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ABSTRACT 

This thesis aimed at investigating gene-environment interaction in cardiovascular 

disease (CVD). A study population of 618 coronary heart disease (CHD) cases (of 

which 192 first-time acute myocardial infarction (AMI) patients) and 3614 randomly 

selected population controls was genotyped for genetic variants in genes coding for 

nitric oxide synthase (NOS) and glutathione s-transferase (GST). Exposure to traffic-

related air pollution was assessed using modeled mean annual concentrations of nitric 

dioxide (NO2) as a marker for long-term exposure. 

Among 58 single nucleotide polymorphisms (SNPs) in the NOS1, NOS2 and NOS3 

genes investigated for risk of CHD and hypertension, several strong associations 

were found, some of which remained statistically significant after Bonferroni 

correction for multiple testing. The T-allele of NOS1 SNP rs3782218 was 

significantly associated with a protective effect for both CHD (odds ratio (OR) 0.6,  

95% confidence interval (CI) 0.44-0.80) and hypertension (OR 0.8, 95% CI 0.68-

0.97). A second study investigated SNPs in the genes GSTP1, GSTT1 and GSTCD 

for interaction with traffic-related air pollution on risk of AMI and hypertension. The 

risk of AMI from air pollution exposure seemed to vary by genotype strata (for 

example GSTP1 SNP rs596603 with OR 2.1, 95% CI 1.09-4.10 in the genotype 

TT+GT stratum; OR 1.4, 95% CI 0.73-2.68 in the genotype GG stratum, although the 

multiplicative interaction was not significant (p-value =0.27)). Finally, the 

methodology of estimating additive interaction between a dichotomous (e.g. genetic) 

variable and a continuous (e.g. air pollution) variable using output from a logistic 

regression model was investigated in detail. The measure of additive interaction in 

this setting was shown to be highly sensitive to variation in the parameters defining 

it, and a pragmatic proposal for controlling this variability when extending estimation 

of additive interaction to new settings was developed. The proposed method was 

applied to the GST genotype and air pollution exposure data to estimate the additive 

interaction of these exposures on risk of AMI, finding a sub-additive interaction 

effect for the GSTCD AG+GG genotype. 

To conclude, the results of this thesis indicate that NOS gene variants are associated 

with both CHD and hypertension, and that variants in the GST genes are of 

importance regarding the risk of hypertension and the risk of AMI due to air 

pollution exposure.  

Keywords: Cardiovascular disease, genetic variants, air pollution, gene-environment 

interaction 
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SAMMANFATTNING PÅ SVENSKA 

Hjärt-kärlsjukdom i dess olika former är den vanligaste dödsorsaken världen 

över enligt Världshälsoorganisationen (WHO). Även om antalet dödsfall i 

västvärlden har minskat, tack vare förbättrade riskfaktorer i befolkningen och 

effektivare behandlingsmetoder, är hjärt-kärlsjukdom den vanligaste orsaken 

till sjukdom och död. Detta innebär att det är av fortsatt värde att bedriva 

forskning om hjärt-kärlsjukdomarnas etiologi, dvs. vad som orsakar dem. Ett 

antal olika riskfaktorer, såsom rökning, kolesterol, hypertoni (högt 

blodtryck), diabetes, övervikt och stillasittande livsstil, anses idag 

vedertagna, men de förklarar inte hela risken. 

Den här avhandlingen syftar till att undersöka huruvida olika riskfaktorer, 

närmare bestämt genetiska variationer och exponering för luftföroreningar 

från trafik, tycks interagera när det gäller risk för hjärtkärlsjukdom. 

De diagnoser som använts är kranskärlssjukdom, akut hjärtinfarkt och 

hypertoni. Genetiska varianter i två grupper av gener, NOS respektive GST, 

har studerats. NOS (nitric oxide synthase = kväveoxidsyntas) fungerar bland 

annat som signalsubstans i hjärnan, blodkoncentrationen av den ökar vid 

inflammation och den är en del av kemin när blodkärl vidgas och drar ihop 

sig. GST (glutathione s-transferase) är en antioxidant som hjälper till att 

motverka de skadliga effekterna av syreradikaler, så kallade oxidanter, i 

kroppen. Luftföroreningar, t.ex. från trafik, har visats vara kopplade till ökad 

risk för hjärt-kärlsjukdom. I den här avhandlingen har exponeringen för 

luftföroreningar från trafik beräknats på så sätt att varje studiedeltagares 

adress har omvandlats till en koordinat och med hjälp av ett geografiskt 

informationssystem kopplats till ett värde på årsmedelvärdeshalten NO2 

(kvävedioxid) och NOx (kväveoxider = kvävedioxid + kvävemonoxid). 

Studiedeltagarna består av 618 patienter med kranskärlssjukdom och 3614 

slumpvis utvalda individer från Västra Götalandsregionen. Alla deltagare 

genomgick en medicinsk undersökning där bland annat blodtryck, längd och 

vikt mättes. De fick också fylla i frågeformulär med medicinska såväl som 

livsstilsfrågor (vilka mediciner personen äter, utbildningsgrad, rökvanor osv). 

Resultaten av avhandlingens tre delprojekt kan sammanfattas som att en 

genetisk variant i NOS1 genen sågs vara signifikant associerad med både 

kranskärlssjukdom och hypertoni, med en skyddande effekt för den mindre 

vanliga varianten. Som markör för luftföroreningar från trafik var NO2 starkt 

kopplat till ökad risk för hjärtinfarkt. Effekten av trafikrelaterade 

luftföroreningar tycktes variera beroende på vilken genetisk variant av GST-



 

generna en individ har. Under arbetet med att undersöka interaktionen mellan 

genvariationer och luftföroreningsmarkörer identifierades en metodologisk 

svårighet med att undersöka den additiva interaktionen, dvs om den totala 

effekten av två exponeringar avviker från summan av deras respektive 

effekter, t.ex. att den totala effekten är större än summan, när en av 

exponeringarna mäts som en kontinuerlig variabel. Ett förslag på ett praktiskt 

inriktat tillvägagångssätt för beräkning av storlek och riktning för en 

eventuell avvikelse presenterades, som en vidareutveckling av en tidigare 

känd metod. Tillvägagångssättet tillämpades också på observerade data i 

fallet med en kategorisk och en kontinuerlig exponeringsvariabel. 

Slutsatsen är att resultaten från denna avhandling visar på att varianter i 

NOS-gener är associerade med både CHD och hypertoni samt att GST-gener 

är betydelsefulla när det gäller risken för hjärtkärlsjukdom som följd av 

exponering för luftföroreningar.  
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DEFINITIONS IN SHORT 

Call rate The percentage of genotyped individuals that 

had a successful genotyping (ending up with a 

result) for a particular assay. If the call rate is 

low, e.g. below 90%, it is suspected that the 

assay used is incorrect. 

Coronary vessel or 

coronary artery 

Blood vessel supplying the myocardium 

[Persson 1986] 

Diplotype The set of haplotypes in an individual’s DNA. 

[Marchenko et al. 2008] 

Ever-smoker In this dissertation and included publications: A 

person who has either been a smoker and quit 

smoking, or is still a smoker. 

Former smoker  In this dissertation and included publications: A 

person who used to smoke daily but quit at least 

12 months ago. 

Genotype An individual’s genetic constitution at a given 

locus [Jorde et al. 2005], i.e. the combination of 

2 alleles (one on each chromosome copy) at a 

single locus. 

Haplotype Sequence of genetic markers on the same 

chromosome within a genomic region of 

interest. [Marchenko et al 2008] 

Hypertensive In this dissertation and included publications, a 

person referred to as ‘hypertensive’ will have at 

least one of the 3 following characteristics: a) 

SBP ≥140 mmHg, b) DBP ≥90 mmHg, c) using 

antihypertensive medication daily. 
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Hardy Weinberg 

equilibrium 

The population frequencies of genotypes AA, 

Aa and aa are predicted based on allele 

frequencies p and q, where A = p, a =q, AA = p
2
, 

Aa = aA = pq and aa = q
2
. Since the probability 

of having a genotype at all is 1,  

p
2
 + 2pq + q

2
 = 1  (p + q) = 1  p = 1 – q 

[Jorde et al. 2005]  

The assumption is that a genotype distribution 

(in a population fulfilling the underlying 

assumptions of large population, random mating, 

no migration, no mutations and no natural 

selection) fulfills the conditions above, and if 

genotype distribution deviates significantly from 

these conditions, a practical interpretation is that 

the genotyping process and/or the material used 

for genotyping may be flawed or contaminated.  

Locus A location on a chromosome (from Latin 

meaning “place”), for e.g. a gene, SNP or other 

genetic characteristic. [Jorde et al 2005] 

Phenotype The trait which is observed physically or 

clinically. In epidemiology often: affected / not 

affected. [Jorde et al. 2005) 

Resistance The insensitivity of the results of a procedure to 

small changes in the data. [Andrews 1998] 

Robustness The ability of a model to be insensitive to small 

changes in the assumptions which specify it. 

[Andrews 1998] 

Single nucleotide 

polymorphism 

Single nucleic base difference in the DNA 

sequence [Jorde et al. 2005], with minor allele 

frequency ≥ 1%. 
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1 INTRODUCTION 

While the expression ‘nature or nurture?’ used to drive the research for 

several diseases, it seems that modern research has largely moved on to ask 

how nature and nurture interact, i.e. to studies of gene-environment 

interaction. [Pigliucci 2001, Steele 2014, LaBaer 2002] The current disease 

pathology paradigm is that risk factors do not act alone, but rather in different 

formations to cause disease. Of the known risk factors for cardiovascular 

disease (CVD), the modifiable risk factors smoking, cholesterol levels and 

hypertension are the three most important [Yusuf et al. 2004], but non-

modifiable risk factors such as age and male sex are also of importance. 

[WHO 2013] Nonetheless, the pattern of how the risk factors connect to form 

a web of disease risk probabilities still needs to be investigated further. 

1.1 Coronary heart disease, hypertension 
and their known risk factors 

Coronary heart disease (CHD) is an umbrella term for several cardiologic 

diagnoses affecting the coronary heart vessels, which provide the blood 

supply to the heart. [WHO 2013] CHD includes for example angina pectoris 

(chest pain due to restricted blood flow) and acute myocardial infarction 

(AMI). CVD is an even wider umbrella term, including CHD but also other 

diseases of the heart and diseases of vessels other than the coronaries.  

According to the World Health Organization, CVD continues to be the 

number one cause of death globally. [WHO 2013] Most of these deaths are 

caused by AMI. The dominant cause of acute CHD, including AMI, is 

atherosclerosis. [Nilsson 2010] Often atherosclerosis is one of the first 

recognizable signs of CVD. The pathological mechanisms which initiate and 

drive atherosclerosis are not fully elucidated, but inflammation is considered 

one of the major processes that contribute to atherogenesis. [Ikonomidis et al. 

2012] At an early stage of disease, inflammation acts in a protective manner 

against atherosclerosis by absorbing oxidized LDL before it damages the 

vessel wall. [Nilsson 2010] If, despite the countermeasures, oxidized LDL 

ingested by macrophages to form foam cells, gathers in the vessel wall in 

formations called plaques or fatty streaks [Ahlner & Johansson 1994] (Figure 

1), the inflammatory response is increased, which reduces the ability to 
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sustain immunological tolerance towards the oxidized LDL. At this point, 

inflammation becomes the driving mechanism of atherosclerosis. [Nilsson 

2010] During atherosclerosis formation, lipids and inflammatory cells are 

accumulated in the vessel wall in formation called plaques. While the plaque 

formation is mostly located in the intima, changes also occur in other parts of 

the cell wall. The underlying media is often atrophic and containing a 

decreased number of muscle cells. Inflammation plays an important role not 

only in the initiation and progression of atherosclerosis but also in plaque 

rupture, an event that leads to acute vascular events. [Ikonomidis et al. 2012]   

Figure 1. Illustration of gradual plaque build-up. Drawing by Anna Levinsson 

The formation of plaques often decreases the radius of the vessel lumen and 

causes the vessel walls to become more rigid, both of which increase the 

blood pressure. In turn, the hypertension causes an increase of the 

inflammatory effects in the vessel by putting more stress on the vessel walls, 

and also increases the risk of an unstable plaque rupturing. [Ahlner & 

Johansson 1994] Generally, an AMI occurs by obstruction of a blood vessel 

because of a local obstruction and a local final clot, or sometimes by embolic 

obstruction due to a clot originating from a ruptured coronary plaque. [Ahlner 

& Johansson 1994] As a result, a vessel becomes completely obstructed, thus 

cutting off the blood flow past the point of obstruction, i.e. to a portion of the 

heart.  
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Some of the classic known risk factors for hypertension and CHD are 

modifiable lifestyle risk factors including smoking, high blood lipid levels, 

hypertension, diabetes, obesity and physical inactivity. [Yusuf et al. 2004, 

WHO 2013] Despite this knowledge, people continue to smoke and engage in 

hazardous lifestyle behavior. In the western world, CVD mortality and 

morbidity decreases, due to better and more swiftly applied health care. In 

developing countries, health care is less available and mortality rates rise as 

CVD morbidity increases with current trends in lifestyle changes. [WHO 

2013] 

1.2 Traffic-related air pollution and 
cardiovascular disease 

Air pollution is a significant risk factor for human morbidity: the World 

Health Organization estimates that in 2012, 7 million unnatural deaths were 

caused by ambient air pollution. [WHO 2013] Of these air pollution-related 

deaths, 40% were from ischemic heart disease.  

1.2.1 Traffic-related air pollution 
One of the main sources of human everyday air pollution exposure today is 

traffic. Traffic-related air pollution consists of a mixture of particles of 

varying size and gases, including large amounts of NOx. [HEI 2010] Thus, 

NOx or NO2 is often used as a marker for traffic-related air pollution 

exposure. [Coogan et al. 2012, Vermylen et al. 2005] While the specific 

mechanisms of traffic-related air pollution effects on human health are not 

known, the (mainly pulmonary) exposure, both long-term and acute, to 

particles and gases has been found to be associated with human disease, 

including CVD. [Brook et al. 2010, Brook & Rajagopalan 2009, Brunekreef 

2007, Peters 2005] 

Several studies link ambient air pollution and AMI. A review of 

epidemiological studies [Vermylen et al. 2005] reported adverse associations 

between chronic exposure to ambient air pollution and the outcomes 

cardiovascular mortality, cardiopulmonary mortality and increased intima-

media thickness, an indicator of atherosclerosis. The strongest association 

was a nearly doubled risk of cardiopulmonary mortality when living near a 

major road. 
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1.2.2 Inflammatory pathway or direct pathway? 
The particulars of the biological mechanisms by which pulmonary exposure 

to air pollution leads to CVD outcomes are not fully understood. [Zanobetti, 

Baccarelli & Schwartz 2011] One potential pathophysiological pathway is 

that pulmonary exposure to air pollution induces local pulmonary oxidative 

stress, which leads to release of pro-thrombotic and inflammatory cytokines 

into the blood stream, as well as an increased level of reactive oxygen species 

(ROS) in the heart. [Zanobetti, Baccarelli & Schwartz 2011, Shrey et al. 

2011, Bessa et al. 2009] When the pulmonary stress responses are 

insufficient to handle the levels of ROS, a range of pulmonary inflammatory 

processes are activated, which enhances expression of inflammatory cytokine 

genes, in turn inducing systemic inflammation and systemic oxidative stress. 

Inflammation furthers progress of atherosclerosis and can potentially trigger 

acute plaque rupture. [Campen et al. 2012] The release of pro-thrombotic 

agents into the blood stream can also trigger clot formation and put the 

individual at increased risk of ischemic heart disease, especially if vessels are 

atherosclerotic, i.e. already inflamed and more vulnerable. [Siegbahn 2010] 

Besides the inflammatory pathway, other mechanisms have been suggested, 

for example direct translocation of particles across the pulmonary epithelium 

and lung-blood barrier into the cardiovascular system, i.e. penetrating cellular 

membranes, which has been shown experimentally in both animals and 

humans. [Peters et al. 2006, Vermylen et al. 2005] Once the particles have 

reached the blood, they may reach specific organelles in the blood cells, or 

induce the release of cytokines and inflammatory mediators throughout the 

body by way of the cells. This is sometimes referred to as the direct pathway. 

[Peters et al. 2006] 

1.3 Genetic variation in cardiovascular 
disease  

Previous research has identified some associations between the genes 

investigated in this thesis (NOS1, NOS2, NOS3, GSTP1, GSTT1 and 

GSTCD), and the CVD outcomes studied here or related outcomes. SNPs in 

NOS1 have been associated with blood pressure [Iwai et al. 2004, 

Padmanabhan et al. 2010], and NOS1 has been identified as a candidate gene 

for stroke [Meschia et al. 2011]. A copy-number variation in NOS2 has been 

linked to CHD and CV events. [Tepliakov et al. 2010, Gonzales-Gay et al. 

2009] NOS3 is the most studied of the three genes and SNPs in this gene 
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have been associated with different CHD manifestations including 

myocardial infarction, as well as treatment-resistant hypertension and 

ischemic stroke. [Johnson et al. 2011, Casas et al. 2006, Hingorani et al. 

1999, Jàchymovà et al. 2001, Berger et al. 2007, Niu & Qi 2011] In addition, 

variants in the NOS genes have been investigated regarding pulmonary 

outcomes, including lung function and chronic obstructive pulmonary disease 

[Aminuddin et al. 2013], and inhibition of NOS2 function has been associated 

with reduced pulmonary fibrosis [Janssen et al. 2013]. Inducible NOS 

(expressed by the NOS2 gene) has also been implicated in many 

inflammatory diseases, and expression of inducible NOS can be induced by 

inflammatory stimulants and mediators. [Förstermann & Sessa 2012] 

Variants in NOS2 and NOS3 genes have been associated with airway 

inflammation. [Dahgam et al. 2012] 

The gene deletion causing the GSTT1 polymorphism results in almost no 

enzymatic activity in individuals with the null genotype, potentially putting 

them at increased risk of oxidative stress and inflammation. [Stephens, Bain 

and Humphries 2008, Pemble et al. 1994] The GSTT1 null polymorphism 

has previously been studied regarding association with CHD with 

inconclusive results. [Nørskov 2013, Du et al. 2012] For variants in GSTP1, 

no significant interactions for CVD have been reported, as far as we know. 

However, SNPs in GSTP1 have also been investigated regarding associations 

with lung function, and have been shown to modify the effect of air pollution 

on lung function. [Mordukhovich et al. 2009, Probst-Hensch et al. 2008] 

Thus, considering the inflammatory pathway, an association with CVD 

outcomes is possible. Associations between SNPs in the GSTCD gene and 

pulmonary function have also been reported, and are supported by a meta-

analysis. [Repapi et al. 2010, Hancock et al. 2010] In addition, variants in the 

GST genes have been tentatively associated with other health outcomes, e.g. 

asthma and several types of cancer. [Minelli et al. 2009, White et al. 2008, 

Dunning et al. 1999] 

1.4 Gene-environment interactions in 
cardiovascular disease 

Without making assumptions about which, if any, of the inflammatory and 

the direct pathway is correct, it still seems plausible that genes with 

antioxidative and inflammatory effects may be involved in the mechanism 

underlying the association of air pollution exposure with CVD. Consider one 
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amino acid sequence of DNA which may be associated with production of an 

antioxidant defense adequate for holding back an exposure-induced 

inflammatory onslaught. If a mutation occurs in this sequence, one genotype 

may be synonymous with the original nucleotides and the protein synthesis 

will function normally, while another genotype may change the DNA 

sequence. The result of a change may be a different protein sequence or a 

truncated protein sequence, which affects regulation, or a change in splicing. 

All of these may result in changed protein function which may cause less or 

no production of a protein, which may upset the redox homeostasis. [Young 

et al. 2006, Wang et al. 2001]  

A review of studies investigating gene-environment interaction in relation to 

cardiovascular health effects showed that genes in the oxidative stress 

pathway modify the risk of CVD due to air pollution exposure. [Zanobetti, 

Baccarelli & Schwartz 2011] Several studies have also investigated 

interaction between APOE genotype and an environmental exposure variable 

in CHD risk. [Gustavsson et al. 2012, Talmud 2007] One such study 

investigated multiplicative interaction effect between smoking habits and 

APOE genotype on risk of CHD and found a statistically significant 

interaction. [Talmud 2007]  

1.5 Methods for measuring interaction in 
case-control data 

Logistic regression is the work horse of epidemiology for estimating odds 

ratios as effect estimates of relative risk when the outcome is dichotomous, 

e.g. diseased / not diseased. [Skrondal 2003] Since it is inherently 

multiplicative, all analyses of statistical interaction using results from logistic 

regression are on the multiplicative scale. [Ahlbom & Alfredsson 2005] In 

case-control data, absolute risks cannot be estimated directly because the 

underlying sampling fractions are unknown. [Rothman, Greenland & Lash 

2008] However, under appropriate control sampling conditions, the odds 

ratio from logistic regression can be equivalent with the risk ratio and can 

also give estimates of the rate ratio and the incidence odds ratio. Under the 

‘rare disease assumption’, each of the measures is also an approximate 

estimate of the others. [Pearce 1993, Greenland & Thomas 1982] The 

purpose of the epidemiologic studies within this thesis is to understand 

disparities in disease risk between groups, and considering the reasoning 
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above, the odds ratio obtained from logistic regression is an appropriate 

measure for such studies.  

When investigating the joint effects of genetics and environmental exposure 

on the risk of an outcome, there is a need to define the characteristics of this 

interaction and to find a suitable measure for it. In current epidemiology, two 

kinds of interaction are mainly discussed, namely additive and multiplicative, 

sometimes referred to as biological and statistical. [Kaufman 2009] 

1.5.1 Multiplicative and additive interaction 
In the estimation of relative risk by regression methods, e.g. analysis of case-

control data using logistic regression, the insertion of a product term of two 

exposure variables of interest gives an estimate of the multiplicative 

interaction between the two exposures, per variable unit. Additive interaction 

cannot be directly estimated in a logistic regression model, but in the case of 

two dichotomous variables, methods for using the output from the logistic 

regression to calculate an estimate of additive interaction, for example RERI,  

are fairly well characterized. [Knol et al. 2007]  

1.5.2 Measures of additive interaction  
RERI (Relative Excess Risk due to Interaction) is one measure of additive 

interaction developed by Rothman [Rothman 1986], originally expressed as  

𝐑𝐄𝐑𝐈 = 𝑅11 − 𝑅10 − 𝑅01 +  𝑅00 [1] 

where Rjk ≡ P(Y = 1|xl=j, x2=k) is the conditional risk or probability that the 

outcome variable Y takes the value 1 given the values j, k of the exposures x1, 

x2. The equation can also be expressed using risk ratios (RR) by dividing all 

factors by the baseline risk R00:  

𝐑𝐄𝐑𝐈𝑅𝑅 =  𝑅𝑅11 − 𝑅𝑅10 −  𝑅𝑅01 + 1  [2] 

When estimating the risk ratios using logistic regression, odds ratios replace 

the risk ratios in the formula and the formula can be rewritten with the beta 

coefficients obtained from a logistic regression for a dichotomous outcome. 

𝐑𝐄𝐑𝐈 =  𝑒β1+β2+β3 −  𝑒β1 −  𝑒β2 + 1 [3] 

In the simple form expressed in equations [1], [2] and [3] above, both 

exposures are assumed to be dichotomous. The regression model consists of 
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the two exposures (coefficients β1 and β2), their product term (coefficient β3) 

and any relevant covariates. If RERI = 0, the interpretation is that the joint 

effect of the two exposures is equal to the sum of their main effects, meaning 

there is no additive interaction. If RERI ≠ 0, there is deviation from additivity 

of risks and the precision of the estimate can be evaluated using confidence 

intervals. Confidence intervals can be calculated using different techniques, 

for example bootstrapping or the Wald-type method originally presented by 

Hosmer & Lemeshow. [Richardson & Kaufman 2009, Hosmer & Lemeshow 

1992] 

Other measures of additive interaction are available, such as the synergy 

index (S) and attributable proportion (AP). However, as AP is simply a 

function of RERI (expressed with risk ratios, 𝐀𝐏 =  
𝑅𝐸𝑅𝐼

𝑅𝑅11
) it can easily be 

calculated along with RERI if one prefers a measure interpreted as the 

attributable proportion of disease which is due to interaction among persons 

with both exposures. However, AP is not defined for negative interaction 

(RR11< 0) as the proportion would then be negative. [Skrondal 2003]  

S, expressed with risk ratios, is defined  𝐒 =
𝑅11−1

(𝑅10−1) + (𝑅01−1)
. The measure in  

focus for this thesis was RERI, which has been recommended as the preferred 

measure by some authors [Knol & VanderWeele 2012, VanderWeele 2011]. 

1.5.3 Effect measure modification 
A method for evaluating the presence of interaction that works well for 

continuous variables is effect measure modification, or heterogeneity of 

effects as it is also called. [Rothman, Greenland & Lash 2008, Greenland & 

Morgenstern 1989] In practice, the method amounts to stratifying for one 

variable and estimating the exposure effect for an outcome in each stratum, 

then comparing effect estimates across strata. If the stratum-specific effect 

estimates are equal, the measure is said to be homogenous, constant or 

uniform across strata, while if it is not, it is said to be heterogeneous, 

modified or varying across strata. [Rothman, Greenland & Lash 2008] When 

investigating effect measure modification using linear regression analysis 

models (i.e. for a continuous phenotype), effect measure modification is 

equivalent with additive interaction, and when using logistic regression 

analysis models, i.e. with the effect estimates expressed as odds ratios, effect 

measure modification is equivalent with multiplicative interaction. 

[Greenland 2009, Rothman, Greenland & Lash 2008] The latter form of the 

method is used in Paper II to study air pollution effect measure modification 
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by genetic variants in GST-genes for outcomes AMI and hypertension. [Paper 

II] 

1.5.4 Estimating additive interaction involving a 
continuous variable 

A recently published article suggested that estimating RERI using continuous 

variables was possible, if the baseline and interval size (increment) for each 

variable was explicitly defined. [Katsoulis and Bamia 2014] However, a 

major problem with estimating additive interaction involving a continuous 

variable, using effect estimates from logistic regression, is that for the 

continuous variable, there is not one unequivocal estimate, but rather an 

infinite set of estimates, with the estimate of RERI depending on the interval 

where the additive interaction is estimated and the variable units. [Paper III, 

Knol et al. 2007] This is not consistent with the original definition of RERI, 

where for a given dataset, the interaction parameter estimate was seen to be 

constant. [Rothman 1986] The RERI measure is sensitive to variations in the 

parameters defining it, which was a focus of study in this thesis and will be 

further discussed in the Results sections for Paper III and Chapter 5 

(Discussion).  
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2 AIM 

The overall aim of this thesis was to study the main effects of genetic variants 

in genes associated with oxidative stress and inflammation on the outcomes 

CHD, hypertension and AMI, as well as to study cardiovascular effects of 

traffic-related air pollution in interaction with genetic variants in the GST 

gene family. 

2.1 Specific aims for each paper 

I. The overall aim was to comprehensively investigate main 

effects of polymorphisms in the NOS genes on risks of both 

CHD and hypertension in the same source population. The 

first aim was to determine which of the NOS genes and 

SNPs were most strongly associated with the two CV 

phenotypes. Then, recognizing that multiple SNPs in the 

same gene can be markers for the same effect, a second aim 

was to explore this aspect with haplotype analyses. 

II. The first aim was to investigate main effects of long-term 

traffic-related air pollution exposure, as well as variants in 

GSTP1, GSTT1 and GSTCD, on risk of acute myocardial 

infarction (AMI) and hypertension. The second, major, aim 

was to study whether air pollution effects were modified by 

the investigated genetic variants. 

III. This was a methodological exploration, aiming to identify 

the various problems with estimating additive interaction for 

a dichotomous outcome and involving a continuous variable, 

and to propose a pragmatic approach for generating more 

interpretable and consistent results based on logistic 

regression coefficient estimates. 
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3 PATIENTS AND METHODS 

3.1 Study population and data collection 

The INTERGENE/ADONIX (INTERplay between GENEtic susceptibility 

and environmental factors for the risk of chronic diseases in West Sweden / 

ADult-Onset asthma and exhaled NItric oXide) study was the source of the 

data used for this thesis. From April 2001 until December 2004, 

INTERGENE/ADONIX recruited CHD cases and a population control cohort 

from the greater Gothenburg area in Sweden. All participants were aged 25-

75 years at the time of selection. [Berg et al. 2008, Berg et al. 2005] For the 

population control cohort, 8820 randomly selected individuals were invited to 

participate in the study. 194 of these had either left the country, moved to a 

different part of Sweden, were deceased or had an unknown address. 

[Strandhagen et al. 2010] Of the remaining 8626 eligible individuals, 3614 

participated, which yields a participation rate of 41.9%. As CHD cases, the 

study included consecutive inpatients admitted to wards at 3 locations (Östra, 

Mölndal and Sahlgrenska) of the Sahlgrenska University Hospital, 

Gothenburg, Sweden or outpatients with significant coronary lesions 

identified from coronary angiograms. Altogether, the 

INTERGENE/ADONIX study included 618 CHD patients (73.4% men and 

26.6% women), 295 with a first episode of acute myocardial infarction (AMI) 

or unstable angina pectoris, and the remainder with chronic CHD, defined as 

either prior AMI or positive angiogram. 192 patients were individuals 

presenting with first-time AMI. Focusing on data used for this thesis, 

characteristics and demographics of participants are presented in Table 1. 

Study participants received questionnaires and were invited to a medical 

examination, during which body height and weight was measured to the 

nearest 1 cm and 0.1 kg with the participants lightly dressed and without 

shoes. BMI was calculated from weight (kg) and height (m) using the 

formula BMI = weight/height
2
. Blood pressure was measured in a sitting 

position after 5 minutes rest, using a validated sphygmomanometer (Omron 

711 Automatic IS; Omron Healthcare Inc., Vernon Hills, IL). The pressure 

was measured twice and the mean of the two measurements was recorded. 

Blood samples were collected, after ≥4 hours of fasting, for immediate serum 

lipid (total cholesterol, HDL cholesterol and triglycerides) analysis and 

storage for DNA extraction.  
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Table 1. Demographic characteristics of the INTERGENE/ADONIX 
study participants, subdivided into CHD patients and population 
controls, by sex. 

  
CHD cases 

 
Controls 

  
Women Men 

 
Women Men 

Characteristic N (%) N (%) 
 

N (%) N (%) 

Total 
 

165 (26.7%) 453 (73.3) 
 

1910 (52.9%) 1704 (47.1%) 

Age 
      

 
≤34 years 1 (0.6%) 1 (0.2%) 

 
247 (12.9%) 198 (11.6%) 

 
35-44 years 2 (1.21%) 16 (3.5%) 

 
415 (21.7%) 351 (20.6) 

 
45-54 years 25 (15.2%) 78 (17.2%) 

 
420 (22.0%) 378 (22.2%) 

 
55-64 years 59 (35.8%) 172 (38.0%) 

 
468 (24.5%) 458 (26.9%) 

 
≥65 years 78 (47.3%) 186 (41.1%) 

 
360 (18.9%) 319 (18.7%) 

       Hypertension
a
 130 (78.8%) 326 (72.0%) 

 
732 (38.3%) 756 (44.4%) 

Diabetes 
 

30 (18.2%) 78 (17.2%) 
 

47 (2.5%) 81 (4.8%) 

Ever smokers 100 (60.6%) 352 (77.7%) 
 

953 (49.9%) 895 (52.5%) 
BP-lowering 
treatment 269 (59.4%) 111 (67.3%) 

 
249 (13.0%) 211 (12.4%) 

Lipid-lowering 
treatment 116 (70.3%) 352 (77.7%) 

 
104 (5.5%) 117 (6.9%) 

       

  
Mean (SD) Mean (SD) 

 
Mean (SD) Mean (SD) 

Age, years 
 

62.7 (8.15) 61.4 (8.44) 
 

51.2 (13.3) 51.6 (12.9) 

BMI, kg/m2 28.2 (4.79) 27.7 (3.98) 
 

25.6 (4.35) 26.7 (3.53 

LDL cholesterol, mM 2.6 (0.92) 2.5 (0.81) 
 

3.2 (0.98) 3.4 (0.95) 

HDL cholesterol, mM 1.6 (0.43) 1.3 (0.34) 
 

1.8 (0.45) 1.5 (0.38) 

Total cholesterol, mM 4.9 (1.14) 4.5 (1.01) 
 

5.5 (1.12) 5.5 (1.07) 

SBP, mmHg 134 (22.9) 134 (20.3) 
 

128 (22.3) 135 (20.0) 

DBP, mmHg 79 (11.0) 83 (11.2) 
 

81 (10.4) 83 (10.4) 

CHD: coronary heart disease; BP: blood pressure; BMI: Body Mass Index; LDL: low-
density lipoprotein; HDL: high-density lipoprotein; SBP: systolic blood pressure; DBP: 
diastolic blood pressure

 
 

a 
Defined as SBP ≥140 mmHg, DBP ≥90 mmHg or taking anti-hypertensive drugs daily 
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The questionnaires addressed medical history, socio-economic factors and 

dietary behavior. For this thesis, mainly medical history and some socio-

economic variables were used, along with data collected during the medical 

examination. One of the assessed socio-economic variables was education. 

The questionnaire asked participants to mark their highest obtained 

educational level out of six alternatives: a: elementary school, b: lower 

secondary school, c: training/girl school, d: upper secondary/grammar school, 

e: university/college and f: other. These categories were then combined into 

three educational levels and coded as 1: primary (a, b, c and f), 2: secondary 

(d) and 3: tertiary (e). For smoking, two variables were constructed from the 

questionnaire responses. A 2-level never/ever variable, where a person was 

categorized as a never-smoker if s/he had never smoked and an ever-smoker 

if s/he indicated that s/he either smoked currently or had stopped smoking. 

For the 3-level variable, the levels were never/former/current, where never 

was equal to ‘never’ in the 2-level variable, ‘former’ if the individual 

indicated having stopped smoking at least 12 months previously and ‘current’ 

if the individual was currently smoking or had stopped less than 12 months 

ago. 

The study was approved by the local ethical committee and all participants 

provided written informed consent. 

3.2 Air pollution exposure assessment 

Modeled annual average levels of NO2 outside each participant’s baseline 

home address were used for exposure assessment. Each participant’s home 

address was translated into geographical coordinates and combined with 

modeled levels of NO2 in a geographical information system (GIS). The 

dispersion model, which is hosted by the local authorities, contains both 

emission data and meteorological information and has been previously 

validated against actual measurements, showing good agreement. (Johansson 

et al. 2006) The main output from the model is NOx values with high spatial 

resolution (20*20 meters), which were then converted to estimated NO2 using 

local empirical relationships. Due to the availability of concentration grids, 

the calculated exposure levels represented the years 2006 and 2007 and not 

the exact years of inclusion (2001-2004). For individuals with air pollution 

data for both years, we used the 2007 value because the geographical area 

covered was increased from 2006. (Figure 2) For individuals with exposure 

data from only one year, this value was used. Correlation between values for 

individuals with values from both years was 0.98 for NO2. This high degree 
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of stability over years indicates that 2007 is a good indicator also for the 

long-term spatial distribution of exposure levels during 2001-2004. 

Figure 2. a) Geographical area covered by the dispersion model used to calculate 

annual average NO2 exposure in 2006, b) geographical area covered by the 

dispersion model used to calculate annual average NO2 exposure in 2007.Figures 

reproduced from PLoSONE9(6). 

Since long-term air pollution exposure assessment of this type essentially is a 

spatial contrast, a spatially biased recruitment of cases and controls could 

constitute a problem. Such potential spatial bias by geographical clustering of 

cases’ home addresses in areas closer to the three source hospitals was 

handled by adjusting the regression model for residential area, based on the 

postal code for the participants’ indicated home addresses. By thus first 

estimating the effect for each residential area and then pooling the effect 

(which is the mechanism of adjusting for a variable in a regression model), 

random selection of both cases and controls from the source population 

within each area could be more reasonably assumed, although the case-

control ratio could vary across residential areas. 

3.3 Genetic analysis 

3.3.1 SNP genotyping 
The three NOS genes each code for a certain type of NOS protein. NOS1 

codes for neuronal NOS (nNOS), which among other functions acts as a 

neurotransmitter in the brain, NOS2 for inducible NOS (iNOS) which is 

expressed e.g. in inflammation, and NOS3 for endothelial NOS (eNOS) 

which for example is involved in processes regulating blood pressure. 
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For the three nitric oxide synthase genes, 58 tagging SNPs were selected to 

capture genetic variation across each gene (Table 2). Tag SNP selection was 

done using the European ancestry genotype information from the HapMap 

phase III database (http://www.hapmap.org) with a pairwise approach, SNP 

minor allele frequency ⩾0.05 and r
2
 between SNPs ⩾0.8, and including 100 

kb upstream and 50 kb downstream of the genes.  

Table 2. Descriptive data for all 58 SNPs in the three NOS genes 
genotyped for INTERGENE/ADONIX. 

Gene dbSNP ID  Location 
Alleles 
(Major/Minor) 

Minor allele 
frequency 

HWE*  
p-value   Call rate (%) 

NOS1 rs10774907 Chr12:116131786 G/A 0.28 0.54 98.6 

 
rs2682826 Chr12:116137221 G/A 0.27 0.44 96.1 

 
rs816363 Chr12:116144850 C/G 0.40 0.91 98.0 

 
rs816347 Chr12:116174306 G/A 0.08 0.10 97.4 

 
rs2293054 Chr12:116186097 G/A 0.28 0.97 97.1 

 
rs2293055 Chr12:116186267 G/A 0.10 1.00 98.2 

 
rs6490121 Chr12:116192578 A/G 0.32 0.51 97.2 

 
rs2293050 Chr12:116203205 C/T 0.41 0.33 98.0 

 
rs7314935 Chr12:116203220 G/A 0.13 0.79 97.6 

 
rs9658354 Chr12:116208608 A/T 0.41 0.47 98.7 

 
rs9658350 Chr12:116208811 A/G 0.19 0.83 92.7 

 
rs7977109 Chr12:116214723 A/G 0.49 0.09 93.4 

 
rs532967 Chr12:116216722 G/A 0.18 0.34 98.0 

 
rs11611788 Chr12:116222759 T/C 0.11 0.23 98.7 

 
rs7310618 Chr12:116231689 C/G 0.11 0.10 98.0 

 
rs553715 Chr12:116238239 G/T 0.40 0.06 98.3 

 
rs2077171 Chr12:116240885 C/T 0.31 0.19 97.1 

 
rs12578547 Chr12:116247730 T/C 0.25 0.46 95.1 

 
rs499262 Chr12:116250777 C/T 0.18 0.33 90.9 

 
rs3782218 Chr12:116255894 C/T 0.16 0.25 92.2 

 
rs12424669 Chr12:116263339 C/T 0.13 0.65 98.5 

 
rs1552227 Chr12:116263418 C/T 0.29 0.72 98.4 

 
rs693534 Chr12:116269101 G/A 0.39 0.13 97.6 

 
rs1123425 Chr12:116270480 A/G 0.43 0.49 98.0 

 
rs17509231 Chr12:116278706 C/T 0.14 0.75 97.4 

 
rs9658253 Chr12:116285009 C/T 0.20 0.05 98.2 

 
rs41279104 Chr12:117877484 C/T 0.12 0.15 96.9 

NOS2 rs4796024 Chr17:23103071 C/T 0.09 0.36 98.0 

 
rs4795051 Chr17:23103624 C/G 0.43 0.71 98.8 

 
rs9901734 Chr17:23105156 C/G 0.23 0.90 98.6 

 
rs2255929 Chr17:23112094 T/A 0.43 0.22 98.2 

 
rs2297514 Chr17:23117442 T/C 0.39 0.29 97.9 

 
rs2297515 Chr17:23117460 A/C 0.13 0.66 97.4 

 
rs2248814 Chr17:23124448 G/A 0.41 0.60 98.0 

 
rs2314810 Chr17:23128237 G/C 0.05 0.95 98.5 

 
rs12944039 Chr17:23128891 G/A 0.20 0.36 98.0 

 
rs4795067 Chr17:23130802 A/G 0.38 0.56 98.2 

 
rs3729508 Chr17:23133157 C/T 0.40 0.10 98.3 

 
rs944725 Chr17:23133698 C/T 0.41 0.99 96.4 

 
rs8072199 Chr17:23140975 C/T 0.49 0.96 96.2 

 
rs2072324 Chr17:23141023 C/A 0.18 0.29 96.1 

 
rs3730013 Chr17:23150045 G/A 0.31 0.73 98.0 

 
rs10459953 Chr17:23151645 G/C 0.36 0.16 97.8 

 
rs2779248 Chr17:23151959 T/C 0.38 0.56 97.7 
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rs2301369 Chr17:23154123 C/G 0.38 0.54 96.5 

NOS2A rs2779252 Chr17:23155497 G/T 0.05 0.77 98.5 
NOS3 rs10277237 Chr7:150314277 G/A 0.21 0.07 98.0 

 
rs1800779 Chr7:150320876 A/G 0.35 0.33 97.6 

 
rs2070744 Chr7:150321012 T/C 0.35 0.45 98.2 

 
rs3918226 Chr7:150321109 C/T 0.08 0.25 98.4 

 
rs3918169 Chr7:150325539 A/G 0.16 0.93 97.3 

 
rs3793342 Chr7:150326128 G/A 0.15 0.60 98.0 

 
rs1549758 Chr7:150326659 C/T 0.29 0.28 98.2 

 
rs1799983 Chr7:150327044 G/T 0.30 0.27 98.2 

 
rs3918227 Chr7:150331879 C/A 0.10 0.43 98.0 

 
rs3918188 Chr7:150333714 C/A 0.37 0.60 97.4 

 
rs1808593 Chr7:150339235 T/G 0.20 0.96 96.1 

 
rs7830 Chr7:150340504 G/T 0.38 0.46 98.0 

* HWE: Hardy-Weinberg equilibrium 

GST genes code for metabolizing enzymes which, for example, are involved 

in counteracting the effects of oxidative stress. [Raza 2011] In total, 9 SNPs 

were chosen based on literature findings; 7 in the GSTP1 gene, one to capture 

the null variant of GSTT1 and one in GSTCD. (Table 3) 

Table 3. Descriptive data for the GST-SNPs genotyped for 
INTERGENE/ADONIX.  

 

SNPs were genotyped using a Sequenom MassARRAY platform (Sequenom 

San Diego, CA, USA) or a competitive allele-specific PCR system KASPar 

(KBioscience, Hoddesdon Herts, GB). All SNPs had a call rate ⩾90% 

Gene dbSNP ID  Location 
Alleles 
(Major/Minor) 

Minor allele 
frequency 

HWE*  
p-value   

Call 
rate 
(%) 

GSTP1 rs1138272 Chr11:67110155 C/T 0.08 0.70 98.5 

GSTP1 rs1695 Chr11:67109265 A/G 0.33 0.28 98.0 

GSTP1 rs1871042 Chr11:67110420 C/T 0.34 0.26 97.8 

GSTP1 rs596603 Chr11:67116179 G/T 0.43 0.23 98.2 

GSTP1 rs749174 Chr11:67109829 G/A 0.34 0.26 98.1 

GSTP1 rs762803 Chr11:67108832 C/A 0.43 0.45 97.5 

GSTP1 rs7927381 Chr11:67103319 C/T 0.09 0.72 97.1 

       GSTCD rs10516526 Chr4:106908353 A/G 0.06 0.005 98.5 

       GSTT1 rs2266637 Chr22: 22706845 Non-null/null 
genotype 

Frequency of 
null genotype: 
0.150 

- 94.1 

* HWE: Hardy-Weinberg equilibrium 
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(Tables 2 & 3). SNPs with a Hardy–Weinberg Equilibrium (HWE) p-value 

⩽0.001 and individuals with a genotype success rate below 75% were 

excluded. 

3.3.2 Genetic models and genotype coding 
Consider a genetic single nucleotide locus where there is genetic variability 

and whose nucleotide is either C or A on one strand of the chromosome (here 

considered to be the reference strand). Since we have two of each 

chromosome, the possible combinations are CC (C on this strand on both 

chromosomes), CA (C on this strand on one chromosome and A on this 

strand on the other chromosome) and AA (A on this strand on both 

chromosomes). The nucleotide with the lowest frequency in the population at 

hand is called the minor allele and the other consequently the major allele. 

Usually, the major allele is set as reference and thus the minor allele is called 

the ‘risk‘ allele even though it may have a protective effect for the studied 

outcome. The minor allele frequency may vary between populations due to 

selection, and especially for small populations also due to genetic drift. 

[Rosenberg et al. 2002] Sometimes the minor allele in one population may 

even be the major allele in another population. 

Figure 3. Coding for statistical analysis of the three genetic models: additive, 

recessive and dominant. Figure by Anna Levinsson 
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Assume that C is the risk (minor) allele. Under a dominant genetic model, 

disease risk increases if a person has at least one C allele. Thus we code CC 

and CA =1 while AA =0. (Figure 3) Under a recessive genetic model, disease 

risk increases only if two risk alleles are present, coded CC =1 and CA, AA 

=0. Under an additive genetic model, disease risk increases for each copy of 

the C-allele present, and is coded so that AA =0, CA =1 and CC =2. [Jorde et 

al. 2005] Also note that the dominant model for the minor allele is the same 

as the recessive model for the major allele and vice versa. 

In Paper I, all 3 genetic models were used with the intention of identifying 

the best-fitting genetic model for each SNP. For Paper II and the applied 

example in Paper III, we used the dominant genetic model only, to improve 

statistical power and the stability of the regression models. It is notable that 

the dominant genetic model often detects the same associations as the 

additive model, with relatively similar power, given that the only difference 

in coding of the genotype is that ‘homozygous for the risk allele’ =2 for the 

additive model and =1 for the dominant model. [Lettre et al. 2007] The 

similarity in power is due to the fact that the number of individuals coded 2 

in the additive model often is small.  

Individuals of non-European birth (5%) were excluded from all analyses. Of 

those reporting European birth origin and included, 90% reported being of 

Swedish origin.  

3.3.3 Statistical methods in genetic data analysis 

Paper I 
In Paper 1, a stepwise method was used to identify the SNPs most strongly 

identified with the outcomes CHD and hypertension. For each outcome, the 

following procedure was carried out.  

First, all SNPs were coded according to the additive genetic model, which 

has the greatest power of the three models to detect an association in many 

settings, and analyzed in single-SNP logistic regression models, adjusted for 

age and sex. The SNPs that had a p-value of 0.2 or less were taken to the next 

step, where a stepwise selection was made using an entry p-value of 0.1 and a 

limit p-value=0.2 for staying in the model. The SNPs remaining in the model 

were advanced to the third step. Given that the additive genetic model is not 

always the best or true fit for a genotype and in order to allow SNPs with the 

recessive or dominant genetic model as the best fit  (which may not have 
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been captured by the additive genetic coding) to qualify for the final (third 

step) model, each SNP was also coded to these two genetic models and 

entered in single-SNP logistic models adjusted for age and sex. The SNPs 

with a p-value =0.05 or less in these models were also taken to the last step of 

the procedure. The p-value was set lower at 0.05 since no intermediate 

selection step was used. Finally, to identify the most strongly associated 

SNPs and their best-fit genetic models, all qualified SNPs (being selected by 

one or more of these steps) were coded to all three genetic models and 

entered into a stepwise logistic model, adjusted for age and sex and 

potentially containing several SNPs, with entry p-value = 0.1 and stay p-

value = 0.05. (Figure 4) A SNP was only allowed to remain in the model 

coded to one genetic model. 

Figure 4.  Flow chart describing the steps in the statistical analysis for identifying 

the SNPs most strongly associated with each CV phenotype. Printed in Nitric Oxide 

39 (2014) 1-7. 
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A possible result of the stepwise analyses was that several SNPs in the same 

gene (i.e. on the same chromosome) were selected. SNPs on the same 

chromosome can be analyzed using haplotype analysis to indicate if the SNPs 

are markers for the same observed effect. This was carried out using the 

haplologit command in STATA. In short, this command first estimates the 

initial haplotype frequencies. [Marchenko et al. 2008] Then, haplotype-

effects logistic regression is used to estimate coefficients for risk haplotypes, 

environmental covariates (if included) and their interactions simultaneously 

with the final haplotype frequencies. 

Paper II 
The same core procedure was used for both AMI and hypertension, but for 

AMI the full dataset was used (cases and control cohort) while for 

hypertension only the individuals in the population control cohort were 

included, divided into hypertension cases and non-hypertension controls. All 

analyses used logistic regression models adjusted for age, age squared 

(included due to indicated non-linearity in the age variable) and sex. Because 

of potential selection bias for cases and controls due to the spatial distribution 

of cases’ home addresses in areas closer to the two source hospitals, meaning 

that the probability of seeking care in a participating hospital, and thus the 

possibility of becoming a case, was not the same in all residential areas, all 

analyses were adjusted for residential area, based on the postal code. In 

addition, this controls for the control sampling fraction potentially varying 

across areas, due to non-participation. All analyses involving air pollution 

exposure were also adjusted for educational level as a proxy for socio-

economic and lifestyle variable. Since pre-analyses indicated a confounding 

of genotype effect by BMI, BMI was also included in all genotype analyses.  

Covariates as potential confounders were selected from literature and tested 

one at a time. The covariates whose entry into the model changed the effect 

estimate for genotype or air pollution by at least 5% compared to the effect 

estimate for respective exposure and outcome in models with no other 

variables, were considered confounders and included in main analysis models 

(main effects and interaction). 

First, effects of NO2 (as a marker for vehicle exhaust pollutants) on risk of 

AMI and hypertension were analyzed separately. Thereafter, effects of 

genetic variants on risk of AMI and hypertension were studied. For GSTP1, 

each of the 7 SNPs was analyzed coded to the dominant genetic model (0 for 

two copies of the major allele, 1 for heterogeneous genotype or two copies of 

the minor allele). For this gene, only the SNP or SNPs with the strongest 
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effects on AMI or hypertension were studied for interaction with air pollution 

exposure on risk of each respective outcome. For GSTCD, a single variant 

(rs10516526) was studied, coded to the dominant genetic model. The GSTT1 

null genotype was studied using the two genotypes captured by the SNP 

rs2266637.  

Finally, interaction between air pollution and genetic variants was 

investigated by estimating effects of air pollution in analyses stratified by 

genotype in a common regression model, one SNP at a time. The p-value of 

the product-term of SNP and air pollution was considered an indicator of the 

presence of multiplicative interaction between the two exposures (the null 

hypothesis being no interaction). For these models, the possibility of smoking 

modifying the interaction between air pollution and genetic variants on AMI 

was also assessed, by stratifying the analyses of the effect of air pollution on 

risk of respective outcome by both genotype and 3-level smoking status. 

3.4 Estimating RERI for GST and air 
pollution data from Paper II, using 
methodology from Paper III 

In paper II, interaction between genetic variants and air pollution exposure on 

risk of AMI and hypertension was investigated using stratified effect 

methodology. In paper III, an approach for dealing with additive interaction 

between one dichotomous (e.g. dominant or recessive genetic variable) and 

one continuous (for example, ambient air pollution measured with NO2 as a 

marker) variable was presented, and this approach was subsequently applied 

to the data in paper II and presented here. 

Using the outcome AMI, several dichotomous genetic variables and the 

continuous air pollution exposure, RERI was estimated using the method 

from paper III.  

Let 

 X: dichotomous genetic variable {0,1} 

Y: continuous air pollution exposure variable with unit 10µg/m3  

dx: increment in X =(xox1) where xo represents baseline and x1 

“elevated” exposure level of interest 
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dy: increment in Y = (y0y1) where y0 represents baseline and y1 

“elevated” exposure level of interest 

βX|Y: regression coefficient estimate for X when continuous variable 

defined as Y 

βY: regression coefficient estimate for Y 

βXY: regression coefficient estimate for interaction factor XY 

and 

𝑍:
𝑌 − 𝑚𝑒𝑎𝑛(𝑌) −

𝑚𝑎𝑥 (𝑌) − 𝑚𝑖𝑛 (𝑌)
2 ∗ 1000

𝑚𝑎𝑥 (𝑌) − 𝑚𝑖𝑛 (𝑌)
1000

 

Then  

𝑅𝐸𝑅𝐼 =  𝑒β𝑋|𝑍+β𝑍+β𝑋𝑍 − 𝑒β𝑋|𝑍 − 𝑒β𝑍 +  1 [Paper III] 

and what remains is to calculate the mean and the range of the air pollution 

exposure variable and to estimate the regression coefficients using logistic 

regression. Confidence intervals for RERI were calculated using the Wald-

type method. 



Anna Levinsson 

23 

4 RESULTS 

4.1 Paper I 

Several SNPs where found to be associated with CHD, of which one 

previously unpublished SNP, NOS1: rs3782218 coded according to the 

additive genetic model, was strongly associated with both CHD (odds ratio 

(OR) 0.6, 95% confidence interval (CI) 0.44-0.80) and hypertension (OR 0.8 

95% CI 0.68-0.97). The statistical significance of these results held even after 

Bonferroni correction for multiple testing. Several other SNPs in the NOS2 

and NOS3 gene were associated with an adverse effect for either CHD or 

hypertension, with ORs ranging from 1.2 – 2.2. (Paper I: Tables 2 & 3) 

For each outcome, another significant NOS1 SNP association in addition to 

rs3782218 was found. A haplotype analysis for respective outcome including 

rs3782218 and the other respective NOS1 SNP indicated that for CHD, the 

rs3782218 T-allele may be the main marker for the observed effect, while for 

hypertension it seems that both NOS1 SNPs investigated may be markers for 

the same observed effect. (Tables 4 & 5) 

Table 4. Haplotype analysis of NOS1 SNPs associated with CHD. SNP 
order in the haplotype from left to right is rs2682826 and rs3782218. 
Printed in Nitric Oxide (2014) 39:1-7.  

Haplotype
b
 

Sample 
frequency 

Modelling of all haplotypes
a
 

 

Modelling haplotype GT 
against all others

a
  

OR 95% CI p-value   OR 95% CI p-value 

GT 0.11 0.50 0.34 - 0.71 1.50*10
-4

 
 

0.43 0.30 - 0.61 1.85*10
-6

 

AT 0.05 0.61 0.35 - 1.05 0.07 

 

 

Reference GC 0.61 Reference 
 AC 0.23 1.14 0.96 - 1.35 0.15   

a
 Model is adjusted for gender, age, diabetes status, smoking, systolic blood pressure, 

high- and low-density lipoprotein and the other haplotypes 
b
 For rs2682826: A is the minor allele, for rs3782218: T is the minor allele 

CHD: coronary heart disease, OR: odds ratio, CI: confidence interval 
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Table 5. Haplotype analysis of NOS1 SNPs associated with hypertension. 
SNP order in the haplotype from left to right is rs7314935 and 
rs3782218. Printed in Nitric Oxide (2014) 39: 1-7. 

  
Modelling of all haplotypes

b
 

 

Modelling haplotype GT 
against all others

b
 

Haplotype
a
 

Sample 
frequency OR 95% CI p-value   OR 95% CI p-value 

GT 0.17 0.86 0.73 - 1.01 0.06 
 

0.84 0.72 - 0.98 0.03 

AT 0.0016 1.45 0.11 - 18.57 0.77 

 

 

Reference GC 0.70 Reference 
 AC 0.13 1.14 0.96 - 1.34 0.13   

a
 For rs7314935: A is the minor allele, for rs3782218: T is the minor allele 

b
 Model is adjusted for gender, age, diabetes status, body mass index, total cholesterol and the 

other haplotypes 

OR: odds ratio, CI: confidence interval 

 

4.2 Paper II 

In Paper II, the main effect of long-term estimated NO2 exposure at the 

residential address (as a marker of long-term air pollution exposure) on risk 

of AMI was estimated to be OR 1.8, 95% CI 1.04-3.03. Three GSTP1 SNPs 

were associated with hypertension, even after Bonferroni correction. (Table 

6)  

The interaction analyses indicated that the effect of air pollution exposure on 

risk of AMI varies between genotypes for all 3 SNPs (one in GSTP1, one in 

GSTT1 and one in GSTCD) tested (Table 7), with a significant effect seen in 

one genetic stratum, although the interactions were not statistically 

significant due to the limited sample size.  
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Table 6. Effects of the most strongly associated SNPs in GSTP1, the 
GSTCD SNP rs10516526 and the GSTT1 SNP rs2266637 (null genotype) 
on risk of AMI and hypertension. Adapted from PLoSOne (2014) 
9(6):e99043. 

  
Effect estimates and 

precision* 

  
Genetic 

   Gene: SNP Outcome model OR 95% CI p-value 

GSTP1: AMI (TT + GT) vs. 0.77 0.51-1.16 0.21 
rs596603 

 

GG 

   GSTP1: Hypert. (TT + TC) vs. 0.66 0.50-0.87 0.003 
rs1871042 

 

CC 

    

 
 

   GSTP1: Hypert. (AA + AG) vs. 0.66 0.50-0.88 0.004 
rs749174 

 

GG 

    

 
 

   GSTP1: Hypert. (AA + CA) vs. 0.66 0.49-0.89 0.006 
rs762803 

 

CC 

   GSTCD:  AMI (GG + AG) vs. 0.69 0.34-1.38 0.29 

rs10516526 
 AA 

    Hypert. (GG + AG) vs. 0.87 0.55-1.36 0.53 
 

 AA 
   GSTT1:  AMI Null vs. 0.65 0.33-1.27 0.20 

rs2266637 
 Non-null 

    Hypert. Null vs.  0.88 0.59-1.33 0.55 

 
 Non-null    

Models are adjusted for age, age squared, sex and BMI. 
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Table 7. Effect of long-term traffic-related air pollution (using annual 
mean of NO2 as exposure indicator) on risk of AMI, stratified by 
genotype. Adapted from PLoSOne (2014) 9(6):e99043. 

  Effects per 10µg/m
3

 of NO2  

Gene:SNP Genotype OR 95% CI p-value 
Interaction 

p-value 

GSTP1: 

rs596603 
TT + GT 2.12 1.09 – 4.10 0.03 0.27 

 GG 1.40 0.73 – 2.68 0.31  

GSTCD: 

rs10516526 GG + AG 1.01 0.28 – 3.73 0.98 0.23 

 AA 2.25 1.25 – 4.06 0.0007  

GSTT1: 

rs2266637 Null 1.40 0.33 – 5.96 0.65 0.60 

 Non-null 2.02 1.13 – 3.60 0.02  

Models are adjusted for age, age squared, sex, BMI, residential area and 
educational level. 

4.3 Paper III 

The paper starts out from the standpoint that if main effects are estimated 

using logistic regression, then interaction effects, both multiplicative and 

additive, should also be estimated using the logistic model, for the purpose of 

interpretation and understanding how they relate to the chosen main effects 

model. It is pointed out that when the additive interaction of interest is 

between two dichotomous variables, methods that align with the original 

definitions of departure from additivity of risks have been defined 

specifically for this case and work well. For the less investigated but at least 

as commonly occurring situation of one dichotomous and one continuous 

variable, the paper proposes a pragmatic approach for estimating the additive 

interaction, based on the notion that RERI ought to be estimated in an 

interval which well represents the full set of variable data. This boils down to 

estimating RERI in a very small interval, approaching zero in length, which 

surrounds a suitable measure of location, for example the mean. As already 

mentioned in section 3.4, the proposal involves a simplification by 

transforming the continuous variable to a variable with the minimum 0 at the 

mean of the original variable minus half the interval to be used and divided 

by the range of the original variable/1000 i.e. 
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𝑍:
𝑌−𝑚𝑒𝑎𝑛(𝑌)−

𝑚𝑎𝑥 (𝑌)−𝑚𝑖𝑛 (𝑌)

2∗1000
𝑚𝑎𝑥 (𝑌)−𝑚𝑖𝑛 (𝑌)

1000

, which can then be used in the dichotomous 

variable logistic regression output adaption of the original RERI equation 

presented by Rothman (see section 1.4.1, Equation [2]).  

However, this estimate of RERI is dependent on the interval for which it was 

estimated (which defines the unit of the continuous exposure), something that 

can be adjusted by standardizing RERI by division with the interval used, i.e. 

(max(Y) – min(Y)) / 1000 and then adapting the estimate to the scale of the 

exposure main effect with simple multiplication, based on the fundamental 

additive property of RERI. 
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4.4 Estimating RERI for GST and air 
pollution data from Paper II, using 
methodology from Paper III 

For this example, 120 AMI cases and 1483 randomly selected controls 
had exposure data. The baseline and increment for the continuous 
variable were calculated from the data: 

dy = 
𝑟𝑎𝑛𝑔𝑒(𝑌)

1000
=

4.359

1000
= 0.004359  

y0 = 𝑚𝑒𝑎𝑛(𝑌) −
𝑑𝑦

2
= 1.5572 − 

0.004359

2
= 1.5550  

All regression models were adjusted for age, age squared, sex, BMI, level 
of education and residential area.  

Table 8. Estimated RERI for interaction between respective SNP and 
long-term traffic-related air pollution exposure (per 10 µg/m

3
) for 

outcome AMI 

Gene: SNP RERI 
95 % CI 

RERI 
β𝑋|𝑌

a β𝑌
b β𝑋𝑌

c 
OR 

X|Y 

OR 

Y 

OR 

XY 

p-

value^ 

GSTP1: 

rs596603d 

-0.31 -1.21 – 0.58 0.91 0.75 -0.41 2.48 2.12 0.66 0.27 

GSTCD: 

rs10516526e 

-0.80 -1.58 – -0.03 0.57 0.81 -0.80 1.77 2.25 0.45 0.23 

GSTT1: 

rs2266637f ~ 

-0.51  -1.47 – 0.46  0.08 0.70 -0.38 1.08 2.01 0.68 0.60 

* The unit of the measure is per 10µg/m3. ^ P-value for the product term of the two exposures, 

i.e. the test of no multiplicative interaction. ~ In the stratified effects regression model used 

for GSTT1 in Paper II, the educational level variable was mistakenly used as a continuous 

variable instead of as a categorical. Estimates were only marginally changed. The results for 

GSTT1 corresponding to Table 4 in Paper II from the correct model are presented as an 

erratum in Appendix Table 2. 
 a βX|Y: regression coefficient estimate for genetic variable X when continuous air pollution 

exposure variable defined as Y, b βY: regression coefficient estimate for continuous air 

pollution exposure variable Y, c βXY: regression coefficient estimate for interaction factor XY, 
d dominant genetic model, the coding of the genetic variable was reversed (compared to Paper 

II) in order to obtain positive main effect estimates for calculation of RERI and evaluation of 

deviation from additivity of risks, as recommended by Knol et al. (2011), e dominant genetic 

model, f null genotype as risk genotype. 
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For all three genotypes, the RERI estimate as well as the multiplicative 

interaction estimate is negative. The 95% confidence intervals show that for 

the GSTCD combined AG+GG genotype, there is a significant deviation 

from additivity, in this case inferring that the sum of the genotype and the 

exposure effects is less than expected, i.e. sub-additivity. For the other two 

SNPs, the no additive interaction null hypothesis cannot be rejected and the 

p-values for the product term beta coefficients imply that we cannot reject the 

null hypothesis of no multiplicative interaction.  
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5 DISCUSSION 

Results from gene-environment interaction studies can provide clues to many 

currently unanswered questions. By inference from the function of genes 

associated with disease, it is possible to gain better insight into specific 

pathways of disease pathology. [Tabor, Risch and Myers 2002] This may 

lead to the development of new medicines and therapeutic approaches. From 

a public health perspective, individuals at particularly high risk, i.e. those 

with high-risk genotype and high-risk environmental exposure, may be 

identified and potentially given targeted prevention, advice and health care. 

[Ottman 1995] Highly exposed groups could be identified, and such 

individuals could potentially be invited to a genotype test to determine 

increased risk due to genetic susceptibility, which would indicate an incentive 

for healthy lifestyle management. [Khoury 1997, Khoury & Wagener 1995, 

Ottman 1995] 

In the last few years, genotyping services for individuals have arrived in 

Britain and the US, where the debate over ethics and validity has been fierce. 

[Cooper 2014, Annas & Elias 2014a] So far, neither the validity of the tool, 

nor the health effects and impact (on an individual level or a population level) 

of the information provided by the service, are known. The American Food 

and Drug Administration has recognized potential risks and has sent a 

warning letter to one company marketing such services [Annas & Elias 

2014a, FDA 2013], and calls have been made for an international 

harmonization of standards regarding personal genotyping and handling of 

resulting data. [Annas & Elias 2014b, Yuji, Tanimoto, Oshima 2014, Annas 

& Elias 2014a] A prospective study of personal genomic testing has been 

launched in the US, by researchers in collaboration with two genomic 

profiling service companies. [Carere et al. 2014) 

On a more theoretical note, interaction analysis is complex and both theory 

and practice have inconsistencies. [Rothman, Greenland, Lash 2008] In 

particular, the concept of interaction as departure from additivity or 

multiplicativity of risks is still broadly discussed, and neither concepts nor 

methods or interpretation are well characterized or agreed upon. 

[VanderWeele 2011, Kaufman 2009, Ahlbom & Alfredsson 2005, Skrondal 

2003] While multiplicative interaction can easily be estimated directly in a 

logistic regression model, the concept of additive interaction answers 

somewhat different questions relevant to public health. [Rothman, Greenland, 
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Lash 2008] Regardless of the pros and cons, characteristics and relative ease 

of estimation for such different measures of interaction, consensus is needed 

to allow comparison and replication of results across studies. In order to 

better understand and ultimately determine how factors interact and the effect 

on disease risk, clearly defined methods are needed. 

Paper II used modeling of stratum-specific risk to investigate whether the 

effect of air pollution differs between genotype strata (a concept known as 

effect measure modification, presented briefly in section 1.5), thereby 

studying whether the risk of disease due to the environmental exposure as 

measured in the statistical model is modified by the genotype. Including the 

product term of the genotype variable and the air pollution exposure variable 

(i.e. the two exposure variables) in the logistic regression model estimating 

relative risks yields a p-value for the significance of the multiplicative 

interaction between risk factors, and the stratified effect estimates were easily 

obtainable by a reparametrization of this model.  

In the methodological Paper III, additive interaction was the focus and in 

simulations, a range of RERI estimates based on simulated parameter values 

for baseline and increment showed that the estimated RERI varies 

significantly even within the same dataset (the regression coefficients used in 

RERI calculations are estimated from the dataset and are thus fixed for a 

given model and dataset). Hence, some consensus on how to select values for 

the other parameters needed for RERI calculation must be reached in order 

for estimates to be interpretable and better comparable across studies. Other 

currently available measures of additive interaction (AP, synergy index) have 

similar issues and do not provide unequivocal estimates either. [Knol et al. 

2007] 

In epidemiological studies, and when using either multiplicative or additive 

interaction, there is always a risk of bias from various sources that needs to 

be considered. The INTERGENE/ADONIX study is a well characterized, 

population-based study with high-quality genotyping data.  Potential 

selection and non-participation bias in the population control sample part of 

INTERGENE/ADONIX study has been investigated. [Strandhagen et al. 

2010] The participation rate was 41.9%, and it was concluded that 

participants were somewhat more likely to be women, be well educated, be 

married and have a high income as well as being of Nordic origin compared 

to non-participants. Neither of these findings is likely to have any significant 

adverse impact on the case-control analyses in this thesis, especially not if the 
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same selection patterns can be assumed for the cases, which is reasonable. 

The fact that more women attended is in fact an advantage, insofar as that 

past cardiovascular research has often been conducted largely on men. 

Cardiovascular events occur in women too, and women need to be included 

in both study populations and clinical trials to ensure that research findings 

are relevant to women and that drugs approved from clinical trials are safe for 

women as well. [Kim et al. 2008, Stramba-Badiale 2009] That many of the 

participants are of Nordic origin is also advantageous, as we require a 

population with the similar overall ancestry for assessment of specific genetic 

risks in the genetic analyses. [Rosenberg et al. 2002] The small among-

populations genetic variance in Europe makes it reasonable to extend 

inclusion criteria to (self-reported) European ancestry. Being married and 

well educated does not affect the genetic susceptibility. However, educational 

level in participants was associated with several CVD risk factors (lower risk 

factor prevalence for more well educated) including hypertension, cholesterol 

levels and smoking, and may be associated with air pollution exposure, so 

that adjusting for educational level in analyses is likely advantageous. 

[Strandhagen et al. 2010] 

A relatively high prevalence of hypertension was observed, using a well-

established definition for hypertension (SBP ≥140, DBP ≥90 or taking anti-

hypertensive medication daily): 45.9% in the total study population, 73.8% of 

CHD cases and 41.2% of population controls. However, this is believed to be 

a demographic characteristic rather than an indication of biased 

measurements. [Chow et al. 2013] The selection of CHD case individuals 

was made with an emphasis on specificity, and all diagnoses have been 

validated; thus addressing potential misclassification of diagnosis among 

included cases. Because of the case recruitment strategy being through the 

major hospital, some true cases are likely not to have been given the 

possibility of participation in the study, but potential lack of sensitivity in 

case selection generally does not cause bias, as long as the case subset is non-

differential regarding exposure. It is possible that cases missing due to lack of 

sensitivity are differential with respect to air pollution exposure, since cases 

may be more likely to participate if they reside close to recruiting hospitals. 

Therefore, potential spatial bias was addressed by adjusting regression 

models for residential area, as discussed in section 3.2.  

Unfortunately, due to limitations of the area covered by the dispersion model, 

estimates of long-term air pollution exposure (Paper II and III) were not 

available for the entire geographical study area, thus excluding many case 
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and control individuals with otherwise valid data from the present analysis. 

Modeling air pollution levels for a larger geographical area would enable 

inclusion of more of the participants and increased power, but such models 

remain to be developed. The limitations of the dispersion model is the reason 

why the number of first-time AMI cases used in Paper II and III dropped 

from 192 potential AMI cases to only 119 once the exposure estimation was 

finished.   

The two main exposures used in this thesis are genetic variants and long-term 

traffic-related air pollution. Genetic variables are generally very well 

measured and thus suffer from low misclassification rates. Potentially 

mismeasured genotypes are also eliminated by excluding SNPs that deviate 

radically from Hardy-Weinberg equilibrium, which can indicate potential 

genotyping error. The main point where misclassification may be introduced 

is when the genetic model for analysis is chosen, which prompted the use of 

the stepwise procedure in Paper I. Regarding assessment of air pollution 

exposure, the stated home address of each individual was used as the 

geographical reference point. Obviously individuals do not spend 24 hours a 

day every day right outside their house, but rather move between home, work 

and any spare time activities. Also, the air indoors may be more or less 

polluted than the estimated outdoor air levels. However, the assumption is 

that for the type of air pollution exposure assessment used in this thesis, any 

exposure measurement error is likely to be non-differential with respect to 

outcome, meaning that it is on average equal among participating cases and 

non-cases. This assumption in conjunction with the results from the validity 

analysis of the estimated annual mean air pollution exposures (Johansson et 

al. 2006) led us to the decision not to correct the air pollution exposure 

variable for measurement error. The effect of non-differential measurement 

error for an exposure variable in an individual study has mostly been studied 

for the case of a dichotomous exposure and a dichotomous outcome, where 

the consequence of measurement error for the exposure variable on average is 

an attenuation of the association estimate. [Birkett 1992] For multiple 

categories and continuous exposures, the effect of the measurement error on 

the association estimate is more complex, which is also true for multivariate 

analyses that include covariates. [Brenner & Loomis 1994, Birkett 1992]  

In Papers I and II, confounding has been dealt with by including confounders 

as covariates in the regression models. Assessment was carried out starting 

with a list of possible confounders from literature. Each potential confounder 

was entered into a logistic regression model for respective outcome along 
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with the exposure variable. If the inclusion of the potential confounder 

changed the effect estimate for the exposure of interest by 5% or more, the 

potential confounder was considered a confounder in the analysis at hand and 

included in the final regression model. Given the limited sample size, known 

risk factors were not included in analysis models unless they fulfilled the 5% 

criterion, in order to keep the models as parsimonious as possible. Hence, 

non-inclusion does not necessarily imply that variables were not risk factors 

in our population. 

In the analysis results from Paper II, none of the regression models are 

adjusted for smoking, which may seem counterintuitive since the investigated 

pathological mechanism is systemic inflammation from pulmonary exposure. 

However, smoking was studied in depth as a potential confounder according 

to the 5% criterion above and was not considered a confounder. It was also 

studied in stratified analyses (effect modification analyses), where it did not 

show any conclusive effect modification, neither as a 3-level 

never/former/current smoker variable nor as a 2-level never/ever smoking 

variable. The effect modification results are presented in Appendix Table 1. 

Despite careful evaluation of potential confounding, in general complete 

control of confounding is not possible due to lack of data or insufficient 

detail and some residual confounding may remain, although often this 

remainder is unlikely to be substantial. A potential example of possible 

residual confounding is the result from Paper II, which shows a non-

significant effect of air pollution exposure in the “beneficial” direction with 

respect to hypertension, which may be considered counter-intuitive. One 

possible explanation for this finding is residual confounding by lifestyle and 

socioeconomic factors. To exemplify, people living in the center of 

Gothenburg, i.e. areas with higher traffic intensity and potentially higher air 

pollution exposure, also tend to have a higher socio-economic status, i.e. 

higher income and education, smoke less and have more regular health care 

contacts than individuals living in more rural areas. Similar patterns have 

been identified in other cities. [Forastiere et al. 2007, Zeka et al. 2006, Hoek 

et al. 2002] Thus, despite attempts to adjust for such factors in Paper II using 

an educational level variable, and indirectly also by adjustment for residential 

areas, and possibly also BMI, as well as assessing smoking as a confounder, 

what seems to be a potentially slight beneficial effect of air pollution may 

still represent a confounding effect of other risk factors.  
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Paper I used the collective diagnosis ‘CHD’ as an outcome along with 

hypertension, while in Paper II AMI was used instead of CHD. The reason 

why a more precise diagnosis was used for the air pollution analyses is that 

by using AMI cases, a definite date of event could be established and thus 

temporality of exposure (that assessed exposure occurred before time of 

event) could be ascertained. In addition, there was a suspicion that different 

susceptibilities and mechanisms may be active in the different cardiovascular 

outcomes contained in the umbrella term CHD, for example acute myocardial 

infarction, angina and coronary artery disease, regarding associations with air 

pollution exposure. Thus, to investigate the associations of a specific 

diagnosis with a clear onset, the AMI cases were selected among the CHD 

cases. Hypertension may be regarded as a risk factor for AMI in many cases, 

as an earlier step in the progression of CVD. One reason why hypertension 

was used as an outcome for Paper II was to evaluate whether air pollution 

exposure has a similar effect for different aspects of the CVD development.  

In Paper III, the objective was to estimate a RERI for one dichotomous and 

one continuous variable that is both consistent with the original definition of 

additivity of risks and takes the characteristics of the data used into account. 

To obtain such a RERI, several assumptions were made. First, the assumption 

that the logistic regression model gives unconfounded effect estimates. 

Second, that the interval for each variable in which RERI is estimated, should 

be representative of the available data for the population regarding the 

exposure. For a dichotomous variable, this is straightforward, as there is only 

one baseline and one increment (exposed level) to choose from, and both 

main effects and interaction are naturally estimated for that one available 

contrast. For a continuous variable, there is generally no obvious baseline or 

increment, and in order to calculate RERI, these and the interval they define 

must be chosen. Paper III argues that a good choice for the sought contrast 

would be the effect close to a measure of location of the available data. Here, 

the center of the interval where RERI is estimated must be chosen carefully 

(focusing on a measure of location for the variable data, e.g. the population 

mean), while the increment ought to be small, approaching zero (in order to 

access the local regression slope which represents the effect), to best estimate 

the sought odds ratio. Due to the additive properties of RERI as conceptually 

defined [Rothman 1986], once the sought RERI is obtained for the small 

interval, it can be scaled back in an additive manner to the same unit that was 

used for the main effect estimate for the continuous variable. 
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Which measure of location (or measure of central tendency) is the most 

appropriate to center the RERI interval depends on the characteristics of the 

data. Often measures of location are compared in terms of robustness and 

resistance, two related properties which are founded on slightly different 

conditions [Andrews 1998], as well as power, i.e. the probability of detecting 

true associations between variables. To exemplify, if outliers are present, it 

will affect the mean in the direction of the outliers, meaning that the mean is 

not resistant. The mean is also sensitive to even small deviations from normal 

distribution of the data, which can inflate the standard error of the mean, 

which in turn reduces the power. [Wilcox 2014] The median, on the other 

hand, is resistant, because only the one or two most central ordered values are 

actually used to determine the median. However, precisely this characteristic 

reduces the power of the median. Regarding robustness, the median is more 

robust than the mean, because the shape of the tails of the variable 

distribution has a larger effect on the mean than on the median. Thus, neither 

the median nor the mean is an optimal measure of location in the sense that 

neither is unaffected by outliers or deviations from normal distribution. In the 

applications in this thesis, the mean is used as measure of location because 

the air pollution exposure variable meets the assumptions of no extreme 

outliers and approximately normal distribution, and trimming the data 

seemed wasteful when not explicitly called for. When the assumptions are 

not met, a trimmed mean with γ=0.2 has been recommended as a good 

compromise between power, resistance and robustness. [Wilcox 2014, 

Wilcox 1998] We consider it likely that this measure will also be useful in 

conjunction with our proposed pragmatic approach to obtain a RERI estimate 

for such data. 

A γ-trimmed mean is 

 𝑋𝑡̂ =  
1

𝑛−2𝑔
(𝑋(𝑔+1) + ⋯ + 𝑋(𝑛−2𝑔))  

where 0 ≤ γ ≤ 0.5;  X(1) ≤X(2) ≤ … ≤ X(n) are the observations written in 

ascending order and g = [γn] where [γn] is the value of γn rounded down to 

the nearest integer. [Wilcoxon 2014]  
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6 CONCLUSION 

Overall, 58 SNPs in the three NOS genes, 7 SNPs in GSTP1 and one in each 

of GSTCD and GSTT1 were investigated regarding association with CHD, 

AMI or hypertension. Several of the GST SNPs were further analyzed to 

evaluate interaction between air pollution exposure and the genetic variants 

on the outcomes AMI and hypertension. An extension to a known method for 

estimating additive interaction was proposed, to support the use of 

continuous variables. 

6.1 Paper-specific conclusions 

I. Several SNPs in the NOS1, NOS2 and NOS3 genes were found to be 

significantly associated with either CHD or hypertension, including 

the NOS1 SNP rs3782218, which was significantly associated with 

both outcomes. A haplotype analysis indicated that for CHD, the T-

allele of this SNP is a main marker of the observed effect, whereas 

for hypertension another NOS1 SNP seemed also to contribute to the 

effect. The results provide additional support for the biological 

rationale of the nitric oxide pathway in CVD. The NOS1 findings are 

novel, although the gene has not been studied much previously in 

relation to CVD. 

II. A significant increase in risk of AMI was found in association with 

long-term traffic-related air pollution exposure, which is consistent 

with previous findings regarding an association between long-term 

air pollution and AMI. For hypertension, no conclusions about a 

potential association with air pollution exposure could be drawn. On 

the other hand, variants in GSTP1, GSTT1 and GSTCD showed no 

clear associations with AMI, but several SNPs were associated with 

hypertension. When the effect of long-term traffic-related air 

pollution was analyzed for AMI and hypertension in models 

stratified by genotypes of the most strongly associated SNPs, 

multiplicative interactions were not statistically significant, but 

results indicated that the effect of long-term air pollution exposure 

on the risk of AMI may vary by genotype, while no obvious effect 

modification was seen for hypertension. Although the interaction 

results were not statistically significant, the results are consistent 

with potential genetic susceptibility for air pollution exposure effects 
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on risk of AMI related to variants in antioxidant genes of the GST 

family, which may not involve hypertension. 

III. In the methodological investigation of additive interaction, it was 

concluded that RERI varies with every parameter involved in its 

calculation. Of these, the beta coefficients (representing main effect 

and multiplicative interaction odds ratios) are determined by the data 

through logistic regression, while baseline and increment values 

must be selected by the investigator. A further conclusion was the 

pragmatic proposal that RERI ought to be estimated around a 

measure of location which is representative for the variable data, and 

with an increment approaching 0, in order to best estimate an 

unequivocal, interpretable measurement of additive interaction. 

Finally, a standardization using the inverse of the increment enables 

RERI to be scaled back in an additive fashion consistent with its 

original definition to the unit used for the main effects, facilitating 

interpretation. 
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7 FUTURE PERSPECTIVES 

Due to the effort and time required to acquire the air pollution exposure data 

for this study material, some anticipated studies within the scope of this 

thesis remain to be done. One such study is that of investigating the 58 

genotyped NOS SNPs for interaction with long-term traffic-related air 

pollution, similarly to what was done using SNPs from the GST gene family 

in Paper II. The approach laid out in Papers II and III can be used for this and 

similar analyses in the future. 

For successful progress and discoveries in gene-environment interaction 

research, it is important that methods be further investigated. A relative 

measurement can be of interest if it is interpretable and can be compared 

across studies, which is only possible if all assumptions and characteristics of 

included variables are explicitly defined. An absolute measurement of 

additive interaction for other settings than that of two dichotomous variables 

has not yet been presented. It is hoped that the pragmatic proposal presented 

in Paper III can be a springboard for further investigations of the subject, 

since the approach tries to reconcile the estimates from the commonly used 

(but inherently multiplicative across a continuous variable) logistic regression 

with the conceptual additivity of risk in the original RERI definition. The 

details of the statistical implications of the approach remain to be elucidated, 

as well as validating the approach for different settings and exposure ranges. 

As for the specific burden of CVD, a part of it is due to genetic susceptibility, 

which is important to investigate further. But at least as important is 

investigating human everyday exposures, including air pollution and lifestyle 

choices such as smoking, and maintenance of general health by prophylaxis 

as well as adherence to medication [Butler et al. 2002, Nichol, Venturini & 

Sung 1999]. Considering both genetic susceptibility and the individual 

everyday exposure, it appears that individual risk is the result of a complex 

equation involving both factors that can be manipulated as well as fixed, 

predetermined factors. Thus, while the focus from a public health perspective 

may be to identify common disease mechanisms and exposure patterns, the 

individual patient as encountered by primary care physicians may benefit 

from a more personalized approach which considers as many pieces of the 

puzzle as possible. It may also be valuable to realize that genetic factors may 

influence lifestyle, both adversely and beneficially. 
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However, a bit of caution ought to be applied when genetic research 

questions are formulated, investigated and the results shared with the public. 

The effects of individual genetic screening and mapping on society and the 

individual are not yet known. The opinions on genetic screening differ within 

and between populations. The ultimate objective for genetic exploration is 

often said to be personalized medicine, but the implications of such a 

development need to be considered. 

On the other hand, gene-environment interaction studies can also be used to 

elucidate disease pathology mechanisms and further increase the knowledge 

of the human body’s molecular functions. Personally, I believe that gene-

environment studies on multiple comorbidities between patient groups can 

take us a long way towards understanding etiology at the causal and pathway 

levels. For example, by studying how individuals move through the four 

states of a comorbidity, i.e. unaffected, has disease A, has disease B and has 

both disease A and B, also considering which risk factors the diseases share 

and not share, the mechanisms of each disease may be clarified further and 

there is the opportunity to evaluate temporality for causal inference. 

All in all, while John Donne as early as in 1624 noted that “No man [is] an 

island” [Donne 1624], future perspectives in CVD research are bound to 

focus on both individual susceptibility and environmental exposure in one 

form or another, i.e. interaction between individual characteristics and 

societal exposure. 
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APPENDIX 

Table 1. Analyses of effect of NO2 per 10µg/m3 on respective outcome 
AMI and hypertension, stratified for genotype and 3-level smoking 
variable. 

    
Effect estimate of NO2  
per 10µg/m

3
 increase 

    
Outcome 

Gene:  
SNP Genotype Smoking* OR 95% CI p-value 

AMI GSTP1 GG 0 1.00 0.37 2.73 1.00 

 
rs596603 

 
1 1.57 0.74 3.30 0.24 

  
  2 1.67 0.69 4.02 0.25 

  
GT + TT 0 1.79 0.73 4.43 0.21 

   
1 2.28 1.08 4.82 0.03 

      2 3.22 1.39 7.44 0.006 

Hypertension GSTP1 CC 0 0.95 0.56 1.61 0.84 

 
rs1871042 

 
1 0.92 0.56 1.53 0.76 

  
  2 0.74 0.38 1.43 0.36 

  
TC + TT 0 0.97 0.57 1.67 0.92 

   
1 0.62 0.36 1.06 0.08 

 
    2 0.60 0.32 1.12 0.11 

 
GSTP1 GG 0 0.95 0.56 1.61 0.85 

 
rs749174 

 
1 0.95 0.58 1.57 0.84 

  
  2 0.76 0.39 1.47 0.41 

  
AG + AA 0 1.02 0.60 1.74 0.94 

   
1 0.63 0.37 1.09 0.10 

 
    2 0.62 0.33 1.16 0.14 

 
GSTP1 CC 0 0.76 0.42 1.37 0.36 

 
rs762803 

 
1 0.83 0.48 1.44 0.50 

  
  2 0.52 0.23 1.16 0.11 

  
CA + AA 0 1.16 0.70 1.91 0.58 

   
1 0.71 0.43 1.19 0.19 

      2 0.69 0.39 1.23 0.21 

AMI GSTT1 Null 0 No cases in this stratum 

 
rs2266637 

 
1 1.19 0.22 6.34 0.84 
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  2 1.76 0.31 9.94 0.52 

  
Non-null 0 1.36 0.60 3.07 0.47 

   
1 1.83 0.99 3.41 0.06 

  
  2 2.63 1.25 5.50 0.01 

Hypertension 
 

Null 0 1.00 0.43 2.35 1.00 

   
1 0.62 0.25 1.57 0.32 

  
  2 0.47 0.16 1.34 0.16 

  
Non-null 0 1.03 0.64 1.65 0.91 

   
1 0.82 0.53 1.26 0.36 

      2 0.71 0.41 1.23 0.22 

AMI GSTCD AA 0 1.49 0.65 3.41 0.34 

 
rs10516526 

 
1 2.06 1.09 3.91 0.03 

  
  2 2.73 1.30 5.74 0.01 

  
AG + GG 0 0.57 0.08 3.95 0.57 

   
1 1.01 0.25 4.14 0.99 

  
  2 1.45 0.27 7.87 0.67 

Hypertension 
 

AA 0 1.03 0.65 1.66 0.88 

   
1 0.84 0.54 1.30 0.42 

  
  2 0.75 0.43 1.31 0.31 

  
AG + GG 0 1.04 0.46 2.34 0.93 

   
1 0.68 0.28 1.65 0.39 

 
    2 0.39 0.11 1.37 0.14 

* Smoking status: 0= never smoker, 1= former smoker, 2= current smoker 
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Erratum 
 

Table 2. Corrected results for the GSTT1-stratified analysis of effect of 
long-term traffic-related air pollution on risk of AMI from Paper II. 

  Effects per 10µg/m
3

 of NO2  

Gene:SNP Genotype OR 95% CI p-value 
Interaction 

p-value 

GSTT1: 

rs2266637 
Null 1.37 0.32 – 5.89 0.67 0.60 

 Non-null 2.01 1.13 – 3.58 0.02  

Model is adjusted for age, age squared, sex, BMI, educational level (included 

correctly as a categorical variable, rather than incorrectly as a continuous 

variable) and residential area. 

The estimates were only very marginally changed as compared to the 

published version (Table 4, Paper II), with no change in interpretation. 


