
Version Control Systems in Corporations:
Centralized and Distributed
An explorative case study into the corporate use of version control
systems
Bachelor of Science Thesis in the Software Engineering & Management Program

MY HÖGBLOM
VIKTOR GREEN

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, June 2013

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Version Control Systems in Corporations: Centralized and Distributed
An explorative case study into the corporate use of version control systems

My Högblom
Viktor Green

© My Högblom, June 2013.
© Viktor Green, June 2013.

Examiner: Matthias Tichy
Supervisor: Henrik Sandklef

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden June 2013

Version Control Systems for Corporations:
Centralized and Distributed

An explorative case study into the corporate use of version control systems

My Högblom
Gothenburg University, Sweden

my@student.gu.se

Viktor Green
Gothenburg University, Sweden

viktor@student.gu.se

ABSTRACT
Version control systems are important to all software de-
velopment companies, and has been in use since the 1970s.
This case study examines the effects version control systems
have on two companies’ configuration management strate-
gies, and analyzes if a particular way of working influences
the use of version control systems.

The study’s main contribution is an analysis in how compa-
nies work with version control systems, and what drawbacks
they see in their current systems. The analysis yields both
expected and unexpected results, and the implications can
probably be generalized to any software development com-
pany.

The units of analysis for this case study are two differently
sized software development companies in Sweden. Between
them they represent both co-located and distributed teams;
and using both centralized and distributed version control
systems.

Our conclusions are most notably that the type of version
control system only has a limited effect on the configuration
management strategy. We also found that features that are
desired by companies are more user-friendly graphical user
interfaces, atomic commits, better merging tools, integration
with project lifecycle, and better handling of different file
types.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management

General Terms
Configuration Management

Keywords
Version Control Systems, Distributed

1. INTRODUCTION
Version control systems (VCS) are often used in companies
today for developers to store their source code, documen-
tation, and other files. Currently there are basically two
types, or philosophies, among VCSs: centralized systems
(e.g. Perforce or Subversion) and distributed systems (e.g.
BitKeeper or Mercurial). The fundamental difference is that
a centralized VCS has a central repository that all develop-
ers connect to, while in a distributed VCS each developer
has their own complete copy of the repository.

As companies are always looking to improve their produc-
tivity they are increasingly looking into changing their VCSs
to newer distributed systems. Companies therefore need an
unbiased analysis of different solutions in order to select a
VCS based on research rather than personal preference.

Currently there is very limited research done in this area,
and most articles focus on the open source perspective. Re-
searchers therefore need to study what advantages and dis-
advantages different tools and philosophies have for different
ways of working.

For this study we are interested in finding out how com-
panies choose between centralized and distributed VCSs, as
well as features that they feel are lacking in current systems.
For example, will a company with a co-located development
team use a centralized VCS? In addition, will a company
with teams distributed across the globe prefer a distributed
VCS? Another perspective that we are interested in is how
the configuration management (CM) strategy at a company
affects the use of VCSs and vice versa.

This leads us to the research questions for this study:

• To what extent does the type of VCS affect the CM
strategy at a software development company?

• What features are desirable of a future VCS for com-
panies?

These research question are interesting to study in order to
see the effects VCSs have on different types of development
teams. Another interesting aspect is whether or not the
advantages and disadvantages of distributed VCSs in com-
parison to centralized VCSs, affect different CM strategies
in the same way.

1

The rest of this study is outlined as follows. First a back-
ground and review of related work is provided. Next the
method for data collection and analysis which we followed
is described. In the next section the results of the data col-
lection and analysis are displayed. Subsequently, the discus-
sion of the results are presented, and finally, the conclusions
which were drawn from our results are listed.

2. BACKGROUND
In this section we provide a brief history of VCS relevant to
the study, as well as a theoretical background to our study.

2.1 History of VCS
Version control began as local source code management on a
mainframe computer with connected terminals, e.g. Source
Code Control System (SCCS) [1, 21]; this type of version
control kept all metadata in the actual source code and used
locking to inhibit concurrent changes [21].

In the nineties, as personal computers became popular, VCSs
evolved into systems that would check in and out against a
centralized server, and Concurrent Versions System (CVS)
was the first implementation of a centralized VCS as we see
them today [1, 13]. These centralized systems brought pos-
sibility to access the system from a remote computer, and
started out as nothing more than scripts that wrapped the
function of a local VCS [13].

In the mid 1990s the proprietary centralized VCS, Perforce
saw the light of day. It has since become a well known VCS,
used for some time by both Microsoft and the Perl 1 project
[8, 16, 24].

Due to the lack of a better free alternative, CVS had in
2000 become the de facto standard in the open source com-
munity [6]. At this time, a few developers set out to create
Subversion with the explicit goals of trying to fix or replace
CVS [1, 5, 6]. In the mid 2000s, Subversion had already
gotten a considerable user-base, and surpassed CVS as the
first choice of VCS [5, 16].

A second paradigm shift took place in 2002 when BitKeeper
was released as the first distributed VCS [1]. Developers now
had their own working copy of the repository locally, and this
was then synced and merged via the VCS. BitKeeper was
adopted early by the Linux project, but in 2005 Linus Tor-
valds decided to create a new VCS when BitKeeper became
what he called politicized [15]. What he meant by this was
that ”the relationship between the community that developed
the Linux kernel and [BitMover2] broke down, and the tool’s
free-of-charge status was revoked.” [4].

The new VCS Torvalds created was Git; a distributed VCS
that lately has increased in popularity [4]. In a survey from
2011, Git was the third most used VCS, after CVS in second
and Subversion in first place (with more than 50% of the
users) [10].

1Perl is an open source general purpose scripting language,
initially developed for use on Unix.
2BitMover is the commercial company that develops Bit-
Keeper

At the same time as Git, another distributed VCS was born:
Mercurial [19]. Mercurial, however, has not reached the
same popularity as Git; in the 2011 survey, Mercurial is one
place below Git (a place Mercurial shares with Perforce) [10].

In the same survey taken 2012, Git saw even bigger numbers
than the year before. Git was at this time the second most
used VCS, with more than a fourth of all respondents saying
they are using Git as their primary VCS [11]. This indicates
that distributed VCSs are quickly gaining popularity. On
the other hand Mercurial stayed in fourth place, but this
time with a lower score [11]. This might indicate that it is
not distributed VCSs in general that are gaining popularity,
but rather that the specific VCS Git is gaining popularity.

2.2 Centralized vs. Distributed
Both centralized and distributed VCSs are largely in use
today, although centralized version control is the most com-
mon [8]. Centralized systems work based on the client/server
model and lets users work with code from a single central
repository, while using either locking or merging to han-
dle synchronization [14]. Rodŕıguez-Bustos & Aponte, and
de Alwis & Sillito identified challenges surrounding the use
of centralized VCSs [8, 22]:

• They require a network connection to work on the
source code

• Developers must ask for permission in order to con-
tribute to a project

• A single point of failure is an issue when using one
server

Distributed systems on the other hand, let the user down-
load a copy of the repository locally. Changes can then
be merged and pushed into a master repository [1, 8, 14].
The biggest benefits of distributed VCSs is the possibility
to work offline, and that they allow non-core committers to
contribute to the development [8, 22].

We have not found any research articles that identify the
disadvantages of distributed VCSs. However, on the online
forum Stack Overflow, we found that the two most common
complaints about distributed VCSs are that:

• Pessimistic locks are not available [25].

• They have weak tools for binary files [20].

The distributed VCSs Git and Mercurial were developed as a
reaction to that BitKeeper was no longer free to use. These
tools have been adapted to open source projects3 to fit their
specific needs. Some of the most important factors for open
source projects are being able to work offline, using change-
sets instead of full versions, and flexibility in using different
workflow models.[22]

3For example Mozilla, Python, KDE, NetBeans, Eclipse,
GNOME, which used to employ CVS or SVN

2

3. METHODOLOGY
This section provides the details of the research design for
this case study. We chose to conduct a case study in order
to investigate the reasons behind choosing VCSs, and also to
gather understanding about how different VCS types affect
CM strategies [9, 23]. This study is based on qualitative
data collection composing of interviews, and the data was
analyzed using thematic analysis. To underpin the study we
used a social constructivist ontology [7].

To the best of our knowledge, this is the first study done on
this topic, which is the use of VCS in corporations. Due to
the lack of research done in this area, a systematic literature
review was not possible to conduct. Instead we described
the available knowledge from this field in the theoretical
background. We also chose to do an exploratory case study
since this can be considered an initial investigation into this
area of research. A case study offers in-depth understanding
of a certain phenomena within a real life context [9, 23].

3.1 Research Setting
In this case study we interviewed employees that work with
VCS on a daily basis at two software development companies
that are based in Sweden.

The smaller company (henceforth called company A) has
co-located development teams and a total of about 20 de-
velopers. They have used a variety of VCSs, and in 2009
decided to switch from the centralized VCS Perforce to the
distributed VCS Mercurial. The switch was completed in
early 2011, when all new development was using Mercurial.
Currently, three different VCSs (Mercurial, Perforce, and
Subversion) are being used for different tasks.

Company B is a larger global company that has both dis-
tributed and co-located teams of up to 40 developers, and
a total of about 200 within the company. In this case,
global refers to the fact that they have ”multiple develop-
ment teams, spread over different time zones”. We inter-
viewed employees from two different large projects at the
company, each having their own CM. At company B Subver-
sion is most widely used, whereas other centralized systems
such as CVS occur at certain sites. They are currently doing
a pre-study regarding the possibility of migrating to Git for
future projects.

The relative sizes of these companies affect the flexibility
that they have in changing VCS, and also the time it takes
to implement such a change. This will also affect the re-
quirements of the VCS, as well as the CM strategy which
they choose to adapt.

3.2 Research Questions
Our aim in this study is to answer the following research
questions:

RQ1: To what extent does the type of VCS affect the CM
strategy at a software development company? The first ques-
tion is the basis for this study, and captures the essential
connection between VCSs and ways of working.

RQ2: What features are desirable of a future VCS for com-
panies? The second research question tackles the issue from

another side, and tries to figure out what CM strategies re-
quire from the VCS.

We have two propositions that are based on our research
questions. They state what the study is intended to show,
and guides the selection of cases and the types of data to
collect [9].

Proposition 1 (Related to RQ1): If a company works in
a centralized/distributed way, the company will find that a
centralized or a distributed VCS respectively will work better
for them. We expect that the correlation between the pro-
cess and VCS type to be strong. Research shows that open
source projects, which are distributed in their nature, are
eager adopters of the distributed VCSs [8, 15, 22]. This fact
is congruent with this proposition, and thus we assume that
we will find the same relationship in the corporate world.

Proposition 2 (Related to RQ2): Companies have differ-
ent feature requirements than the open source world. Since
companies often work in a different way than open source
projects we assume that they also have different require-
ments from their tools.

3.3 Case Selection and Units of Analysis
In selecting the case for this study, we considered how the
companies were structured, since we believed this would af-
fect the choice of VCS. Also, the size of the company in terms
of the amount of developers and other employees working
with the VCS was considered.

We chose two companies which were on the opposite sides
of the spectrum regarding both the factor of size and way of
working (co-located versus distributed). This is the contrast
that sparked our interest in this study, and makes compari-
son interesting.

Our case is the choice and usage of VCSs in the corporate
world. The units of observation in our study are on the
individual level with the employees at two companies [26].
However the units of analysis that our case study is based on
are on a higher level; specifically, the two previously men-
tioned companies [23, 26]. This is in order to gain more
insights into the choices and thinking at the company level.

3.4 Data Collection
The following section will describe how the collection of data
for this study will be conducted.

3.4.1 Pre-Study
The first phase of the research delves into the current knowl-
edge and research within this area of study. We searched
IEEE Xplore, Springer Link and ACM Digital Library jour-
nal databases for research articles. Initially we searched us-
ing the search strings ”version control system”, ”distributed
version control system”, and ”centralized vs. distributed ver-
sion control system” 4, as we felt that they were suitable to
our study. When we realized that there was not much re-
search done into the corporate use of VCS, we widened the
scope. We decided to find studies related to the VCSs used

4And other variations of those, such as VCS, DVCS, dis-
tributed VCS, versioning, etc.

3

by the two companies in this study. The following keywords
were used to search at this stage: mercurial, git, subversion,
and perforce. We excluded articles by reading their abstract
and found a few articles relevant to our research questions.

3.4.2 Interviews
The second phase of the research included a set of semi-
structured interviews [18]. This was the main source of data
collection for this study. The interviewees were selected to
encompass the VCS from different perspectives: from the
configuration manager’s point of view who has a more ad-
ministrative role, as well as developers and testers, who are
users of the system.[23] We intended that each role should
be represented by at least two persons if possible. And only
interviewees with knowledge and experience of VCS were
chosen.

The interviewees are categorized into roles; Table 1 shows
the distribution of the roles for our interviews.

Both face-to-face interviews and email interviews were con-
ducted in order to get as big a sample as possible, while still
retaining the quality and depth in responses. The interviews
were scheduled to take maximum one hour, and were held
by two interviewers. Each interview was transcribed verba-
tim from the audio recording, and the script was used when
analyzing the interviews. The interviews were carried out at
the workplace of the interviewees, and were recorded unless
the interviewees had objections. The interview questions
were iteratively improved as each interview passed, in order
to keep the study in line with the research question. For
the email interviews, the interviewees were given one week
to respond to the questions we sent them. Followup ques-
tions were sent by email to any interviewee when needed.
All interviews were conducted in Swedish, and therefore all
quotes have been translated to English by the authors. The
interview questions are available in Appendix 1.

At company A, a developer was interviewed face to face, and
the others got interview questions sent by email. A second
developer at company A got email questions but did not
answer them. Due to lack of time, we were not able to find
a replacement for this interview; and as such the ratio of
interviewees are skewed towards company B. We held two
face-to-face interviews at company B, one with a developer
and the second with both a developer and a CM.

3.5 Data Analysis
The following section will go into detail about how we ana-
lyzed the data in this study.

3.5.1 Thematic Analysis
Braun and Clarke [2] advocate thematic analysis in qualita-
tive research, such as case studies like this. Thematic analy-
sis is a good fit for exploratory studies because the findings
are grouped in themes, which are easily understood. Group-
ing the data by theme gives a good overview of the qualita-
tive data, as well as visualizing the data. This study followed
the steps of thematic analysis, as described by Braun and
Clarke [2]. The following is a description of how we imple-
mented each of the steps.

Familiarizing yourself with the data.
This first step included the transcription of interviews as
well as reading and re-reading the data. Towards the end of
this practice we started writing down ideas for the coding
to be done in the next step.

Generating initial codes.
At this point we went through our data again, in order to
find codes [2]. What we realized during this process was
that the ideas we wrote down earlier already seemed to be
the codes we were looking for at this point.

Searching for themes.
In the beginning of this step we had a long list of codes
that we categorized into different candidate themes and sub-
themes [2]. After this we created an initial map of the con-
nections between the themes. During the process of drawing
the thematic map, we discovered that a set of super-themes
could be abstracted. All our candidate themes were con-
nected through the super-themes.

Reviewing themes.
When reviewing the themes we had, we realised that our
candidate themes were actually sub-themes, and that the
super-themes really were our candidate themes. What had
previously been sub-themes were removed or included into a
higher level theme. During this step we went through some
iterations of our thematic-map, and a simplified version of
that map can be seen in Figure 1.

Defining and naming themes.
In this step we iterated over the names of our themes, and
started writing the story [2] of each theme. At this point
some sub-themes were removed, as we realised that we did
not have enough data to support them.

Producing the report.
This final step started when we had the basic descriptions
(or stories) of all our themes and sub-themes. The output
of this step is the Results section in this study.

Some of these steps are inherently iterative in their pro-
cess, and this was utilized by us even more in order to start
analyzing data before we had received all the interview re-
sponses.

3.6 Validity
The following section describes different threats to the va-
lidity of this study. We also include the measures which we
have taken to avoid these threats.

3.6.1 Thematic Analysis
During the analysis we were aware of the most common pit-
falls while conducting a thematic analysis, as they are de-
scribed by Braun and Clarke [2]. This awareness allowed us
to circumvent potential validity issues of thematic analysis.
We also follow the criteria for a good thematic analysis, and
use an iterative process to avoid erroneous conclusions and
improve the validity of this case study [2].

3.6.2 Pre-Study
There is not a large amount of research written in this field,
and most of the articles compare specific tools within the

4

Table 1: Roles of interviewees

Number of interviewees

Role Company A Company B Description

Configuration Manager 1 2 This role is concerned with creating a strategy for working with
VCS, as well as managing the branching strategy.

Developer 1 2 The developer interacts with the VCS daily as a user.

Test Manager 1 0 The test manager also interacts with the VCS on a daily basis,
similar to the developer. But with more focus on building certain
versions of the software for testing.

same type of VCS. This will have an effect on the background
of this study in that it will not be as complete as it otherwise
could have been; on the other hand since this is more of
an exploratory study, and the purpose is to provide new
knowledge where it was previously missing, therefore it is
not as big of a threat to the validity as it would seem.

3.6.3 Interview
A potential threat to the validity in this study is that inter-
viewees are selected through convenience sampling, rather
than using a true random sample, which could skew the
result [7]. However, Easterbrook states that ”Case study
research uses purposive sampling rather than random sam-
pling.” [9] This means that the relevance of this threat is
diminished.

On the other hand, Easterbrook presents another threat to
the validity of case studies: ”The major weakness of case
studies is that the data collection and analysis is more open
to interpretation and researcher bias.” [9] An effort to miti-
gate this risk was taken by selecting interviewees from two
companies using different styles of version control systems.
And as mentioned in the section about the validity of our
analysis, we did multiple iterations over the data. That helps
the validity of the analysis, but not the bias. The bias is dif-
ficult, or almost impossible, to avoid in qualitative studies.
We are aware of this problem and therefore attempt to be
objective.

Another threat which is presented by Runeson & Höst is the
external validity, which concerns to what extent it is possible
to generalize the findings.[23] The amount of interviews as
well as the choice of case and units of analysis affects this
threat. As mentioned before, we chose two quite different
companies, as well as different roles within the company in
order to investigate differences and different viewpoints. A
greater number of interviews always increases the accuracy
of the data. We do not feel that our study is large enough
to be able to draw very generalized conclusions, but we do
feel that they can be applied to the two companies in our
study.

Yet another threat to the validity of this study is the fact
that we may not get as many interviews as we plan for. As
we are asking employees to get interviewed, some may not
have the possibility to take time off from work during the
timeframe we have available. To handle this threat, we have
several email interviews, which lets the interviewee answer
the questions at his or her own discretion.

4. RESULTS
This section presents the results attained from the thematic
analysis on the data collected through interviews with seven
people at two different companies. During the analysis we
identified four main themes, each further divided in a set of
sub-themes.

The themes can be seen in Figure 1 and are: Type, Pro-
cess, Tool, and Change. Type has a parent child relation to
Tool, or rather, the connection between the two is that each
tool is of a certain type. Both Type and Tool are connected
to Process; the Type–Process connection is a surprisingly
weak connection even though we expected otherwise, and
the Tool–Process connection is the most dominant connec-
tion. Change, which is the last theme, is not connected to
any of the other three themes. It is displayed as a cloud
because it is not the main focus of our study, and is not
directly related to Type, Tool, and Process. Table 2 lists
all the sub-themes that we have identified, and what main
themes they are associated with.

Figure 1: Thematic map.

4.1 Type
This parent theme was identified because some of the codes
that we tagged our data with could be grouped into this
more general theme. The theme represents data regarding
the different philosophies, or types, of VCSs. As described
in the background there are basically two different types of
VCSs: centralized and distributed. This section will also
report our findings regarding the connection between the
type and the process.

5

Table 2: Sub-Themes

Theme Sub-Theme

Change
Process
Tool
Type

Process
Centralized Way of Working
Smoothness

Tool

Branching
Cost
File Types
Functionality
GUI
Hybrid
Integration
Performance

Type
Centralized
Distributed

4.1.1 Centralized
Company B uses Subversion (a centralized VCS) and even
though they have developer teams across the globe they
feel that it works well. One of the developers expressed his
feelings towards centralized systems as: ”Currently it works
okay, with what we have.” A CM went into a bit more de-
tail in his reasoning: ”As long as the geographical distance
isn’t too large and the network connections can handle high
enough capacity, then I don’t see any obstacles with central-
ized version control systems.” The TM from company A was
also positive about using centralized VCS and expressed a
belief that it is easier for a smaller company to use it since
everyone works against a single repository that is always up
to date.

4.1.2 Distributed
Distributed VCSs are mainly newer than their centralized
counterparts. They also often have better tools, with more
advanced features. One example, mentioned by many of the
interviewees, is that distributed VCSs are superior when it
comes to branching and merging. This was in fact the main
reason for company A to switch from Perforce to Mercurial
in the first place.

Merging is an intrinsic part of a distributed VCSs since each
user has a copy of the repository, and in order to share the
changes the users has to merge their repositories together
on a regular basis. This can be done in different ways; a
centralized VCS only allows its users to merge to the central
server, while a distributed additionally gives the possibility
to merge directly between the users. A developer at com-
pany B had the following to say about this: ”I do not see
any direct disadvantages with distributed VCSs since they
also allows for a centralized way of working.” Company A
follows this principle. One developer described how they
work with Mercurial: ”We are not using the power of the
distributed, in my opinion. We are using it, in my eyes as a
developer, in the same way [as a centralized VCS]; we check
out from the central repository, and check it back in. It is
very very seldom we are pushing between developers.”

Another aspect of distributed VCSs is that they can be
harder to embrace, which can be an important factor when
changing VCS. Two specific reasons were mentioned dur-
ing our interviews. One reason was that distributed VCSs
represent a different mentality from a centralized VCS. The
second reason was that ”Distributed version control systems
have a somewhat higher learning curve, which can present
an obstacle in switching”, as described by a CM at com-
pany B. This reason was also mentioned by an interviewee
at company A.

Even though these systems may be more difficult to use,
a couple of interviewees expressed their confidence in the
endurance of distributed VCSs. One opinion was that dis-
tributed VCSs are here to stay since they give developers the
possibility of working from out of the office. Another opin-
ion was that these systems will grow even more in the future
due to high involvement of the open source community.

4.1.3 Type and process
To our surprise we did not find a strong connection between
the type of VCS and the CM strategy. The only instances
were from company A, where the TM said that the type
does not affect the way of working in any noticeable way,
although specific tools can make it go more smoothly. The
CM at company A said this about the suitability of the VCS
to their way of working: ”The general answer is no, the
distributed system we are using is not suitable. The reason
for moving to the distributed system was taken when the CM
strategy was weak, and we only looked at individual feature
sets in the tools that did not necessarily have to do with the
type of VCS.”

4.2 Process
Just as the theme Type, this theme is an abstracted theme.
In this case, it is intended to encapsulate the different themes
that we found regarding how the companies are working. In
terms of VCSs the process is exemplified in CM strategies.
There are multiple aspects to a CM strategy, and some of
them will be discussed here. In mirroring the type of VCS,
we see CM strategies as divided between centralized and
distributed ways of working. This section will also include
the findings regarding the connection between tools and the
process.

4.2.1 Ways of Working
By a centralized strategy we mean that all the developers are
co-located, and a distributed strategy would therefore imply
a company having developer teams distributed across mul-
tiple locations, or team-members from the same team being
distributed. Company A is rather small, has all developers
co-located in the same office; as the developer eloquently
said: ”We use a distributed system, but we work in a cen-
tralized way.”

The TM at company A expressed the opinion that it is easier
for smaller companies to work in a centralized way: ”In my
opinion, it is easier for a smaller company to use centralized
version control systems since everyone always works against
a ’canonical’ midpoint and everything that gets checked in is
always up to date.”

6

One of the CMs at company B said that ”Our organization
is – like many other organizations – global in the sense that
there are a multitude of developer teams spread out over dif-
ferent time zones. A [centralized] VCS is in that context
clearly inferior to a distributed VCS”.

4.2.2 Tools vs. Process
A CM at company B said that they have strategies for VCS
processes, but not for choosing specific tools. At company
A, the TM expressed concern about using multiple tools:
”It is a big problem that we currently use a large number of
different VCSs, which makes it difficult to get an overview.
The reason for this is that some VCSs are better than others
in processing certain types of data.”

Both companies appear to be happy with their processes
and did not express any desire to change their way of work-
ing. However, CMs and developers from both companies
did point out that new tools are a different story altogether.
If there would be any system that would make their daily
work easier, or solve drawbacks in their current systems,
they would be more than willing to adopt something new.
This implies that the process overrides the tools used.

Be that as it may, a CM at company B explicitly said that
the VCS affects the CM strategy, and that the strategy they
use is based on the fact that they use Subversion. A devel-
oper at company B backs up this story: ”We have adapted
our strategy based on the tool we use.”The CM at company A
expressed a similar opinion: ”We must adapt the CM strate-
gies we have, based on the tools available from each VCS
distributor.” And on a slightly different, but connected note,
the developer at company A said: ”I’m not even sure how a
different distributed VCS would change our way of working.”

However, one CM at company B was consistent and adamant
about that the process comes first, and tools second. The
following quote demonstrates this: ”I have no preference re-
garding VCS. The most important thing, in my opinion, is
to have an explicit strategy to facilitate the business require-
ment. [...] Based on the requirements, a strategy is chosen
and thereafter tools that are best suited to the strategy are
selected.” In the same line of reasoning, the TM at company
A expressed the opinion that if they would change VCS the
new one would be a centralized VCS, since they work cen-
tralized anyway.

4.3 Tools
We found this theme to be the most important theme in the
analysis, or at least the theme with most data points. This
was a bit surprising since it is not very related to our main
research question. We did not find any connection between
the tools and the type in the data, but we maintain that
there is such a connection, if only in the sense that each
specific tool is of a certain type. This section will describe
our findings with regards to desirable features in VCS tools,
and also some reasoning for selecting one.

To further subdivide this section for the reader’s peace of
mind, we have grouped our sub-themes into three larger sub-
sections: functional requirements, non-functional require-
ments, and future. The sub-themes that are part of func-
tional requirements are: branching, file types, and function-

ality. Non-functional requirements include cost and perfor-
mance. While future focuses on what the interviewees saw
in a future VCS system: GUI, hybrid, and integration.

The CM at company A gave us a good description of their
criteria for selecting a VCS. Although, how the different
aspects are weighed against each other were left out of the
description. The following list shows the areas company A
uses when evaluating a VCS.

• For the developer: How effectively are the daily opera-
tions performed? (Update, Merge/Resolve, and Com-
mit)

• For the CM: Administration of branches and users.
Visualizing changes on source code level, i.e. overview-
ing the history on all levels between branches and files.

• For IT: Licencing costs and the resources required by
the VCS.

4.3.1 Functional Requirements
One developer at company B thinks that Git is better than
Subversion and CVS when it comes to merging, but that
the biggest difference is the tools. When the same developer
compares Subversion and CVS, ”the biggest difference is that
I used CVS in the beginning of the 2000s and Subversion
in the end, and that the tools around them got better with
time. Therefore, I tend to think that Subversion is better,
but honestly I’m not really sure.”

As mentioned in the above section on process, branching is
an important part of a VCS. It is so important that, as men-
tioned previously in the section on type, branching was the
main reason for why company A changed from Perforce to
Mercurial. A developer at company B stated that branching
in general is not a big problem in Subversion, although the
developer has not tried any other types of VCSs. Another
developer at company B had a slightly different opinion: ”It
is said that branching works better in Subversion [than in
CVS] , but I find the processes of branching/merging to be
heart-stopping exercises in both tools.”

When company A migrated away from Perforce to get bet-
ter branching capabilities, they noticed that Mercurial did
not handle graphics files very well. Mercurial sees them as
binary objects and needs to keep the whole file for each ver-
sion, unlike Perforce which can recognize layer changes and
other file type specific changes and keeps changes to these
files as change deltas. Because of Perforce’s widespread use
in the gaming industry, it has adapted features specifically
desired by this industry, like graphics file handling. The
developer at company A expressed the belief that it is com-
mon knowledge that distributed VCSs do not handle binary
files very well, since each user has a complete history of the
repository on his or her computer. Without change deltas
for binary files, the size of the repository will inevitably grow
very fast. The TM at company A said that it is easier to
use a centralized VCS, due to their use of graphics files.

Another aspect is the merge tool, an often used tool when
interacting with all types of VCSs. ”In Mercurial you can
select the merge tool that you want to use, and because of

7

that, the majority here still use the Perforce tool, since the
built in merge tool in Mercurial is pretty bad.” (Developer at
company A)

4.3.2 Non-Functional Requirements
When company A realized that Mercurial was not the op-
timal solution for their need, they split up their data into
graphics and code. In order to save costs, now that Mercu-
rial had replaced Perforce as their main VCS, they decided
to move their graphics into Subversion. As the CM at com-
pany A put it: ”A drawback [of Perforce] is the cost per
user”. Another thing that became apparent after switching
from Perforce was that Mercurial had much lower perfor-
mance for operations like check-out. Both cost and perfor-
mance was also mentioned by the CMs at company B. Cost
being one of the main reasons for selecting non-proprietary
VCSs, and performance being somewhat troublesome when
teams situated in different locations were communicating
with the server in Sweden: ”[Centralized] VCSs requires con-
stant communication between the workstation and the server
for these operations [merge, diff and history], which leads to
a slower way of working.” These negative performance as-
pects of working with a centralized VCS, can be abated with
the use of distributed VCSs where most operations are per-
formed on the local repository.

The CM at company A brought up an interesting point,
and said that administration tools are better in centralized
VCSs and that ”administration tools are really important,
but often forgotten while selecting a VCS”. This also led
him to believe that ”centralized systems are better at scaling
for big companies, from a CM point of view”. However, this
point was somewhat contradicted by one of the developers at
company B: ”Subversion and CVS scale badly, due to their
centralized nature.”

4.3.3 Future
To follow the line of thought that different VCSs are good
at different things, the TM at company A suggested that in
the future, an umbrella system for VCSs would be useful.
It would give the user a unified view of everything under
version control, but use different VCSs in the backend to
utilize the advantages of each tool. A similar thought was
given by the developer at company A, who said that the
future of VCSs would contain some kind of hybrid between
centralized and distributed VCSs. One example given was
to have local commits, and a local history to use when there
was no network connection available, but still keeping the
better handling of binary files in centralized VCS. This fea-
ture was also something that a developer at company B felt
was missing.

Similar to the ideas of umbrella and hybrid systems, is the
notion of integration and plugins that was brought forth by
interviewees at both companies. One such example would
be the CM at company A who wished for better integration
with bug tracking systems and project management tools.

Other features that the interviewees felt are lacking in cur-
rent implementations of VCSs are atomic commits and lock-
ing functionality for distributed VCSs. Atomic commits are
already standard in most VCSs [12]. Locking in distributed
VCSs on the other hand is something not present in current

systems. The reasoning for this wish, according to the devel-
oper at company A, is that before changes can be pushed to
a non-local repository any previous changes must be pulled
and merged. In this time span, another developer could push
his or her changes to the same repository, forcing the first
developer to repeat the process with the new changes now
available. For a centralized way of working, a locking mecha-
nism that could prohibit other users to push changes would
instead allow each developer to complete his or her pull,
merge, and push process without interruption. [3]

When talking about the future of VCSs, a large majority
of the interviewees from both companies mentioned visual
enhancements and graphical user interfaces (GUIs) as very
desirable. A CM at company B stated that improved GUIs
should focus on facilitating work for both developers and
CMs. The motivation for the CM is to get better overview
and history, and developers would gain by getting more eas-
ily comprehensible merging and branching views. The TM
at company A said that ”Perforce is one of the better VCSs
I have used, mainly due to its user-friendly UI”.

4.4 Change
Change appeared in our analysis somewhat against our will.
We were not focusing on change processes regarding VCSs,
but the more we iterated over the data the more it became
apparent that change was an important part of the results in
this study. Change seemed to be connected to almost every
other theme in the analysis, but since change was not really
part of our research questions we decided to put change as
a separate theme. And to use our other main theme names
as the sub-themes for this theme.

4.4.1 Type Change
Initially, the notion of change appeared when interviewees
at company A mentioned that they had changed VCS a few
years ago. They had used a centralized VCS and opted
for a distributed VCS instead. ”The main motivation for
[switching to] Mercurial initially was the distributed system’s
ability of branching”, according to the developer.

Likewise, both CMs at company B talked about changing the
type of VCS used. One pointed out that there is a mentality
difference between distributed and centralized VCSs. This
means that all users of the VCS have to re-learn what they
already know about version control, and the rhetorical ques-
tion ”What is gained by changing?”was posed by the CM. As
many of the interviewees mentioned, it is important to weigh
the advantages and disadvantages of potential changes. The
other CM at company B said that newer projects are look-
ing at Git as a possible replacement for Subversion, and that
company B ”will, in my opinion, move to a distributed VCS
as soon as possible (which, however, might take a while)”.

Because company A is using a centralized way of working, all
three interviewees from company A said that they would like
to change back to a centralized VCS. The CM was a bit more
nuanced and pointed out that if they were to change, the
features associated with distributed VCSs would fall a long
way down the list of desired features. However, a distributed
VCS may still suit them because as a developer at company
B said, distributed VCSs can work with centralized ways of
working.

8

4.4.2 Process Change
Company B has a different set of CM strategies and pro-
cesses for each of their projects. One of the projects has
had an unspoken CM strategy but with the recent arrival of
a CM to the project, a more formalized and official strat-
egy has been adopted. Company A has changed CM pro-
cesses and strategies a few times but ”the developers have
been rather unaffected. Instead of using the Perforce tool to
check out code, we write hg clone and then hg pull to get the
code”, as said by the developer.

After the change to Mercurial, the developer at company A
noticed that ”projects increased exponentially, due to easier
setup”. This forced them to take a step back and reflect
on the purpose of version control, and also on what the
company was developing. After getting a more complete
CM strategy everything went smoother, and as the developer
said: ”Maybe it didn’t have so much to do with the VCS, but
it was still a consequence of it.”

5. DISCUSSION
In this section we discuss the points we found particularly
interesting in our study.

5.1 Tool, Type and Process
As hypothesized in proposition 1, we expected the type to
play a big role in the companies’ choice of VCS. And that the
choice would also be affected by their processes to a large ex-
tent. However, the results showed us quite the opposite; the
tool has a larger affect than the type of VCS. We expected
that if a company works co-located, even in quite large com-
panies, a centralized VCS would fit their needs, and that a
distributed VCS would have superfluous features that would
not interest the company. A co-located company does not
have the same need as an open source project, that value fea-
tures like having clones of the whole repository locally, and
making it easier for non-core developers to contribute[22].
But what about a company which has both co-located and
distributed teams all working towards the same repository
on a server in Sweden? Would they still feel that a cen-
tralized VCS fits their needs? This brings up other issues
regarding the remote team members, and how they interact
with the on-shore teams.

5.1.1 Centralized vs. Distributed
The challenges researchers have found5 surrounding the use
of centralized VCSs are for the most part not applicable in
the corporate world. The first one (requiring network con-
nection to work) could, however, still be relevant for com-
panies with distributed developers. A good network connec-
tion was mentioned by company B as being a requirement
for using a centralized VCS.

Could a company always be satisfied with a centralized sys-
tem? A centralized system would provide for all their needs,
especially a new and improved one with better merging and
branching capabilities. The company would always have the
latest code in the central repository, and project leaders
could have a better overview of the project without hav-
ing to check each developer’s local repository. This point
resonates with company A, who finds that their distributed

5See section 2.2 Centralized vs. Distributed

VCS has excessive features for their co-located way of work-
ing. Company B, however, is looking into moving to Git for
future projects.

If centralized VCSs provides everything that company B
needs, why would they want to change? What they are
lacking in their current VCS is some of the improved func-
tionalities like branching, merging, and refactoring, that the
newer distributed VCSs have. A change of VCS for com-
pany B would only be to solve drawbacks they currently see
in their VCS, and not to get the distributed functionality.

Another interesting idea is the fact that distributed VCSs
can be used in a centralized way, which one of the developers
at company B mentioned. This is exemplified by company
A, who uses Mercurial in a centralized way. It means that
the type of the VCS would have less importance in the se-
lection process. This could be a reason for why company B
are looking at Git, even though they are not really geared
towards a distributed system and are only after better tools.

Nevertheless, we still abide by the fact that, when using large
amount of binary files, local complete copies of the reposi-
tories could still be a huge problem when using distributed
VCSs.

5.1.2 Newer Tools are Better
Throughout the history of VCSs, the systems that have
been popular have been those with the best tools, as one
would expect. What is unexpected however, is that the
VCS with best tools has often been the newer tool. In
many other aspects of software development the best tools
are usually those with a long history, and therefore have
been improved upon for a long time and have reached stable
versions. Among VCSs, new tools are often more technologi-
cally advanced, and also storing more metadata. We believe
that this last point leads to innovation, and that this meta-
data is used when creating more tools6 and plugins.

Contrary to this point is the fact that company A still uses
the merge-tool from Perforce, even after they changed to
use Mercurial as their primary VCS. They claim it is much
better than the newer tool from Mercurial, and points to the
easier GUI as the main reason.

5.1.3 The Silver Bullet
We acknowledge the fact that one solution will not work for
everyone. Each situation is unique, and companies must an-
alyze their needs when choosing a VCS. However, for the
two companies in this case study, we believe that what they
actually need is a new centralized system, with better func-
tionality than today’s systems. A centralized VCS works
better for company A since a distributed VCS would still
have the disadvantages of long checkout times of big repos-
itories, as well as bad tools for the graphics file types com-
pany A uses. They also work in a completely centralized
way.

It would also work for company B, since their problems are
not related to the features of distributed VCSs; what they
seek is better branching, merging and refactoring. A new

6It is not only the creators of VCSs that create tools.

9

centralized VCS would use current ideas and philosophies
within VCSs, and improve upon them with features useful
for larger companies.

5.2 Future of VCS
This leads us to the future of VCS within the corporate
world. We believe the focus lies with increased function-
ality and usability. One of our interviewees believed that
distributed VCSs was the future of VCSs, because of the
open source community involvement. In his research article
on the history of VCS, Ruparelia concurred in saying that
”One trend, however, is certain to persist: DVCS is becom-
ing increasingly popular in the open source community and,
over time, will replace centralized systems” [24].

We, however, are more inclined to believe that the central-
ized systems still have an important role to fulfill, at least
in the corporate world. But we also agree that distributed
VCS are here to stay. To combine these two points, we be-
lieve in some kind of hybrid or umbrella solution that would
use the best of both worlds.

5.2.1 Hybrid and Umbrella Systems
The hybrid or umbrella system is a very interesting evolution
in VCSs and could be an alternative to the aforementioned
idea of a new centralized VCS. Several of our interviewees
also saw this as being the future of VCS. Perforce has devel-
oped a hybrid system, which they call Perforce Git Fusion
[17]. It uses Perforce in the backend, while letting developers
use the system like it is Git in the frontend [17].

An umbrella system could instead have two or several VCS
backends, that would be coordinated to use a single frontend
system. This way, the advantages of each system could be
used to create a system that is greater than the sum of its
parts.

Both of these ideas are based on improving the work flow
for the developers and managers alike. For a developer that
needs large graphics files to build and run the project, but
is not interested in their complete history, only the latest
version would be available in the local repository. At the
same time, all versions of the graphics files would still be
stored on the central server, and the artists that work on
them still have access to all the history. The latest version of
the code is always available at the central server, where the
project manager can check the current status of the project.

5.2.2 Graphical User Interface and Visualization
The graphical user interface is very important, as many of
our interviewees mentioned, in making the VCS more user-
friendly and effective to use. This also agrees with what
Candrlic et al. arrives at in their paper on desirable fea-
tures of VCSs, who says that ”A major flaw of the basic
version of the tool is the lack of a graphic user interface,
and action triggering from the command line requires time
to be mastered”. [3] A new or improved system would there-
fore be one with a more user friendly graphical user interface
for visualizing branches, merging, conflicts, etc. for all the
users, including the administrative role of the CM and the
developers.

5.2.3 Integration
Another thing that would increase the usability of the VCS
is integration, something that was mentioned at both com-
panies. Integration would bring together other tools that
are used throughout the lifecycle of the software project,
like project management tools, bug tracking software, and
IDE’s. The idea behind this is that it increases usability,
and makes it easier to visualize the whole project from one
platform.

Integration is an important point that we think is very de-
sired by the corporate world. Ruparielia says that a ”trend
that we shall see continue into the future is for VCS to be-
come increasingly integrated with: a) the entire software life-
cycle, from requirements capture to defect tracking, and b)
the broader configuration and change management tools and
processes as defined by ITSM frameworks such as ITIL” [24].

5.3 Change
What makes change interesting for this study, is why a com-
pany decides to change. Like de Alwis & Sillito elegantly
puts it: ”The work involved in transitioning is significant and
so we suppose that the reasons for switching must be com-
pelling.” [8] One reason would be to make the work easier, as
several of our interviewees from both companies said. Com-
pany B stated that they wanted to switch to a distributed
VCS in the future, but is this really what they need? As they
have already mentioned themselves, the distributed systems
seem to have a steeper learning curve than the centralized
system which they have now.

As was seen at company A, one positive thing about chang-
ing VCS is that the CM strategy gets brought into the spot-
light. The CM strategy is something that needs to be worked
on as much as any other aspect in a company.

So companies should ask themselves, ”what is gained by
changing?”

6. CONCLUSIONS
This study set out to investigate to what extent the type of
VCS affects the choice of CM strategy at software develop-
ment companies, and what VCS features are desirable for
software development companies.

The study shows that our initial proposition about the type
of VCS having a big impact on the process was turned on
its head. Our results indicate that it is the tool that has the
biggest effect on the process. Both companies in this study
have chosen their VCSs based on the feature set of specific
tools in comparison to other tools rather than the type. In
addition to this, the type of VCSs they use is contrary to our
first proposition. We therefore conclude that, as an answer
to our first research question, the type of VCS only has a
small effect on the CM strategy; and that we did not find
any correlation between the way of working and the type of
VCS used.

Our second research question focused on the desirable future
features of VCSs. The majority of interviewees said that an
effective graphical user interface, and especially visualization
was something missing from current VCSs. Other features
that we found were desired by these companies were atomic

10

commits, better merging capabilities, integration with other
systems, and better handling of different file types.

An unexpected conclusion to this study was the emergence
of a new centralized or hybrid VCS as a solution for what the
companies in this study need from future VCSs. It would
be interesting to see a wider feasibility study, to see if this
solution would be useful for other companies as well.

We have in general come to the conclusion that companies
have a need for other features than open source projects,
often with focus on the administrative parts of VCSs. The
learning curve, efficiency of daily operations, and ease of use
are all important for a company selecting a new VCS.

6.1 Future Work
In future studies of this specific field of study we would like
to see research that delve deeper into the following concepts.

Open Source
A comparative study between the needs of companies and
open source projects, with regards to VCSs and CM strate-
gies, would be an interesting compliment to this study. This
would involve interviewing people both from the open source
community and the corporate world.

Change
To look more into how the transition between VCSs affects
a company’s CM strategy would be of interest for all CMs
who are exploring the possibility of replacing their current
VCS. Change was found to be connected to all the other
defined themes, but not relevant to our research questions.
It would therefore be interesting to see a study where change
and change management has a higher focus.

Hybrid
One interesting outcome of this study was the idea of a hy-
brid or umbrella VCSs. An investigation into existing hybrid
VCSs, and requirements from software development compa-
nies would be useful in order to get a better understanding
of this type of tool, and where the future could lead.

New Centralized VCS
Along the same lines as the hybrid VCS, it would be useful
to do a feasibility study for a new centralized VCS. Can a
new and improved centralized VCS compete with the rising
popularity of distributed VCSs?

Industry
It would be interesting to look further into how the industry
in which a company is working, be it gaming, medical, web,
or any other industry, affects the choice of VCS. This would
involve investigating if there are different needs in different
sectors within the corporate software development field.

APPENDIX
A. INTERVIEW QUESTIONS
These questions are translated from the original Swedish
versions, which was used during the interviews.

1. Describe in detail how you use and/or are affected by
VCSs in your work. Please include details regarding for
example branching and how collaboration is assisted or
inhibited by the systems.

2. Do you have any strategy (explicit or implicit) regard-
ing VCSs at your company? If so, please describe that
strategy and also what VCS (or VCSs) you are using.

3. Do you believe that the type (centralized/distributed)
of VCS you use are suitable for your way of working?
What pros and cons do you see with centralized and
distributed VCSs?

4. Do you think that the VCS affects your way of work-
ing? In what way, and to what extent? If you would
change to a different VCS, would that choice be af-
fected by your way of working?

5. What other VCSs do you have experience with? Which
one do you think is best, and why?

6. Do you miss any functionality in the VCSs you use?

7. How would a future VCS look to you?

11

B. REFERENCES
[1] N. Bertino. Modern version control: creating an

efficient development ecosystem. In Proceedings of the
40th annual ACM SIGUCCS conference, SIGUCCS
’12, pages 219–222, New York, NY, USA, 2012. ACM.

[2] V. Braun and V. Clarke. Using thematic analysis in
psychology. Qualitative research in psychology,
3(2):77–101, 2006.

[3] S. Candrlic, M. Pavlic, and P. Poscic. A comparison
and the desireable features of version control tools. In
Information Technology Interfaces, 2007. ITI 2007.
29th International Conference on, pages 121–126.
IEEE, 2007.

[4] S. Chacon. Pro Git. Apress, 2009.

[5] D. Chudnov. Better, faster, stronger: Version control
for everybody. Computers in libraries, 28(6):34–36,
2008.

[6] B. Collins-Sussman, B. Fitzpatrick, and M. Pilato.
Version Control with Subversion. O’Reilly Media,
2007.

[7] J. W. Creswell. Research design: Qualitative,
quantitative, and mixed methods approaches. SAGE
Publications, Incorporated, 3rd edition, 2009.

[8] B. de Alwis and J. Sillito. Why are software projects
moving from centralized to decentralized version
control systems? In Proceedings of the 2009 ICSE
Workshop on Cooperative and Human Aspects on
Software Engineering, CHASE ’09, pages 36–39,
Washington, DC, USA, 2009. IEEE Computer Society.

[9] S. Easterbrook, J. Singer, M.-A. Storey, and
D. Damian. Selecting empirical methods for software
engineering research. In Guide to advanced empirical
software engineering, pages 285–311. Springer, 2008.

[10] Eclipse Foundation. The open source developer report,
2011 eclipse community survey.
http://www.eclipse.org/org/community_survey/

Eclipse_Survey_2011_Report.pdf, 2011. Accessed:
2013-05-25.

[11] Eclipse Foundation. Results of eclipse community
survey 2012. http://www.eclipse.org/org/press-
release/20120608_eclipsesurvey2012.php, 2012.
Accessed: 2013-06-02.

[12] S. Fish. Version control system comparison.
http://better-

scm.shlomifish.org/comparison/comparison.html,
2012. Accessed: 2013-05-14.

[13] D. Grune. Concurrent versions system, a method for
independent cooperation. Report IR-114, Vrije
University, Amsterdam, 1986.

[14] V. Jotov. An investigation on the approaches for
version control systems. In Proceedings of the 9th
International Conference on Computer Systems and
Technologies and Workshop for PhD Students in
Computing, CompSysTech ’08, pages 73:V.11–73:1,
New York, NY, USA, 2008. ACM.

[15] P. Krill. Torvalds’s git: The ’it’ technology for
software version control. InfoWorld.com, Jul 26 2011.

[16] P. Louridas. Version control. Software, IEEE,
23(1):104–107, 2006.

[17] S. Merrill. Perforce aims to bring git to the enterprise.
http://techcrunch.com/2012/10/02/perforce-

aims-to-bring-git-to-the-enterprise/, 2012.
Accessed: 2013-05-15.

[18] M. D. Myers and M. Newman. The qualitative
interview in is research: Examining the craft.
Information and organization, 17(1):2–26, 2007.

[19] B. O’Sullivan. Mercurial: The definitive guide.
http://hgbook.red-bean.com/read/, 2009. Accessed:
2013-05-25.

[20] Paul. What are your pros and cons of git after having
used it? http://stackoverflow.com/questions/

343675/what-are-your-pros-and-cons-of-git-

after-having-used-it, 2008. Accessed: 2013-06-01.

[21] M. Rochkind. The source code control system.
Software Engineering, IEEE Transactions on,
SE-1(4):364–370, 1975.

[22] C. Rodriguez-Bustos and J. Aponte. How distributed
version control systems impact open source software
projects. In Mining Software Repositories (MSR),
2012 9th IEEE Working Conference on, pages 36–39.
IEEE, 2012.

[23] P. Runeson and M. Höst. Guidelines for conducting
and reporting case study research in software
engineering. Empirical Software Engineering,
14(2):131–164, 2009.

[24] N. B. Ruparelia. The history of version control. ACM
SIGSOFT Software Engineering Notes, 35(1):5–9,
2010.

[25] Spoike. Comparison between centralized and
distributed version control systems.
http://stackoverflow.com/questions/111031/

comparison-between-centralized-and-

distributed-version-control-systems, 2008.
Accessed: 2013-06-01.

[26] A. N. Yurdusev. ’level of analysis’ and ’unit of
analysis’: A case for distinction. Millennium-Journal
of International Studies, 22(1):77–88, 1993.

12

http://www.eclipse.org/org/community_survey/Eclipse_Survey_2011_Report.pdf
http://www.eclipse.org/org/community_survey/Eclipse_Survey_2011_Report.pdf
http://www.eclipse.org/org/press-release/20120608_eclipsesurvey2012.php
http://www.eclipse.org/org/press-release/20120608_eclipsesurvey2012.php
http://better-scm.shlomifish.org/comparison/comparison.html
http://better-scm.shlomifish.org/comparison/comparison.html
http://techcrunch.com/2012/10/02/perforce-aims-to-bring-git-to-the-enterprise/
http://techcrunch.com/2012/10/02/perforce-aims-to-bring-git-to-the-enterprise/
http://hgbook.red-bean.com/read/
http://stackoverflow.com/questions/343675/what-are-your-pros-and-cons-of-git-after-having-used-it
http://stackoverflow.com/questions/343675/what-are-your-pros-and-cons-of-git-after-having-used-it
http://stackoverflow.com/questions/343675/what-are-your-pros-and-cons-of-git-after-having-used-it
http://stackoverflow.com/questions/111031/comparison-between-centralized-and-distributed-version-control-systems
http://stackoverflow.com/questions/111031/comparison-between-centralized-and-distributed-version-control-systems
http://stackoverflow.com/questions/111031/comparison-between-centralized-and-distributed-version-control-systems

