impact that continuous
integration brought into the organization. Some of them believed that by implementation of continuous
integration they could get necessary information by looking at the dashboard and the portal to pick the
suitable code or component test. Visibility at any time to everyone was an issue that some of the
interviewees believed as one of the positive impacts of continuous integration in the organization.This
meant that everyone could be able to see everything that was on with the software at all times. This
impact was highly related to the Improved visualization of the code quality and to gain the ability to
measure the quality continuously, which also were mentioned as positive impacts by interviewees.
Faster feedback from the customer was another positive impact that some of the interviewees believed
that they would gain by implementing continuous integration.

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, May 2013

Performance was another category of advantages suggested by interviewees. Many of them believed
that fixation of the faults was quicker after implementation of continuous integration. faster integration,
fast fault finding as well as increased integration capability with the main flow were other impacts in
this category mentioned by interviewees. They stated that at the same time continuous integration has
increased team performance. They believed that after implementing the continuous integration in all
levels of products and teams in the organization they would gain customer satisfaction.

Another category of positive impacts of continuous integration according to the interviewees was
responsibility. A few of the interviewees stated that by implementing continuous integration
responsibility of awareness toward quality and fixing the faults has increased. One of the developers
believed that after implementation of continuous integration dependency on other teams has decreased.
Another developer stated that it was now easier to pinpoint the fault owner and at the same it would
increase the author pride when they knew that they have produced less faults.

Code quality was another category of the positive impact of continuous integration. The interviewees
showed a general belief that now they always would have the latest version of the code. less customer
fault reports has also been mentioned by the interviewees as positive impact of continuous integration.
One of the managers explained the different stages of the process of creating a feature in this way that
first customer requested a feature, then after the feature was ready they would test it in their lab and
make report and sent back and finally developers would fixed the errors and release it to customer.
Implementation of continuous integration would affect customers, because of the faster feedback that
they could get from the customers and consequently would lead to faster releases. Other interviewees
stated that the continuous integration process was only active within a fixed process and that even
though continuous integration would make the department faster, it would not affect the customer
because of the fixed release dates. Many of the interviewees also believed that Small merges decrease
severity of the conflicts and that continuous integration would help them contain a stable build at all
times. They also believed that it would lead to a decrease in the Number of faults. According to one of
the managers feedback loop would quickly show if something was not working and this would increase
the quality awareness. According to one of the developers by implementing continuous integration
everyone was more responsible towards their code and would try to fix the problems as soon as
possible. Some of the interviewees stated that their continuous integration included automatic execution
of tests and tests are performed where its important to test.
These are both seen as positive impacts that can help the organization increase productivity through
automation. As a result of the automatization they achieved and the majority of small faults were found
early in the process. Continuous integration process has also helped them to pinpoint the fault owner
easier and has produced less dependency on other teams.

Work environment has also been one of the areas affected positively by implementation of continuous
integration according to interviewees. Some of them believed that the sprint plans were based on the
information they received as a result of implementation of continuous integration, and that it helped
them to plan work easier and change direction faster. Less stress was another impact that a few of
interviewees believed as an advantage of continuous integration. They felt that since errors were
introduced quickly, they could fix them as soon as these errors were introduced. So they felt less stress
and it helped the teams to have more communication with each others.

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, May 2013

4.2 Negative impacts of continuous integration

Table 2. Negative impacts of continuous integration found in the interviews

Theme Negative impact

Work environment - Increase of stress level
- Harder to isolate yourself to work on something
- Complexity of work has been increased

Code quality - Not always sure about the build quality
- Faults have the possibility to propagate fast
- Currently unstable baseline

Responsibility - Too many people can enter the baseline

Development process - No clear guidelines for working with continuous
integration

Table 2 shows a summary of the negative impacts that the interviewees have experienced with their
implementation of continuous integration. Many of the interviewees believed that continuous integration
was flawless and did not have any negative impacts on the organization. Some of the negative impact
that the interviewees talked about during the interviews were not a direct product of continuous
integration itself, but a consequence of the way continuous integration was implemented at the
organization and because of their early stage in the continuous integration process.

Work environment was one category of negative impacts according to some of the interviewees. In this
category, the stress level was mentioned as a negative impact of continuous integration by a few of
interviewees, which showed how people interpreted stress differently. A developer stated that he would
feel more stressed now because after introducing some faults they had to fix it immediately. A manager
explained that introducing fault for some developers meant a failure. But mindset should shift and they
should know that introducing a fault was a learning and there would not be a punishment for that as long
as they would feel the responsibility to fix the errors. One interviewee felt that it was harder to isolate
himself with the purpose of working on something after the introduction of continuous integration. It
was considered as a negative impact of continuous integration for him and he explained that according
to some calculations that some managers did, it turned out that those teams who had been sitting in their
cave for a couple of months had produced features faster. So he felt that now it was hard for him to do
the same thing he used to do before.

Some of the interviewees felt that continuous integration has added more complexity to their work. One
of the developers mentioned the issue of complexity, stating that since some teams might use some parts
of the code from other teams and change it, then it would create complexity. This situation would create
a lof of communication to ask how they should proceed and needed more synchronizing. Another
developer also stated that continuous integration has affected the complexity in a negative way, although
he believed that it should affect it in a positive way. He believed that there should be a way to make this
process more stable.

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, May 2013

Code quality was another category that covered a few of negative impacts of continuous integration.
Some of the interviewees mentioned that they could not be sure about the quality of the build right now
because of the unstable environment. One interviewee explained that faults had the possibility to
propagate fast. Some of the interviewees were not sure about the build quality all the time and they felt
that baseline was currently unstable. One of the interviewees explained his concern when it came to the
quality of the build as some kind of drawback. He explained that at the time of testing, they had to the
testing many times because they did not have the proper quality on the baseline.

Responsibility was another category according to some of the interviewees that was affected by
continuous integration. One of the developers was concerned that too many people could enter the
baseline at the same time, which might cause conflicts. Another developer mentioned that whenever he
wanted to commit his code he had to wait for a good baseline, but then at the same time other people
would come in and it would cause very big problem.

Development process was another area that was affected by continuous integration in a negative way.
The fact that the organization has not got clear guidelines for working with continuous integration was
another issue that some interviewees considered as a negative impact. Their main concern was that there
was not clear guideline for the time that teams wanted to deliver but nobody knew how it should be
done.

4.3 Metrics to measure the impacts of applying continuous integration

The findings from the part of the interviews that focused on the measuring the impact of continuous
integration showed that most of the interviewees believed that the impact should be measured by
amount of time spent, amount of faults found, amount of tests done, or feedback from the customer. The
metrics that were mentioned by the interviewees are summarized in table 3.

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, May 2013

Table 3. Metrics to measure the impact of continuous integration found in the interviews

Theme Metric type

Time

- Time from code freeze to delivery
- Testing time (only for the testing)
- Time spent on integration
- Hardening time
- Opportunity to cash time
- Fault report turnaround time (the time from a fault is
found until its available to everyone)
- Time spent on build problems
- Sprint time
- Quality estimation time
- The team velocity

Faults
- Fault rate (amount of defects found when testing)
- Fault severity (type of fault)

Test - Test pass rate
- Test status
- Testing time

Customer feedback - Customer fault report
- Amount of requirements fulfilled

Time related metrics was the first category that covered all the metrics related to time introduced by the
interviewees. This category included time from code freeze to delivery, testing time, time spent on
integration and hardening time. The time from code freeze to delivery was described by one of the
managers as the time between the code freeze in the team until the time of the delivery. According to
him, by implementation of the continuous integration this time has become very short. According to
another manager, the length of hardening time was defined as the time starting with the introduction of
the latest code changes until the time of release. According to this manager continuous integration has
reduced the hardening time because testing procedure was running all the time in the background and
would not take weeks afterwards. Opportunity to cash time was another metric in this category and
according to one of the managers it meant the time that would take from when an idea of a feature was
created until this feature would be delivered to the customer. According to this manager, the idea behind
the continuous integration was to slice up customer requests and ideas and get these ideas into the
market in as small portions as possible in order to get money faster. Fault report turnaround time,
correction time and lifetime of the defect suggested by some of the interviewees, had different names but
all indicated the time from when a fault was created until the solution was available for everyone.
According to one of the managers lifetime of the defect was identified from when a problem was
addressed until that problem was fixed on the main line. So the time between the problem was
discovered until it was solved was very important. Feedback time mentioned by some other
interviewees, was almost the same metric as correction time, lifetime of the defect and fault report
turnaround time. ”Time spent on build problems was another metric suggested by some of the
interviewees. Another time related metric was sprint time, which one of the developers described as a

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, May 2013

good measurement in Scrum teams. As he explained there would always be dependencies between
teams. In previous process, dependencies would create time frames that became a blocking but with the
continuous integration developers could take a part of the code from other teams very fast and use that
part without blocking and continue working on it. Quality estimation time was yet another metric
suggested by some of the interviewees. One of the managers explained that this metric could measure
the time it would take for everyone in the organization to get a common understanding of the product
health. The team velocity metrics was suggested by some of the interviewees. One developer explained
that velocity in the teams was based on the fact that the deliveries and rebase should be simpler when
the teams verify more often.

The second category of metrics suggested by the interviewees was “fault related metrics”. Fault rate
was one of the metric mentioned by some interviewees. Fault rate was described as the amount of faults
that were detected during a certain measurement period by one of the interviewees. The type of fault
should also be measured according to some interviewees. According to them if it was a severe fault it
could crash the whole software, so these were the most important to measure and keep statistics on.
Another interviewee suggested that it was good to know both the number of the faults and where in the
process it occurs.

The third category of the metrics summarization table covered test pass rate, test status and testing time.
One of the developers mentioned that before applying continuous integration they used to measure the
progress by number of test pass and he believed that they could still use it to measure the impact of
continuous integration. Another developer suggested test status as a good metric, but then mentioned
that it was really hard to measure it.

Customer satisfaction was another category introduced as a metric by the interviewees. This category
included: customer fault report and amount of requirements fulfilled. Some of the interviewees believed
that customer faults report would be less, with applying continuous integration and that it was a good
measurement to compare two processes with each other. One of the developers stated that by testing
more, the number of defects would increase which would be fixed quickly, but the number of defects
reported by customer should decrease. The amount of requirements fulfilled was suggested as a metric
to compare the impact of continuous integration with previous process by some of the interviewees. It
was basically a measurement to see how many features the developers could fit into the final product.

5. Discussion

In this section, we discuss similarities and differences between our findings and previous research in
relation to our research questions what are the impacts of implementing continuous integration? and
what metrics are most suitable to measure the impact of continuous integration in an organization?

5.1 Positive impact of continuous integration
The advantages of continuous integration mentioned by interviewees were the real tangible advantages
that they had gained so far. They believed that after fully implementation of continuous integration they
would gain more benefits. Due to the discipline and the role that these interviewees had in the
organization, sometimes their responses to the questions were different from each other. The reason for
this could be the degree of their involvement in the continuous integration process, or the problems and
University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, May 2013

difficulties that they were facing not because of the continuous integration itself, but because of the
natural problems when an organization goes through a transition from one process to another. These
problems could be technical, environmental, organizational or human resistance.

Most of the interviewees agreed that immediate feedback was one of the good impacts of continuous
integration. According to one of the interviewees there were benefits of getting quick feedback, such as
everyone would feel confident that their changes in the code would not cause any problem. Duvall et al.
(2007) and Fowler and Foemmel (2006) also suggest that continuous integration would provide rapid
feedback.

A few of the interviewees believed that communication between team members and even within teams
got better after implementation of continuous integration. This idea is supported by Duvall et al. (2007)
and Fowler and Foemmel (2006) and Ståhl and Bosch (2013). Just-in.time information and visibility at
any time to everyone were two advantages that most of the interviewees stated. They suggested that
when they wanted to start their weekly integration, they would get necessary information by looking at
the dashboard and the portal. Even some of them believed that continuous integration has provided them
information to plan their work easier, plan their sprints and change direction faster. This is totally in
line with the study of Duvall et al. (2007) who suggests that continuous integration would provide just--
in-time information to help the team members in the team to make effective decision.

Fast fault finding, quick fixation of faults, and faster integration were stated by the interviewees as the
positive impacts of continuous integration which are in line with the idea of Fowler and Foemmel
(2006) as well as Holck and Jørgensen (2007) who believed that one of the greatest benefit of
continuous integration was reduced integration risks due to the errors found early in the process. Many
interviewees believed that they could find errors early in the process after they implemented continuous
integration and they would see it as a great benefit that continuous integration could bring to the
organization.

Another advantage that most interviewees suggested was increased responsibility awareness toward
quality and fixing errors . In the literature there was not an advantage of continuous integration
specifically labeled as such but some of the literature derived it indirectly from the advantage of getting
immediate feedback and having continuously a health build. Fowler stated that “With a good build, I can
then think about committing my changes into the repository. The twist, of course, is that other people
may, and usually have made changes to the mainline before I get chance to commit. So first I update my
working copy with their changes and rebuild. If their changes clash with my changes, it will manifest as
a failure either in the compilation or in the tests. In this case it's my responsibility to fix this and repeat
until I can build a working copy that is properly synchronized with the mainline. ” (Fowler and
Foemmel, 2006, P.3). Holck, et al. (2007) described this advantage as motivation. They believed that
continuous integration would create necessary motivation in all the members of the teams working with
it and to try to fix the faults as soon as possible in order to keep the build clean and unbroken. Everyone
would try to fix the error regardless of whether the introducer of the fault was himself or another person.

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, May 2013

A few of interviewees also believed that latest executable version of the software was one of the positive
impacts of continuous integration. This is also supported by Duvall et al. (2007) who stated that
everyone in the organization could run this version for the purpose of testing, demonstration or to
observe the recent changes.

Some of the interviewees also described reduction of stress as a positive advantage of continuous
integration. They felt less stressed because they could get quick feedback after they would introduce
faults into the system, so they had better chance to fix them immediately. According to Humble and
Farley (2010), one of the obvious benefits of continuous integration was reduction of stress in people
that are associated with a release.

Less customer fault report was mentioned as a positive impact of continuous integration by a few of the
interviewees. Fowler and Foemmel (2006) stated that continuous integration would remove one of the
biggest gaps between customer and development by frequent deployment. Less customer fault report
was the result of frequent deployment. But it was a little surprising when the interviewees were asked
about the customer satisfaction and the effect of continuous integration on the customer. Many of them
believed that continuous integration was an internal process which would not affect the customer. On the
other hand in the literature, customer satisfaction was one of the most important advantages of
continuous integration. Frequent deployment would allow customers to get new features more rapidly
which would let them to provide more rapid feedback on those features and become more collaborative
in the development cycle. So why despite this fact that continuous integration should ultimately have the
effect on the customers requirement and needs, some of the interviewees believed that it would not
affect the customer? One of the reasons could be that the implementation of continuous integration was
only in one part of the organization which was not dealing with delivering any feature to the customer at
the time of interview. The second reason could be that, they still had fixed time-boxed deliveries to the
customer, so even though continuous integration was optimizing the time, currently it would only affect
the internal speed. One of the interviewees believed that continuous integration did not affect the
customer because it was an internal efficiency. They stated that continuous integration currently was just
a procedure to make the process faster, but it would affect the customer when continuous integration
would be implemented in all levels of products. Less time to market was another advantage that was
brought up by some of the interviewees. The result of this advantage would directly affect the customer
which would lead consequently to customer satisfaction.

5.2 Negative impact of continuous integration
Many interviewees believed that there were not any negative impact about continuous integration and if
there would exist any problem right now, it was not created by the continuous integration itself, it could
be a technical problem or it existed because continuous integration had not been implemented yet in all
parts of the products and teams. By reviewing the previous research about the impact of continuous
integration, a few research discussed about some problems that could happen when an organization
started to implement continuous integration. However these problems were assumed as negative impacts
of continuous integration by some people. These research tried to explain that people should not
consider these problems as the impact of continuous integration but as obstacles and problems in the
way of implementing continuous integration.

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, May 2013

The level of stress after breaking the code by committing a new code, was different among the
interviewees. A few of the interviewees believed that after applying continuous integration the stress
level was less, but some other believed that now they had more stress, and the rest believed that it was
the same as before. But why some people felt more stressful after implementation of continuous
integration even though the organization they were working was a forgiving organization so there would
be no punishment for the errors they made. The common belief in the organization would allow
developers to have errors in their code as long as they would try to fix it and learn lessons from that.
This question was asked from the leaders and managers among the interviewees in the organization that
why continuous integration was giving the feeling of more stress to some of the developers. One of the
managers that it was normal that they got more stressed now when they broke the software and they did
not have this kind of stress before. In his opinion this stress was a good sign. It meant that they could
take the responsibility for their action. Another manager also believed that now developers would feel
more stressful because they believed that it would hit them. It would make them worry that if they
would introduce a fault, they would be punished for that. According to the interviewees conducted with
managers and initiative of continuous integration, they have started trying to give the developers a
notion that introducing a fault and fixing it, was a learning which was a good thing. They should see it
as an opportunity.

Another issue that some of the interviewees assumed as a disadvantage of continuous integration at the
moment was: not being sure about the quality of the build. However this idea was not supported by the
literature. The quality of the build would be guaranteed by the amount and quality of the tests run on the
integrated code. As Kaplewicz et al. (2005) suggested migration of large amounts of internal
development projects into a continuous integration environment required tight planning and
coordination to successfully migrate.

Some of the disadvantages mentioned by interviewees such as lack of stability, lack of testing, need to
be easier to stop integration, the process is not spread wide enough , no clear guideline for working
with continuous integration were the results of incomplete implementation of continuous integration.
But as Duvall et al. (2007) suggested implementing continuous integration needed many changes but it
should be through an incremental approach which would make it most effective.

5.3 Metrics to measure the impact of continuous integration
Most of the interviewees had clear idea about the impacts of the continuous integration, but when it
came to metrics and how these impacts should be measured, most of the time they were not sure about
the suitable metrics, at least it seemed that they had not thought about that before. The reason could be
that continuous integration was very new in this part of the organization and it had not even been
completed to show the impacts on the outcome. However when they thought more precise about these
metrics, they could come with very good ideas and therefore suggested efficient metrics.Also when we
reviewed previous research about metrics to measure the impact of continuous integration, we were not
very successful to find enough articles in this regard. It could be due to our weakness in finding related
article or due to this fact that less research had been done in this field. But most papers that we reviewed
argued about metrics in software development in general. We assumed that since continuous integration

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, May 2013

was one of the practices within Agile software development, it would be good enough to use one of the
Agile metrics to measure the impact of continuous integration. So we focused on literature arguing
about Agile metrics.

One of the interviewees who was a manager suggested opportunity to cash time as a good metrics.
According to his definition, opportunity to cash time was the time started when an idea of a feature was
introduced until the time this feature would be released to customer. Cycle time according to Humble
and Farley (2010) was the time starting when it was decided that a feature needed to be implemented
until this feature was released to customer. These two metrics are different name, but the functionality of
both are exactly the same.

Fault report turnaround time or correction time was a metric introduced by some of the interviewees.
This metric according to a manager meant the time from when a fault was created until the time it was
available to everyone in the organization and was solved. On the other hand Pre-release defect density
was a measurement introduced by Shen and Ju (2007) for measuring the quality of a product or project
in a software development process. It could be also described as the number and lifetime of defects.
Internally-visible quality which was introduced by Williams et al. (2004) was the defect identified prior
to release to customer. These metrics despite of having different names had exactly the same
functionality.

Sprint time and team velocity were metrics brought up by several interviewees. These two metrics were
suggested by Misra and Omorodion (2011) as a suitable metrics. They stated that a developer or tester
could define a metric based on the current metrics and the needs of the team, development process or
other factors.

Test pass rate, test status and testing time which according to some of the interviewees were good
metrics to measure the process of testing and were applicable to compare two processes such as
continuous integration with waterfall process belonged to the Test Agile metrics. According to Oza and
Korkala (2012) Test metrics consisted of test times to run, time to fix the tests resulted into quantitative
measures based on the piece of software from a process. They also mentioned that these metrics were
not always applicable through all development processes, especially when there was a transition from
waterfall toward agile development.

Customer fault report and Amount of requirements fulfilled were two customer related metrics which
were suggested by some of the interviewees as good metrics to measure the impact of continuous
integration. As Williams et al. (2004) suggested externally-visible quality assessed by the customer was
a good metric to measure the quality of the project and product. A few of interviewees also
recommended that customer satisfaction could be another good metric that would show how much a
software process was successful. Kan (2003) also stated that customer problems and customer
satisfaction would cover the definition of software quality.

Hardening time according to one of the interviewees was the time when the latest code changes were
introduced until the time the feature was released. Shen and Ju (2007) suggested defect removal

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, May 2013

efficiency (a measure to detect defects before delivery) as a good indicator of quality which is totally in
line with hardening time.

Quality estimation time was suggested by a few interviewees. One of them explained that this metric
would show how much time, it would take for people involved in a software development process to get
a common understanding of the product health in order to be able to release the product. We have not
found similar metric in reviewed articles and papers to support this idea.

7. Conclusion

Continuous integration, an agile development practice has recently been implemented in many
organizations. In continuous integration process, members of the team integrate their work every day.
An automated build verifies each integration to detect errors as quickly as possible. This practice will
naturally have impacts, positive or negative on the organization, product, and team members. This study
attempts to identify the impacts of continuous integration and find suitable metrics to measure these
impacts. The research has been conducted as an empirical case study in a large software organization
using a qualitative research approach and then analyzed using thematic analysis. Interviews were
conducted with 12 of the employees at the organization who have been piloting the continuous
integration process in their daily work.

The findings from the conducted interviews were categorized into three areas; positive impact of
continuous integration, negative impact of continuous integration and metrics to measure and compare
the impact of continuous integration with the previous software development process.

Based on the findings from the interview and to answer RQ1, we concluded several impacts on time,
feedback, performance, responsibility, development process, code quality and the work environment.
Some of these impacts were seen as both positive and negative by the interviewees. The findings from
the study that are related to RQ2 shows that the impact can be measured by time, faults, tests and the
customer feedback received.

The result of this study shows that even though the interviewees did not have any previous experience
with continuous integration and continuous integration process was in its early stage in their
organization, they thought that this process had already positive impacts on their organization, their
daily work and the final product. Most of the positive impacts stated by interviewees were supported by
the related research papers. How ever there were a few negative impacts suggested by some of the
interviewees that were not supported by related articles, such as increased stress level and not being
sure about the quality of the build. A few more disadvantages of continuous integration mentioned by
some of the interviewees such as lack of stability, lack of testing, need to be easier to stop integration,
the process is not spread wide enough and no clear guideline for working with continuous integration
were not also supported by previous literature and they could be the result of incomplete implementation
of continuous integration in their organization.

Findings related to suitable metrics to measure the impact of continuous integration shows that
interviewees suggested applicable metrics that are suitable for measuring the process of continuous
integration and compare it to other integration processes such as waterfall process. These metrics are
cycle time, opportunity to cash time , fault report turnaround time and hardening time.

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, May 2013

8. Future Work

Since this study was conducted at a stage where the organization had just recently introduced continuous
integration to their development process, it would be of benefit to do a follow-up study at a later stage
and compare the experienced benefits with the results of this study. We would also like to see the study
replicated in other organizations to see if they experience different impacts of continuous integration and
have different opinions of how to measure these impacts.

9. Acknowledgement

We would like to give a special thanks to the organization that allocated resources and made it possible
for this study to be conducted in their environment. A special thank you also goes to our supervisor
Agneta Nilsson for her effort and help with this paper and the related research.

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, May 2013

References:

BASILI, V., ROMBACH, H., PARK, R., GOETHERT, W. & FLORAC, W. 1988. SENG 421: Software
Metrics. IEEE Trans. Software Engineering, 14, 758-773.

BECK, K. & ANDRES, C. 2004. Extreme programming explained: embrace change, Addison-Wesley
Professional.

DUVALL, P. M., MATYAS, S. & GLOVER, A. 2007. Continuous integration: improving software
quality and reducing risk, Addison-Wesley Professional.

FOWLER, M. & FOEMMEL, M. 2006. Continuous integration. Thought-Works)
http :// www .thoughtworks. com/Continuous Integration. pdf.

FUTRELL, R. T., SHAFER, L. I. & SHAFER, D. F. 2001. Quality software project management,
Prentice Hall PTR.

HOLCK, J. & JØRGENSEN, N. 2007. Continuous integration and quality assurance: a case study of
two open source projects. Australasian Journal of Information Systems, 11.

HUMBLE, J. & FARLEY, D. 2010. Continuous delivery: reliable software releases through build, test,
and deployment automation, Addison-Wesley Professional.

KAPLEWICZ, J., BAQIR,Y., NORMANDEAU, J., BEGUN, A., MARTIN, E., BLUM, A., &
ANWER,T.,. 2005. Continuous Integration: Why and How to Build a Continuous Integration
Environment for the .NET Platform.
http :// www . espusa . com / whitepapers / continuous _ integration _ v 1.0. pdf . © Enterprise Solution Providers,
Inc. 2005

KASSIM, N. M. & ZAIN, M. 2004. Assessing the Measurement of Organizational Agility. Journal of
American Academy of Business, Cambridge, 4, 174-177.

MISRA, S. & OMORODION, M. 2011. Survey on agile metrics and their inter-relationship with other
traditional development metrics. SIGSOFT Softw. Eng. Notes, 36, 1-3.

OZA, N., & KORKALA, M. 2012. Lessons Learned In Implementing Agile Software Development

PÁDUA, W. 2010. Measuring complexity, effectiveness and efficiency in software course projects.
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1.
Cape Town, South Africa: ACM.

PAUL, D. 2007. Continuous Integration, Pearson Education India.

ROGERS, R. O. 2004. Scaling continuous integration. Extreme Programming and Agile Processes in
Software Engineering. Springer.

SHEN, B. & JU, D. 2007. On the measurement of agility in software process. Software Process
Dynamics and Agility. Springer.
University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, May 2013

http://www.espusa.com/whitepapers/continuous_integration_v1.0.pdf
http://www.espusa.com/whitepapers/continuous_integration_v1.0.pdf
http://www.espusa.com/whitepapers/continuous_integration_v1.0.pdf
http://www.espusa.com/whitepapers/continuous_integration_v1.0.pdf
http://www.espusa.com/whitepapers/continuous_integration_v1.0.pdf
http://www.espusa.com/whitepapers/continuous_integration_v1.0.pdf
http://www.espusa.com/whitepapers/continuous_integration_v1.0.pdf
http://www.espusa.com/whitepapers/continuous_integration_v1.0.pdf
http://www.espusa.com/whitepapers/continuous_integration_v1.0.pdf
http://www.espusa.com/whitepapers/continuous_integration_v1.0.pdf
http://www.espusa.com/whitepapers/continuous_integration_v1.0.pdf
http://www.espusa.com/whitepapers/continuous_integration_v1.0.pdf
http://www.espusa.com/whitepapers/continuous_integration_v1.0.pdf
http://www.espusa.com/whitepapers/continuous_integration_v1.0.pdf
http://www.espusa.com/whitepapers/continuous_integration_v1.0.pdf
http://www.espusa.com/whitepapers/continuous_integration_v1.0.pdf
http://www.espusa.com/whitepapers/continuous_integration_v1.0.pdf
http://www/
http://www/
http://www/

STÅHL, D. & BOSCH, J. Experienced Benefits of Continuous Integration in Industry Software Product
Development: a Case Study. The 12th IASTED International Conference on Software Engineering,
2013.

TSOURVELOUDIS, N. C. & VALAVANIS, K. P. 2002. On the Measurement of Enterprise Agility.
Journal of Intelligent & Robotic Systems, 33, 329-342.

WILLIAMS, L., KREBS, W., LAYMAN, L., ANTÓN, A. I. & ABRAHAMSSON, P. 2004. Toward a
framework for evaluating extreme programming.

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, May 2013

Appendices

Appendix A
Interview questions:

Introduction questions:

● Is it ok for you if we record this interview for later reference?
● Please introduce yourself, what are you doing and for how long, do you have a degree?
● Please describe your normal workday, what is part of your job?
● Do you have any previous experience with CI?

General questions:

● Can you explain a little about the process of CI?
● What is your opinion about the current implementation of CI?

○ Is there any room for improvement in the current implementation of CI?
● In what ways have CI affected your daily work (both negative and positive ways)?

○ In what areas?
○ Has it affected the quality of your work?
○ Name some good things and bad things about CI

● Does CI have an impact on the maintenance of previous products?
● Is there a difference between CI and the previous process when you break the code of the

software?
○ What is the difference?
○ Does it affect the stress level?

● How close is the current process to pure CI?
● How much time was spent on integration before the CI implementation, and how much time do

you spend now?
● How has the performance of the teams been affected by the CI?
● How has the sprint backlog been affected by implementing CI?
● Does CI provide you just-in-time information to help you for more effective decisions?

○ If yes, how does it?
● Does CI help you to get faster feedback from customers?
● Does CI help you to get immediate feedback on your work?
● Does CI affect the complexity of your work?

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, May 2013

Metrics questions:

● Upon what criterion should this CI be measured in your opinion?
● In your opinion, what metrics are suitable to measure CI and compare it with the previous

processes (both qualitative and quantitative)?
○ Otherwise: Which person in your opinion is most qualified to answer this question?

● Do you use any specific metrics to measure the internal team progress (eg. burndown charts)?
● How have you measured progress in previous process?

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, May 2013

	Bachelor of Science Thesis [in the Programme Software engineering and management]
	Nahid Vafaie
	MIKAEL ARVISDSSON
	Abstract

	1. Introduction
	2. Related research
	In this section we review the concept of positive and negative impacts of continuous integration as well as metrics to measure these impacts in an organization, in the related literature.
	2.1 Positive impact of continuous integration
	2.2 Negative impact of continuous integration
	2.3 Metrics to measure the impacts of continuous integration
	3. Methodology
	3.1 Research site
	3.2 Research approach
	3.3 Data collection
	3.4 Data analysis
	3.5 Data validation strategy
	4. Results
	4.1 Positive impacts of continuous integration
	4.2 Negative impacts of continuous integration
	4.3 Metrics to measure the impacts of applying continuous integration
	5. Discussion
	In this section, we discuss similarities and differences between our findings and previous research in relation to our research questions what are the impacts of implementing continuous integration? and what metrics are most suitable to measure the impact of continuous integration in an organization?
	
	5.1 Positive impact of continuous integration
	5.2 Negative impact of continuous integration
	5.3 Metrics to measure the impact of continuous integration
	7. Conclusion
	8. Future Work
	9. Acknowledgement
	References:
	Appendices

