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ABSTRACT 

 
At menopause, the levels of estrogen decline, leading to loss of estrogen-mediated 
protective effects on bone and an increased risk of osteoporosis. Hormone replacement 
therapy, containing estrogen, has been used for many years to prevent and treat 
osteoporosis in postmenopausal women. However, the estrogen receptor agonistic effects 
on the reproductive organs increases the risk of developing cancer. Therefore, selective 
estrogen receptor modulators (SERMs) have been developed, that can act as tissue-
specific estrogen receptor agonists or antagonists. This enables SERMs to mediate the 
positive effects of estrogen on bone metabolism while avoiding side effects on the 
reproductive organs. 
 
Estrogen has a number of effects on the immune system; it decreases B- and T 
lymphopoiesis and increases antibody production. In addition, estrogen potently inhibits 
T-cell dependent inflammation and suppresses synovitis and inflammation-mediated bone 
loss in arthritis. Similarly to estrogen, the second-generation SERM raloxifene suppresses 
B-cell development and ameliorates arthritis. However, raloxifene lacks effects on 
antibody production and T-cell dependent inflammation. 
 
Lasofoxifene and bazedoxifene are third-generation SERMs, approved for treatment of 
postmenopausal osteoporosis. The bone-protective properties of these compounds are 
well documented; however the effects of lasofoxifene and bazedoxifene on the immune 
system have not earlier been assessed. Therefore, the aim of the studies included in this 
thesis was to investigate the immune-regulating effects of these third-generation SERMs. 
We found that lasofoxifene and bazedoxifene suppressed B-cell development in 
ovariectomized (ovx) mice, but lacked effects on antibody production and on T-cell 
development. Furthermore, lasofoxifene and bazedoxifene did not suppress T-cell 
dependent inflammation, but potently inhibited synovitis and bone loss in mice subjected 
to experimental postmenopausal arthritis. Phenotypic analysis of lymph nodes in arthritic 
mice showed that while estrogen increased a subpopulation of dendritic cells (DCs), as 
well as T helper 17 (Th17) cells, B cells and surface markers connected to antigen-
presentation on B cells, the SERMs lacked these effects.   
 
In conclusion, the third-generation SERMs lasofoxifene and bazedoxifene suppressed 
experimental arthritis and inhibited B-cell development in ovx mice, but lacked effects on 
T-cell development and T-cell dependent inflammation. SERMs also lacked effects on 
lymph node DCs, B cells and T cells in arthritic mice. Therefore, further investigation is 
needed to find the target for the suppressive effects of SERMs on arthritis. Nonetheless, 
the anti-arthritic effects of the third-generation SERMs suggest possibility for an 
extension of the clinical indications of these drugs to include also postmenopausal RA.  
 
Keywords: Mice, lasofoxifene, bazedoxifene, raloxifene, estrogen, osteoporosis, B cells, T 
cells, rheumatoid arthritis  
ISBN: 978-91-628-9403-0 



POPULÄRVETENSKAPLIG SAMMANFATTNING 
 
Vårt immunförsvar finns för att skydda oss från mikroorganismer, t.ex. bakterier och 
virus, som kan orsaka infektioner. När mikroorganismer försöker ta sig in i vår kropp 
och orsaka sjukdom aktiveras en rad olika celler i immunförsvaret (vita blodkroppar) 
som då börjar attackera och eliminera inkräktarna. Genom att kunna skilja mellan vad 
som är främmande och vad som tillhör vår kropp attackerar cellerna i immunförsvaret 
bara inkräktande mikroorganismer och inte kroppsegna strukturer. Immunförsvaret är 
uppdelat i två system; det första är det medfödda immunförsvaret som känner igen 
gemensamma strukturer som finns på mikroorganismer och då svarar snabbt genom 
att förstöra mikroorganismerna och förhindra deras förökning i kroppen. Det andra 
systemet är det förvärvade immunförsvaret som svarar långsammare men är 
noggrannare och känner igen mer specifika strukturer på inkräktarna. Cellerna i det 
förvärvade immunförsvaret utvecklar också ett minne för vad de tidigare stött på, 
vilket gör att de kan svara snabbare nästa gång de träffar på samma struktur. Det 
förvärvade immunförsvaret utgörs av så kallade B-celler och T-celler, där B-celler har 
som huvuduppgift att producera molekyler som kallas antikroppar. Antikroppar 
binder till ytan av mikroorganismer och signalerar till cellerna i det medfödda 
immunförsvaret att dessa inkräktare ska förstöras. T-celler har flera uppgifter men en 
av de viktigare är att producera särskilda signaleringsämnen som kallas cytokiner och 
är nödvändiga för aktivering av olika delar av immunförsvaret. 
 
Om en bakterie eller ett virus börjat föröka sig svarar kroppen med att starta en 
inflammation. Inflammation karaktäriseras bland annat av svullnad och rodnad, på 
grund av en ökad blodtillströmning och ett ökat antal vita blodkroppar på platsen som 
försöker göra sig av med mikroorganismerna. Ibland när cellerna i immunförsvaret 
ska känna igen främmande ämnen blir det dock fel och de börjar istället attackera 
strukturer i vår egen kropp. När detta händer uppstår det som kallas autoimmunitet, 
vilket ordagrant betyder ”immunitet mot sig själv”. Autoimmuna sjukdomar 
karaktäriseras ofta av att man får en inflammation, men då till följd av att 
immunsystemet attackerar en kroppsegen struktur och inte en mikroorganism. Det 
finns många olika autoimmuna sjukdomar men i denna avhandling ligger fokus på 
ledgångsreumatism eller reumatoid artrit, förkortat RA. Patienter med RA har en 
kronisk inflammation i lederna och får även en förstörelse av skelettet som finns runt 
lederna. Ofta drabbas de också av allmän benskörhet, så kallad osteoporos. 
 
Inflammation kan även uppstå om kroppen utsätts för främmande ämnen, såsom 
kemikalier, som immunförsvaret börjar reagera på. Vissa typer av sådana reaktioner 
är helt beroende av T-celler för att äga rum. Dessa kallas T-cellsberoende 
inflammationer.  
 
Det är välkänt att hormoner kan reglera funktionen av immunförsvaret. Man har länge 
vetat att kvinnor drabbas oftare än män av autoimmuna sjukdomar, vilket har lett till 
ett stort intresse för vad det kvinnliga könshormonet östrogen har för effekter på vårt 



immunförsvar. Genom att studera immunförsvaret i både djur och människor under 
graviditet, då östrogennivåerna är höga, samt under behandling med östrogen, har 
man kunnat kartlägga en rad effekter. Östrogen blockerar bildningen av både B-celler 
och T-celler, men kan samtidigt hämma inflammation som beror på T-celler och vissa 
autoimmuna sjukdomar. RA är en sådan sjukdom där östrogen har visat sig ha 
fördelaktiga effekter. Därför är det inte förvånande att fler kvinnor drabbas av RA 
efter klimakteriet, då östrogenproduktionen stannar av. Östrogen har även skyddande 
effekter på benomsättningen i kroppen vilket också förklarar varför många kvinnor 
drabbas av osteoporos efter klimakteriet. Under många år behandlade man kvinnor 
som genomgått klimakteriet med hormonersättningsterapi som innehöll östrogen. Då 
såg man att man kunde förhindra uppkomsten av osteoporos, men tyvärr fann man 
även att denna behandling ledde till en ökad risk att drabbas av cancer i livmodern, 
vilket gjorde att man till stor del slutade behandla kvinnor med hormonersättning. 
Istället började man utveckla syntetiska läkemedel som kan agera som östrogen i 
vissa delar av kroppen, t.ex. skelettet, men som saknar östrogeneffekter på livmodern, 
för att på så sätt undvika den ökade cancerrisken. Dessa läkemedel kallas selektiva 
östrogenreceptormodulerare (SERM). Lasofoxifen och bazedoxifen är två läkemedel 
som tillhör den tredje generationen av SERM. Lasofoxifen och bazedoxifen har 
fördelaktiga effekter på bentätheten i skelettet och bidrar inte till en ökad risk för 
livmodercancer, vilket gör dem lämpliga för behandling och förebyggande av 
benskörhet hos kvinnor efter klimakteriet. Då inga tidigare studier har tidigare visat 
hur dessa läkemedel påverkar immunförsvaret utgör denna fråga huvudmålet med 
arbetena i avhandlingen.  
 
De tre arbeten som ingår i denna avhandling beskriver effekter av lasofoxifen och 
bazedoxifen: (I) på bildningen av B-celler och på antikroppsproduktion, (II) på 
bildningen av T-celler och på T-cellberoende inflammation och (III) på experimentell 
artrit och på generell benskörhet i samband med artrit.  
 
I alla tre arbeten har vi använt oss av kastrerade honmöss som saknar produktion av 
kroppseget östrogen, för att efterlikna situationen efter klimakteriet. Förutom möss 
som behandlades med SERM inkluderade vi även möss som behandlades med 
östrogen eller med placebo som kontrollgrupper. För att titta på hur SERMen 
påverkar bildningen av B- och T-celler behandlade vi mössen och undersökte sedan 
hur cellerna utvecklats. För att undersöka SERMens effekt på T-cellsberoende 
inflammation användes en modell där en retande kemikalie penslades på mössen och 
svullnaden som uppstod var ett mått på inflammation. För att undersöka SERMens 
effekter på artrit användes en musmodell för artrit, där man ger mössen ett protein 
som finns i ledbrosk – kollagen, blandat med bakterier, vilket leder till att 
immunförsvaret aktiveras och börjar attackera kollagenet i lederna. Detta ger en 
sjukdom som liknar RA hos människor.  
 
Vi fann att lasofoxifen och bazedoxifen skiljde sig från östrogen i vissa 
immunologiska avseenden, men hade liknande effekter i andra. Till skillnad från 



östrogen kunde inget av dessa läkemedel varken hämma utvecklingen av T-celler eller 
den T-cellsberoende inflammation vi undersökte. De kunde heller inte öka 
produktionen av antikroppar från B-celler. Däremot kunde lasofoxifen och 
bazedoxifen, likt östrogen, hämma bildningen av B-celler och de kunde även minska 
både ledinflammation och benskörhet i möss med artrit. Exakt hur lasofoxifen och 
bazedoxifen påverkar immunförsvaret för att hämma artrit är dock ännu oklart.  
 
Sammanfattningsvis har arbetena i denna avhandling bidragit till att klargöra vilka 
effekter lasofoxifen och bazedoxifen har på olika delar av immunförsvaret och på 
utveckling av inflammatoriska tillstånd. Vårt mål är att fortsätta undersöka hur dessa 
läkemedel även påverkar andra autoimmuna sjukdomar.  
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ABBREVIATIONS 
 
CD    Cluster of differentiation 
TNF    Tumor necrosis factor 
TGF    Transforming growth factor  
IL    Interleukin  
IFN    Interferon 
HRT    Hormone replacement therapy 
RA    Rheumatoid arthritis 
SERM    Selective estrogen receptor modulators 
ovx    Ovarectomized  
E2    Estradiol  
ERα    Estrogen receptor alpha 
ERβ    Estrogen receptor beta 
ERE    Estrogen response elements 
BMD    Bone mineral density 
APC    Antigen-presenting cell 
DC    Dendritic cell 
MHC     Major histocompatibility complex 
NK    Natural killer 
IgHC    Immunoglobulin heavy chain  
IgLC    Immunoglobulin light chain      
Pro-B     Progenitor B     
Pre-B    Precursor B 
BCR    B-cell receptor  
T1     Transitional 1  
T2    Transitional 2 
FO     Follicular 
MZ     Marginal zone  
BAFF    B-cell activating factor 
GC    Germinal center 
AID    Activation-induced deaminase  
Bcl-2    B cell lymphoma 2 
TCR    T-cell receptor  
DN     Double-negative 
DP    Double-positive  
SP    Single-positive  
Th    Helper T  
Treg    Regulatory T cell  
FoxP3    Forkhead box P3 
DTH    Delayed-type hypersensitivity  
M-CSF                Macrophage colony stimulating factor 
RANK    Receptor activator of NF-kB  
RANKL   Receptor activator of NF-kB ligand 
OPG    Osteoprotegerin 
COMP    Cartilage-oligomeric matrix protein   
RF    Rheumatoid Factor 
ACPA    Anti-Citrullinated Protein Antibodies   
CII    Collagen type II 
CIA    Collagen-induced Arthritis 
CAIA    Collagen-antibody induced arthritis 
AIA    Antigen-Induced Arthritis 
SLE  Systemic lupus erythematous 
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INTRODUCTION 
 
The immune system functions to protect us from infections by discriminating between 
foreign and endogenous structures. It comprises the unspecific innate immune system, 
which mediates a rapid response to invading microbes, and the adaptive immune 
system, which provides a specific response and develops immunological memory. 
However, the immune system does not work as an isolated system, but is regulated by 
e.g. the central nervous system and the endocrine system. The female sex hormones 
estrogens (comprising estrone, estradiol and estriol) have well-documented effects on 
the immune system, both during homeostasis and in autoimmunity. Human and 
experimental studies of the immune system in pregnancy and during estrogen 
treatment have established that estrogen potently modulates both the formation and 
effector functions of cells in the adaptive immune system; B- and T cells. In addition, 
the increased prevalence of autoimmunity in women further stresses the 
immunological role of estrogen. The incidence of rheumatoid arthritis (RA), an 
autoimmune condition characterized by inflammation in the joints and bone 
destruction, increases at menopause when estrogen levels decline, suggesting a 
protective role for estrogen in this disease. In addition, both pregnancy and estrogen 
treatment suppress inflammation and prevent bone loss in arthritis.  
 
As treatment of postmenopausal women with hormone replacement therapy (HRT), 
containing estrogen and progesterone, is connected with severe side effects, selective 
estrogen receptor modulators (SERMs) have been developed to achieve the beneficial 
effects of estrogen on bone metabolism while avoiding the estrogenic side effects. The 
studies included in this thesis focus on immune regulation by SERMs. We have 
investigated the effects of the third-generation SERMs lasofoxifene and bazedoxifene 
on cells of the adaptive immune system, on experimental arthritis and on 
inflammation-mediated bone loss. In order to avoid the influence of endogenous 
estrogen, ovariectomized (ovx) mice have been used. Thus, the frame of this thesis 
aims at reviewing the immunological effects of estrogen and the second-generation 
SERM raloxifene, as determined by others, together with the results from the studies of 
the third-generation SERMs lasofoxifene and bazedoxifene in papers I-III.  
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ESTROGEN AND 
SELECTIVE ESTROGEN RECEPTOR MODULATORS 

 
Estrogen 
Estrogen is the common name for the female sex hormones estrone (E1), estradiol (E2) 
and estriol (E3), where E2 is most potent. E2 is mainly produced by the ovaries and is 
the predominant form during the reproductive years. E1 is the major estrogen found 
after menopause, while E3 is only found in significant levels during pregnancy. The 
effects of estrogen are mainly mediated by the classical estrogen receptors ERα and 
ERβ, cloned in 1986 [1] and 1996 [2], respectively. These receptors belong to the 
nuclear receptor family of transcription factors and consist of a ligand-binding domain 
and a DNA-binding domain [3]. ERα and ERβ share approximately 97% sequence 
similarity in the DNA-binding domain and 55 % in the ligand-binding domain [4]. The 
classical transcription pathway of ER activation includes ligand binding followed by 
receptor dimerization and binding to estrogen response elements (EREs) located in the 
promoter regions of estrogen-regulated genes [5, 6]. When bound to EREs, the ER 
interacts with co-regulating proteins, leading to modulation of transcription [7, 8] (Fig. 
1, pathway 1). Apart from this classical transcription pathway, estrogen can also signal 
through the non-classical transcription pathway, via alternative non-ERE binding 
transcription factors, such as the SP-1 and AP-1 transcription factors [9, 10] (Fig. 1, 
pathway 2). In addition, there are membrane-associated estrogen receptors, such as 
GPR30, through which estrogen can modulate intracellular signalling pathways and 
cause transcriptional activity (Fig. 1, pathway 3) or non-genomic response [11, 12] 
(Fig. 1, pathway 4). Non-genomic response can also be generated through association 
of ERα to the membrane [13] (Fig. 1, pathway 4).  
 
In addition to regulating female reproduction, estrogen has important bone-protective 
properties and affects the nervous system as well as the cardiovascular system. 
Furthermore, estrogen has various effects on the immune system; indeed, ERs are 
expressed on most cells of the innate and adaptive immune system [14, 15]. At 
menopause, the ovarian production of estrogen declines, which is associated with an 
increased risk of developing e.g. osteoporosis and vasomotor symptoms such as hot 
flushes. During the second half of the 20th century, postmenopausal women were 
frequently treated with HRT – containing estrogen and progesterone – a treatment that 
successfully decreased the symptoms arising from the loss of estrogen. However, 
clinical trials evaluating the long-term effects of HRT revealed that HRT increased the 
risk of coronary heart disease, stroke, deep venous thrombosis, breast cancer, and 
endometrial cancer [16, 17]. Consequently, the use of HRT drastically decreased, and 
the search for compounds with the ability to provide beneficial estrogenic effects while 
avoiding negative effects was initiated.  
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Selective Estrogen Receptor Modulators  
Selective estrogen receptor modulators (SERMs) are synthetic ER ligands able to exert 
ER agonistic effects in some tissues and ER neutral or antagonistic effects in other 
tissues. SERMs are primarily designed to mediate ER agonistic effects on bone, but 
have ER neutral or antagonistic effects on the breast and endometrium. Binding of 
SERMs to the ER induces a conformational change of the receptor followed by 
dimerization. This leads to either the recruitment of co-activators followed by 
activation of transcription, or the recruitment of co-repressors and inhibition of 
transcription (Fig. 2). Tissue selectivity of SERMs is determined by the distribution of 
ERα and ERβ and the availability of co-activators and co-repressors in the target tissue 
(Reviewed in [18]).  
 
 
 
 
 
 
 

Figure 1. ER signalling pathways 
1) The classical transcription pathway, 2) The non-classical transcription pathway, 3) Transcription by 
membrane-associated ER, 4) Non-genomic response by membrane-associated ER. E, estrogen; ER, 
estrogen receptor; ERE, estrogen-response element; TF, transcription factor.  
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There is currently a number of SERMs available and used for several indications, 
including prevention and treatment of breast cancer, osteoporosis and other 
postmenopausal symptoms. Tamoxifen was the first SERM to be approved by the FDA 
and was shown to prevent breast cancer in women at high risk [19], and to reduce 
mortality and prevent cancer recurrence in women with ER-positive breast cancer [20]. 
Furthermore, tamoxifen increases total bone mineral density (BMD) and reduces the 
overall risk of fractures in postmenopausal women with osteoporosis [21]. However, 
tamoxifen has ER-agonistic effects on the endometrium, leading to an increased risk of 
developing endometrial cancer [19]. Tamoxifen is currently used in the US and the EU 
for treatment of ER-positive breast cancer.  
 
The second-generation SERM raloxifene was developed as an alternative to 
tamoxifene for breast cancer treatment. In addition to reducing the incidence of breast 
cancer [22], treatment with raloxifene also leads to an increase in lumbar spine BMD 
and a decreased risk of developing vertebral fractures [23, 24]. Raloxifene is currently 
approved for the prevention of breast cancer in the US and for the prevention and 
treatment of osteoporosis in the US and the EU [25]. Treatment with raloxifene causes 
a small increase in endometrial thickness, but no increased risk of endometrial 
hyperplasia or carcinoma [22]. In addition, treatment with raloxifene has been 
associated with a decrease in cardiovascular disease and serum lipids, but an increased  

Figure 2. Mechanism of action of SERMs.   
SERM binding to the ER leads to conformational changes of the receptor and recruitment of co-
repressors and inhibition of transcription, or recruitment of co-activators and activation of transcription. 
ER, estrogen receptor; SERM, selective estrogen receptor modulator; CoR. co-repressor; CoA, co-
activator.  
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incidence of venous thromboembolism [24, 26]. We and others have reported that the 
effects of raloxifene in experimental animal studies are similar to those observed in 
clinical trials; decrease in the incidence of mammary tumours [27] and an increase in 
lumbar vertebral and total BMD ([28], Paper I), together with an increase in uterine 
wet weight ([29, 30], Paper I).   
 
The third-generation SERMs lasofoxifene and bazedoxifene were recently approved 
for the prevention and treatment of postmenopausal osteoporosis. Lasofoxifene was 
approved in the EU 2009 but is not yet marketed while bazedoxifene is currently used 
in the EU and is under review for registration in the US. Lasofoxifene decreases the 
risk of both vertebral and non-vertebral fractures in postmenopausal women and 
improves lumbar spine BMD [31]. Lasofoxifene causes an increase in endometrial 
thickness, however, this is not accompanied by an increased risk of endometrial 
hyperplasia or carcinoma [32]. In addition, lasofoxifene has shown to lower serum 
lipids and reduce the risk of cardiovascular disease, but increase the risk of venous 
thromboembolism [31-33]. In experimental studies, lasofoxifene increases BMD in 
both male and female castrated animals and increases uterine wet weight in ovx mice 
([34, 35], Paper I).  
 
Bazedoxifene improves lumbar spine BMD, decreases the risk of vertebral fractures in 
postmenopausal women [36] and the risk of non-vertebral fractures in high-risk 
fracture patients [37]. Furthermore, bazedoxifene does not affect endometrial thickness 
[38]. Similarly to lasofoxifene, bazedoxifene causes a decrease in serum lipids and 
reduces the risk of cardiovascular disease, but increases the risk of venous 
thromboembolism [36, 39]. Bazedoxifene increases BMD in both male and female 
castrated animals, but does not influence uterine wet weight in ovx mice ([35, 40], 
Paper I).  
 
In 2013, FDA approved a compound containing the combination of conjugated 
estrogens and bazedoxifene for the treatment of vasomotor symptoms and prevention 
of postmenopausal osteoporosis. By acting as an ER antagonist in the uterus, 
bazedoxifene blocks the ER-agonistic effects of estrogen on the endometrium, thereby 
reducing the risk of developing endometrial hyperplasia, while still obtaining the 
beneficial estrogenic vasomotor effects and bone-protective effects [41, 42].  
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THE IMMUNE SYSTEM 
 
Introduction to the immune system 
The immune system functions to protect the body from invading microbes such as 
bacteria and viruses that could cause infections. Upon pathogen encounter, the innate 
immune system is activated first, providing a quick, non-specific response – a response 
that is not modified upon repeated confrontations of a certain microbe. A number of 
cell types are included in the innate immune system. Neutrophils and macrophages are 
specialized in phagocytosis; i.e. they have the ability to ingest and eliminate pathogens 
and apoptotic cells through the production of toxic chemicals and degradative 
enzymes. Macrophages are also important as antigen-presenting cells (APCs), together 
with dendritic cells (DCs). APCs take up extracellular antigens and present them on 
major histocompatibility complex II (MHCII) molecules, thereby inducing adaptive 
immunity. In addition, macrophages produce cytokines and chemokines that attract 
neutrophils and lead to local inflammation. Also included in the innate immune system 
are natural killer (NK) cells, which are cytotoxic cells that kill tumour cells and cells 
infected with pathogens. In addition to these various cell types, innate immunity also 
includes the complement system, composed of proteins, which are activated by 
proteolytic cleavage and aid in elimination of microbes and production of 
inflammatory mediators.  
 
The adaptive immune system is characterized by specificity. In contrast to the 
immediate response provided by the innate immune system, it takes several days for 
the adaptive immune system to be activated at the first confrontation of a pathogen. 
However, the adaptive immune system then provides a highly specific response and is 
able to recognize and remember the microbes, leading to an enhanced response upon 
repeated encounters. The adaptive immune system can be divided into humoral 
immunity and cell-mediated immunity, where humoral immunity includes protection 
against extracellular microbes while cell-mediated immunity mediates protection 
against phagocytosed and intracellular microbes. Humoral immunity is mediated by 
antibodies, which are produced by B cells. Antibodies are secreted into the circulation 
and help neutralize and eliminate microbes before they gain access to tissues, and also 
label the microbes for phagocytosis. In addition to its function in innate immunity, the 
complement system also helps B cells to mount proper immune responses. Cell-
mediated immunity is provided by T cells; helper T cells are activated through antigen-
presentation by APCs, resulting in the production of cytokines. Cytotoxic T cells are 
activated through antigen-presentation by infected cells, which results in the killing of 
the pathogen-infected cells. 
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B cells – mediators of humoral immunity 
B cells are key components of the adaptive immune system through their unique 
capacity to produce antibodies against a large number of foreign antigens. An antibody 
consists of two immunoglobulin heavy chains (IgHCs) linked together with two 
immunoglobulin light chains (IgLCs) where the upper parts of both chains are variable 
and constitute the antigen-binding region, referred to as the fragment antigen-binding 
region (Fab fragment). The diversity in antigen specificity is achieved through 
stepwise gene recombination of the IgHC and IgLC loci during bone marrow B-cell 
development [43]. The constant part of the antibody – the fragment crystallisable 
region (Fc region) – determines the effector function of the antibody; the five antibody 
isotypes are IgM, IgD, IgG, IgA, and IgE, where IgM and IgD are expressed on naïve 
B cells. After antigen-priming, class switch recombination of the Fc part can occur, 
resulting in the changing of the antibody isotype into IgG, IgA or IgE. When Fc 
receptor-expressing cells bind to the Fc-part of the antibodies, effector mechanisms are 
activated. Briefly, IgM participates in complement activation and IgG mainly functions 
to promote phagocytosis by macrophages and DCs. IgA mediates mucosal immunity 
and IgE is involved in allergic responses.   
 
B-cell development and maturation  
B cells develop in the bone marrow from hematopoietic stem cells. Surface marker 
patterns together with rearrangement status of the IgHC and IgLC are used to define 
the different stages of bone marrow B-cell development (Fig. 3). B220 is the pan-B 
cell marker used to define all B cell stages during B-cell development and maturation. 
Using the Basel nomenclature [44], the first stage, termed the progenitor B (pro-B) cell 
stage, is defined by expression of surface markers c-kit, but not yet CD19. Here, the 
transcription factor paired box 5 (Pax5) is induced, which is crucial for B-lineage 
commitment [45]. Thereafter, CD19 is expressed, together with c-kit, defining the 
precursor B (pre-B) I cell stage. At the pre-BI stage, IgHC rearrangement is initiated 
and the surrogate light chain is expressed [46, 47]. If the rearrangement of IgHC is 
productive, the IgHC can pair with the surrogate light chain to form a pre-B cell 
receptor (pre-BCR), which is expressed on the surface of these cells. At this stage, the 
cells have lost the expression of c-kit and gained expression of CD25 and are termed 
large pre-BII cells [48]. The development from pro-B cells to large pre-BII cells is 
dependent on IL-7 secretion from stromal cells [49, 50]. Pro-B, pre-BI and large pre-
BII cells all express IL-7 receptors that signal survival and proliferation [51]. After the 
pre-BII cells have left the cell cycle they enter the small pre-BII stage where the IgLC 
is rearranged [52]. IgLC is then expressed together with the IgHC as a membrane-
bound antibody of IgM subclass and expression of CD25 is lost, defining immature B 
cells. Cells that express a BCR consisting of IgHCs and IgLCs that pair well together 
receive strong BCR signalling and are positively selected. Cells that express a BCR 
where the pairing is weak, and cells that express an autoreactive BCR, will undergo 
clonal deletion or can be rescued by a process termed receptor editing [53, 54].  
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This process involves a secondary IgLC rearrangement and if the new IgLC can pair 
well with the existing IgHC, the cells will receive a level of BCR signalling high 
enough to mediate positive selection.   
 
Positively selected immature B cells then translocate to the spleen where they as newly 
immigrants are termed transitional B cells (Fig. 3). These cells can in turn be divided 
into transitional 1 (T1) and transitional 2 (T2) B cells, where T1 B cells express CD93 
and IgM, but not CD23, while T2 B cells express CD93, IgM and CD23. Transitional 
B cells are short-lived and sensitive to IgM-induced apoptosis [55]. In order to target 
cells that have escaped tolerance mechanisms in the bone marrow, transitional B cells 
are selected against autoreactivity [56] and studies have shown that receptor editing 
also can occur at this stage [57]. Positively selected transitional B cells then 
differentiate into follicular (FO) B cells or marginal zone (MZ) B cells. A strong BCR 
signal leads to differentiation into FO B cells and weak BCR signalling leads to 
commitment to the MZ B cell fate (Fig. 3). Signalling through the receptor for B-cell 
activating factor (BAFF) is not required for commitment to the FO B cell fate, but for 
differentiation to MZ B cells (reviewed in [58]). In the spleen, cells that are unable to 
respond to antigen are rendered silent, or anergic, which in addition to clonal deletion 
and receptor editing constitutes a third B-cell tolerance mechanism [59] 
 

 
 
 
 
 
 
 
 

Figure 3. Schematic overview of B-cell development and maturation.  
B lymphopoiesis occurs in the bone marrow and immature B cells migrate to the spleen for final 
maturation into MZ B cells or FO B cells. FO B cells can then enter GCs and differentiate into plasma 
cells or memory B cells. Pro-B, progenitor B cell; pre-B, precursor B cell; Pre-BCR, Pre-B cell 
receptor; BCR, B cell receptor; T1, transitional 1 B cell; T2, transitional 2 B cell; BAFF, B cell 
activating factor; MZ B, marginal zone B cell; FO B, follicular B cell; GC, germinal center; SHM, 
somatic hypermutation; CSR, class switch recombination; Mem B, memory B cell; PC, plasma cell.  
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B-cell effector functions  
 
T-cell dependent immune response  
B-cell response to T-cell dependent antigens involves the formation of germinal 
centers (GCs); specialized microstructures composed of separate B- and T-cell zones 
in secondary lymphoid organs (Fig. 3). In the GC reaction, the affinity and effector 
functions of antibodies are modified to optimize response to the antigen. Upon antigen 
encounter, B cells and T cells specific for the antigen accumulate at the border between 
the B- and T-cell zones and cognate B-T-cell interaction involving CD40-CD40L 
binding leads to proliferative expansion of B cells [60]. These expanded cells can then 
either assume an early memory phenotype, become short-lived plasma cells or initiate 
a GC reaction [61, 62]. During the GC reaction, rapidly proliferating B cells first 
undergo somatic hypermutation where the variable region of the BCR is modified 
which results in affinity maturation, i.e. increased binding affinity of the antibody. The 
B cells are then selected for survival and expansion based on the capacity of the 
antibodies to bind to antigens presented by follicular DCs. In addition, survival is also 
dependent on signals from follicular T cells (Tfh), including the production of IL-4, 
IL-21 and CD40-CD40L interaction (Reviewed in[63]). Cells that are not positively 
selected will undergo apoptosis followed by phagocytosis by macrophages, while cells 
that are selected will undergo class switch recombination. Class switch recombination 
involves changing of the constant part of the IgHC from IgM isotype to IgG, IgE, or 
IgA isotypes, thus altering the effector function of the antibody. Both somatic 
hypermutation and class switch recombination involve DNA strand breaks that require 
the enzyme activation-induced cytidine deaminase (AID) [64]. Before exiting the GC, 
the B cells will acquire plasma cell or memory B-cell phenotype (Fig. 3). 
Differentiation into plasma cells is initiated by down-regulation of the B cell gene 
expression program, and up-regulation of plasma cell genes, which is mainly achieved 
by the transcription factor B lymphocyte-induced maturation protein 1 (Blimp-1) [65, 
66]. Regulation of differentiation into memory B cells is not fully understood; 
however, the transcription factor activated B cell factor 1 (ABF-1) is implicated in the 
decision to acquire memory B phenotype through suppression of plasma cell 
differentiation [67]. After antigen-encounter, antigen-specific plasma cells and 
memory B cells survive during an extended period of time; plasma cells are found in 
certain survival niches in the bone marrow where they produce of antibodies [68]. 
Upon repeated encounter of the antigen, this continuous production of antibodies 
enables instant response. Memory B cells do not secrete antibodies, but instead 
primarily circulate in the blood.  
 
T-cell independent immune response 
MZ B cells and B1 B cells constitute two B-cell subsets important for response to T-
cell independent antigens such as microbial carbohydrates. MZ B cells reside in the 
MZ of the spleen at the border of circulation, where they function as sentinels [69],  
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while B1 cells are mainly found in the peritoneal and pleural cavity [70]. MZ B cells 
and B1 B cells together provide a rapid, but rather unspecific, innate-like response 
through the production of low affinity poly-reactive antibodies of IgM isotype [71]. 
These antibodies are termed natural antibodies as they have shown to be present also in 
the absence of pathogens [72].  
 
Antigen presentation  
B cells are able to act as APCs and activate naïve CD4+ T cells [73]. Antigen-
presentation by B cells comprises the binding of the antigen to the BCR and BCR-
ligation, which induces internalization through receptor-mediated endocytosis. The 
antigen is then processed in endosomal vesicles into peptides, which are bound to and 
presented on MHCII molecules on the B cells (Reviewed in [74]). However, the 
significance of antigen-presentation by B cells in the activation of T cells has been 
debated. The finding that CD4+ T-cell priming was not compromised when MHC 
molecules were lacking only on B cells [75], suggested that DCs as potent activators of 
naïve T cells were ultimately responsible for T-cell priming. However later studies 
have shown that some protein antigens are preferentially presented by B cells [76], 
leading to the conclusion that, in certain circumstances, B cells indeed contribute 
significantly as APCs.  
 
B-cell mediated immune regulation 
In addition to acting as positive regulators of the immune system, B cells can also 
mediate negative regulation of immune responses. A regulatory B-cell subset has been 
described in mice, identified by their ability to produce and secrete IL-10 [77] and a 
similar IL-10-producing B-cell population has also been found in humans [78]. IL-10 
down-regulates the production of pro-inflammatory cytokines, such as IFNγ [79] and is 
also important for maintaining the immune-suppressive function of regulatory T cells 
(Tregs) [80]. Although a regulatory B-cell population can be found in a naïve setting, 
these cells are mostly implicated in autoimmunity.  
 
Estrogen, SERMs and B cells 
Estrogen deficiency caused by ovariectomy leads to an increase in B-cell development 
in the bone marrow [81]. On the contrary, increased levels of estrogen due to 
pregnancy or estrogen treatment cause a reduction in B lymphocytes in the bone 
marrow [82-84]. Studies have determined that the inhibitory effect occurs at the IL-7 
sensitive differentiation stage of pro-B cells to pre-B cells [83, 85]. Without stromal 
cells that produce IL-7, the estrogen-mediated inhibition of the transition from pro-B to 
pre-B cells does not occur, indicating that estrogen inhibits B-cell development 
indirectly through stromal cells [83]. Estrogen also alters splenic B-cell populations; 
there is a prominent decrease in the T1 B-cell population as well as an increase in MZ 
B-cell population in estrogen-treated ovx mice[86]. The expansion of MZ B cells can 
be connected to a reduction in BCR signalling; estrogen up-regulates CD22 and SHP-1  



	  
	  
	  

12	  

in B cells, two negative regulators of BCR signalling, and also reduces the 
phosphorylation of extracellular-signal regulated kinases 1/2 (Erk1/2) after BCR 
activation in transitional B cells [87-89]. In addition, transitional B cells in estrogen-
treated mice show an increased resistance to BCR-mediated apoptosis, due to an up-
regulation of the anti-apoptotic protein B cell lymphoma 2 (Bcl-2), which also 
contributes to the increase in MZ B cells [87, 89]. In addition, the levels of the B-cell 
trophic factor BAFF are increased by estrogen, both in the spleen [86] and in serum 
(Paper I). Interestingly, it has also been shown that estrogen can break B-cell tolerance. 
When mice transgenic for a pathogenic antibody were treated with estrogen, these 
mice had increased serum titers of the pathogenic antibodies compared with untreated 
transgenic mice. This suggests that estrogen led to the escape from tolerance 
mechanisms of B cells carrying the pathogenic antibodies [90]. Moreover, addition of 
estrogen leads to elevated numbers of antibody-secreting cells in bone marrow and 
spleen in both ovx and intact animals [91, 92] and up-regulates the expression of AID 
in spleen, leading to increased somatic hypermutation and class switch recombination 
of the Ig locus [93].  
 
 
 

 

 
Bone marrow B cells decrease in ovx and sham-operated mice after administration of 
raloxifene [92], lasofoxifene, or bazedoxifene (Paper I). However, while estrogen 
decreases all populations from the pre-BI cells to immature B cells in the bone 
marrow, raloxifene and lasofoxifene retain normal numbers of pre-BI cells and large 
pre-BII cells, while significantly decreasing small pre-BII cells and immature B cells.  
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Figure 4. Effects of estrogen and SERMs on B-cell development and maturation.  
Estrogen inhibits B-cell development at the pro-B to pre-BI stage and increases levels of BAFF, MZ B 
cells and antibody-secretion. SERMs suppress B-cell development at a later stage than estrogen and 
lack effects on BAFF, MZ B cells and antibody-secretion.  E2, estradiol; Pro-B, progenitor B cell; pre-
B, precursor B cell; T1, transitional 1 B cell; T2, transitional 2 B cell; BAFF, B cell activating factor; 
MZ B, marginal zone B cell; FO B, follicular B cell.  
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Bazedoxifene only decreases the immature B-cell population (Paper I) (Fig. 4). All 
three SERMs decrease the number of T1 cells, but do not alter the MZ population in 
the spleen (Paper I) (Fig. 4).  
In addition, no increase in antibody-secreting cells ([92], Paper I) or serum levels of 
BAFF was noted in mice treated with SERMs (Paper I). In conclusion, SERMs 
suppress B lymphopoiesis later in development than estrogen, thus affecting fewer 
populations, and also lack increasing effects on antibody production (Fig. 4). The 
effects of SERMs on BCR signalling components and splenic expression of Bcl-2 and 
AID remain to be clarified, as well as their effects on B-cell tolerance.  
 
T cells – mediators of cellular immunity 
T cells provide cell-mediated immune responses. Similarly to B cells, T cells also carry 
an antigen-specific receptor, termed the T-cell receptor (TCR). The antigen 
specificities of TCRs are, as for BCRs, achieved through gene recombination during 
lymphopoiesis; however, the TCRs are not secreted like most BCRs, but rather 
participate in immune responses through mediation of cytokine production and 
cytotoxicity.  
 
T-cell development  
T-cell development occurs in the thymus; a primary lymphoid organ consisting of a 
cortex and a medulla separated by the vascularized corticomedullary junction[94]. 
Classically, T-cell development is dependent on the constant migration of multipotent 
lymphoid progenitors from the bone marrow to the thymus (Reviewed in [95]); 
however, more recent studies have established that thymopoiesis also can occur from 
intrathymic T-cell precursors, independent of immigrating stem cells [96]. The earliest 
T-cell progenitors lack expression of the TCR and the TCR co-receptors CD4 and 
CD8, and are termed double-negative (DN) T cells. During T-cell development, DN 
cells migrate through the thymus and can be divided into four stages based on the 
expression of CD25 and CD44 [97] (Fig. 5). The earliest T-cell precursors, DN1 cells, 
express CD44 but lack the expression of CD25. These cells are found in the inner 
cortex and move outwards through the cortex to enter the DN2 stage, now expressing 
both CD25 and CD44. Both the DN1 cells and a subpopulation of the DN2 population 
show broad lineage plasticity by retaining myeloid and NK-cell potential [98]. Notch-
signalling has been defined as the crucial factor for maintaining T-cell commitment 
[99], and this first part of T-cell development is therefore Notch-dependent. The next 
developmental stage is the DN3 population, which expresses CD25, but low levels of 
CD44. Here, successful rearrangement of the TCR β locus leads to the expression of a 
pre-TCR, while the rearrangement of γ and δ segments leads to the expression of a 
γδTCR and commitment to the γδT lineage. When the cells lose both CD25 and CD44 
they are termed DN4 cells and can be found in the outer cortex. Here, rearrangement of 
the TCRα gene segments occurs, leading to the expression of an αβTCR. These cells 
also acquire CD4 and CD8 and become double-positive (DP) thymocytes committed to 
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the αβ T lineage (Fig. 5). Cells that have acquired the γδT cell fate do not enter the DP 
stage [100]. Subsequently, the DP cells go through positive and negative selection by 
interacting with cortical thymic epithelial cells presenting self-peptides on their MHCI 
or MHCII molecules. Interaction with MHCI or MHCII with moderate affinity leads to 
positive selection and commitment to CD8 or CD4 single positive (SP) cells, 
respectively. No binding leads to death by neglect, and too strong binding leads to 
negative selection. CD8 and CD4 SP cells then migrate to the medulla, where they 
interact with medullary thymic epithelial cells (Fig. 5) [95, 101]. These epithelial cells 
express a large variety of self-antigens, so called tissue-restricted antigens (TRAs) 
[102]. Expression of TRAs is regulated by the transcription factor autoimmune 
regulator (AIRE) [103]. The cells that bind to the self-peptide/MHC complexes will be 
negatively selected, while the cells that do not bind will survive [95, 101], constituting 
the second tolerance checkpoint. After thymic selection, the naïve CD8+ and CD4+ 
cells are exported to the periphery. In order to become activated, the T cell needs to 
interact with a cell carrying a MHC molecule presenting the antigen specific for the 
TCR.  
 
T-cell effector functions  
 
Cytokine production  
CD4+ T cells are termed helper T (Th) cells, since they provide help to other immune 
cells through production of cytokines. CD4+ T cells recognize antigens presented on 
MHCII molecules, expressed on APCs. Th activation requires TCR signalling and co-
stimulation through interaction between CD28 on Th cells and CD80 and CD86 on 
APCs. After the APC interacts with the CD4+ T cell, the T cell differentiates into one 
of the Th subsets, which is directed by the surrounding cytokine environment. The 
cytokines are produced by APCs as well as other cells. Traditionally, Th cells were 
thought to differentiate into two subsets; T helper 1 (Th1) cells and T helper 2 (Th2) 
cells, categorized by their different cytokine profiles and functions [104]. Presence of 
IL-12 and IFNγ causes activation of the transcription factor Tbet and differentiation 
into Th1 cells which produce IFNγ [105] that activates CD8+ T cells. Th1 cells also 
produce granulocyte-macrophage colony-stimulating factor (GM-CSF) that activates 
macrophages (Fig. 5). Thus, Th1 cells are important for defence against intracellular 
pathogens. Presence of IL-4 induces activation of the transcription factor GATA3 
leading to differentiation into Th2 cells that produce IL-4 and IL-13 [106] (Fig. 5), 
cytokines important for humoral immunity and protection against parasites. More 
recently, IL-17-producing T cells were defined as a distinct Th subset, termed Th17 
cells [107]. Th17 cells provide protection against extracellular bacteria and 
differentiation is induced by IL-6 together with TGFβ and activation of the 
transcription factor RORγt [108, 109] (Fig. 5). CD4+ T cells can also develop into Tfh 
cells, which are crucial for the formation and regulation of the GC reaction and hence 
play an important role in humoral immune response. Tfh differentiation is dependent 
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on the transcription factor Bcl-6, IL-21 and IL-6 [63]. In addition, CD4+ T cells can 
differentiate into inducible Tregs. This cell type will be described under “T cell 
immune regulation”.  
 

 
 
Cytotoxicity  
CD8+ T cells are referred to as cytotoxic T cells based on their ability to induce 
apoptosis and necrosis of infected cells and tumour cells, making them important for 
the protection against intracellular microbes such as viruses. The CD8+ cell is first 
primed through interaction with an APC expressing an MHCI molecule carrying the 
TCR-specific antigen. Since MHCI is expressed on all nucleated cells, this enables 
infected cells to display the antigen and activate primed CD8+ T cells. This leads to 
cell death of the target cells either through the secretion of granules containing 
cytotoxic proteins or the expression of Fas-ligand, inducing apoptosis.  
 
T-cell mediated immune regulation 
In 1995, CD4+CD25+ T cells were found to be essential for suppression of 
autoimmunity, since lymphopenic mice reconstituted with CD4+CD25- T cells 
developed severe autoimmunity whereas co-transfer of CD4+CD25+ T cells provided 
protection from autoimmunity [110]. The transcription factor forkhead box P3 (FoxP3) 
was later determined as a unique marker of CD4+CD25+ Tregs that controls both 
development and the suppressive functions of this population [111]. Tregs can be 

Figure 5.  Schematic overview of T-cell development and Th differentiation.   
T cells develop in the thymus and interaction with epithelial cells leads to positive and negative 
selection and differentiation into CD4+ or CD8+ T cells. CD4+ T cells interact with APCs in 
secondary lymphoid organs and can acquire Th1, Th2, Th17, Treg or Tfh phenotype based on the 
cytokine environment. DN, double- negative; pre-TCR, pre-T cell receptor; TCR, T-cell receptor; DP, 
double-positive; SP, single positive; cTEC, cortical thymic epithelial cell; mTEC, medullary thymic 
epithelial cell; LN, lymph node; APC, antigen-presenting cell; Th, helper T; Treg, regulatory T, Tfh, 
follicular helper T.  
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derived either from the thymus, i.e. natural Tregs or be generated in the periphery, i.e. 
induced Tregs (Fig. 5). In the thymus, the selection into natural Tregs has been 
suggested to be an alternative to deletion since the thymocytes developing into Tregs 
bear a TCR with a high affinity for self-antigen [112]. The generation of induced Tregs 
in the periphery is thought to occur in the presence of TGFβ (Fig. 5), and involves 
interactions with non-self antigens and some degree of co-stimulation from APCs 
[113]. Tregs can regulate immune responses by using cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) to block the interaction between CD80/CD86 on APCs 
and CD28 on T cells, thus inhibiting T cell activation [114]. Furthermore, Tregs can 
produce anti-inflammatory cytokines such as IL-10 and TGFβ [115].  
 
T-cell dependent inflammation 
Cell-mediated inflammation is characterized by the interaction between cells of the 
innate immune system and T cells where T cells are crucial as cytokine producers. The 
delayed-type hypersensitivity (DTH) model is useful for assessing cell-mediated 
inflammation, also referred to as T-cell dependent inflammation. The cutaneous DTH 
reaction comprises a sensitization step and an elicitation step (Fig. 6). In the 
sensitization step, the hapten, a naturally occurring or synthetic small molecule, which 
is not immunogenic in itself, binds to endogenous proteins [116]. This leads to 
cytokine production by keratinocytes and subsequent activation of APCs (Langerhans 
cells, dermal DCs and tissue-resident macrophages), which internalize and process the 
hapten-protein complex (fig. 6, step 1-2) [117, 118]. These cells then migrate to the 
lymph nodes and during migration they mature to APCs capable of effectively 
presenting hapten-peptides to T cells in the lymph nodes, which leads to clonal 
expansion of hapten-specific T cells [119] (Fig. 6, step 3-5). The elicitation phase is 
induced by re-exposure to the hapten and leads to migration of antigen-specific T cells 
to this site (Fig. 6, step 6-7). Here, the T cells start to produce cytokines derived from 
Th1, Th2 and Th17 cells (Fig. 6, step 8). Mice devoid of IFNγ, IL-4, or IL-17 all show 
a decreased DTH response, implying that all these Th subtype associated cytokines 
play an important role in mediating the inflammatory reaction [120]. In addition, the T 
cells also trigger cells resident at the site of the challenge to produce chemokines such 
as MCP-1 (monocyte chemo-attractant protein 1), altogether leading to massive 
infiltration of leukocytes, importantly monocytes, neutrophils and macrophages (Fig. 
6, step 9). 
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Estrogen, SERMs and T cells  
In both animals and humans, the thymus involutes dramatically during pregnancy. 
[121]. Histological studies of the mouse thymus have shown that during pregnancy, the 
size of the cortex is reduced while the medulla is increased, implying a loss of cortical 
thymocytes [122]. The decrease in thymocytes was shown to be due to a block in T-
cell development with a preferential loss of DP cells, an effect that has been at least 
partly ascribed to the increase in pregnancy-associated hormones such as estrogen 
[123]. Indeed, when mice were treated with estrogen, thymic T-cell development was 
suppressed, seen as a decrease in T-cell numbers and a reduced proportion of DP cells, 
but an increase in the percentage of CD4+ and CD8+ SP cells and of DN cells [124, 
125]. When DN cells were divided into subpopulations, a clear increase in the earliest 
stage, the DN1 stage, was noted, while the remaining stages DN2, DN3 and DN4 were 
reduced by estrogen [125]. Conversely, removal of endogenous estrogen by ovx results 
in increased weight and cellularity of the thymus [126]. The increase in thymus 
cellularity is associated with a shift towards increased DP cells and a decrease in DN 
and SP cells [126]. Several mechanisms have been suggested by which estrogen 
induces thymic atrophy, e.g. an increased apoptosis was observed in thymocytes after a 
single-dose of estrogen [127].  

Figure 6. Schematic overview of DTH reaction.  
The delayed-type hypersensitivity (DTH) reaction comprises a sensitization phase and an elicitation 
phase. The sensitization phase includes 1) hapten application, 2) binding of the hapten to endogenous 
proteins and uptake by APCs, 3) APC migration to the LN and 4) presentation of the hapten to T cells 
followed by 5) clonal expansion of hapten-specific T cells. The elicitation phase includes 6) re-
application of the hapten, 7) migration of hapten-specific T cells to this location, 8) secretion of 
cytokines and chemokines by T cells and 9) leukocyte infiltration. APC, antigen-presenting cell; LN, 
lymph node  
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However, other studies have failed to detect an increase in apoptosis, and instead found 
a lower amount of thymic homing progenitors in the bone marrow as well as a reduced 
proliferation of thymocytes [124].  
 
Estrogen has multiple effects on peripheral T cells. In low doses, estrogen increases the 
proliferation of antigen-specific CD4+ T cells in lymph nodes and the IFNγ production 
from these cells [128]. However, in higher doses, similar to pregnancy levels, estrogen 
has shown to inhibit the TNF production from T cells [129], and to increase IL-4 
secretion and expression of GATA3 in CD4+ T cells [130], rather indicating that 
estrogen increases anti-inflammatory responses. In line with this, estrogen also 
stimulates the induction of Tregs and increases FoxP3 expression [131, 132]. Indeed, 
during pregnancy there is an increased secretion of Th2-related cytokines [133] and an 
expansion of Tregs [134], thus providing maternal tolerance to the fetus. 
 
In addition to the effects on thymic T-cell development and T-cell effector functions in 
a non-inflammatory setting, estrogen also has well-documented effects on T cell-
dependent inflammation. In mice, estrogen treatment potently inhibits cutaneous T-cell 
dependent delayed type hypersensitivity (DTH) reaction [135, 136] (Fig. 7).  
 
The mechanism for the suppressive effects of estrogen on DTH is not clear, but 
estrogen does not directly target T cells in DTH, as female SCID (severe combined 
immunodeficient) mice reconstituted with thymocytes from estrogen-treated mice did 
not show a decrease in the DTH response [137]. Instead, the estrogen-mediated 
inhibition of DTH is believed to involve a decrease in the antigen presentation to T 
cells, as APCs from estrogen-treated mice induced a lower proliferation of hapten-
specific T cells in response to the hapten in vitro, compared to controls [138]. In 
addition, there was a decreased production of IL-2 and IFNγ, but an increased 
production of IL-10, in lymph nodes of estrogen treated mice subjected to DTH [138, 
139]. This suggests that an altered cytokine profile together with a decreased APC 
function are two important mechanisms by which estrogen mediates the suppression of 
T-cell dependent inflammation.  
 
The effects of SERMs on T-cell development differ from the effects of estrogen. 
Treatment with raloxifene leads to a minor thymus atrophy, but the DN1-4, DP and SP 
populations remain unchanged ([136], Paper II). Lasofoxifene, but not bazedoxifene, 
also induces a reduction in thymus weight, but none of the third-generation SERMs 
mediate any changes in the thymic T-cell populations (Paper II).  
 
The effects of SERMs on T-cell effector functions remain to be studied, however, it is 
clear that raloxifene, lasofoxifene, and bazedoxifene all completely lack suppressive 
properties on T-cell dependent inflammation, as treatment with these compounds leads 
to a normal DTH response ([136], Paper II). 
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Figure 7. Effects of estrogen and SERMs on T-cell development and DTH.   
Estrogen increases the proportion of DN1 cells, decreases the proportion of DN2, DN3 and DP cells 
and increases the proportion of CD4 and CD8 SP cells. Estrogen also suppresses the DTH reaction. 
SERMs do not alter any thymic T cell populations and do not inhibit suppress the DTH reaction. E2, 
estradiol; DN, double-negative, DP, double-positive; SP, single-positive; DTH, delayed-type 
hypersensitivity.  
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BONE AND OSTEOIMMUNOLOGY 
 
Bone  
The skeleton has a number of functions; it provides structural support for the body, 
protection of inner organs, and functions as storage for calcium and phosphate, thereby 
controlling mineral homeostasis. Bone also serves as the location for hematopoiesis, as 
the bone marrow is located on the inside of long bones (Fig. 8). Bone consists of a 
collagen protein scaffold, hardened by the mineral hydroxyapatite, and of three 
different cell types; osteoblasts, osteoclasts, and osteocytes. There are two types of 
bone, both composed of the same constituents, but with functional differences; 
trabecular (or spongy) bone, which is more porous and metabolically active, while 
cortical (or dense) bone is the hard outer layer of bones with less metabolic activity 
(Fig. 8).  

Bone is a highly dynamic structure, subjected to constant remodelling. Osteoblasts are 
the cells responsible for bone formation. They develop from mesenchymal progenitor 
cells and several signalling pathways are of importance for osteoblastogenesis such as 
the wnt (wingless type) and BMP (bone morphogenetic protein) signalling pathways 
[140, 141]. Osteoblasts produce extracellular proteins including osteocalcin and type I 
collagen. This extracellular matrix, or osteoid, is then mineralized through 
accumulation of hydroxyapatite, a process controlled by osteoblast expression of 
alkaline phosphate [142]. Bone formation can be assessed by measuring the 
concentration of osteocalcin and procollagen pro-peptides such as procollagen I intact 
N-terminal (PINP) in serum [143]. When osteoblasts are entombed in the bone matrix, 
they develop into osteocytes, which sense mechanical loading on the bone and adjust 
bone remodelling via up- or down-regulation of sclerostin, a potent inhibitor of bone 

Figure 8. Longitudinal section through femur.  
Illustration of the structure of long bones.  
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formation [144]. Osteoclasts are bone-resorbing cells, which originate from 
hematopoietic stem cells. Osteoclastogenesis is dependent on two factors; macrophage 
colony stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) 
[145]. M-CSF and RANKL binds to receptors on pre-osteoclasts and stimulates 
differentiation, proliferation, and survival [146]. The binding of RANKL to its receptor 
RANK is inhibited by the decoy receptor osteoprotegerin (OPG) [147]. RANKL is 
expressed by many different cell types in response to osteoclastogenic factors, such as 
inflammatory cytokines. Resorption of bone involves the degradation of collagen I, 
and serum concentration of the collagen I fragment C-terminal telopeptide (CTX-I) can 
be used as a measurement of bone resorption.  
 
Cartilage  
At the ends of long bones, the presence of articular cartilage provides a smooth surface 
towards the joint, which reduces friction during movement. Articular cartilage consists 
of a single cell type, the chondrocyte, together with an extracellular matrix, which is 
composed of structural macromolecules such as collagens, proteoglycans, and non-
collagenous proteins. Collagen type II is the main collagen in articular cartilage 
making up collagen fibrils that gives the cartilage its tensile strength. Proteoglycans 
bind to fluid to provide stiffness of the tissue. Among the non-collagenous proteins 
present in articular cartilage, cartilage-oligomeric matrix protein (COMP) is a well-
studied component, which functions to stabilize the collagen network. COMP can be 
measured in serum as a marker of cartilage degradation [148].  
 
Osteoporosis  
Osteoporosis arises as a consequence of decreased net bone formation, resulting in a 
reduction of BMD and bone strength, which causes an increased susceptibility to 
fractures. According to the WHO classification, the diagnosis criterion for osteoporosis 
is a BMD lower than 2.5 standard deviations below the mean value of young adults 
[149]. The risk of developing osteoporosis increases with age; after the age of 40, bone 
resorption starts to exceed bone formation. Consistent with the important role of 
estrogen as a positive regulator of bone metabolism, the prevalence of osteoporosis is 
highest in postmenopausal women. A number of other factors also contribute to an 
increased risk of developing osteoporosis, e.g. lifestyle factors such as low nutrition 
and tobacco use, metabolic or inflammatory conditions (hyperparathyroidism, RA), 
and the use of medications such as glucocorticoids [150]. Osteoporosis therapy 
includes bisphosphonates, strontium ranelate, estrogen-containing HRT and SERMs. 
Bisphosphonates act to induce apoptosis in osteoclasts, while strontium ranelate 
increases bone formation through osteoblasts and reduces the bone resorptive function 
of osteoclasts [151, 152]. To assess osteoporosis and evaluate anti-osteoporosis 
therapy, guidelines have been postulated that describe useful serum markers of bone 
resorption and bone formation [153].  
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Osteoimmunology 
Osteoimmunology is an interdisciplinary field encompassing the interactions between 
the skeletal system and the immune system. An obvious reason for the interaction 
between these two systems is the location of the bone marrow, the site of immune cell 
formation, in the interior of long bones. Indeed, a number of regulatory pathways have 
been identified that are shared between the skeletal system and the immune system. 
One factor of particular interest in the field of osteoimmunology is RANKL, a crucial 
cytokine for osteoclastogenesis. RANKL is expressed by the bone-forming osteoblasts 
[154], but also by immune cells such as activated T cells, and has shown to play an 
important role in the interaction between T cells and DCs by enhancing the function of 
DCs [155]. Mice deficient in RANKL develop severe osteopetrosis due to a block in 
osteoclastogenesis, but also show an immunological phenotype with abnormal 
development of secondary lymphoid organs, thus highlighting the important role of 
this cytokine in both systems [156]. RANKL expression by osteoblasts can be induced 
by vitamin D3 and parathyroid hormone [157], but also by cytokines that increase 
during inflammatory conditions, such as TNFα [158]. Also, IL-1, IL-6 and IL-17 are 
osteolytic cytokines [159-161]. The RANKL decoy receptor OPG is not only produced 
by osteoblasts, but also by B cells, and the production is stimulated by CD40-CD40L 
ligation [162]. Indeed, mice deficient in B cells, CD40 or CD40L present with 
osteoporosis, suggesting that B cells and B-T-cell interactions are important in bone 
homeostasis [163]. In addition, transcription factors such as the NFκB and NFAT 
families, as well as the signal transducer and activator of transcription 1 (STAT1), 
have implications in both bone and the immune system [164].  
 
Although much attention has been paid to the influence of immune cells and cytokines 
on the skeletal system, conversely, bone cells have also shown to be able to regulate 
the immune system. Osteoblasts have been identified in the hematopoietic stem cell 
niche and have shown to correlate with the number of hematopoietic stem cells [165]. 
Furthermore, osteoclasts, which similarly to DCs derive from the 
monocyte/macrophage lineage, have been reported to be able to up-regulate co-
stimulatory molecules for T-cell activation and function as APCs [166]. In addition, B-
cell apoptosis is increased in the absence of sclerostin expression from osteocytes 
[167].  
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Estrogen, SERMs and bone  
Estrogen receptors are found on all types of bone cells [168] and estrogen functions as 
an important regulator of bone growth in adolescence and of bone remodelling in 
adults. Estrogen deficiency is the main cause of bone loss in postmenopausal women, 
and also contributes to the development of osteoporosis in elderly men [169]. Bone 
resorption is decreased by estrogen in multiple ways; estrogen directly inhibits 
osteoclast activity and induces osteoclast apoptosis [170] and also down-regulates pro-
inflammatory cytokines such as IL-1, IL-6 and TNFα, which induce osteoclastogenesis 
[171].  
In addition, estrogen stimulates Treg differentiation and TGFβ production, which 
inhibit bone resorption by osteoclasts [172, 173] Consequently, menopause or 
ovariectomy in mice leads to stimulation of bone resorption. T cells have been reported 
to play an important role in ovariectomy-induced bone loss, as ovx mice have an 
increased number of TNFα-producing T cells [129]. Of note, estrogen deficiency also 
leads to increased bone formation through up-regulation of osteoblastogenesis [174]; 
however, this increase does not exceed the increased bone resorption, leading to a net 
loss of bone. In postmenopausal women, HRT mediates an increase in lumbar BMD 
and a reduction in bone turnover markers [175]. Similarly, estrogen treatment of 
castrated animals leads to an increase in BMD and decreased serum levels of bone 
turnover markers [176].  
 
In postmenopausal women, raloxifene, lasofoxifene and bazedoxifene increase lumbar 
spine BMD [24, 31, 36] and also decrease bone turnover markers [177-179]. 
Raloxifene decreases the risk of developing vertebral fractures [23, 24], lasofoxifene 
decreases the risk of both vertebral and non-vertebral fractures in postmenopausal 
women [31] and bazedoxifene decreases the risk of vertebral fractures in 
postmenopausal women [36] and the risk of non-vertebral fractures in high-risk 
fracture patients [37]. 
 
In mice subjected to ovariectomy, all three SERMs cause an increase in total BMD 
([28, 34, 35, 40], Paper I); however, markers of bone resorption and bone formation 
have not been assessed.  
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AUTOIMMUNITY 
 
The immune system is designed to react in a controlled manner to invading pathogens, 
while not responding to self-tissues. A number of regulatory mechanisms function to 
maintain unresponsiveness, or tolerance, to self. These mechanisms include central and 
peripheral tolerance, where self-reactive B- and T cells are eliminated, as well as 
regulatory cells (e.g Tregs) that act to suppress self-reactive effector cells. However, 
when tolerance is abrogated, autoimmunity arises. There are a number of autoimmune 
diseases, where rheumatoid arthritis (RA) is one of the most prevalent.  
 
Rheumatoid Arthritis (RA) 
RA is a chronic systemic inflammatory disease characterized by synovitis, 
autoantibody production and destruction of bone and cartilage. The worldwide 
prevalence is around 0,5-1% and the female to male ratio is 3:1. Both genetic and 
environmental factors contribute to development of disease. Diagnosing RA involves 
assessing synovitis and the presence of autoantibodies and acute-phase reactants in 
serum according to the guidelines defined in the 2010 ACR-EULAR classification 
criteria for Rheumatoid Arthritis [180]. The autoantibodies included in the criteria are 
Rheumatoid Factor (RF) and Anti-Citrullinated Protein Antibodies  (ACPA). RF is an 
antibody against the Fc part of IgG while ACPA is a class of antibodies against 
proteins where the amino acid arginine has been post-translationally modified to 
citrulline [181]. RA patients can be divided into ACPA-positive and ACPA-negative, 
which differ in risk factors, prognosis, and treatment response. For example, in ACPA-
positive patients, the presence of the HLA-DRB1 locus and especially alleles with the 
amino acid motif QKRAA, known as the shared epitope, is associated with an 
increased susceptibility [182]. In addition, ACPA-positive patients are more at risk of 
developing erosive disease [183].  
 
The immunopathogenesis of RA includes both cells of the innate immune system 
(neutrophils, macrophages and DCs) as well as cells of the adaptive immune system 
(B- and T cells).  
 
B cells in RA 
An obvious role for B cells in the pathogenesis of RA has been demonstrated by the 
efficacy of the B-cell depleting therapy rituximab a CD20-specific monoclonal 
antibody that depletes all B-cell subsets except plasma cells, which are CD20- [184]. 
The significance of B cells for disease has been further supported by the resistance of 
B-cell deficient mice to experimental arthritis [185]. B cells contribute to disease in 
multiple ways; most importantly they are responsible for the production of 
autoantibodies and thereby subsequent immune complex formation. In addition to 
ACPA, antibodies against collagen type II (CII) have been detected in RA patients 
[186]. 
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 B cells are also found in the synovia of RA patients where they contribute to the 
inflammation by local production of cytokines such as IL-6 and TNFα. In some 
patients, the synovial lymphocytes form diffuse infiltrates, while in other patients the 
B- and T cells form aggregates similar to the microstructures formed in secondary 
lymphoid organs, where GC reactions take place [187], leading to an on-going 
production of class-switched antibodies [188]. In RA patients, production of B-cell 
survival and activation factors such as BAFF occurs in synovial membranes containing 
ectopic GCs [189, 190]. Furthermore, the T-cell activation in the rheumatoid arthritis 
synovia is B-cell dependent, as in the absence of B cells, the synovial T cells remain 
inactivated [191]. In addition, B cells can act as APCs and antigen presentation by B 
cells has shown to be necessary for severe and persistent disease in experimental 
arthritis [192]. Interestingly, a pre-existing B-cell reactivity against CII has been 
detected in naïve mice. This response was mediated by MZ B cells, which rapidly 
expanded after immunization with CII, suggesting an important role for this subset of 
B cells in the initiation of arthritis [193]. In addition, arthritic mice lacking IL-10-
producing regulatory B cells suffered from more severe inflammation, which was 
associated with an increase in Th1-and Th17 cells and a decrease in Tregs [194]. 
 
T cells in RA 
RA was traditionally described as a T cell-driven disease. The synovia of RA patients 
contains a large proportion of T cells as well as cytokines and co-stimulatory 
molecules required for T-cell activation [195], suggesting that the synovitis is 
characterized by sustained T-cell activation and generation of both memory T cells and 
effector T cells. Traditionally, Th1 cells have been regarded as the main mediators of 
the synovial inflammation in RA, through their production of pro-inflammatory 
cytokines such as IFNγ. However, studies have revealed an increased susceptibility to 
experimental arthritis and accelerated disease in mice lacking Th1-associated genes 
such as the IFNγ receptor [196-198], suggesting that Th1 cells are in fact not the main 
contributors to disease. Instead, attention was drawn to Th17 cells, as producers of the 
cytokines IL-17, IL-23 and TNFα. Interestingly, mice defect in Th17-associated genes 
are resistant to experimental arthritis and inhibiting IL-17 leads to a suppression of 
disease [199, 200], while overexpressing IL-17 leads to an aggravated inflammation 
[201]. This strongly implies a crucial role for Th17 cells in the pathogenesis of RA. IL-
17 can be implicated in the development of synovial inflammation by stimulating the 
production of IL-8 from synovial cells, which attract neutrophils [202]. Tregs have 
been shown to be able to suppress disease in animal models of RA [203]. In humans, 
Tregs are increased in the joints of RA patients; however, the presence of 
inflammatory cytokines such as IL-6 and TNF reduces the immune-suppressive 
function of the Tregs [204]. Also γδΤ cells have been implicated in development of 
experimental arthritis as depletion of γδT cells improved arthritis. A subset of γδT cells 
produces IL-17 and this subset most likely contributes to pathogenesis in arthritis [205-
207].  
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Bone destruction and osteoporosis in RA 
Several skeletal involvements are found in RA, including bone erosions and 
periarticular bone loss. These features are mediated by a number of factors present in 
the RA synovia. Expression of the osteoclastogenic factors M-CSF and RANKL [154, 
208, 209], strongly contributes to an increased number of mature osteoclasts in the 
synovial tissue and bone resorption. In addition, local production of ACPA has been 
associated with an increased differentiation of osteoclast precursors into mature 
osteoclasts [210], which is in line with fact that RA patients positive for ACPA are 
more at risk of developing erosive disease [183]. Furthermore, a number of the pro-
inflammatory cytokines present in the RA joint have been associated with increased 
development and function of osteoclasts, including TNFα [211, 212], IL-1β [213], IL-
6 [214], and IL-17 [215]. Apart from local bone manifestations, RA can also lead to 
generalized osteoporosis, because of the systemic release of osteoclastogenic factors 
such as pro-inflammatory cytokines. In addition, generalized osteoporosis is also 
promoted by long-term treatment with glucocorticoids. Approximately 50% of 
postmenopausal women with RA suffer from generalized osteoporosis [216, 217]. 
Generalized osteoporosis is also more common in men with RA compared with the 
healthy population [218]. 
 
Treatment of RA 
Current therapies used to treat RA include non-steroidal anti-inflammatory drugs 
(NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs) and biologic 
treatments. NSAIDs and glucocorticoids are used to reduce pain, inflammation, and 
stiffness. DMARDs is a heterogeneous group of drugs, which include anti-metabolites 
such as methotrexate and anti-inflammatory and anti-microbial agents such as 
sulfasalazine. Biologic treatments act to selectively target pro-inflammatory cytokines, 
such as TNFα [219] and to inhibit B- and T-cells [184, 220].   
 
Animal models of RA  
There are several animal models of RA, each characterized by different disease 
mechanisms and applications.  
 
Collagen-induced Arthritis (CIA)  
CIA was first described in rats [221], and later in susceptible mouse strains carrying 
the MHCII haplotype H-2q  [222, 223]. To date, DBA/1 mice are most commonly used 
for the CIA model. CII is one of the main components of articular cartilage and 
subcutaneous injection with CII in Freund’s adjuvant leads to a cross-reactive 
autoimmune response to CII in joint cartilage appearing as a macroscopic polyarthritis. 
The model includes a primary immunization at day 0 and a booster immunization at 
day 21-28. Symptoms appear 18-25 days after the first immunization. The polyarthritis 
is characterized by synovitis and erosion of bone and cartilage. The disease generally 
peaks around day 40, followed by remission. T cells have a crucial role in the 
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pathogenesis of CIA [224]; however, CII-antibody production from B cells is also 
required for disease development [185]. This model is widely used and generally 
considered to show most similarities to human RA.  
 
Collagen-antibody induced arthritis (CAIA)  
The humoral immune system is an important contributor to experimental arthritis, as 
serum from mice immunized with CII, thus containing anti-CII antibodies, can induce 
arthritis in naïve mice [225]. Indeed, the CAIA model constitutes intravenous injection 
of isolated monoclonal CII-specific antibodies, potentiated by injection of 
lipopolysaccharide (LPS) [226-229]. This model results in mild arthritis that only 
represent the effector phase of the disease, as the priming of the immune system occurs 
before the production of antibodies. There are currently a number of combinations of 
monoclonal CII-antibodies commercially available to induce CAIA. Apart from 
representing the features of the effector phase of human RA, CAIA is also useful for 
the study of trabecular arthritis-induced bone loss (Grahnemo et al., submitted).   
 
Antigen-Induced Arthritis (AIA)  
AIA is a local mono-arthritis model induced by systemic immunization of an antigen 
in adjuvant, followed by intra-articular injection of the antigen. Classical antigens used 
in AIA are ovalbumin, methylated bovine serum albumin, and fibrin[230]. As AIA 
leads to decreased trabecular BMD locally in the joint together with immune cell 
infiltration, AIA can be used as a model to investigate the mechanisms and features 
periarticular inflammation–mediated bone loss [231]. 
 
Estrogen, SERMs and RA  
Estrogen has a complex role in autoimmunity with aggravating effects in some 
conditions, but protective effects in others. In patients with systemic lupus 
erythematosus (SLE), pregnancy and hormone replacement therapy aggravate disease 
[232, 233] and similarly, estrogen treatment increases disease and increases 
autoantibody levels in mice with SLE-like systemic autoimmunity [234]. However, in 
RA, many studies have established that estrogen instead ameliorates disease.  
 
Both clinical and experimental data support a protective role of estrogen in arthritis. 
The highest incidence of RA in women coincides with menopause when estrogen 
levels decline [235], while during pregnancy when estrogen levels are high, disease 
activity is often decreased [236, 237]. In addition, HRT and contraceptives have shown 
positive effects on disease [238, 239]. However, in other studies, HRT did not show 
ameliorating effects on postmenopausal RA [240], therefore the effects of HRT on RA 
remain inconclusive. In CIA, pregnancy has beneficial effects [241] and treatment with 
estrogen potently inhibits disease in CIA, CAIA and AIA [242-244]. Traditionally, 
since RA was considered to be a disease driven by Th1 cytokines, the shift from Th1- 
to Th2 response induced by estrogen was thought to play an important role in the  
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ameliorating effects of estrogen on disease [245]. However, since several studies have 
shown that Th1 cells and cytokines are not solely responsible for the pathogenesis of 
RA [196-198], this notion is questionable. In arthritic mice, estrogen has shown to 
decrease the proportion of neutrophils in the joint [246, 247] and to increase Th17 cells 
in the LN, possibly by retention of Th17 cells, leading to a decreased proportion of 
these cells in the joint [247]. Furthermore, in LN of estrogen-treated mice subjected to 
CIA, the B-cell population and CD8- DC population were expanded and both these cell 
types expressed higher levels of molecules associated with antigen-presentation 
compared with the same populations in healthy mice (Paper III). However, exactly 
how estrogen-mediated effects on DCs and B cells can be implicated in the 
amelioration of arthritis is unclear. When treatment with estrogen is initiated before 
immunization with CII, estrogen mediates a decrease in serum IL-6, but not when mice 
are treated therapeutically [248]. In addition to reducing the inflammation in RA, 
estrogen also has positive effects on inflammation-induced bone loss and cartilage 
destruction. HRT has shown to increase BMD in postmenopausal women with RA and 
treatment with estrogen increases both cortical and trabecular BMD in arthritic mice 
([248, 249], Paper III) and reduces the number of pre-osteoclasts in the bone marrow 
(Paper III). Moreover, estrogen inhibits cartilage destruction as demonstrated by 
decreases levels of COMP in estrogen-treated mice with CIA ([248], Paper III)  
 
Raloxifene, lasofoxifene and bazedoxifene all potently reduce the frequency and 
severity of arthritis when administered therapeutically to mice subjected to CIA [248] 
(Paper III). Raloxifene also delays the onset of arthritis and ameliorate disease when 
administered prophylactically [248] and when used as a long-term treatment of 
established disease [250]. Similarly to estrogen, raloxifene decreases serum IL-6 when 
administered prophylactically [248]. Interestingly, lasofoxifene causes a significant 
reduction, and bazedoxifene shows a strong tendency towards a reduction, of serum 
IL-6 in therapeutically treated CIA mice (Paper III). However, neither lasofoxifene nor 
bazedoxifene alter the proportions of all CD4+ T cells, Th17 cells, B cells, or DCs, or 
alter B-cell expression of molecules associated with antigen presentation in LN of 
arthritic mice. Nevertheless, raloxifene, lasofoxifene and bazedoxifene all potently 
inhibit bone loss and cartilage degradation in CIA, as demonstrated by increased 
cortical and trabecular BMD and decreased serum COMP ([248], Paper III). 
Bazedoxifene, but not raloxifene or lasofoxifene also reduces the number of pre-
osteoclasts in the bone marrow (Paper III). 
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Figure 9. Illustration of the effects of estrogen and SERMs on the pathogenesis of RA.  
Estrogen has a number of effects on synovitis and bone destruction in RA, in this figure a selected number 
of these effects are illustrated, together with the known effects of SERMs. Estrogen causes a shift from Th1 
to Th2 cells and reduces the number of Th17 cells and neutrophils in the synovia. Estrogen and 
bazedoxifene reduces the number of pre-osteoclasts in the bone marrow. Estrogen decreases TNFα and IL-1 
production. In addition, estrogen increases Treg differentiation and TGFβ secretion, leading to decreased 
osteoclast differentiation and activity. Estrogen, raloxifene and lasofoxifene decrease serum IL-6. Estrogen, 
raloxifene, lasofoxifene and bazedoxifene all reduce serum COMP. DC, dendritic cell; Th, helper T; E2, 
estradiol; ral, raloxifene; las, lasofoxifene; bza, bazedoxifene; PC, plasma cell; MO, macrophage; ACPA, 
Anti-Citrullinated Protein Antibodies; Treg, regulatory T cell; RANK, receptor activator of NF-kB; 
RANKL, receptor activator of NF-kB ligand; COMP, cartilage-oligomeric matrix protein. 
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CONCLUDING REMARKS 
 

The increased prevalence of autoimmunity in women compared to men has prompted 
extensive analysis of the immune-modulating role of estrogen. Indeed, the stimulating 
effects of estrogen on both antibody production and the innate-like MZ B-cell subset 
can be related to the aggravating effect of estrogen on the antibody-driven disease 
SLE. Furthermore, estrogen-mediated effects on T-cell cytokines and T-cell mediated 
immune regulation have been implicated in the ameliorating properties of estrogen on 
RA. However, the clinical use of HRT has decreased due to side effects and has been, 
at least partly, replaced by SERMs, most recently the third-generation SERMs. 
Although the effects of third-generation SERMs on bone and on the female 
reproductive system have been thoroughly documented, the immunological properties 
of these compounds have remained undetermined. In the studies included in this thesis, 
we reveal a puzzling complexity of the immunological effects of the third-generation 
SERMs. Similarly to estrogen, these compounds inhibit the development of B cells, 
however, the suppressive effects on B-cell development was found at a later 
developmental stage for the SERMs compared with estrogen. This suggests an 
alternative mechanism of suppression, which, in contrast to what has been shown for 
estrogen, might not involve stromal cells. In addition, these compounds showed a 
striking absence of suppressive effects on T-cell development. Furthermore, the 
ameliorating effects of the third-generation SERMs on experimental arthritis was 
surprisingly not accompanied by the ability to suppress T-cell dependent inflammation 
or an altered lymphocyte composition in lymph nodes of arthritic mice. Therefore, 
further investigations are needed to determine the target for the suppressive effects of 
the third-generation SERMs on arthritis. We found it interesting and promising that 
these compounds revealed such powerful ameliorating effects on experimental 
postmenopausal arthritis and suggest future consideration of these compounds as 
treatment of postmenopausal RA, where they can function both as anti-arthritic and 
anti-osteoporotic therapy.   
 
Furthermore, the finding that third-generation SERMs in contrast to estrogen do not 
increase antibody production or expand MZ B cells raises the question whether these 
compounds lack the aggravating effects on SLE seen with estrogen. As many patients 
with SLE suffer from osteoporosis due to systemic inflammation and treatment with 
glucocorticoids, bone-protective treatments are needed in this patient group. Future 
studies of the effects of SERMs on experimental models of SLE will reveal if SERMs 
can mediate inhibition of bone loss together with an absence of disease aggravation.    
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