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Abstract

Multivariate data is segmented into parts, called segments, with

common characteristics. The segments are assumed to have an under-

lying model structure. It is of interest to see whether the character-

istic changes originate from a subset of features or a unique feature.

Various approaches can be taken when constructing such a method

for multiple features. Three di�erent methods are devised and com-

pared via a simulation study. The methods use a penalized likelihood

in di�erent ways to estimate the number of segments. Two of these

methods exhibit positive results and are examined further. They are

shown to have di�erent capabilities. One method favors the detection

of coordinated segment changes at the expense of �nding those that

originate in a unique feature. The other method has an overall better

performance, i.e., it is better at locating each and every characteristic

change. The two methods are applied in two real life settings, one

measuring physical changes in coordination with various music and

the other measuring a range of physical changes in epilepsy patients.

The methods capture the trends in the data but are not able to detect

precisely when the music changes or the beginning and the end of a

seizure.
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1 Introduction

1.1 Objective

Our goal is to segment multivariate data into parts, called segments, with
common characteristics. It is of interest to see whether these characteristics
alter simultaneously over multiple features or if the change occurs in only
one feature. There are various ways to construct methods for multivariate
segmentation. Here, we devise three di�erent methods and compare them
via a simulation study.

We examine two real life datasets that are assumed to consist of segments.
The �rst dataset contains measurements of di�erent physical features, skin
conductance and �nger temperature, from a volunteer listening to music. It
is of interest to see whether features alter characteristics simultaneously as
the music changes. The second data is an epilepsy dataset which includes
multiple features from a patient, containing both seizures and non seizures.
We examine three time intervals containing a seizure and 60 seconds around
it with non-seizure data. It is both of interest to see if the segments catch
the start and the end of the seizure as well as whether it captures the trend
in the data.

Two of the three di�erent methods show positive results in the simulation
study. One method favors the detection of coordinated segment changes at
the expense of �nding those that originate in a unique feature. The other
method is better at locating each and every characteristic change. The meth-
ods are then applied to the real life datasets and are found to be able to cap-
ture the trend in the data but they cannot detect precisely when the music
changes or the beginning and the end of a seizure.

1.2 Future work

Future work may include applying the joint segmentation methods further
on the epilepsy data. It could be interesting to use the parameters from the
obtained segments to classify seizures from non seizures. Two master thesis
exist about the epilepsy data ([5], [10]). Both cover the topic of classifying
seizures from non seizures. Neither of the previous theses use segmentation
methods for the classi�cation. A next step for the epilepsy data could be to
combine the segmentation from this thesis to the classi�cation used in the
other theses.

Future work could also include improving the methods derived in this
thesis by looking at ways to select the adjusting parameter when the seg-
mentation algorithm is used on-line on large datasets.
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2 Data

2.1 Music data

The data was collected from a volunteer at the Sahlgrenska Center for Brain
repair and rehabilitation. The volunteer was asked to lie blindfolded on a bed
with soundproof headphones on. In a 40 minute session, the volunteer �rst
experienced a quiet 10 minute period, followed by 10 minutes of �terror� music
(e.g. theme to �Jaws�), followed by 10 minutes of peaceful music and �nally
another 10 minute period of quiet. During the session, the subject's �nger
temperature and skin conductance were recorded. The dataset studied here
(data not published) is a part of a larger study of 20 volunteers and di�erent
music [1]. The purpose of study is to see how subjects physically react to
di�erent types of music.

2.2 Epilepsy data

The data was collected by attaching three censor boxes (specially developed
by IMEGO for this purpose) to epilepsy patients. The devices sample accel-
eration 50 times per seconds from three dimensions. A total of 51 features
have been derived from the raw data by Wipenmyr [10] in a previous master
thesis. All features are calculated each second and are based on a windowing
over a 1 or 4 second interval. The DC-values are based on a 4 seconds win-
dowing but other features on a one second windowing. This makes each DC
value correlated to its adjacent values. Table 1 contains a short description
of all the features. For a more thorough description of the features and the
equipment we refer to Hildeman [5] and Wipenmyr [10].

All the features are standardized and smoothed with a moving average
smoother of degree 5 [6], de�ned by:

ysmoothed(3) = (y(1) + y(2) + y(3) + y(4) + y(5))/5

The data examined in this thesis are from patient 7. That patient su�ered
from 11 seizures in approximately 2 days.

3 The segmentation method for one feature

The segmentation methods in this thesis are built on a method presented by
Frank Pickard et al [9]. Their work is applicable to one feature data only.
The data that is analyzed in [9] comprises comparative genomic hybridiza-
tion data (CGH) that includes jumps in the mean and variance between

2



Feature name Nr. of features Description Formula
DC values 9 Captures the gravitational Average acceleration

acceleration over 4 seconds

Signal magnitude area 3 Overall activity
∑

i wi
|xi|+|yi|+|zi|

3∑
i wi

,wi is the weight

for time instance i, and x,y,z are
acceleration from each dimension

Vector magnitude 3 Overall activity
∑

i wi

√
x2
i+y

2
i +z

2
i∑

i

Mean absolute 3 Overall activity
∑

i wi|x2
i+y

2
i +z

2
i−1|∑

i

magnitude di�erence

Periodicity 3 Compare the max largest
∑

s=x,y,z

maxω∈Ω(|Fs(ω)|)
meanω∈Ω(|Fs(ω)|)

frequency component to the Fs is the Fourier transform of
average frequency magnitude the acceleration in the s direction

during a time window ω
Frequency bands 18 0.75-2.25 Hz FFT transforms

2.25-3.75 Hz acceleration in a
3.75-5.25 Hz 1 second window
5.25-8.25 Hz
8.25-13.25 Hz
13.25-25 Hz

Correlation 12 The linear correlation measures lincorr(f, g) =
∑

k=κ

∑
i={xf ,yf ,zf}

∑
j={xg ,yg ,zg}

how well the sensors move in a
ai[k]aj [k]

|ai[k]||aj [k]|
phase. The circular correlation circorr(f, g) =

∑
k=κ

∑
i={xf ,yf ,zf}

∑
j={xg ,yg ,zg} =

measures how similar the =
ai[k]αj [k]

|ai[k]||αj [k]|
sensors move in a 90 degree phase aj[k] is the acceleration in direction i at time instance k
shift and αj[k] is the same as aj[k] but with a 90 degree shift

Table 1: The table contains a short description of the features. Di�erent
amount of features result from that they can both be calculated for each
direction of each sensor separately or derived from all the directions at once.

segments. To apply this method to music and epilepsy data, we propose
several extensions:

• Allow for more complex and di�erent models in each segment.

• Formulate an on-line algorithm to handle large amounts of data.

• Allow for the segmentation of multiple features jointly.

We begin by reviewing the method [9] for one feature, and then extend
it to multiple features.

3.1 Segmentation

The feature is assumed to consist of segments, each with an underlying seg-
ment speci�c model. The underlying segment structure is unknown but as-
sumed to be of a certain model class

3



yt = ft + εt,

where ft is a known function, e.g., ft = αk (mean) or ft = αk+βkt (line), t ∈
(tk−1, tk] is a segment (time interval), k is the segment index and tk are the
unknown change-point locations. The random components εt are assumed to
be independent and identically distributed, i.e., εt ∼ N(0, σ2

k) ∀t ∈ (tk−1, tk].
Given the interval (tk−1, tk], estimates of the model parameters for segment k
and the corresponding �tted value, ŷt = f̂t, are obtained through maximum
likelihood. Because the errors are independent the total likelihood for the
interval is obtained if we sum the log likelihoods for each segment. The log
likelihood for the interval then becomes L =

∑K
k=1 lk where

lk = −1

2

tk∑
t=tk−1+1

(log(2πσ2
k) +

(yt − ŷt)2

σ2
k

)

and K is the number of segments.
In reality though, neither the change-point locations nor the number of

segments in each interval are known beforehand. We ask the following two
questions:

1. How many segments are there?

2. Where are the change-points located?

These questions are solved by �rst assuming that the number of segments
is known. Then, it is relatively easy to estimate where the change-points
are located. Next, an appropriate number of segments is chosen by using a
penalized log likelihood approach.

3.2 Constructing the cost matrix

The key component of the segmentation method [9] is the construction of a
so called cost matrix, G. The entries in the cost matrix are obtained from
the log likelihoods of each possible segment. The log likelihood for segment
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k with known change-points tk is:

lk = −1

2

tk∑
t=tk−1+1

(log(2πσ̂2
k) +

(yt − ŷt)2

σ̂2
k

)

= −1

2

tk∑
t=tk−1+1

(log(2π) + log(σ̂2
k))−

1

2

tk∑
t=tk−1+1

(yt − ŷt)2

σ̂2
k

= −1

2

tk∑
t=tk−1+1

(log(2π) + log(σ̂2
k))−

1

2
(tk − tk−1)

= −1

2

tk∑
t=tk−1+1

log(2π)− 1

2
(tk − tk−1)−

1

2
(tk − tk−1) log(σ̂2

k).

where

σ̂2
k =

1

tk − tk−1

tk∑
t=tk−1+1

(yt − ŷt)2.

The full likelihood is

L =
K∑
k=1

lk =
−n
2

(log(2π) + 1)− 1

2

K∑
k=1

(tk − tk−1) · log(σ̂2
k), (1)

where n is the length of the interval. The log likelihood is dependent on
the change-point locations through (tk − tk−1) · log(σ̂2

k). We now review the
formula of the cost matrix G. It is de�ned as

Gi,j =

{
(i− j + 1) · log(σ̂2

ij) if j ≥ i+ lmin − 1
∞ else

(2)

where

σ̂2
ij =

1

i− j + 1

j∑
t=i

(yt − ŷt)2. (3)

Notice how element [i, j] of G contains components of the second term of the
likelihood in equation (1). That is, element [i, j] contains the �cost� of having
a segment in [i, j]. G will be the upper diagonal n×n matrix, where n is the
length of the interval. Calculating G is computationally heavy and puts a
limit on the n we can consider. We can set a minimum segment length lmin
to speed up the calculation time.
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3.3 Switching between models

We want to allow the segments to be characterized by di�erent models. For
example, a segment consisting of a mean and error can be followed by a
segment that consists of a line and error. We select each segment model
class using BIC (Bayesian information criteria) [4]. BIC is de�ned by:

BIC = −2 · L+ p log(n)

where L is the log likelihood of the data points, p the number of model
parameters and n is the number of data points. We calculate BICk for all
model classes and each possible segment. Let us call nk = tk − tk−1. For a
segment from tk−1 + 1 to tk BIC becomes:

BICk = −2 · −1

2

tk∑
t=tk−1+1

(log(2πσ̂2
k) +

(yt − ŷt)2

σ̂2
k

) + pk log(nk)

=

tk∑
t=tk−1+1

(log(2πσ̂2
k) +

(yt − ŷt)2

σ̂2
k

) + pk log(nk)

= nk(log(2π) + log(σ̂2
k) + 1) + pk log(nk)

where

σ̂2
k =

1

tk − tk−1

tk∑
t=tk−1+1

(yt − ŷt)2.

We construct a G matrix for each model class since di�erent residuals are
obtained from di�erent models. We reduce the number of G matrices to one
again by choosing the model that gives the lowest BIC value for each possible
segment k.

The amount of model classes is restricted by the computational burden
of the G matrix. Three di�erent types of modeling are tested on arti�cial
datasets:

1. Mean model, yt = α.

2. Choosing between mean (yt = α) and line (yt = α + βt) models.

3. Autoregressive errors: rt + φ1rt−2 + φ1rt−2 + φ3rt−3 = εt where rt =
yt − α − βxt. All autoregressive parameters are estimated with the
yule-walker equations [8].
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Several other models are also applied to the music and epilepsy data:

4. Choosing between mean (yt = α) and line (yt = α + βt) model, using
robust estimate of the regression parameters [6].

5. Autoregressive errors: rt+φ1rt−2+φ1rt−2+φ3rt−3 = εt where rt = yt−α.

6. Autoregressive errors: rt + φ1rt−2 + φ1rt−2 + φ3rt−3 = εt where rt =
yt − α− βt, using robust estimate of the regression parameters.

7-9. Polynomial models of order 3 to 5, yt =
∑s

i=0 pit
i, s = 3 : 5.

3.4 Finding the location of the change-points

After the cost matrix is obtained, a dynamical algorithm is used to �nd the
optimal change-point locations [2], [9]. We de�ne Kmax as the maximum
allowed number of change-points on the interval. J1(1, j) is the log likeli-
hood for the interval [1, j] and Jk+1(1, j) is the optimal log likelihood for the
same interval when allowing for k + 1 segments. Similarly, J1(i, j) is the log
likelihood for one segment on the interval [i, j]. Jk+1(1, j) can be obtained
from Jk(1, i) and J1(i+ 1, j) recursively. We denote σ̂2

ij to be the variance on
[i, j], see equation (3). The recursion formula is:

J1(i, j) =

j∑
t=i

(log(2πσ̂2
ij) +

ε2t
σ̂2
ij

), 1 ≤ i < j ≤ n

Jk+1(1, j) = min
h
{Jk(1, h) + J1(h+ 1, j)},∀k ∈ [1, Kmax].

The G matrix contains the part of the likelihood that is dependent on the
location of the change-points, see equations (1) and (2). To be able to use
columns and lines from the G matrix directly, we de�ne J̃ :

J̃1(i, j) = (j − i+ 1) · log(σ̂2
ij), σ̂

2
ij is the variance on [i, j]

J̃k+1(1, j) = min
h
{J̃k(1, h) + J̃1(h+ 1, j)},∀k ∈ [1, Kmax].

No information is lost when using J̃k instead of Jk since J̃k will always
be proportional to Jk. We notice that J̃1(1, j) is simply element (1, j) in the
G matrix whereas J̃1(h+ 1, j) is column h+ 1, line 1 to j in G matrix. It is
the part of the log likelihood for one segment on the interval [h+ 1, j].

To calculate J̃k+1(1, j) it is convenient to build up the matrix I(k+1, j) =
J̃k+1(1, j). The lines in I denote the number of allowed segments whereas

7



Figure 1: The data consists of three segments. The vertical lines denote the
location of the change-points.

column j denotes point j in the data. Element (k, j) in I holds the part of
the optimal log likelihood when allowing for k segments in the interval (1, j).
The I matrix is built up using the recursion formula for J̃k+1(1, j). We obtain
I(k, j) by using the previous line in the I matrix which holds the part of the
log likelihood for k segments up to each point, h, as well as looking at the
part of the log likelihood for one segment from h+ 1 to j.

Since J̃1(1, j) is element (1, j) of the G matrix, the �rst line of the I
matrix is the same as the �rst line of the G matrix by de�nition. We use an
example to demonstrate how the other elements are obtained.

Figure 1 contains the data used in the example. The data consists of
three jumps in the mean with added random noise to each segment. A mean
value is �tted and a G matrix constructed:

G =



∞ 1.46 10.58 13.96 17.65 22.77 27.40 31.87 35.39 39.59
∞ ∞ 7.37 9.75 12.59 17.22 21.35 25.35 28.31 32.10
∞ ∞ ∞ −6.78 0.92 9.12 13.03 16.62 18.57 21.96
∞ ∞ ∞ ∞ 1.65 7.43 10.54 13.54 15.14 18.09
∞ ∞ ∞ ∞ ∞ 4.73 6.67 8.78 9.56 11.96
∞ ∞ ∞ ∞ ∞ ∞ −0.96 0.55 0.27 3.12
∞ ∞ ∞ ∞ ∞ ∞ ∞ −1.08 0.36 2.30
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1.63 2.73
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 3.12
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞


The I matrix is:
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I =


∞ 1.46 10.58 13.96 17.65 22.77 27.40 31.87 35.39 39.59
∞ ∞ ∞ −5.33 2.37 10.57 14.49 18.08 17.92 20.77
∞ ∞ ∞ ∞ ∞ −0.59 1.34 2.93 2.64 5.49
∞ ∞ ∞ ∞ ∞ ∞ ∞ −1.67 −0.23 1.71
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1.44


To show how the elements of the I matrix are obtained, we calculate I(2, 4),
i.e., the part of the log likelihood when having two segments on the interval
[1, 4]. Here the values colored red in G and I are used for the calculation.

I(2, 4) = J̃2(1, 4)

= min
h∈[1,4]

{J̃1(1, h) + J̃1(h+ 1, 4)}

= min
h∈[1,4]

{I(1, h) +G(h+ 1, 4)}

= min{[∞, 1.46, 10.58, 13.96] + [9.75,−6.78,∞,∞]}
= min{[∞,−5.33,∞,∞]}
= −5.33.

The value of I(2, 4) is minimal when h = 2, i.e the optimal change-point
location is point 2 for 2 segments on the interval [1, 4]. We obtain in�nity for
other values of h since lmin = 2. We get the part of the log likelihood for the
whole interval in the last column of I. The line number of I represents how
many segments are used. We save the values of h to keep track of where the
optimal change-points are located.

3.5 Choosing the number of segments

Many methods have been proposed for choosing the number of segments, for
example BIC and AIC [4], but as has been proposed in [7], those methods
tend to overestimate the number of segments. In [9], the authors compare
a few di�erent methods to choose the number of segments and recommend
Lavielle's method [7]. This method is based on a penalized version of the log
likelihood (also called roughness penalty) [4]. From now on we refer to this
method as the �elbow� method. Let JK be the likelihood for K segments
estimated to be optimally located and pK the number of model parameters
in these K segments. J̃K is proportional to the optimal log likelihood JK ,
see equation (1).

Let us consider an example. Figure 2a shows a feature consisting of 19
segments. Each segment has two parameters, a mean and a variance. Figure

9



(a) Simulated feature (b) Elbow

Figure 2: Figure 2a shows a feature consisting of 19 segments. Each segment
has two parameters, a mean and a variance. Figure 2b depicts the trade o�
between number of segments and the �t of the model. It has the number of
parameters, pK , on the x axis, and J̃K on the y axis which is proportional to
the log likelihood. When 38 parameters are reached J̃K does not decrease as
drastically.

2b depicts the number of parameters on the x axis and J̃K , on the y axis.
We aim to �nd the point when adding more parameters does not result in
a much lower J̃K , that is the elbow of the curve (pK , J̃K). In �gure 2b this
point is reached after 38 parameters.

Lavielle [7] does not allow for di�erent number of parameters in di�erent
segments. We have therefore adjusted the method to allow for switching
models between segments.

We build up a function that balances JK (which has lower value as the
number of segments increase) and pK (which increases as the number of
segments increases). A penalization constant β is also included:

K̂(β) = arg min(J(K) + βpK).

Here K̂ is the estimator for the number of segments, K, and is dependent
on β. Following Lavielle, we calculate β as follows:

�Proposition [from [7]]
There exist a sequence K1 = 1 < K2 < ... and a sequence β0 =∞ > β1 > ...
with

10



βi =
JKi
− JKi+1

pKi+1
− pKi

such that K̂(β) = Ki, ∀β ∈ (βi, βi−1). The subset {(pKi
, JKi

, i ≥ 1)} is the
convex hull of the set {(pK , JK , K ≥ 1)}.�

β is the derivative of the curve (pK , JK). We look at the di�erence between
consecutive β's to obtain how the slope is changing. Lavielle [7] proposes
an automatic procedure to �nd this point. We adopt this procedure here to
allow for a di�erent number of model parameters in each segment:

1. Construct the normalized sequence. This was not presented in the
example but is necessary for the automatic procedure.

JK =
JKMAX

− JK
JKMAX

− J1
(KMAX − 1) + 1, 1 ≤ K ≤ KMAX .

Then J1 = KMAX , JMAX = 1 and the slope is of average -1.

2. Calculate:

DK =
JK−1 − JK
pK − pK−1

− JK − JK+1

pK+1 − pK
, 2 ≤ K ≤ KMAX − 1

and set D1 =∞. Then, the estimate of K is

K̂ = max{1 ≤ K ≤ KMAX − 1 such that DK > S},

where S is an adjusting parameter. The distribution of maxK DK is not
known. Low values of S usually lead to an overestimate of the number of
segments, while high values tend to underestimate them. To estimate S we
examine the values of DK and see when the di�erence between consecutive
derivatives has leveled o�. When we allow for a switch between model types
this procedure is an approximation since we ignore the change in number
of parameters between segments. In that case, we may be biasing slightly
towards more segments.

When this method is applied to the data we use J̃ instead of J . J̃ is
proportional to J . This is only done because it is convenient to calculate it.
It has no e�ects on the results. Figure 3a shows the plot of (pK , J̄K) where
J̃ is used in the calculation instead of J . The data used is the same as in

11



(a) Simulated feature (b) Elbow

Figure 3: Figure 3b shows (pK , J̄K) where J̃ is used in the calculation instead
of J . There is a clear point where adding segments does not lower J̄k con-
siderably. Figure 3b shows the curve (K,DK) again where again J̃ is used
in the calculation instead of J . We see that at point 19 the values of DK are
lower than before. This K tells us how many segments the dataset contains.

�gure 2a. Figure 3b shows the corresponding (K,DK). We clearly detect
the location where the values of DK have leveled o�. The black box located
at K̂ = 19 shows this point. We choose S so this point is reached. This
is consistent with the dataset which truly 19 has segments. Since this data
is simulated with clear segments, the plot of (pK , DK) is easily interpreted.
When these curves are plotted for real data this point may not be as clear.
For a more thorough discussion we refer to Lavielle [7].

3.6 On-line method

Because theGmatrix is computationally heavy, one cannot apply this method
to a large dataset. We solve this problem by applying the method to consec-
utive intervals. However, the maximum length of a segment is then limited
to the length of the interval chosen and parameters are forced to change at
the interval endpoints. To resolve this we use the information of the pre-
vious segmented interval and construct an on-line segmentation algorithm
that moves through the dataset. Two questions arise when extending the
algorithm in this way:

• Where should we construct the next G matrix when sliding through
the data?

12



• How can we construct segments that are longer than the length of the
interval chosen?

The answer to these questions are discussed below.

Extensions

When we move to an on-line algorithm we still need to allow for a minimum
segment length lmin. Therefore, if we are segmenting some limited interval
there will be no change-points in the lmin �rst and last points. This is taken
into consideration in the on-line algorithm so that any point in the data series
can be a change-point. Let us call the starting point of our interval t1 and
the endpoint tn. We consider two cases.

• Change-point detected in the interval [tn − 2lmin, tn].
If there is a change-point tx detected in the interval [tn − 2lmin, tn] we
want to construct the G matrix at tx − llmin. If we start constructing
the G matrix somewhere on the interval [tx− lmin+1, tn] we will get an
interval that never allows for a jump. We could also start constructing
the G matrix even earlier but that only results in a slower algorithm.
tx− lmin is therefore the optimal place to start the next G matrix. See
�gure 4.

• No change-point detected in the interval [tn − 2lmin, tn].
If no change-point was detected in the interval, we start constructing
the G matrix at tn − 2lmin. Starting any later we again get an interval
that never allows for a jump. See �gure 5.

Updated version of the G matrix

When constructing an updated G matrix which starts from a previous inter-
val, we only need to change the �rst line of the G matrix. That line keeps
information about the segments that have a starting point at the beginning
of the interval. Let us call the last change-point found tlast. The segments
need to be able to start at tlast + 1. The �rst line of the updated G matrix
becomes:

g1,j =

{
(tlast − j + 1) · log(σ̂tlastj) if j ≥ lmin
∞ else

where

σ̂2
tlastj

=
1

tlast − j + 1

j∑
t=tlast

(yt − ŷt)2.
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Figure 4: Starting point location when a change-point is found in the interval
[tn − 2lmin, tn].

Figure 5: Starting-point location when no change point is found in the in-
terval [tn − 2lmin, tn].
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Updating the G matrix in this fashion allows us to construct segments
that are longer than the size of each consecutive interval. The result is an
on-line algorithm that can segment one feature where the segments can be
from di�erent models.

The on-line method makes the code applicable to larger datasets. How-
ever, there are also drawbacks. When choosing the number of segments in
each interval we use the elbow method with the same adjusting parameter
S for all the intervals. We need to assume that the β's in each interval are
of the same order of magnitude. If they are not, the adjusting parameter
S might not be the same for each consecutive interval which results in an
incorrect estimation of the number of segments in some intervals. Simulation
studies are needed to �nd this adjusting parameter S. The ability to plot
(pk, Jk) for the whole interval and �nd the elbow visually is not possible when
segmenting on-line.

4 Joint segmentation

We consider three approaches to extend the segmentation algorithm from one
to multiple features. Our goal is not only to �nd the optimal change-point
locations but also to determine whether these change-points are coordinated
over multiple features. For the �rst objective (optimal change-points) we
will use the likelihood ratio test [3] and the elbow method. For the second
objective (coordination of change-points) we will construct three di�erent
methods. Before we discuss these approaches, we describe how the on-line
method is generalized to multiple features.

4.1 On-line method for multiple features

In the multivariate setting all features are segmented for the same intervals.
To extend the on-line procedure to multiple features, we need to adjust for
di�erent optimal starting points between features (see section 3.6). We cal-
culate a starting point for each feature separately and start the new interval
from the starting point furthest behind. If no change-points are detected in
[n− 2lmin, n− lmin] the new starting point becomes n− 2lmin for all features.
Complications arise when there is a change-point, tf , detected in the interval
[n− 2lmin, n− lmin] and the new starting point becomes tf − lmin. Figure 6
shows that the interval [tf − lmin, n − 2lmin] will not allow for any change-
points since the minimum segment length is lmin. We solve this by changing
the minimum segment length lmin of the �rst segment of all features that
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Figure 6: Complications arise when we expand the on-line algorithm to han-
dle multiple features. We �nd a new starting point for each feature (see
section 3.6) and choose the one furthest behind to start the segmentation
of all features. However, we then obtain an interval that never allows for
a change-point. This is solved by allowing the �rst segment of all features
that have a change-point in the interval [tf − lmin, n− 2lmin] to have a lower
segment length. The change-points can then be detected again.

have a change-point in the interval [tf − lmin, n − lmin]. The change-points
can then be detected again.

4.2 Joining and removing change-points with a likeli-
hood ratio test

We use the likelihood ratio test to both join (coordinate) change-points across
features and remove change-points.
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Joining the change-points

When multiple features are segmented separately, change-points in di�erent
features may lie close to each other. Joining these change-points results in
a reduced number of model parameters as well as giving further knowledge
on how the features are linked. We use the likelihood ratio test to decide
whether this model simpli�cation is justi�able.

Let tfjf be a change-point number jf in feature f. To coordinate tfjf with
all the change-points of other features that lie within a certain radius, it
has been moved to τ fjf . The new change-point, τ fjf , is the mean of all the
change-points within this radius. We state the following hypothesis that the
change-points are:

H0 : The change-points, τ fjf , are coordinated

(maximum one change-point in each feature).

HA : The change-points, tfjf , are not coordinated.

Only the likelihood of segments whose endpoints move get a�ected by the
change-point joining. We use that fact and equation (1) (see section 3.2) to
obtain the test statistic Λf for feature f :

Λf = −2 log

(
likelihood for the null model

likelihood for the alternative model

)

= −2 · −1

2

K∑
k=1

τfk∑
t=τfk−1+1

log(
1

τ fk − τ
f
k−1

τfk∑
t=τfk−1+1

ε2t )

+ 2 · −1

2

K∑
k=1

tfk∑
t=tfk−1+1

log(
1

tfk − t
f
k−1

tfk∑
t=tfk−1+1

ε2t )

=

jf+1∑
k=jf

τfk∑
t=τfk−1+1

log(
1

τ fk − τ
f
k−1

τfk∑
t=τfk−1+1

ε2t )

−
jf+1∑
k=jf

tfk∑
t=tfk−1+1

log(
1

tfk − t
f
k−1

tfk∑
t=tfk−1+1

ε2t )
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We calculate Λf for all features f that have an altered change-point. The
test statistic

∑
f Λf is compared with a χ2-distribution with degrees of free-

dom equal to the total number of parameters dropped. If the obtained p-value
is below a certain adjusting parameter α the null hypothesis is rejected and
we do not join the change-points.

We use backward selection [4] to decide in which order the change-points
are joined. We join the best candidates �rst and then continue to the second
best. The best candidates are the ones that obtain the highest p-value when
tested. For each change-point we calculate the p-value for joining it with
its neighbors. The change-points are joined for the highest p-value above
an adjusting parameter α1. Then all the p-values are updated and this is
repeated until α1 is reached.

Removing change-points

We remove change-points in a similar manner as joining them. We call the
change-point that we consider removing tr. We want to test whether tr
can be removed from all features f it exists in. We state the following null
hypothesis:

H0 : tr can be removed from the features it exists in.

HA : tr cannot be removed from those features.

We call τ f the set of change-points for feature f where tr has been removed
and tf the original set of change-points. We calculate the test statistic for H0

in the same way as in the previous chapter. Instead of only having change-
points moved between the null model and the alternative model we have
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dropped one change-point. Λf is:

Λf = −2 log

(
likelihood for the null model

likelihood for the alternative model

)

= −2 · −1

2

K∑
k=1

τfk∑
t=τfk−1+1

log(
1

τ fk − τ
f
k−1

τfk∑
t=τfk−1+1

ε2t )

+ 2 · −1

2

K∑
k=1

tfk∑
t=tfk−1+1

log(
1

tfk − t
f
k−1

tfk∑
t=tfk−1+1

ε2)

=

τfr+1∑
t=τfr−1+1

log(
1

τ fk − τ
f
k−1

τfk∑
t=τfk−1+1

ε2t )

−
r+1∑
k=r

tfk∑
t=tfk−1+1

log(
1

tfk − t
f
k−1

tfk∑
t=tfk−1+1

ε2t )

We calculate Λf for all f that have tr.
∑

f Λ is compared with a χ2 distri-
bution with degrees of freedom equal to the number of parameters dropped.
Like when we join change-points, we use backward selection and stop remov-
ing change-points when all p-values are below a certain adjusting parameter
α2.

We now describe and compare three di�erent joint segmentation methods
de�ned by the order of removing and joining of change-points.

4.3 Sequential method 1 (SeqM1)

Sequential method 1 (SeqM1) is built up in the following way:

1. We segment each feature, using the elbow method to obtain the optimal
number and location of change-points for each feature.

2. The likelihood ratio test is then applied to join the change-points across
features afterwards. It is done in a backward selection setting as de-
scribed in section 4.2

The method has one adjusting parameter for joining the change-points. The
S parameter for the elbow can however be di�erent for each feature.
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4.4 Sequential method 2 (SeqM2)

Sequential method 2 (SeqM2) is in some sense the mirror image of SeqM1.
For each feature the method proceeds in the following way on each interval:

1. Each feature is standardized to [−1, 1].

2. A G matrix is constructed for each feature.

3. All the G matrices are summed into one matrix.

4. We proceed as if the G matrix in 3. comes from one feature. The
change-point locations are estimated.

5. It is not known which features contribute to each change-point. That is
solved by using a likelihood test. We use backward selection to remove
the change-point for each feature separately.

Since we work with the sum of all the G matrices we are never able to
�nd change-points less than lmin apart between features. The method has
two adjusting parameters, S for the �elbow� and α for the likelihood ratio
test.

4.5 All subset selection method (ASM)

A computationally heavy alternative is the all subset selection method (ASM).
The method looks good in theory but in practice it needs to be restricted due
to computational load and is therefore not likely to be competitive. ASM
consists of taking the following steps:

1. Construct the G matrix for each feature.

2. Estimate the optimal change-point locations and log likelihoods for
each feature when we allow for 1 to Kmax segments.

3. The total log likelihood is the sum of the log likelihoods of each feature.
We calculate the total likelihood for each combinations of number of
segments. See table 2 for clari�cation.

4. For each combination of segments there may be several change-points
that can be joined across features. Since it could be optimal to join
only some of these change-points we need to calculate the likelihood
for each combination of these unions, see table 3.
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5. We obtain all these di�erent combination of segmented features. We
note that often these models have the same number of parameters, e.g.,
allowing for 1 segment in the �rst feature, 2 segments in the second and
vice versa. For each number of parameters we choose the best model,
i.e., the model with the lowest negative log likelihood.

6. When we have the total log likelihood for di�erent numbers of param-
eters we use the elbow method to select the number of parameters.
Thereby we obtain the number of segments for each features as well as
which change-points are joined.

Comb. of segments Nr of segments
Feature 1 1 2 3 1 2 1 1 2 3 1 2 3...
Feature 2 1 1 1 2 2 2 3 3 3 1 1 1...
Feature 3 1 1 1 1 1 1 1 1 1 2 2 2...

Total likelihood
∑

.. .. .. .. .. .. .. .. .. .. ...

Table 2: For each feature we calculate the likelihood of having k segments,
where k = 1, ..., Kmax. Then the total likelihood is calculated for each com-
bination of di�erent segment numbers.

Combine change-point group 1 1 0 1 0 1 0 1
Combine change-point group 2 0 1 1 0 0 1 1
Combine change-point group 3 0 0 0 1 1 1 1

Table 3: When looking at each combination of segments there may be several
change-points that have neighbors in other features. We need to calculate
the likelihood of joining all these groups as well as the likelihood of joining
some of them. The combination for joining three change-point groups can
be seen above.

Since this method is computationally heavy, we cannot allow for short
segments because the joining possibilities will become too many. The method
has only one adjusting parameter S for the elbow.

4.6 Comparing the joint segmentation methods

We compare the three methods in terms of:

1. Overall ability to �nd the correct change-points in the right features.
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2. Ability to �nd unique change-points, i.e., change-points that only ap-
pear in one feature.

3. Ability to �nd common change-points, i.e., change-points that are co-
ordinated over multiple features.

All change-points found are either located where there is a true change-
point or not. We consider each found point to be correctly located if it is
within 1 point radius from the true change-point. In part 1 of table 4 we see
this classi�cation.

1 Nr of true found = M1 Nr of false found = M2 Total nr found = N
M1+M2=N

2 Nr of true common found = A Nr of false common found = B Total nr of common found = E
A+B=E

Nr of true unique found = C Nr of false unique found = D Total nr of unique found = F
C+D=F
Total nr of found jumps = N
E+F=N

3 Nr of true common = G Nr of true unique = H Total nr of true jumps = I
G+H=I

Table 4: Each found point is either correctly located or not.

This classi�cation does not take into consideration whether the change-
points are classi�ed as common to some features or unique. Each point
found is either a correct or false common change-point or it is a correct
or false unique change-point. The common and unique classi�cation of the
found change-points is displayed in part 2 of table 4. Points found in 1 point
radius of true unique points are considered true. Change-points within 1
point radius of the correct change-point are considered true common if all
the change-points under consideration are at the exact same place.

A true common change-point can be de�ned in di�erent ways. The most
strict de�nition is detecting the common change-point in the true features
and nowhere else. We can also detect a change-point in all the true features
as well as in extra features. Another possibility is �nding a change-point in
some of the true features but not all. We use two types of de�nitions of a
true common change-point:

1. The exact true features have a change-point (strict de�nition).

2. All the true features have change-points, as do possibly additional fea-
tures (loose de�nition).
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Part 3 of table 4 contains the classi�cation of the true change-points.
Using table 4, the true and false positive rates can be de�ned. In the

following de�nitions a stands for all change-points, i.e., �nding a change-
point at the right place for the right feature, c the common change-points
and u the unique change-points.

TPRa =
M1

I
FPRa =

M2

N

TPRu =
C

H
FPRu =

D

F

TPRc =
A

G
FPRc =

B

E

In addition to these de�nitions we de�ne true and false positive rates for
the overall detection of �nding unique and common change-points. A found
change-point is true if it is either a true unique or a true common.

TPR =
A + C

I
FPR =

B + D

N
(4)

We see that this de�nition is dependent on how we de�ne a true common.
The subscript ucs will stand for using the strict de�nition of common true
change-point and ucl will use the loose de�nition. Since these true and
false positive rates are directly related to the true and false positive rates of
unique and common change-points, results from their calculation are placed
in appendix A.1.

We compare the methods by �xing the adjusting parameters so that
FPRa ∈ [0, 0.1] and compare the highest corresponding TPRa for these �xed
FPRa. With the adjusting parameters �xed, we compare the other false and
true positive rates to examine the performance in �nding unique and common
change-points.

5 Results

We compare the methods on both simulated and real datasets. The meth-
ods are implemented in Matlab. The programs are built on freely available
Matlab code from [9]. The code for simulating the arti�cial datasets is by
Johan Stigwall.
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5.1 Simulated datasets

The characteristics of the simulated datasets are controlled by a set of param-
eters. Those parameters are: number of change-points, minimum segment
length, maximum segment length, number of features, variance of noise for
each segment and variance of step height for each segment. We can also
choose which kind of models the segments are allowed to have.

The datasets are simulated with the following procedure:

• Simulate change-point location, based on minimum and maximum length
of segments as well as the number of change-points.

• Select which features jump at those change-point locations.

• Generate the segments for each feature. The same model type can be
selected for all segments or we can allow for a switch between model
types. The mean and variance are randomized by using variance of
noise and variance of step hight. Those parameters represent the max-
imum noise and step height for each segment.

• There are a few parameters that are �xed constants in the simulation.
The minimum step size = 2, which means that consecutive segments
must have mean di�erence of at least 2. This minimum is set to obtain
clear jumps in mean. The maximum parameter for slope, hβ = 5. hβ
is the maximum height gained in a segment. The slope is therefore
constricted by the segment length.

• When we use more models than only a mean and a line, more param-
eters are needed.

We analyze three sets of simulated data, SIM1, SIM2 and SIM3. Each
set contains 100 datasets which have common characteristics:

1. SIM1: Three features, long segments, each segment has its own mean
and variance.

2. SIM2: Three or four features, both long and short segments, each seg-
ment has its own mean and variance.

3. SIM3: Three or four features, both long and short segments, each seg-
ment can either consist of its own mean and variance or a slope and
variance.
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SIM1 SIM2 SIM3
Model types α α α or α + βx
Nr of steps From 9 to 25 From 9 to 25 From 9 to 25
Min segment length From 20 to 30 From 5 to 20 From 5 to 20
Max segment length From the min segment From the min segment From the min segment

length+5 to 50 length+5 to 40 length+5 to 40
Nr of features 3 3 or 4 3 or 4
Variance of noise From 0.5 to 2 0.5 to 2 0.5 to 2
Variance of step height From 3 to 10 From 3 to 10 From 3 to 10

Table 5: Parameters used for simulating datasets.

The parameter values are di�erent for each of the 100 datasets but lie
within the same range for each of the three groups. Table 5 contains the
parameters used for the simulation of the three sets. Since the parameters are
allowed to vary between each of the 100 datasets we obtain large variability
within each of the three sets (SIM1, SIM2 and SIM3). This is done to see
which method has better performance given data of broad variety. We do
not know the exact structure of the real dataset and we therefore want to
�nd the method that has the best overall performance. Figures 7, 8 and 9
show examples of a dataset from each simulation set.

5.2 Simulation studies

The methods are applied to the simulated datasets. The adjusting parameter
for the elbow in SeqM1 is kept the same for all features as otherwise we
need a complicated search for the optimal adjusting parameters. We then
compare the false and true positive rates described in section 4.6. The overall
true and false positive rates of �nding both unique and common change-
points can be found in the appendix A.1. This comparison is carried out
for all the simulation studies. In the �rst simulation study we compare
the three methods. The second simulation study compares two methods,
SeqM1 (Sequential method 1), and SeqM2 (Sequential method 2). The third
simulation study compares SeqM1 and SeqM2 on a simulated set with a more
complicated structure. Further descriptions of the simulated datasets can be
found in section 5.1 and table 5.

5.2.1 Simulation 1

We segment each dataset in SIM1 with all methods. The adjusting parame-
ters are �xed so that FPRa ∈ [0, 0.1] (see section 4.6). Figure 10 shows the
true and false positive rates.
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Figure 7: SIM 1: An example of the dataset used for comparing all the
methods. The parameters used for the simulation of this dataset can be
found in table 5. Here the blue dotted lines represent unique change-points
while the red dotted lines represent common change-points. As we see from
the �gure the jumps are clear but the variance can vary signi�cantly making
the change-points harder to detect.

From �gure 10a, we notice that SeqM1 and SeqM2 outperform ASM
slightly. SeqM1 does have a large tail in the true positive rates for the whole
dataset which indicates that although the method has overall good perfor-
mance it can fail occasionally. Figure 10b shows how SeqM1 outperforms
the other methods in �nding the unique change-points. This is expected
since SeqM1 focuses on each feature when segmenting. We also notice how
SeqM1 and SeqM2 have lower false positive rates than ASM for �nding unique
change-points. From �gures 10c and 10d we see how methods SeqM1 and
SeqM2 also outperform ASM in terms of common change-points. In �gure
10d we use a more generous de�nition of a true common change-point. If we
join more features than we should, we still consider the change-point true.
We notice that SeqM2 performs considerably better when the loose de�nition
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Figure 8: SIM 2: An example of the dataset used for comparing SeqM1 and
SeqM2. We see that the segments can be both short and somewhat longer.
The parameters used for the simulation of this dataset can be found in table
5. Here the blue dotted lines represent unique change-points while the red
dotted lines represent common change-points. As we see from the �gure the
jumps are clear but the variance can vary signi�cantly making the change-
points harder to detect. Despite that the variances seem to be lower here
than in �gure 7 datasets from SIM2 can also contain segments that have
higher variances. This �gure is only one example of 100.
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Figure 9: SIM 3: An example of the dataset used to see how SeqM1 and
SeqM2 perform when the data has a more complicated structure. The pa-
rameters used for the simulation of this dataset can be found in table 5. Each
segment has its own variance and a model type mean or a line. Here the blue
dotted lines represent unique change-points while the red dotted lines rep-
resent common change-points. As we see from the �gure the change-points
are rather clear but it can be harder to detect changes when segments are
allowed to have di�erent model types.
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is used.
Since ASM is computationally heavier and does not perform better than

the other methods, we exclude it from further study.

5.2.2 Simulation 2

We compare SeqM1 and SeqM2 on a simulated dataset which contains both
long and short segments (SIM2). The results from the segmentation of
datasets are presented in �gure 11.

We notice from 11a that there is no clear di�erence in TPRa between
SeqM1 and SeqM2. However, we learn from 11b that SeqM1 outperforms
SeqM2 for �nding the unique change-points. Figure 11c shows us that there
is not much di�erence between the methods in terms of �nding the common
change-points. However, if we use a more loose de�nition of true common
change-point SeqM2 outperforms SeqM1, see �gure 11d. This is consistent
with the �ndings in �gure 10.

5.2.3 Simulation 3

Figure 12 shows the results of SeqM1 and SeqM2 performance on SIM3.
Figure 12a displays how SeqM1 outperforms SeqM2 overall. Again, we see
from 12b that SeqM1 is better at detecting unique change-points while we see
from 12c that SeqM2 no longer has a clear advantage for �nding the common
change-points.

5.2.4 Overall �ndings

From �gures 10, 11 and 12 we learn that SeqM1 and SeqM2 are far better
than ASM. ASM is limited to datasets containing few long segments due
to its computational burden and does not have any capabilities that exceed
those of SeqM1 and SeqM2.

SeqM1 and SeqM2 have di�erent properties. SeqM2 favors common
change-points at the expense of �nding unique change-points and it tends
to �nd more common change-points than there are. SeqM1 does not per-
form as well as SeqM2 for �nding the common change-points but does better
overall.

SIM3 has a more complicated structure, since we allow for di�erent mod-
els between segments. Segmenting SIM3 is a more di�cult task and therefore
we see a reduction in performance when we compare �gure 12 to �gures 10
and 11.
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(a) All change-points (b) Unique change-point

(c) Common change-points strict def. (d) Common change-points loose def.

Figure 10: SIM 1: Box plots for the true and false positive rates for all the
three methods. Figure a) contains the TPRa while FPRa is �xed on the
interval [0, 0.1]. By using the result that keep FPRa on this interval we
calculate TPR and FPR for common and unique points. De�nitions of TPR
and FPR can be found in section 4.6. We see from the �gures above that
ASM is also worse than SeqM1 and SeqM2 in every aspect. SeqM2 seems
to be doing slightly better in �nding the overall points, TPRa. It is also
interesting to compare SeqM1 and SeqM2 when looking at the common and
unique change-points. SeqM1 seems to do a better job in �nding the unique
change-points while SeqM2 outperforms the other methods in �nding the
common change-points. 30



(a) All change-points (b) Unique change-point

(c) Common change-points strict def. (d) Common change-points loose def.

Figure 11: SIM 2: Box plots for the true and false positive rates for SeqM1
and SeqM2. Figure a) contains the TPRa while FPRa is �xed on the interval
[0, 0.1]. We again see how methods SeqM1 and SeqM2 perform at �nding
the common and unique change-points. This is consistent with the results
presented in �gure 10.
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(a) All change-points (b) Unique change-point

(c) Common change-points strict def. (d) Common change-points loose def.

Figure 12: SIM 3: Box plots for the true and false positive rates for SeqM1
and SeqM2. Figure a) contains the TPRa while FPRa is �xed on the interval
[0, 0.1]. SeqM1 has higher TPRa. SeqM2 does not seem to have as clear an
advantage over SeqM1 for �nding common change-points as in �gures 10 and
11. SeqM1 outperforms SeqM2 at �nding unique change-points.
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Figure 13: A �gure of the music data. Finger temperature is noted by the
blue color while the skin conductance is noted by the green color. The vertical
lines denote the time instances when the music changes.

5.3 Music data

Figure 13 shows the music data. Finger temperature is noted by the blue
color while green is the skin conductance. At 10, 20 and 30 minutes, the
music changes. The �rst and last time periods consist of silence while in the
second period horror music is played and peaceful music in the third period.
The aim is to see whether we can detect physiologically where the music
changes. It is also of interest to see whether the features change segments
coordinated or with a delay [1] (a preprint will appear on the website shortly).

We �t multiple models to the music data. We start out by looking at how
the mean and line models perform. We then look at autoregressive models,
and �nally polynomial segment models. For each segmentation we examine
three plots. The �rst one contains the plotted result of the segmentation.
The second plot contains the plotted elbow, that is the normalized sequence
of the part of the log likelihood and third plot will display the di�erence
between each consecutive derivative of the elbow curve. Further description
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of how these plot are obtained can be found in section 3.5. The complete list
of models is given in the appendix A.2.

5.3.1 A mean and line

Figure 14a shows the segmentation using SeqM1. We use a mean and variance
to model each segment. Figures 14b and 14c suggest an appropriate number
of segments has been chosen. Figure 15 shows the same using SeqM2. We
now see a clear di�erence between these methods. SeqM2 does not perform
as well for unique change-points. From both methods we note that a speci�c
mean and variance for each segment is a too simple model to describe this
dataset.

Figure 16 and 17 show the data segmented by SeqM1 and SeqM2, re-
spectively, when we allow the segments to switch between a mean and a line.
The segments catch the trends in the data. We note that, for SeqM1 in
�gure 16a, the change-points are not coordinated over features. We see that
the �nger temperature changes after the skin conductance, see further [1]
(a preprint will appear on the website shortly). This Figure 17a, however,
has only coordinated change-points. SeqM2 restricts every change-point of
all features to have a minimum length between change-points. Therefore, it
misses the delay between the features which seems to appear in �gure 16.
A mean and line does appear to be useful for modeling the data since it
manages to capture changes in the trend. SeqM1 especially detects changes
in �nger temperature shortly after the music changes at minute 10, see �gure
16.

5.3.2 Autoregressive model

Multiple autoregressive models are �tted to the data. Only an autoregressive
model with a trend is discussed here. Additional autoregressive models can be
found in the appendix A.2. Figure 18 and 19 show the results for SeqM1 and
SeqM2. We see that neither methods identify change-points. We notice that
both an autoregressive model with a trend and a model that switches between
a mean and a line are capable of describing the data well. The autoregressive
model is a rich and more complex model and catches the quickly changing
trends of the data. However, a model that switches between a mean and
a line detects the change-points where the trend changes. We know that
the music changes after each 10 minutes. It can therefore be justi�able to
use a model with a mean and line if the aim is to interpret where those
change-points are located.
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(a) Segmentation (b) Elbow function

(c) Slope changes

Figure 14: We segment �nger temperature and skin conductance with SeqM1.
Each segment has its own mean and variance. Figure 14a shows us that this
model is too simple for these features.
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(a) Segmentation (b) Elbow function

(c) Slope changes

Figure 15: We segment �nger temperature and skin conductance with SeqM2.
Each segment has its own mean and variance. Figure 14a shows us that this
model is too simple for these features. From �gure 15a we see that SeqM2
favors common change-points.
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(a) Segmentation (b) Elbow function

(c) Slope changes

Figure 16: We segment the music data with SeqM1 where each segment can
switch between a mean and a line. We use �gures 16b and 16c to decide the
number of segments. From �gure 16a we see that the model captures the
trend changes. We do not see change-points at the exact time points where
the music is changed. However, we see a trend in the �nger temperature
shortly after the music is changed at minute 10.
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(a) Segmentation (b) Elbow function

(c) Slope changes

Figure 17: We segment the music data using SeqM2. The segments can
switch between a mean and a line and we use 17b and 17c to choose the
number of segments. In contrast with �gure 16a we see from 17a that each
change-point is common. SeqM2 favors common change-points. Due to that,
we loose the information that the �nger temperature seems to change shortly
after the skin conductance around minute 10, see �gure 16a.
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(a) Segmentation (b) Elbow function

(c) Slope changes

Figure 18: Here SeqM1 is used to segment the data. We use an autoregressive
model with a trend, which is a richer and a more complex model than a mean
and a line. The autoregressive model, models the data without detecting
change-points. For interpretation purpose, the model is too rich since we
cannot deduce anything about the music changes.
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(a) Segmentation (b) Elbow function

(c) Slope changes

Figure 19: Here SeqM2 is used to segment the data. We use an autoregressive
model with a trend, which is a richer and a more complex model than a mean
and a line. The autoregressive model, models the data without detecting
change-points. For interpretation purpose, the model is too rich since we
cannot derive anything about the music changes.
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5.3.3 Polynomials of order 3 and 5

Polynomials of orders 3 and 5 are �tted to the music data using methods
SeqM1 and SeqM2. Results from �tting a polynomial of order 4 are in ap-
pendix A.2. Figures 20 and 21 show the segmented features using SeqM1
and SeqM2 when we �t with a polynomial of order 3. We see from �gures
20d and 21d that we can justify choosing multiple di�erent values for the
number of segments. The black boxes indicate the number of segments when
we are rather conservative, i.e., we choose the number of segments where the
di�erence in consecutive derivatives has become signi�cantly lower but has
not leveled o� yet. The red boxes show how many segments we end up with
if we choose to let the consecutive derivatives level o�. In �gure 20a there are
change-points around minute 10 and 30 which are not coordinated. Figure
20b is not easy to interpret. We see that for the �nger temperature (blue),
we choose a reasonable amount of segments while for the skin conductance
we may need another model type if we insist on the consecutive derivatives
to level o�. In �gures 21a and 21b we see the same results but now using
SeqM2. For SeqM2 the skin conductance dominates where the change-points
are located.

Figures 22 and 23 shows the segmented data where each segment is �tted
with a polynomial of order �ve. We note from �gures 22b, 22c, 23b and 23c
that there is not a clear change-point located in the data. This is di�erent
from �gures 20 and 21. A polynomial of order 5 is rich enough to capture all
the trends in the model, so no change-points are needed. It is then a matter
of interpretation which of the models are more appropriate. A model that
assumes that the data is consisting of segments that change characteristics,
where each segment has a simpler model or �tting it right away with a more
complex model.

5.3.4 Simulated data on autoregressive and polynomial models

We perform a small simulation study to demonstrate the performance of au-
toregressive and polynomial �tting in a more controlled setting. The previous
simulation studies focused on a mean and line models. Table 6 shows the
parameters used for the simulation of the two datasets. We want to take a
snapshot to see how the methods perform when the datasets have compli-
cated structure. The maximum variance of each segment is allowed to be
high for each segment. This makes the change-points harder to detect. Fig-
ure 24 displays how the number of segments is chosen for AR(3)+line dataset
for both method SeqM1 and SeqM2, see section 3.5 for information about
the plots. Figure 25 displays the segmented data. Table 7 shows the true
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(a) Segmentation (b) Segmentation

(c) Elbow function (d) Slope changes

Figure 20: Here SeqM1 is used to segment the data. The models that are
used are polynomials of order 3. We can reason for choosing di�erent number
of segments. The black boxes correspond to �gure 20a and the red boxes
correspond to 20b. In �gure 20a we detect change-points around minute 10
and 30 and the polynomials follow the trend well. Figure 20b is not as easily
interpreted. The �nger temperature has a reasonable number of segments
while the skin conductance may need another model type if we insist on the
consecutive derivatives to level o�.
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(a) Segmentation (b) Segmentation

(c) Elbow function (d) Slope changes

Figure 21: Here SeqM2 is used to segment the data. The models that are
used are polynomials of order 3. We can reason for choosing di�erent number
of segments. The black boxes correspond to �gure 21a and the red boxes
correspond to 21b. In �gure 21a we detect change-points around minute 10
and 30. From both �gure 21a and 21b we see that the skin conductance
dominates the �nger temperature. SeqM1 is therefore more appropriate if
we do not want to miss that information.
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(a) Segmentation (b) Elbow function

(c) Slope changes

Figure 22: The segmentation with SeqM1 when using a polynomial of order 5.
Polynomial of order 5 can be used to model the data without a change-point.
It depends on the assumption of the data whether a more complicated model
should be used or if it is justi�able to model it with independent segments
that change characteristics.
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(a) Segmentation (b) Elbow function

(c) Slope changes

Figure 23: The segmentation with SeqM2 when using a polynomial of order 5.
Polynomial of order 5 can be used to model the data without a change-point.
It depends on the assumption of the data whether a more complicated model
should be used or if it is justi�able to model it with independent segments
that change characteristics.
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Autoregressive Polynomial

Model types AR(3)+α + βx
∑3

i=0 pix
i

Model parameters φ1 = [−1.17, 1.17], p1 = 10−6 · [−1, 1], p2 = 10−4 · [−1, 1],
φ2 = 0.16, φ3 = 0.0016 p3 = 10−2 · [−1, 1], p4 = [−2, 2]

Nr of steps 10 10
Min length of segment 28 63
Max length of segment 62 18
Nr of features 3 3
Variance of noise 2.33 1.17
Variance of step height 2 1

Table 6: Parameters used for simulating the datasets.

SeqM1 tpr SeqM1 fpr SeqM2 tpr SeqM2 frp
All points 0.7895 0.0625 0.9474 0.1000
Common loose def 0.6000 0.1818 1.0000 0.1111
Common strict 0.6000 0.1818 0.8667 0.2778
Unique 0.7500 0.4000 0.5000 0
Overall unique and common strict 0.6316 0.2500 0.7895 0.2500
Overall unique and common loose 0.6316 0.2500 0.8947 0.1000

Table 7: The table shows the result for the AR(3)+line simulation. The
plotted results are displayed in �gure 25. Taking into account how compli-
cated this dataset is, both methods perform well. SeqM2 performs overall
better except for �nding the unique change-points, there SeqM1 has an edge
on SeqM2. The false and positive ratios in the last two rows give indication
on the overall ability to �nd common and unique change-points, see equation
(4).

and false positive rates. SeqM2 performs better except for �nding unique
change-points.

Figure 26 shows how we choose the number of segments. From the el-
bow plots we detect clearly a point where adding more segments does not
result in a signi�cantly lower log likelihood. The plotted results from that
segmentation are displayed in �gure 27. Table 8 contains the true and false
positive rates. We see that SeqM2 again has an edge on SeqM1, when �nd-
ing common change-points. When �nding unique change-points, SeqM2 is
conservative while SeqM1 has a high false positive rate. The reason for this
high false positive rate is that it tends to �nd a unique change-point where
there truly is a common-change point. That results in a low true positive
rate for the common change-points and high false positive rate for the unique
change-points. We keep in mind that the dataset has a complex structure,
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(a) SeqM1-Elbow (b) SeqM2-Elbow

(c) SeqM1-Slope changes (d) SeqM2-Slope changes

Figure 24: The �gures show how the number of segments are chosen for the
autoregressive dataset. More information about these plots can be found in
section 3.5. Here we see from both �gures that there is a value where the log
likelihood decreases more slowly.
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(a) SeqM1 (b) SeqM2

Figure 25: The �gures show the segmentation of a simulated dataset.
The simulated dataset is built up from segments with di�erent kinds of
AR(3)+line structures. Figures 25a and 25b show how SeqM1 and SeqM2
segment the data respectively. True and false positive rates in table 7 give
an indication of how the methods perform.

and the performance is expected to reduce according to that. Further work
is needed to select the adjusting parameter for these methods.

5.4 Epilepsy data

We segment three di�erent seizures from the same patient. We keep 60
seconds around the seizures to obtain a baseline. Every seizure therefore
starts at second 61 and ends 60 seconds before the interval is over. It is
important to notice that when we look at parts of the data we can investigate
the elbow function and how the consecutive derivatives behave. We can then
choose an adjusting parameter according to section 3.5. However, we are not
able to do that when segmenting the whole data on-line. Each segment is
�tted using an autoregressive model with a trend.

Figure 28 shows the segmentation of seizure 1 with method SeqM1 for
the vector magnitudes. The vector magnitudes capture the overall activity
for each sensor. The segments capture the activity changes but not the start
of the seizure.

Figure 29 contains same data segmented with SeqM2. There is a clear
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(a) SeqM1-Elbow (b) SeqM2-Elbow

(c) SeqM1-Slope changes (d) SeqM2-Slope changes

Figure 26: We see how the number of segments are chosen for the polynomial
dataset. More information about these plots can be found in section 3.5.
Here we see from both �gures that there is a value where the log likelihood
decreases more slowly.
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(a) SeqM1 (b) SeqM2

Figure 27: We see the segmentation results for SeqM1 and SeqM2 of the sim-
ulated polynomial dataset. It looks like the segmentation manages to detect
the data changes. The true and false positive rates for this segmentation can
be found in table 8.

SeqM1 3 tpr SeqM1 3 fpr SeqM2 tpr SeqM2 frp
All points 0.6471 0 0.7059 0.0769
Common loose def 0.4167 0 0.8333 0.1667
Common strict 0.4167 0 0.8333 0.1667
Unique 0.6000 0.5000 0.2000 0
Overall unique and common strict 0.4706 0.2727 0.6471 0.1538
Overall unique and common loose 0.4706 0.2727 0.6471 0.1538

Table 8: The true and false positive rates for the polynomial simulated data.
We see that SeqM2 has an edge on SeqM1, when �nding common change-
points. When �nding unique change-points, SeqM2 is conservative while
SeqM1 has a high false positive rate. The reason for the high false positive
rate is that it tends to �nd a unique change-point where there truly is a com-
mon change-point. That results in a low true positive rate for the common
change-points and high false positive rate for the unique change-points. The
false and positive ratios in the last two rows give indication on the overall
ability to �nd common and unique change-points, see equation (4).
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di�erence between the methods. Since it favors common change-points we
obtain clear change-points where the overall activity changes. SeqM1 however
focuses on each feature separately, we therefore detect more changes-points
than when using SeqM1. Neither of the methods detect the start of the
seizure. However, they both detect the activity changes.

In �gure 30, we see the segmentation of the same seizure with method
SeqM1 but now we include all the features. We use the same adjusting
parameter for all the 51 features since handpicking each of them is time con-
suming. Some of the features may therefore get over-segmented while other
can lack segments. The correlation features have few segments compared to
the other features, while the signal magnitude area contains more or up to 8
segments. The frequency bands also contain many segments (up to 9). The
other groups of features, see table 1, have a more varying number of seg-
ments. From �gure 30a we see that the data has many segments. Perhaps it
is not suitable to segment all the features at once. It may be more e�ective to
segment the features in subsets. We also notice that there are change-points
near to each other that have not been joined which suggest that there is a
delay in activity between groups of features.

Figure 31 show the same results for SeqM2. There we have much fewer
segments and the plot is similar to the one we got in �gure 29. We obtain
a clear elbow in �gure 31b and the segments do seem to capture activity
changes. Comparing �gures 30 to 31 we easily detect the di�erent abilities
of the methods. SeqM1 focuses on each feature while SeqM2 favors common
change-points.

In �gure 32, we look at the segmentation of seizure 3 for method SeqM1.
This seizure is shorter than the previous one and we do see a lot of segment
changes where the seizure starts at second 61. The change-points at seconds
7, 13, 21 and 27 all come from the same feature, which is one of the DC
values. This suggest that this particular feature is over-segmented. We see
from �gure 32b, that there are groups of features with the same number of
change-points. 10 of the 12 correlation features have only one segments and
17 of the 18 frequency bands have 2 segments where most of the jumps are
around second 60 and few of them at second 38. Other feature groups have
a more varying number of segments. The change-points around second 61
are common change-points. SeqM1 does not join these change-points. This
suggest that features change in groups at di�erent time-points.

Figure 33 shows the segmentation of the same seizure with method SeqM2.
The model catches the seizure start at second 61. However, it does not de-
tect when the seizure ends. Comparing �gures 32 and 33 we see how SeqM2
detects fewer change-points.

At last, �gures 34 and 35 show seizure number 7. Seizure 3 had a clear
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(a) Segmentation (b) Elbow function

(c) Slope changes

Figure 28: The segmentation of vector magnitudes for seizure number 1
using SeqM1. Each segment is �tted using an autoregressive model with a
trend. The segments capture the overall activity of each sensor. We choose
the number of segments according to �gures 28b and 28c. We do not see a
change-point at second 60 where the seizure starts. However, we do see that
the segments capture the activity changes of the features.
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(a) Segmentation (b) Elbow function

(c) Slope changes

Figure 29: The segmentation of vector magnitudes for seizure number 1 using
SeqM2. Each segment is �tted using an autoregressive model with a trend.
The segments do capture the activity nicely in separate segments but do not
manage to capture the start of the seizure.
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(a) Segmentation (b) Elbow function

(c) Slope changes

Figure 30: The segmentation of all features of seizure number 1 using SeqM1.
Each segment is �tted using an autoregressive model with a trend. The same
adjusting parameter is used for all features. This might not be appropriate
but is convenient due to the large amount of features we have.
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(a) Segmentation (b) Elbow function

(c) Slope changes

Figure 31: The segmentation of all features of seizure number 1 using SeqM2.
Each segment is �tted using an autoregressive model with a trend. We have
few segments but they seem to catch the activity changes.
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(a) Segmentation (b) Elbow function

(c) Slope changes

Figure 32: The segmentation of all features of seizure number 3 using SeqM1.
Each segment is �tted using an autoregressive model with a trend. We see
change-points around the start of the seizure at second 61.
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(a) Segmentation (b) Elbow function

(c) Slope changes

Figure 33: The segmentation of all features of seizure number 3 using SeqM2.
Each segment is �tted using an autoregressive model with a trend. We see
that we catch the seizure start at second 61.
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start at second 60 but seizure 7 does not. In �gure 34 we see how SeqM1
performs when segmenting this seizure. Again we have a lot of segment and
it is doubtful that we can use the same adjusting parameter for all features.
Figure 34b suggest that there are six groups of features that contain the same
number of segments. These groups are not the same as the feature groups (see
table 1). The correlation features have relatively few segments (2-3), while 16
of the 18 frequency bands have 5 segments. Most of the other features contain
more segments. From �gure 34a, we observe multiple common change-points
near to each other, which are not joined. This suggests that di�erent features
change character with a delay and supports the idea of segmenting groups of
features together. That can lead to more clear results about the behavior of
the features. Figure 35 shows the segmentation performance of SeqM2. The
segments clearly capture the activity changes, but not the segment changes
of unique features. We do not capture the seizure start but it is interesting
to know if it is at all possible using joint segmentation. Classi�cation with
the parameters of the segments is an interesting future step.

6 Discussion

Three di�erent methods for segmenting multiple features with coordinated
change-points are devised and compared via a simulation study. Two of
these methods, SeqM1 (Sequential method 1) and SeqM2 (Sequential method
2), exhibit positive results and are examined further. The third method,
ASM (All subset method), was discarded early in the study. SeqM1 and
SeqM2 perform di�erently. SeqM1 has better overall performance and it is
also better at �nding the unique change-points. However, if the goal is to
mainly detect common change-points, SeqM2 is preferable. SeqM2 rewards
common change-points at the expense of the unique change-points. SeqM1
and SeqM2 are therefore promising methods each in their own way. An
interesting future work for those two methods could be to extend them so
that the adjusting parameter S is not a constant in each consecutive interval
when the methods are used on-line. We could also plot (pk, Jk) for some or
all of the consecutive intervals but an adjusting parameter that adapts to
locate the elbow is preferable when segmenting large amounts of data.

Various models have been applied to the music data. Fitting only a mean
and variance to the data results in over-segmentation and does not capture
the structure. By allowing for rich and complex models, e.g., polynomials of
order 5 and trend models with autoregressive errors, no segments are needed
to obtain a good model. For interpretation purposes, we cannot deduce any-
thing about the music changes when �tting such complex models. Allowing
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(a) Segmentation (b) Elbow function

(c) Slope changes

Figure 34: The segmentation of all features of seizure number 7 using SeqM1.
Each segment is �tted using an autoregressive model with a trend. SeqM1
may not be appropriate to segment so many features at once.
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(a) Segmentation (b) Elbow function

(c) Slope changes

Figure 35: The segmentation of all features of seizure number 7 using SeqM2.
Each segment is �tted using an autoregressive model with a trend. We see
that the segments capture the activity changes.
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the segments to switch between a mean and line and �tting polynomials of
lower order gives interesting results on trend changes in the model. How-
ever, we cannot easily use the results to locate where the music changes. We
see di�erent performances when using SeqM1 and SeqM2. SeqM1 seems to
outperform SeqM2, since SeqM2 favors common change-points at the cost
of �nding the unique ones. When using SeqM2, it is not possible to detect
delay in characteristic changes which seems to occur between the features.

An autoregressive model with a trend was �tted to the epilepsy data.
Since handpicking an adjusting parameter for each feature is time consum-
ing, the same adjusting parameter is used for all features when applying
SeqM1 on the data. This results in over-segmentation of some features. By
using SeqM2 we only catch the most extreme changes. For future work it
could be interesting to apply the method on subsets of the epilepsy data
with common characteristics. The results might become easier to interpret
as well as the choice of an adjusting parameter becomes easier. Another pos-
sibility for future work is to segment all the epilepsy data on-line. It could
then be interesting to look further at how we can choose an appropriate ad-
justing parameter for all intervals. The aim with the epilepsy data is to be
able to classify seizures from non seizure so future work includes applying
classi�cation methods on segmented epilepsy data.

ASM (All subset method), that was discarded early in the study, is re-
stricted to datasets containing long segments due to computational burden
which may possibly reduce the quality of the results from the elbow method.
It does not have any advantages over SeqM1 and SeqM2. The results for the
ASM method are in a way disappointing since it should be the method that
takes into account simultaneously the location and the joining of change-
points.
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A Appendix

A.1 Additional results from simulation study

Figures 36, 37 and 38 contain box plots of TPRucs, TPRucs,TPRucl and
TPRucl, i.e., the overall true and false positive rates of �nding unique and
common change-points. See section 4.6 for further information.

(a) Strict de�nition (b) Loose de�nition

Figure 36: SIM1: The true and false positive rates for the overall detection
of unique and common change-points, see section 4.6.
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(a) Strict de�nition (b) Loose de�nition

Figure 37: SIM 2: The true and false positive rates for the overall detection
of unique and common change-points, see section 4.6.

(a) Strict de�nition (b) Loose de�nition

Figure 38: SIM 3: The true and false positive rates for the overall detection
of unique and common change-points, see section 4.6.
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A.2 Music results

Table 9 contains a complete list of all models we �t to the music data. Figures
referred to in the table are both located in the result chapter as well as here
below.

Model type of segments Nr. of Figure SeqM1 Nr. of Figure SeqM2
Mean model, yt = α. 14 15
Choosing between mean (yt = α) and line (yt = α + βt) models. 16 17
Autoregressive errors: rt + φ1rt−2 + φ1rt−2 + φ3rt−3 = εt 18 19
where rt = yt − α− βxt.
Choosing between mean (yt = α) and line (yt = α + βt) model, 43 44
using robust estimate.
Autoregressive errors: rt + φ1rt−2 + φ1rt−2 + φ3rt−3 = εt 41 42
where rt = yt − α.
Autoregressive errors: rt + φ1rt−2 + φ1rt−2 + φ3rt−3 = εt 39 40
where rt = yt − α− βt, using robust estimate.
Polynomial models of order 3, yt =

∑s
i=0 pit

i, s = 3. 20 21
Polynomial models of order 4, yt =

∑s
i=0 pit

i, s = 4. 45 46
Polynomial models of order 5, yt =

∑s
i=0 pit

i, s = 5. 22 23

Table 9: A complete list of all models �tted to the music data.
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(a) Segmentation (b) Elbow function

(c) Slope changes

Figure 39: SeqM1, modeled with a mean and line, using robust estimate for
the regression parameters.
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(a) Segmentation (b) Elbow function

(c) Slope changes

Figure 40: SeqM2, modeled with a mean and line, using robust estimate for
the regression parameters.
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(a) Segmentation (b) Elbow function

(c) Slope changes

Figure 41: SeqM1, modeled with a mean where the errors are autoregressive
of third order.
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(a) Segmentation (b) Elbow function

(c) Slope changes

Figure 42: SeqM2, modeled with a mean where the errors are autoregressive
of third order.
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(a) Segmentation (b) Elbow function

(c) Slope changes

Figure 43: SeqM1, modeled with a line, using robots estimate. The errors
are autoregressive of order 3.
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(a) Segmentation (b) Elbow function

(c) Slope changes

Figure 44: SeqM2, modeled with a line, using robots estimate. The errors
are autoregressive of order 3.
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(a) Segmentation (b) Segmentation

(c) Elbow function (d) Slope changes

Figure 45: SeqM1, modeled with polynomials of order 4. The black boxes
correspond to �gure 45a while the red boxes correspond to 45b.
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(a) Segmentation (b) Segmentation

(c) Elbow function (d) Slope changes

Figure 46: SeqM2, modeled with polynomials of order 4. The black boxes
correspond to �gure 46a while the red boxes correspond to 46b.
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