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För Mikael & Edith  

  



Myocardial ischemia is associated with cellular- and metabolic adjustments 

within the heart, including accumulation of lipids. Myocardial lipids are 

stored in cytosolic droplets, consisting of a core of neutral lipids surrounded by 

a complex surface containing proteins, such as perilipins. Little is known about 

how myocardial lipid content and dynamics affect the function of the 

ischemic heart. 
 

In this study, we investigated cardiac lipid accumulation and the 

consequences of altered lipid storage and metabolism following myocardial 

ischemia.   
 

In Paper I, we investigated lipid accumulation of in a porcine model of 

ischemia/reperfusion and we found that cholesteryl esters accumulate in the 

myocardium following ischemia. The expression of the low density 

lipoprotein receptor (LDLr) and the low density lipoprotein receptor-related 

protein 1 (LRP1) was up-regulated, suggesting that cholesteryl ester uptake 

was mediated by these receptors. 
 

In Paper II, we investigated the role of the lipid droplet protein Perilipin 5 

(Plin5) in the pathophysiology of myocardial ischemia. In humans, we 

showed that a polymorphism in the PLIN5 gene is associated with reduced 

heart function following myocardial ischemia. In mice, Plin5 deficiency 

dramatically reduced the triglyceride content in the heart. Under normal 

conditions, Plin5
–/–

 mice maintained a close to normal heart function by 

decreasing fatty acid uptake and increasing substrate utilization from glucose, 

thus preserving the energy balance. However, during stress or myocardial 

ischemia, Plin5 deficiency resulted in reduced myocardial substrate 

availability, severely reduced heart function and increased mortality.  
 

In Paper III, we investigated the role of Plin2 in lipid storage and cardiac 

function following ischemia. We found that deficiency of Plin2 in mice 

surprisingly resulted in significantly increased levels of triglycerides. The 

heart function was not compromised in Plin2
–/–

 mice in baseline and stress 

conditions. However, heart function was markedly reduced in Plin2
–/–

 mice 

after induced myocardial infarction.  
 

In conclusion, our findings indicate that dysregulation of myocardial lipid 

metabolism and storage influences heart function and survival following 

myocardial ischemia. Furthermore, our findings highlight a role for lipid 

droplet proteins perilipins in cardioprotection following myocardial ischemia. 



 

Hjärtinfarkt är en av de vanligaste dödsorsakerna i västvärlden. Vanligen 

beror en hjärtinfarkt på att en blodpropp har bildats och täppt till ett av kärlen 

som försörjer hjärtat. Detta leder till syrebrist i hjärtmuskeln och om 

syrebristen pågår tillräckligt länge dör delen av hjärtat som normalt försörjs 

av det tilltäppta kärlet. När hjärtat drabbas av syrebrist så ställer hjärtat om 

sin metabolism från att främst använda fett till att använda socker, vilket inte 

generar lika mycket energi till hjärtats pumpfunktion som fett. Den 

förändrade metabolismen i hjärtat leder bland annat till att fett börjar lagras in 

i hjärtat i så kallade fettdroppar. Kunskapen om hur hjärtats förändrade 

lagring och hantering av fett påverkar hjärtfunktionen efter en infarkt är 

fortfarande begränsad.  

 

I avhandlingen har vi studerat hur hjärtat påverkas av syrebristen som följer 

en hjärtinfarkt. Vi har studerat vilka typer av fett som lagras in i hjärtat efter 

en infarkt. Vidare har vi studerat hur proteiner som sitter runt fettdropparna i 

hjärtat (perilipiner) påverkar hjärtats funktion efter en infarkt. 

 

Delarbete I. Här har vi undersökt fettinlagring efter en inducerad infarkt i 

grishjärta. Vi upptäckte att hjärtat lagrade in fettet kolesterol i de delar av 

hjärtat som drabbats av syrebrist. Kolesterol är en viktig komponent i 

hjärtcellernas membran, men de ökade nivåer att kolesterol har sannolikt 

ingen funktion för hjärtat och kan vara skadligt. 

 

Delarbete II. Vi har studerat hur Perlipin5 (Plin5) påverkar hjärtfunktion och 

överlevnad efter infarkt. Efter att ha studerat Plin5 i patienter kunde vi visa 

att hur mycket proteins som tillverkades hade betydelse för hjärtfunktionen 

efter att hjärtat drabbats av syrebrist. Vi upptäckte även att avsaknad av Plin5 

hos möss resulterade i kraftigt minskade nivåer att fett i hjärtat. När hjärtat 

var tvunget att arbeta hårdare ledde de minskade fettnivåerna och en 

reducerad användning av fett som energikälla till en sämre hjärtfunktion. 

Dessa möss hade även en sämre överlevnad efter hjärtinfarkt.  

 

Delarbete III. Här undersökte vi hur Perilipin2 (Plin2) var involverad i 

fettinlagring och hjärtfunktion efter hjärtinfarkt. Avsaknad av Plin2 i möss 

ledde paradoxalt nog till ökade nivåer av fett i hjärtat, trots att Plin2 har som 

funktion att skydda fettdroppar. Efter en hjärtinfarkt var hjärtfunktionen 



försämrad hos mössen som saknar Plin2, vilket visar att funktionen av Plin2 

är viktig efter en hjärtinfarkt.  

 

Från våra studier kan vi dra slutsatsen att reglering av fettinlagring i hjärtat 

påverkar hjärtfunktionen och utfallet efter en hjärtinfarkt. Förändrade 

fettnivåer i hjärtat efter en infarkt kan leda till sämre förmåga för hjärtat att 

återhämta sig. Forskning inom detta område kan därför leda till ny kunskap 

och på sikt resultera i utveckling av nya läkemedel mot hjärtkärlsjukdom. 
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The heart consists of four chambers that function as two separate pumps: (1) 

the right heart that pumps blood to the lungs and (2) the left heart that pumps 

blood to the systemic circulation. The cardiac cycle consists of diastole, the 

period of relaxation in which the heart is filled with blood, and systole, the 

contraction of the heart. During diastole, the deoxygenated blood from the 

systemic circulation flows through the inferior and superior vena cava to the 

right ventricle through the right atrium. Simultaneously, the oxygenated 

blood from the pulmonary circuit flows through the pulmonary veins into the 

left ventricle through the left atria. About 80 percent of the blood flows 

directly through the atria to the ventricles, and only the remaining 20 percent 

is delivered by contraction of the atria. The ventricles contracts shortly after 

the atrial contraction. The right ventricle ejects blood through the pulmonary 

arteries to the lungs and the left ventricle delivers blood to the peripheral 

organs through the aorta. The blood is prevented from flowing backwards by 

the atrioventricular valves (the tricuspid and mitral valves) and the semilunar 

valves (the aortic and pulmonary artery valves).
1
 

 

In the human heart, the left ventricle is filled to approximately 110-120 ml 

during diastole. This is called the end-diastolic volume. During contraction, 

the volume (about 70 ml) that is pumped out of the heart is called stroke 

volume. Thus, a volume of about 40 to 50 ml is remained in the ventricle and 

is referred to as the end-systolic volume. The ejection fraction is the fraction 

of the end-diastolic volume that is ejected from the heart and is around 60 % 

in a healthy heart. However, during physiological stress, such as exercise, the 

heart can the dramatically increase the cardiac output (the amount of blood 

ejected into the circulatory system in a minute). The major elements of this 

regulation are (1) the Frank-Starling mechanism and (2) the autonomic 

nervous system.
1
 The Frank-Starling mechanism is the intrinsic ability of the 

heart to adapt to increased venous return. The greater the heart muscle is 

stretched during filling, the stronger is the force of contraction. Thus, the 

heart ejects venous blood that is returned to the heart within physiological 

limits.
1, 2

 The autonomic nervous system of the heart consists of two 
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branches, the sympathetic and the parasympathetic systems. These systems 

work in a finely tuned but opposite fashion.
3
 Sympathetic stimulation can 

increase cardiac output by 100 percent, whereas strong parasympathetic 

stimulation can lower the heartbeat to 20–40 beats per minute.
1
     

 
The human heart is supplied with blood by coronary arteries; the blood 

within the ventricles only supplies the 100 µm of the inner endocardial 

surface. Two large epicardial arteries originate from the root of the aorta: the 

right coronary artery and the left coronary artery. The left coronary artery is 

branched into the left anterior descending artery (LAD) and circumflex 

artery, and they supply mainly the left atrium and ventricle, and the 

interventricular septum. The right coronary artery supplies most of the right 

side of the heart and parts of the left ventricle and septum. The coronary 

venous blood returns to the right atrium through the coronary sinus and 

anterior cardiac veins.
1,
 
4
     

 

Myocardial ischemia and ischemic heart disease are leading causes of death 

in the industrialized world. Life style factors in the Western societies such as 

high calorie food intake and minimal physical activity aggravates the risk of 

developing atherosclerosis and subsequent ischemic heart disease.
5
 

Myocardial infarction occurs when the blood flow supplying the heart muscle 

is blocked, resulting in necrosis of parts of the myocardium. The most 

common cause is the rupture of an atherosclerotic plaque in one of the 

coronary arteries. Early mortal complications following a myocardial 

infarction are cardiogenic shock, cardiac rupture and arrhythmia. Further, the 

loss of contractile myocardium and the subsequent reduced pump function 

promotes development of chronic heart failure.
1, 6, 7

  

 
An early reperfusion of blood flow to the injured myocardium reduces the 

infarct size and thereby improves the clinical outcome after a myocardial 

infarction. Thrombolytic therapy and percutaneous coronary intervention 

(widening of the stenotic coronary artery by balloon inflation) are the most 

used methods in clinic to restore blood flow following a myocardial 
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infarction.
8
 However, the reperfusion of the affected myocardium 

paradoxically also attenuates injury. Several mechanisms have been proposed 

to mediate the damage induced by the reperfusion, such as inflammation, 

increased radical oxygen species (ROS), increased levels of intracellular Ca
2+

 

and the reduction of oxidative phosphorylation.
8, 9

  

 
Profound morphologic and histological changes of infarcted myocardial 

tissue occur during and after a myocardial infarction. The lack of oxygen in 

the affected area leads to a rapid loss of cardiomyocytes. The cell death 

triggers inflammatory signals that recruits neutrophils and macrophages to 

the infarction. These inflammatory cells degrade the collagen framework 

surrounding the cardiomyocytes and aid the clearance of necrotic cells and 

their debris. The collagen structure is virtually vanished within the first week 

after the infarction. At this early time point, the ventricle wall is weakened 

and therefore susceptible to rupture. Approximately five days after the 

infarction, macrophages and endothelial cells promote angiogenesis and 

supply the new forming tissue with blood. Furthermore, myofibroblasts start 

to synthesize collagen which strengthens the ventricle wall. After several 

weeks, a solid scar has been formed with a stable cross-linked collagen 

structure. During this healing process, the left ventricle undergoes profound 

remodeling, involving myocyte hypertrophy and changes of the ventricular 

architecture to distribute the wall stress more evenly. A suboptimal 

remodeling of the heart can result in contractile dysfunction and development 

of heart failure. 
10, 11

 
12

 

 

The heart must contract continuously and have therefore a high energy 

demand. The mitochondria contribute to >95% of the ATP generated and 

occupies one third of the cardiomyocyte volume.
13

 The heart has a relatively 

small content of ATP and a fast hydrolysis resulting in a complete turnover 

of the pool every 10 s. In order to generate the high rate of ATP and sustain 

the contractility, the heart is flexible and can use all energy substrates 

including lipids, carbohydrates, amino acids and ketone bodies. However, 

lipids are the predominantly used energy substrate and 50-70% of the ATP is 

generated from fatty acid β-oxidation.
14, 15
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Lipids have a low solubility in plasma and are therefore supplied to the heart 

either as free fatty acids bound to albumin or as triglycerides and cholesteryl 

ester transported in lipoproteins.
16

  

 

To provide energy to the heart and other peripheral tissues, triglycerides 

stored in the adipose tissue are hydrolyzed into fatty acids and released into 

the circulation. Once leaving the adipocytes, the fatty acids are ionized and 

bind to the plasma protein albumin.
1, 17

 Normal concentrations of free fatty 

acids in the plasma vary between 0.2 and 0.6 mM. However, conditions such 

as fasting, poorly controlled diabetes and severe stress results in highly 

elevated levels of circulating free fatty acids.
18

  

 

Lipoproteins consist of a core of triglycerides and cholesteryl esters 

surrounded by a monolayer of amphipathic phospholipids with embedded 

apolipoproteins. There are several classes of apolipoproteins that, among 

many functions, can act as ligands for cell-surface receptors. Circulating 

chylomicrons transport dietary lipids absorbed by the intestine. The 

triglycerides in this lipoprotein are hydrolyzed in peripheral tissues, and the 

resulting remnant chylomicron is then removed from the circulation by the 

liver. Very low density lipoprotein (VLDL) is the principal transporter of 

endogenous triglycerides.  VLDL is secreted by the liver and has a high 

proportion of triglycerides but also contains cholesteryl esters. The 

triglycerides in the VLDL are hydrolyzed by the heart, adipose tissue and 

other peripheral tissues. As the triglycerides are removed, VLDL is 

subsequently transformed into intermediate density lipoprotein (IDL) and 

after that, low density lipoprotein (LDL). Hence, these lipoproteins contain 

larger proportions of cholesteryl esters and proteins and smaller proportion of 

triglycerides and phospholipids.
1
         

Triglyceride rich lipoproteins such as chylomicrons and VLDL provide the 

heart with triglycerides. To enable the uptake of triglycerides into the 

cardiomyocyte, the triglycerides are hydrolyzed into fatty acids by 

lipoprotein lipase (LPL) located at the endothelial wall.
14, 19
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After being dissociated from albumin or hydrolyzed from triglycerides in 

lipoproteins, the fatty acids are transferred from the microvascular 

compartment through the capillary endothelium and the interstitial 

compartment to the sarcolemmal membrane of the cardiomycocyte.
14

 Fatty 

acid uptake into the cardiomyocyte is facilitated either by passive diffusion or 

by protein-mediated uptake. The former alternative represents a non-saturable 

low affinity process where the fatty acids flip-flop through the membrane.
20

 

However, the predominant uptake of fatty acids are mediated via a family of 

transporters: fatty acid translocase (FAT/CD36) (hereafter referred to as 

CD36), plasma membrane fatty acid–binding protein (FABPpm), and fatty 

acid transport protein 1 (FATP1).
21, 22

 CD36 is the predominately studied 

fatty acid carrier and it has been shown that 50-60 % of the fatty acid uptake 

is mediated via CD36.
23

 Further, CD36 is able to relocate from the 

endosomes to the sarcolemmal membrane to increase fatty acid uptake in 

response to insulin, contraction, and AMP-activated protein kinase (AMPK) 

activation. Thus, CD36 has a key regulatory function of fatty acid uptake.
14

    

 

The VLDL receptor (VLDLr) has also been implicated to play a role in 

triglyceride uptake.
24

 The VLDLr is most abundant in the heart, but is also 

expressed in other tissues including skeletal muscle, adipose tissue and 

brain.
25

 VLDLr mediates lipid uptake either by endocytosis of lipoproteins or 

by cooperation with LPL.
26,

 
27

    

β
Fatty acid β-oxidation is the catalytic process by which fatty acids are broken 

down in the mitochondria to produce ATP. After uptake of fatty acids into 

the cytoplasm of the cardiomyocyte, fatty acyl-CoA synthetase (FACS) 

activates the fatty acids by adding a CoA moiety (figure 1). The two main 

pathways of these fatty acid-CoAs are (1) delivery to the mitochondria for 

oxidation or (2) esterification to triglycerides for temporary storage in the 

triglyceride pool in cytosolic lipid droplets.
28

 Storage of lipids in cardiac lipid 

droplets will be described in more detail in section “Lipid storage”.  

 

In contrast to short- and medium-chain fatty acids, long-chain fatty acids, 

which constitute the major fraction of the fatty acids, cannot simply diffuse 

through the mitochondrial membranes. Therefore, long-chain fatty acids are 

converted to long chain acylcarnitine by carnitine palmitoyltransferase 1 

(CPT1) located at the outer mitochondrial membrane. The fatty acids are 
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shuttled through the inner mitochondrial membrane by carnitine-acylcarnitine 

translocase (CAT), following by conversion back to acyl-CoA by CPT2.
29

 

The entrance of fatty acids into the mitochondria can be regulated by 

allosteric inhibition of CPT1 by malonyl-CoA.
14

    

 

After the entrance into the mitochondrial matrix, β-oxidation of fatty acids 

occurs by cleaving two carbons of the fatty acid each cycle, forming acetyl-

CoA as well as NADH and FADH2. Each cycle produces theoretically 5 ATP 

from the generation of NADH and FADH2. However, the entrance of acetyl-

CoA into the TCA cycle yields additionally 12 ATP.
30

 

The TCA cycle (also referred as citric acid cycle or Krebs cycle) is the final 

common pathway for the oxidation of fuel molecules such as fatty acids, 

glucose and amino acids. The cycle is also an important source of precursors, 

e.g. for amino acids and nucleotide bases. In the first step, acetyl-CoA, 

derived from glucose or fatty acids, combines with oxaloacetate to form 

citrate. After a sequence of chemical reactions oxaloacetate is regenerated, 

allowing the cycle to continue. The tricarboxylic acid (TCA) cycle generates 

the reducing equivalents NADH and FADH2 and also CO2
 
as a byproduct. 

NADH and FADH2 deliver electrons to the electron transport chain, resulting 

in ATP formation by oxidative phosphorylation.
1
   

 
Glucose uptake into cardiomyocytes is mediated by glucose transporters. 

GLUT4 and GLUT1 is the predominantly glucose transporters expressed in 

the heart. In the adult heart, GLUT4 is the isoform responsible for the 

majority of the myocardial glucose uptake. However, there are a variety of 

pathophysiological circumstances, for instance ischemia, in which GLUT1 

expression is induced in the heart.
31

 Further, GLUT3 and GLUT5 may also 

be upregulated during ischemia.
32

 In order to increase the glucose uptake, 

GLUT4 is recruited to the sarcolemmal membrane from intracellular vesicles 

in response to insulin signaling, high work load or ischemia.
33

  

 

After uptake, glucose is rapidly converted to glucose-6-phosphate (G6P). The 

negative charge prevents G6P from diffusing out of the cell, which lacks 

transporters for this substrate. G6P can enter several metabolic pathways of 

which glycolysis is the predominant one. The glycolytic pathway converts 
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G6P into pyruvate and generates two ATP for each molecule of glucose. 

Pyruvate can either (1) be converted to lactate in the cytosol in an anaerobic 

process or (2) be shuttled into the mitochondrial matrix to be transformed to 

acetyl-CoA by the pyruvate dehydrogenase (PDH) complex for subsequent 

oxidation in the TCA cycle (figure 1).
34

  

 

 

Figure 1. Schematic overview of fatty acid β-oxidation and glucose oxidation in the 

cardiomyocyte. CD36, cluster of differentiation 36; FATBPpm, plasma membrane 

fatty acid-binding protein; FATP, fatty acid transport protein; FACS,  fatty acyl coA 

synthase; CPT, carnitine palmitoyltransferase; CAT, carnitine-acylcarnitine 

translocase; GLUT, glucose transporter; PDH, pyruvate dehydrogenase.      
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Cholesterol is important for the function and fluidity of the plasma 

membrane, and is also a precursor molecule in several biochemical pathways 

in liver and adrenal gland.
35

 The heart is among the tissues with the lowest de 

novo cholesterol biosynthesis.
36

 Thus, circulating lipoproteins is important 

for supplying heart with cholesteryl esters. 

 

Cholesteryl ester delivery occurs via endocytosis of LDL via LDL receptor 

(LDLr) mediated uptake. LDLr is located on the cell surface and the 

internalized lipoprotein is delivered to the lysosome where the cholesteryl 

esters are hydrolyzed. The liberated cholesterol is either used by the cell or 

stored as cholesteryl esters in lipid droplets. The LDLr are recycled back to 

the plasma membrane.
35

 The LDLr belongs to a family of lipoproteins 

receptors: LDLr gene family. Two other members of the family are VLDLr 

and low density lipoprotein receptor-related protein 1 (LRP1).
37

  

 

In addition, selective uptake of cholesteryl esters in the core of lipoproteins 

has been reported in the heart and arterial wall.
38

 
39

 LPL increased selective 

uptake of LDL cholesterol in LDLr negative human fibroblasts and CHO 

cells,
40

 suggesting a cholesteryl ester uptake independent of LDLr.  

 

In the ischemic heart, the coronary blood flow is inadequate to supply the 

myocardium resulting in a mismatch between the oxygen demand and the 

oxygen supply. The well-perfused heart has high oxygen consumption due to 

its high energy demand. Thus, low oxygen availability drives the heart into 

major alterations of the energy metabolism. The myocardial ischemia results 

in a decreased oxidative metabolism and a subsequent decline in ATP 

production (figure 2).  

 

The extent of the reduction in glucose and fatty acid oxidation is dependent 

of the severity of the ischemia. During severe ischemia caused by a 

myocardial infarction, the oxygen demanding oxidative metabolism is 

dramatically reduced and the major source of ATP is anaerobic glycolysis: 
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the conversion of pyruvate to lactate via lactate dehydrogenase (LDH). 

Hence, anaerobic glycolysis is uncoupled from the glucose oxidation and 

thereby provides a limited amount of ATP.  Further, the accumulation of 

deleterious byproducts of glycolysis, lactate and H
+
, result in an increased 

expenditure of ATP to reestablishing of ionic homeostasis. Altogether, the 

reduction in ATP production results in a reduction in cardiac function and 

efficiency.
14,

 
41

  

 

Hypoxia-inducible factor (HIF) and 5′-AMP-activated protein kinase 

(AMPK) are two important components in the cellular response to 

myocardial ischemia. The transcription factor HIF1α is degraded during 

normal oxygen concentration. However, during low oxygen availability 

HIF1α escapes degradation and promotes transcription of numerous of genes 

including GLUT1 and LDH. Thus, HIF1α activates genes involved in 

oxygen-independent ATP synthesis.
42

 AMPK is highly activated during 

ischemia by increased levels of AMP, an indicator of compromised cellular 

energy availability. AMPK can be considered to be a fuel gauge, responsible 

for the activation a number of energy-producing metabolic pathways as well 

as inhibiting energy-consuming pathways. Thus, AMPK activation results in 

an increase in glucose utilization, e.g. by promoting the translocation of 

GLUT4 to the sarcolemma and by stimulation of glycolysis via 

phosphorylation of phosphofructokinase 2. Further, AMPK activation also 

stimulates β-oxidation e.g. by reducing the malonyl-CoA levels. Hence, 

during mild ischemia β-oxidation remains the major source of the residual 

oxidative metabolism.
41, 43
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Figure 2. Schematic figure of metabolic alterations in the ischemic 

cardiomyocyte. LDH, lactate dehydrogenase.  

 

 
Reduced oxygen availability promotes myocardial accumulation of neutral 

lipids, such as triglycerides and cholesterol esters.
24,

 
44,

 
45

 Due to the reduced 

fatty acid oxidation during ischemia, fatty acids are not used for energy 

production but are instead converted to triglycerides that accumulate in the 

cell. However, lipid uptake has also been reported to be increased in the 

ischemic heart contributing to the lipid accumulation.
24

 During ischemic 

insult, plasma level of norepinephrine is elevated which promotes adipose 

tissue lipolysis. This results in increased concentration of circulating free 

fatty acids, thus, increases the delivery of fatty acids to the myocardium.
14, 46

 

In addition to increased availability of circulating fatty acids, cellular 
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response to hypoxia promoting lipid accumulation has been reported. 

Chabowski et al have demonstrated a hypoxia-induced translocation of fatty 

acid transporters CD36 and FABPpm to the sarcolemma resulting in an 

increased lipid accumulation in hypoxic isolated hearts.
47

 Further, increased 

cardiac lipid uptake mediated via HIF1α induced up-regulation of VLDL 

receptor
24

 and LRP1
45

 has been described.         

 

The issue whether lipid accumulation is detrimental for the ischemic heart or 

not is complex. Lipid accumulation in the heart has been associated with 

cardiac dysfunction, suggesting a detrimental role of excessive lipids in the 

heart.
48,

 
49

 On the other hand, storage of lipids in the form of inert 

triglycerides has been postulated to be protective to heart function.
50,

 
51

 Thus, 

sequestration of fatty acids in the triglyceride pool potentially protects the 

cell from toxic fatty acid metabolites, such as fatty acids, and ceramides. 

These lipids are regarded as bioactive lipids with cell signaling functions. An 

excess of free fatty acids have been reported to promote increased oxidative 

stress and apoptosis.
52

 Further, increased availability of saturated fatty acids 

appears to be the primary trigger of synthesis of ceramides. Ceramides are 

synthesized either de novo from serine and palmitate or by breakdown from 

sphingomyelin.
53

 Increased levels of ceramides are associated with cellular 

apoptosis and ROS production.
54, 55,

 
56

 Further, ceramide reduction in LPL
GPI 

mice, a transgenic mouse model displaying increased levels of ceramides, 

was associated with improved cardiac function.
57

  

 

Interference with protein folding or any of the major functions of ER results 

in ER stress. This leads to activation of the unfolded protein response (UPR), 

a signaling cascade from ER to the nucleus that induces a comprehensive 

gene expression program. The UPR triggers an adaptive response in order to 

reestablish ER homeostasis by reducing the protein synthesis, upregulating 

expression of ER resident chaperones as well as degrading misfolded 

proteins.
58

 During ischemia, there are significant nutrient and oxygen 

starvation which lead to the induction of ER stress. For example, the activity 

of protein disulfide isomerase (PDI) is dependent on molecular oxygen. 

During hypoxia or ischemia, disulfide bonds are not formed resulting in 

accumulation of misfolded proteins and subsequent ER stress.
59
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The ER molecular chaperone BiP/GRP78 protein is involved in sensing 

misfolded protein accumulation in the ER and are responsible for the 

initiating the response to ER stress in combination with three ER integral 

membrane protein: dsRNA-activated protein kinase–like ER kinase (PERK), 

inositol-requiring kinase 1 (IRE1) and activating transcription factor 6 

(ATF6). However, if the ER stress is severe or prolonged, the UPR may lead 

to apoptosis. This is promoted by transcriptional induction of C/EBP 

homologous protein (CHOP), the caspase 12-dependent pathway and 

activation of the c-Jun NH2-terminal kinase (JNK)-dependent pathway.
59,

 
60

  

 

Triglycerides and cholesteryl esters are hydrophobic lipids and thus insoluble 

in the cytosol. Hence, these lipids are stored in the core of so called lipid 

droplets. The lipid core is surrounded by a monolayer of amphipathic lipids, 

such as phospholipids and unesterified cholesterol (figure 3). The lipid 

droplet was long considered to be a passive storage pool of lipids, but is now 

recognized as a dynamic organelle that is involved in numerous of cellular 

processes. Thus, the lipid droplets are coated with a large number of proteins 

that are critical for the formation, trafficking and stability of the lipid 

droplet.
61,

 
62

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Schematic view of 

the lipid droplet.  
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The loading of hydrophobic lipids in a water free phase provides the most 

efficient form of energy storage. The lipid droplets are intracellular lipid 

reservoirs providing lipids for energy metabolism, membrane synthesis and 

steroid synthesis.
63

 Nearly all cell types have the ability to generate lipid 

droplets when there is a surplus of fatty acids to be subsequently used as 

source of energy when conditions are sparse. The number and size of lipid 

droplets differ between different cell types, with sizes ranging from 100 nm 

to 100 µm. The lipid droplets in white adipocytes are large, with diameters up 

to 100 μm, and fill almost the entire cytoplasm.
64

  

 

Lipid droplets are formed de novo from the ER. The exact mechanism of the 

lipid droplet formation is poorly understood. One model suggests that neutral 

lipids are synthesized between the two leaflets of the ER membrane. The 

formed lipids are highly hydrophobic and have a limited solubility in the 

membrane and therefore form a lens structure that is the core of the lipid 

droplets. The mature lipid droplet is then thought to bud from the ER 

membrane to form an independent organelle with a monolayer of 

phospholipids.
65, 66

  

 

The storage capability of lipids is increased by formation of new lipid 

droplets and by growth of existing droplets.
64

 Lipid droplet has been 

proposed to grow by de novo triglyceride synthesis directly in the droplet. 

DGAT2 catalyzes the final step of triglyceride synthesis and have been 

associated to the lipid droplet in conditions of oleate loading.
67

 In addition, 

the increase in surface area of the lipid droplet during expansion requires 

large increases of the phospholipid content. CTP:phosphocholine 

cytidylyltransferase (CCT), catalyze the rate-limiting step in PC biosynthesis 

and have been shown to be activated by binding to lipid droplets.
68,

 
69

   

 

When energy is required, the triglycerides in the lipid droplet are hydrolyzed 

to generate fatty acids.
70

 Triglyceride lipolysis is a three-step process where 

adipose triglyceride lipase (ATGL) selectively performs the first and rate-

limiting step generating diglycerides and non-esterified fatty acids.
71

 

Hormone-sensitive lipase (HSL) is rate-limiting for diglyceride hydrolysis.
72

 

Finally, monoglyceride lipase efficiently cleaves monoglyceride into glycerol 

and non-esterified fatty acids.
73
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Analyses of the lipid droplet proteome have revealed a large number of lipid 

droplet–associated proteins. However, many of those are most possibly not 

genuine associated proteins but are artifacts originating from the purification 

process.
74

 One group of proteins associated with the lipid droplets are the Rab 

proteins, which are GTPases involved in trafficking event.
66

 Rab18 have been 

suggested to localize to lipolytically active lipid droplets and mediate an 

increased association with the ER.
75

 However, the best characterized and 

most abundant proteins on the lipid droplets are the perilipins, a family of 

five related proteins.
74

    

 

The family of perilipins has undergone a change in nomenclature and was 

formerly known as the PAT family, named after the three first discovered 

perilipins: perilipin, ADRP, TIP47. The mammalian genome encodes five so 

far discovered perilipin (Plin) genes: Plin1-5. Plin1, 2, 3, and 5 share a highly 

conserved N-terminal domain and an 11-mer repeating helical organization. 

Plin4 is the most divergent member of the perilipin family with a highly 

expanded 11-mer repeat region.
76,

 
77

 

 

The perilipins appear to play an important role in regulating storage of lipids 

and to protect lipid droplets from unregulated hydrolysis. The perilipins share 

the ability of binding to lipid droplets, but display different tissue and 

subcellular localization. This suggests that each perilipin has a unique role in 

the lipid dynamics. Plin1 and 2 are located exclusively on lipid droplets, and 

Plin2 is rapidly degraded in absence of lipid droplets. In contrast, Plin3, 4 and 

5 are stable in absence of LDs and have been shown to translocate from a 

cytosolic pool to nascent lipid droplet in response to fatty acid 

supplementation or other conditions promoting lipid droplet formation.
78, 79,

 
80

  

 
Plin1 is primarily expressed in white adipose tissue (WAT), brown adipose 

tissue (BAT), and steroidogenic tissue.
81

 Early studies have identified Plin1 

as a major regulator of adipocyte lipolysis.
82

 Under basal lipolytic conditions, 

the lipases ATGL and HSL are cytosolic whereas Plin1 is located on the lipid 

droplet in association with comparative gene identification-58 (CGI-58), the 

co-activator of ATGL. This prevents CGI-58 from binding to ATGL and to 
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facilitate ATGL-mediated triglyceride hydrolase activity. Thus, the lipolysis 

is maintained at low rates. However, upon β-adrenergic stimulation, Plin1 

and HSL are phosphorylated by protein kinase A (PKA). This allows (1) 

CGI-58 to dissociate from Plin1 and recruit ATGL and (2) HSL to translocate 

to the lipid droplet. Thus, during basal conditions Plin1 functions as a barrier 

to lipases, whereas Plin1 participates in their recruitment after β-adrenergic 

stimulation.
83,

 
84

 

 
Plin2 is ubiquitously expressed in the body. Overexpression of Plin2 results 

in increased formation of lipid droplets.
85,

 
86

 Phospholipids as well as 

triglycerides and cholesteryl esters are increased upon Plin2 overexpression, 

suggesting that Plin2 may play a role in increasing lipid droplet membrane 

size to support lipid droplet expansion.
87

 The stability of is Plin2 is mediated 

by lipid droplets and the protein is degraded by the proteasome in the absence 

of neutral lipids.
88, 89

 

 

In WAT deficient in Plin1, Plin2 becomes the major protein coating lipid 

droplets. In the Plin1
−/−

 adipocytes, the basal lipolysis is elevated compared 

to WT, but the stimulated lipolysis is decreased.
90, 91

 This suggests that 

unphosphorylated Plin1 is more protective to lipases than Plin2, which in turn 

is more protective than phosphorylated Plin1.  

 

Plin2 is the major protein coating lipid droplets in the liver. Deletion of Plin2 

protects against lipid droplet accumulation and chronic inflammation in liver 

in mice on a high-fat diet.
92,

 
93

 Further, Plin2
–/–

 lacking leptin have improved 

systemic glucose and lipid homeostasis compared to leptin deficient controls. 

As expected, muscle-specific PLIN2 overexpression resulted in increased 

lipid droplet accumulation. Interestingly, PLIN2 overexpression improved 

skeletal muscle insulin sensitivity.
94

 

 

In humans, a missense polymorphism of Plin2, Ser251Pro, resulting in 

structural changes in the protein has been described. The polymorphism was 

associated with increased lipid accumulation and decreased lipolysis in cells, 

and carriers of the minor Pro251 allele had decreased circulating triglycerides 

and VLDL concentrations.
95
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Similar to Plin2, Plin3 is widely expressed in the body and also shares the 

highest sequence homology with Plin2 of all perilipins. In addition to its role 

in lipid droplet biogenesis, Plin3 was reported to be involved in the 

intracellular transport of mannose 6-phosphate receptors between the trans-

Golgi and endosomes.
96

 Structural analysis of the protein have indicated the 

existence of two distinct ‘functional modules’, which may explain the dual 

function of Plin3.
97, 87

 Although Plin2 is the dominating perilipin in the 

hepatocytes, depletion of Plin3 has been reported to suppress hepatic 

steatosis.
98

 

 
Plin4 have a divergent amino acid structure compared to Plin2, 3 and 5 and 

also show a limited tissue distribution. Plin4 is mainly found in white adipose 

tissue and are expressed in low levels in heart and skeletal muscle. Although 

Plin4 and Plin1 both are expressed in adipocytes, they are located in different 

lipid droplet pools. Plin4 have been shown to translocate to nascent LDs 

upon lipid loading in adipocyte, thus participating in the early formation of 

lipid droplets.
99

 However, Plin4 deficiency in mice resulted in an unperturbed 

adipocyte differentiation and development. Interestingly, the Plin4
−/− 

had a 

dramatically reduced triglyceride content in the heart. This was associated 

with a reduction in Plin5, whose gene is located immediately upstream of 

Plin4. It remains to be investigated whether the targeting of Plin4 had an 

impact on the transcriptional action at the Plin5 locus.
91,100

  

 
Plin5 is predominantly expressed in tissues with high mitochondrial β-

oxidation such as the heart, skeletal muscle, liver and BAT. Plin5 expression 

is increased under conditions that promote fatty acid elevation, including 

fasting and exercise.
101

 The Plin5 gene has been reported to be 

transcriptionally regulated by members of the peroxisomal proliferator-

activated receptors (PPARs). PPARα is expressed in fatty acid metabolizing 

tissues and is activated under conditions of energy deprivation. Cardiac 

expression of Plin5 can be induced by PPARα agonists.
80,

 
102,

 
103

 However, 

although PPARα
–/– 

mice displays reduced levels of Plin5 in the basal state, 

the expression of Plin5 was induced by fasting, suggesting additional 
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regulatory control of Plin5.
104

 One additional regulator may be PPARβ/δ, 

which has been shown to induce Plin5 in skeletal muscle.
105

 

  

Similar to other perilipins, Plin5 prevents uncontrolled lipolysis of lipid 

droplets. ATGL mediated lipolysis was shown to be inhibited in lipid 

droplets in cells either derived from cardiac tissue of mice overexpressing 

cardiac Plin5 or from COS-7 cells overexpressing recombinant Plin5.
106

 Plin5 

has been shown to interact with ATGL, HSL as well as CGI-58. 
107, 108,

 
109

 In 

contrast to Plin1-regulated lipolysis, the exact mechanism is not fully 

understood. However, the binding of Plin5 to ATGL or CGI-58 has been 

proposed to prevent their interaction and thereby reduce lipolysis.
101

 Further, 

Plin5 is a substrate for PKA phosphorylation,
107

 and PKA treatment have 

been reported to stimulate fatty acid release in vitro from lipid droplets 

enriched with Plin5.
110

 Altogether, this suggests that Plin5 functions as a 

barrier towards lipolysis of the lipid droplet in the basal state. Possibly, in 

response to β-adrenergic stimulation, PKA unlocks the Plin5 barrier function 

and thereby promotes hydrolysis of the triglycerides. 

  

Global Plin5
−/−

 mice have normal growth rates, organ weights, and lean and 

fat masses compared with their wild type littermates.
111,

 
112

 Deletion of Plin5 

resulted in reduced levels of triglycerides in the heart and red oxidative 

muscle.
111

 Overexpressing Plin5 in skeletal muscle by gene electrophoresis 

led to an increased triglyceride pool and lipid droplet size, supporting the role 

of Plin5 in protection of lipid droplets.
113

  

 

Close physical and functional interaction between lipid droplets and 

mitochondria is crucial for the function of highly oxidative tissues with a 

fluctuating energy demand.  A mitochondrial recruitment domain positioned 

in the C terminal of Plin5 has been identified and overexpression of Plin5 in 

fibroblasts mediates a close association of lipid droplets and mitochondria.
114

 

Also, mitochondrial and Plin5 association are increased after electrically 

induced contraction in rat skeletal muscle together with a reduction in the 

triglyceride pool.
115

 Thus, this suggests that Plin5 facilitates the transfer of 

fatty acids from lipid droplets to mitochondria. 
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The overall aim of this study was to investigate cardiac lipid accumulation 

and the consequences of altered lipid storage and metabolism following 

myocardial ischemia.   

Specific aims 

1) To investigate the derangements of cardiac lipid 

metabolism in a porcine model of ischemia/reperfusion.  

 

2) To investigate the role of the lipid droplet protein Plin5 in 

myocardial lipid dynamics, cardiac function, and outcome 

after myocardial ischemia. 

 

3) To investigate the role of the lipid droplet protein Plin2 in 

myocardial lipid metabolism, heart function and outcome 

after an induced myocardial infarction. 
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In this section, considerations regarding selected methods in human subjects, 

animal models and cell culture are discussed. A more detailed descriptions of 

all methods and material and are included in the enclosed papers.   

 

To study genetic variance of PLIN5 gene, 468 patients with clinically 

suspected coronary artery disease were recruited. Four SNPs in PLIN5 were 

successfully genotyped in 466 of 468 patients using TaqMan assays. The four 

SNPs was selected based on an expected minor allele frequency >5%, no or 

weak linkage disequilibrium, and presumed potential effects on protein 

function (mediated by amino acid change) and protein concentration 

(mediated by mRNA stability and splicing pattern). The heart function of the 

patients was examined with myocardial perfusion scintigraphy and standard 

and stress echocardiography.  

 

Myocardial perfusion scintigraphy is used to detect and localize perfusion 

defects. Myocardial perfusion images are acquired by injecting a radiotracer 

intravenously. The isotope is extracted from the blood by viable myocytes 

and retained there for a period of time. A gamma camera captures the 

photons and converts the information into digital data reflecting the 

magnitude of tracer uptake and location of the emission.
116

 The resulting 

myocardial perfusion images show the presence, location, extent and severity 

of myocardial perfusion abnormalities. By comparing images acquired during 

rest and stress the defects can be determined to be either (1) reversible, 

reflecting stress-induced ischemia, or (2) irreversible, implying myocardial 

infarction. Patients with normal myocardial perfusion scans have a low rate 

(<1%) of future annual death or non-fatal myocardial infarction.
117

 However, 

the greater the extent and severity of ischemic perfusion abnormalities the 

larger is the risk of adverse events.
118

  

To assess abnormalities in wall motion of the heart, stress echocardiography 

can be used. 2D echocardiography images are obtained at rest and during 
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physical or pharmacological stress. The analysis and scoring of the regional 

wall motion are usually done using a 17 segment model of the left ventricle. 

In a normal response, a segment is normokinetic at rest and normal or 

hyperkinetic during stress. However, during ischemia the segment is normal 

at rest but displays an abnormal movement during stress. An infarcted area 

has abnormal movement both during rest and stress. Reduction in contractile 

function reflected by abnormal wall motion appears immediately during acute 

ischemia and infarction.
119

 

 

 
A global Plin5

–/–
 mice was kindly provided by K.T Dalen. Briefly, using 

homologous recombination, exons 4 to 6 of the Plin5 gene were replaced 

with a hygromycin selection cassette flanked by FRT5-sites and restriction 

sites. The Plin5-KO targeting vector was electroporated into embryonic stem 

(ES) cells and positive ES clones were injected into C57/Bl6 blastocysts. The 

obtained chimera was mated with a female 129/SvEv to confirm germ line in 

a pure 129/SvEv background. The mice were then backcrossed to a 

C57BL/6JBomTac background. Heterozygote breeding was used and WT 

littermates (Plin5
+/+

) were used as controls. 

 

The hygromycin selection cassette was not removed from the mutated PLIN5 

gene in the Plin5
–/–

 mice. A retained selection cassette has previously been 

reported to influence the gene expression.
120, 121

 However, in a knockout 

model a truncated protein, or more often, no protein is produced. Thus, the 

retained selection cassette is of less importance in our Plin5
–/–

 model.  

 

Plin5 is globally deficient in our mouse model. The protein is expressed in 

highly oxidative tissues, such as the heart, liver and skeletal muscle. 

However, we are investigating the role of Plin5 in the heart. The Plin5 

deficiency in the liver could influence the hepatic secretion of glucose and 

lipids into the circulation and hence affect the concentration of substrates 

available to the heart. However, when feeding the Plin5
–/–

 mice a regular 

chow diet, the systemic levels of triglycerides, cholesterol, glucose and 

insulin did not differ between the WT and Plin5
–/–

 mice. Thus, our 

experiments were conducted in mice fed a regular chow diet.  
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Whole-body Plin2

–/–
 mice was kindly provided by K.T Dalen. To generate 

the Plin2
–/–

 mice, the exons 4-6 were deleted using Cre-LoxP recombination. 

The mice were fed chow diet ad libitum. The mice were fasted 4 hours prior 

to experiments. Circulating levels of glucose, insulin, cholesterol and 

triglycerides did not differ between WT and Plin2
–/–

 mice.     

 

There are previously two Plin2 mutant models characterized. In the first 

model, exons 2 and 3 were deleted in the PLIN2 gene resulting in the absence 

of a full length Plin2 protein. In this Plin2
(Δ2,3/ Δ2,3) 

mouse, a bioactive large C-

terminal variant of Plin2 was shown to be expressed in some tissues, however 

not in the liver.
91, 122

 In the second Plin2 knockout model, Plin2
(Δ5/ Δ5)

, exon 5 

was deleted and the mice had no detectable expression of the Plin2 protein. In 

both models, the Plin2 deficiency resulted in reduced hepatic lipid droplets 

following high fat diet. In agreement with our Plin2
–/–

 
 
model, the plasma 

levels of glucose, insulin, cholesterol and triglycerides was unchanged in the 

Plin2
(Δ2,3/ Δ2,3)

 mice on a chow diet.
93

 In contrast, when fed a high fat diet, the 

Plin2
(Δ5/ Δ5) 

mice had reduced levels of insulin, fatty acids and triglycerides.
92

 

 
Female pigs of a mixed Swedish, Pigham and Yorkshire race were used for 

an ischemia/reperfusion model. They were 3–4 months old and weighed 38–

46 kg. The pigs were bred in Swedish farms and brought to the animal 

laboratory one week prior to the procedure. 

 

 
To induce ischemia/reperfusion in pig, an angioplasty balloon was inflated in 

the left anterior descending artery distal to the second diagonal branch. After 

40 min of occlusion, the balloon was deflated and the heart was reperfused. 

After 4 hours of reperfusion, the chest was opened and an angioplasty balloon 

was inflated at the same location as before. Evans blue was infused, followed 

by an injection of a lethal dose of potassium chloride.  
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The induction of myocardial infarction in mice is described in detail in the 

method section in Paper II. Briefly, an incision was made between the 4
th
 and 

5
th
 ribs to reveal the upper part of the anterior LV wall and the lower part of 

the left atrium. A myocardial infarction was induced by ligating the left 

anterior descending coronary artery immediately after the bifurcation of the 

left coronary artery. After verification of the infarction, the chest was closed.   

There are differences in our infarction models as the experimental procedure 

ought to be adjusted to the size and characteristics of the animal. The size of 

the pig makes it possible to perform a closed-chest protocol with an occlusion 

of the LAD with an inflated balloon. This resembles more closely the clinical 

situation were the artery are occluded by a plaque in vessel and the risk of 

external damages when ligating the vessel is eliminated. Further, the size of 

the pig heart enables separation of the area at risk (AAR), infarct area (IA) 

and the non-ischemic control area. Hence, it is possible to analyze lipid 

accumulation and the gene expression in every separate area (control, AAR 

and IA) of the infarcted heart. Another crucial difference between the models 

is the presence of reperfusion in the pig infarction protocol. This resembles 

more closely the optimal clinical situation where a patient with a myocardial 

infarction is revascularized within a short period of time.  

 

The mouse is widely employed in studies of experimental myocardial 

infarction, in part because of the possibility of genetic manipulation. The 

mouse as a model has several other advantages, e.g. their small size and short 

life span makes them easy and less expensive to house. Further, in mice, the 

long-term remodeling of the heart and survival following a myocardial 

infarction can be studied.     

The rational for using a porcine model is the large homology with the human 

cardiovascular system. The heart of the pig is approximately the size of the 

human heart. More importantly, the coronary artery pattern and cardiac 

physiology in the pig heart is very similar to humans. Potential residual flow 

to ischemic tissue is an issue in animal models of myocardial infarction. 

Importantly, the low collateral circulation in pig resembles the human 

collateral flow during normal coronary conditions.
123-125
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The coronary arteries of the mouse are not characterized to the same degree 

as the human coronary vasculature. Mice have two major coronary arteries, 

both of which originate in or slightly above the aortic sinus. The left coronary 

artery generally crosses over the left ventricle and gives off variable 

branches.
126, 127

 A branch has been described as LAD in mice because of its 

similarity to the LAD in human. However, in humans the LAD supplies 

approximately the anterior aspect of the LV wall and the anterior two thirds 

of the septum. In mice, ligation of the LAD gives rise to infarction of the free 

wall of the LV extending to the apex whereas the septum is unaffected.
128

 

 

We have used the Langendorff model system in order to study the intrinsic 

metabolism of the heart. This system enables the study of an isolated heart 

without confounding effects of other organ systems and exocrine control. 

Briefly, the mouse aorta was cannulated and perfused in a Langendorff mode 

at a constant pressure of 70 mm Hg. Hearts were perfused with Krebs-

Henseleit buffer containing 11 mM glucose and 0.4 mM palmitate (bound to 

1% fatty-acid free bovine serum albumin), gassed with 95% O2 and 5% CO2. 

To measure functional changes during the perfusion protocol, a fluid-filled 

balloon was inserted into the left ventricle, inflated to achieve an end-

diastolic pressure of 5-10 mm Hg.  

 

In the Langendorff methodology, the heart is perfused by cannulating the 

aorta. The perfusion buffer is hence flowing in opposite direction compared 

to the physiological blood flow. This pressure causes the aortic valve to 

close, and the column of buffer in the aorta causes the filling of the coronary 

artery vasculature via the two coronary ostia in the aortic root. The perfusion 

buffer then flows through the vascular bed before being drained through the 

coronary sinus in the right atria. The effluent is ejected through the 

pulmonary artery and is allowed to drip from the heart. Thus, the ventricles 

are not filled with perfusion buffer.
129

 

 

The HL-1 cell line is a cardiac muscle cells line derived from the AT-1 

mouse atrial cardiomyocyte tumor lineage. The HL-1 cells contracts 
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spontaneously and can, in contrast to primary cardiomyocytes, be serially 

passaged. The HL-1 cell line has been extensively characterized, and has 

been shown to have a gene expression pattern similar to adult atrial 

myocytes.
130, 131

 The HL-1 cells was cultured in Claycomb medium 

supplemented with 2 mM glutamine, 100 U/ml penicillin, 100 µg/ml 

streptomycin and 10 % fetal calf serum. Norepinephrine was added to the 

medium to enable the cells to contract.  

 

Plin5 is expressed in HL-1 in a very low extent. This is consistent with other 

cell lines, such as the murine myoblast cell line C2C12.
105

 For that reason, we 

have not used HL-1 cell line for studies regarding Plin5. However, the 

unphysiological expression of Plin5 might have an impact on the function 

and expression of Plin2 and other lipid droplet proteins. Thus, additional 

model systems, i.e. Plin2 deficient mice, are required to complement our 

studies on the function of Plin2.         
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In this paper, we investigated the derangements of cardiac lipid metabolism 

in a porcine model of ischemia/reperfusion.  

 

We investigated lipid accumulation in 7 pigs subjected to 40 min of ischemia 

followed by 4 h of reperfusion. The pig hearts was separated into the infarct 

area (IA) with irreversible injury and the area at risk (AAR) subjected to 

ischemia but with reversible injury. Non-ischemic biopsies from the lateral 

wall served as a control. Oil red O staining of cryosections from the heart 

biopsies showed an increase in lipid droplet accumulation in the AAR and 

IR. Interestingly, the triglyceride content was not altered in the ischemic 

areas whereas the cholesteryl ester content was highly increased. The VLDLr 

have previously shown to be up-regulated after an induced myocardial 

infarction in mice.
24

 We analyzed the expression of VLDLr and did not 

observe an increase in this receptor. However, the elevated cholesteryl ester 

concentration led us to examine the expression of LDLr and LRP1 and we 

found that the expression of these receptors was greatly increased.  Thus, our 

data indicates that LRP1 and LDLr mediate an increased uptake of 

cholesteryl esters in the porcine heart.  

  

Elevated levels of bioactive lipids such as ceramides have been reported to 

cause impaired heart function. When analyzing the ceramide content we 

found increased levels in the IA but interestingly not in the AAR, suggesting 

that reperfusion normalize levels of ceramides in the viable area. Ceramides 

are synthesized de novo or from sphingomyelin. However, we found that 

sphingomyelin levels were decreased in AAR as well as in IA compared with 

control tissue.  

 

Finally, we examined the inflammation and ER stress in our porcine model of 

ischemia/reperfusion. The cytokines IL-1b and IL-6 were dramatically 

increased in the AAR and the IA. Further, we found an increase in ER stress 

markers calnexin and GRP78 in the AAR and IA. Interestingly, the pro-

apoptopic marker CHOP was upregulated only in the AAR.  
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In conclusion, we found that ischemia/reperfusion promoted cholesteryl ester 

accumulation mediated by the LDLr and LPR1 in the porcine heart. Further, 

we found increased levels of inflammation and ER stress in the AAR and IA. 

In addition, we found increased ceramide accumulation in the infarcted area 

of the heart. Thus, our results indicate that lipid accumulation in the heart is 

one of the metabolic derangements remaining after ischemia, even in the 

myocardium bordering the infarct area.    

 

In this paper, we investigated the role of Plin5 in myocardial lipid dynamics, 

cardiac function, and outcome after myocardial ischemia. Here, we studied 

the impact of polymorphism in the PLIN5 gene following myocardial 

ischemia in human subjects followed by mechanistic studies of the role of 

Plin5 in lipid metabolism and cardiac function in Plin5 deficient mice.   

 

We could show that a single nucleotide polymorphism in the PLIN5 gene 

was associated with impaired heart function following myocardial ischemia, 

indicating that PLIN5 function is relevant to human cardiac physiology.  

 

In the Plin5
–/– 

mouse hearts, we found dramatically decreased levels of 

triglycerides and a small decrease in diglycerides compared to the WT. 

However, no other lipid species was affected. Interestingly, the cardiac fatty 

acid uptake was diminished in the Plin5
–/–

 mice and the incorporation into 

triglycerides was almost abolished, suggesting a compensatory inhibition of 

the fatty acid uptake due to the decreased lipid storage capacity of the Plin5
–/–

 

hearts. Further, we could show an increased uptake of glucose in the Plin5
–/– 

hearts and an increased utilization of glucose in isolated Plin5
–/–

 hearts 

compared to WT. Thus, our data indicates that Plin5
–/–

 hearts have altered 

substrate preference and shift from fatty acids to glucose utilization.    

   

Plin5 have been shown in silico to possess a mitochondrial recruitment 

domain. In agreement with this, we observed in vivo that the distance 

between the lipid droplets and the mitochondria was increased in the Plin5
–/–

 

hearts compared to the WT hearts. In addition, we found that mitochondria 

isolated from Plin5 deficient hearts had a reduced membrane potential and a 

slightly reduced ATP production from succinate and pyruvate. Lipidomic 
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analysis of the isolated mitochondrial membrane from WT and Plin5
–/–

 hearts 

revealed an altered fatty acid composition of PC and PE in the Plin5 deficient 

mice. Thus, the altered fatty acid length in the mitochondria of Plin5
–/–

hearts 

may explain the reduced mitochondrial potential. 

  

We assessed how the altered metabolism in the Plin5 deficient mice affects 

the heart function using ultrasound. The heart function during baseline 

conditions was close to normal in the Plin5
–/–

 mice compared with the WT 

mice. However, when stressing the WT and Plin5
–/–

hearts with the β-

adrenergic agonist dobutamine, the heart function was severely reduced in the 

Plin5
–/–

 mice. Further, deficiency of Plin5 resulted in a reduced survival after 

an induced myocardial infarction. Thus, our data indicates that Plin5
–/–

 mice 

maintain a relatively normal heart function under baseline conditions, but 

their cardiac function is significantly reduced after hormonal or ischemic 

stress, resulting in increased mortality.  

 

We hypothesized that the Plin5
–/–

 mice are in a state of low substrate 

availability after myocardial ischemia. Therefore, we investigated the 

palmitate oxidation in isolated hearts in a model low flow and of high 

workload. We found a trend towards a decreased glycolysis in the Plin5
–/–

 

hearts in the model low flow. However, a model of high work load is more 

representative to our situation after an induced myocardial ischemia. In this 

model, we found that Plin5
–/–

 hearts had slightly decreased substrate 

utilization from palmitate compared with WT hearts. In addition, when 

investigating the glycogen stores after myocardial infarction we found that 

the glycogen was almost abolished in the non-infarct areas in the Plin5
–/–

 

hearts. This suggests that the reduced substrate availability force Plin5
–/–

 

hearts to use the endogenous glycogen stores for energy. Consequently, our 

results indicate that Plin5
–/– 

hearts have reduced substrate availability, 

resulting in inefficient energy utilization. 

 

In conclusion, our results suggest that Plin5 regulates the metabolic 

flexibility of the heart and plays a key role in cardioprotection during 

myocardial ischemia. 
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In this paper, we investigated the role of Plin2 in myocardial lipid 

metabolism, heart function and outcome after an induced myocardial 

infarction. 

 

Here, we studied the lipid droplet protein Plin2 in HL1 cardiomyocytes and 

Plin2
–/–

 mice. First, we analyzed the expression pf Plin2 after oleic acid 

treatment of HL1 cells. The mRNA expression of Plin2 was unchanged after 

oleic acid supplementation. However, the protein expression was increased 

after treatment. In agreement with previous studies, this indicates that the 

protein is stabilized by increased lipid accumulation. 

 

Since deficiency of Plin5 resulted in dramatically reduced triglyceride 

content, we analyzed the lipid content in the hearts of the Plin2
–/–

 mice. 

Surprisingly, we found markedly increased levels of triglycerides. One 

hypothesis was that the increased triglyceride accumulation was due to an 

elevated lipid uptake. However, the circulating levels of fatty acids and 

triglycerides were unaltered suggesting that the increased triglyceride content 

in the heart was not caused by an elevated availability of plasma lipids. 

Further, although we found increased expression of PPARγ, we did not 

observe a concomitant increase in the PPARγ regulated fatty acid 

transporters CD36 and FABP. We continued by analyzing the uptake of oleic 

acid, glucose and VLDL in control and Plin2 knockdown HL1 cells. 

However, our results showed that Plin2 deficiency does not alter the substrate 

uptake in HL-1 cardiomyocytes.  Next, we wanted to repeat the fatty uptake 

studies in vivo using Plin2
–/–

 mice. In agreement with the cell culture studies, 

we found that there were no differences in the uptake of fatty acids in the 

hearts of WT and Plin2
–/–

 mice. There was also no difference in ability to 

incorporate palmitate into triglycerides. Our findings show that the increased 

amount of triglycerides in the Plin2–/– hearts is not due to increased uptake of 

fatty acids. Further investigations are needed to elucidate potential 

differences in lipid uptake, e.g. LPL mediated VLDL uptake.  

 

Lipid droplets in the heart are also coated with Plin3, 4, and 5. Therefore, we 

analyzed the expression of these perilipins in the WT and Plin2
–/–

 hearts. 
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Interestingly, the protein expression of Plin3 and Plin5 was significantly 

increased in the Plin2
–/–

 hearts compared to WT. These findings indicate the 

Plin2 deficient heart compensates for the absence of Plin2 by upregulating 

the levels of other perilipins

    

Finally, we examined whether the deficiency in Plin2 affected the heart 

function. We did not find any difference between the WT and Plin2
–/–

 
 
mice 

under baseline conditions or after dobutamine stress. However, the heart 

function was compromised after an induced myocardial infarction.   

 

In conclusion, our results indicate that Plin2 is important for myocardial lipid 

storage and plays a role for cardiac function following myocardial ischemia. 
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In paper I, we showed that lipids accumulate in the porcine myocardium 

following myocardial ischemia mediated by LDLr and LRP1. In paper II and 

III, we proceeded to investigate the consequences of an altered lipid storage 

regarding lipid metabolism, heart function and outcome after myocardial 

ischemia. In order to investigate altered lipid storage capacity, we used two 

different models of genetically modified mice deficient in the lipid droplet 

proteins Plin2
 
and Plin5. 

Key findings of this study as well as questions beyond the individual papers 

will be discussed in this section. 
 
   

 

Myocardial ischemia is associated with alterations in cardiac metabolism and 

has been reported to promote lipid accumulation in the heart.
24,

 
44

 

 

We have shown that cholesteryl esters accumulate in the heart of our porcine 

model of ischemia/reperfusion. We found an increased expression of LDLr 

and LRP1 in the infarct area and the ischemic area bordering the infarct area 

(AAR). Whether the bulk of the cholesterol uptake is mediated via LDLr or 

LRP1, or a combination of both is a matter of speculation. LRP1 and 

cholesteryl esters have previously been shown to be upregulated in pig heart 

following 90 min of ischemia without reperfusion.
45

 The LRP1 gene has been 

reported to contain two hypoxia responsive elements, indicating that hypoxia 

induced expression HIF1α are involved in the upregulation of LRP1.
132

 In 

addition, we have analyzed the pig LDLr promoter for HIF1α binding sites 

and did identify one site in the LDLr promoter at position +10 (data not 

shown). However, the HIF1α site did not have a corresponding site in the 

promoters of mice and humans and the significance of this site is uncertain. 

Alternatively, the increased expression of LDLr in our model may be due to 

reperfusion of the heart following ischemia. Reperfusion induces 

inflammation and in agreement with this, we have reported markedly 

increased expression of IL-1β in the ischemic areas of the pig heart. IL-1β 

has previously been shown to disrupt the feedback mechanism that 
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downregulates the LDLr expression in response to high intracellular 

cholesterol levels.
133

 This resulted in an excess of LDL uptake via the 

vascular smooth muscle cells. However, further studies in vivo are required to 

elucidate if inflammation is a mediator of increased cardiac LDLr expression. 

Altogether, HIF1α and inflammation could be important inducers of 

lipoprotein receptor expression following ischemia-reperfusion in pig heart, 

resulting in elevated levels of cholesteryl esters.      

 

We see a similar increase in cholesteryl esters in mouse hearts compared to 

pig hearts following myocardial ischemia (data not shown). In contrast, 

increased cardiac content of triglycerides following myocardial ischemia was 

observed in mice but not in our porcine model. Accumulation of excess 

cholesteryl esters may be detrimental for the heart function. Excess of free 

cholesterol results in high membrane rigidity, which is toxic to the cell. The 

liver can eliminate excess cholesterol via the bile.
134

 The heart lacks such 

effective elimination pathways and regulates the levels of free cholesterol 

mainly by uptake and esterification of cholesterol for storage in lipid droplet. 

Indeed, high cholesterol diet has been shown to result in an increased 

membrane cholesterol content and systolic and diastolic dysfunction.
135

 

Further, the accumulation of lipids, including cholesteryl esters, in the 

myocardium have been associated with dilated cardiomyopathy.
136

 Thus, 

pharmaceutical targeting of cholesteryl ester accumulation in heart following 

myocardial ischemia is an interesting future research area.  

   

In addition to accumulation of cholesteryl esters, we could show increased 

levels of ceramides in the infarcted area. Ceramides are considered as 

bioactive lipids and can cause cellular dysfunction and apoptosis following 

myocardial ischemia.
55

 In agreement with our results, ischemia has been 

reported to increase levels of ceramides.
24, 55, 137

 In contrast, ischemia with a 

subsequent reperfusion further increased ceramide accumulation in the 

heart.
55, 137

 We did observe elevated levels of ceramides in the infarct area, 

but interestingly not in the ischemic area bordering the infarction (AAR). 

Whether ceramide levels were normalized after 4 hours of reperfusion or did 

not increase at all in the peri-infarct zone remains to be elucidated  

Our results indicate that accumulation of cholesteryl esters and ceramides in 

the heart is one of the metabolic derangements remaining after ischemia. 
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Normalizing lipid levels in the myocardium after ischemia would likely 

improve myocardial function and should be considered as a target for 

treatment. 

 

Neutral lipids are stored in lipid droplets which are coated with numerous 

proteins with various functions. In the heart, the lipid droplet proteins Plin2 

and Plin5 are of importance for the function and protection of the lipid 

droplet. Genetic deletion of Plin5 and Plin2 in mice thus provided us with 

models for studying the influence of altered lipid storage capacity on lipid 

metabolism, heart function and outcome after myocardial ischemia.  

 

Deficiency of Plin5 results in dramatically lowered levels of triglycerides in 

the myocardium. This result was expected, since one of the roles of Plin5 is 

to protect the lipid droplets against lipases. Indeed, the lipid droplets in the 

cardiomyocytes of the Plin5
–/–

 mice were smaller and fewer compared to the 

lipid droplets in the WT. However, deficiency of Plin2 unexpectedly resulted 

in increased levels of cardiac triglycerides. In contrast, previous studies in 

Plin2
–/–

 mice have reported decreased lipid accumulation in the liver.
92,

 
93

 The 

increased triglyceride levels in the heart of our Plin2
–/–

 mice was not the 

result of increased fatty acid uptake; the plasma levels of triglycerides did not 

differ between the WT and Plin2
–/–

 mice and no increased fatty acid uptake 

was observed in Plin2
–/–

 hearts. However, the protein expression of Plin5 and 

Plin3 was increased in the Plin2 deficient hearts. This finding is in agreement 

with previous reports showing that Plin5 protein is upregulated in the liver of 

Plin2
–/–

 mice lacking leptin.
138

 These results suggest that Plin3 and Plin5 are 

more protective against lipases than Plin2 in the heart. However, if and how 

additional Plin3 and Plin5 are recruited to the lipid droplet from the cytosol 

in the absence of Plin2 should be further studied. Also, the possibility of an 

increased lipid accumulation resulting in elevated levels of Plin3 and Plin5 

cannot be excluded. A reduction in lipid oxidation or an increased uptake of 

other lipid sources than albumin-bound fatty acids Plin2
–/–

 hearts would 

result in increased lipid content. 
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The Plin5
–/–

 mice had decreased levels of cardiac triglycerides whereas the 

Plin2
–/–

 mice instead displayed increased levels of triglycerides. However, the 

outcome following myocardial ischemia was similar. The Plin5
–/–

 mice had 

severely reduced heart function after dobutamine stress and a reduced 

survival following myocardial infarction. We have shown that Plin5 

facilitates the association between the lipid droplet and the mitochondria. 

This connection between the storage and utilization of lipids is of crucial in 

the heart that has a high and fluctuating energy demand. The Plin5
–/–

 mice 

hearts have a diminished contact between mitochondria and lipid droplets 

combined with a reduced storage pool of lipids. Thus, our data suggest that 

the Plin5
–/–

 mice have reduced substrate availability, resulting in increased 

mortality following myocardial ischemia. Plin2 deficiency resulted in a 

milder heart phenotype than the Plin5 deficient hearts with a normal heart 

function at baseline and after dobutamine stress. However, the Plin2
–/–

 mice 

had a compromised heart function compared to the WT mice following 

myocardial ischemia. Levels of cardiac ceramide, triglycerides and 

cholesteryl esters were increased to similar levels in Plin2
–/–

 
 
and WT mice 

following ischemia, indicating lipotoxic aggravation of heart function to be 

less likely in the Plin2
–/– 

mice.  

 

Our data indicates that deficiency in Plin2 or Plin5 results in a compromised 

heart function although through different mechanisms. Although Plin5 is the 

most important lipid droplet protein in the normal heart, a balance between 

perilipins on the lipid droplet may be of importance for its proper function. A 

study in human skeletal muscle suggests a preferential utilization of Plin2 

coated lipid droplets during moderate-intensity exercise.
139

 It remains to be 

examined if this also occurs in the surviving part of the left ventricle after 

myocardial ischemia which experiences a high work load. Plin5 deficiency 

and a decreased triglyceride pool resulted in reduced lipid utilization and 

heart function at a high workload. The processes of storage and utilization of 

lipids are closely connected; therefore, lack of Plin2 on lipid droplets most 

likely also alters the flux and utilization of lipids and by that influences the 

heart function following myocardial ischemia 

 

Altogether, our data shows that presence of lipid droplet proteins and a 

functional regulation of lipid droplets are crucial for the function of the 

ischemic heart.   
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Cardiac lipid droplets play an important role in balancing the fluctuations in 

lipid availability and requirements of metabolic energy. However, little is 

known of the interplay between the lipid storage and lipid uptake.  

 

The Plin5 deficient mouse heart displayed smaller and fewer lipid droplets 

compared to the WT mice and thus had decreased storage capacity. The first 

assumption would be that more fatty acids is shunted towards β-oxidation 

However, we could show that β-oxidation is unchanged. Interestingly, the 

fatty acid uptake is decreased in the Plin5 deficient hearts. This suggests that 

the heart of the Plin5
–/–

 mice can adjust its fatty acid uptake in order to 

compensate for the decreased storage capacity. The mechanism to lower the 

fatty acid uptake remains to be elucidated. The altered lipolysis of the 

triglyceride pool in Plin5
 
deficient hearts likely changes the available amount 

and of fatty acids in the cardiomyocyte. These fatty acids can act as ligands to 

PPARs which in turn activates genes involved in lipid metabolism, including 

lipid uptake. Alteration of lipolysis by both deletion and overexpression of 

ATGL in mice has been shown to reduce cardiac expression of PPARα/δ 

target genes.
140,

 
141

 Thus, decreased or increased activation of PPARs in the 

Plin5
–/–

 mice compared to the WT may contribute to the decreased fatty acid 

uptake. In agreement with this hypothesis, the mRNA expression of CD36 is 

decreased in the myocardium of the Plin5
–/–

 mice. The uptake of fatty acids is 

induced by a translocation of CD36 from intracellular compartments to the 

sarcolemma. Most stimuli that translocate of GLUT4 to the sarcolemma, such 

as contraction, AMPK and insulin signaling, similarly affect CD36 

translocation.
33

 Interestingly, we observed a reduced uptake of fatty acids in 

the hearts of Plin5
–/–

 mice whereas the glucose uptake was increased. 

Similarly, a differential translocation of CD36 and GLUT4 was reported in a 

model of global ischemia in isolated hearts.
22

 Thus, regulation of GLUT4 and 

CD36 translocation can occur by different mechanisms. This regulation may 

involve signaling pathways or the subcellular trafficking machinery involved 

in the translocation of CD36 and GLUT4. Cytoskeleton reorganization, v-

ATPases (regulating endosomal acidification), Rab and SNARE proteins 

have been reported to be essential for the translocation process.
33

 Further 

research is required to investigate how absence of Plin5 results in differential 

lipid and glucose uptake.   
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Interestingly, our results suggest that hearts with diminished capacity to store 

lipids can compensate by markedly decreasing fatty acid uptake. The lipid 

uptake may be regulated by signaling though fatty acids or by the subcellular 

trafficking machinery of CD36 translocation.   

 

The induction of a myocardial infarction by ligation of a coronary artery 

results in ischemia in the part of the heart normally supplied by the ligated 

artery. Thus, the infarction induces a substantial stress on the heart function.  

 

Our Plin5 deficient mice had a reduced survival following myocardial 

ischemia compared to the WT mice. The infarct size after an induced 

myocardial infarction was comparable between the WT and Plin5
–/–

 mice, 

indicating that Plin5 deficiency did not play an important role in the 

expansion and size of the infarct area. In agreement with this, we found that 

patients carrying a polymorphism in the PLIN5 gene responded worse to 

ischemia, but the genetic variation did not give rise to increased ischemia. 

Following a myocardial infarction, the ischemic and subsequent infarcted 

area is unable to contract resulting in a highly increased workload of the 

surviving left ventricle. The increased workload results in a higher energy 

demand of the heart. This is detrimental for the Plin5
–/–

 hearts, because of 

their reduced energy substrate availability. 

 

Thus, our data suggests that deficiency of Plin5 and the resulting reduction in 

substrate availability and ineffective substrate utilization in the non-ischemic 

left ventricle resulting in reduced survival.      

 

The healthy heart primarily uses fatty acids to produce ATP, but is able to 

shift substrate preference due to physiological and pathological challenges. 

For instance, the ischemic or failing heart shifts from fatty acid oxidation 

towards glucose utilization. A general consensus has considered this shift to 

be a beneficial oxygen-sparing mechanism for the heart. However, oxidation 

of fatty acids is far more energy efficient compared other energy substrates, 

thus, a large amount of glucose is needed to compensate for a decrease in 
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fatty acid oxidation. This suggests a shift from fatty acid oxidation to be less 

beneficial to the ischemic/failing heart.  

 

We could show that Plin5 deficiency resulted in a reduced myocardial 

triglyceride pool. In baseline conditions, the Plin5
–/–

 mice could compensate 

by increasing substrate utilization from glucose, and by that preserving the 

energy balance. However, during high workload the isolated Plin5
–/–

 heart 

had a decreased utilization from fatty acids and a severely reduced heart 

function. There are mouse models investigating changes in fatty acid 

oxidation, e.g. LCAD
–/–

 mice. Deletion of LCAD
 

results in deficient 

mitochondrial long-chain fatty acid β-oxidation. In the fed state, these mice 

relied on glucose oxidation and had a normal energy status.
142

 However, 

during fasting when the heart normally depends almost exclusively on fatty 

acid oxidation,
34

 the LCAD
–/– 

mice instead had a sustained glucose uptake 

compared to the fed state. However, this was insufficient to maintain the 

energy status resulting in reduced cardiac performance.
142

 Together, this 

indicates that fatty acid utilization and a cardiac metabolic flexibility is 

crucial to maintain heart function.  

 

Whether cardiac lipid accumulation is unfavorable for the heart is debated. 

Our Plin5 deficient mice have a reduced content of triglycerides and 

diglycerides and, interestingly, unaltered levels of ceramides. Heart function 

is severely reduced during stress in the Plin5
–/–

 mice. There are other mouse 

models with altered lipid storage. Deletion of the lipase ATGL results in 

severe accumulation of lipids, reduced cardiac fatty acid oxidation, and lethal 

cardiomyopathy.
141,

 
143

 On the other hand, overexpression of DGAT1, which 

catalysis the syntheses of triglycerides from diglycerides, also results in an 

increased content of triglycerides. However, the content of ceramides and 

diglycerides was reduced and the cardiac function was unaffected.
51

 Thus, 

this indicates that the lipid dynamics and metabolism are important for the 

maintenance of cardiac function and not levels of cardiac lipids per se.  

 

In conclusion, a maintained energy efficient fatty acid oxidation is favorable 

in stress conditions.     
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Here, the clinical implications of our results will be discussed. We have 

studied the role of Plin5 in a human cohort showing that Plin5 influences 

cardiac functions in humans. This suggests that targeting of lipid droplet 

proteins could potentially be a strategy to develop novel pharmaceutical 

treatment. In addition, our studies on lipid storage and metabolism following 

myocardial ischemia in mice contribute to the development of future cardiac 

metabolic therapies for cardiovascular diseases.  

 

Our results show that Plin5 influences cardiac functions in humans. A single 

nucleotide polymorphism in the PLIN5 gene was associated with impaired 

heart function following myocardial ischemia in patients with suspected 

coronary artery disease.  The carriers of the minor allele of the SNP had 

slightly lower gene expression of Plin5. In the future, identifying low levels 

of Plin5 in patients with high risk of cardiovascular disease would represent a 

promising approach to decrease morbidity and mortality in this population.  

 

The non-ischemic part of the left ventricle has an increased cardiac workload 

following myocardial ischemia, similar to the situation in the failing heart. 

Thus, our studies regarding storage and utilization of lipids in the non-

ischemic parts following myocardial ischemia also contribute to the research 

field of heart failure. At present, pharmacological treatment of heart failure 

with neurohormonal antagonists, such as β-adrenergic blockers and 

angiotensin-receptor blockers, has successfully reduced heart failure 

mortality. However, the remaining disability and death rate remain high.
144

 

Because of the high energy consumption of the heart, even small variations in 

the efficiency of energy generation or utilization may have profound effect on 

cumulative energy levels in the cardiomyocyte. Thus, cardiac metabolic 

therapies represent promising targets for heart failure therapy.
144,

 
145

  

 

The shift from fatty acid oxidation towards glucose utilization in the failing 

heart has been considered being a beneficial oxygen-sparing mechanism. 

Thus, metabolic therapies aiming to promote glucose oxidation have been 

tested. Enhancing glucose utilization in the ischemic and failing heart have 

been reported to improve cardiac function and symptoms of heart failure in 

the short term.
13

 Dichloroacetate (DCA) promotes glucose oxidation by 



Cardiac lipid storage and metabolism following myocardial ischemia 

38 

inhibiting pyruvate dehydrogenase kinase (PDK). DCA treatment has been 

shown to improve recovery during reperfusion and also to improve cardiac 

function in right ventricular hypertrophy in multiple animal models.
146, 147,

 
148

 

However, human studies have reported inconsistent results regarding cardiac 

improvements of DCA treatment and long-term clinical trials have never 

been performed.
149

  

 

On the other hand, reducing fatty acid supply to failing hearts seems to be 

harmful in spite of increased glucose uptake. The nicotinic acid derivative 

acipimox inhibits lipolysis in adipose tissue and by that decreases the 

circulating levels of fatty acids. Treatment with acipimox in patients with 

cardiomyopathic heart failure decreased fatty acid uptake by >80% and 

enhanced glucose uptake. However, this resulted in a reduction in cardiac 

work and efficiency.
150

 Further, modulation of cardiac fatty acid utilization 

has been a target of metabolic therapy in heart failure. One target has been 

CPT1, the enzyme responsible for long chain fatty acid uptake in the 

mitochondria. Some studies have revealed beneficial effects of CPT1 

inhibition in heart failure.
151

 However, heterozygous CPT1b knockout mice 

showed an aggravated pressure overload-induced cardiac hypertrophy,
152

 

inducing concern about the safety and efficacy of CPT1 inhibition in heart 

failure patients. Instead, prevention of the metabolic switch toward glucose 

utilization in the hypertrophic mouse heart and a maintained fatty acid 

oxidation has been proposed to be beneficial to preserve myocardial 

energetics and cardiac function.
153

   

 

Our study shows that a small triglyceride pool and reduced lipid utilization in 

the hearts of high workload is unfavorable to the heart function. Thus, our 

data suggests that pharmacological treatment strategies in order to maintain 

or increase lipid utilization are beneficial to the failing and post-ischemic 

heart.  
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In this study, I have investigated lipid accumulation in a porcine model if 

ischemia/reperfusion. Also, I have studied the consequences of an altered 

lipid storage regarding lipid metabolism, heart function and outcome after 

myocardial ischemia. I have reached the following conclusions:  

 

 

o Ischemia/reperfusion in the porcine heart promoted 

cholesteryl ester accumulation mediated by the LDLr and 

LPR1.  

 

o The lipid droplet protein Plin5 regulates metabolic flexibility 

of the heart and plays a key role in cardioprotection during 

myocardial ischemia. 

 

o The lipid droplet protein Plin2 is important for myocardial 

lipid storage and plays a role for cardiac function following 

myocardial ischemia. 
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