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Göteborg, Sweden, June 2013





Abstract

This paper describes a vision-based approach to miniature robot vehicle position esti-
mation and navigation, that integrates data from on-board camera, tachometers and
steering servo. The goal is to navigate a miniature vehicle on an indoor track using
visual data from lane markings and dead reckoning from odometry. Then the estimated
position of the miniature vehicle will be visualized in real-time and overlayed on a photo
of the actual track. This will be used to evaluate how well this estimation performs and
what its limitations are.
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Glossary

Grayscale is an image in which the value of each pixel is a single sample, that is, it
carries only intensity information. 8

RCM Ranging and Communications Module. 2, 3

RGB color model is an additive color model in which red, green, and blue light are
added together in various ways to reproduce a broad array of colors. 8
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1

Introduction

P
ositioning and navigation are essential problems for mobile robots. These
problems get even more severe within the topic of autonomous vehicles where
proper positioning and navigation are critical for normal functioning and safety.

In most cases expensive hardware is used to perform this task. This research is carried
out to try to achieve comparable results by combining data from an onboard camera,
tachometers and a steering servo. Since odometry data is provided by the vehicle’s hard-
ware and an onboard camera is relatively cheap and compact, this method is expected to
decrease the costs, the power consumption and save more space onboard of a vehicle. By
using this method the vehicle should be able to estimate its own position and navigate
to next estimated position by detecting markings on the floor. The estimated position
of the miniature vehicle will be visualized in real-time and overlayed on a photo of the
actual track. This will be used to evaluate how well this estimation performs and what
its limitations are.

In this research we are trying to implement a robust method for lane following and
combine it with already implemented in Gulliver miniature vehicles1 dead reckoning of
the position of the vehicle.

The experiment will be set up on a miniature model vehicle, because a platform based
on such vehicles can be used as a step between pure simulation of traffic scenarios and
evaluation on full-scale vehicles [1]. Experiments on a miniature platform are likely to
give more accurate results than a pure simulation, and require significantly less resources
and costs than a full-scale vehicular platform.

1URL www.chalmers.se/hosted/gulliver-en/
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1.1. RESEARCH QUESTIONS CHAPTER 1. INTRODUCTION

1.1 Research questions

How robust will be a lane following algorithm based on techniques of cross-correlation and
linear regression (Q1)? Is it possible to implement indoor localization of an autonomous
miniature vehicle by combining functionalities of lane following and dead reckoning pro-
vided by only inexpensive onboard camera, tachometers and the steering servo (Q2)?

1.2 Goal of this Work

The goal of this project and intended contribution is to propose and implement a method
for position estimating and navigating for an autonomous miniature vehicle:

• Implement robust method for line recognition.

• Implement perspective transformation of input image data to associate it with the
vehicle’s actual position.

• Integrate line recognition with image coordinates with already existing ”drive to
position” functionality of the Gulliver miniature vehicles2 designed by Benjamin
Vedder3 to perform lane following.

• Estimate position of the vehicle by combining implemeted in this study lane follow-
ing algorithm with dead reckoning functionality of the Gulliver miniature vehicles.

1.3 Delimitations

Since to find the vehicle’s absolute position data we would need to implement a more
advanced system, it is almost impossible to examine the difference between the estimated
data and the real vehicle’s position. This can be also seen as a proposal for future
research.

2URL www.chalmers.se/hosted/gulliver-en/
3URL http://vedder.se/
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Theory and Related Studies

This chapter explains the theories used in this paper.

2.1 Computer Vision

Computer vision is a field of methods for transformation of data from a photo or video
source into numerical information to produce decisions or a new representation [4]. Dif-
ferent transformations are performed depending on the desired outcome. Examples of
the input data may be video from a security camera or a photo of ocean surface. The
decision might be ”there were 5 people passing the camera” or ”there is an abnormal
big wave”. In our case the input data are photos from a camera located on top of a
model vehicle and decision is the middle point of two lines in front of the vehicle. A
new representation might mean removing camera motion from an image sequence [4] or
cutting out part of the image. For this experiment we turn color image into grayscale
image (3.3.1) and perform perspective transformation (3.3.1).

Because our brain is so advanced, it is easy for us to focus on different features of the
images we see and make decisions using our previous experience. It is not as easy for a
computer to perform on the same level because everything, that a computer ”sees” is just
a grid of numbers (figure 2.1). Manipulating those numbers to achieve desired outcome
is the basic idea of computer vision.

3



2.2. MODEL VEHICLES AND GULLIVER PROJECT CHAPTER 2. THEORY

Figure 2.1: Computer representation of a car’s side mirror[4]

2.2 Model vehicles and Gulliver project

In this project we use model vehicle which is a modified radio controlled car. The mod-
ifications include removing radio control component, adding camera, onboard computer
and motor controller. We use model vehicle as it is cheaper and easier to modify. Model
vehicles are also closer to reality than pure simulation [1] and have the same level of
inconsistencies (for example light noise, small errors in steering and driving systems) as
real vehicles. The model vehicle used in this project is part of Gulliver project1. Gul-
liver is a platform for studying and testing vehicular systems, which proposes usage of
miniature vehicles as a step between pure simulation and full size vehicle [1]. Numerous
amount of miniature vehicles was built and tested within this project [2] and they show
good results in usage and provide odometry data for dead reckoning.

2.2.1 Main hardware modifications

We chose ODROID-U22 because it is twice smaller in size and with its clock running
at 1.7 Ghz it is more powerful, then most of other platforms of the same price group
(for example PandaBoard3 with only 1.2 Ghz). The size is especially important since it
opens possibility of employment of model vehicles of smaller size.

To perform this experiment we chose PLAYSTATION Eye camera4 because it runs 120
hertz at 320x240 pixels resolution. During experiments it was observed, that on more

1URL http://www.chalmers.se/hosted/gulliver-en/
2URL http://www.hardkernel.com/renewal_2011/products/prdt_info.php?g_code=

G135341370451&tab_idx=1
3URL http://en.wikipedia.org/wiki/PandaBoard
4URL http://en.wikipedia.org/wiki/PlayStation_Eye
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2.3. NAVIGATION CHAPTER 2. THEORY

powerful machines or without computations the camera can run up to 166 hertz and
about 66 hertz on the vehicle with all other algorithms running. It is valuable, because
more frequent update rate gives more robust results for the lane following algorithm.

2.3 Navigation

Navigation is a process of controlling and monitoring the movement from one position
to another in relation to a specific reference. As mentioned before navigation is one of
the basic problems of mobile autonomous robots (1) as they should perform this task on
their own. Number of different approaches has been presented in the past both based on
various sensors [3, 5, 6, 7] and computer vision [8, 9]. One of the related projects is the
localization project [3] for Gulliver cars, which was carried out to improve the vehicles’
position estimation and make it work with large number of vehicles simultaneously. The
method used in that project combined data from Ranging and Communications Modules
(RCMs) and odometry. While providing sufficient results RCMs are quite expensive and
take a lot of space onboard a vehicle, in fact RCMs are so big, they would not fit onboard
of the vehicle used in this project.

2.3.1 Setting

To have navigation references we should start navigation in proper setting. The setting
for this project is an indoor location with a track (path) for the vehicle to navigate
through. The size of the track should be proportional to the size of the vehicle. The
track should be mapped by two continuous lines on some contrast background.

2.4 Cross-Correlation

Cross-correlation is a standard approach for detecting features on an image by measuring
similarity of two waveforms [10]. In this experiment it is performed by taking each row
of the pixels’ values of a picture matrix and comparing them to the filter vector. By
adjusting the filter’s shape and length in accordance to the width and the properties
of the road’s marking lines, we can then improve efficiency and performance of the line
detection.

There are different ways of matching with correlation. For example, to measure the sum
of squares of differences between the filter vector and the pixels’ values or use normalized
correlation [10]. In this paper we will experiment with various methods to distinguish
the one which performs better in the given setting.

5



2.5. LINEAR REGRESSION CHAPTER 2. THEORY

Figure 2.2: Linear regression5

2.5 Linear regression

Linear regression is an idea, that through each given set of points goes one straight line
with optimal distance to each point (calculated on a perpendicular through the point to
the line). Figure 2.2 illustrates linear regression.

That means, we can find such linear function, which describes that line and we can also
find the points’ correlation coefficient [11]. Correlation coefficient is a value from -1 to 1,
where -1 and 1 mean, that the given points are perfectly aligned and values closer to 0
mean, that the points a poorly aligned. We can use correlation coefficient as a criterion
for noise reduction (the reduction of the points, which are not on the line markings).

y = a× x + b (2.1)

If equation 2.1 describes the function of the best fitting line, then a determines the slope
or the gradient of the line. By analyzing the slope of the line we can adjust the method
to only work with lines, which have specific angle in relation to the image sensor’s point
of view. In our case we will use mostly vertical lines.

5Sewaqu, Linear regression.svg. URL http://en.wikipedia.org/wiki/File:Linear_regression.

svg
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3

Research Method

T
o answer our research questions we can not reflect only on already acquired
knowledge. Since we want to try to implement a new technology in an existing
field, we need to implement this technology and analyze its performance. Thus,

we chose design research as research method for this study as it brings the design activity
into focus at an intellectual level [12].

Figure 3.1: The general methodology of design research1

According to the figure 3.1 design research in this project follows the above mentioned
steps:

1URL http://desrist.org/design-research-in-information-systems/
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3.1. AWARENESS OF PROBLEM. CHAPTER 3. RESEARCH METHOD

3.1 Awareness of problem.

This is the stage of compiling an idea of future research. The awareness of the problem
came from participating in Carolo Cup competition2, where we struggled with imple-
menting proper lane following algorithm. The idea about combining lane following and
position estimation algorithms comes from reflecting on the position estimation solu-
tions of Gulliver project (2.3). The topic itself is important and interesting for mobile
robots and autonomous vehicles (1). In this stage it is important to create criteria for
future analysis and state preliminary research questions. In this study they are: which
techniques can improve robustness of a lane following algorithm and is it possible to
perform indoor navigation and position estimation of a model vehicle with reduced costs
by combining lane following and dead reckoning functionalities?

3.2 Suggestion.

This is the step of suggesting new methods for old problems. After studying relevant
literature and reflecting on already conducted studies (2), we propose a suggestion of
a method, which is not yet implemented and which would combine in itself different
promising techniques presented in the theory chapter (2). This way we come up with the
final research questions (1.1), which are derived from preliminary research questions by
acquiring more knowledge in the field. The problem domain resulting in the first research
question indicates that we need to implement a lane following algorithm. The algorithm
should only use data from onboard camera. It should be able to detect lines by employing
cross-correlation (2.4) and filter false values using linear regression (2.5). The method
should be able to supply the motor controller with proper position data information so
that the vehicle can follow provided path. To answer second research question we need to
combine already implemented in the motor controller dead reckoning functionality3 with
the lane following functionality resulting from the first research question. To perform
with better results we should also find the most suitable hardware.

3.3 Development.

During this stage all suggested ideas are implemented. Precisely an application, which
uses line detection with cross-correlation and linear regression (2) for detecting lines.
And integrates lane following algorithm with dead reckoning data to localize the vehicle.

As dead reckoning functionality is already implemented in the motor controller software
to perform the experiment it is only needed to find most suitable hardware, implement

2URL http://www.chalmers.se/hosted/gulliver-en/carolo-cup-2012
3URL http://vedder.se/

8

http://www.chalmers.se/hosted/gulliver-en/carolo-cup-2012
http://vedder.se/


3.3. DEVELOPMENT. CHAPTER 3. RESEARCH METHOD

lane following functionality and integrate the next desired position data from lane fol-
lowing with the dead reckoning functionality.

3.3.1 Line recognition

This section will describe the procedures performed to archive line recognition.

Grayscale

To find lines on the track we will only be interested in their thickness and color intensity.
That means, that we do not need to save the color information. So we convert each
received RGB color model image into Grayscale image.

Figure 3.2: Sample image without
perspective transform

Figure 3.3: Sample image with per-
spective transform

Perspective transformation

Using cross-correlation (2.4) method to detect the lines we assume, that at each point
the lines are of the same thickness (3.3.1). But since the camera is situated on top of
the model vehicle and is facing forward, everything it sees, including the marking lines
is in perspective. To fix this, we apply perspective transformation on the image. To
find what are the proper values for the transformation we draw a square on the floor
with size of a side equal to width of the model vehicle and point the vehicle’s camera to
it. Then, by calculating difference in pixels on X coordinate (horizontal) between upper
and lower corners’ we try to achieve the square shape to be same in our image. Figures
3.2 and 3.3 show the input image from the camera which was converted to Grayscale and
the same image with perspective transform applied. By applying this transformation,
we cut out a bit of the field of view the camera can have, but it still sees far enough to

9



3.3. DEVELOPMENT. CHAPTER 3. RESEARCH METHOD

predict the vehicle’s next move (the camera can see up to 650mm ahead). We use linear
interpolation in this transform to save some computational power.

Detecting probable lines with cross-correlation

After the image is converted to Grayscale and the perspective transform (3.3.1) is done,
we start to search for probable lines. As from now, we assume, that all the lines we
are interested in have the same thickness. To apply cross-correlation (2.4) on the row
we should distinct what is our filter vector. The length of the filter is determined by
width of a marking line in pixels. For this experiment we use black electric tape, which
is 1,77mm wide. On the camera image its width is about 9 pixels, that is why our filter
has 9 positive values. The shape of the filter differs depending on what results we want
to achieve. In this experiment we want to detect lines of specific thickness and not just
areas with high color intensity. Thus the negative values on the sides of the filter are
used for identifying a line rather, then just some dark (light) space on the image. When
the filter is cross-correlated to a darker part of the image, the negative values multiplied
to higher numbers are going to reduce the final correlation value in this area, while at
the places with lighter sides and darker middle parts the correlation value should be
higher. Figure 3.4 displays used filter size and shape.

Figure 3.4: Plotted filter vector

There are different ways of matching with correlation. In this study we experimented
with integral correlation and normalized correlation. Normalized correlation provided
the best results.

The image is in Grayscale and the marking lines have contrast background, if we take
each row of the image matrix and cross-correlate it to our filter vector, in the resulting

10



3.3. DEVELOPMENT. CHAPTER 3. RESEARCH METHOD

graph, we should be looking for two peaks on the resulting graph if the background is
darker, then the lines. If the lines are darker, than the background, we can subtract
each pixel value from 255 (maximum pixel value as each pixel value is represented by
unsigned char) to invert it. Once we have found two peaks, we can assume, that in the
given row those are the marking lines. This way we go through the whole image matrix,
analyzing each fifth row (experiment show, that this is enough for robust line detecting).
Since each image we receive from the camera is 240 pixels in length and we analyze only
each fifth row, in the end we get 48 pairs of probable line markings locations. Each pair
is then saved to a structure with their x and y coordinates and the values at the peaks.
We can also always track whether each value belongs to the right or to the left part of
the image. Figure 3.5 shows an image with applied cross-correlation. Red and blue ovals
mark the places, where the probable lines are found. Red ovals belong to the left line
and blue ovals belong to the right line. The width of the ovals represents the size of the
filter vector in pixels.

Figure 3.5: Sample image after
finding probable lines with cross-
correlation

Figure 3.6: Sample image with re-
duced fault values with linear regres-
sion

Filtering noise with linear regression

Because after applying cross-correlation (3.3.1), we only look for two highest values,
on each row we will always get two peak values whether there was a line or not. To
determine which of those peaks are actually part of the lines, we are looking at them as
right and left lines. All the left values are in the left line and all the right values are in
the right line. Then each line is separated into smaller segments of 6 values on which we
apply linear regression and calculate their correlation coefficient and the slope of the line
(2.4). The lines we are looking for have correlation coefficients closer to 1 or -1 (from -1
to -0.8 and from 0.8 to 1), what means, that the points are aligned. But we also need
to control the slope constant. If we want to find lines with the maximum slope of 45
degrees, then slope constant should be within -1.5 and 1.5.

11



3.3. DEVELOPMENT. CHAPTER 3. RESEARCH METHOD

We are analyzing each line segment by taking out point by point and comparing the
correlation coefficients retrieved. This way we are trying to find a point, which is least
aligned to the rest of the points of the given segment. Here we want to find the points,
which are out of the line, to remove them. If total amount of points left in the segment
is 4 and they are still not aligned, we can dismiss the whole segment. After applying
this algorithm, the only points left in the segment are those, which can be aligned into
lines. Figures 3.5 and 3.6 display the effect of applying noise reduction.

3.3.2 Navigating the model vehicle

Estimating next desired position

After we had found two lines, we can estimate, where is the vehicle’s next desired position.
To do this we find a pair of points closest to the top of the image. Our next desired
position should be in the middle of the distance between those points. The blue dot
between the lines on Fig. 3.6 is the next desired position. Now we calculate x and y
coordinates for this position in the coordinate system of the image (its pixel address).

Conversion of the image coordinates into vehicle’s coordinates

Since we use OpenCV4 for computer vision libraries, the image coordinate system starts
from left upper corner of the image and y coordinate is inversed. Each image is 320x240
pixels, that means, that the maximum values for x and y are 320 and 240 relatively.
The vehicle’s positioning system on the other hand has different coordinate system (fig.
3.8), where center is in between vehicle’s rear wheels and y coordinate is not inversed.
To convert the pixel’s coordinates to the vehicle’s coordinates, we take pixel coordinates
from the image’s upper corners and mark them on the actual ground plane (where camera
sees them). Then we can measure the actual distances between the vehicle’s rear wheels
and the image’s corners to find ratio between those distances. The ratio is then used to
convert pixel’s coordinates (Fig. 3.7) to vehicle’s position coordinates (Fig. 3.8).

Driving

Once the coordinates for vehicle’s next position are found, we can send them via packet
interface to the vehicle’s motor controller. The motor controller computes steering values
for the vehicle to arrive to the set position. The packet interface and motor controller
functionality were provided by Benjamin Vedder5.

4URL http://opencv.org/
5URL http://vedder.se/
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3.4. EVALUATION. CHAPTER 3. RESEARCH METHOD

Figure 3.7: Reference points with im-
age coordinates

Figure 3.8: Reference points with
model vehicle coordinates

3.4 Evaluation.

In this step we evaluate resulting application and its performance (4). Deviations from
expectations are documented and explained. Also we produce hypothesis about behavior
of the resulting artifact and discuss whether it behaves as we expected or not. Since
it is design research, final results are rarely ”final” and can be used as basis for further
research. In this phase we will produce quantitative analysis of how the validity threats
affect the results. Following the research questions (1.1) we need to evaluate robustness
of the implemented lane following algorithm and precision of position estimation. There
are no internal threats to validity coming from the vehicle as we always use the same
vehicle with the same hardware, software and fully charged battery. The internal validity
threats are the experimenter bias, and it is present in validation of the position estimation
results. We can not validate precision of the position estimation just by looking at the
running vehicle and the picture of estimated positions. To compare real driven path
with the estimated path we will attach a marker to the vehicle and run it. Then we can
compare the drawn driven path to the driven path estimated by dead reckoning in the
motor controller. Part of external validity threats come from the situation as different
lightning and shape of the testing track can be perceived differently by the camera. That
is why we need to test the algorithm with different light conditions to evaluate till what
extend the algorithm can handle light change. We also need to test the algorithm with
different track faults (such as missing lines and size change) to understand if the study
results can be generalized for different settings.

13



3.5. CONCLUSION. CHAPTER 3. RESEARCH METHOD

3.5 Conclusion.

This is the final phase of the research. Here we are trying to categorize firm knowledge
gained in the research, compare the results to previously conducted studies and also
provide subjects for further research.

14



4

Analysis of Outcome

S
ince there are two research questions (1.1), validation of navigation (lane following
algorithm 4.1) and position estimation (4.2) should be done separately. We will
go through and analyze three threats of validity of lane following algorithm and
one threat of validity of position estimation algorithm.

4.1 Evaluation of the Lane Following algorithm

To evaluate performance and robustness of lane following algorithm and provide sta-
tistical data for it, we are performing visual observations while the vehicle is following
the track lines. The main criteria for the lane following algorithm is that the vehicle
should always stay within the marking lines. Changing different external variables (such
as amount of light, width of the lane and consistency of the marking lines), we can
calculate how many times the vehicle lost the track. For each condition we will test
the vehicle with 10 laps. Since the vehicle is small in size, its battery is also small. So
increasing testing time (10 laps is about 2-3 minutes depending on how good the vehicle
performs) increases charging time and danger of battery failure.

To perform the tests, each time the vehicle will be placed to the same start position. If
the vehicle gets out of lane markings while running, it will be placed on the start position
again and the lap will be evaluated as failed.

4.1.1 Light conditions

It is important to test the algorithm with various light conditions to be aware of its
level of robustness and to which extend findings of this study can be generalized in

15



4.1. EVALUATION LANE FOLLOWINGCHAPTER 4. ANALYSIS OF OUTCOME

different settings. The testing is done by running the algorithm with different kinds of
lightning. Of course it is impossible for us to test the algorithm with every possible light
condition and due to lack of equipment it is impossible to calculate the amount of light
on the track, so we analyze the results in relation to amount of light the sources provide.
As the vehicle is only used indoors, we compare its functioning in different kinds of
indoor light. So we chose three main scenarios: cloudy daylight (about 1000lm), usual
indoor light (600lm), deemed indoor light (400lm). It is also important to test how the
algorithm responds on mixed light situations: shadows and sudden bright spot lights.
So we test each scenario with creating shadows and adding bright spot light (electric
torch of 500lm).

The system was tested with various light conditions and performed equally good with
most of them (see table 4.1). Though it does not function with bright straight light (for
example bright electric torch) pointing at a part of the track, which makes the marking
lines overexposed (comparing to the rest of the track) and thus not recognizable for the
camera. The system would also give poor results in dark rooms where amount of light
is not sufficient. On the other hand it is valuable, that the algorithm handles shadows
well as those are most common part of the light change in the real traffic scenario.

Results presented in table 4.1 show, that the implemented lane following algorithm
performs well in different light conditions without any previous (light) adjustments and
in 70% of the tested situations percentage of failure is below 50%. That is an enormous
improvement comparing to Carolo Cup1 vehicles, which were very sensitive to different
light conditions and needed adjustments for each different light situation. We achieve
these results by employing cross-correlation technique in line detection and applying
proper filtering.

4.1.2 Missing line markings

It is important for lane following algorithm to be robust. To achieve robustness we
should assume such situation as missing line markings (whether due to faults of the
track or faults of the camera). We perform this test by covering part of the track with
white paper (to change the shape of the track - the external variable) and analyzing the
vehicle’s behavior. For each test we use different sizes of the cover. It is important to
test handling of missing lines on straight parts of the track and curves to detect system’s
weak points. Also it is valuable to see if there is any difference in handling left missing
lines or right missing lines.

We perform variety of experiments with different lengths of missing line spaces. To
decrease size of the result table, we group the results by three different lengths of missing
marking spaces: less than 11cm, between 11cm and 17cm, more than 17cm (see table
4.2). During experiments it was also figured, that position of the missing line (left or

1URL http://www.chalmers.se/hosted/gulliver-en/carolo-cup-2012
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Table 4.1: Relation of different light conditions to the performance of lane following algo-
rithm

Type of light Times out of track Failure percentage

Day light (from windows) or
bright day light lamps

0 0

Day light or bright day light
lamps + bright spot light on
parts of track

0 0

Day light or bright day light
lamps + shadows on parts of
the track

0 0

600lm lamp 0 0

600lm lamp + bright spot-
light on parts of the track

4 40

600lm lamp + shadows on
parts of the track

0 0

400lm lamp 3 30

400lm lamp + bright spot
light on parts of the track

9 90

400lm lamp + shadows on
parts of the track

5 50

No light in the room (only
lights from onboard of the ve-
hicle)

10 100

right line) does not play any distinct role (in more, than 80% of the cases the results
were the same no matter left or right line was missing).

Analyzing results of table 4.2, it is visible, that the implemented lane following algorithm
handles very well (less, than 50% failure) missing lines up to about 17cm. The reason
why longer missing lines are not handled as good is the way we compensate for camera’s
narrow field of view. Every time the camera sees only one line, it sends the vehicle to
opposite direction in order to find the second line. While shorter parts of missing lines
get passed by vehicle quite quick and do not interfere with the decisions making, the
longer missing lines are recognized by the vehicle as a reason to move in an opposite
direction. For improving the vehicle performance in handling missing lines, some new
algorithm for compensating should be found.
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Table 4.2: Relation of size and placement of missing lines to the performance of lane
following algorithm

Size and placement of missing
line

Times out of track Failure percentage

Less, than 11cm, straight 0 0

More, than 11cm, but less,
than 17cm, straight

3 30

More, than 17cm, straight 8 80

Less, than 11cm, curve 0 0

More, than 11cm, but less,
than 17cm, curve

4 40

More, than 17cm, curve 10 100

Table 4.3: Relation of the track width to the performance of lane following algorithm

Width of the lane Times out of track Failure percentage

From 16cm till 22cm 0 0

From 22cm till 27cm 6 60

From 27cm 10 100

4.1.3 Width of the track

During various testing it was figured, that vehicle performance is related to the width
of the track. To evaluate if this statement is true and to which degree the width affects
the performance, we test the vehicle on a track, where about 1/4th of it has different
width. This way we are also able to evaluate how good the algorithm can handle change
of the lane’s width (and to provide information on which sizes of tracks this study can
be generalized). To perform this experiment we run the vehicle on a track, where 1/4th
of it was changed in size (the rest of the track will stay 20cm wide). The width of the
vehicle is 10cm, so the minimum width for the track to start testing is about 16cm (since
we evaluate the performance by visually observing and calculating how many times the
vehicle is out of the track lines, we need to have some space in the lane to let the vehicle
drive) and we conduct experiments increasing the width of the specified part of the track
by 2cm at a time. The experiments show, that the algorithm can only handle width of
the track of maximum around 27cm, so to decrease size of the table we separate the
results in three groups: from 16cm and till 22cm, from 22cm till 27cm, from 27cm.

Table 4.3 shows relation of the width of the track to lane following algorithm’s perfor-
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mance. It is visible, that as width grows, the performance gets worse. Furthermore,
those only 4 times out of 10, when the vehicle was able to finish the lap, it was just
a matter of luck from which angle it came to the wide track area and if the angle of
camera view was enough to record both lines or not. That means, that width of the
track criterion is only related to the angle of the camera and the wider the camera angle,
the wider tracks the vehicle is able to follow.

4.2 Evaluation of Position Estimation algorithm

Since in this paper we are trying to implement a method for position estimation, it is
important to evaluate its precision as with low precision we do not achieve desired goal.
This evaluation is done by plotting the position data from the vehicle while it is running
on the track. The position data is provided by dead reckoning in the motor controller
and it is plotted on a photo of the actual track. The dead reckoning functionality is
implemented by Benjamin Vedder2. By driving number of laps on the track and plot-
ting the vehicle’s estimated positions we can visually observe and evaluate the system’s
performance. Furthermore we can make the vehicle leave a trace on the actual track and
compare it to the trace the vehicle estimated.

4.2.1 Perspective transformation of the photo of the track

Since the photo of the track was not made from a point above, it has perspective dis-
tortion. To withdraw this distortion and properly scale the photo to the plotting, we
marked five points on the track as reference coordinates and measured distances between
them. After perspective transformation of the photo, the distance between the points on
it should be relative to the distance between those points in the reality. Fig. 4.1 shows
the photo of the track after perspective transformation.

4.2.2 Precision of Position Estimation

It is not possible to evaluate precision of the position estimation just by looking on the
running vehicle and its estimated path. To compare the reckoned trace to the vehicle’s
actual trace on the track, we mount a marker on the rear wheels of the vehicle and
record its actual path on the track. Then we make a photo of it and apply perspective
transformation, just like with the photo of the track. Then we can detect the actual
trace the vehicle left and overlay it with the estimated path (fig. 4.2). After that by
calculating difference in distance between those paths at each 5cm through the whole
track we will get a graph showing relation between difference of the paths in cm and
the distance the vehicle drove (fig. 4.3). Fig. 4.3 shows, that after one lap the position

2URL http://vedder.se/
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Figure 4.1: Photo of the track after perspective transformation

estimation (cayenne line) is really precise and differs from actual driven path (magenta
line) only up to 4cm. 72.38% of the measured difference values are under 2cm, which
means that more than half of the time precision was within 2cm. This can be evaluated
as a good result for positioning. But this is only one lap and to get the full picture
we need to evaluate position precision through time (4.2.3). Reflecting on the result of
performed experiment we can see, that two traces follow each other closely, but the trace
from the actual vehicle is more wavy. Our suggestion is that the difference in those two
traces appears due to the real vehicle’s load (the hardware onboard of the vehicle) and
the track material resistance to vehicle’s wheels.

Figure 4.2: Overlay of the actual
driven path (magenta) and the esti-
mated driven path (cayenne)

Figure 4.3: Difference between driven
paths (estimated and real)
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4.2.3 Position estimation drift with time

After analyzing the plotting of one finished lap (Fig. 4.4, sec. 4.2.2) we can see, that
the vehicle follows the track closely. Also position estimation works with great precision.
As the vehicle finishes three laps (Fig. 4.5) and six laps (Fig. 4.6), the amount error is
growing. And though we can not quantify the amount of error, we can visually observe
how the estimated position data drifts over time due to the fact that all the small errors
such as servo non-linearities, wheel slip etc. add up, so the more the vehicle drives,
the more off the position data is going to be. That is why one big improvement for
the system would be increased amount of information sources and their synchronization.
Furthermore the implemented position estimation algorithm while performing with good
results on short periods of time (4.2.2) can not be used for precise position estimation
on longer periods of time without significant improvements of the system.

Figure 4.4: Trace of 1 driven lap over-
laid on the track photo

Figure 4.5: Trace of 3 driven laps
overlaid on the track photo
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Figure 4.6: Trace of 6 driven laps overlaid on the track photo
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5

Conclusions

I
n this paper we had presented a method for indoor navigation and position es-
timation of a mobile vehicle. The method uses computer vision, lane following
and dead reckoning. The algorithm implemented for lane following and navigation
shows high level of robustness and good results in various settings (4.1). Looking

at the analysis of outcomes of localization algorithm (4.2) we can say, that the method
can yet not be fully employed for intended purposes. But since the method shows good
precision in estimating positions in short periods of time, we believe, that with more
information sources and reference points this method can be applied for indoor position
estimation of model vehicles in future. Thus, by improving and employing this method
in model vehicle’s we will not only get robust lane following functionality but also po-
sitioning system. This method is cheaper, than advanced positioning systems and has
smaller size of hardware equipment.

Since there are no scientific papers describing lane following algorithm combining cross-
correlation and linear regression, it is hard to compare perceived in this study knowledge
with already existing studies. On the other side there is a lot of research about local-
ization methods where computer vision is used together with odometry data [8, 13, 14].
Most of them use expensive omni-directional cameras and surroundings as reference
points to reduce the odometry drift. This research extends known status quo by sug-
gesting new method for robust lane following and implementing similar localization sys-
tem as localization systems for mobile robots mentioned in the previous studies on a
miniature model vehicle with inexpensive hardware. And though this research failed to
provide precise positioning of the model vehicle on longer periods of time, it can be seen
as the first step towards inexpensive and robust localization for indoor mobile vehicles.
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5.1 Suggested improvements for the implemented system

• One of the most important properties for line recognition is the filter vector’s size
and shape. The filter vector can be generated significantly better by analyzing
pixel values of a line sample from the debug image.

• Another improvement in line recognition would be further experimentations with
different methods for matching filter vector with pixel values.

• The camera lens right now does not provide wide angle of view. This limits the
distance we can have between the marking lines, because from time to time both of
the lines do not get into the camera view. Right now maximum distance between
marking lines for proper functioning is about 21cm, but with wide angle lens, the
vehicle will perform better on wider tracks.

5.2 Suggested future work

Ideas for further research based on the work in this experiment:

• Real-time visualization shows how the position data drifts over time (4.2.3). The
smaller the drift, the closer we are to absolute positioning system. To reduce the
drift the system needs more information sources and reference points. It would
be valuable improvement to conceptualize new information sources and their syn-
chronization with the system.

• To bring the system closer to real full size vehicle, it should be able to operate
on usual roads. In this experiment the marking lines were represented as two
continuous lines, while in reality the lines are not always continuous and camera’s
field of view can cover three and more lines.

• It would be interesting to validate the results with more advanced positioning
system.
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