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Abstract

This thesis concerns theory, algorithms, and applications for two problem classes
within the realm of mathematical optimization; convex optimization and mixed binary
linear optimization. To the thesis is appended five papers containing its main contri-
butions.

In the first paper a subgradient optimization method is applied to the Lagrangian
dual of a general convex and (possibly) nonsmooth optimization problem. The clas-
sic dual subgradient method produces primal solutions that are, however, neither
optimal nor feasible. Yet, convergence to the set of optimal primal solutions can be
obtained by constructing a class of ergodic sequences of the Lagrangian subproblem
solutions. We generalize previous convergence results for such ergodic sequences
by proposing a new set of rules for choosing the convexity weights defining the se-
quences. Numerical results indicate that by applying our new set of rules primal
feasible solutions of higher quality than those created by the previously developed
rules are achieved.

The second paper analyzes the properties of a subgradient method when applied
to the Lagrangian dual of an infeasible convex program. The primal-dual pair of pro-
grams corresponding to an associated homogeneous dual function is shown to be
in turn associated with a saddle-point problem, in which the primal part amounts
to finding a solution such that the Euclidean norm of the infeasibility in the relaxed
constraints is minimized. Convergence results for a conditional dual subgradient
optimization method applied to the Lagrangian dual problem is presented. The se-
quence of ergodic primal iterates is shown to converge to the set of solutions to the
primal part of the associated saddle-point problem.

The third paper applies a dual subgradient method to a general mixed binary lin-
ear program (MBLP). The resulting sequence of primal ergodic iterates is shown to
converge to the set of solutions to a convexified version of the original MBLP, and
three procedures for utilizing the primal ergodic iterates for constructing feasible
solutions to the MBLP are proposed: a Lagrangian heuristic, the construction of a
so-called core problem, and a framework for utilizing the ergodic primal iterates
within a branch-and-bound algorithm. Numerical results for samples of uncapac-
itated facility location problems and set covering problems indicate that the pro-
posed procedures are practically useful for solving structured MBLPs.
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In the fourth paper, the preventive maintenance scheduling problem with interval costs
is studied. This problem considers the scheduling of maintenance of the components
in a multi-component system with the objective to minimize the sum of the set-up
and interval costs for the system over a finite time period. The problem is shown
to be NP-hard, and an MBLP model is introduced and utilized in three case studies
from the railway, aircraft, and wind power industries.

In the fifth paper an MBLP model for the optimal scheduling of tamping op-
erations on ballasted rail tracks is introduced. The objective is to minimize the to-
tal maintenance costs while maintaining an acceptable condition on the ballasted
tracks. The model is thoroughly analyzed and the scheduling problem considered
is shown to be NP-hard. A computational study shows that the total cost for main-
tenance can be reduced by up to 10% as compared with the best policy investigated.

Keywords: subgradient methods, Lagrangian dual, recovery of primal solutions,
inconsistent convex programs, ergodic sequences, convex optimization, mixed bi-
nary linear optimization, maintenance scheduling, preventive maintenance, deteri-
oration cost
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1 Introduction

This thesis covers two kinds of problems within mathematical optimization; convex
programs (CPs) and mixed binary linear programs (MBLPs). Mathematical optimiza-
tion can be described as the scientific discipline in which one tries to find the best
decision from a set of available alternatives in a given quantitative context. In order
to define what is meant by a “best decision”, the notion of an objective function is
needed. An objective function f : X — R is a function from a set X to the set of
real numbers and which defines the objective value f(x) of a decision x € X. We say
that « is feasible if € X. The notion of a best decision is then defined as a feasible
decision which possesses either the maximum or the minimum possible objective
value. For the case when the best decision is defined to be the one with minimum
objective value, an optimization problem is defined as the problem to

minimize f(x), (1a)
subjectto x € X. (1b)

The problem (1) is thus the problem of finding a feasible decision € X with the
minimal objective value f(x). Mathematical optimization is the discipline in which
problems as the one in (1) are analyzed from both a computational and a theoretical
point of view.

An optimization problem as the one stated in (1) is classified according to the
characteristics of the feasible set X and the objective function f. For example, a
linear program (LP) is an optimization problem where a) the set X can be described
by a finite number of affine inequalities, and b) the objective function f is linear. A
non-linear program (NLP) is intuitively a problem where either the objective function
or some of the constraint functions defining the feasible set are non-linear. Papers I
and II analyze the case when the problem (1) is a CP, i.e., when the feasible set X
is a convex set and when the objective function f is a convex function on the set X.
Papers III, IV, and V deal with the case when the problem (1) is an MBLP, i.e., when
the objective function f is linear, a subset of the variables are restricted to be binary,
and all the variables are restricted to a polyhedron.

1.1 Outline

The following sections provide a short introduction to the areas of convex optimiza-
tion and mixed binary linear optimization. In Section 2 the concept of a CP is intro-
duced and thoroughly analyzed. The mathematical properties of CPs are presented
and four appropriate solution methods are described. The section also presents ap-
plications which are described in more detail in Papers I and II. Section 3 introduces
the mathematical properties of and solution procedures for MBLPs. Also here appli-
cations described and analyzed in Papers III, IV, and V are presented. In Section 4 a
summary with the main contributions of the thesis is included together with some
current and future research ideas. Finally, Section 5 summarizes the appended pa-
pers in an informal style.



2 Convex optimization

2 Convex optimization

A convex program (CP) is essentially an optimization problem in which one wishes
to minimize (maximize) a convex (concave) function over a convex set. A general
form of a CP is the problem to find

f*i=infimum f(x), (2a)

subjectto g;(x) <0, i=1,...,m, (2b)

e X, (2¢)

where X is a convex set, g; : R” — R, ¢ = 1,...,m, are convex functions on X, and
f :R™ — Ris a convex function over the set C := {x € X | ¢g;(x) <0,i=1,...,m}.
Let X* denote the set of optimal solutions to the problem (2). The reason for not
including the inequalities g;(x) < 0,7 = 1, ..., m, in the definition of the set X will

be apparent when we discuss the notion of Lagrangian duality in Section 2.1.2.

The convexity of the objective function and of the feasible set make powerful
tools of convex analysis applicable. As we will se in Section 2.1, the existence of sub-
gradients to f, the notion of necessary and sufficient conditions for optimality, and
the important theory of duality follow quite easily from results in convex analysis.
Furthermore, these results also provide powerful solution methods for CPs, as we
will see in Section 2.2. In Section 2.3 applications and examples of CPs which have
been studied in Papers I and II are described and analyzed.

2.1 Problem properties

When considering a CP, many problem properties follow directly from the convexity
of the feasible set and the convexity of the objective function. In order to describe
the most important properties we need the following two definitions:

— Aset C C R™is a convex set if the whole line segment joining any two points in
the set also belongs to the set (see Figure 1). Mathematically, this means that if
x1 and x4 are two points in C, then the point Az + (1 — A)x2 must also belong
to C for any X € [0, 1].

(a) a convex set (b) a non-convex set

Figure 1: [llustrations of a convex and a non-convex set.

— A function f : R” — R is convex on the convex set C'if the inequality

fOz1+ (1= Naz) < Af(@1) + (1= A) f(2),
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holds for any «1,z2 € C and any A € [0, 1]. A geometric interpretation of the
convexity of a function f is that the line segment between any two points on
the graph of f lies above the graph (see Figure 2). This is equivalent to saying
that the epigraph, epif := {(z,a) € R"™!| f(x) < a} is a convex set (Bazaraa
etal., 1993, Theorem 3.2.2).

epif
f(z)
€r €T
. . ° .
1 ip) 1 T2
(a) a convex function (b) a non-convex function

Figure 2: Illustrations of a convex and a non-convex function, and their respective epigraphs.

According to the definitions above, there are strong connections between convex
sets and convex functions; a function is convex if and only if its epigraph is a convex
set. Using this property one can easily show the existence of subgradients of convex
functions. But to establish this result, we need to define the notion of a supporting
hyperplane.

Let C' C R™ be a convex set and let Z € R™ be a point on the boundary of C. A
vector v € R"™ is said to define a supporting hyperplane of C at z if v (x —z) < 0
for all x € C. In geometrical terms, a supporting hyperplane is such that a) the set
C' is contained in one of the half-spaces defined by the hyperplane, and b) at least
one boundary point of C is contained in the hyperplane. A well-known result from
convex analysis is that if C is a convex set and Z is a point on the boundary of C, then
there exists a supporting hyperplane of C which contains & (Bazaraa et al., 1993,
Theorem 2.4.7). Applying this result to the epigraph of a convex function (which
we know from the above definition is a convex set) we obtain the following result
(Bazaraa et al., 1993, 3.2.5). Let f : R” — R be a convex function and let £ € R".
Then there exists a vector p € R™ such that

f@)> f@) +p"(x —z), forallz e R". 3)

We call vectors p € R™ satisfying (3) subgradients of f at &. The set of subgradients
of f at  is called the subdifferential, denoted by 0f(&). Geometrically, a subgradi-
ent is a vector defining a supporting hyperplane to the epigraph of the function f
containing the point Z.

The name ”subgradient” stems from the fact that the notion is a generalization of
the well-known concept of gradients. Whenever a convex function f is differentiable
in a point x, the equivalence df(x) = {Vf(x)} holds (Bazaraa et al., 1993, Lemma
3.3.2), which means that when considering differentiable functions, the notion of
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subgradients is equivalent to the notion of gradients. In Figure 3a), the unique sub-
gradient of f at the point Z is illustrated for a differentiable convex function, and in
Figure 3b), two subgradients of f at & are illustrated for a non-differentiable convex
function.

epif

(a) a differentiable convex function (b) a non-differentiable convex function

Figure 3: [llustration of subgradients and their corresponding supporting hyperplanes of
convex functions and their epigraphs. In figure (a) the unique supporting hyper-
plane v = (pT, —1)T of epif at the point Z is illustrated. The vector p is the unique
subgradient of the differentiable function f at &. In figure (b) two supporting hyper-
planes, v1 and vs, of epif at & are illustrated. The vectors p, and p,, respectively,
are the corresponding subgradients to the non-differentiable function f at the point
z.

For a general optimization problem as the one defined in (1), there are two no-
tions of optimality of a point; local optimality and global optimality. A point Z is said to
be a global optimum to the problem (1) if f(Z) < f(«) for all points € X, i.e,, if the
point has the lowest objective value among to all feasible points to the problem. A
local optimum is, on the other hand, a point which has lowest objective value among
all feasible points within a small neighborhood surrounding the point. Mathemati-
cally, a point Z is a local optimum if there exists a ¢ > 0 such that f(z) < f(x) for
allz € X N{x € R"|||z — Z|| < ¢}. Consider the following fundamental results
regarding CPs (Bazaraa et al., 1993, Theorem 3.4.2):

— If &* is a local optimum to (2), then it is also a global optimum to (2), and
— the set of global optima to (2) is a convex set.

The fact that any local optimum to a CP is also a global optimum is one of the
most crucial result regarding convex optimization. Many algorithms for solving op-
timization problems aim at finding local optima (e.g., steepest descent, Newton’s
method, and interior-point methods), which means that, for CPs they are also suit-
able for finding global optima.

2.1.1 Optimality conditions

Optimality conditions are necessary and/or sufficient criteria that are fulfilled by
optimal solutions to optimization problems. Depending on the assumptions made
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for the objective function and the feasible set, different optimality conditions must
be stated. Consider problem (2) where the feasible set is denoted by C := {x €
X |gi(x) <0,i=1,...,m},and it is assumed that f is a convex function and that C
is a convex set. Using these assumptions we can formulate the following necessary
and sufficient optimality condition (Bazaraa et al., 1993, Theorem 3.4.3).

— A point & € C is an optimal solution to (2) if and only if

Ipcdf(z) suchthat p'(xz—z) <0 forall =cC. 4)

Geometrically, the condition (4) states that a point is a minimum if and only if, for
any point € C, the angle between a subgradient of f at & and the vector from &
to x is at least 90 degrees. For the unconstrained case, i.e., when C' = R", the condi-
tion (4) reduces to the criterion that 0 € 9f(x) (Bazaraa et al., 1993, Theorem 3.4.3,
Corollary 1). The condition (4) is fairly useless as a means to verify the optimality
of a candidate solution since it requires verifying that an inequality holds for, in the
general case, an infinite number of points. But without adding any further assump-
tions on, e.g., the differentiability of the objective and constraint functions, we can
not present any optimality conditions that are more useful or more easily verifiable
before introducing the concept of Lagrangian duality, which is the topic for the next
section.

2.1.2 Lagrangian duality

In convex optimization Lagrangian duality is a very important concept. By con-
structing a so-called dual problem associated with the problem (2), one can, as we
will see, easily obtain lower bounds on the optimal objective value f*. Consider
the problem (2) where we only assume that X is a convex set, and that f and g;,
i = 1,...,m are convex functions. Many optimization problems have the charac-
teristic that the feasible set can be described as the intersection of two sets X and
{z € R"|gi(x) <0,i =1,...,m}, where X possesses some nice structure making
optimization problems on it efficiently solvable, but where the addition of the con-
straints g;(x) < 0,7 = 1,...,m, destroys this structure. One example of an optimiza-
tion problem having this structure is the resource allocation problem (e.g., Bretthauer
and Shetty (1995), Patriksson (2008)) where X describes so-called box constraints for
the variables and g;(x) < 0,7 = 1,...,m, describe resource constraints.

Assume that when removing the constraints g;(x) < 0,7 = 1,...,m, from the
problem (2), the resulting problem can be solved efficiently. The constraints are,
however, still essential for the problem definition, so they should of course not be
entirely removed. Instead, an associated optimization problem in which each con-
straint is replaced by a penalty term in the objective function is constructed. Let the
Lagrangian dual function, 0 : R™ — R, be defined as

o(w) = mip [ ) + iuigxw)] weR™. ©

xzecX
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A well-known result, which actually holds even when the functions f and g;, i =
1,...,m are non-convex and/or the set X is non-convex, is that the function 0 is
concave on R (Bazaraa et al., 1993, Proposition 5.1.12). Let the set of solutions to
the subproblem, defined in (5), at u € R™ be denoted by X (u) C X.

One of the most important properties of the Lagrangian dual function is de-
scribed by the weak duality theorem which says the following. For any = € R" such
that the constraints (2b)-(2c) hold and any u € R, the inequality f(u) < f(x)
holds (Bazaraa et al., 1993, Theorem 6.2.1). For any non-negative u € R™, the dual
function value 6(u) is thus a lower bound on the objective value f(x) for all points
x € R” that are feasible in (2). It also follows from the weak duality theorem that
f(u) < f* for all w € R, meaning that §(u) is a lower bound on the optimal value
of the CP in (2). Note that the convexity assumption of neither the objective function
f nor of the feasible set are required for the weak duality theorem to hold. To obtain
an as good lower bound as possible, let us construct the Lagrangian dual problem as
the problem to find

6" := supremum 6(u). (6)
u€R’
Since the dual function 6 : R™ — R is concave and the set R’ is a convex set, the
Lagrangian dual problem (6) is a CP; we denote its solution set by U* € R

It clearly holds, by the weak duality theorem, that 6* < f*. In order to obtain a
stronger result, we need to make the assumption that the set {x € X | g;(x) < 0,¢ =
1,...,m} is non-empty, i.e., Slater’s constraint qualification. With this assumption the
strong duality theorem, which states that 6* = f*, can be deduced (Bazaraa et al., 1993,
Theorem 6.2.4). This theorem further states the global optimality conditions that the
inclusions z* € X* and u € U* hold if and only if

u* € R, (7a)

" e X(u"), (7b)
gi(x*) <0, i=1,...,m, (70)
ulgi(x*) =0, i=1,...,m. (7d)

Hence, the strong duality theorem guarantees that the optimal value to the La-
grangian dual problem (6) equals that of the original CP (2). It also provides op-
timality conditions for the primal-dual pair of programs: the primal-dual solution
pair (z*,u*) € R” x R™ is optimal if and only if it holds that #* and u* are feasi-
ble in their respective problems (conditions (7a) and (7c)), that « is a solution to the
subproblem defined in (5) at u (condition (7b)), and that the complementarity condi-
tion u}g;(x*) = 0 holds for ¢ = 1, ..., m (condition (7d)). The optimality conditions
(7a)—(7d) are the basis for the dual subgradient method which is described in Section
222

When the original CP (2) is infeasible, i.e., when the set {x € X | g;(x) < 0,7 =
1,...,m} = 0, by convention, the optimal value f* is defined to be +o0o. How does
this affect the dual problem (6)? In Paper II we show that if the set X is bounded
then it holds that also §* = 400, meaning that the dual problem is unbounded.
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2.1.3 Non-coordinability of non-strictly convex problems

The optimality conditions in (7) provides us with verifiable optimality criteria for
candidate solution pairs (x*,u*) € R™ x R™. But what if we only have a dual op-
timal solution u* at hand. Can we then easily construct an optimal solution to the
primal problem (2)? Unfortunately, in general, the answer is no. The reason for this
inconvenience is that the dual function is typically nonsmooth whenever the objec-
tive and constraint functions are non-strictly convex. This implies that an optimal
primal solution is a (typically) nontrivial convex combination of the extreme solutions
to the subproblem (3) at the optimal dual point u*. So when using methods that
identify extreme solutions (as, e.g., the simplex method) for solving the subproblem
(3), the solution obtained is, in general, non-optimal in the original problem. It may
even be infeasible in the original problem. Within linear programming this property
is referred to as the non-coordinability phenomenon (Dirickx and Jennergren, 1979,
Chapter 3).

2.2 Solution procedures

There is no general analytical formula for the solution of convex optimization prob-
lems. However, there does exist some very effective methods for solving them. As
stated by Rockafellar (1993) ”... the great watershed in optimization isn’t between
linearity and nonlinearity, but convexity and nonconvexity.” It appears that the con-
vexity of a problem is inherently favorable when trying to solve it; one of the fun-
damental reasons is the fact that any local optima is also a global one.

Depending on the characteristics of the objective function and the feasible set,
various solution methods are applicable. In this section four different procedures
are presented. In Section 2.2.1, an iterative procedure—in which steps are taken
in subgradient directions—is presented; for this procedure to be convergent only
convexity of the optimization problem needs to be assumed. Then, in Section 2.2.2,
Slater’s constraint qualification is assumed, meaning that the strong duality theo-
rem is applicable and that a Lagrangian dual approach can be used. In Sections 2.2.3
and 2.2.4, two methods based on the notion of cutting planes are introduced.

There are many other solution methods for CPs, for which more assumptions on
the problem characteristics are made. Assuming differentiability of the objective and
constraint functions leads to the famous KKT optimality conditions (Bazaraa et al.,
1993, Theorem 4.2.13). These conditions constitute the basis for interior point meth-
ods, which have become increasingly popular because of their efficiency for solving
structured convex programs (e.g., Nesterov et al. (1994), Potra and Wright (2000)).
When the objective function is differentiable and convex and the feasible set is a
polyhedron the Frank-Wolfe method (Frank and Wolfe, 1956) and the simplicial decom-
position algorithm (Von Hohenbalken, 1977) are suitable. For a comprehensive study
of algorithms for convex programming, see for example Boyd and Vandenberghe
(2004) and Ben-Tal and Nemirovski (2001).
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2.21 Subgradient methods

When convexity of the objective function f and of the feasible set C' constitute the
only assumptions on the problem (2), all available solution methods are based on
the notion of subgradients. As stated in Section 2.1, the convexity ensures that sub-
gradients of the objective function f exist on its entire domain. We will for simplicity
assume that X is closed and bounded, i.e., compact, for the remainder of this sec-
tion. The compactness ensures that the set X* is non-empty, i.e., that there exists at
least one optimal solution to the problem (2).

Shor (1967) developed the subgradient method which is an iterative method for
minimizing convex functions. When applying the method to a constrained CP as
the one in (2), the algorithm is called the projected subgradient method and is defined
as follows. Starting at some initial feasible point 0 € C, the iterates =t, t > 1, are
computed according to

it = projc (:Bt — atpt) , t=0,1,..., (8)
where p' is a subgradient to f at ‘, a; > 0 denotes the step length chosen at itera-
tion ¢, and proj. denotes the Euclidean projection onto C.

The convergence of the method defined by (8) to an optimal solution to the CP
in (2) can be shown under specific rules for the computation of the step lengths. For
some early convergence results regarding the subgradient method, see Ermol’ev
(1966). Polyak (1967) showed that when utilizing step lengths fulfilling the so-called
divergent series conditions

tl;rgo ap =0 and tz:;at = 00, )
it holds that lim;—,, f(x!) = f*, meaning that the objective values of the iterates
converge to the optimal objective value of (2). Polyak also showed that the distance
between x! and the solution set X* tends to zero as t — co. Proofs of these results
are found in Shor (1985, Theorem 2.2). Shepilov (1976) further showed that when
assuming that the step lengths also fulfill the condition

> af <o, (10)
t=0

it holds that lim;_,o, ' = &* € X*, i.e., that the sequence of iterates converges to a
specific optimal solution.

So with fairly weak assumptions on properties of the objective function and of
the feasible set, we can provide an iterative solution method for which the iterates
are guaranteed to converge towards the solution set to the CP defined in (2). The
three main drawbacks of the method are that:

a) it can be difficult to find subgradients to f,
b) the projection onto the set C' might not be easily computed, and
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c) its convergence speed may be slow.

In the next sub-section the subgradient method is instead applied to the La-
grangian dual problem defined in (6). As we will see, for the application of the
subgradient method to the dual problem, the the points 4) and b) above will not
pose any problems.

2.2.2 Dual subgradient methods

The Lagrangian dual problem defined in (6) is a CP, implying that the projected
subgradient method described in Section 2.2.1 can be employed. For this particular
problem, the method starts in an initial dual point u € R and then computes
iterates u!, t > 1, according to

ultt = [utfatg(mt)}_p t=0,1,..., (11)

where z! € X (u') solves the subproblem defined in (5) at u = !, which implies
that g(z?) := (g1(x?),...,gm(x"))T € R" is a subgradient to ¢ at u’ (Bazaraa et al.,
1993, Theorem 6.3.4). Further, o, is the step length chosen at iteration ¢ and [- ]+
denotes the Euclidean projection of a point onto the non-negative orthant.

In each iteration, ¢, the subproblem, defined in (5), at w = u' has to be solved,
generating a solution ' € X (u'). This solution automatically provides a subgradi-
ent g(x') to 0 at the point u'; this implies that the drawback a) for the subgradient
method described in Section 2.2.1 is not an issue. Furthermore, since the feasible set
of the Lagrangian dual problem is the non-negative orthant, the Euclidean projec-
tion needed in each iteration can be efficiently performed, which implies that neither
drawback b) is an issue.

We now assume that Slater’s constraint qualification holds (i.e., that the set {x €
X |gi(x) <0,i=1,...,m}is nonempty). This implies that strong duality holds, i.e.,
that * = f*. By applying the convergence results stated in Section 2.2.1 it follows
that by choosing step lengths fulfilling (9) and (10), one obtains convergence of the
dual iterates u' to an optimal solution to the Lagrangian dual problem (6).

However, our aim is still to solve the original CP. Can we hope that the sub-
problem solutions ' € X (u') generated in the subgradient method converge to
an optimal solution to the problem (2)? Unfortunately, the answer is no. In general,
we can not even guarantee that any of the subproblem solutions found during the
subgradient method will be feasible in (2); the reason being non-coordinability (see
Section 2.1.3). In order to obtain convergence to an optimal solution to (2), we will
utilize the notion of ergodic sequences. In each iteration of the method (11), an ergodic
iterate, ', is defined as a convex combination of the subproblem solutions found so
far, according to

t—1 t—1

' => pla®, where pl >0, s=0,....t—1, Y ph=1, t=12,..., (12)
s=0 s=0
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where z* € X (u®) is the subproblem solution found at iteration s. The scalars p
are called as convexity weights. The idea of creating convex combinations of sub-
problem solutions was first presented by Shor (1967), who showed convergence of
the ergodic sequence, Z*, towards the optimal set X * when employing suitable step
lengths and convexity weights for the special case when the CP (2) is an LP. Larsson
and Liu (1997) and Sherali and Choi (1996) developed these ideas further and pro-
posed more general rules for choosing the convexity weights defining the ergodic
sequences. Larsson et al. (1997) extended the results to the more general case when
(2) is a CP. In Paper I we extend these convergence results further to include more
general rules for computing the convexity weights.

In Paper II we analyze the case when the original CP is infeasible, i.e., when
{x e X|gi(x) <0,i=1,...,m} = 0. As described in the end of Section 2.1.2, the
dual problem is then unbounded, meaning that * = +o0o. We show that when em-
ploying the subgradient method (11) on the unbounded dual problem, the sequence
of dual iterates, {u'}, diverge in the direction of steepest ascent of the Lagrangian
dual function. We also show that the sequence of ergodic iterates, { z'}, converges to
a point for which the Euclidean norm of the infeasibility in the relaxed constraints
is minimized, i.e., to a point in the set argmin, ¢ x {||[g(x)]+| }.

2.2.3 Cutting-plane methods

The simplicity of the subgradient method described in Section 2.2.1 comes at the
price of ignoring past information. The information obtained when solving the sub-
problem defined in (5) can be used not only to determine search directions, but also
to build a model of the function f itself.

The basic idea of cutting plane methods is the construction of a piecewise-linear
approximation of the objective function. Each subgradient found during the course
of the cutting plane method can in turn be used to improve the model of the objec-
tive function. The cutting plane method for the problem CP in (2) can be described as
follows. Let 2°, ..., &'~ ! be the iterates found up to iteration ¢ of the method. Then
a lower approximation of f at iteration ¢ is given by the piecewise-linear function

ft : R" — R, defined by
f(@) = max {f(2*)+(p")"(x —a")}, (13)

s=0,...,t—1

where p® is a subgradient to f at °. By construction it holds that fi(x) < f(=), for
all x € C, meaning that the model is an underestimate of the objective function.
The next iterate produced by the cutting plane method is then obtained by solving
the problem to minimize f: over the feasible set C. Note that the function f; can be
modelled by a linear objective function and linear constraints, meaning that when-
ever the feasible set C is a polyhedron, the next iterate can be found by solving an
LP.

One advantage of cutting-plane methods is that they provide lower bounds on
the optimal objective value during the course of the method, implying that nat-
ural stopping criteria can be utilized. A drawback is that the method sometimes
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possesses a zig-zagging behavior of the iterates (Hiriart-Urruty and Lemaréchal,
1993). This drawback is the motivation for the class of methods presented next. For
thorough analyses of cutting plane methods, see Kelley (1960) and Goffin and Vial
(2002).

2.2.4 Bundle methods

Bundle methods can be viewed as stabilizations of the cutting plane method. An extra
point &', called the center, is added to the information provided in iteration ¢ of
the method. The piecewise-linear approximation (13) is still used as a model for the
objective function f, but no longer do we solve the problem of minimizing f; over
the feasible set C' to obtain the next iterate. Instead, the next iterate is computed by
finding

x' € argmin{ft(m)+ &||m§3t1|2}. (14)

xzcC 2

Then the center is updated to be the new iterate if the iterate has improved the
objective value sufficiently as compared to the objective value of the previous center,
ie., if f(z') < f(&'') — &, for some &; > 0.

The quadratic term in the relation (14) stabilizes the cutting plane method. It will
make the next iterate closer to the current center, as compared to the cutting plane
method, by avoiding drastic movements. The role of the parameter . is to control
the trade-off between minimizing the model f; and staying close to the center &'~
which is known to have low objective value.

Depending on how the parameters y; and d; are updated, different versions of
the bundle method are defined. For comprehensive description of bundle methods,
see Lemaréchal et al. (1995) and Kiwiel (1990).

2.3 Applications and modelling

Convex optimization problems appear in many application areas. We next describe
an assortment of such applications.

If a problem can be formulated as a convex optimization problem, then it can
in most cases be solved efficiently. The challenge is in recognizing when and how
a specific problem can be formulated as a CP. Examples of optimization problems
which are non-convex in their natural form are so-called geometric programs (GPs);
problems for which a posynomial f should be minimized subject to the constraints
gi(x) < 1, where g; is a posynomial, for i = 1, ... m. Even though neither the objec-
tive nor the constraint functions are convex, a general GP can still be translated into
a CP by a change of variables and transformation of the objective and constraint
functions (Boyd et al. (2007), Ecker (1980)).

Many problems may, of course, not be formulated as CPs. Convex optimization
can, however, still play a role in solution courses for such problems. One idea is
to combine convex optimization with local optimization methods. If the initial op-
timization problem is non-convex, one first tries to approximate the problem by a
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CP. The solution of the CP (which we assume can be found efficiently) can then be
used as a starting point for a local optimization method applied to the original non-
convex optimization problem. Another idea is to use convex optimization for ob-
taining cheaply computable lower bounds on the optimal value of the non-convex
optimization problem. This can be obtained by, for example, solving the Lagrangian
dual problem, which is a CP even when the original problem is not.

Convex optimization is often used within approximation and fitting. In many
approximation problems the aim is to construct a model that best fits some observed
data and prior information. The variables in the optimization problem represent the
parameters in the statistical model, while the constraints represent prior informa-
tion regarding the parameters (for example nonnegativity). The objective function
is often composed by measures of the differences between the observed data and
the values predicted by the model. Often, the measure used is some norm of the
vector of predicted errors; since all norms are convex functions this implies that the
objective function is convex. For a thorough analysis of how convex optimization is
utilized in the area of data fitting and model approximation, see Boyd and Vanden-
berghe (2004, Chapter 6.1).

In Paper I we describe the nonlinear multicommodity flow problem (NMFP; e.g.,
Bertsekas (1979)) in detail and evaluate the dual subgradient method on a sample
of test instances. The NMFP is a CP where the aim is to send flows of multiple com-
modities between several pairs of source and sink nodes in a network. The objective
function is convex and the feasible set is polyhedral. The NMFP has applications
within, for example, traffic assignment (Patriksson, 1994) and multi-agent planning
systems (Wellman, 1993).

Other problem classes being special cases of convex programs, and for which
specialized solutions methods have been developed, include second order cone pro-
grams (SOCPs) and semidefinite programs (SDPs). SOCPs are generalizations of linear
and quadratic programs that allow for affine combination of variables to be con-
strained inside second-order cones (for a comprehensive analysis, see Lobo et al.
(1998)). In an SDP a linear function is to be minimized over the intersection of the
cone of positive semidefinite matrices with an affine space (for a comprehensive
analysis, see Vandenberghe and Boyd (1996)). Since both SOCPs and SDPs are ef-
ficiently solvable by interior point methods, they are becoming increasingly popular
in areas such as combinatorial optimization (e.g., Alizadeh (1995), Goemans (1997))
and control theory (e.g., Parrilo and Lall (2003), Yao et al. (2001)).



Emil Gustavsson 13

3 Mixed binary linear optimization

This section provides a short introduction to the area of mixed binary linear opti-
mization. For comprehensive analyses, see, for example, Nemhauser and Wolsey
(1989) and Wolsey (1998). A mixed binary linear program (MBLP) can be expressed as
the problem to find

2* ;= infimum ', (15a)
subjectto Ax > b, (15b)
x; €{0,1}, ‘€T, (15¢)

where c € R", A € R™*", b € R™,and Z C {1,...,n}. The set 7 denotes the set of
indices of variables in the optimization problem (15) which are required to be binary.
These variables typically represent so-called either/or decisions, meaning that, for
example, you either buy a machine or not. The name MBLP stems from the fact that
relaxing the binary requirements (15c) yields an LP, which denotes an optimization
problem composed by affine constraints and a linear objective function.

In Section 3.1 the important mathematical properties of MBLPs are presented
and analyzed, in Section 3.2 the importance of modelling with mixed binary linear
optimization is discussed, and in Section 3.3 a selection of solution procedures for
MBLPs are presented. Section 3.4 describes how mixed binary linear optimization
can be used for scheduling maintenance operations, and in Section 3.5 a number of
other applications of MBLPs are presented.

3.1 Problem properties

Consider the following small example, in which the objective is to find

Z¥ ;= minimum — x7 — 32, (16a)
subject to r1 + 12 < 2, (16b)

2x9 < 3, (16c¢)

xo >0, (16d)

xp € {0,1}. (16€)

Relating to the general definition of an MBLP in (15), it holds that

-1 0 0\"
c=(-1,-3)7, A:(l 9 1) , b=(-2,-3,00", and Z={1}.

The problem (16) is illustrated in Figure 4, where the line segments marked in grey
represent the feasible set. The optimal solution to the problem (16) is z* = (1,1)T
with objective value z* = —4.

We first note that the feasible set of the MBLP defined in (16) is non-convex. In
general, the MBLP defined in (15) is non-convex whenever Z # () and the set defined
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Figure 4: llustration of the MBLP defined in (16). The grey area represent the feasible set
defined by constraints (16b)—(16e). The optimal solution is =* = (1,1)".

by the constraints (15b) is not a singleton (if Z = (), then the problem is an LP),
meaning that the theory presented in Section 2 may not be utilized here. A general
MBLP is NP-hard, which basically means that there does not exist any algorithm
which can solve the MBLP within a time bounded by a polynomial in the size of
the problem. For comprehensive analyses and rigorous definitions of computational
complexity in general and NP-hardness in particular, see Papadimitriou (1994) and
Garey and Johnson (1979).

As described in Section 2.3, one important aspect of convex optimization is its
application to non-convex optimization problems. By constructing and solving a
CP which is a relaxation of the original (non-convex) optimization problem, one can
obtain a lower bound on the optimal objective value of the original problem. One
relaxation of the MBLP in (15) is achieved by replacing the binary requirements
(15¢) by continuous relaxations, i.e., by requiring that z; € [0,1], ¢ € Z. The resulting
problem is denoted the LP relaxation of the MBLP and is defined as the problem to
find

zip = infimum c'zx, (17a)
xT

subjectto Az > b, (17b)

z; €[0,1], iel. (17¢)

Clearly, since the problem (17) is a relaxation of the problem (15), it holds that 2, <
z*. The LP relaxation of the example in (16) has the optimal solution zj, = (3,2)"
with objective value z{, = —5 (see Figure 5a).

Another relaxation of a MBLP is the so called convex relaxation, which is the prob-
lem obtained when replacing the constraints (15b) and (15c) with the convex hull of
the set defined by the constraints, i.e., the problem to find

24p 1= inﬁr;lum clx, (18a)

Ax > b, )

z; €{0,1}, i€l (18b)

subjectto x € conv <a: e R"
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(@) The LP relaxation of (16). The
grey area illustrates the set {x €
R™| Az > b,z; € [0,1],i € Z)}. The
optimal solution to the relaxed prob-
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(b) The convex relaxation of (16).
The grey area illustrates the set
conv(z € R"|Ax > byx; €
{0,1},4 € Z). The optimal so-
lution to the relaxed problem is
x&p = (1,1)" with objective value

)T

Zép = —4.

Figure 5: Illustrations of the LP relaxation and the convex relaxation of the MBLP (16).

The problem (18) results in an LP since the feasible set described by (18b) is a poly-
hedron. It actually holds that z&p = 2* (Nemhauser and Wolsey, 1989, Theorem 6.3
of Section 1.4.6). The convex relaxation of the example in (16) is illustrated in Fig-
ure 5b. For this particular example it holds that the solution set (being the singleton
(1,1)T) to the convex relaxation equals that of the original MBLP. In general, it only
holds that the solution set to the original MBLP is a subset of the solution set to the
convex relaxation (Nemhauser and Wolsey, 1989, Theorem 6.3 of Section 1.4.6). For
an example where the two solution sets are not equal, consider the adjustment of
example (15) where the objective function is replaced by —z; — 2x5.

In general, the convex relaxation is always stronger than the LP relaxation in the
sense that the feasible set of the convex relaxation is contained in the feasible set
of the LP relaxation. Hence, the optimal objective value of the convex relaxation is
always at least as high as that of the LP relaxation. To solve the relaxed problems,
one first needs to formulate them as LPs, which requires the feasible sets to be de-
scribed by affine inequalities and equalities. The feasible set of the LP relaxation can
easily be described in this way by just replacing the constraints (15¢) with the affine
constraints x; € [0,1], i € Z. But for the convex relaxation, there does not exist any
efficient general approach to construct the feasible set using only affine constraints;
it is possible by generating exponentially many {0, 1 }-Chvétal-Gomory cuts, but
this is not classified as computationally efficient (Gentile et al., 2006). This is the rea-
son why the LP relaxation is often the basis for many methods for solving MBLPs,
as we will see in Section 3.3. But first a few notes regarding the importance of good
modelling.
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(a) The LP relaxation of (16). The opti- (b) The LP relaxation of (19). The opti-
mal solution is @fp = (1, 2)" with mal solution is x}p = (1,1)T with
objective value z{p = —5. objective value z{p = —4.

Figure 6: Illustration of the LP relaxations of the two equivalent problems (16) and (19).

3.2 The importance of good modelling

MBLPs can be formulated in many ways and the model selected has a vital impact
on the solvability of the problem. Two models for a MBLP can be equivalent in the
sense that they possess the same feasible set, while their LP relaxations, however,
possess different feasible regions. Consider the following model

minimize — z; — 32, (19a)
subjectto  x1 + 2z5 < 3, (19b)
T9 > 0, (19¢)
x1 €{0,1}. (19d)

The problem modelled in (19) is equivalent to that modelled in (16), because they
possess the same feasible set and the same objective function. However, their LP
relaxations are not equivalent, as illustrated in Figure 6. For the model (19), it further
holds that the LP relaxation and the convex relaxation are equivalent.

The difference between the optimal objective values of an MBLP and its LP re-
laxation is called the integrality gap. The smaller the integrality gap is, the better (or
stronger) the model is. For the problem defined in (16), we would then say that the
model (19) is a stronger formulation than the one in (16).

The importance of modelling when considering MBLPs cannot be understated.
As Nemhauser and Wolsey (1989, p. 14) states: “In integer programming, formu-
lating a “good’” model is of crucial importance to solving the model”. The concepts
of strong and weak formulations of models of MBLPs are discussed in Papers IV
and V.
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3.3 Solution procedures

In general MBLPs are much harder to solve than LPs; the main reason is that the con-
vexity of the LP is lost when adding binary requirements to some of the variables.
For LPs, the KKT optimality conditions give rise to efficient solution methods such
as the simplex method (e.g., Murty (1983)) or interior point methods (e.g., Nesterov
et al. (1994) and Potra and Wright (2000)). For MBLPs, such conditions cannot be
formulated, so instead the methods need to rely on other properties of the problem.

The solution procedures that exist for MBLPs are characterized as enumeration
methods, relaxation methods, cutting plane methods, or heuristics. For a comprehensive
study of methods for solving MBLPs, see Lodi (2010).

One simple (and naive) approach to solve the MBLP in (15) is to enumerate all
possible combinations of binary values for the binary variables z;, i € Z, and solve
the corresponding LP (which is obtained when the binary variables are fixed) for
each such combination. This approach, which is an enumeration approach, would
require the solution of 217l LPs which, for many practical applications, is highly
intractable. In Section 3.3.1 a more efficient enumeration method, called the branch-
and-bound method, is described. Relaxation methods use relaxations which are also
simplifications of the problem formulation, in the sense that the relaxed problem is
computationally less expensive than the original one. In Section 3.3.2 such a method,
based on the concept of Lagrangian relaxation (described in Section 2.1.2), is pre-
sented. Cutting plane methods are based on the repeated solution of LP relaxations
of the problem. In each new iteration, one or several constraints are added to the
model in order to construct a stronger linear model of the problem. Section 2.2.3
describes in more detail the ideas of cutting plane methods. Heuristics are methods,
which can be based on very simple rules or solutions to complicated optimization
problems, or something in between, in order to obtain feasible solutions to the MBLP
(for studies regarding heuristics for MBLPs, see Balas et al. (2004) and Lokketangen
and Glover (1998)). There are, in general, no guarantees that a heuristic will find
an optimal solution to the problem. However, heuristics are often fast and easily
implemented, and can in many cases produce near-optimal solutions.

3.3.1 Branch-and-bound methods

Branch-and-bound methods are enumeration methods based on the idea to partition
the feasible region of the problem into sub-regions and solve a relaxed problem over
each sub-region. The relaxation used is in most cases the LP relaxation, which means
that a branch-and-bound method relies heavily on efficient solution methods for
LPs.

Consider the problem (15) and its LP relaxation (17), obtained by relaxing the bi-
nary requirements (15c). A simple version of the branch-and-bound method can be
described as follows. Construct the LP relaxation (17) and define a root node corre-
sponding to this LP. Solve the LP relaxation to obtain a solution x; . If this solution
is feasible in (15), i.e., if all the variables x;, ¢ € Z, possess binary values, then termi-
nate. Otherwise, choose a variable, x; say, for which zj is fractional, and introduce
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two new problems, in which the constraints z; = 0 and z; = 1, respectively, are
included in the model. This procedure is denoted as ”branching on the variable z;”.
The two new LPs correspond to two new nodes in the branch-and-bound tree. Solve
the LPs corresponding to these two nodes and branch further (as done in the root
node) if the solutions are not feasible in the original problem. Prune a node when-
ever a) the optimal objective value of the LP is higher than that of the best found
feasible solution to (15), or b) the LP is infeasible. The procedure continues branch-
ing on variables in the tree until all leaves (the nodes which have not branched
further) either have been pruned or possess solutions which are feasible in (15). For
a more elaborate description of the branch-and-bound method and an introduction
of important concepts within the framework, such as presolve, branching rules, and
cutting planes, see Lodi (2010).

It should be noted that, in the worst case, the branch-and-bound method may
reduce to a complete enumeration scheme (described in the beginning of Section
3.3). The success of the method relies to a large extent on how strong (in the sense
of its LP relaxation) the model defining the problem is. A stronger model leads to
better lower bounds which lead to earlier (and thus much more efficient) pruning
of the nodes.

The branch-and-bound method for general integer linear programs was intro-
duced by Land and Doig (1960) and Dakin (1965). The method has since then be-
come increasingly popular as an exact solution procedure for MBLPs and several
solvers exist, both commercial ones such as Gurobi, CPLEX, and EXPRESS, and
open-source ones such as SCIP, GLPK, and COIN-OR.

3.3.2 Dual subgradient methods and Lagrangian heuristics

For some MBLPs, enumeration methods such as the branch-and-bound method
may not be suitable. This can occur when, for example, the size of the problem is
too large, which leads to an intractably large branch-and-bound tree. For such prob-
lems one has to rely on relaxation methods and/or heuristics. The following method
is a hybrid between the two.

When presenting the theory of Lagrangian duality in Section 2.1.2, no additional
assumptions were needed for the weak duality theorem to hold. The weak duality
theorem states that the value of the Lagrangian dual function at a u € R underesti-
mates the optimal objective value of the original primal problem. So by constructing
the Lagrangian dual function 6 corresponding to the MBLP in (15) by relaxing a sub-
set of the constraints (15b), lower bounds on the optimal objective value of (15) are
obtained by evaluating the dual function ata w € R’ Since the MBLP is not convex,
we can, however, not expect the strong duality theorem is applicable.

In Paper III we propose to utilize the dual subgradient method described in Sec-
tion 2.2.2 on the MBLP in (15). When the original problem is a CP it holds that the
sequence of ergodic iterates {Z'} converge towards the solution set to the original
problem. For the case when the problem is an MBLP, such strong convergence re-
sults do not hold. It holds, however, that the ergodic sequence converges to the solu-
tion set to a convexified version of the original MBLP. The convexified version is the
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problem, in which the constraints that are not Lagrangian relaxed are replaced by
the convex hull of the corresponding feasible set. When the model representing the
problem is strong, it holds that the solution set to the convexified version lies close
to the solution set to the original problem. So by utilizing the ergodic iterates as
starting points in local search procedures, this results in heuristics which hopefully
provide solutions of good quality.

As stated at the beginning of this section, there exist a variety of solution meth-
ods for MBLPs, and here only a subset have been presented. We now continue in the
next two sections with some applications where mixed binary linear optimization
has been utilized.

3.4 Applications to maintenance scheduling

Maintenance can be described as a set of activities performed to ensure that a system
stays operational. To schedule maintenance activities means to specify at what times
the different maintenance activities should be performed. Such decisions are often
mathematically modelled using binary variables, denoting whether maintenance
should be performed or not at a specific point in time. This means that optimization
models occurring within maintenance scheduling often are MBLPs. The purpose
of this section is to give an introduction to maintenance scheduling, which is the
subject of Papers IV and V.

Maintenance activities are often characterized as either preventive maintenance
(CM) or corrective maintenance (CM). PM denotes the scheduled maintenance activ-
ities performed in order to prevent failures of the system, while CM denotes the
activities performed after a failure has occurred and in order to restore the system
to an operational state. A second important characterization of maintenance activi-
ties is defined by the type of system considered—whether it is a single- or a multi-
component system. Most of the research on maintenance scheduling until the 1990s
focused on single-component systems; for a survey of that field, see Wang (2002).
In the present work, however, the focus is on maintenance of multi-component sys-
tems with dependencies between the components. When dependencies are negli-
gible (or neglected), one can apply single-component models for individual com-
ponents, otherwise, one must consider the entire system in order to optimize the
scheduling activities. Dependencies are categorized as either economic, structural,
or stochastic. Positive (negative) economic dependencies imply that maintenance si-
multaneously performed on several components is less (more) expensive than when
it is performed on the same set of components but at different points in time. Struc-
tural dependencies can imply, for instance, that maintenance on one component
enforces the removal of another component. Stochastic dependencies arise, for in-
stance, when the degradation of one component is correlated with that of another
component. For comprehensive overviews of maintenance scheduling optimization
in general, see Nicolai and Dekker (2008), Pham and Wang (2000), and Pintelon and
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Gelders (1991).

In Paper IV we introduce the preventive maintenance scheduling problem with inter-
val costs (PMSPIC), which is the problem of scheduling PM of a multi-component
system with positive economic dependencies over a finite discretized time horizon.
An MBLP model for the PMSPIC is introduced and solved using commercial opti-
mization software. The polyhedral properties of the model is thoroughly analyzed
and the computational complexity of the problem is discussed.

In Paper V the problem of scheduling tamping operations on ballasted rail tracks is
analyzed and an MBLP model is introduced. The system considered is a set of rail
track sections, which constitute the components of the system, and the maintenance
activities considered are characterized as PM. The binary variables in the model
denote whether or not maintenance should be performed on a given track section
at a specific point in time, while the continuous variables describe the conditions
of the track sections over time. Also here positive economic dependencies between
the components exist, since set-up costs are paid each time any tamping is being
performed on the system.

3.5 Other applications

There are numerous other applications for which MBLPs are utilized. In this section
three problem classes are presented; covering problems, flow problems, and problems
with disjunctive constraints.

Covering problems are optimization problems where the aim is to find a combi-
natorial structure of minimum cost which covers another structure. The most stud-
ied covering problem is the set covering problem, in which the aim is to choose a sub-
set of columns in a 0-1-matrix such that each row is covered by at least one of the
chosen columns. For a comprehensive analysis of the set covering problem, see, e.g.,
Caprara et al. (2000). In Paper III the dual subgradient method described in Section
3.3.2 is evaluated on a sample of set covering instances. Other covering problems
include the vertex cover problem (e.g., Chen et al. (2001)) and the edge cover problem
(e.g., Horton and Kilakos (1993)).

In flow problems the aim is to find the cheapest possible way of sending flow
through a network. One example of a flow problem is the fixed-charge network flow
problem (e.g., Kim and Pardalos (1999)), in which a fixed charge needs to be paid
for sending any flow through an arc in the network. The binary variables in the
model represent whether the arcs are opened or not, and the continuous variables
represent the amount of flow sent on each arc.

In the usual statement of optimization problems, it is assumed that all of the con-
straints must be satisfied for a point to be called feasible. But in some applications,
only a subset of the constraints need to be fulfilled for a solution to be acceptable. In
such cases, we say that the constraints are disjunctive. Disjunctive constraints arise
naturally in scheduling problems where several jobs need to be processed on a ma-
chine and where the order of the jobs is not specified. Then disjunctive constraints
of the type either “job i precedes job j or vice versa” occur. By introducing binary
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variables representing whether or not a constraint is fulfilled, the disjunctive con-
straints can be incorporated into an MBLP formulation. For more comprehensive
analysis, see Balas (1998).

4 Summary and conclusions

The sections above are short introductions to the areas of convex and mixed binary
linear optimization. For more elaborate descriptions of the notions introduced, see
the references proposed in the text. The continuation of this section is as follows. In
Section 4.1 the main contributions of the papers appended in the thesis are summa-
rized, and in Section 4.2 some current and future research ideas are discussed.

4.1 Contributions of the thesis

This section presents a short summary of the main contributions of the thesis within
the areas convex and mixed binary linear optimization.

Within convex optimization the main contributions are the following. Conver-
gence results regarding sequences of ergodic iterates obtained from a dual subgra-
dient method are generalized from the case when the primal problem is an LP to
the general case when it is a CP. A new set of rules for constructing the sequences
is introduced and evaluated on a sample of nonlinear multicommodity flow prob-
lems; the computational results clearly demonstrate that the new rules outperform
previously proposed ones (Paper I). Theoretical analyses and convergence results
for both the primal and dual sequences of iterates obtained in a dual subgradient
method are developed for the special case when the primal problem is infeasible.
The sequence of primal ergodic iterates is shown to converge to the set of points
possessing minimum infeasibility in the relaxed constraints (Paper II).

In mixed binary linear programming the contributions are the following. The
employment of a dual subgradient method on a general MBLP is analyzed and
convergence results for the sequences of ergodic iterates constructed are developed
(Paper III). A thorough analysis of the complexity and polyhedral properties of an
MBLP model of the preventive maintenance scheduling problem with interval costs
is presented, and numerical results on three case studies demonstrate the usefulness
of the model (Paper IV). A MBLP model for the problem of scheduling tamping
operations on ballasted tracks is extended by including economic dependencies be-
tween the track segments. The complexity and polyhedral properties are analyzed
and the results from a numerical study show that the extended model can be solved
more efficiently as compared with the previously proposed one (Paper V).

4.2 Future research

The idea of constructing sequences of ergodic iterates from the subproblem solu-
tions obtained in a dual subgradient scheme is evaluated on a sample of nonlin-
ear multicommodity flow problem instances in Paper 1. The computational results
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demonstrate that the proposed set of rules for the convexity weights defining the
sequences outperforms previously proposed ones on the test instances. One natural
continuation of this is to evaluate the performance of the procedure on other prob-
lems for which subgradient schemes have proven successful, for example within the
fields network design (e.g., Balakrishnan et al. (1989) and Frangioni and Gendron
(2009)) and traffic assignment problems (e.g., Patriksson (1994)). Another extension
of the results regarding the dual subgradient method is to analyze the convergence
of the sequence of ergodic iterates when allowing for inexact solutions of the sub-
problems; solutions providing e-subgradients to the dual objective function.

We are currently investigating the possibility of utilizing the sequences of er-
godic iterates obtained from the dual subgradient method applied to a MBLP within
a branch-and-bound method. The ergodic iterates are then used as starting points
in heuristics for finding feasible solutions, as well as providing input to branching
decisions in the branch-and-bound nodes. A similar approach is employed by Gortz
and Klose (2012), but without our proposed set of rules for computing the convexity
weights defining the sequences.

Another future research plan is to analyze the usefulness of both the PMSPIC
introduced in Paper IV and the scheduling problem introduced in Paper V when
considering real life case studies. Numerical results show that the proposed mod-
els can reduce the total maintenance costs considerably, compared to using simple
heuristics for constructing the maintenance schedules. But in order to validate the
models further, more realistic case studies need to be set up and analyzed.
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5 Summary of the appended papers

This section contains a summary of the papers appended to the thesis. The empha-
sis is on presenting the theory and results in a less formal style than in the papers
themselves.

5.1 Paper I: Primal convergence from dual subgradient methods
for convex optimization

(coauthored with Michael Patriksson and Ann-Brith Stromberg)

Subgradient optimization methods applied to Lagrangian dual formulations of stru-
ctured optimization problems are often able to quickly identify near-optimal solu-
tions to the dual problem. They do, however, not automatically provide primal fea-
sible or primal optimal solutions. In this paper, we consider a convex (and possibly
non-smooth) optimization problem, which is Lagrangian relaxed. A subgradient op-
timization method is applied to the corresponding dual problem and convergence
to a dual optimal solution is ensured by employing divergent series step lengths.
We create ergodic primal iterates as convex combinations of subproblem solutions
found during the previous subgradient iterations; convergence of these to a primal
optimal solution is established through suitable rules for the convexity weights.

The main result presented in this paper is the generalization of the convergence
results for a class of convexity weight rules developed by Sherali and Choi (1996)
from linear programs to general convex and nonsmooth optimization problems.
Larsson et al. (1999) established convergence for two convexity weight rules for
general convex programs. These rules are shown to be special cases of the class
of convexity weight rules developed in this paper.

We further propose a new set of rules for choosing the convexity weights defin-
ing the ergodic primal sequences. The rules proposed are such that—in contrast to
the previously proposed rules—more weight is assigned to later subproblem solu-
tions than to earlier ones. In order to evaluate the computational efficiency of the
new convexity weight rules, we apply the subgradient method to a set of nonlinear
multicommodity network flow problems. The computational results are convincing
and show that the new rules create ergodic sequences that converge to the solution
set considerably faster than those created by previously developed rules.

My contributions to the paper: Performed the major part of the theoretical devel-
opment, the writing, and the numerical tests.

The paper is published in Mathematical Programming 150:365-390 (2015). Re-
sults from the paper have been presented at the 21st International Symposium on
Mathematical Programming (ISMP 2012), Berlin, Germany, 2012, and at the confer-
ence Nonlinear optimization: A bridge from theory to practice, Erice, Italy, 2013.
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5.2 Paperll: Ergodic, primal convergence in dual subgradient sche-
mes for convex programming, II—the case of inconsistent pri-
mal problems

(coauthored with Torbjorn Larsson, Michael Patriksson,
Ann-Brith Strémberg, and Magnus Onnheim)

We employ the dual subgradient method described in Section 2.2.2 on an in-
feasible convex optimization problem (convex in the sense that the objective and
constraint functions are convex, and that the ground set X is also convex). The dual
iterates constructed by the method are shown to diverge in a steepest feasible ascent
direction of the Lagrangian dual function.

An interesting question is whether or not the sequence of ergodic iterates still
yield relevant information regarding the primal program? We answer this question
in the affirmative and show that the primal-dual pair of programs is associated with
a saddle-point problem, in which the primal part amounts to finding a solution in
the primal space such that the Euclidean norm of the infeasibility in the relaxed
constraints is minimized. We show that the sequences of ergodic iterates obtained
in the subgradient method converge to a solution with minimum infeasibility; for
linear programs, convergence to the subset of such solutions in which the primal
objective is at minimum is also achieved.

My contributions to the paper: Taken an important part in the theoretical devel-
opment as well as in the writing of the paper.

The paper has been submitted to Mathematical Programming, Series A. Results
from the paper have been presented at the 21st International Symposium on Mathe-
matical Programming (ISMP 2012), Berlin, Germany, 2012, and at the Optimization
and Systems Theory Seminar, Department of Mathematics, KTH, Stockholm, Swe-
den, 2012.

5.3 Paper III: Recovery of primal solutions from dual subgradient
methods for mixed binary linear programs

(coauthored with Torbjorn Larsson, Michael Patriksson,
and Ann-Brith Stromberg)

The main contribution of this paper is the description of how ergodic primal iterates
can be utilized for constructing feasible solutions to mixed binary linear programs
(MBLP). We show that, when employing a subgradient method to the Lagrangian
dual of an MBLP, the sequence of ergodic primal iterates converges to the set of so-
lutions to a convexified counterpart of the original MBLP. For problems possessing a
small duality gap, one expects that the set of solutions to the convexified version lies
close to that of the original problem. We argue, therefore, that it is useful to utilize
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the information contained in the sequence of ergodic primal iterates for constructing
feasible solutions to the original MBLP.

We propose three procedures for using these ergodic primal iterates to obtain
feasible solutions. The first procedure is a Lagrangian heuristic, which utilizes the
information contained in the ergodic sequences to construct feasible solutions to the
original problem. The second procedure constructs a core problem, in which some
of the variables in the original problem have been assigned fixed values. The third
procedure introduces a framework for utilizing the dual subgradient method within
a branch-and-bound method.

The Lagrangian heuristic is applied to a sample of uncapacitated facility location
problem instances; the numerical results show that the proposed heuristics clearly
outperforms the traditional Lagrangian heuristic, in which only the latest subprob-
lem solution is utilized for constructing a feasible solution. The core problem proce-
dure is evaluated on a sample of set covering instances; the numerical results show
that the size of the core problems created are considerably smaller than the original
problems while the solutions obtained are still in many cases optimal in the original
problems.

My contributions to the paper: Performed the major part of the writing, the nu-
merical tests, and took part in the theoretical development.

5.4 Paper IV: Preventive maintenance scheduling of multi-com-
ponent systems with interval costs

(coauthored with Michael Patriksson, Ann-Brith Stromberg,
Adam Wojciechowski, and Magnus Onnheim)

In this paper we consider the preventive maintenance (PM) scheduling of a multi-
component system with economic dependencies. We model the corresponding de-
cision problem by scheduling a set of PM activities for a system consisting of a set
N of components over a discretized time horizon represented by the discrete set 7.
A maintenance occasion cost d; arises if PM on any component in the system is per-
formed at time ¢ € 7. An interval (or deterioration) cost ¢, has to be paid if PM is
performed on component i € A at the times s and ¢, but not in-between.

We introduce the PM scheduling problem with interval costs (PMSPIC), which
is that to schedule the PM of the system such that the sum of all the maintenance
occasion and interval costs is minimized. A binary linear program (BLP) is devel-
oped for the PMSPIC; it was originally introduced for the dynamic joint replenishment
problem (DJRP) in Joneja (1990).

The contributions of Paper III include theoretical analyses of the complexity and
polyhedral properties of the BLP. We show that the integrality restrictions on a sub-
set of the variables in the BLP mode can be relaxed. We also establish that the nec-
essary inequalities define facets of the convex hull of the set of feasible solutions to
the BLP model.
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Three case studies originating from the railway, aircraft, and wind industries,
respectively, demonstrate the practical usefulness of the model. In the case study
from the railway industry, the interval costs correspond to costs incurred by the
degradation of the rail. In the aircraft and wind turbine cases, the interval costs
correspond to the expected corrective maintenance (CM) costs for components ex-
hibiting stochastic failures. Using the model can reduce the maintenance costs by
up to 15% compared to the best simple policies.

My contributions to the paper: Took a considerable part in the theoretical devel-
opment, the writing, and performed numerical tests.

The paper is published in Computers & Industrial Engineering 76:390-400 (2014).
Results from the paper have been presented at the 21st International Symposium on
Mathematical Programming (ISMP 2012), Berlin, Germany, 2012, and the Swedish
Operations Research Conference and 6th Nordic Optimization Symposium (SOAK
/NOS6 2013), Chalmers, Goteborg, Sweden, 2013.

The results were developed within the project "MU26: Optimum inspection and
maintenance of rails and wheels” at CHARMEC (Chalmers Railway Mechanics).

5.5 Paper V: Scheduling tamping operations on railway tracks us-
ing mixed integer linear programming

The problem of scheduling tamping operations on ballasted rail tracks is consid-
ered in this article. The objective of the problem is to minimize the total mainte-
nance costs, while retaining an acceptable condition of the geometry of the track.
A degradation model is employed to describe the degradation of the geometry of
the track segments, and an MBLP model for the scheduling problem is presented
and analyzed. The proposed model extends the one proposed by Vale et al. (2011)
by including economic dependencies between the rail track segments, as well as by
employing a more general objective function to be minimized in the model.

The model is validated through a numerical study comparing the performance
of the model with that of simple policies for constructing PM schedules. Using the
proposed model reduces the maintenance costs by up to 10 % as compared with the
best policy investigated.

The paper is published in EURO Journal on Transportation and Logistics 4:97-
112, Issue 1: Transportation Infrastructure Management (2015). Results from the pa-
per have been presented at the SIAM Conference on Optimization, San Diego, USA,
2014, and at the conference Industrial Efficiency, SICS, Stockholm, Sweden, 2014.

The results were developed within the project "MU26: Optimum inspection and
maintenance of rails and wheels” at CHARMEC (Chalmers Railway Mechanics).
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