

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

Göteborg, Sweden, July 2013

Lean Software Development
Theory validation in terms of cost-reduction and quality-

improvement

Bachelor of Science Thesis in Software Engineering and Management

Christos Svitis

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Lean Software Development

Theory validation in terms of cost-reduction and quality-improvement

Christos Svitis

© Christos Svitis, July 2013.

Examiner: Lars Pareto

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden, July 2013

Abstract

The pace of change in software development industry

remains at high. People continue to push the boundaries

of known techniques and practices in an effort to develop

software as efficiently and effectively as possible. Lean

software development has emerged as an alternative to

comprehensive methods designed primarily for very large

projects. Key objective of Lean is fast development and

delivery of a high quality system at a relatively low

investment cost. In this study, an investigation on Lean’s

validity was conducted, by examining several organiza-

tions which have been developing software according to

Lean’s thinking. The outcome of this research was the

validation of the cost-effectiveness of Lean and of its

impact on the quality of a software system.

Keywords: Lean software development, cost-reduction, quality-

improvement, validation

1. Introduction

This section gives a brief overview of the subject and

theme of this study. It presents the background and the

problem domain of the topic under study, and describes

the purpose of this thesis together with a definition of the

research questions.

1.1. Background

 Every software development organization is using a

process for the development of its products. In most

cases, the process is adapted to each organization’s size,

resources, and needs, but the core characteristics are

based on one (or more than one) of the “standard”

development methodologies. “A system development

methodology refers to the framework that is used to

structure, plan, and control the process of developing an

information system.” [1] However, statistics have shown

that large number of software projects does not meet their

expectations in terms of functionality, cost, or delivery

schedule [29]. This is mainly owed to the “rigidity” of

the traditional development processes, and their inability

to effectively deal with the various challenges of today’s

software industry. Therefore, more and more companies

are looking for better alternatives to improve the software

quality, reduce the development cost, and meet the

market demands and customer satisfaction. Lean

software development emerged as an alternative to

document-driven, rigorous traditional development

approaches. Lean’s philosophy is reducing the develop-

ment time by removing all nonvalue-adding wastes. Lean

thinking principles are based on the Toyota Production

System [2], and have been successfully applied in many

manufacturing and product development organizations.

During the last few years, Lean develop-ment has also

become popular within the software industry. Its

popularity is due to its effectiveness in identifying and

eliminating waste, and quickly responding to changing

customer and market demands.

1.2. Purpose

 There is a growing body of literature on Lean software

development, with Poppendiecks’ book [3] being the

“cornerstone” of Lean’s theory. Mary and Tom Poppen-

dieck tailored the principles of Toyota’s production

process [1] to fit in the software engineering domain, and

introduced Lean as a software development process.

Thereafter, influenced by their work [3] [4], a large body

of knowledge on Lean has become available. Several

researchers have discussed advantages and disadvantages

of Lean in relation to more traditional software develop-

ment processes [5] [6], while others have focused on

identifying limitations and problems associated with

Lean implementations [7] [8]. However, despite the

variety of literature about Lean software development,

one that confirms its functionality is hard to be found.

 The purpose of this study is to assess the applicability

of Lean’s theory in real situations. In other words, to

investigate if Lean in practice has the results that the

theory promises (similarities and differences between

Lean ‘in theory’ and ‘in practice’). The research was

divided in two phases.

 The first phase was an exploration of Lean’s theory

and its thinking principles. This was done by reading

existing literature – especially the ones by Poppendieck

[3] [4] – on Lean’s theory. That helped in obtaining a

deeper understanding of the theoretical assumptions of

Lean and of its seven principles. In this, the cost- and

quality-related principles/aspects of Lean were of prima-

ry interest, and hence focus was put on these. The know-

ledge gained from this phase, formed the theoretical

“ground” for the qualitative analysis of the second phase.

 The second – and most crucial – phase was to validate

the theoretical findings by comparing them with results

from Lean implementations. Data regarding results of

Lean’s implementations was collected in a series of

interviews and a case study review from various

organizations that have implemented Lean as their

development process. The results from the case study

review and the interviews were used to validate if Lean’s

theory is successful in real world applications, and the

success rate thereof.

1.3. Research Questions

 In order to address the above objectives, two sets of

research questions were formulated to drive through the

research process. As Creswell [9] describes, the research

questions serve to narrow and focus the purpose of the

study.

Research questions of phase 1 (literature review):

 How can Lean software development (theoretically)

reduce the cost of a software product?

 How can Lean software development (theoretically)

improve the quality of a software product?

 Having these questions in mind during the review of

related books/articles, helped in identifying the

theoretical aspects of Lean related to cost-reduction and

quality-improvement. This gave a deeper knowledge and

understanding of Lean’s theory and of its thinking princi-

ples, and set the theoretical basis of the second phase.

Research questions of phase 2 (interviews & case study

review):

 Can Lean software development (in practice) reduce

the cost of a software product, and how?

 Can Lean software development (in practice)

improve the quality of a software product, and how?

 The answer to these questions was the outcome of the

comparison between the theoretical assumptions of Lean

and the results of the data analysis, and is being present-

ed in Sections 5 & 6.

1.4. Document Outline

 The paper is structured as follows: Section 2 gives an

overview of the theoretical frameworks used in this study

(Lean software development theory). Section 3 describes

the research design and methodology used in this study,

while in Section 4 the results of the study are presented.

Section 5 analyzes and discusses the findings and Section

6 concludes the work.

2. Theoretical Framework

This section gives an overview of Lean software develop-

ment. It presents the history, the theory, and the thinking

principles of Lean.

2.1. Lean’s History

 Lean’s history starts with Lean production. In order to

be able to know and comprehend the nature or meaning

of Lean production, one first has to understand the

concept of Lean.

 It is accepted as true that Lean was first introduced in

Japan - mainly in Toyota Production System - but history

also shows that Henry Ford had been applying parts of

Lean in the year 1920. “One of the most noteworthy

accomplishments in keeping the price of Ford products

low is the gradual shortening of the production cycle.

The longer an article is in the process of manufacture and

the more it is moved about, the greater is its ultimate

cost.” [10]

 In the end of 19
th

 century, the concept of Lean produ-

ction started with a need of mass production system.

Frederick Winslow Taylor on his time first thought about

the high production system known as mass production,

and it was presented in his book “The principles of

Scientific Management” [11].

 After the Second World War, an engineer from Toyota

named Eiji Toyoda visited the Ford Plant. He noticed that

everything was functioning smoothly, but there were

wastes in essence but not in concept [12]. Eiji Toyoda

observed waste everywhere in Ford’s process. After-

wards, Eiji Toyoda with Taiichi Ohno (a production

manager from Toyota) recognized that Ford production

system was not going to work for Japan, due to, but not

limited to, Japan’s infrastructure. They started to improve

Ford’s production system, in order to make it applicable

for them [13]. Afterwards, Toyota developed the process,

which is now known as Toyota Production System.

Taiichi Ohno explained the concept as “All we are doing

is looking at the timeline from the moment the customer

gives us an order to the point when we collect the cash.

And we are reducing the timeline by removing the non-

value added wastes.” [14] Toyota changed the system

and did continued improvements; however, it took almost

30 years for Taiichi Ohno to make it perfect for Toyota

and make it as it is today.

 Lean Production System is mainly described in the

book “The Machine that Changed the World” by James

Womack, Daniel Jones, and Daniel Roos [12]. In that

book, the authors mention that Lean Production System

by contrast combines the advantages of craft and mass

production. In the time being, it also avoids high cost and

rigidity of production by planning, therefore, it is known

as ‘Lean’ (because it uses everything less). If it gets

compared with massive -or mass- production then it uses

half of human effort, half the manufacturing space, half

of the investment tools and half of the engineering hours.

As a result, it provides products with fewer defects and

produces a variety of products because it works on the

product line basis.

 Lean software development mainly originated from the

book “Lean Software Development: An Agile Toolkit for

Software Development Managers” by Mary and Tom

Poppendieck [3]. This book presents Lean production

system with a new look for software development with a

modified form of Lean principles including a set of tools.

2.2. Lean’s Theory

 A debatable issue in the software industry is whether

Lean software development falls under the Agile devel-

opment processes. Lean development process, inspired

by the Toyota Production System (TPS), is more

converging on some points strategically than the Agile

process, while holding similarities to the process.

According to Tomaszewski et al. [8], introducing Lean

manufacturing idea for software development was not

easy, because cutting the metal and make a car is much

different from cutting the code and make a software with

less cost. Development of software is rather different

from handling operations and logistics.

 When it comes to creating software, it is not just about

“producing something”; it is the meaning of that “some-

thing” which should work to fulfill its purpose. The

purpose is the satisfaction of the customer through the

development process and with the outcome or product. In

software development, adding value to the customer is

equal to profit [3], so the equation of value calculation

should look like below.

Figure 2.1 – Equation of value calculation

 When discussing software product value, cost and

quality are the central looking points, affected mainly,

according to Lean’s theory, by waste. Lean, by design,

focuses on identifying and eliminating waste [16] as fast

as possible, and in turn, improving the software continu-

ously by constant customer feedback. To avoid the non-

value added activities, an organization needs to under-

stand what value is and what resources are needed to

create that value. It is true that no organization wants to

create waste. When Lean is viewed from a software

perspective, the Toyota example holds testimony to the

advantages of Lean development. Lean comprises of

principles that can be applied to improve the quality of a

product in any given environment.

2.3. The 7 principles of Lean

 According to Mary and Tom Poppendieck [3], there

are seven main principles in Lean development process:

 Eliminate waste – Spending time on adding real

customer value(s).

 Amplify learning – Increasing feedback to face

tough problems.

 Decide as late as possible – Keeping options open

as long as practical, but no longer.

 Deliver as fast as possible – Delivering value to

customers as soon as they demand for it.

 Empower the team – Letting people who add

value(s) to use their full potential.

 Build integrity in – Building product integrity into a

system.

 Optimize the whole – Awareness to temptation to

optimize parts at the expense of a whole system.

2.3.1. Eliminate Waste

 One of the key principles that make Lean a successful

development process is the elimination of waste. Lean

development is, in principle, about reducing waste as

much as possible, be it in a development team, group, or

organization. Examples of waste include excess invento-

ry, unnecessary efforts, duplicated data, and most import-

antly, cost related to all the aforementioned [16].

 Software development is more of a tailor-made

product development; it is not like duplicating the

approved prototype. In software development organiza-

tions, the development process needs to be empirical. The

reason for that is that software needs to adopt change,

from its concept until its entire lifecycle. Eliminating

waste is very important in order to reduce the cost and

maintain the quality of a software product. To understand

what waste is, organizations need to know what value is

and which resources add value to the product. Mary and

Tom Poppendieck [3] talked about waste related to soft-

ware and showed the connection between software waste

and manufacturing waste. Mark Windholtz also described

waste in software development. The table below shows

the software waste as described by Mark Windholtz and

Mary and Tom Poppendieck [17].

Mary & Tom Poppendieck

Mark Windholtz

Waste of Software Development

Extra features Extra features

Extra processing steps Partially finished work

Waiting including customers Extra process steps

Defects not caught by the

test or test failure

Waiting

Defects

Finding Information Motion

Requirements Management Activities

Handoffs

Table 2.1 – Waste of software development

 Lean’s value-adding activity is an activity that adds

value to the product and process as defined by the end

customer. Therefore, the non-value added tasks are

Value = Revenue – Expense

Revenue = Deported comprehended value

Expense = Development cost + Testing cost +

Maintenance cost + Waste

simply the activities that the end user would not like to

pay to perform and hence, wishes to wipe out.

 In software development, elimination of waste can be

coding activity by introducing the value added tasks and

non-value added tasks also with reduction of the common

errors. The concept of “Do it right the first time” is about

not doing anything (or not start coding) unless one fully

understands what the code is supposed to do and clear

out all the requirements. Good understanding of the

requirements and the domain, matched with short-build

cycles and machine-driven testing is considered as the

proper way of developing software.

2.3.2. Amplify Learning

 Amplify learning is about planning to experiment,

checking the results depending on the data, and then

incorporating the things learnt. In software projects, this

means deriving metrics that can be cross-team applicable,

not just intra-team optimization. Organizations can do it

with interconnected iterations across teams to increase

inspection and adaptation [18].

 Amplify learning specifically targets ‘Examine and

Adjust’ from Agile practices. The need of this principle

can be assured by realizing the problems that are barriers

to success, but Lean software development in the plan-

ning phase identify the ways of solving those problems

by amplify learning [18]. The importance of initial plan-

ning in Lean is essential for early requirement gathering

and design specification with planning which can avoid

finding information and motion waste; both of these two

wastes can avoid planning to experiment with initial

planning [19].

2.3.3. Decide as Late as Possible

 A determination is a statistical reference and it is a

hard decision to make during the development of

software. This principle of Lean is based on the idea of

making a decision at the last responsible moment or

delay commitment. The main idea is to add value and

avoid waste to maintain the cost and quality. In some

other consequence, waste builds from extra features,

extra testing, miss-concept architecture design and this

increases the cost and decreases the quality of the

product. The thought introduced here is pull, which was

introduced by Mary Poppendieck. The idea of pull

depends on the demand and downstream process required

[20].

 In a project, the requirements are assigned initially

with some of them containing unsettled features.

Therefore, it is hard to make the correct decisions until

the uncertainty has been cleared or more information is

made available from the people involved in the project.

Lean development process supports delay in decision

making for those uncertain tasks, keeping the focus on

the currently running tasks and holding off as reasonable

time as possible to implement the right product, aimed at

limiting and reducing the waste. These principles mainly

focus on avoiding the wasted extra features.

 In Lean software development, in order to develop

products with high quality and maximize the information

flow for adding value, initial planning with shorter loops

is used to make faster and cheaper products. On shorter

loops, the requirement update can prioritize the require-

ments, with the high-priority ones to be implemented

first, and also, test in the same loop can save time. So at

the end of each feedback loop ongoing task is delivered.

This is far more effective than a long loop. In increase to

rapid delivery, Lean software development follows just

in time information flow. One of the most in force

carrying into action, Lean’s idea is delivering increments

of business values in short time boxes [20].

2.3.4. Deliver as Fast as Possible

 Delivering small pieces of software is easier than

delivering a big product at once. Small software packages

are easier to manage than a big one associated with fewer

defects, obvious easier to integrate with an existing soft-

ware system. According to Mary and Tom Poppendieck

[3], one should limit tasks queue to minimum, with one

or two iterations ahead. Items can be removed from the

queue with Mary and Tom Poppendieck [3] claiming that

if something important is removed, then it will not do any

harm because customer will remind about it very soon.

Important, valuable and urgent items need to be present

in the queue (i.e. features that can add customer values).

Teams need time to stabilize velocity and quantitatively

see the deliveries at the end of iteration. Teams are

expected to pull items from the queue based on measured

velocity, and completely finish the work before they can

move on. Moreover, developer(s) should reject any work

until they have an empty slot in the queue. It is a tip

because it does not make sense to add items to the

backlog if they know they will not have time to

implement them, unless they want to add something more

important than the existing items [21].

2.3.5. Empower the Team

 Empower the team consider with the decision making

to the most depleted level primarily to those people who

actually build the product and potentially add value to the

release product. Empowering the development team to

take part in technical decisions is fundamental to achieve

excellence [3]. The main idea is to allow the people who

have the most knowledge about a problem to make

decisions on the way of solving the problem. Lean

principles empower a development team to learn as they

move forward in the development process and eliminate

waste.

 In Lean software development, the necessity of placing

a high functioning team is important for success. As Lean

is not just a control tool, it is an environment, an environ-

ment of a cultural movement with continuously improve-

ment, which encloses improvement of human behavior

and teamwork. In Lean software development, organiza-

tions that successfully implemented Lean, at the same

time ventured an attempt to bring their individual emp-

loyees together as a team and encouraged a team culture

by rendering team coaching and facilitation aid [19]. In

that way, an organization can construct high performance

and crystal-line culture, where everybody can see the

process movement and can satisfy the end customer, and

also creates the understanding of optimization the soft-

ware development.

2.3.6. Build Integrity In

 Integrity (i.e. product integrity) has two dimensions:

external integrity and internal integrity [3]. Internal

integrity means that all the parts of a system work

together. External integrity relates to the consistency

between the performance of a system and customer

demands. The principle supports the need for building

product integrity with high quality and final integration

defects avoidance, because product integrity and the

essential resources to realize it can provide a sustainable

competitive advantage to any organization. To under-

stand the integrity of a product, an organization needs to

integrate customer feedback into its development

process. Therefore, product integrity can be achieved by

the correct information flow and motion. That also

dilutes insufficient information waste [22].

 To maintain the quality of the software, defects should

be inspected before the fact, have to control the condition

of testing and integration. This principle is also known as

‘build quality in’, so the product should be inspected

after each small step or loop. Agreeing with Shigeo

Shingo, when a defect is discovered, consider fixing the

defect first. In Lean software development, defect-

tracking systems are queues that partially do the work.

These queues are collection points of waste. The concept

here is to keep the queue empty after each iteration, so at

the final integration there will be no or less defects. In

advanced software development, these can be done by

test-driven development. This testing process, tests the

system as frequently as possible, so the end product

comes with built-in quality and integration [3] [4].

2.3.7. Optimize the Whole

 Thinking about systems does exist, but the typical

response to solve problems is to break them into their

constituent parts and then optimize each individual part.

This is sub-optimization, which leads to the “tragedy of

the commons” and it does not work on optimizing the

whole system. Optimize the whole value streams from

the time it receives an order to address a customer’s need

until software is deployed and the need is addressed,

avoiding sub-optimization and encouraging improving a

whole system, not just a part of the system [3]. Develop-

ment teams also need to understand the problems of local

optimization (i.e. local performance measurements in a

department), which has a tendency to inhibit collabo-

ration beyond the area being measured. Therefore, opti-

mizing a whole system without sub-optimization or local

optimization results in building the right product for the

customer.

 The goal of software development is to support the

development of a complete product that fits the purpose

of customers. Optimizing a system as a whole depends

on customer collaboration, which is vital in Agile deve-

lopment, showing that the principle is related to Agile

manifesto. A Lean organization optimizes the whole

value from the time it receives the order to the time it

delivers the right product to the customer.

3. Research Design

In this section, the design of the research project is

described, along with reasoning behind it. Creswell [9]

describes that a research design is mainly constituted

from the research philosophy, the research approach

(strategy of inquiry), the research method(s), and the data

collection and analysis method(s). This section is

structured in the same way – starting from the broader

concept (the research philosophy), to the narrowest one

(the specific data collection and analysis methods used in

this study).

Figure 3.1 – Research design

3.1. Research Philosophy

 The research philosophy is connected with the

knowledge claims made within a study. Creswell [9]

defines a knowledge claim as “certain assumptions about

how they [researchers] will learn and what they will learn

during the inquiry.” The choice of a research philosophy

mainly depends on the aim of the research project. As

described above (see Section 1.2) the purpose of this

study was to validate the applicability of Lean’s theory in

software development organizations. With this purpose in

mind, the researcher reached in the conclusion that the

predominant epistemological stance is positivist in

nature. Positivist studies start with the test or verification

of a theory. In positivism, theories are used in a dedu-

ctive manner – they are found in the literature and then

research is devised to test them. The positivist researcher

“begins with a theory, and then collects data that either

supports or refutes the theory.” [9] The theory on which

the research for this study was based is presented in

Section 2.

3.2. Research Approach

 As mentioned by Dalcher & Brodie [23], the research

approach tends to follow from the research philosophy.

Additionally, they describe that “the choice of research

approach is strongly coupled to the type(s) of data

available to the researcher.” [24] However, in this case,

there was a contradiction between these two. In literature,

positivism is categorized as a quantitative approach [9]

[23], but the data that the researcher aimed to collect in

this study were qualitative in nature. That’s owed to the

fact that due to various limitations, the researcher was not

able to conduct multiple case studies in organizations by

himself. Therefore, the data were based on one case study

of Lean implementation, and two interviews conducted

within organizations that have implemented Lean (or

similar methods inspired by Lean) as their development

process. Hence, the study was based on qualitative data

rather than quantitative as the research philosophy (posi-

tivism) suggests. Qualitative data consists of descriptions

(descriptive data) and it is concerned with generating

understanding and insight expressed in verbal descrip-

tions [23]. The solution to this problem was found in the

book “Case Study Research: Design and Methods” [24].

In this book, Yin [24] shows examples of how positivism

can be used in qualitative studies. Hence, following Yin’s

[24] instructions, enabled the researcher to take a “positi-

vistic” qualitative approach in examining the research

problem.

3.3. Research Method

 According to Creswell [9], the choice of a research

method depends on the aim of the study. As described

above (see Section 1.2), the aim of this study was to

validate the applicability of Lean’s theory, by examining

examples of Lean implementations in various software

development organizations. In literature, theory-

validation studies are usually related with experiments or

case studies. However, in the case of this study, by inve-

stigating only one organization which has implemented

Lean would not have been sufficient, since there are

many factors that could have affected the outcome of the

implementation (the success rate can vary between

organizations). Hence, the researcher had to investigate

several organizations. Case study was selected as this

study’s research method because it allowed for an insight

into organizations that are working according to Lean, in

order to identify indications about the truth or validity of

Lean’s theory (by investigating the results and benefits

these organizations gained). Additionally, it helped the

researcher to develop an understanding on the impleme-

ntation of Lean’s theory in software development organi-

zations, and to obtain deeper knowledge on the different

steps and procedures involved within Lean impleme-

ntation processes.

 By having several organizations under study (large

range of data) resulted in having more objective and

reliable findings. The aim was to use these organizations

as representative sample, with the intent of using the

findings as “evidence” for arguing on the validity and

applicability of Lean’s theory in general. – “generalizing

from a sample to a population.” [9]

3.4. Data Collection

 As mentioned above, this research was constituted

from two phases: phase 1 (the theoretical phase), and

phase 2 (the practical/empirical phase). During the theo-

retical phase, the researcher focused on collecting data

regarding the cost- and quality-related principles/aspects

of Lean’s theory, while in the practical phase, data

regarding the results – and possible benefits – of Lean’s

implementations were collected. The methods used for

gathering the data during these phases are described

below.

 Literature review: During the first phase of this

research (theoretical phase), a review of related books,

conference papers and articles was conducted, in order to

obtain a general understanding of Lean’s theory and of its

thinking principles. That also helped in narrowing the

focus of the study and formulate the research questions.

Based on the “gaps” that were identified in the existing

body of knowledge around Lean software development

(see Section 1.2), the researcher decided the focus of this

study to be on validating Lean’s theory in terms of cost-

reduction and quality-improvement. In effect, keywords

such as Lean software development, theory validation,

reduce cost, improve quality, and Lean implementations

were defined, in order to make an additional internet and

library search. Reading the various abstracts and intro-

ductions of related research papers, permitted to make a

collection of existing literature relevant to the topic of

this study. The data that were gathered, allowed to

identify and explore the theoretical assumptions of Lean

related to cost-reduction and quality-improvement, and

supported an answer to the first set of the research

questions (see Section 1.3 – Phase 1 research questions).

The findings established the groundwork of the data

analysis, and are presented in Section 2.

 Interviews: During the second phase of this research

(practical/empirical phase), the majority of data was

collected through interviews, taking the form of audio

data as well as notes. Interviews were held with represe-

ntatives from two companies (Ericsson AB, Tieto) which

have been working according to Lean software

development. The focus of the interviews was to under-

stand why those organizations decided to implement

Lean (or a process inspired by Lean) and what the out-

come of this implementation was. That was done by

exploring which characteristics of Lean “attracted” those

organizations, what expectations they had in terms of

results (before the implementation), and what were the

actual benefits and results that they obtained (especially

in relation to cost and quality). During the interviews, the

questions asked were open-ended, in order to facilitate an

open discussion. The data gathered, helped in validating

if Lean’s theory is successfully applied in practice, and

the success rate of it.

 Case study review: In order to systematically investi-

gate and extend a practical industrial experience of Lean,

one case study of an organization that is working accord-

ing to Lean – Ericsson AB – was studied. This case study

is an early evaluation of the implementation of Ericsson’s

development process called Streamline Development [8],

which is based on the thinking principles of Lean

software development. By examining the case study from

Ericsson, the researcher developed an understanding of

the different steps and procedures involved within Lean

implementation efforts. Additionally, this was used

(together with the interview results) in order to compare

with the theoretical findings from phase 1. Through the

case study review (as well as the interviews), the resear-

cher was able to look inside the use of Lean in various

organizations and accumulate evidence for supporting his

statements, from the tried examples of Lean implementa-

tions. The data gathered from phase 2 was used to answer

the second set of research questions (see Section 1.3 –

Phase 2 research questions).

3.5. Data Analysis

 After collecting the data, their analysis was performed

using content analysis. Content analysis is an in-depth

analysis using quantitative or qualitative techniques of

messages, and is not limited to the types of variables that

may be measured or the context in which the messages

are created or presented [25]. In content analysis, the

analysis of the data is being accomplished by reducing

them into thematic categories. In this study, the data was

divided in two thematic categories: cost and quality. The

division of data into categories explores the relationship

between the concepts (themes) identified.

 Throughout the data analysis, the researcher looked for

specific words like time, cost and quality. The analysis

was conducted in two phases. During phase 1 (theoretical

phase), the focus was on analyzing the data collected

through the literature review, providing answer to the

first set of research questions (see Section 1.3). In phase

2 (practical phase), the empirical data from the interviews

and the case study review were analyzed, where, in

comparison with the findings from phase 1, enabled a

discussion around the validity of Lean’s theory, provi-

ding an answer to the second set of research questions

(see Section 1.3).

4. Results

The aim of this chapter is to present the findings of the

practical/empirical data collection phase, along with

descriptions about the organizations under study and their

development processes. The process descriptions present-

ed in the following sections are simplified since the main

focus of this study is on the results and benefits that those

organizations gained, rather than on their processes,

hence the intention is to give the reader a general under-

standing of those processes rather than describe them in

detail.

4.1. Interview 1: Ericsson AB

 The first interview was conducted at Ericsson’s site in

Göteborg. Ericsson is one of the major software develop-

ers of telecommunication systems in the world. The

organization representative (interviewee) was a project

manager from that site, who was also involved in the

implementation of the company’s new development pro-

cess (Streamline Development). Streamline Development

(SD) is a custom process developed by and for Ericsson

AB, which is based on the thinking principles of Lean

software development. As stated in the interview

“Streamline Development is a specialized instance of

Lean development.” The main goals of SD are to

improve customer responsiveness, identify and eliminate

waste, optimize the whole, and increase flexibility.

 Prior to SD, Ericsson was using another company-

tailored process that was similar to Rational Unified

Process (RUP). However, the problem with that

traditional process was the long time-to-market – due to

the long life cycles of the projects (often more than a

year). “Traditional processes tend to have rather long life

cycles and do not deliver the actual customer value [i.e.

the working system] until late in the process.” [26]

Another problem was flexibility (coping with changing

requirements/customer needs) – due to the long duration

of the projects, the company was especially exposed to

changing market – and customer – demands. In order to

overcome the problems of their traditional development

process, Ericsson developed a new in-house approach,

tailored to the specific characteristics of the company.

 Streamline Development is an incremental process that

focuses on customer responsiveness and elimination of

waste. In SD, the projects are significantly shorter

(around 3 months lead-time) than in the traditional

process described above. This result in delivering the

products to the customers more quickly – the system (or

part of the system) is available early in the development

process. The size of the projects is also smaller in SD

(significantly fewer project members). This means that

the scope of the projects is also reduced [8].

 Another aspect of SD is version integration. In SD,

new system versions are integrated with the current

product baseline. Hence, there is always only one version

of the product at any point of time. It should be noted that

even though each project produces a new system version

that potentially can be released, it does not have to be

released to the market. Such a separation between

development and release is a clear difference from the

traditional model, where each project ended with a

release of a new version of the system to the market [8].

 Also, another important characteristic of SD is

continuous requirements prioritization. In SD, all the

requirements of a product are gathered in a requirement

repository, where they are categorized/prioritized based

on their importance (high to low). When there are a

suitable number of highly prioritized requirements that

can be combined into a requirements package (based on

that they fit well together, etc.), a new project is initiated.

Continuous requirements prioritization of the requireme-

nts in the repository assure that only the most “pressing”

(highly demanded) requirements are implemented for

each new release of the system. The size of the

requirements package is limited by the project length – it

should be possible to implement the requirements from

the package within the project boundaries, i.e. in about 3

months [8].

 As noted within the interview, Ericsson wanted to get

shorter time to market and also flexibility with the

customer, and that was the main idea behind the new

process and the change. Traditional processes are more

expensive to be flexible than Agile. Main problem with

the time, it cost too much for them to get flexible.

Traditional development processes are more expensive

and take more time to deliver the product when it is

flexible.

 Ericsson liked some interesting aspects of Lean. From

Ericsson’s standpoint, Lean has different ways of looking

waste; focus on the main activity and what feature need

to deliver fast. Traditional development processes have

some unnecessary steps which increase cost and timeline

of the product and the customer gets unhappy with the

result. But on the other hand, Lean software develop-

ment helps to deliver the features depending on the

customer demand. Lean's theory believes that building

something that is not used right now is the worst thing.

 Ericsson was looking for new concept to find their

waste and a proper optimization from start to the end of a

project. Customer benefits were the main goal for the

company. The main aspects of Streamline Development

were eliminating waste and optimize the whole. The

concept of looking the waste was interesting. Basically

there is no difference on the foundation and in terms of

goals. But when an organization or company have their

own process then they have better control on it, and also

they can adapt changes. Streamline Development is one

specialized instance of Lean development.

 It is mainly the motivation which may differ from

Lean software development. There is no difference in

terms of goals. The platform is the same; the only diffe-

rence is in the name - in order to adapt changes and to

increase control on the process. It is a continuous deve-

lopment process. Renaming it to Streamline Develop-

ment helped Ericsson to adapt the changes by continuous

improvement. SD is their own way of working depending

on their own demand. Ericsson mainly focuses on custo-

mer demand, flexibility, maintenance time and market

demand, in order to release a new product to reach lower

lead-time to customer. The main intensions of SD were

to increase flexibility regarding customer needs and

demands, improve the quality and address time-to-

market, and lowering the time with higher flexibility.

 In order to avoid sub-optimization, Ericsson tried to

make the goal clear by optimizing the whole - increased

understanding between different units. Ericsson is a

cross-organization, so optimization and communication

between them is important. In terms of expectations, the

new process assisted them a lot. Especially in terms of

times and flexibility, it was proven that Ericsson met

their expectations.

 Ericsson thinks that Software Development is a conti-

nuous improvement process. They expect to see more

and more of the benefits that they have so far. Lean deve-

lopment is an ongoing process of improvement, so each

time Ericsson removes a bottleneck they find, the same

area can be updated in the future. It takes time to under-

stand the process on practical level. It needs attention and

more focus to get improved.

 The more “wastes” they find, the more benefits they

gain. After using it for some time, Ericsson obtained

some benefits, but the real benefits are hard to measure

now because it takes time to understand the process.

Ericsson wants to get more improvements which, by re-

moving the bottlenecks, they can make the process better

and gain more benefits.

 After introducing SD, Ericsson has decreased develop-

ment costs, but it is hard for them to measure develop-

ment cost because there is no method for measuring cost-

efficiency. It’s easier to measure in manufacturing, but

not in software engineering. In science, there is no known

method to measure the cost for the development of soft-

ware, but as they said, their productivity has increased a

lot.

 Lean principles also helped them to identify bottle-

necks, for example, the value-adding activities. It is the

way to see what the customer wants. For example, one

waste can be keeping track of the tasks, or a to-do list

queuing up a lot of things. Ericsson minimized waste by

less paper work, not much market analysis, and faster

flow with fewer things to look. Lean reduces the mana-

gers’ work and makes it simple for everybody, because

now the managers have to keep track of fewer people. By

implementing less waste, Ericsson increased the quality

of their products.

 In Ericsson, the scope of the responsibilities has incre-

ased after introducing SD, since teams have now more

“organization-oriented” or “overall process-oriented”

responsibilities, instead of “specific process-oriented”

(ex. testing, developing, etc). Now the employees care

about the whole process, not just their part.

4.2. Interview 2: Tieto

 The second interview was carried with Tieto. Tieto is a

consulting company working with IT, R&D and consult-

ing services. With approximately 16300 employees,

Tieto is one of the leading IT service companies in North

Europe and became the global leader in selective seg-

ments.

 Tieto focuses in areas where they cover the deepest

understanding of their customers, businesses and needs.

Tieto is working with different types of organizations in

Northern Europe, Germany and Russia. They serve their

customers globally in different sectors like telecom,

forest, oil and gas, as well as digital services. Tieto was a

Finish company founded in 1968, Enator was a Swedish

company founded in 1995 and TietoEnator was formed

by the combination of Tieto from Finland and Enator

from Sweden in 1999. On 26th March 2009 it becomes

Tieto Corporation. The organization representatives

(interviewees) were two project managers from Tieto,

who were also involved in the implementation of the

company’s new development process called D2M

(Design-to-Market). D2M is a combination of 12 Agile

principles; it’s a process to ameliorate man to man

communication. D2M is a process which overcome diffi-

culties normally faced by Tieto. D2M avoids waste and

improves the end product by adding customer value.

D2M works in smaller iterations in order to avoid

miscommunication. Additionally, the process contains

self-improvement.

 In Tieto, the process they used in early 1990’s was

called PPS/PPM (Practical Process Management). Tieto

was using that process for a long time. It’s a well known

process in Sweden and Scandinavia, and PPS is a process

developed by Enator in 1990 or even in 1980. It’s close

to RUP (Rational Unified Process). Tieto has a policy

that if the customer asks them to use Agile or some other

new development process, then they have to adopt Agile.

PPS/PPM was very common a few years back, but today

it depends on the project managers. They can use

whatever they want, and almost all project run with

modern development processes like Scrum, Agile or

other similar type of processes. PPS/PPM is a process

which was developed and maintained to make software in

1980’s. It can be productive and effective like the modern

ones, but it depends what you want to deal with it.

 By interviewing two project managers of Tieto, they

explained/ stated that they have good experience working

with Scrum. In their words: “Actually the sprints are

which makes Scrum good. The sprints and the short

increments result in much quicker development if you

compare with any other development process.” Tieto

prefers to keep it simple. They think configuration

management is very enormous and important for any

process model .So by having smaller increments, it’s

better to avoid miscommunication and information with

less fixing.

 Tieto tried to implement 12 Agile principles and it was

difficult to follow, so they tried to come up with a pro-

cess to ameliorate man to man communication. The

intention was if they run a project between different sites,

then they have lots of miscommunication, and miscom-

munication creates misconception about the project,

which results in the end product to become a fail. So they

tried to implement a process which will overcome all the

difficulties they normally face with their development

process. D2M (Design to Market) was planned to avoid

waste and improve the end product by adding customer

value. It has smaller iterations which help in avoiding

miscommunication and deliver the product faster to save

time with more superiority.

 D2M is an iterative development process with five

phases and eighteen sub-phases. It has Analysis, Design,

Implementation, Test, and Advance as its main phases,

and as sub-phases it has Requirement Analysis, Archi-

tecture Analysis, and Object Analysis (inside Analysis

phase), Architecture Design, Object Design, Impact

Diagnose, and Test Design (inside Design phase), Test

Implementation and Unit Implementation with unit

testing and check and merge together (inside Impleme-

ntation phase), Automated Testing and Evolution,

Prototype (inside Test phase), and Custom Evolution,

Code review, Re-factory and process improvement

(inside Advance phase).

 The inspiration of D2M came from many new deve-

lopment processes. It combines parts from Lean, Agile,

and other similar modern development processes. Tieto

tried to pick up the main idea or common sense from

these processes and keep the aspects they liked. D2M is

not a shadow of Lean, but in some sense it’s kind of alike

to Lean but some of its aspects they are not. If you run

D2M, you will notice influence causing something with-

out any direct or apparent effort, because it has resembla-

nces. Actually it’s a new process based on Lean and

Agile.

 As Tieto have the Agile manifesto, then it’s normal

that D2M is kind of analogous to Lean because in some

point they are similar. Conceive about the principles,

they have similarities in Eliminate waste, Amplify

learning, Decide as late as possible, Deliver as fast as

possible, Build integrity in, Optimizing the whole, and

Empower the team.

 Comparing to Lean or any other Agile process, what

D2M attempts to avoid is the big iterations. If Tieto

worked with four- or six-month iterations and after the

iteration they found some bugs or a crush, then it would

be a big waste and also lots of work to do for them.

Additionally, the task of finding the bugs (debugging)

would become a lot more difficult.

 As Tieto explained, if they work in a big iteration for

four months, after that, when they check the code they

will find lots of problems with the main line and that will

take them at least two working days to fix the problems

and start again. But if they work in small iterations (like

two to four weeks), if the code crushes then it will take 5-

10 minutes to fix the problem, and on the second iteration

will also take similar time to fix. So with small iterations

it will take 20 – 40 minutes to fix the code instead of two

days work. They have an auto-build process which

checks the code every night so they know the fault when

it’s still “fresh”, not after four months.

 So what they intend to do by testing the code as soon

as possible, is to reduce the time that takes to fix the code

and minimize the cost for testing the code. Usually if

they detect the problem faster, then they can also fix it

faster. It’s better to fix it when it originates rather than

leave it for later. Even if they have the impression that

they can fix it a lot faster than two days, after four

months they will probably not remember what to do.

 The motive for introducing D2M was mainly the

quality and cost. Tieto wants to gain lower cost to market

by doing the right things on the right order. So the new

process is about saving money and time by maintaining

the quality. However, the quality depends on what kind

of quality attributes the customers want to focus on,

because there are too many quality attributes they can

focus on.

 The problems Tieto tried to solve are on a theoretical

level, but for the most part, D2M focuses on the cost and

quality attributes that Tieto want to reach from the begin-

ning. For example, continuous integration helps to solve

lots of problems. After encountering a problem, they

focus on fixing the problem first, so then they can say

“it’s a success”.

 D2M is a combination of many infrastructures to reach

goals with high quality and low cost. It is not only just

the Lean principles; its lots of other manifestos from

Agile combined with Tieto’s own view of looking the

project.

 In D2M (which is partially inspired by Lean), after

each iteration, the process has an improvement phase. On

this phase, Tieto tries to identify the bottlenecks and

update the process, so the next iterations are safe from

similar problems.

 D2M helped Tieto to identify and remove non-value

adding activities, for example, if developers have imple-

mented some features which are not necessary or if they

have moved necessary features aside and instead, imple-

mented some unnecessary ones. This is something they

would usually notice at end of the iteration with the help

of the customer. So if they have done something which is

not important from customer’s point of view, then it’s an

overwork. However, in their case they don’t call it waste;

they call it misunderstanding between the company and

the customer, but in Lean it's considered as waste - you

worked more that you should. Waste for them is more

than this, for example, what they mentioned during the

interview “If someone (individual worker) disappears for

three days and after that he/she comes back with

something which is not working, that's a waste” (waste of

time or in other case can be waste of quality or money).

In their working process, they have the daily checks

which are very important for them since they can monitor

everything, and if they can successfully do that, then they

can just avoid the misunderstandings or problems of

extra working easily. So daily progress checks actually

helps Tieto a lot. This way they also measure progress.

Additionally, the process helps them without sourcing

since they have time for check and merge in

implementation phase and they have a phase called

‘Advance’. Inside this phase, they do custom evolution,

code review and re-factory, which help them reducing a

big amount of waste. So by estimating waste efforts that

have any impact on cost or quality was really small for

the company.

 The principles of Lean helped Tieto to lower develop-

ment cost. In fact, they have lots of automated code and a

build program which is also automated. “Auto-generated

code is normally faster and automated build also save lots

of time and money.” Auto-generated coding, testing and

building work together with continuous integration. If

they didn’t have continuous integration, then they would

have to employ another person to do it. So that’s also less

extent cost and everything is handled by the process.

 When the researcher talked about higher quality, the

interviewees explained about quality control and how the

new process helped the organization to obtain high

quality. What they said is that the process extents their

capability to control and manage the positive qualities,

especially those suitable for specific customers - they

have much better quality control in this process. They

actually grantee that what they deliver is higher quality

products; they don’t have any shortcuts in their code. In a

long run, they believe that it’s a good investment. It

seems promising - the projects run in a faster way and

with lower cost while, at the same time, the quality is

secured. Tieto and its new process focus on quality, cost

and times as their best cognition.

 As a consulting company, Tieto always aimed for

customer value, thus it’s very important for them. With

the right product on the right time, they also provide

additional services, for example, they provide support,

they have installation, etc. But that’s what they try to do

as an extend. That is why they are having morning

meeting; in order to provide this great additional value to

their customers. “It can’t be measured with money,

because we try to satisfy our customers to make them

come back.” Relationship with the customer is valuable

for Tieto. In their process (D2M) they have an extra layer

which adds additional value to customers, which is very

important for them to do business.

Figure 4.1 – The whole product

 Tieto thinks after presenting D2M that in some cases

the responsibilities for individuals have increased, but at

the same time, they also have the motive that they don’t

need to do the same work twice. So in a sense, the amou-

nt of work was decreased.

4.3. Case study review

 Apart from the interviews, a case study review was

also conducted in order to gather more “concrete” data.

The reviewed article is “From Traditional to Streamline

Development – Opportunities and Challenges” by Piotr

Tomaszewski, Patrik Berander, and Lars-Ola Damm [8].

The article presents an early evaluation of the suitability

of Streamline Development for Ericsson (Section 4.1 for

information concerning SD). The evaluation was perfor-

med by finding positive and negative aspects (benefits

and drawbacks) of introducing SD, as well as identifying

changes required to prepare the organization and its

products for successful implementation of SD. The goal

of that study was to provide decision makers at Ericsson

with a deeper and more structured understanding of the

possible effects of introducing SD. The study was perfor-

med in two product development units (PDUs) at Erics-

son, and the data regarding the impact of introducing SD

was collected in a series of interviews with representa-

tives of the roles in the company that would be most

affected by changing the development process. To analy-

ze the findings from the interviews, a modification of

Force Field Analysis (FFA) was used by the researchers.

“FFA is a method for identifying issues that should be

taken into account when deciding whether to implement a

strategic change.” [27] The findings were then structured

and categorized by the researchers into three categories:

Pushing factors, Resisting factors, and Required changes.

Pushing factors were regarded as the advantages of SD

(things that would improve after introducing SD), while

Resisting factors were regarded as threats connected with

introducing SD (i.e. things that would worsen by

introducing SD). Required changes were regarded as

issues that should be resolved and problems that should

be overcome before SD could be implemented. By

balancing the Pushing and the Resisting factors, it was

possible for the researchers to make an informed decision

if the change was worth introducing or not. The

information about Required changes made it possible for

decision makers at Ericsson to assess the cost of

introducing the new process (SD) and to identify issues

that should be resolved before SD could be introduced. A

detailed description, together with an analysis, of the

findings mentioned above is given in Section 5.

5. Analysis & Discussion

In this section, the data of this study are being analyzed,

and the results of the analysis are discussed in detail. For

the purpose of this analysis, a comparison between the

two aforementioned sets of data is conducted. First, the

theoretical principles of Lean related to cost-reduction

and quality-improvement (identified in phase 1) are

presented, together with a description for each principle

and for how it is argued by the theory that it can help in

reducing the cost and/or in improving the quality of a

software product. This set the theoretical ground of the

analysis. Then, the empirical data from phase 2 (case

study review and interviews) are presented. Those data

represent the application of the theoretical principles

mentioned above in two organizations (Ericsson AB,

Tieto), and the results that were obtained. That allowed

an investigation on how those companies made use of the

theoretical principles, what results they obtained by using

them, and the success rate of that (if the obtained results

reach their expectations). These data are then used as an

analysis/validation tool, in order to support or refute the

validity of the theoretical principles of Lean (from a cost

and quality perspective). The comparison between those

two sets of data (theoretical and practical) facilitates a

discussion on the validity of Lean’s theory, which results

in verifying if Lean achieves in practice the goals it was

designed to achieve (e.g. reduced product cost and

increased quality).

 This section is structured as follows: Section 5.1

analyzes and discusses the principles/aspects of Lean

associated with cost-reduction, while in Section 5.2 the

quality-related principles of Lean are being discussed.

5.1. Cost-reduction

 The most cost-related principle of Lean is Eliminate

Waste. This principle focuses on reducing the develop-

ment timeline by removing all nonvalue-adding activities

(create nothing but value). Value is giving the customers

what they consider as important, at the time and place

where it will provide the most value. Hence, anything

that does not add value to a product is waste, and any

delay that keeps the value from the customer is waste.

 The first step to eliminate waste is to recognize it. In

order to do that, an organization must first determine

what value is. In other words, to develop an understand-

ing of what customers really want – what they will

actually value once they start using the product. That’s

different for each customer, and can vary between many

different things (quality, performance, cost, etc.). Once

the organization develops a keen sense of what value

really means to them and their customers, then they must

develop a capability to really see waste. In other words,

to identify the activities that interfere with delivering

customer value (nonvalue-adding activities), and elimi-

nate them. “The ideal is to find out what a customer

wants, and then make or develop it and deliver exactly

what they want, virtually immediately. Whatever gets in

the way of rapidly satisfying a customer need is waste.”

[3]

 Mary and Tom Poppendieck [4] identified 7 wastes of

software development (for details, see Section 2.3.1). Out

of these, the ones most related to cost are:

 Partially done work

 Changing requirements

 Extra features

The above “wastes” play an important role in increasing

the cost of a software product. Firstly, by adding

additional time (i.e. time to find and fix defects, time to

implement unnecessary functionality, etc.) and, as being

known, time equals money. Also, by creating complexity

(which is a large cost multiplier). Complexity makes the

code base brittle and difficult for future changes. “The

cost of complexity in code dominates all other costs, and

extra features that turn out to be unnecessary are one of

the biggest killers of software productivity.” [4] There-

fore, Lean’s theory believes that by identifying and elimi-

nating counter-productive activities/processes which do

not add any actual value to the customer and the product,

can effectively reduce the cost of a software system.

 In both organizations under study (Ericsson, Tieto), the

adoption of a “lean way of thinking” helped them in

identifying numerous wastes associated to their previous

work practices. In particular, in the case of Ericsson, one

of the main problems in relation to their previous

development process (see Section 4.1 for information on

Ericsson’s traditional process) was the high cost for

maintaining different product branches. In Ericsson,

when a product is developed aiming for a broad market

launch, it is common that specific customers ask for

adaptations which should not be included in the main

release, and hence, in the main project (customer adapt-

ation projects). In the past, when a customer adaptation

project was initiated, the requested functionality was

implemented into a branch of the system. Upon comple-

tion of such a project, the product was released to the

ordering customer but was not integrated with the main

product, and hence, had to be maintained as a separate

product branch. However, maintaining multiple branches/

versions of the same product was very costly for Erics-

son. “Each such adaptation [project] has to be maintain-

ed, almost as a separate product, which makes them very

expensive.” [8] When the company adopted a “Lean”

way of thinking and looking at waste, it enabled them to

identify this drawback, and address it in their custom

(Lean-inspired) development process called Streamline

Development (see Section 4.1 for a description of SD). In

SD, customer adaptation projects are handled in the same

way as any other project, i.e. they are integrated into the

main product. This means that only one latest system

version needs to be maintained. Hence, maintenance is

simplified and cheaper. “In SD there is only one version

of the system produced, with no branching for customer

adaptations. That minimizes the number of maintained

system versions and, therefore, minimizes the cost of

maintenance.” [8]

 Another waste identified by Ericsson, was connected

with excessive documentation during projects. The same

waste was also identified in the case of Tieto (see Section

4.2 for information on Tieto’s traditional process). Exces-

sive, unnecessary documentation is a common waste in

traditional development. In both Ericsson’s and Tieto’s

traditional projects, a considerable amount of time was

spent for producing “routine” paperwork. Most of these

documents had no other use than just fulfilling “archive”

purposes (hence, they were adding no actual value to the

product). Nevertheless, they still had to be produced

since they were defined as “standard” by the process. The

downside of that however, was to increase the workload

of the people working on the project which, in turn, had a

negative impact on flow. By flow is meant the flow of

information and delivered value. As described by

Poppendieck [20], handing off reams of frozen docume-

ntation from one function to the next is a mass-

production mentality. In Lean, the idea is to eliminate as

many documents and handoffs as possible. Documents

which are not useful to the customer are replaced with

activities that provide customer value. Hence, the mini-

mization of flow was affecting the productivity of both

organizations in a negative way. Additionally, increase of

the workload was resulting in overall project’s timeline

increase (time-to-market) – since the project team had

more tasks to take care of. “When you overload some-

thing, delay increases.” (Project manager – Ericsson)

And when delay increases, cost is also increased. When

both organizations started looking at things (and in

particular, the process) from a “Lean” perspective, it

enabled them to identify unnecessary steps which were

interfering with providing value to the system. Once

these nonvalue-adding activities got eliminated and the

focus was steered towards the ones that created direct

value for the customer, dramatic improvements were

obtained. “The more “wastes” we find the more benefits

we gain.” (Project manager – Ericsson) In fact, by remo-

ving unnecessary documentation, the workload was redu-

ced, resulting in increased flow, and hence, productivity.

Moreover, the development timeline was minimized,

which, in turn, had a positive impact on cost (less deve-

lopment time = less [development] costs).

 In summary, Lean software development helped both

Ericsson and Tieto to identify and eliminate several

activities which were keeping the value from being deli-

vered to the customer and were adding unnecessary costs

to the product. Hence, the adoption of Lean principles

(and most importantly, of the principle Eliminate Waste)

enabled both organizations to get rid of such non-value,

time-consuming processes, and resulted in reducing the

cost of their software products.

 Another cost-related principle of Lean is Deliver Fast.

This principle put emphasis on delivering increments of

real business value in short time-boxes. On the other side,

one of the main drawbacks in relation to traditional way

of working is the long cycle times (i.e. time-to-customer).

“Traditional processes tend to have rather long life cycles

and do not deliver the actual customer value [i.e. the

working system] until late in the process.” [26] Late

delivery of value results in reduced customer responsive-

ness and feedback. Additionally, traditional processes are

not very good at coping with changing requirements,

since they are especially exposed to changing market

demands due to their long duration.

 In a technology and market-driven environment such

as software domain, it is common the market and its

customers to change their minds while the project is still

ongoing. This leads to a situation where some of the

already specified and worked with requirements become

obsolete. In comparison to the initial set of requirements,

some requirements need to be added, some need to be

changed, and some need to be deleted to better match the

customer expectations. However, as time moves forward

in a project, modifying the system tends to get more diffi-

cult and expensive (the later a change is identified, the

harder and more costly it gets to address it). Changes add

complexity – which, as described above, is a large cost

multiplier – and complexity usually calcifies the code

base, making it brittle and easy to break. Furthermore,

dealing with changes of already decided and sometimes

implemented functionality, decreases productivity and

increases project lead-time (and hence, cost). “Changing

requirements are a source of significant amount of re-

work to adapt the system to new requirements [customer

needs], and such rework is one of the most important

productivity bottlenecks in large projects.” [28]

 Lean’s theory argues that the risk of rework connected

with changing requirements can be minimized by shorte-

ning the development cycle and involving customers

early in the process. In Lean, the system is divided and

developed in small, rapid increments driven by customer

priority and feedback, instead of one, long iteration

where the customer gets involved towards the end (as in

traditional development). Hence, Lean organizations

focus on cycle time, not utilization. As described by

Poppendieck [4], companies that compete on the basis of

time often have a significant cost advantage over their

competitors, since they have eliminated a huge amount of

waste (which is the extra time). Furthermore, they have

better chances for self-improvement, since they are so

fast that can afford to take an experimental approach to

product development, trying new ideas and learning what

works. In software development, the discovery cycle is

critical for learning (design, implement, feedback, impro-

ve). The shorter these cycles are the more that can be

learned [3]. Rapid development also assures that the

customers get what they need now, not what they needed

yesterday (up-to-date functionality). Additionally, it

“deludes” them into delaying making up their minds

about what they want, until they know more – since it

will be easier for them to decide what they actually need

(or not need) once they get involved in the process, than

by just being “observers”. “Figure out how to deliver

software so fast that the customers don’t have time to

change their minds.” [4]

 According to Lean’s theory, another benefit of rapid

development is improved productivity. Shorter projects

tend to have more stable scope because they are less

exposed to the risk of changing market demands. Stable

scope minimizes waste since not that much rework must

be done to adapt the system to new requirements, and

therefore, leads to higher productivity.

 Summarizing, in Lean projects, the system (or part of

the system) is usually available early in the development

process. This makes it possible to meet customer needs

faster and deliver value to the customers earlier. Frequent

releases enable early customer feedback, which results in

getting the customers more involved in the entire process.

This, in turn, makes possible to detect and address chang-

ing needs much earlier, and thus, improves customer

responsiveness and reduces the risk of waste (and extra

cost) caused by implementing inadequate functionality.

 In both organizations under study, one of the main

problems in relation to their previous work practices was

the increased number of changing requirements within

their projects and the high cost for coping with them. As

described above, that was mainly owed to the rigidity of

these practices, due to the extensive length of their itera-

tions – both companies stated that the duration of their

traditional projects was very long (in some cases even

years). “Traditional development processes have some

unnecessary steps which increase the cost and timeline of

the product, resulting in the customer being unhappy with

the result.” (Project manager – Tieto)

 In the case of Ericsson, prior to the adoption of a

“Lean” way of working, the company was developing

systems in a rather traditional style – in large projects

which had long life cycles (often more than a year).

However, the long project lead-times decreased the

company’s competitiveness by lowering customer respo-

nsiveness, since as stated by Tomaszewski [8], it is alwa-

ys harder to make a change of something that already is

implemented than of something that is not yet specified

in detail. In Ericsson’s traditional process (RUP), chang-

ing requirements were addressed in Change Requests

(CR). CRs were lists of the changes that customers

demanded every time they were identifying a change in

their needs. These changes usually involved addition of

new requirements, and/or modification or replacement of

some of the already specified ones. In other words, when

the customers were changing their minds about some-

thing (usually due to changes in market demands), they

were addressing these changes in a Change Request.

However, due to lack of customer collaboration in RUP

projects, the customers were usually identifying and

requesting these changes late in the process – where most

of the initial requirements had already started (or even

finished) being implemented. Hence, when a Change

Request entered a project, it often implied that an “origin-

al” requirement which was already implemented should

be either re-implemented or thrown away depending on

the kind of CR. In either case, already performed work

was thrown away, which means that CRs entering a proj-

ect led to some kind of waste. “Change Requests identify

and is the trigger of waste and rework.” [8] Hence, the

high cost of handling CRs was one of the main problems

Ericsson had with their traditional way of developing

software (RUP).

 When Ericsson adopted Lean thinking – by impleme-

nting SD – the length of their projects was reduced (from

1 year to 3 months), since one of the main characteristics

of Lean development is delivering the software in small

increments. According to Tomaszewski [8], the most evi-

dent difference between SD and RUP is much shorter

time between identifying and implementing needs in

products. In SD, the projects are significantly shorter

than in the traditional process (RUP), and the size of the

projects is also smaller (significantly fewer project mem-

bers). This means that the scope of the projects is also

reduced. Due to smaller project size and scope, SD

improved the controllability of Ericsson’s projects; the

reduced size of the projects enabled the organization to

make more correct predictions and estimations regarding

the projects’ lead-time and cost. Small projects also made

easier for them to obtain and maintain an overall picture

of what is happening within the project and, therefore, to

monitor progress more easily.

 In addition, as SD-projects are much shorter than the

traditional ones, they tend to have more stable scope

since they are less exposed to the risk of changing requi-

rements – the change of market demands in 3 months is

considerably less probable than their change in 1 year. As

described above, change in requirements commonly

involves waste because already performed work has to be

remade (or removed) to adapt the system to the new

requirements. In Ericsson, by improving the stability of

their projects’ scope (through the reduction of their time-

line), resulted in minimizing the risk of waste (unneces-

sary work and cost) from changes in requirements, which

in turn, led to higher productivity.

 Similar benefits were also identified in Tieto’s case.

The company’s Lean and Agile-inspired process (Design-

to-Market) also works in small iterations (2-4 weeks).

“What we are attempting to avoid is the big iterations. If

we work with four or six month iterations and after the

iteration we find some bugs or a crush, this is going to be

a big waste and also lots of work to do [rework].”

(Project manager – Tieto) As further stated by the inter-

viewees, reducing the development life-cycle (shorter

increments) was proven very beneficial for the organiza-

tion. In particular, Design-to-Market (D2M) gives Tieto a

competitive advantage by increasing customer responsi-

veness, since the products are being delivered to their

customers faster. The short time between ordering

functionality and getting it is very attractive from the

company’s customers’ perspective. The customers are

interested in getting new systems with new features fast,

since these systems often give them a competitive adva-

ntage. Another characteristic of D2M in relation to rapid

development and delivery is the ability to release more

often than Tieto’s previous (traditional) process. By

releasing new system versions more frequently, resulted

in increased customer collaboration and feedback which,

in turn, gave the ability to the organization to quickly

respond to new customer demands.

 Concluding from above, the use of the Deliver Fast

principle had positive effects in both organizations which

were interviewed. In their own words: “Lean helps to

develop and deliver faster to the customer.” (Project

manager – Ericsson); “Short increments result in much

quicker development, if you compare to any other deve-

lopment process.” (Project manager – Tieto) In fact, the

most “profitable” benefits that both companies obtained

are:

 Improved customer responsiveness: Rapid feed-

back on the correctness of estimations; end-product

closer to customer expectations.

 Minimized risk of changing requirements and

improved ability for effectively coping with them –

due to increased customer responsiveness).

 Reduced cost of managing Change Requests: The

cost connected with managing CRs was reduced,

mainly because the number of CRs was decreased

due to shorter projects.

Hence, developing and delivering as fast as possible

helped both Ericsson and Tieto to reduce the cost of their

software products.

 As described above, owing to the long lead-times of

traditional projects, changes in requirements are relati-

vely common in traditional development and account for

a significant part of project cost. However, long iterations

are not the only reason why such practices are unable to

effectively cope with changing customer needs. Another

drawback identified in relation to the traditional way of

working is early requirement specification and commit-

ment. In traditional processes, starting development with

a complete specification is considered a good practice.

This type of development falls under the classification of

the deterministic school of thought. As described by Pop-

pendieck [4], the deterministic school starts by creating a

complete product definition and then creates a realization

of that definition. In other words, the deterministic way

of working is: Make a complete product definition from

the beginning, then create a plan and stick to it (commit).

However, in an evolving environment such as software

domain, changes in customer and market needs are

common. Hence, when requirements are specified long

before coding, there is a high risk that they will change

along the way. Additionally, when deciding upon every-

thing from the beginning, the design is partially based on

forecast – since some things are unknown (or, at least,

not clear enough) at the beginning of a project. Thus,

early requirement specification and commitment increa-

ses the risk of changes in requirements and of the waste

(rework/cost) associated with them.

 In Lean’s theory, this issue is addressed in the princi-

ple Decide as Late as Possible. The essence of that

principle is that in uncertain situations (such as in the

beginning of a project), critical decisions must be

delayed, while the focus should be on maintaining

options. In such situa-tions, delaying decisions is

valuable because better deci-sions can be made when

they are based on fact, not speculation. “Development

practices that provide for late decision-making are

effective in domains that involve uncertainty [such as

software domain], because they provide an options-based

approach.” [3] Additionally, in order for organizations to

effectively cope with changing requirements, they should

build a capacity for change into their systems. One way

to achieve that, is by trying to make most of the decisions

reversible, so they can be made and then easily changed –

reversible decisions are easier to change when it is

required (they can better adapt to changes). Moreover, in

the cases where an irreversible decision must be made,

then – according to Lean’s theory – it should be

scheduled for the last responsible moment – that is, the

last chance to make the decision before it is too late. In

conclusion, by having change in mind when making

decisions and commitments is a very effective strategy

for dealing with unexpected changes, because it adds

flexibility to the system. “While we are developing the

early features of a system, we should avoid making

decisions that will lock in a critical design decision that

will be difficult to change.” [4]

 Another way for building change tolerance into a

system is by maintaining options at the points where

change is likely to occur. The best way to achieve that is

by making plans. Within software projects, creating seve-

ral (alternative) plans is particularly effective in situa-

tions where tough problems need to be tackled, because it

enables the development team to experiment with various

solutions. Another reason why planning is useful in

uncertain, complex situations (such as the initial phases

of a project), is because it leaves critical options open

until a decision must be made. As described by Poppen-

dieck [4], planning is an important learning exercise, it is

critical in developing the right reflexes in an organiza-

tion, and it is necessary for establishing the high-level

architectural design of a complex system. However, it

should be noted that plans should aim at creating options

(alternatives), not commitment. “…orders have to change

rapidly in response to change in circumstances. If one

stick to the idea that once set, a plan should not be chan-

ged, a business cannot exist for long.” [2] Hence, keeping

options open (by means of plans) is more valuable than

committing early (making a plan from the beginning of a

project and “stick” to it until the end), because it impro-

ves the flexibility of an organization and their ability to

respond to changing customer needs (changes in require-

ments).

 Summarizing, by making reversible decisions and

maintaining options, builds a capacity for change into the

software system. That combined with short development

cycles and increased customer collaboration and feed-

back, results - based on Lean’s theory - in minimizing the

risk and significantly reducing the cost of one of the big-

gest drawbacks in traditional development: changing

requirements.

 Nevertheless, changing requirements are not the only

big problem of traditional practices. As noted by Mary

and Tom Poppendieck [4], the worst (and most costly)

type of waste in software development is extra features.

Extra features are secondary, unused features that do not

provi-de any actual value to the customer/product, and

there-fore, they weren’t needed in the first place. “Only

about 20 percent of the features and functions in typical

custom software are used regularly. Something like two-

thirds of the features and functions in typical custom

software are rarely used.” [4]

 Extra features are mainly owed to the “tactic” of tradi-

tional processes for early requirement specification. As

described above, in traditional projects the requirements

are being specified early in the development process.

However, at the beginning of a project, the customers

usually don’t know what they really want, so a common

fact is to request more things than they actually need. As

a result, once these (unnecessary) things get formed into

a requirement, they become an instance of overwork –

especially if they also get integrated into the system’s

design. Furthermore, due to the long lead-times of tradi-

tional projects and their absence of customer collabora-

tion and feedback, it is very common these unnecessary

requirements to end up being implemented into the final

product.

 However, there is a huge cost in developing extra fea-

tures. Apart from the obvious reasons of extra time and

cost for implementing them, they also add complexity to

the code base that drives up its cost at an alarming rate,

making it more and more expensive to maintain, which

eventually results in dramatically reducing its useful life.

“Every bit of code that is there and not needed creates

complexity that will plague the code base for the rest of

its life.” [4] Moreover, unused code still requires unnece-

ssary testing, documentation and support. It does its share

of making the code base “brittle” and difficult to under-

stand and change as time goes on. Hence, extra features

not only have a negative impact on the development cost

of a software product (by means of additional time and

resources for implementing them), but also on its overall

lifecycle in general (in terms of reduced adaptability and

increased maintenance costs). That’s why the cost conne-

cted to them dominates all other costs in software deve-

lopment.

 Lean’s theory encounters this major productivity and

financial bottleneck by providing better control of over-

engineering. That is mainly achieved with the principle

Decide as Late as Possible. Complementing to the defini-

tion given above, decide as late as possible argues that

organizations should decide only upon immediate, clear

issues, while leaving secondary and/or uncertain deci-

sions for later.

 In Lean’s context, if developers code more features

than are immediately needed, is considered as waste. The

best opportunity to eliminate such waste is by writing

less code. According to Poppendieck [4], in order to

write less code, the developers need to find the 20 per-

cent of the code that will provide 80 percent of the value

and write that first. As given above, by value is meant

customer and product value. Hence, what Poppendieck

[4] argues for is that developers should first identify and

implement the features which are most demanded by the

customers, since they are the ones that provide the most

value both to the customer and the product. In addition to

that, since the most-valued features usually constitute the

“core” of the system, it is unlikely that they will change

during the project, while less-valued, secondary features

are more probable to change or become obsolete in the

project’s duration. Once all of the high-demanded featu-

res get implemented, the developers shall continue add-

ing more features, stopping when the value of the next

feature set is less than its cost.

 An additional benefit of implementing the most high-

demanded (and thus, high-valued) requirements, is that it

helps in maximizing the flow of delivered value (“Add

nothing but value”). The idea that flow should be “pull-

ed” from demand is fundamental to Lean development.

“Pull” means that nothing is done unless and until a

downstream process requires it. The effect of “pull” is

that development is not based on forecast; commitment is

delayed until demand is present to indicate what the

customer really wants [20].

 In a nutshell, decide as late as possible argues that

organizations should only commit to the activities which

are highly demanded by the customer, since they provide

the most value to the product, while delay deciding upon

activities that include uncertainty, as they are more likely

to change – it is always easier to make a change of some-

thing that is not yet specified in detail than of something

that already has been implemented. The combination of

implementing the most highly-valued requirements and

developing in small increments (increased customer

responsiveness and collaboration) ensures that only the

most important and necessary features get implemented

into a system – or at least minimizes the risk of impleme-

nting extra features. By that is meant that even if extra

features get implemented, they won’t be so many (in

number) or that unnecessary; they will still provide some

value to the product, even if it’s not the “optimal”. This is

mainly owed to continuous assurance (which results from

increased customer collaboration), because it enables the

customers to also verify if everything which have been

implemented is what they expected. Moreover, by

involving the customers in the development process,

makes it easier for them to realize if what they initially

asked for, still applies (since they are actively participa-

ting in the project) and in case it doesn’t (i.e. if they have

changed their minds about a feature), the organization

will be notified on time. In summary, Lean software

development provides better control of over-engineering,

which – according to Lean’s theory – assures closer fit to

the real customer needs and reduces the cost of a soft-

ware product (by minimizing the risk of implementing

extra features).

 Both Ericsson and Tieto described extra features as

one of the main drawbacks of their previous traditional

processes. In particular, some of the most negative impa-

cts identified were high development and maintenance

costs and low productivity. This, in fact, was one of the

main reasons why the two organizations decided to cha-

nge from traditional development to Lean.

 According to Lean, the key to avoid over-engineering

(extra features) is development to be based on customer

demand; organizations should focus on implementing

only the most important and “pressing” requirements,

while leaving the secondary ones for later. This was

adopted by both Ericsson and Tieto as part of their Lean

implementation process. More specifically, when Erics-

son embodied Lean, the concept of demand-based

development (which derives from the principle Decide as

Late as Possible) was converted into continuous require-

ment prioritization.

 As described above (see Section 4.1), in SD all the

requirements of a product are gathered in a repository,

where they are prioritized based on their value and

importance (for the customer and the product). When a

suitable number of highly prioritized requirements that

can be combined into a requirements package is available

(based on that they fit well together, etc.), a new project

is initiated. The project’s length is a limitation to the size

of the requirements package – the requirements from the

package should be able to get implemented within the

project boundaries (i.e. in about 3 months). Once the first

set of requirements get implemented, the remaining ones

in the repository get re-prioritized and re-packaged so the

next project can start. Since the inflow of new require-

ments is constant in Ericsson (owing to the continuous

evolving telecommunications domain), it is important for

the organization to continuously prioritize the require-

ments of the repository, in order to always choose the

requirement packages most suitable for implementation

(considering dependencies, cost, market window, etc.).

Additionally, since in Ericsson’s projects the require-

ments are prioritized towards the current baseline (system

version), their priority is updated every time the baseline

changes (i.e. when a new system version is released). As

described by Tomaszewski [8], continuously prioritizing

the requirements is important because changing the base-

line may actually change the importance of a require-

ment.

 The lead benefit for Ericsson from continuous prioriti-

zation of their requirements is the assurance that only the

most “pressing” requirements are being implemented for

each new release of the system, and hence, each new

release is highly demanded by their customers (increased

customer satisfaction and acceptance). Additionally, by

implementing only the most pressing requirements,

increases the likelihood that requirements with lower

priority which are more likely to become obsolete (unne-

cessary, outdated) are not yet implemented when the

customer or market demands change. Therefore, the work

and cost for implementing them will not become wasted.

 The technique of continuous requirement prioritization

is also being used by Tieto, with similar results/benefits.

Moreover, another measure of Tieto against extra featu-

res is customer verification. In D2M projects (see Section

4.2 for a description of D2M) at the end of each iteration

the customers verify if the implemented functionality is

what they asked for. This enables the organization to ide-

ntify if any unnecessary features have been implemented,

or if any requirements have been accidently misprioriti-

zed. “If we have done something which is not important

from customers’ point of view then it’s an overwork.”

(Project manager – Tieto) In Lean’s context, overwork is

considered as waste – you worked more than you should.

As stated during the interview with Tieto, in their pre-

vious process, overwork (in terms of extra features) was

usually owed to misunderstandings between them and the

customer. When the company adopted a Lean thinking,

the length of their iterations got reduced (as indicated by

the principle Deliver Fast), which resulted in more frequ-

ent customer feedback. Part of that feedback is assura-

nces (confirmation) that the implemented functionality

coincides with what the customers asked for. This is call-

ed customer verification. Customer verification establish-

ed better communication channels between Tieto and

their customers, which effectively reduced the amount of

such costly “misunderstandings”.

 In conclusion, the implementation of the “Demand-

based development” concept (which originates from the

principle Decide as Late as Possible) as continuous

requirements prioritization, helped both organizations of

this study to avoid extra features in their projects, by

focusing the implementation of a project’s requirements

based on their importance and value. Moreover, customer

verification (which is an outcome of the Deliver Fast

principle) provided an additional layer of protection

against extra features, by identifying if any unnecessary

requirements have been accidently implemented. Hence,

the adoption of Lean’s principles by both Ericsson and

Tieto resulted in effectively minimizing the risk of extra

features in their projects, which in turn, reduced the cost

of their software products (both in terms of development

and maintenance costs).

5.2. Quality-improvement

 Quality is also a very significant component in soft-

ware organizations. This subsection draws the quality

improvement picture of Lean in two phases: from a

theoretical view and a practical view. The combination of

those two aspects eventually results in validating Lean’s

theory from a quality perspective.

 Quality cannot be added by focusing on just one

principle; five principles of Lean software development

together increase the quality of software:

 Eliminate Waste

 Empowering the Team

 Build Quality In

 Decide as Late as Possible

 Optimize the Whole

Eliminate Waste

 Mensuration of cost will not enhance the quality since

the quality cannot be heightened by evaluating the cost.

To cognize what is wrathful, first it’s necessary to know

about what is destructive since nobody visualizes their

work as a waste. Identifying waste by capable planning;

communicating, testing and maintaining the process

lifecycle, normally adds value to the product. Planning

should involve all considerable facts and name all the

waste before the project start. Taking the extra cost by

eliminating waste, normally minimizes planning by

assuring to do it correct in the first time. When a proper

planning is involved in a project, then the quality of the

product increases .When all the waste is removed from

the process and if waste is known by the development

team, then the development gets faster and the quality of

the end product increases automatically.

 In both Ericsson and Tieto had problems with their

traditional processes; for example a considerable amount

of time was spent for making “routine” paperwork. In

many cases those documents had no use. While maintain-

ing this documentation standard, the main quality of the

product gets down for less implementing time. This was

a common problem both organizations faced while using

traditional development processes. Lean assisted both

organizations in minimizing their documentation.

Empowering the Team

 A drivable principle of Lean software development is

to take decisions down to the people who actually append

value to the product. Lean is not a rigid or stiff process;

it’s a process with planning and respect. Lean software

development gives priority to people and collaborating

team work. It focuses on forming and encouraging teams

to address and resolve their own problems. Lean software

development influences the workers to use their tacit

knowledge in team work. The result of using tactical

management increases communication and workflow.

Waste is a big issue for quality; communication with the

people who already know about the project is far easier

than with the person that doesn’t have knowledge about

it. It’s very important for the people to know their roles

and understand them, so they need the knowledge. With

Empowering the Team, Lean simply makes it easier for

the managers.

 Empowering the team helped both organizations in

following up the quality steps. While the team has know-

ledge about the project and process, then it automatically

adds value with several activities. After introducing

Lean, both organizations gained a high level vision with

understanding of the overall goals and advantages. Both

Tieto and Ericsson gained team structure and the decision

was to have cross-functional teams to share knowledge.

This organized teams introduced many advantages. For

example, in Ericsson stable teams allow an efficient

project start and people enjoy improving their working

process comparing to their previous team experience.

Build Quality In

 Build quality in starts with the planning of the project,

so it actually starts before the project. The goal of this

principle is to build quality inside the code by eliminating

waste and empowering the team. There are many ways to

define the defects so the quality gets build in. If the

product really needs quality, then it’s important to inspect

before the defect occurs. In order to do that, planning and

discipline are needed. Nowadays there are too many tools

to do that in a cost-effective way. Damn (2007) proposes

the use of a measurement that takes into account that

there is a particular phase where it is more effective to

find a defect. The idea is to have a queue with no defects

so it fulfills the customer requirements. In Lean it is very

easy to follow the “plan-do-check and act” process. In

this way there is no waste and when it’s done with the

check, it has already built the quality inside. Additional-

ly, with iterations on each phase, each principle becomes

more effective and clear with the continuous improve-

ment process. However, this is only possible if the

environment or the development organization has good

communication and discipline and if Lean works in a

disciplined way.

 Ericsson was having problems when a product was

developed aiming for a broad market launch. It was

common that some customers asked for adaptations of

the product which were not included in the main release.

In the company’s last working process, an adaptation

project was initialized when the requested functionality

had been implemented in a branch of the system and the

product was released to the customer without integrating

the adaptation part. That was delivered separately. It is

clear that those projects faced problems with integrity

and this is a crucial attribute for the quality of the

delivered product. When Ericsson introduced Lean as

their development process, the above problem was solved

by involving smaller increments and by building quality

in principle. Lean works with the product in total and

tries to avoid sub-optimization. It doesn’t see the product

part by part but instead, as a complete product during

implementation, testing and integration.

Decide as Late as Possible

 This principle of Lean focuses on three dimensions:

meeting the customer requirements, pulling from demand

and maximizing the flow. The principle also covers

amplifying learning. In software development, the risk of

exaggerating the details that customers require and

prioritize them depending on their demands is not easy.

However, Lean’s approach came from the idea of "Do it

right the first time". The process has the provision for

customer to make changes and acceptance testing with

customer requirements. So Lean follows the process of

pulling and prioritizing the requirements. When this is

done, the work flow is maximized because requirement

testing is done before coding. Therefore, deciding late

ensures maximization of the work flow and requirements

to be pulled by the customer, which in turn, results in

faster and hassle-free delivery with higher customer

satisfaction. In this way, it also follows just-in-time

delivery of products which provide additional value to

the organization. The main and most effective ideas of

Lean development is Just-in-time delivery and pulling

requirements from demand, where its main benefit is

presenting increments of real business value in short time

period.

 In the world of technology, the modern market

environment faces difficulties when delivering a product.

During this study, it was made clear that both organiza-

tions had problems with delivering products while

working with traditional processes. Traditional develop-

ment cannot help with faster delivery. The adaptations of

Lean helped both companies to overcome this by

deciding as late as possible, delivering faster with short-

term increments and having morning meeting for

evaluating their strategy. In order to accomplish faster

work flow, sub-optimization needs to be avoided which

results in just-in-time output with customer satisfaction.

It is a lot easier to measure the cost of a software than its

quality. Lord Kelvin (1889) mentioned: “When you can

measure what you are talking about, and express it in

numbers, you know something about it; but when you

cannot measure it, when you cannot express it in

numbers, your knowledge is of a meager and unsatisfac-

tory kind.” In software development, the quality of a

software cannot be measured in numbers. Quality of

software depends on customer satisfaction (how well the

software is designed and how well it fulfills the customer

requirements).

Optimize the Whole

 Optimize the whole means that there is no sub-

optimization of the work. Lean software development is

mainly driven by time, and sub-optimization is a weak-

ness for any development process. Deeming the scope

and purpose of a project from its beginning to its end is

very important. Maintaining measurement with parts by

parts should be avoided. In software development it is

said that nothing is complete until it’s fully complete.

Lean is usually structured around teams that hold

responsibility for the overall project and this adds value

to the end product. From the beginning to the end,

everybody related to the project knows their role and

responsibilities. So by optimizing the whole, Lean adds

value and quality to the product and delivers a complete

product as a result.

 Both organizations got improved after adopting Lean’s

principles. Lean helped them in identifying many quality

attributes which added value to their end product(s). In

the case of Ericsson, while they were working with their

old process, they had problems with flexibility, usability

and efficiency. When an organization deals with this sort

of problems, then it follows up with maintainability and

usability issues of the delivered product which is a threat

to its quality. Lower quality products with higher deve-

lopment costs result in unhappy customers. In the case of

Ericsson, Lean helped the organization to increase intero-

perability on its processes and communication with their

customers.

 As described in the interview, in the case of Tieto, if

they worked in four-month long iterations, then after

each iteration they would have to spent several weeks in

order to fix the problems that occurred during the itera-

tion, which is considered as overwork. As described

above, overwork is a form of waste which keeps an

organization from adding quality to the end product.

However, Tieto is now working having continuous

integration in mind, which helped them into solving lots

of problems and producing products of higher quality

compared to their last implemented ones. Focusing on

quality attribute not only adds value to the end product,

but it also makes the architecture of the software easy to

understand and minimizes the cost for maintenance. Lean

development helps to develop easy-to-use systems which

are easier to understand and hence, they don’t need huge

amount of documentation. As a consulting company,

Tieto always wanted to add extra value to their customers

and by adopting Lean, helped them in fulfilling their

requirements.

6. Conclusions

The goal of this study was to assess the premise of Lean

Software Development. Namely, Lean is a process that

promises to reduce the development cost, all the while

increasing the quality of the end product, through seven

principles. The assessment was carried out in two stages

with the first one being the theoretical part where after an

extensive bibliography research, a hypothetical conclu-

sion - as to the validity of the premise - was reached. The

aim of this stage was to see how Lean Software

Development can (in theory) reduce the cost of a

software product and increase its quality. Through this

process it was elicited that all the seven principles

(collectively) play a role in achieving those goals. In

other words, no one principle can stand by itself for

either reducing the cost or increasing the quality of a

software, instead all seven of them “complete” each other

for achieving that.

 The second stage was the empirical stage where

representatives from two major companies that have

implemented Lean (or a process inspired by Lean) were

interviewed which along with a case study review gave

an insight on the practical uses of Lean and the

adaptations thereof. The findings provided for two sets of

data; the cost-efficiency of Lean, which was analyzed in

numbers, and the quality-improvement of it, that cannot

be measured as it is something subjective. The aim of this

stage was to investigate whether Lean can - in practice -

reduce the cost and improve the quality of a software

product. The results of the investigation are the

following:

Cost-related results

 Waste elimination (know what waste is and plan to

avoid it).

 Shorter projects (less exposed to the risk of chang-

ing requirements).

 Requirement prioritization (based on importance

and provided value).

 Customer collaboration (rapid feedback on the

correctness of estimations – avoid rework).

 Delayed commitment (better control of over-

engineering)

Table 6.1 – Cost-related results

 As described above (see Section 2.2) Lean looks at the

development process from a value perspective. Due to

that, organizations working according to Lean are able to

identify activities which are keeping the value from being

delivered to the customer and adding unnecessary costs

to the product (e.g. excessive documentation, late testing,

etc.). Confirmed from the interviews (see Section 4), with

that knowledge an organization is able to better plan and

design its projects in order to exclude such activities,

resulting in lower development costs and higher

delivered value. As shown in Section 2.3, Lean projects

consist of short development cycles. Small projects tend

to have better controllability since they enable more

correct predictions and estimations regarding their lead-

time and cost. In short projects, progress can also be

monitored more easily. Additionally, short projects are

less exposed to the risk of changing requirements, since

needs are less likely to change in a short time period.

However, short cycles are not the only measure of Lean

against changing requirements. Lean stresses the import-

ance of including the customer early in the development

process. As in Ericsson’s case (see Section 5.1), early

customer feedback enables continuous requirement

prioritization based on their importance and provided

value, ensuring that only the most “pressing” and valued

requirements are being implemented in each project

increment (demand-based development), postponing

implementation of secondary, less-valued requirements

which are likely to change within time. Additionally,

early customer collaboration provides for rapid feedback

on the correctness of estimations, which makes possible

to detect “misunderstandings” between an organization

and the customer much earlier, reducing the risk of

implementing inadequate functionality. Reinforcing

Lean’s ability against over-engineering comes the princi-

ple Decide as late as possible. As described above (see

Section 2.3) Lean believes that an organization should

only commit to the activities which are highly demanded

by the customer, since they provide the most value to the

product, while delay deciding upon activities that include

uncertainty, as they are more likely to change within

time. Additionally, if a decision must be made over an

issue which is unclear, there should be a “back door” for

reversing it later on, if needed. In all organizations under

study (see Section 5.1), delaying commitment and

making reversible decisions enabled to build a capacity

for change into their systems by maintaining options,

effectively reducing the risk of implementing extra

features which, in turn, would have added unnecessary

costs and complexity to their products.

Quality-related results

 Waste elimination (have waste in mind when plan-

ning and designing a project).

 Build quality from start (take quality under consi-

deration from the initial phases of a project, so

quality gets ”built-in” the architecture).

 Frequent releases (meet customer needs faster and

deliver value to the customers earlier).

 Late decision-making (work flow maximization and

high customer satisfaction).

 Cross-organizational awareness (shared know-

ledge and experiences).

Table 6.2 – Quality-related results

 As described above (see Section 2.3) the “cornerstone”

of Lean thinking is waste elimination. Confirmed from

the interviews (see Section 4), all organizations working

according to Lean are trying to identify and eliminate

waste before it occurs, from the initial phases of their

projects. By having waste under consideration when

planning and designing a project, the waste is removed

(or at least minimized) from the process resulting in

faster development and higher end-product quality.

However, waste is not the only thing that’s been taken

under consideration early in Lean projects. Lean strives

that quality also needs to get integrated into the system

from start. As shown above (see Section 5.2) all the

organizations under study were having quality in mind

from the initial phases of their projects, so quality to get

”built-in” the architecture, which results in enhanced

product quality. Identified from the interviews (see

Section 4), one of the major changes that the organiza-

tions under study experienced when switched into Lean,

was shifting from the enormous, long-term projects of

traditional development into the short increments of Lean

development. Lean projects consist of small iterations

where, at the end of each iteration, a new version of the

product is released. Frequent releases enable early custo-

mer feedback which, in turn, ensures that the end-product

gets closer to customer expectations, resulting in meeting

customer needs faster and delivering value to the

customers earlier. Despite the ”urge” of Lean for rapid

development and early releasing, when it comes to

making critical decisions, Lean prompts for postponing

them for as late as possible. Deciding late ensures maxi-

mization of the work flow and requirements to be pulled

by the customer, which in turn, results in faster and

hassle-free delivery with higher customer satisfaction.

Lastly, a principle of Lean indirectly related to quality is

Empowering the team. Lean stresses the fact that deci-

sions should be taken down to the people who actually

append value to the product. In order for that to work out

well, an organization should have a high level vision with

every member involved within a project being aware of

the overall goals and advantages. When the team has

knowledge about the project and the liberty to address

and resolve their own problems (make decisions), it

automatically adds value with several activities. In both

organizations under study, cross-organizational aware-

ness helped the companies to build more stable teams by

encouraging the workers to use their tacit knowledge in

team work (see Section 5.2). Stable teams allow an effi-

cient project start and people enjoy improving their work-

ing process by sharing knowledge and experiences.

 The overall conclusion from this study was that Lean

Software Development is a cost-efficient and quality-

improving one. Lean, through its various principles,

manages to cut back on the workload, thus promising less

costs, and to include the end product user (in this case the

ordering company) in the development process, thus

promising quality enhancement.

 An additional conclusion that can be drawn from this

study is that Lean is not for everyone. That is to say that

as the two companies from this study (Tieto and Erics-

son) had tailored Lean to their needs, it is perhaps wiser

for most companies to follow that example as no rigid

development process would ever prove to be successful

(since no two companies have the same needs) and it

would have to be bent to each company’s needs to be

profitable.

 The results of the investigation presented in this paper

provide for an aid for any company who is on the fence

about adopting Lean and are unsure about its theoretical

or practical uses.

7. References

[1] Selecting a Development Approach, 2005, http://ww

w.cms.hhs.gov/

[2] Taiichi O, Norman B, 1998, Toyota Production Sys-

tem: Beyond Large-Scale Production

[3] Poppendieck M, Poppendieck T, 2003, Lean Soft-

ware Development: An Agile Toolkit for Software

Development Managers

[4] Poppendieck M, Poppendieck T, 2007, Implement-

ing Lean Software Development: From Concept to

Cash

[5] Highsmith J. et al., 2001, “The Great Methodologies

Debate: Part 1”, Cutter IT Journal, Vol. 14, No. 12

[6] Highsmith J. et al., 2002, “The Great Methodologies

Debate: Part 2”, Cutter IT Journal, Vol. 15, No. 1

[7] Adomauskas V, Murauskaite A, 2008, Bottlenecks

in Agile Software Development Identified Using

Theory of Constraints (TOC) Principles

[8] Tomaszewski P. et al., 2007, “From Traditional to

Streamline Development – Opportunities and Chal-

lenges”, Software Process: Improvement and Pract-

ice, Vol. 13, pp. 195-212

[9] Creswell J. W, 2003, Research Design: Qualitative,

Quantitative, and Mixed Methods Approaches

[10] Lean Management Series, 2009, http://www.unisa.

edu.au/

[11] Taylor W. F, 1911, The Principles of Scientific Ma-

nagement

[12] Womack J. P. et al., 1990, The Machine that Chan-

ged the World: The Story of Lean Production

[13] Jenner R. A, 1998, “Dissipative Enterprises, Chaos,

and the Principles of Lean Organizations”, Omega

International Journal of Management of Science,

Vol. 26, No. 3, pp. 397-407

[14] Liker J. K, 2005, The Toyota Way

[15] Quality with a Name, 2006, http://www.jamesshore

.com/

[16] Kilpatrick J, 2003, Lean Development – A team ap-

proach to Software Application Development

[17] Lean Software Development, 2008, http://railsstudio

.com/

[18] Estimating the learning curve, 2008, http://agile

commons.org/

[19] Mehta M. et al, 2008, “Providing value to customers

in software development through Lean principles”,

Software Process: Improvement and Practice, Vol.

13, No. 1, pp. 101-109

[20] Principles of Lean Thinking, 2002, http://www.pop-

pendieck.com/

[21] Seven Principles of Lean Software Development –

Deliver Fast, 2008, http://agilesoftwaredevelopment

.com/

[22] Waste & Value, http://www.objectwind.com

[23] Dalcher D, Brodie L, 2007, Successful IT Projects

[24] Yin R. K, 2004, Case Study Research: Design and

Methods

[25] Neuendorf K. A, 2002, The content analysis guide

book

[26] MacCormack A. et al, 2003, “Trade-offs between

productivity and quality in selecting software deve-

lopment practices”, IEEE Software, Vol. 20, No. 5,

pp. 78-85

[27] Johnson G. et al, 2005, Exploring Corporate Stra-

tegy

[28] Sommerville I, 2004, Software Engineering

[29] Software project failure costs billion. Better estima-

tion & planning can help, 2012, http://www.

galorath.com

