
University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden,  August 2013

Search-based testing tools for Ajax
A systematic literature review

Bachelor of Science Thesis in Software Engineering and Management

MARKUS FEYH



The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial 
purpose make it accessible on the Internet. 
The Author warrants that he/she is the author to the Work, and warrants that the Work 
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to 
let Chalmers University of Technology and University of Gothenburg  store the Work 
electronically and make it accessible on the Internet.

Search-based testing tools for Ajax
A systematic literature review

Markus Feyh

© Markus Feyh, August 2013.

Examiner: Morgan Ericsson

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden August 2013



Search-based testing tools for Ajax -
a systematic literature review

Markus Feyh
Department of Computer Science and Engineering

University of Gothenburg
Gothenburg, Sweden

Email: marfeyh@gmail.com

Abstract—Background: Search-based testing seeks to solve
many novel problems including testing Ajax applications, and
there have been a number of tools created to accomplish this
purpose.

Objective: This thesis aims to identify search-based software
testing tools for Ajax web applications and how they have been
evaluated.

Method: Systematic literature review is used as the research
methodology.

Result: There are six different tools identified in scientific
literature of which three are variants of Crawljax. Also, search-
based testing tools for Ajax are primarily evaluated through the
use of case studies.

Conclusion: The evaluation of the identified tools should be
conducted using an experimental design in order to make them
comparable and repeatable as well as follow benchmarking
frameworks proposed in scientific literature.

Index Terms—Ajax, search based testing, systematic literature
review, tools.

I. INTRODUCTION

What is the best way to test Ajax web applications? Search
based software engineering (SBSE) is regarded as a solution
to many of software engineering’s problems. SBSE proposes
that by posing each problem as a search-based optimization
problem, an optimized solution to the problem may be found
[1]. As a result of the potential to tackle the novel problems
of Ajax web applications through the use of search-based
software testing (SBST) on Ajax web applications has grown
to include a body of knowledge worthy of review.
Web technologies play an important role. One of the web

technologies, Ajax, the combination of asynchronous JavaSript
and XML, is the area of focus in this paper. This grouping
of web technologies requires novel testing approaches which
present new issues but are important to test [2]. With Ajax,
the document object model (DOM) structure of the website
can partially change as a result of asynchronous messaging.
Ajax’s features present a challenge in comparison with

traditional web technologies because of the added complexity
of asynchronous communication and partial DOM structure
changes. Given that testing should be optimized, it is important
to research this area in order to understand the benefits of using
novel methods such as search based testing. Additionally, the
different features of Ajax in comparison with traditional web
technologies require novel testing approaches, which through
experimentation can be shown to be more or less effective.

This thesis project’s aim is to understand the search-based
techniques for testing Ajax web applications. Ajax contains
features which make it challenging to test and search-based
software testing offers a solution to novel problems. Thus, the
motivation for undertaking this thesis was to understand which
tools have been applied from the search-based testing domain
to Ajax web applications. In order to do this, a Systematic
Literature Review [3] was undertaken in order to understand
the state-of-the-art.

II. BACKGROUND

A. Search-based Software Engineering

The field of search-based software engineering seeks to
transform problems into optimization search problems. This
kind of searching differentiates itself from textual or hy-
pertextual searching. A search-problem is , ”(...) in which
optimal or near optimal solutions are sought in a search
space of candidate solutions, guided by a fitness function that
distinguishes between better and worse solutions.” [1]. Using
these search-problems as the optimization problems, SBSE
focuses on solving them in an optimal way. Even if the most
optimal solution is not achieved, a near optimal solution is.
Relevant to this thesis is the field of testing which falls

under search-based software engineering. This field is defined
as search-based testing, which is one of many fields which
search-based software engineering has been applied to.

B. Search-based Software Testing

This thesis falls under the broad area of search-based
software testing, but differentiates itself by focusing on Ajax
web applications. The field of search-based testing has been
systematically review by Afzal et al. [4]. In their systematic lit-
erature review it is defined as, ”Search-based software testing
(SBST) is the application of metaheuristic search techniques
to generate software tests. The test adequacy criterion is
transformed into a fitness function and a set of solutions in the
search space are evaluated with respect to the fitness function
using a metaheuristic search technique” [4]. Thus, one can
infer that search-based testing is based on the following three
components:

• metaheuristic search techniques,
• fitness functions, and
• test suite generation.



Fig. 1. Optimization using a local search metaheuristic.

Each of these three components are necessary in order for a
tool to be considered search-based in the field of testing. The
final component of test suite generation is when test cases
are generated. Test cases execute the program in a specified
way in order to test a desired functionality. Test suites consist
of the aforementioned test cases. In the following sections,
metaheuristic search techniques and their fitness functions are
distinct, and need further elaboration.
1) Metaheuristic Search Techniques: The term ’search’

in search-based software testing refers to the fact that a
metaheuristic is used. A metaheuristic is defined by Os-
man and Laporte [5] as being, ”(...) an iterative generation
process which guides a subordinate heuristic by combining
intelligently different concepts for exploring and exploiting
the search space (...)”. In other words, metaheuristics are
algorithms which seek to optimize a problem. They usually
do not lead to deterministic answers. Instead, metaheuristics
are generally non-deterministic. This means that they seek
a solution near the most correct one, but may not reach a
perfectly correct solution.
Two examples of metaheuristics are global and local search

algorithms. These algorithms are preferred in different situa-
tions. The difference between local and global search algo-
rithms represent one of many differentiations between search
algorithms. Because there are a plethora of algorithms which
can be used to search for the most optimized solution, domain
knowledge is needed in order to select the correct one.
Local search algorithms are efficient in finding single global

maximums. For example, a local search algorithm such as
hill climbing [6] would be suitable to Fig. 1. By using the
algorithm, any candidate solution along the graph would first
be chosen, and by checking the neighboring solutions the
algorithm would be able to quickly locate the maximum. The
local search algorithm is applicable in this specific situation.
However, in situations where the global maximum is being
sought it is inefficient if there are many local maxima.
A solution to the limitations of the local search algorithm

are global search algorithms. An example of this kind of algo-
rithm is simulated annealing. Simulated annealing [7] slowly
cools allowing probabilistic jumping to non-optimal candidate
solutions throughout the graph. Over time, the algorithm will
settle into a local maximum in situations such as Fig. 2 more

Fig. 2. Optimization using a global search metaheuristic

consistently. However, the simulated annealing algorithm is
less efficient then hill climbing in the previous example seen
in Fig. 1. Each metaheuristic presents a different set of trade-
offs, so the correct selection of the algorithm to match the
situations is important.
Metaheursitics are one of three vital components in search-

based software testing. Furthermore, the selection of correct
algorithm is important based on the problem which is being
optimized.
2) Fitness Function: The metaheuristic used is guided by

a fitness function. A fitness function, ”distinguishes between
better and worse solutions” [1]. In other words, it decides
whether candidate solutions tested by the metaheuristic are
more or less fit. As a result, a more optimal solution is reached
that meets the needs of the fitness functions. For example, in
Fig. 1 and Fig. 2 the fitness function is defined as finding the
maximum y coordinate of the graphed functions.

C. Ajax

Ajax is a grouping of technologies which are used web
applications. The term itself was pioneered by Garrett [8] and
defined as consisting of:

• ”standards-based presentation using XHTML and CSS;
• dynamic display and interaction using the Document
Object Model;

• data interchange and manipulation using XML and XSLT;
• asynchronous data retrieval using XMLHttpRequest;
• and JavaScript binding everything together”. [8]
These features together comprise what is collectively de-

fined as Ajax. Of note, is that Ajax has evolved over time in
order to include a broader definition including web applica-
tions even programmed using HTML instead of XHTML and
JSON instead of XMLHttpRequest.
There are two features of Ajax, which make it particularly

difficult to test. The first is its use of asynchronous commu-
nication. Secondly, is its ability to dynamically update web
pages partially.
Asynchronous communication is when data is sent between

the client and the server without it’s receipt being confirmed.
Furthermore, the order in which data is sent using Ajax can be
mixed, and so it presents a number of complicated challenges
to testing. For example, when a test suite is written it does



Fig. 3. Dynamic Updating

whether a certain functionality works. However, in order that
it cope with asynchronous communication, the possibility that
communication will be sent or received out of order is a key
consideration. While testing, asynchronous communication is
an added concern.
The second issue is the use of dynamically updated web

pages. A dynamically updated web page can have its document
model object (DOM) partially updated without changing the
current web page. The DOM consists of the web pages HTML,
XHTML or XML structure which are presented to the user. For
example, in Fig. 3 it may be seen that when an action occurs
such as the button is pushed, then the text will dynamically
be updated to display an image instead. This functionality is
useful since it allows only a part of the DOM structure to be
updated without having to update the whole page.
Dynamically updating web pages presents a challenge in

testing [2] since traditional web pages are fully reloaded when
the DOM is changed. However, tools which test Ajax need to
cope with this additional functionality of the technology.

III. RELATED RESEARCH
There is little research in the field of dynamically under-

standing programs [9]. An area of research that falls under
the field of dynamically understanding programs is reverse
engineering. Reverse engineering is one approach for coping
with Ajax’s asynchronous messages and DOM changes. The
goal of dynamic reverse engineering is to understand the web-
site’s states. Furthermore, in the context of web technologies,
the larger field of reverse engineering has been reviewed by
[10]. However, the review focused on more traditional web
technologies, and did not address Ajax. The current state of
the field is limited in terms of understanding, and research has
yet to systematically understand how to cope with Ajax.
Currently, there are a number of approaches which have

been proposed and studied in research in the context of
dynamically understanding and testing Ajax. The first is
FireDetective [11], a tool that uses traces from both the client
and server side to dynamically understand how the website
works. The tool has been shown in a small user study to
improve effectiveness, efficiency and confidence of developers
[12] when working with Ajax websites. Secondly, Crawljax
[13] is a tool that uses a novel approach for crawling a website
that copes with the differences of Ajax. Using an algorithm
it identifies and automatically constructs a state machine of

the website. The tool has been presented in a number of
empirical studies where it has been applied. Thirdly, an agile
approach which incrementally reverse engineers Ajax user
interfaces named CReRia [14] is presented in a preliminary
experiment. The tool facilitates iterative reverse engineering
of the finite state machine of the interface through clustering
components based on heuristic criteria. Finally, ReAjax [15] is
a tool that uses dynamic traces and focuses on the client-side
perspective. Additionally, it focuses on single Ajax web pages
by identifying indicators and mutators on a single web page
before collecting traces. Marchetto and Tonella [15] claim that
this leads to a richer finite state machine, which would be
missed by the other tools.
As a result of research into the dynamic reverse engineering

of Ajax, some of the tools have been applied in the field of
testing as well. The most widely used is ATUSA, a plug-
in for Crawljax. It has been applied in the field of testing
for automatic invariant [13], security [16], regression [17]
and cross-browser compatibility testing [18]. ReAjax has been
used for testing purposes as well. It been used for testing both
semantically interacting events [19] as well as optimization
of this technique using search based testing [15]. Finally,
FireDetective and CReRia focus primarily on increasing un-
derstanding of web applications, and have not been used as
widely in the context of testing.
A comparison of CReRia, ReAjax and Crawljax has pre-

viously occurred [20] based on the comparative framework
defined by Gueheneuc et al. [21]. The comparison was done
at a high level which was focused on a broad set of criteria.
Furthermore, a systematic literature review [22] was under-
taken to understand the status of how SBST is used for test-
case generation and also provides a framework for how tools
should be empirically evaluated.

IV. RESEARCH METHODOLOGY

A. Research Questions

RQ1: What are the state-of-the-art tools for search based
testing of Ajax applications?
RQ2: How have search-based testing tools been evaluated

in scientific papers?

B. Systematic Literature Review

The guidelines for conducting the systematic literature re-
view (SLR) come from Kitchenham [3]. An SLR is useful
when a body of scientific literature needs to be systematically
identified and information extracted. A benefit of structuring
it follow a set of guidelines is that it is both understandable
and repeatable by others. By conducting the SLR, the relevant
literature will be used to identify the state-of-the-art tools and
how they have been evaluated in order to answer RQ1.
The terminology for the SLR and design of the review

protocol come from the relevant sections of the SLR guideline
[3]. This section details the steps taken to conduct the SLR.
The population, intervention, outcome, context and exper-

imental design defined in this section come from the SLR
guidelines [3]. Population for this study is the field of testing of



Ajax applications. The intervention is the use of search based
software engineering to detect defects in the Ajax applications.
Outcome is the varying ability of defect detection of search
based engineering approaches. The context is restricted to Ajax
applications. Finally, the experimental design is not restricted.
Next, in order to answer RQ2 the methodology which

each paper uses for evaluation of the search-based tool and
a summary of results will be presented in a table. This will be
done in order to visualize how the tools have been evaluated
for the reader.
An overall view of the research methodology can be found

in Fig. 4. The rectangle represent objects or outcomes, while
the arrows represent actions. Finally, the circles listing research
question numbers identify the outcome which will answer
them.

C. Selection Criteria

V. SEARCH STRATEGY

The search strategy focuses on finding papers relevant to the
population, intervention and outcome. [3] The key terminology
was combined into a single search string. No synonyms were
identified, because the terms were broad enough. The operator
AND was used to join the major terms. The search strings were
chosen in order to answer the research questions of the SLR.
Overall, the SLR used a search-term based strategy for study
discovery.
A pilot search was conducted and it was found that using

the synonym ’crawl*’ of ’search*’ resulted in a broader set of
search-based studies. Using the synonym helped identify the
important literature better. The resulting body of research was
found to be an appropriate size for the area.
The search terms that were used were based on the follow-

ing population, intervention and outcome:
• Population: testing.
• Intervention: search, crawl.
• Outcome: Ajax.
The author searched for journal and conference articles

using SCOPUS1, and the Inpsec and Compendex2 databases.
They were chosen, because they contain peer-reviewed journal
and conference articles from many content providers. Thus, it
was possible to both have peer-reviewed research and a wide
array of journals and conferences to search in.
The search was not limited to any field or time period in

order to see what was available. The following search queries
were used:

SCOPUS: TITLE-ABS-KEY((search* OR crawl*) AND
test* AND ajax)

Compendex & Inspec: ((search* OR crawl*) AND test*
AND ajax WN KY)

1www.scopus.com
2www.engineeringvillage.com

During the SLR, only journal and conference articles were
considered. They were considered to be more reliable and
representative of a higher quality of research.
For each query, the author took all returned papers into

consideration. The articles were then used for conducting
the SLR. Each paper considered also needed an author. For
example, the proceedings of a conference were not considered.
For any duplicate papers were found, they were skipped and
not taken into account.
In order to identify the relevant papers for understanding

search-based approaches to testing Ajax applications as well
their effectiveness in discovering defects the author made a
checklist. Each paper was selected based on the following
questions:

• Does the paper focus on testing Ajax applications?
• Does the paper describe an approach for search-based
testing?

• Does the paper describe whether the approach is effec-
tive?

• Does the paper provide evidence of defect detection?
Every question was scored using the abstract of each

research paper. Papers with a score greater than 2.5 were
included. Each question was assessed using the following
criteria:

• Full = 1 point
• Partial = 0.5 points
• None = 0 points

Fig. 5. Search Strategy.

A. Quality Assessment

The quality of each selected article was reviewed for quality
based on the following seven questions:



Fig. 4. Summary of research methodology.

TABLE I
RELEVANT LITERATURE

Paper Title
Automated acceptance testing of JavaScript web applications [23]

Automated acceptance testing of JavaScript web applications [23]

Automatic AJAX application testing [24]

Crawling AJAX-based web applications through dynamic analysis
of user interface state changes [13]

Crawling AJAX by inferring user interface state changes [25]

Invariant-based automatic testing of Ajax user interfaces [26]

Invariant-Based Automatic Testing of Modern Web Applications [27]

Regression Testing Ajax Applications: Coping with Dynamism [17]

Search-based testing of Ajax web applications [19]

Using search-based algorithms for Ajax event sequence generation
during testing [15]

• Is the goal of the research understandable?
• Is the research methodology adequately described?
• Are threats to validity identified?
• Are limitations of the research discussed?
• Does the paper provide results that are repeatable?
• Do the conclusions relate to the research?
• Does the paper discuss areas of future research?
By asking the previously stated questions to each article,

the articles which are of a high quality can be determined.

B. Data Extraction Process

To perform the relevant article search, the authors inserted
the search query in the SCOPUS and the Inpsec and Compen-
dex database. The databases produced 48 articles in total. After
eliminating duplicate papers and articles without authors, such
as conference proceedings, there were in 17 papers in total that
resulted from the search strategy. These 17 papers were then
accessed by the author against the selection criteria. Papers
needed a relevance score of 2.5 points in order to be considered
in the SLR. There were 9 relevant papers that resulted from the
literature after performing the selection scoring. The process
can be seen in Fig. 5. The relevant literature will be the focus
of this SLR.
All relevant literature was imported into Zotero 3. A listing

of relevant articles may be found in Table 1.

VI. ARTICLE QUALITY
The quality of each article was assessed in order to present

the state of research in the context of its quality. The following
questions were asked for each article:

3http://www.zotero.org/

TABLE II
QUALITY SCORES OF PAPERS

Points 3.0-3.5 4.0-4.5 5-5.5 6-6.5
Papers [23], [24] [25] [15], [19] [13], [26], [27]

• Is the goal of the research understandable?
• Is the research methodology adequately described?
• Are threats to validity identified?
• Are limitations of the research discussed?
• Does the paper provide results that are repeatable?
• Do the conclusions relate to the research?
• Does the paper discuss areas of future research?
For each question, the full text of the study was consulted.

Based on the fulfilment of the quality criteria the following
scores were assigned for each question:

• Full = 1 point
• Partial = 0.5 points
• None = 0 points
The total points of each paper is summarized in Table 2.

All papers presented understandable goals, discussed future re-
search and had conclusions that related to the papers research.
Where the quality scored lowest was in regards to whether
the research methodology was adequately described. When a
research methodology was described, the authors cited Yin
[28] without providing much further detail. Other issues of
paper quality had to do with the lack of discussion around
limitations of the research, although this could be considered
a growing pain of recent research in a new area. Additionally,
the results presented were not immediately repeatable for the
author based on information provided in the paper. Overall,
the quality of the papers seemed acceptable for the papers to
be considered as part of future research.

VII. RESULTS
In order to answer the research questions the relevant

information was extracted from each article. The relevant
information is described below.
RQ1: What are the state-of-the-art tools for search based

testing of Ajax applications?
There are a number of tools related to search-based testing

Ajax applications. The first is Crawljax [25], which reverse
engineers the web application through the use of crawling.
It even can create a static version of the website based on
captured states that can be used for testing. The author later
presented the development of the tool [27] along with a
number of empirical case studies of its use. The Crawljax
tool uses an edit distance algorithm that can be considered



TABLE III
TOOL VARIANTS BASED ON CRAWLJAX.

Tool Invariants User-stories Test suites
NDIRT Yes No Limited

Crawlscripter No Yes Limited

ATUSA Yes No Yes

a search-based algorithm. The edit distance algorithm comes
from Levenshtein [29] and the fitness function which optimizes
the algorithm is a complex difference algorithm that checks the
DOM structure for differences [30].
Although Crawljax does not fully test Ajax web appli-

cations, it has been extended in a plug-in named ATUSA.
ATUSA [26] itself derives tests from the DOM state transitions
that the Crawljax tool collects. The creation of the test suites is
accomplished through the hooks that can be activated before,
after and during crawling. Since ATUSA is built as a plug-in
for Crawljax it can also be considered a tool for search-based
testing of Ajax applications.
In an extension to Crawljax, a technique for dealing with

non-deterministic invariant regression testing (NDIRT) was
proposed [17]. This is applicable when regression testing
is done, because there are new states added. When testing
these new states there are a number of challenges that result
from detecting them correctly. In order to deal with these
challenges, the state comparison filters out specific parts of the
DOM structure such as the date and time [17]. As a result,
similar states that only differ in time can be considered similar,
thereby making regression testing more robust.
In order to make Crawljax more intuitive, a high level

interface that uses a human-readable scripting language was
proposed name Crawlscripter [23]. The tool can be used by
someone who is not familiar with programming in order to
test an Ajax application. Through its human readable scripting
language, user stories can be scripted more naturally.
Summarized in Table 2 are the tool variants of Crawljax

which have been identified and their respective properties. Key
differences are identified as the ability of the tool to handle
invariants (see ”Invariants” column in Table 2), program user
stories (see ”User-stories” column in Table 2) and the ability
to generate test suites (see ”Test suites” column in Table 2).
ReAjax is a search-based tool [15], [19] that uses dynamic

traces from Ajax applications in order to generate test cases.
It focuses on single-page Ajax applications. The tool differ-
entiates itself from other tools, because it requires manual
instrumentation of the DOM structure. Also, it explicitly
seeks to apply a search-based method of testing. This is
accomplished through the generation of test suites based on
algorithms that seek out the most optimal test cases based on
an optimization function.
Another approach to testing Ajax applications was proposed

in the form of an initial architectural description [24] of the
tool. The proposed tool would represent the Ajax application
as number of states which it would use to generate test cases.

TABLE IV
SEARCH-BASED TESTING TOOLS.

Tool Metaheuristic Fitness function Test suites
Crawljax Levenshtein [29] Diff [30] Limited

NDIRT Levenshtein [29] Diff [30] Limited

Crawlscripter Levenshtein [29] Diff [30] Limited

ATUSA Levenshtein [29] Diff [30] Yes

ReAjax Multiple Multiple Yes

STS STS Algorithm [31] Pre-defined set Limited

In order to decide on the correct number of test cases generated
to test state transitions, heuristics would be used. Overall,
the concept is only presented in an initial architecture with
a Unified Modeling Language (UML) to Symbolic Transition
System (STS) converter created. In this thesis the tool will be
referred to as STS .
In Table 3, a summary of the presented tools is shown

based on the definition of search-based testing. Search-based
testing is defined as a testing approach that has the following
three components: a metaheuristic, fitness function and test
suite generation. As seen from the table all tools have these
elements. However, the ability for Crawljax, and its variants
(see Table 2) to generate test suites is limited to a smoke
test level of complexity so it is identified as limited. This is
in contrast to the ability of ATUSA and ReAjax, which can
generate test suites in many ways. For example, ReAjax can
change fitness functions and ATUSA has the ability to define
pre-, during and post- hook actions while crawling.
RQ2: How have search-based testing tools been evaluated

in scientific papers?
Crawljax is assessed from the perspectives of accuracy that

the results are correct, scalability that the tool is applicable in
the real world, and the performance of the application itself
[13]. In order to evaluate these three perspectives, six different
Ajax applications were crawled. The accuracy was assessed
by comparing the number of expected clickables to the actual
clickables detected using the tool. The tool discovered almost
all expected clickables for the six applications with only the
exception of a few clickables that needed to click the same
element multiple times in order to make them visible. Next, the
scalability was assessed in terms how long the Ajax application
crawling took. Overall, none of the six applications took longer
than two hours. This showed that the scalability to large Ajax
was possible. Finally, the applicability of tool in terms of
running in multiple browsers was shown to have a positive
effect on runtime when multiple browsers were used to test
Google AdSense 4. The author believes the tool is accurate,
scalable and applicable in the real world. It has also been used
for security testing and cross-browser compatibility testing. By
running Crawljax itself, the tool can be considered a kind of
smoke test as described by Memon [32].
ATUSA’s effectiveness [26] was evaluated in its code

coverage and ability to discover seeded faults in the Ajax

4https://www.google.com/adsense/



application. In the first case study, the TuDu application5

was tested. Out of ten seeded faults, eight were discovered.
Additionally, there was 75% client-side and 73% server-side
code coverage. Moreover, the time it took in order to run the
tests was low, i.e. 26.5 minutes manual work and 6.5 minutes
crawling.
The second case study using ATUSA [26] focused on an

Ajax application for teachers6 in order to understand the tools
effectiveness during development. The developers used in the
case study found it easy to define invariants in only a few
lines of code. As a result of the tool being used, six faults
were discovered that were not found through manual testing.
The regression testing (NDIRT) approach by Roest et al.

[17] dealt with dynamic invariants encountered using Crawljax
through the combination of the implemented comparator and
element resolver. The comparator was a comparison function
that imposed custom expectations on the DOM structure.
Furthermore, the element resolver helped correctly identify
state changes that would otherwise not have been identified
correctly, thus leading to incorrect state changes. As a result,
it was reported that this resulted in the avoidance of false
negatives and false positives were reduced in some cases
completely. Additionally, by using custom comparators, the
number of false positives was reduced from 50 to 95%
when testing the Google Reader Ajax application 7. This is
a significant sign of effectiveness since the Google Reader
application is extremely dynamic.
The ReAjax tool was tested in two case studies and its

performance was presented in terms of the combination of
three factors: (i) bound or unbound test suite size, (ii) al-
gorithm used and (iii) fitness function used. The algorithms
performance in terms of computation time varied greatly.
Performance time was clearly better for bounded test suites
than for unbounded. Furthermore, the performance of fitness
functions was varying based on the application tested. For
simplicity, the most successful algorithm and fitness function
results will be considered. In both case studies twenty faults
were injected. In the TuDu application, the bounded suite
detected 66.67% of injected faults, while the unbounded suites
detected approximately 70%. For the Oryx application, the
bounded test suite detected 84.6% of faults and the unbounded
test suite detected 100% of injected faults. The authors found
that even using bounded test suites, ReAjax is still reasonably
effective.
Crawlscripter [23] was shown to be effective in imple-

menting eight user stories from the JPetStore application8.
Additionally, it was applied to check if citations could be
downloaded through Springer Link9. Crawlscripter through
these two case studies was shown as being effective in
converting user stories into tests.

5http://tudu.sourceforge.net
6http://www.coachjezelf.nl
7http://www.google.com/reader
8http://java.sun.com/developer/technicalArticles/J2EE/petstore/
9http://www.springerlink.com

TABLE V
EVALUATION OF TOOLS.

Source Tool Methodology Test subject
[15], [19] ReAjax Case study Tudu, Oryx

[13], [25] Crawljax Case study [28] JpetStore, Gucci,
Internal, Sports center,

Online shop

[13] Crawljax Case study Google AdSense

[27] ATUSA Case study [28] HitList, TheTunnel

[26], [27] ATUSA Case study [28] TuDu

[26], [27] ATUSA Case study [28] Coachjezelf

[17] NDIRT Case study [28] HitList, Google Reader

[24] STS N/A None

[24] Crawlscripter Case study JpetStore

VIII. THREATS TO VALIDITY
The most major threats to validity of this thesis is the

possibility that only a portion of relevant scientific papers were
selected as relevant literature, the possibility that the author’s
data extraction was subjective.
In the research methodology the author chose to conduct

a Systematic Literature Review following the procedure from
Kitchenham [3]. There is however a possibility that the pro-
cedure and protocol created was inadequate to capture the
relevant scientific publications. The author added the search
term ’crawl’ in order to include more relevant research and
expand the amount of papers considered. However, finding a
search string that is comprehensive is a hard task.
The second major threat to validity is that the author may

have extracted the data in a subjectively. This can be due to
misunderstandings that occur during the extraction process.
The author reviewed the data extracted, and checked if the
information was correct in connection with the papers. The
extraction of data was done only by the author and the analysis
as well. The author has reviewed the information in thesis, but
there is a threat that it could contain subjective information.

IX. CONCLUSIONS
As a result of conducting the Systematic Literature Review

(SLR) on search-based testing of Ajax applications a number
of tools were identified in order to answer RQ1. Those tools
were: ReAjax [15], [19], Crawljax [13], [25], ATUSA [26]
and Crawlscripter [23]. An additional paper [17] proposed
improvements to Crawljax by evaluating a non-deterministic
invariant regression testing (NDIRT) approach. Finally, a pro-
posal for a tool that used symbolic transition system (STS)
testing [24] was found, which has not been implemented
yet. Both the tools Crawlscripter and ATUSA were based on
Crawljax. ReAjax, existed as a self-contained tool, and was
not based on any other tool contained in the SLR.
In summary, as a result of conducting the SLR on search-

based testing tools for Ajax web applications the author found
the following answers to RQ1:

• ReAjax, Crawljax, ATUSA and Crawlscripter identified
as tools,



• ATUSA are Crawlscripter are based on Cralwjax,
• An STS approach was proposed but not implemented,
• NDIRT is an improvement on Crawljax.
As an answer to RQ2 it was found that the tools were

primarily evaluated through the use of case studies. These
case studies tested Ajax web applications. However, the test
results were not comparable since no case study design and
procedure was the same. Further evaluation is needed in order
to draw conclusions beyond the individual case studies each
paper presents.
In summary, the results of RQ2 can be understood to

indicate:
• Case study was the primary methodology for evaluation
of tools,

• No case study shared the same design and procedure.
Based on the tools discovered, the field of search-based

testing of Ajax applications is a recent phenomenon since
relevant scientific only dates back to 2008. Further research
should be done in the area to evaluate tools in a way that
is comparable. For example, by designing an experiment that
multiple tools can be benchmarked against or following the
framework proposed by Ali et al. [22] for evaluation the SBST
tools.

REFERENCES
[1] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software

engineering: Trends, techniques and applications,” ACM Comput. Surv.,
vol. 45, no. 1, p. 11, 2012.

[2] A. van Deursen and A. Mesbah, “Research issues in the automated
testing of ajax applications,” in SOFSEM, 2010, pp. 16–28.

[3] B. Kitchenham, “Procedures for performing systematic reviews,” Keele,
UK, Keele University, vol. 33, p. 2004, 2004.

[4] W. Afzal, R. Torkar, and R. Feldt, “A systematic review of search-based
testing for non-functional system properties,” Information & Software
Technology, vol. 51, no. 6, pp. 957–976, 2009.

[5] I. H. Osman and G. Laporte, “Metaheuristics: A bibliography,” Annals
of Operations Research, vol. 63, no. 5, pp. 511–623, 1996.

[6] S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards,
Artificial intelligence: a modern approach. Prentice hall Englewood
Cliffs, 1995, vol. 74.

[7] B. Suman and P. Kumar, “A survey of simulated annealing as a tool
for single and multiobjective optimization,” Journal of the operational
research society, vol. 57, no. 10, pp. 1143–1160, 2005.

[8] Jesse James Garrett, “Ajax: A new approach to web
applications - adaptive path,” http://www.adaptivepath.com/ideas/ajax-
new-approach-web-applications, Feb. 2005. [Online]. Available:
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications

[9] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehension through
dynamic analysis,” IEEE Trans. Software Eng., vol. 35, no. 5, pp. 684–
702, 2009.

[10] R. Martin and L. Archer, “Reverse engineering of web applications: A
technical review,” 2007.

[11] N. Matthijssen and A. Zaidman, “Firedetective: understanding ajax
client/server interactions,” in ICSE, 2011, pp. 998–1000.

[12] N. Matthijssen, A. Zaidman, M.-A. D. Storey, R. I. Bull, and A. van
Deursen, “Connecting traces: Understanding client-server interactions in
ajax applications,” in ICPC, 2010, pp. 216–225.

[13] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling ajax-based web
applications through dynamic analysis of user interface state changes,”
TWEB, vol. 6, no. 1, p. 3, 2012.

[14] D. Amalfitano, A. R. Fasolino, and P. Tramontana, “Rich internet
application testing using execution trace data,” in ICST Workshops, 2010,
pp. 274–283.

[15] A. Marchetto and P. Tonella, “Using search-based algorithms for ajax
event sequence generation during testing,” Empirical Software Engineer-
ing, vol. 16, no. 1, pp. 103–140, 2011.

[16] C.-P. Bezemer, A. Mesbah, and A. van Deursen, “Automated security
testing of web widget interactions,” in ESEC/SIGSOFT FSE, 2009, pp.
81–90.

[17] D. Roest, A. Mesbah, and A. van Deursen, “Regression testing ajax
applications: Coping with dynamism,” in ICST. IEEE Computer
Society, 2010, pp. 127–136.

[18] A. Mesbah and M. R. Prasad, “Automated cross-browser compatibility
testing,” in ICSE, 2011, pp. 561–570.

[19] A. Marchetto and P. Tonella, “Search-based testing of ajax web appli-
cations,” in Search Based Software Engineering, 2009 1st International
Symposium on. IEEE, 2009, pp. 3–12.

[20] A. Marchetto, P. Tonella, and F. Ricca, “Reajax: a reverse engineering
tool for ajax web applications,” IET Software, vol. 6, no. 1, pp. 33–49,
2012.

[21] Y.-G. Guéhéneuc, K. Mens, and R. Wuyts, “A comparative framework
for design recovery tools,” in CSMR, 2006, pp. 123–134.

[22] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, “A
systematic review of the application and empirical investigation of
search-based test case generation,” IEEE Trans. Software Eng., vol. 36,
no. 6, pp. 742–762, 2010.

[23] N. Negara and E. Stroulia, “Automated acceptance testing of javascript
web applications,” in WCRE, 2012, pp. 318–322.

[24] S. Salva and P. Laurençot, “Automatic ajax application testing,” in ICIW,
2009, pp. 229–234.

[25] A. Mesbah, E. Bozdag, and A. van Deursen, “Crawling ajax by inferring
user interface state changes,” in ICWE, 2008, pp. 122–134.

[26] A. Mesbah and A. van Deursen, “Invariant-based automatic testing of
ajax user interfaces,” in ICSE, 2009, pp. 210–220.

[27] A. Mesbah, A. van Deursen, and D. Roest, “Invariant-based automatic
testing of modern web applications,” IEEE Trans. Software Eng., vol. 38,
no. 1, pp. 35–53, 2012.

[28] R. K. Yin, Case study research: Design and methods. SAGE Publica-
tions, Incorporated, 2008, vol. 5.

[29] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions and reversals,” in Soviet physics doklady, vol. 10, 1966, p. 707.

[30] S. S. Chawathe and H. Garcia-Molina, “Meaningful change detection in
structured data,” in SIGMOD Conference, 1997, pp. 26–37.

[31] L. Frantzen, J. Tretmans, and T. A. Willemse, “Test generation based
on symbolic specifications,” in Formal Approaches to Software Testing.
Springer, 2005, pp. 1–15.

[32] A. M. Memon, “An event-flow model of gui-based applications for
testing,” Softw. Test., Verif. Reliab., vol. 17, no. 3, pp. 137–157, 2007.


