

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, June 2013

Comparing HTML5 frameworks when creating
multi-platform mobile views in an existing MVC4
application
Bachelor of Science Thesis in the Programme Software Engineering and
Management

FREDRIK BJÖRK
NIEL MADLANI

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Comparing HTML5 frameworks when creating multi-platform mobile views in an
existing MVC4 application

Fredrik Björk
Niel Madlani

© Fredrik Björk, June 2013.
© Niel Madlani, June 2013.

Examiner: Morgan Eriksson

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden June 2013

 3

Comparing HTML5 frameworks when creating multi-platform
mobile views in an existing MVC4 application

Fredrik Björk
Software Engineering and Management

University of Gothenburg
tabbyboll@gmail.com

Niel Madlani
Software Engineering and Management

University of Gothenburg
niel.madlani@gmail.com

Abstract
There is an increasing number of programming languages and
software development platforms on the contemporary mobile
market. Developers choose to adjust to the needs for portability of
their applications by using of multi-platform frameworks to
reduce the need of rework when deploying to multiple platforms.
The goal of this thesis is to identify the most suitable HTML5
framework for implementing cross-platform mobile views to
existing MVC4 applications in a context of industrial applications
at Volvo IT. The method is a case study with an implementation
of a industry-representative sample solution and analysis of its
performance, maintainability and simplicity. The results show that
one of the frameworks – JQuery Mobile is better suited than
others for implementing applications based on MVC4.

Keywords: HTML5, multi-platform, mobile, MVC4, Framework

1. INTRODUCTION
The mobile market has evolved a lot in the recent decade, with the
number of apps increasing steadily for all mobile platforms [3].
Mobile technologies such as smart phones enable a new
generation of consumer and business applications [16], but at the
same time cause a need for developers to use an increasing
number of different tools and programming languages if they
want to support all platforms, such as BlackBerry, Windows
Phone, Symbian, Palm OS and iOS [3]. Developers cannot make
native application compatible with all mobile platforms at the
same time since it would be prohibitively expensive. This claim is
supported by studies by Google which states that they would not
be able to afford such a diversity and suggests that web
technology can solve the platform fragmentation we currently see
in the markets [1].

A successful solution addressing the diversity of platforms would
be an application that is compatible with iOS, Android and
Windows Phone devices, providing the same functionality and not
requiring expensive rework. In the case of the studied
organization – Volvo IT – the solution has to be completely
integrated into the MVC4 application and handle all of its
functions. This solution would allow organizations that have
stationary systems (alike Volvo IT), but need mobile solutions to
improve the efficiency and flexibility of their workers to quickly
receive mobile functionality in their existing systems.

Therefore, we address the following research question: Which
framework suits the organization best based on dedicated
architectural principles? In order to address the research question
we conducted a quantitative research study at Volvo IT. In the
study we developed two applications with different HTML5

frameworks, Kendo UI Mobile and JQuery Mobile. The
frameworks were chosen based on requirements from Volvo IT
and evaluated against the 10 architectural principles from the
company (VGTA - Volvo Group Target Architecture, [6]).

The report is structured as follows: In section 2, we explain
background for the technologies we have been using. In section 3,
we present the method we used. In section 4, we present the
results and in section 5, we discuss the results and their
limitations. In Section 6 we present the conclusions.

Limitations
We will not consider the differences between native vs. web
application since it is not the scope of the solicited industrial
project. The article does not contain any information, which APIs
from each mobile platform are supportable for each framework.
We do not consider testing an application with JavaScript code
since our main objective is to focus on the HTML5 frameworks.

2. THEORETICAL BACKGROUND
In this section we explain some important concepts and
technologies used in this thesis.

• A framework is a reusable software platform used for
development. Frameworks extend the capabilities of the
base languages by adding functionality or compatibility.

• Each prototype in this article is the result of integrating

code built using a framework into an existing MVC4
application in Visual Studio 2012.

• HTML5 was introduced 2012 and is a web development
tool for making websites, application, videos and
graphics [19]. The differences between HTML4 and
HTML5 are that the old elements tags have been
restructured [18].

• Visual Studio 2012 is an IDE (Integrated Development
Environment [15]) developed by Microsoft primarily
for use in programming C++, C# and F#.

• NuGet is a package manager in Visual Studio 2012 used

for locating, downloading, installing and removing
packages from a project.

• ASP.NET is a Web development model that includes
necessary services for building enterprise-class Web
application with a minimum of coding [14].

 4

• C# is an object-oriented programming language that
enables developers to build a variety of secure and
robust applications that run on the .NET Framework
[13].

• MVC4 is an alternative architectural framework for the
ASP.NET web forms pattern for creating web
applications, and is structured as a Model-View-
Controller architecture (see Figure 1), where the views
use HTML5 and the models and controllers use C# [12].

Figure 1: Model-View-Controller

2.1 The 10 architectural principles from Volvo
IT
The studied company adopted 10 architectural solutions for their
applications. The principles guide the design of their
contemporary systems and were chosen as the evaluation criteria.
In this section we describe all ten principles while later we only
focus on 3 due to time limitations of the thesis.

Maintainable solutions - Deliver maintainable solutions to
Maintenance
Maintenance is one of the most expensive and resource heavy
phases and is getting more and more attention, especially in
component-based projects [11]. One of the reasons maintenance is
so demanding is that improving it involves so many factors, such
as modifiability and testability [11].

Conformity to standards - Drive usage of open and industry
standards
The code is easier to maintain, if it follows the established and
sensible coding standards, both if it is still in-house and if the
customer needs to perform the maintenance. Since everyone
knows what to expect from the structure of the code.

Autonomous & loose coupling - Flexible subsystem and
granular component setup, avoiding monoliths
“Loose-coupling applications are typically those that view the
database as a data server, with knowledge-based processing used
to interpret data obtained by issuing SQL queries to the
database” [7].
Autonomous & loose coupling can improve the process a lot as it
is important for achieving good maintainability to have
components separate from each other, which is greatly beneficial
to testability by allowing unit tests to be run for individual
components without having to use the entire system. Furthermore,
it allows for better modifiability by making the code more
readable as well as allowing individual components to be

modified and tested without risking errors in the rest of the
system. Finally, there is also a big performance benefit in that this
kind of structure allows for high response times in competitive
situations [10].

Simplicity - Clean solutions from technical, application and user
perspective
The goal of simplicity is to reduce the complexity of the system.

Usage of Agile work methods and design principles - Use Agile
system development and implementation principles
Agile work methods are becoming more and more common and
the benefits to using them are for most projects, so a framework
with a structure that suits agile processes is preferable.

Strive for usage of existing services in the organization -
Whenever possible, avoid application specific infrastructure and
instead use already existing services in the organization
If the organization is already using a framework that can work for
the current application, it might not be worth it to start using
another framework instead even if that new framework is better,
as the cost of retraining as well as the potential cost of a
commercial license for the new framework may be too high.

Robust solutions - Strive for robust solutions securing uptime
Robustness relates to the capability of a system to handle internal
and external negative situations and disturbances [4]. When
performing testing of a framework we want to make sure that the
framework meets the requirements, such as no hardware failures,
no crashes and no subsystem malfunctions.

Performance focus from start - Strive for good performance in
solutions from the start
A Good performance is an application or website have short
response time, high throughput, and high availability among other
things.

Secure solutions - Strive for secure solutions from the start Is the
application secure enough so no one can hack into the system and
wipe everything out, steal customer information or place fake
orders without paying.

Good integration solution - Follow the organization’s
integration policies and guidelines
If the structure of the framework is more compatible with the
integration policies of the organization, it will require less
modification or retraining for successful integration solutions and
reduce the frequency at which integration errors occur.

3. RESEARCH METHOD
In this thesis we used a quantitative research method [2] to test
different frameworks and collect the data to measure how the
different frameworks adhere to the VGTA principles.

 5

We collected quantitative data by performing an experimental
multiple case study. In this study, we created a basic MVC4
application to serve as the model for the requirements of the
prototypes, as well as the application the framework were
integrated into. After the application was completed, we created
the framework prototypes and treated each prototype as a case,
including all tests performed on all specified platforms. We
collected data from tests performed on the prototypes and analysis
of official websites of Kendo UI Mobile, JQuery Mobile their
communities.

When all data was collected and analyzed, we created an
overview of the different prototypes, from which we drew a
conclusions about how each prototype adhered to the VGTA
principles. We have illustrated the comparison between the two
prototypes using statistical diagrams, where we have measured
the loading time of the website. Figure 2, shows the workflow of
our research process and describing how we integrated each
framework relating to the VGTA principles about maintainability
and simplicity with Visual Studio 2012.

For the VGTA principles about maintainability and simplicity, we
described the process of integrating each framework with Visual
Studio 2012.

The frameworks need to be fully html5 based, as otherwise they
cannot be integrated as MVC4 views. The frameworks also need
to be flexible in what low-level languages can be used for the
back-end, as C# will be used there due to MVC4. Furthermore,
the frameworks need to support iOS, Android and Windows
Phone. Finally, the frameworks need to have sufficient
documentation for us to be able to learn how to use them well
enough to implement the prototypes in the short time available to
us. The frameworks that met our framework requirements were
Kendo UI Mobile and JQuery Mobile.

Many other frameworks were considered, but due to our
requirements they were excluded. Titanium, for example, is one
of the most used mobile frameworks, but it is primarily JavaScript
based and was therefore excluded.

3.1 Data collection
Due to the differences between the three VGTA principles of
performance, maintainability, and simplicity, we collected our
data in 7 different ways, which we have described in the
following sections.

Performance
To collect our performance data, we hosted our prototypes on the
same laptop with the same background processes running. A
server in Dulles, Virginia, USA then ran automated load-time
tests with two attached phones, a Nexus S phone running Android
2.3, and an iPhone 4 running iOS 5.1. The server in Dulles, was
chosen because it provided the possibility to use the same server
for simulating both Android and iOS devices. The other servers
that were considered (from the website:
http://www.webpagetest.org/) did not provide the possibility of
using both operating systems. Choosing two different servers
would make the result not comparable as there would be
confounding factors for example different distances and hardware.
We did not do any performance testing for Windows Phone due to
lack of viable testing tools. To measure each framework for the
different operating systems (OS), a website to measure the
loading time [20].

For each framework with OS we did 100 test runs. Each test run
resulted in one measurement, which was loading time. For each
test run the server loaded the page and measured time from
sending the request from until getting the full page. The page
contains orders and is presented in Figure 15 and Figure 25.

From these tests we received 100 data points for each framework
and platform measuring the seconds taken to load the page. Since
the distance to the server was quite long we choose to collect 100
data points in order to minimize the risk of confounding factors
like traffic congestion. These tests were performed between
10.00-14.00 CET on weekdays, meaning from 4.00-8.00 EST in
Dulles. This meant that we avoided most traffic on the US side,
but probably faced some bottlenecks on the EU to US connection
due to European business traffic.

Maintainability
According to the ISO/IEC 9126 standard, maintainability includes
quality attributes such as Analyzability and Changeability, which
we were able to examine.

• For Analyzability there is no difference between the
frameworks since both use HTML 5.

• For Changeability the code for both frameworks is
equally changeable. But in some types of organization it
is possible to influence the development of the actual
framework. This is discussed further in the article.

However we focused on available documentation, and support
community as additional attributes affecting maintainability. We
chose these aspects to focus on since there were no noticeable
differences between the frameworks with more important aspects
of maintainability such as testability and readability. Furthermore,

Figure 2: The Workflow

 6

they assist the task of maintaining the code by providing insight
of how different functions work and allowing developers to seek
help from other developers that had similar problems.

● For documentation, we compared the sizes of the
official APIs for both frameworks, listing the number of
functions in each framework.

● For the support community, we compared the number
of posts on the official forums and what kind of
organization handles the maintenance and development
of the frameworks.

Simplicity
To measure the principle of simplicity, we compiled a list of steps
taken to integrate the frameworks into Visual Studio 2012, and
compared the complexity of the integration processes. For
comparison, we used category definitions and ranked them from
best to worst. This was the only aspect of simplicity that differed
between the frameworks. As both frameworks are based on
HTML 5 with different data types, they are both easy to read and
work with. Furthermore, as the back-end for both prototypes is the
exact same C# code it does not affect the results in any way.

These are the steps taken to integrate the frameworks into Visual
Studio 2012:

1 Install from NuGet and start working
2 Manually put framework files in project folders
3 Install from NuGet and add additional files manually

3.2 Data analysis
The end result we aim to produce from this study is a list of how
well the frameworks adhered to the VGTA principles and a
conclusion that clearly shows which framework is the best in that
context.
The data used will be from 4 data sets (one for each framework
and platform) with 100 tests per dataset meaning 400 data points
in total. Due to there being 4 different data sets, we have chosen
to aim for analysis methods that analyse differences between data
sets to reduce the risk of type I errors (a false positive error).

To analyse our data, we first ran a Kolmogorov-Smirnov test [21]
for determining whether the data is normally distributed, as this
determined what kind of tests we could use to further analyse the
data.

Since the data was not normally distributed, we first used a
Friedman’s test, which is a non-parametric version of the
ANOVA test [9]. This test determined if there were any
significant differences between the values in the data sets. Then
we performed non-parametric effect size tests for each
combination of data sets [17].

4. RESULTS
The outcome from our analysis of the collected VGTA principles
is shown in this section. In our work we limited ourselves to three
principles due to time limitations. We choose performance in

order to conduct quantitative analysis and objective
measurements. We choose maintainability in order to capture how
well documented the frameworks are. We choose simplicity in
order to capture the subjective view on the difficulty in getting
started with a framework. This subjective view is important for
large organization, which usually deploy and have to support
large number of clients.

We list the formal statistical analysis of the performance data
gathered, as well as a table of data gathered related to
maintainability. Furthermore, we list a comparison of the process
of integrating the frameworks into Visual Studio 2012 and MVC4
to cover simplicity and compatibility with existing integration
standards, from now on combined into simplicity due to test
similarity.

Performance
As a first step in our data analysis we used SPSS [5] and RStudio
to compile descriptive statistics of the data to get a general
overview of the structure of the data and produce some diagrams.

Table 1: Shows the statistical data for both frameworks with

the different platforms

Framework
with
platforms

Mean Median Max
loading
time

Minimum
loading
time

JQuery_iOS 11.42 sec 10,81 sec 22,59 sec 7,62 sec

Kendo_iOS 14,30 sec 13,45 sec 29,19 sec 12,33 sec

JQueryAndro
id

8,43 sec 8,09 sec 16,95 sec 6,05 sec

KendoAndro
id

17,41 sec 16,19 sec 44,94 sec 12,33 sec

Table 1 represents the statistical data for the 100 tests-runs for
each framework in iOS and Android. It shows the mean and
median for each data set and also shows the maximum and
minimum time it took to load the same page.

Table 2: Kolmogorov-Smirnov Test of Normality

Table 2 presents the values that show whether data for the
different OS are normally distributed. If the significant value is
above 0.05 the data is normally distributed, while if it is below
0.05 the data is not normally distributed [8]. As shown in Table 2,
all the data sets are not normally distributed because they are all
below 0.05.

 7

In Figure 3 we get a better understanding from the values that
each framework for the different mobile platforms are not
normally distributed. This is because the data points in the graphs
are not following the line of normality.

Figure 3: Q-Q plots of Kendo UI and JQuery for the 2 mobile

platforms

Histograms in Figure 4 and Figure 5 show distribution curves for
each framework for the different mobile platforms. The X-axis is
the amount of time it took to load the page while the Y-axis is
amount of data points in the same time. The line drawn in the
histograms tells us that none of the histograms are normal. This is
because the curve is not equally bent from each side; instead it
falls down further to the end of the X-axis. The histograms are
different because some histograms had more test runs in the same
time interval.

Figure 4: Difference between the frameworks in iOS

Figure 5: Difference between the frameworks in Android

The next phase was to determine if the differences between the
data sets were statistically significant, and which data sets differed
from each other. To measure this we performed a Post hoc
analysis for Friedman’s Test to see if there were any statistically
significant differences between JQuery_iOS, Kendo_iOS,
KendoAndroid and JQueryAndroid. The result showed that the
test groups C, D and E were statistically significantly different
between the data sets. There is a difference because each of the
groups has a value below the p-value, which is 0,001.

Table 3: Post hoc Friedman’s test statistic
Test
group

Framework with platform:
Sample1 – Sample2

Statistically
significant
difference

A JQueryAndroid - JQuery_iOS

p < 0,001

B Kendo_iOS - JQuery_iOS

p < 0,001

C KendoAndroid - JQuery_iOS

0

D Kendo_iOS - JQueryAndroid

0

E KendoAndroid – JQueryAndroid 0

F KendoAndroid – Kendo_iOS p = 0,006

In addition to this a non-parametric effect size test was done to
see how each test group’s data sets differ from each other. Since
test group C, D and E all has significant differences, each of the
samples 1 from the three test groups has a higher loading time and
large effect size. The result for this test is shown in Table 3.

From this data it is clear that Kendo UI Mobile on Android has
much longer loading times than JQuery Mobile on both Android
and iOS. Furthermore it is clear that Kendo UI Mobile on iOS has
much longer loading times than JQuery Mobile on Android. Any
other differences are not large enough to be statistically
significant without excluding potential outliers.

Finally, we compared the two frameworks for the two OS to see
how they measure against each other. In figure 6 diagram you can
see four box plots and how they compare. The JQuery Mobile
framework has better performance than the Kendo UI Mobile
framework. The line in the middle of the boxes indicates the
median of loading time. The top of the box represents the 75th
percentile where 25% of the data points are above the 75th
percentile. The bottom of the box represents the 25th percentile
where 25% of the data points are below the 25th percentile. The
T-bars, also called as inner fences, are extension from the boxes.
The T-bars represents the minimum and maximum values of the
box-plots. The points represent outliers while stars represent
extreme outliers. These outliers are outside of the box plots
because their values are three times time height of the boxes.

 8

Figure 6: A box-plot diagram showing load-times in seconds.

Maintainability
In Table 4, we can see that JQuery Mobile has a much more
active support community, with 3 times the number of threads on
their forum.

Table 4: A table listing information gathered about
maintainability

Maintainability Kendo UI Mobile JQuery Mobile
Documentation
Functions covered
in API

808 69

Support
Community

Type of
organization

Commercial
company

Open volunteer
based community

Thread on official
forum

3672 (premium +
Stack overflow)

11351

Kendo UI Mobile has much better documentation, with an API
covering more than 11 times more functions, thereby providing a
much larger knowledge base.
For organization, JQuery Mobile is community-driven and relies
on volunteers to keep maintaining it and provide support. This
means it is vulnerable to differences of opinion between different
groups within the community. Furthermore, there is the possibility
of the community losing interest, either due to changing priorities
or due to finding a “better” alternative and switching their support
there. Kendo UI Mobile, however, is maintained and developed
by a company that makes money from keeping it up to date. This
motivates them to provide swift support and can make them less
likely to discontinue the framework.

Simplicity
For JQuery Mobile, the only thing we needed to do in order to
integrate it into Visual Studio 2012 was to install the
JQuery.Mobile.MVC package through the NuGet package

manager built into Visual Studio 2012 and then start creating
mobile views.
For Kendo UI Mobile, we needed to put the correct files in the
content and scripts folders in the Visual Studio 2012 project
manually.
According to our defined categories for this principle this means
that JQuery Mobile was easier to integrate, as everything could be
done automatically through built-in functionality in Visual Studio
2012 without needing to manually sort files into their proper
locations.

5. DISCUSSIONS
Performance
All analysis here points to JQuery Mobile being better, with the
worst performing platform for Kendo UI Mobile being much
worse than both platforms for JQuery Mobile and the best
performing platform for Kendo UI Mobile being much worse than
the best performing JQuery Mobile platform.
The performance figures are not infallible, as there are many
factors that it sometimes took longer loading time for some test.
These factors could be:

• Code
Since Kendo UI Mobile and JQuery Mobile have different
coding standard they might be implemented poorly which
might cause Kendo UI Mobile to load slower than it
otherwise would.

• Laptop hardware
Since the server was hosted on an outdated laptop (2 GHz
dual core processor, 3GB ram) on a wireless network. The
mobile phones we used were outdated as well (iOS 5.1 and
Android 2.3). If we would have had better hardware the
result might have showed us differently.

• Location of phones and server
The mobiles we used were located in Dulles, Virgina USA.
The reason why we choose to test our web application on
that server was because it was the only server that supported
iOS and Android. There were other servers in EU as well,
but some them only did support one of the mobile platforms.
So it would not have been fair if one was tested in EU and
the other one in USA. Furthermore the server was hosted in
Sweden, so each load-time test had to first send a signal to
the server in Sweden all the way from USA, and then returns
the page the same distance. This is why the loading times are
so long.

Maintainability
Both frameworks were quite even here, with JQuery Mobile
having a more active community while Kendo UI Mobile has a
much better API. The deciding factor here will most likely be
whether an open volunteer based community or a framework
driven by a profit generating company is preferable. In an open
community, it is possible to contribute to steering the framework
in the direction you want it to go, but it is also possible for the
community to break down due to differences of opinion or due to
lack of interest. In a profit driven company, however, the end
users have less ability to impact the direction of the development,
but it may be less likely for the framework to be discontinued.

 9

5.1 Ethical Considerations
This thesis project was performed in cooperation with Volvo IT,
and as such there may be possibility of bias in the results
produced. We believe that this is not the case, as we were given
complete freedom from the company as long as we integrated into
MVC4 and used the principles to evaluate. How we went about
implementing the prototypes and how we interpreted the
principles and evaluated the prototypes against them was also left
completely to us.

6. CONCLUSIONS
The goal of this thesis was to determine how suitable different
HTML5 frameworks are for integration as MVC4 views when
comparing to the VGTA principles. The comparison was done by
implementing a prototype for each of the two frameworks and
performing tests to gather data for statistical analysis.
The results show that JQuery Mobile is better suited to
implementing mobile multi-platform MVC4 views. For the 4
measured and discussed in this article, JQuery Mobile was better
for performance, simplicity and compatibility with existing
integration practices, and only slightly worse for maintainability.

One of the main directions for continuing the research presented
in this thesis is to construct a stand-alone prototype that connects
to MVC4 through RESTful web API (which is easily
implemented to the current base MVC4 application by auto-
generating a web-api controller through visual studio to act as a
RESTful API server) to compare the performance of a server-side
integrated framework web page to a stand-alone app deployed on
the phone itself. Other possibilities of research include
comparison between MVC4 based prototypes and stand-alone
apps complete with backend and database deployed to phones or
comparing work processes for transitioning from existing
applications to computer-mobile hybrids like our prototypes.

7. ACKNOWLEDGEMENTS
We want to thank our supervisor Miroslaw Staron, associate
professor at the Department of Computer Science and
Engineering Chalmers | University of Gothenburg, for guiding us
through our project and supporting us. We would also thank
Volvo IT and our supervisor, Johan Westlund, for providing us
with this research topic and supporting us during the development
of the thesis.

8. References
[1] Charland, D., & Leroux, B. 2011. Mobile application

Development  : Web vs . native, 0–4.

[2] Creswell, J. K. 2011. Research Design: Qualitative,
Quantitative, and Mixed Methods Approaches - 3rd ed.
SAGE Publication Inc.

[3] Drake, S.D. 2008. Embracing Next-Generation Mobile

Platforms to Solve Business Problems. Available:
http://www.eloquenza.de/fileadmin/content/Sybase/PDF/Sy
base_WP_IDC_MobilePlatform.pdf. Last accessed
6/3/2013.

[4] Eldh, S. and Sundmark, D. 2012. Robustness Testing of
Mobile Telecommunication Systems A Case Study on
Industrial Practice and Challenges. IEEE computer society.

[5] IBM SPSS Data Collection 6.0.1 Information Center. 2013.

IBM SPSS Data Collection 6.0.1 Information Center.
[ONLINE] Available
at:http://publib.boulder.ibm.com/infocenter/spssdc/v6r0m1/i
ndex.jsp?topic=%2Fcom.spss.ddl%2Ftukey_test.htm.
[Accessed 26 March 2013].

[6] Järkeborn, J. 2012. AVS Architecture for Volvo Solutions.

[7] Kerschberg, L. 1989. The Role of Loose Coupling in Expert

Database System Architecture. IEEE.

[8] Laerd Statistics. 2013. Testing for Normality using SPSS

when you only have one independent variable. [ONLINE]
Available at: https://statistics.laerd.com/spss-
tutorials/testing-for-normality-using-spss-statistics.php.
[Accessed 08 May 13].

[9] Jin, M., Li, Y., Wang, G., & Chen, J. 2012. Multiantenna

based spectrum sensing via Friedman test for cognitive
radio. 7th International Conference on Communications and
Networking in China, 321–324.

[10] Leguizamo et al. 2003. Autonomous Decentralized

Database System Reconstruction Technology through
Mobile Agent Monitoring and Coordination. IEEE
computer society.

[11] Mari, M. Eila, N. 2003. The Impact of Maintainability on

Component-based Software Systems. IEEE computer
society.

[12] Microsoft Corporation. 2012. ASP.NET MVC Overview.

[ONLINE] Available at: http://msdn.microsoft.com/en-
us/library/dd381412(v=vs.108).aspx. [Accessed 22 March
13]

[13] Microsoft Corporation. 2012. Introduction to the C#

Language and the .NET Framework. Available at:
http://msdn.microsoft.com/en-us/library/vstudio/
z1zx9t92.aspx

[14] Microsoft Corporation. 2012. ASP.NET Overview.

Available at:
http://msdn.microsoft.com/library/4w3ex9c2.aspx

[15] Rouse, M. 2007. What is integrated development

environment (IDE)? - Definition from WhatIs.com.
[ONLINE] Available at:
http://searchsoftwarequality.techtarget.com/definition/integr
ated-development-environment. [Accessed 17 May 13].

 10

[16] Teng, Ch., & Helps, R. 2010. Mobile Application

Development: Essential New Directions for IT. Information
Technology: New Generations (ITNG) (pp. 471-475). Las
Vegas, NV: IEEE.

[17] Vargha, A., & Delaney, H. D. (2000). A Critique and

Improvement of the CL Common Language Effect Size
Statistics of McGraw and Wong. Journal of Educational
and Behavioral Statistics, 25(2), 101–132.

[18] W3C. HTML5 differences from HTML4. 2012. Available

at: http://www.w3.org/TR/html5-diff/

[19] W3School. 2013. HTML5 Introduction. Available at:
http://www.w3schools.com/html/html5_intro.asp

[20] WebpageTest. Available at:

http://www.webpagetest.org/

[21] Zhang, G., Wang, X., Liang, Y. C., & Liu, J. 2010. Fast and

Robust Spectrum Sensing via Kolmogorov-Smirnov Test.
IEEE Transactions on Communications, 58(12), 3410–
3416.

 11

Appendix A
In this appendix we list all requirements and information about
the prototypes needed to replicate this process.
Application requirements:
General:

● css file applicable to change colors and logos for
different customers.

● display contents of database
● links to create/edit/view details/delete posts
● text field to enter search term
● search displays proper results

Create order:
● input fields for name, date and part
● inputs data properly into database

Show details:
● displays name, date and part of chosen post

Edit:
● input fields for name, date and part
● properly modifies database post

Delete:
● display details about item being deleted (name, date,

part)
● properly removes post from database

Appendix B
MVC4 application

1 In Visual Studio 2012, create a new project, select
ASP.NET MVC4 Web Application in the Visual C#
Web section and then select Internet Application on the
next screen.

2 Remove all Views (except _Layout and _ViewStart), all
controllers and the model and remove all links and
printed text from the _Layout file.

3 Create a new model with the following variables: int id,
string name, string part, string date. in this model also
add a DbContext for use as a reference with entity
framework. (make sure it is using System.Data.Entity)

4 Build the project so the model is recognized.
5 Create a controller, in the create window, in the

template menu select “MVC controller with read/write
actions and views, using entity framework”. In the
Model class dropdown menu select the model you
created. In the data context class dropdown menu select
the DbContext you created.

6 Implement the SearchIndex view as specified in
Microsoft’s “Getting Started with ASP.NET MVC 4” >
“Examining the Edit Method and Edit View”
substituting movies with your model and Title with
Name.

7 Install Microsoft SQL Server Express 2012.
8 Set up IIS to receive remote connections to the port

used by the project.

In the ConnectionString in the web.config file located OUTSIDE
the views folder, change Data Source to .\SQLEXPRESS. Restart
Visual Studio 2012 and build the project. While the debugger is
running the page should now be accessible remotely.

Screenshots of the web application with Kendo UI Mobile
and JQuery Mobile specification.

Figure 7: Index

Figure 8: Orders

Figure 9: Search

Figure 10: Search Result

Figure 11: Detail

Figure 12: Edit

 12

Figure 13: Create

Figure 14: Delete

Kendo UI Mobile application

1. In a copy of the MVC4 application, add the Content
folders for Kendo UI Mobile to the Content folder of
the project. Add a Scripts folder to the root of the
project and copy the Kendo UI Mobile scripts files and
folder into that folder.

2. Create a _Layout.Mobile.cshtml file in the shared views
folder and import the content and scripts folders for
Kendo UI Mobile.

3. Create mobile versions of the views with the following
naming convention: ViewName.Mobile.cshtml.

4. Where there are tables or lists in the regular views,
replace those with listviews. use sections with
@html.actionlink to link to different views.

5. For the list of orders use this specific format: inside
listview <a href="@Url.Action("Details", new {
order.ID })"> <p>Name: model.name</p><p>Part:
model.part</p><p>Date: model.date</p>

For the mobile searchindex view do not use a listview for the
search form, instead nest a regular list inside the form. using
a listview caused the textbox to be inaccessible.

Screenshot picture of Kendo UI Mobile in iPhone.

 Figure 15: Order Figure 16:Search

 Figure 17: Search Result Figure 18: Detail

 Figure 18: Create Figure 19: Edit

 Figure 20: Delete Figure 21: Index

JQuery Mobile application

1. In a copy of the MVC4 application in Visual Studio
2012, open the NuGet package manager, click the
online tab and search for JQuery.mobile.mvc, add this
package.

2. Remove the ViewSwitcher code from the
_Layout.Mobile.cshtml file generated in the shared
views folder.

3. Create mobile versions of the views with the following
naming convention: ViewName.Mobile.cshtml.

4. Use listviews for every page, every separate section in
the screenshots is a section inside a listview.

 13

Sometimes an empty <p> section inside a section
can be needed to avoid weird effects.

Do NOT implement a mobile Searchindex view, instead use data-
filter=true when declaring the listview for the orders index view.

Screenshot picture of JQuery Mobile in iPhone 4.

 Figure 22: Edit Figure 23: Create

 Figure 24: Delete Figure 25: Order

 Figure 26: Search Result Figure 27: Detail

 Figure 28: Index

