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Matteo Bazzanella

Department of Physics
University of Gothenburg

Abstract

In this thesis some new ideas to perform the analysis of Strongly Correlated
Electronic Systems (SCES) are developed. In particular the use of non-linear
canonical transformations is considered thoroughly. Using such transformations
it is possible, in some circumstances, to simplify the quantum problem redefin-
ing the fermionic degrees of freedom used to describe the system. To understand
and use effectively these non-linear transformations it is convenient to work in
the Majorana fermion representation, i.e. to represent the quantum mechani-
cal operators in terms of Majorana fermions. These objects can be imagined
as algebraic constituents of the fermionic degrees of freedom. In a fermionic
system, different equivalent sets of (emergent) Majorana fermions can be used
to build the fermionic operators that characterize the system. The non-linear
transformations can be seen as a way to mix these equivalent sets. Thanks to
this insight, it becomes possible to characterize the full structure of the group
of canonical transformations and to identify an advantageous framework, which
allows their use in the study of a generic SCES system. To test these statements
the Hubbard and the Kondo lattice models were intensively studied making use
of non-linear canonical transformations, obtaining interesting results in both
cases. For example, in the Hubbard model a free fermion mean-field description
of the paramagnetic Mott insulator was identified, while in the Kondo lattice it
was possible to describe already at mean-field level the spin-selective Kondo in-
sulating phase, consistently (from a quantitative and qualitative point of view)
with the known numerical results. Moreover the method elaborated for the
study of the Hubbard model is suitable for a systematic generalization to other
situations and shows great room for improvement. These results prove that,
thanks to the redefinition of the degrees of freedom used in the analysis of the
system, it becomes possible to obtain quite non-trivial results already at mean-
field level, or to consider very involved (but meaningful) correlated quantum
states via simple variational trial states. This will potentially permit a more
judicious and profitable choice of the fundamental degrees of freedom, allowing
for an improvement of the efficiency of the analytical and numerical techniques
used in the analysis of many SCES systems.
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Chapter 1

Preface

I first encountered the term “Majorana fermions” in 2010, at the
beginning of this thesis project, at which time my attention was caught by
the compelling name as well as the mysterious concepts behind it. The Ma-

jorana fermions discussed in condensed matter are indeed very unusual “quasi-
particles”: chargeless, uncountable, without a vacuum and not closely related
to the original solution to the Dirac equation on real field, discovered by Et-
tore Majorana in the early Nineteens-thirties [1]. How can they be considered
particles? Why are so many people interested in them? Can they somehow
be useful? This thesis began when I, together with my supervisor Dr. Johan
Nilsson, started to consider these issues; specifically, to pursue answers to the
last question.

In recent years there has been increasing interest in the physics of Majorana
fermions (Majoranas), or, to be more precise, in the physics of topological Ma-
jorana fermions1 [3–5]. Their realization in real systems, their properties and
their possible applications are still the subject of debate and they represent a
truly interesting challenge being taken up by more and more physicists. The
focus of this formidably innovative branch of research always lied outside my
own greatest interests, though of course, like so many others, I was fascinated by
the simplicity and the effectiveness of, for example, Kitaev’s original paper [6].
Indeed what really caught my attention in that work, was not the possibility to
build a fermionic mode with two spatially separated coherent components; in-
stead my imagination was captured by the fact that the electrons can be broken
into two well defined parts in such a formally elegant way, and that these half
fermions can then be reassembled, like the pieces of a puzzle, to represent the
Hamiltonian with fermionic operators that suit it nicely, exploiting its physical
properties in a straightforward way. This feeling immediately forced me to focus
on one single question: “Can this simple way to represent the original fermions
of a model in terms of Majoranas bring some new insight in the study of strongly
correlated electron systems?”.

Strongly Correlated Electron Systems (SCES) have been the focus of re-
search of a large part of the condensed matter community for the last thirty
years. These systems represent such a challenge that even their rigorous def-

1Sometimes also indicated with by the name “Majorana zero modes” and others. See discussion
in Chapter 2 and Ref. [2].
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2 Chapter 1 Preface

inition is controversial. Keeping a broad view, one could include in this class
all the systems where the effect of correlations2 between the electrons is more
important than those due to their delocalization.3 In this sense Mott insula-
tors, cuprates, heavy electron compounds, quantum dots, spin systems, and
many others can be considered as strongly correlated. These systems are often
studied using model Hamiltonians, appositely designed to capture their main
physical properties [7]. The most well-known model is certainly the Hubbard
model [8], the extreme simplicity of which is contrasted by the conceptual and
formal challenges posed by its analysis. The study of these model Hamiltonians
relies on traditional analytical tools that have roots (in most cases) in the idea
of the Landau-Fermi liquid and in perturbative analysis [9–11]. By definition,
such ideas are inadequate in the SCES context: indeed the special role played
by the kinetic terms, which implies the idea of free (bare) electrons and is also
an expression of their delocalization, is not natural to the physics of the SCES.
Therefore it is not a surprise if these techniques face major problems when the
effect of correlations between electrons challenges their delocalization.

The only known universally feasible way to tackle a SCES systems relies on
numerical studies. In the last decades numerical methods have blossomed thanks
to the huge improvement of the available digital technologies, and these methods
have been heavily applied in the study of many model Hamiltonians. Of course
the results obtained numerically are a major leap forward towards the solution
of many open questions, however they do not necessarily represent the ultimate
tool. In fact, although capable of treating the interactions in a less approximate
way, they descend from the same interpretations, ideas and paradigms used by
the analytical approach. On the one hand the systems can be solved and the
properties computed, but on the other hand it is not clear if the physical picture
provided is the simplest and most rational. Moreover, in many model systems
even numerical studies have not been successful in obtaining reliable solutions
(for example in the case of the cuprates). Therefore a shift in the paradigms
that we use to study the different Hamiltonians could have potential benefits
for both analytical and numerical techniques.

An important lesson can be learnt from the few situations where analyt-
ical techniques proved themselves invaluable, providing exact solutions to in-
volved quantum interacting problems. The analysis of the one dimensional
Luttinger liquid [12] can be used as example, which has been solved making use
of bosonization and Bethe Ansatz. Another example is given by the high (infi-
nite) interacting limit of the Hubbard model, which can be tackled via unitary
transformations. The techniques used in these two examples are not universal,
in the sense that they are effective only in very specific situations, but the lesson
that they teach is instead a fundamental one: the weakness of the concept of the
electron. The bosonized solution of the Luttinger liquid is very representative
in this sense, since it highlights the separation of the electrons into two different
quantum modes, i.e. the holon (charge) and the spinon (spin) modes [12–14]. In

2With the term correlation I here mean the sensitivity of an electron mode to the disposition of
the other electrons, i.e., on the global configuration of the system. The latter can substantially affect
the dynamics and the properties of the electron quantum mode itself, also causing its “destruction”,
or in other words, making it not a good degree of freedom for the description of the physics of the
system, i.e. a degree of freedom too far from the eigenstates of the system.

3Delocalization here means the tendency of the electron mode to spread its wavefunction over
different lattice sites. In some sense it represents the tendency of the electron to “exist” as a good
quantum mode in the system, as a convenient way to describe the physics of the system.
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the Luttinger model these modes have the right to be considered fundamental.
The general lesson that can be derived is that although electrons (the fundamen-
tal particles of charge −1e, total squared spin 3�2/4 and mass approximately
0.5 MeV) are inside any solid state system, the modes that describe correctly
the physics, e.g. the ground state and the excitations, at the energy scale typical
of condensed matter studies (≈ 1 eV and less), cannot always be thought of as
(dressed) electrons, because the dynamics and properties (quantum numbers) of
the electron do not fit the physics of the system. This non-fundamental nature
of the electron4 is quite general, so in some circumstances it is expected that
other degrees of freedom must be used to describe and understand the physics
of a system. These are not mere theoretical speculation, but facts verified ex-
perimentally: for example it has been observed that the electron splits (under
specific conditions) into three constituent quasiparticles named holon, spinon
and orbiton [15–20]. With these lessons in mind, one cannot be surprised by
conjectures about the existence of Majorana fermions. If the electrons, or better
the electronic modes, cannot be seen as fundamental (universal) bricks, then it
cannot be wrong either to split them into halves, as long as some caution is
taken. Also this is not a mere mathematical speculation, since effects due to
Majorana modes (may) have already been observed in experiments [21].

The main feature of SCES is probably the inadequateness of the original
electron modes, which correspond to the electron operators used to represent
the model Hamiltonian. This is not surprising, since the presence of high corre-
lations between the electrons must imply a strong suppression of their coherent
delocalization. So it seems natural that a method designed to deal with these
complicated systems must not necessarily rely on the original electronic degrees
of freedom. This consideration has a straightforward consequence: because the
study of a SCES Hamiltonian is nothing more than a difficult quantum prob-
lem, because this quantum problem is (typically) assigned in terms of quantum
coordinates that do not have any special status, and because the representa-
tion in terms of these quantum coordinates proved itself not convenient, then
there exists no reason to keep using the original coordinates; as in any difficult
physics problem, the first step towards the solution should be the choice of an
adequate coordinate set: a set chosen on the basis of its conveniency, which per-
mits the simplification of the problem, for example by exploiting symmetries,
or by making the implementation of numerical methods less cumbersome. To
go from one set of coordinates to another, an appropriate group of coordinate
transformations must be defined. In quantum mechanics such a group must
be able to change the basis states of the Hilbert space, preserving the matrix
elements between them. Therefore it is natural to consider the group of uni-
tary transformations. Such a group embraces a great variety of transformations
and it has been often used in quantum mechanics. Unitary transformations are
used widely in condensed matter, in particular in the analysis of high coupling
limits of some model Hamiltonians, for example in the study of the (periodic)
Anderson or Hubbard models [7]. In these circumstances the use of properly
defined unitary transformations allows one to map the original Hamiltonians
onto the Kondo (lattice) model Hamiltonian and the Heisenberg Hamiltonian
respectively [22, 23]. In practice, the unitary transformations are used to write

4From now on the term “electron” will mean the dressed electron quantum mode of the Fermi-
Landau liquid theory, or Landau quasiparticles.
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down the effective Hamiltonian governing the low energy sectors of the original
systems, in terms of appropriate low energy coordinates, i.e. spin degrees of
freedom in both cases. The unitary transformations of the previous examples
are therefore non-canonical: in fact the original set of coordinates comprises
only fermionic operators, while the new set is composed also of spin operators.
The commutation relations between the operators (quantum coordinates) used
to represent the Hamiltonian are not preserved by the transformation.

An interesting subset of the unitary transformations group consists of the
group of canonical transformations, which maps an initial set of fermionic oper-
ators into another set of fermionic operators. To work in terms of fermions only,
rather than spins, is an advantage from a practical point of view. Indeed the
powerful tool of the Wick theorem makes the use of fermions much easier [11]. It
would therefore seem appropriate to understand this class of coordinate trans-
formations and to find ways to manage them easily.

In recent decades, not so much has been written about the general properties
of this group, in particular in the context of condensed matter physics. Moreover
very few (non-trivial) examples of applications can be found in the literature
(see for example Refs. [24–26]). This is due to the fact that this transformation
group can be thought of as comprising two parts: the (trivial) subgroup of linear
transformations and the set of non-linear ones. The first class includes all the
many transformations, used throughout quantum mechanics, which mix linearly
2n fermionic operators (n of creation and n of annihilation) to obtain again 2n
well defined fermionic operators; examples are is the Bogoliubov-Valatin trans-
formation, the spin rotation around an axis, and the simple operation that allows
for the diagonalization of tight-binding Hamiltonians. The second set instead is
composed of all those transformations that take the original 2n fermionic oper-
ators and all their 22n−1−2n non-trivial odd products and mixes them properly
in order to obtain again a set of well defined 2n fermionic operators. This class
of non-linear canonical transformations can potentially be a powerful tool in the
study of SCES systems. Indeed these transformations permit one to define new
sets of fermionic modes that, in terms of the original ones, are correlated with
each other. The new vacuum of this new set may, for example, be a correlated
state of the original fermions. Since the new coordinates are “correlated” coor-
dinates, it may happen that the choice of an appropriate transformation defines
a set of fermions that are able to capture the correlations of the Hamiltonian
and therefore able to simplify it.

The main aim of this thesis is to explain in detail the concepts introduced
in the previous paragraphs, which so far may only seem very abstract to the
reader. It is important to emphasize already at this point that the connection
between the mathematical abstraction of the non-linear canonical transforma-
tions and the physics of a fermionic system becomes straightforward in terms
of Majorana fermions. Representing the operators in terms of Majoranas im-
mediately shows the rationale behind the non-linear canonical transformations.
Indeed the Majorana representation proves the necessity of an analysis based
on the full group of canonical transformations. Moreover, since the non-linear
canonical transformations can be incorporated within any analytic or numerical
scheme typically applied to SCES systems, another aim of this thesis is to show
some ways to do this in an effective way. Indeed the Majoranas also provide an
extremely easy way to represent and handle all these transformations; such a
simplification allows the implementation of different strategies for the study of
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SCES. Some of these strategies will be discussed in considerable detail in this
thesis. With this in mind it is advisable to start the presentation of the results,
concluding this short preface. This thesis has been written with the hope that
it may be considered as a guide for the reader who is new to these topics. The
results are not analyzed, but only introduced briefly, within the main text. In
fact all the results have been already presented in the appended papers A, B,
C and D. As the reader can see these works are quite lengthy and detailed.
Moreover the authors kept a very pedagogical style in all of them, reducing the
need for extra comments. What can be found in the main text of this thesis are
therefore introductions that give the background necessary to understand the
papers and the results. In this sense the text is meant to be self-complete and
readable by any condensed matter physicists. It is implicit that a reader who is
already familiar with the concepts contained in the introductory chapters (topo-
logical Majorana fermions, Hubbard model and Mott insulators, Kondo lattice)
may confidently skip them.

In Part I, the results of paper A are introduced, together with the concept
of the Majorana fermion. A brief summary of the ongoing discussion about
topological Majorana fermions is also provided, together with an introduction
to the concepts of non-linear canonical transformations. Paper A provides the
theoretical and mathematical background on the relation between Majorana
fermions and non-linear transformations.

In Part II the contents of paper B are explained. This paper used the
framework developed in paper A to analyze the Hubbard model. In particular
the high U, Mott insulating limit of the Hubbard model is studied. Therefore a
very short introduction to this phase is provided.

In Part III the last two papers, C and D, are reviewed. In those works the
analysis of the 1d Kondo lattice was performed in two different ways. Moreover
in the second part of paper D the formalism of Majorana fermions was brought
into Feynman path integral form. Since to understand these results one needs
to have a good knowledge of the physics of the 1d Kondo lattice and since an
updated review on this model is missing in the literature, a lengthy presentation
of the model is provided.

It must be mentioned that half of the results (papers C and D) contained in
this thesis have already been presented in my own Licentiate Thesis [27]. As is
the tradition in Sweden, and in agreement with the policies of the University of
Gothenburg, I will use again part of the material presented in that publication.
In particular the chapters 2, 6, 7 and 8 and the appendices B and C have
been taken from [27] with minor modifications; sections 2.2 and 3.2 have been
substantially changed with respect to the original version.
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Chapter 2

Majorana fermions

Ettore Majorana published his celebrated work about a symmetric the-
ory for the electron and the positron in 1937 [1]. The paper explored
the possibility of obtaining solutions to the Dirac equation on the real

field. As known, the Dirac equation [28,29] describes the dynamics of quantum
fields on the Minkowski space-time manifold. Naively speaking the (excited)
modes of these fields represent particles; perturbations of these fields propagate
according to the Dirac equation, and this propagation can be interpreted as
the “motion” of the particles. The dynamics is not in conflict with relativity
(contrarily to non-relativistic quantum mechanics, governed by the Schrödinger
equation), because the combined effect of two fields applied at space-like dis-
tance is zero (the two fields commute), although the signal can propagate also
at non-physical “speeds”.

Dirac found a very elegant way to use these fields to describe spin-1/2 par-
ticles.1 Such a fermionic field has to obey the equation

(i∂µγ
µ −m)Ψ(x) = 0, (2.1)

with the four matrices γµ that close to Clifford algebra {γµ, γν} = 2ηµν , and ηµν
is the Minkowsky metric. Dirac discovered a set of matrices on the complex field
that fulfilled the requirement. The solution Ψ(x) of the equation is therefore
given by a complex field. Summarizing, since complex fields are associated with
charged particles,2 the solution of the equation and its complex conjugate can
be interpreted as the particle and the antiparticle.3

Majorana understood that the solution found by Dirac was not the only one
possible. In fact (2.1) can be written using a different set of matrices on the real
field, implying the existence of real solutions to the Dirac equation. This means

1In this manuscript the convention � = 1 is used, if not stated otherwise.
2The relation between the complex/real character of the field and the existence/in-existence of

a charge was already known. In fact the Klein-Gordon equation (that can describe spin-0 particles)
for both the real and complex cases had been resolved years earlier. It had been noticed that in the
case of complex solutions the requirement of local gauge invariance (invariance of the field upon the
change in the phase), implied the appearance of other fields in the equation that could be interpreted
as electromagnetic-like fields (gauge fields). The interaction with a electromagnetic field assumes
the existence of a charge, so the complex character of the quantum fields implies the fact that the
related particle is charged.

3This is not completely exact, but being irrelevant for the discussion I will not discuss the
subtleties here. I recommend the reader to explore the vast literature, starting from Ref. [28,29].

9



10 Chapter 2 Majorana fermions

that the Dirac equation can describe also chargeless spin-1/2 particles, i.e. par-
ticles that are their own antiparticle. Particle with such features where named
“Majorana fermions” in his honor. The search for Majorana particles is not
yet concluded and it is still not clear if they represent interesting mathematical
constructions, never realized in nature, or actual particles, like the neutrino, or
the (still unobserved) photino [2,30]. Fortunately the existence of fundamental
particles that are Majorana fermions will not affect the condensed matter com-
munity: in fact Majorana fermions can be realized in condensed matter systems,
although with some alteration of the original concept.

In condensed matter systems the wildest dreams of theoretical high-energy
physicists can be made real. Recently many “mathematical artifacts” defined
in theoretical high-energy physics contexts, describing exotic particles, have
been observed in solid state systems. Examples are the massless Dirac(-Weyl)
fermions in planar graphene [31], or the magnetic monopole that can be in-
duced in topological insulators [32]. Of course these modes are not fundamental
particles, but collective configurations of an entire system; however they are de-
scribed by equations similar to those of their high energy partners and therefore
obey (under specific circumstances) to similar physics.

Recently also the possibility to realize “Majorana fermions” has been con-
sidered, although the term has been heavily abused. In condensed matter this
term is not associated with particles that behave according to the Dirac equa-
tion, nor to any quantum state, or excitation mode. Instead “Majorana fermion”
is colloquially used to describe an object that carries half of the properties of an
electronic degree of freedom. The operators that represent these objects must
be hermitian, thus if they could be thought of as creation/annihilation operators,
they would be associated with particles that are their own antiparticle. This
latter property implies the (inadequate [2]) name. Condensed matter Majorana
fermions are formally obtained making a symmetric linear combination of the
creation and annihilation (hole annihilation and creation) operators of the same
fermion and this may give the wrong idea of the definition of a new fermionic
particle, which is not the case since no vacuum state exists for the operators
defined in this way, so it is impossible to associate any quantum level to them.
However it is very convenient to imagine them as actual particles that can be
localized in space and manipulated. It must be mentioned that there also exists
excitations and actual quantum states in condensed matter systems that behave
as Majorana particles, whose dynamic is described by the Dirac(-Majorana)
equation [33, 34]. However, those are not the kind of Majorana fermions that
will concern us in this thesis.

Majorana fermion solutions appeared in solid state physics long ago [35],
and since then they returned sporadically in a few works and in particular they
have been used often to study spin systems [36–38]. However they have often
been considered suspicious and seen more as artifacts or mathematical tools,
than as real objects. There was a sea-change in perspective a few years ago,
with the popularization of the concept of topological order in condensed matter
systems.4 The idea that not just the symmetry of the lattices, but also the

4The literature is very rich in reviews from which the interested reader can begin their re-
search [39–41]; however I suggest that the best introduction to the subject maybe obtained by
reading Ref. [42] which is based on a differential geometry approach. I will not discuss the con-
cept of topological order or topological classification, the knowledge of which is not necessary for
understanding the content of this thesis.
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global properties of the Hamiltonian can be important, focused the attention of
the community on some non-trivial effects that can be realized in “topological
compounds”. Although the original idea of topological order originated in the
context of quantum Hall effect [43] and fractional quantum Hall effect [44–46],
nowadays the so called “topological insulators” are the most discussed systems in
which topological properties of matter are studied. In these systems the concept
of topological order is quite unaffected by the nature of the compound, which
can be either a band insulator or a superconductor. This is due to the fact
that the topological properties rely on the existence of a gap in the spectrum
and what is important is its structure, not its origin. It must be stressed that
most of the literature on topological insulators deals with non-interacting sys-
tems. The interactions partially affect the results (for example the classification
scheme [47, 48]), but not the main properties of the systems (see discussion in
Ref. [42]). Because of this reason the systems considered have been mostly non-
interacting, where with this term I mean that their Hamiltonians contain only
quadratic fermion operators or constants, therefore they are straightforward to
diagonalize.5

The study of the topological properties of matter followed two (very similar)
directions: the characterization of the topological insulators and of the topolog-
ical superconductors. Interestingly it was soon understood that the topological
non-triviality of a system could cause the appearance of some exotic collective
fermionic modes in the spectrum of the system; such fermionic modes are char-
acterized by the compelling property of having no antiparticle counterparts.6
Because of these properties they were named “Majorana fermions” initially, but
now it is more common to refer to them as “Majorana modes”. In both contexts
the important ingredients for the appearance of these elusive Majorana modes
are the simultaneous presence of superconductivity and topological (non-trivial)
order in the system. In the Sec. 2.1 a brief introduction to this new and exciting
topic is given, in order to convince the reader that these Majorana modes are
not unphysical and that they could really be important in the future. In fact
the results provided in the appended papers do not use the Majorana fermions
in the fashion presented in Sec. 2.1. Of course some concepts are shared, so it
is appropriate to be familiar with the known results, but the angle from which
I would like the reader to view the Majoranas is completely different.

2.1 Topological Majorana fermions
Looking for a way to realize a condensed matter equivalent of the Majorana
fermions, it is natural to start from a superconducting system [49, 50]. In fact
the main property of the Majorana fermions is that they are their own an-
tiparticle and therefore charge neutral. In normal band insulator systems, the
only ingredients available are the excitation modes of the system, i.e., single or
collective configurations of electrons and holes,7 so it is in no way possible to

5In the context of superconducting systems I refer to the Bogoliubov-deGennes Hamiltonian,
hence the reader should not be shocked if I consider the superconducting systems as non-interacting.

6This could seem an absurd. However in the next section it will be shown how the apparent
confusion is due to a loophole in the formalism of creation and annihilation operators, which gets
“confused” by the existence of a doubly degenerate ground state.

7Electrons and holes, and their collective configurations, are properly defined quantum states
only after a definition of a reference vacuum, typically the non-interacting ground state. The reader’s
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build anything that resembles a Majorana fermion. In fact there exists quite
a difference between adding (or exciting) an electron mode or an hole mode
in the system, because the number of electrons (the electric charge) is a good
quantum number. Quantum mechanics allows to count the number of electrons
in normal insulating systems: it is therefore impossible to create a state where
such number is uncertain.

The only way to bypass this difficulty is to work in a system where the
number of the electrons is undetermined: the superconductors.8 Indeed in a
superconductor the notion of electron charge loses completely its meaning, be-
cause of the BCS condensate of Cooper pairs. To add an electron on top of
the condensate or to remove one (i.e. to add a hole), makes no difference for
the system, because in both cases the effect is to create an incomplete Cooper
pair. Hence the superconducting condensate must play a fundamental role in
the search of a solid-state analogous of the Majorana fermions. This is also the
same idea behind the mechanism of Andreev reflection [51].

A prototypical system that can host objects with similar properties to the
Majorana fermions has been elaborated9 by Kitaev in 2001 [6]. He considered
the Hamiltonian for a fully spin-polarized, one dimensional, p-wave supercon-
ductor (known now as the Kitaev chain) and solved the problem for different
values of the parameters. The Kitaev chain Hamiltonian reads:

Hkc = −t
N−1�

i=0

�
c†i ci+1 + c†i+1ci

�
+∆

N−1�

i=0

�
c†i c

†

i+1 + ci+1ci
�
− µ

N�

i=0

c†i ci, (2.2)

where it has been chosen to put ∆ = ∆∗ and only one spin electron species is in-
volved. This Hamiltonian can be written using different operators γi, according
to the formal relation

ci =
γ1,i−iγ2,i

√
2

,

(2.3)
c†i =

γ1,i+iγ2,i
√
2

,

iff γα,i = γ†

α,i and {γα,i, γβ,j} = δijδα,β .

Because of the Hermitian character of the γ-operators, that cancels the difference
between creation and annihilation of these (supposed) γ-particles, they were
named Majorana fermion operators. At this point the reader new to this field
could be confused, if this is the case I suggest to look at the these Majoranas
as algebraic structures; later the physical meaning of the idea will become more
clear.

attention is directed to the fact that the concept of the hole is meaningful only if there exists a
Fermi volume from which the electrons can be removed.

8The electron number operator N̂ is in fact the conjugate variable to the phase operator φ̂, so
it is affected by quantum uncertainty.

9The first theoretical prediction of Majorana modes in condensed matter appeared in the litera-
ture of the superconductors [52]. Indeed Majorana modes can be localized in the center of Abrikosov
vortices induced by an external magnetic field into a type-II superconductor. However this example
would bring us far from the aims of this section.
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Figure 2.1: Cartoon of process of fermion building. The Hamiltonian Ac†f+Bc†c†+Bf†f†+h.c.

generates interactions among all the Majoranas. The most suited Majoranas (fermions) to represent
the Hamiltonian are found by the diagonalization procedure.

Using the definitions (2.3), equation (2.2) reads:

Hkc =it
N−1�

i=0

(γ1,iγ2,i+1 − γ2,iγ1,i+1) + i∆
N−1�

i=0

(γ1,iγ2,i+1 + γ2,iγ1,i+1)+

− µ
N�

i=0

�
1

2
− iγ1,iγ2,i

�
.

(2.4)

Let us choose µ = 0 and ∆ = t.

Hkc = i2t
N−1�

i=0

γ1,iγ2,i+1. (2.5)

One could now define a set of new fermionic operators ai = (γ2,i+1 − iγ1,i)/
√
2,

so that

Hkc = t
N−1�

i=0

�
a†iai −

1

2

�
.

The ground state of this Hamiltonian is found very easily: no a-fermion is
allowed in the ground state. However the careful reader should have noticed
that two Majorana fermions escaped from the process of formation of the a-
fermions. In fact the Majoranas γ2,0 and γ1,N , are not present in (2.5), i.e.,
they are unpaired. They can be used in the formation of a new fermion a0 =
(γ1,N − iγ2,0)/

√
2 and the fermionic Hamiltonian would then look like

Hkc = t
N�

i=1

�
a†iai −

1

2

�
+ 0 · a†0a0. (2.6)

This means that the ground state of the Kitaev chain (for this choice of param-
eters) is doubly degenerate, because the energy with or without the fermion a0
is exactly the same. The two degenerate states can be indicated on the base of
their parity |0� (no a0 fermion, i.e. even number of electrons) and |1� (one a0
fermion, i.e. odd number of electrons).

The fermion state a0 is quite peculiar: in fact it is delocalized on the two
extremes of the wire, because the two Majoranas that compose it come from the
electrons in i = 1 and i = N . It is convenient to think of the system in terms of
Majoranas: each electron is formed by the coherent superposition of two Majo-
ranas, that are in this sense half of the electron degree of freedom. These half-
electrons interact according to the Hamiltonian, that determines which fermions
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Chain bulk

Chain bulk

Figure 2.2: Cartoon of the Kitaev chain for the simplest choices of the parameters: t = ∆, µ = 0
on the top; ∆ = t = 0 on the bottom. The red and blue spots represent the two Majorana fermions
on a single site, belonging to the electron state. The springs represent the fermionic states that
the Hamiltonian defines. As can be seen, in the topological phase (top) the two extrema Majoranas
(of two different colors) remain unpaired, so they form a0. The same does not happen in the
topologically trivial case (bottom).

is better to “build” using the available Majoranas, in order to optimize the en-
ergy. This process is sketched in the cartoon of Fig. 2.1. For the Hamiltonian in
Eq. (2.5) the best fermions are the N −1 delocalized on two neighboring states,
plus the a0 fermion formed with the two decoupled half electrons at the ends of
the wire, as shown in Fig. 2.2.

It should now be clear to the reader that it is absolutely wrong to speak
and think about Majorana states. In fact only Majoranas combined in pairs can
generate a quantum state. A single Majorana does not live in any quantum
state and as a matter of fact it is meaningless to try to count them, or also fill
such Majorana states, because γ2 = 1/2. The confusion that the Majoranas
can generate, comes form the fact that the Majorana operators are not really
creation or annihilation operators. As a matter of fact the Fock space of the
system does not contain any “Majorana vacuum”, as a reformulation of the
equations (2.3) shows:

γ1 =
c+ c†√

2
, (2.7)

γ2 = i
c− c†√

2
. (2.8)

Written in the occupation number basis these operators are represented by the
Pauli matrices, that have no kernel, ergo they cannot return a zero if applied
to any state of the Fock space. So the vacuum of the Majoranas does not exist
and therefore the Majoranas are no particles. The only measurable property
of the system is not the occupation of the (non-sense) Majorana state, but the
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occupation number of the fermionic state (a0) built using the two Majoranas
that are localized at the boundaries of the chain. This zero energy fermionic
state is the zero mode or Majorana mode.

I must warn the reader that I have not been completely consistent with the
literature in the use of the term “Majorana mode”. In many (but not all) of the
available works the latter term indicates the two Majorana components of the
zero energy fermion. In my opinion it is non-sense to use the word “mode” for
something that is not a quantum state, so I decided to use that term to indicate
the real (physical) quantum mode, i.e. the zero energy fermionic excitation a0.
The two half-electron components will be indicated with the term “Majoranas”
or “Majorana fermions”.

One could then wonder why to these (algebraic) objects is given almost the
status of actual quantum states. The fact is that it is extremely convenient to
think and refer to the two localized (Majorana) parts of the non-local fermionic
zero mode as actual particles. They can be moved around, interact with other
local “half-fermions”, interact with the leads of an external material, delocalize,
etc... the formalism and the understanding of the physics is very much simplified
considering these object as actual particles that live in the system and that
bound together in order to form a fermion.

For example one can consider what happens if the parameters of the Kitaev
model are not chosen as in (2.5). In that case there exist two possibilities: either
no Majorana modes are present (so the ground state is not double degenerate),
or the two Majoranas that compose the zero energy Majorana mode are de-
localized on more sites. This also means that they can overlap, breaking the
degeneracy between the |0� and the |1� states. The energy splitting depends
upon the overlap, therefore it tends to zero in the limit of an infinitely long
system, independently upon the choice of parameters. It is quite easy to imag-
ine it as a normal quantum process where two degenerate overlapping quantum
states combine and split, although the two separate halves of the fermion are
not quantum states at all. Moreover the most important reason to consider the
Majoranas as real objects is that they can be used to build and manipulate
qubits, as will be discussed in section 2.1.2.

In the previous section we anticipated the two ingredients needed to obtain
Majorana fermions: superconductivity and topology. So far the discussion fo-
cused on the superconducting properties, hence it is now time to illustrate the
subtle role played by topology, which has been hidden in the previous descrip-
tion of the Kitaev chain. As said, the parameters must be chosen carefully in
order to generate the Majorana mode. In particular it has to happen [6,53] that

|2t| > |µ|, and ∆ �= 0. (2.9)

The reason for this condition must be searched in the bulk properties of the
system. In fact the systems is a topological non-trivial state, for such values of
the parameters [39–42]. In practice this means that the global properties of the
Hamiltonian of the system are different with respect to the case |2t| < |µ|. Even
if both the phases (the topologically trivial and the topologically non-trivial)
are gapped, the structure of the gap is different, because the Hamiltonians
have two different structures and there exist no way to adiabatically connect
them, without closing the gap. This means that if in a system we artificially
induce a change in the structure of the Hamiltonian (in the example of the
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Kitaev chain one could have a jump in the chemical potential, so that in one
region of the space |2t| > |µ|, while in the other |2t| < |µ|), then between
the two topologically gapped bulk regions there must exist a point (or a line
or a surface) where the gap closes. This causes the appearance of zero modes
(gapless excitations), highly localized close to these “transition zones”. These
regions, that form a sort of boundary of the topological non-trivial system, are
called topological defects [54]. As an example the boundaries of any system (if
the system is topologically non-trivial) are topological defects, but other cases
exist as well. Hence it is possible to roughly understand why the topological
non-triviality of the bulk and superconductivity are needed to have Majorana
fermions. From the first property the mode gets the strongly localized and zero-
energy characteristic, while from the second one, it gets the charge neutrality,
i.e. the parity degeneracy of the two ground states |0� and |1�. When a non-
trivial topological region is created in a p-wave superconductor, the unpaired
Majoranas sticks to the topological defects [40, 41, 54, 55]; the Majorana mode
is the state that is left behind in the process of creation of the topological
non-trivial phase, with the opening and closing of the gap [5, 56].

Although interesting, the topological properties of matter and how they are
related to the presence of Majorana modes is largely irrelevant for the present
study, therefore I will skip this discussion. Instead I will briefly introduce some
realistic setups for systems that can support Majorana fermions. Moreover I
will show why they are relevant for quantum computation. Before the end
of this section it is appropriate to cite the experimental work by Mourik and
collaborators [21], who were able to see in their experiment traces of something
that could be a Majorana mode.

2.1.1 Convenient realizations: examples
So far the superconductors mentioned were always of the p-wave kind. This is
because in the p-wave superconductors one of the two spin species can (in prin-
ciple) be suppressed with a magnetic field, so that the final system is described
as effectively spinless. One could object that nothing changes even if both the
spin species are present. That is true, but it would imply that an even number
of Majoranas is localized on both edges, allowing interactions to define two local
fermionic modes, spoiling the non-local character.

The practical realization of a system like the Kitaev chain or its 2d coun-
terpart, the chiral p-wave superconductor, is unfortunately a great challenge.
Therefore physicists identified different systems where Majorana modes could
appear. Two setups [5, 41, 56] received a lot of attention: the first based on 3d
topological insulators [33, 57] and the second on 1d semiconducting nanowires
with strong spin orbit coupling [58,59].

Topological insulator based setups

There are two problems in the practical realization of the Kitaev chain: the
presence of the p-wave superconductor and the fact that (superconducting) long
range order is assumed in a system that is strictly one-dimensional. To over-
come these difficulties the best thing to do is to remove both these ingredients
from the equation, passing from 1d to 2d systems, and from p-wave to s-wave
superconductivity. At first glance this could seem an impossible task but in
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2008 Fu and Kane understood [60] how to realize Majorana fermions in a sys-
tem with the previous characteristics. The key of the success goes under the
name of “proximity effect”. Such phenomena occurs when a superconductor is
put in contact with a normal material. The Cooper pairs are then allowed to
tunnel from the condensate into the metal (or vice-versa one could think that
the electrons can tunnel into the condensate and back), inducing an effective
pairing term into the Hamiltonian.

Fu and Kane [60] realized that if the proximity effect is used on the surface
of a 3d strong topological insulator, then the (Dirac-like) gapless electrons on
the surface of the topological insulator obey the Hamiltonian as a chiral p-wave
superconductor. In practice it is possible to obtain p-wave pairing, without
any real p-wave superconductor. Very well localized Majorana fermions appear
upon inducing vortices in this effective p-wave superconductor [41].

It must be mentioned that on these kind of structures, also propagating
Majorana fermions can be built. In fact the superconductor can be deposited on
the 2d surface, leaving some space to form a junction [60], or beside a magnetic
insulator [33]. In this way it becomes possible to study also how the propagating
Majoranas create interference patterns between electrons and hole states that
are injected into these junctions [5, 33, 57]. Similar setups can also be built
using 2d topological insulators, by depositing, close to one boundary of the 2d
system, magnetic insulators that sandwich the superconductor. This system
also localizes two Majorana fermions on the interface between the magnetic
insulators and the superconductor [61] causing interesting effects, such as crossed
Andreev effects or electron teleportation [62]. Therefore these kind of setups
are well suited for the detection of the Majorana modes.

Semiconducting nanowire setups

In 2010 two similar works [58, 59] demonstrated how it is possible to recreate
a system that obeys to Kitaev Hamiltonian using three very simple ingredi-
ents: a (quasi-) 1 dimensional semiconducting nanowire with strong spin-orbit
interaction, an s-wave superconductor and a strong magnetic field. Defining the
electron creation operator in the wire as

Ψ†(kx) =
�
Ψ†

↑
(kx),Ψ

†

↓
(kx)

�
,

the Hamiltonian for such a system looks like (see the reviews Ref. [4, 56] for
details and further references)

H =

�
dkxΨ

†(kx)Hwire(kx)Ψ(kx), (2.10)

Hwire(kx) =
k2x
2m

− µ+ α0kxσy +
1

2
gµBBσz =

=

�
k2
x

2m − µ+ 1
2gµBB −iα0kx

iα0kx
k2
x

2m − µ− 1
2gµBB

�
,

where the spectrum of the wire has been approximated as parabolic, α0 gives
the (Rashba10) spin-orbit coupling (E⊥ is the effective electric field felt by the

10The Rashba effect [63] is due, in 2d heterostructures, to the breaking of inversion symmetry of
the confining potentials, needed to confine the electrons into the effective lower dimensional motion.
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electron), g is the Landé factor and µB the Bohr magneton. To this Hamiltonian
the superconducting pairing induced by the proximity effect must be added. The
setup is shown in Fig. 2.3.

The Hamiltonian (2.10) is easily diagonalized, with eigenvalues and eigen-
vectors:

E± =
k2x
2m

− µ±
�
B̃2 + α2

0k
2
x, Ψ = N

�
−iB̃ ±

�
B̃2 + α2

0k
2
x

α0kx

�
, (2.11)

where B̃ = gµBB and N the normalization factor. The spin-orbit effect splits
the two degenerate spin bands into two distinct parabolas, where the electrons
have polarization axes that depend upon kx, B̃ and α0; the result is plotted in
Fig. 2.4a.Rep. Prog. Phys. 75 (2012) 076501 J Alicea

Figure 6. (a) Basic architecture required to stabilize a topological superconducting state in a 1D spin–orbit-coupled wire. (b) Band
structure for the wire when time-reversal symmetry is present (red and blue curves) and broken by a magnetic field (black curves). When the
chemical potential lies within the field-induced gap at k = 0, the wire appears ‘spinless’. Incorporating the pairing induced by the proximate
superconductor leads to the phase diagram in (c). The endpoints of topological (green) segments of the wire host localized, zero-energy
Majorana modes as shown in (d).

structure in the limit where h = 0. Due to spin–orbit coupling,
the blue and red parabolas respectively correspond to electronic
states whose spin aligns along +y and−y. Clearly no ‘spinless’
regime is possible here—the spectrum always supports an even
number of pairs of Fermi points for any µ. The magnetic field
remedies this problem by lifting the crossing between these
parabolas at k = 0, producing band energies

ε±(k) = k2

2m
− µ ±

√
(αk)2 + h2 (67)

sketched by the solid black curves of figure 6(b). When the
Fermi level resides within this field-induced gap (e.g. for µ

shown in the figure) the wire appears ‘spinless’ as desired.
The influence of the superconducting proximity effect on

this band structure can be intuitively understood by focusing
on this ‘spinless’ regime and projecting away the upper
unoccupied band, which is legitimate provided # " h.
Crucially, because of competition from spin–orbit coupling
the magnetic field only partially polarizes electrons in the
remaining lower band as figure 6(b) indicates schematically.
Turning on # weakly compared with h then effectively
p-wave pairs these carriers, driving the wire into a topological
superconducting state that connects smoothly to the weak-
pairing phase of Kitaev’s toy model (see [34] for an explicit
mapping).

More formally, one can proceed as we did for the
topological insulator edge and express the full, unprojected
Hamiltonian in terms of operators ψ†

±(k) that add electrons
with energy ε±(k) to the wire. The resulting Hamiltonian
is again given by equations (57) and (58) (but with v →
α and band energies ε±(k) from equation (67)), explicitly
demonstrating the intraband p-wave pairing mediated by #.
Furthermore, equation (60) provides the quasiparticle energies
for the wire with proximity-induced pairing and again yields
a gap that vanishes only when h =

√
#2 + µ2. For fields

below this critical value the wire no longer appears ‘spinless’,
resulting in a trivial state, while the topological phase emerges
at higher fields,

h >
√

#2 + µ2 (topological criterion). (68)

Figure 6(c) summarizes the phase diagram for the wire. Note
that this is inverted compared with the topological insulator

edge phase diagram in figure 5(d). This important distinction
arises because the k2/(2m) kinetic energy for the wire causes
an upturn in the lower band of figure 6(b) at large |k|, thereby
either adding or removing one pair of Fermi points relative to
the edge band structure.

Since a wire in its topological phase naturally forms a
boundary with a trivial state (the vacuum), Majorana modes
γ1 and γ2 localize at the wire’s ends when the inequality
in equation (68) holds. Majorana-trapping domain walls
between topological and trivial regions can also form at the
wire’s interior by applying gate voltages to spatially modulate
the chemical potential [34, 117] or by driving supercurrents
through the adjacent superconductor [102] (using the same
mechanism discussed in section 3.2). Figure 6(d) illustrates
an example where four Majoranas form due to a trivial region
in the center of a wire.

It is useful address how one optimizes the 1D wire setup
to streamline the route to experimental realization of this
proposal. This issue is subtle, counterintuitive, and difficult
even to define precisely given several competing factors.
First, how well should the wire hybridize with the parent
superconductor? The naive guess that the hybridization should
ideally be as large as theoretically possible to maximize the
pairing amplitude # imparted to the wire is incorrect. One
practical issue is that exceedingly good contact between the
two subsystems may lead to an enormous influx of electrons
from the superconductor into the wire, pushing the Fermi level
far above the Zeeman-induced gap of figure 6(b) where the
topological phase arises. Restoring the Fermi level to the
desired position by gating will then be complicated by strong
screening from the superconductor.

Reference [93] emphasized a more fundamental issue
related to the optimal hybridization. The topological phase’s
stability is determined not only by the pairing gap induced at
the Fermi momentum, EkF ∝ #, but also the field-induced
gap at zero momentum, E0 = |h −

√
#2 + µ2|, required

to open a ‘spinless’ regime. The minimum excitation gap
for the topological phase is set by the smaller of these two
energies. As reviewed in section 3.1, increasing the tunneling
& between the wire and superconductor indeed enhances #

but simultaneously reduces the Zeeman energy h. From the
effective action in equation (49) we explicitly have h = Zhbare

and # = (1 − Z)#sc, where hbare is the Zeeman energy for
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Figure 2.3: The set up of the
nanowire based proposal. This fig-
ure is taken from [56]. c�IOP Pub-
lishing. Reproduced with permis-
sion of IOP Publishing. All rights
reserved.

The role of the magnetic field B is to open a
gap between the two bands, removing the degen-
eracy at the point kx = 0. Moreover it also en-
forces the polarization in the two bands, so that
if B̃ becomes large, then the electrons inside a
single band have (approximately) all the same k-
independent polarization. One can indicate the
two spinless species as Ψ− and Ψ+ (the minus
stands for the species in the lowest energy band).
Therefore if the chemical potential is set in such
a way that the Fermi surface is inside the kx = 0
gap, then the low energy fermionic excitations are
effectively spin-less. The superconducting s-wave
pairing, induced by proximity effect, can now be
considered inserting the term

Hprox =

�
dkx∆

�
Ψ↑(−kx)Ψ↓(kx) +Ψ†

↓
(kx)Ψ

†

↑
(−kx)

�
. (2.12)

This term is written in terms of the original polarization directions ↑, ↓ and
must be expressed now in terms of the new fields Ψ− and Ψ+. The result of
this operation is [56]:

Hprox =

�
dkx

∆p(kx)

2
[Ψ+(−kx)Ψ+(kx) +Ψ−(−kx)Ψ−(kx) + h.c.] +

+∆s(kx)
�
Ψ−(−kx)Ψ+(kx) +Ψ†

+(kx)Ψ
†

−(−kx)
�
, (2.13)

This breaking of the symmetry can be modeled by an (typically unknown ab-initio) electric field
perpendicular to the 2d nanowire. The electrons moving on the 2d submanifold, will not feel the
direct effect of this electric field (of course, because it is a 3d effect), but instead its repercussion. It
is well known that a charged particle moving in a static electric field will feel (in its at-rest reference
frame) the presence of a magnetic field �B = (�v × �E⊥)/c2, due to the Lorentz transformation
of the fields, from the lab to the particle reference system. This magnetic field couples to the
spin of the electron via the usual form: gµB

�B · �σ/2. So typically the Rashba term is written as
gµB(�v× �E⊥)·�σ/2c2 in 2d systems, but since |E⊥| is unknown, all the parameters are summarized in
the Rashba spin-orbit coupling α0, in such a way that one gets α0(kyσx−kxσy). In one dimension
things change a bit, because it is not possible to understand the direction of �E⊥. Anyway it is
perpendicular to the wire, so this is enough to obtain the effective interaction used in the equation
(2.10).
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Figure 2.4: (a) the effect of the spin-orbit without (dashed yellow) and with (continuous red) the
magnetic field, from formula (2.11). The chemical potential has been chosen in order to cancel the
gain in energy due to the spin-orbit coupling (∆ESO). (b) Sketch of the topological phase diagram;
the boundary is located at the closing of the gap (the plot is symmetric for µ,B → −µ,−B).

with

∆p(kx) =
α0kx∆�
α2
0k

2
x + B̃2

, ∆s(kx) =
B̃∆�

α2
0k

2
x + B̃2

. (2.14)

Therefore a p-wave intra-band paring appears in the Hamiltonian. The route
towards a realization of the Kitaev chain model is therefore established. One can
now add these terms to the (diagonalized) Hamiltonian (2.10) and diagonalize
it via Bogoliubov-Valatin tranformation.

The pairing ∆ and B̃ do not collaborate to open the gap. In fact at |B̃| =�
∆2 + µ2 the gap closes, separating the two topologically different phases |B̃| >�
∆2 + µ2 and |B̃| <

�
∆2 + µ2. Considering that Hamiltonians of the same

classes can be adiabatically transformed into each other without closing the gap,
it is enough to check the topological properties of one single Hamiltonian of the
two sectors to determine the topological properties of the entire phase [3]. One
expects to find the topological behavior in the limit |B̃| >

�
∆2 + µ2, because in

that regime the electrons of the lower band are almost all spin down polarized,
as shown previously, and because at B = ∆ = 0 the Hamiltonian is evidently
trivial. At lowest order (i.e. considering the upper band empty [3] and neglecting
the terms in the Hamiltonian that couple them, but nothing really changes if
the matrix is diagonalized exactly [4]) one obtains the effective Hamiltonian

H =

�
dkxΨ

†

−(kx)

�
k2x
2m

− µeff

�
Ψ(kx)− + (2.15)

+
∆eff (kx)

2

�
Ψ†

−(kx)kxΨ
†

−(−kx) + h.c.
�
,

with µeff = µ + gµB |B| and ∆eff ≈ α0∆/gµB |B|. This is the continuous
version of the Kitaev chain Hamiltonian (2.2), with the chemical potential that
sits on the bottom of the conduction band (giving the parabolic approximation
of the dispersion law), therefore the system is in a topological non trivial state
according to equation (2.9). Schematically the topological phase diagram is
draw in Fig. 2.4b. The phase boundary is given by the closing of the gap at |B̃| =
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�
∆2 + µ2. According to the theory, Majoranas should show up in a system

build in this way. The experiment performed by Mourik and collaborators [21],
seems consistent with these predictions, although it is not clear if the signal
recorded is really a final proof of the existence of Majorana modes.

Although successful, this setup is very fragile: in fact the simultaneous pres-
ence of superconductivity and a high magnetic field is problematic; moreover
also the tuning of the chemical potential in the middle of the gap opens new chal-
lenges. One can try to solve the first problem using materials with high Landé
factors (it is typically possible to obtain nanowires with g > 50). The second
problem can instead be avoided and in particular I would like to point out an
extremely clever proposal by Klinovaja and Loss [64], where the RKKY effect
is used to induce the topological phase and automatically set the parameters in
the correct regime.

2.1.2 Quantum computation and non-abelian statistics
The most important reason for the excitement caused by the realization of
systems that can host Majorana fermions is due to their possible technological
applications. In fact Majorana fermions could lead to promising results in the
context of quantum computation. The Majorana zero mode can in fact host
a qubit of information in the two states |0� and |1� = a†0|0�. This qubit is
extremely stable with respect to decoherence, exactly because the high delocal-
ization of the a0 fermion makes the decay of the state highly improbable: in fact
the perturbation should act coherently on the both sides of the wire. There-
fore the main effect that can cause an error (invert the qubit), is given by the
overlap between the two Majoranas, that implies an hybridization (transition
probability) between |0� and |1� (together with the parity degeneracy breaking).

The creation of a stable qubit is not the only reason that makes the Majo-
ranas important in the quantum computation context. In fact, thanks to their
algebraic properties they can be used to manipulate the qubits, allowing for the
creation of logic ports. This fact has been known for quite a few years, since
Ivanov [65] in 2001 proved that the Majoranas located in the vortices of a 2d
p-wave chiral superconductor obey non-Abelian statistics. This can be under-
stood deriving the effect on the Majoranas of a U(1) phase transformation of
the superconducting condensate [4, 65]. Since the Majoranas are described by

γ =
α c† + α∗ c√

2
, with |α| = 1, (2.16)

and the effect of the U(1) gauge transformation is c → eiφ/2c, c† → e−iφ/2c†,
then it implies

α → α eiφ/2. (2.17)

The phase of the condensate increases by 2π going around a vortex core; however
such a function must be single valued, so there must exist a branch cut where
the phase experiences a jump of 2π. In presence of n vortices there will be n
branch cuts that go from the vortex cores to infinity. The action of exchanging
two vortices should not change the wavefunction of the ground state, except for
a phase. Trying to perform such an exchange it is clear (Fig. 2.5) that only one
of the Majoranas will be forced to cross the branch cut of the other vortex core.
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Figure 2.5: Cartoon of the exchange process of two Majoranas trapped in two vortices. The dashed
lines represent the branch cuts, while the empty circle represent the red Majorana with the extra π

phase.

This causes a difference in the phases gained by each Majorana performing this
operation. So, besides a common phase factor, the Majorana that crossed the
branch cut gains an extra exp(iπ) = −1 phase factor. Therefore the exchange
of two vortices does create a (non-trivial) phase factor in the ground state(s),
because:

γ1 → γ2 (2.18)
γ2 → −γ1.

Colloquially it is often said that this shows the non-Abelian statistics obeyed
by the Majorana fermions. The group of all the exchange operations (modulo
the common phase change, that is dropped) goes under the name of the braid
group [65].

Now that the effect of the exchange of two Majoranas is understood, it is
possible to formally elaborate these results. This permits on the one hand to
discover some practical tools to deal with these braiding operations and on the
other hand to disclose their physical meaning. The transformations (2.18) are
realized by the operator R12 = (1 + γ1γ2)/

√
2, according to the definition:

γi → R12γiR
†

12,

that can also be expressed as

R12 = exp
�
i
π

4
(−iγ1γ2)

�
.

All of this is far from being new. In fact given the Clifford structure of the
Majorana algebra11 {γi, γj} = 2δij , it is known [66–69] that R12 is the rotor
operator associated to a π/2 rotation in the Euclidian space generated by the
elements of the Clifford algebra (see appendix A for details), thought of as unit
vectors.

It is important to note that iγ1γ2 is a proper hermitian operator, expressible
in terms of a†0a0, with a0 the usual fermion operator a0 = (γ1 − iγ2)/

√
2. So it

11With respect to the previous definition, there is an extra factor of 2 here. Of course this makes
no difference, if the normalizations of the fermion operators built with the Majoranas are properly
renormalized. In most of the mathematical literature the extra factor of 2 appears, so that γ2 = 1.
This is also the case in part of the physics literature. However this definition generates an asymmetry
in the equations when one goes form the Majorana to the fermion representation and vice versa.
This can become annoying, so performing computations with the Majoranas it is preferable to
choose the convention without the extra 2, hence γ2 = 1/2. In the following the convention will be
changed, depending upon which one is the most convenient in the specific circumstance.
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is now possible to study its action on the degenerate ground states |0�, |1�, i.e.
the physical effect of the Majorana exchange operation. Immediately one gets:

R12|0� =
1√
2

�
1 + i

�
2a†0a0 − 1

��
|0� =

1√
2
[1 + i] |0�,

R12|1� =
1√
2

�
1 + i

�
2a†0a0 − 1

��
|1� =

1√
2
[1− i] |1�.

(2.19)

Therefore the effect of exchanging the two vortices is that of creating two dif-
ferent phase factors on the two degenerate ground states. It is worth noting
that iγ1γ2 can be represented as the Pauli matrix σz. The action of R12 on |0�
and |1�, i.e. on the eigenstates of σz with eigenvalues ±1, is therefore easy to
understand. It also becomes clear that the two states cannot be mixed in this
way, so the case with just two Majoranas is not very useful.

The situation when four Majoranas are present is more interesting. This
means that the ground state of the system is quadruple degenerate and that the
braid group is much bigger, and generated by

− iγ1γ2, −iγ3γ4, −iγ2γ3, −iγ1γ2, −iγ1γ3, −iγ2γ4, (2.20)

where the first two operators commute with each other and represent the parity
of the a0 and the similar a1 fermion. With so many Majoranas and braiding
operators many new operations become possible. For example

R23|00� = exp
�
i
π

4
(−iγ2γ3)

�
|00� = 1√

2
(|00�+ i|11�) . (2.21)

Interestingly the latter is the superposition of states with the same parity (the
same happens in the sector of odd parity: the two sectors cannot be mixed for
obvious reasons12). This permits the use of |00� and |11� as two qubits, on which
it is possible to operate. The non-Abelian nature of these braiding operators is
evident looking at the form of the generators (2.20) and therefore the structure
of the associated Lie group.

On this basis a scheme of topological quantum computation can be built. I
recommend the interested reader to consult the literature [56, 70, 71], for more
details; as this aspect is too much off topic it will not be developed any further
in this thesis.

2.2 Majoranas in non-interacting systems
Although Majorana fermions appear in the papers A, B, C and D, they play a
different role than the one just explained. In fact they are used as tools, in the
fashion of the original work by Kitaev [6], but the actual realization of Majo-
rana modes is completely irrelevant. Indeed the philosophy that lies behind the
framework explained in paper A has very old roots, since it is based on ideas
that go back at least fifty years, when in a famous paper by Freeman Dyson [72]
the different ways to represent quantum mechanics were discussed. In that work
it was pointed out that the choice of physicists, to represent quantum mechanics

12These operations commute with the total parity operator, which is proportional to γ1γ2γ3γ4,
or

�
a
†
0a0 − 1/2

��
a
†
1a1 − 1/2

�
in fermionic notation.
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only on the algebra of complex numbers, is based on a prejudice [72] and on no
other fundamental reason. In many situations it is much more convenient to use
the field of real numbers, instead of complex ones. Indeed, in some other cases,
the algebra of quaternions can also prove itself useful. The Majorana fermions,
as we are going to use them, realize a different representation of quantum me-
chanics: a representation on the field of real numbers. This representation is not
less accurate nor less general than the standard (complex) one, which is given
by the standard fermionic creation/annihilation operators. Indeed, thinking in
these terms, it is possible to interpret the Majoranas as algebraic constituents of
the fermions. These “bricks” can be glued together to build up any set of fermion
operators that can span the entire Hilbert space if applied to a given special state
(vacuum), which also depends upon how the Majoranas are combined together.
What is more important however, is that these algebraic “bricks” can be chosen
from different equivalent sets, much more general than the ones considered in
the standard literature [4,5,56]. This allows the selection of a set of Majoranas
(and therefore fermions) that can be more suited to describe a given SCES sys-
tem. To understand these points, one has to study the algebraic structure of
the Majorana fermions, which in fact are not a simple set of operators, but can
be used to generate a Clifford algebra of operators. This is explained in paper
A and introduced in the next chapter. In this section it is more important to
explain, in the simple context of non-interacting systems, how one can combine
the Majoranas to build customized fermions.

Equations (2.3) and the property γ† = γ illustrate the algebraic nature of
the Majorana fermions, which can be thought of as the two components of the
complex fermion operator: its real and imaginary parts. Of course some gauge13

freedom in how the Majoranas are joined together to form the fermion oper-
ators must exist. This does not mean that there exists any extra freedom in
the physics described. In fact, after the introduction of the previous section, it
should be clear that when we deal with Majoranas we are dealing with operators
and not with quantum states, which instead are the physical objects. To under-
stand both the theory and practice of the representation of quantum mechanics
on the real field, we have to start from an analysis of the standard formalism
of second quantization. Firstly I would like to remind the reader of the many
assumptions that are hidden behind the creation and annihilation operators.
Let us assume the existence of a two dimensional Hilbert space, spanned by two
orthonormal vectors |a� and |b�. We can define two operators Â and B̂ such
that

Â|a� = |b�, B̂|a� = 0, Â|b� = 0, B̂|b� = |a�. (2.22)

These objects fulfill the properties of fermionic operators and in fact it is easy
to prove that14 {A,B} = 1, so it could be appropriate to use the standard
creation/annihilation notation to represent them. This is not straightforward,
because it assumes the identification of a vacuum state |0�. Both |a� and |b�
could be proper vacuum states. If one choses |a� = |0� then Â = c† and B̂ = c,
vice versa if one choses |b� = |0�. The choice is completely arbitrary, and it is

13This word is not used in the wrong context: in fact the definition can change in time and space.
This concept is clarified in paper D.

14It is also possible to see that they are hermitian conjugates, but this is not relevant for the
discussion.
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only our personal taste that makes us prefer one to the other, or to the other
infinite possibilities: in fact it is also possible to make two orthonormal linear
combinations of |a� and |b� and redefine two new operators with the same prop-
erties of Â and B̂ on this new basis set. Typically there exists some physical
reason, that makes us prefer15 one state to another as (reference) vacuum. In the
most common cases it is possible to count the electrons (or better the electric
charge) and so it is preferable to have a vacuum where the total electric charge
is zero and the action of c† represents the action of adding a charge unit. But
the formalism does not forbid us to choose the fully charged state as vacuum
and use a creation operator h†(= c) that adds a positive charge (removes a neg-
ative one). Of course the two choices are related just by a Z2 transformation,
which reflects the two possible choices for the vacuum, i.e. the two equivalent
formalisms. These considerations seem trivial, but actually it is the misunder-
standing of these simple rules that make superconductivity less intuitive: in
fact in superconducting systems, where the charge is not conserved, the notion
of vacuum gets “twisted” and the fermions change their original nature; indeed
electrons and holes are substituted by Bogoliubov quasiparticles.

So the association of a quantum state to an operator c†, comes with a lot of
assumptions, often forgotten and harmless, but which must be considered when
the representation of the operators on the Hilbert space is changed, moving from
the complex to the real field. In particular the first convention that one must fix
is the choice of the phase of the Majoranas. In this chapter this (gauge) choice
is done as follows:

c† =
γ + iµ√

2
, c =

γ − iµ√
2

, γ2 = µ2 =
1

2
. (2.23)

This means that, chosen as vacuum state |0� the kernel16 of an operator c, the
annihilation operator is decomposed on two Majoranas out-of-phase by a factor
π, while the creation operator c† is represented via two Majoranas in phase.
The Z2 gauge choice mentioned previously is then given by the transformation
that sends µ → −µ. As can be seen, under this transformation, the operator
c becomes (according to the previous definition, based on the phases of the
Majoranas) a creation operator: h†(= c), meaning that the reference vacuum
has changed. It is important to stress again that there is nothing physical in all
of this; however it is very important because in different situations a different
gauge choice, or more generally a different choice of how the fermionic operators
are represented, can simplify the problem a lot.

Given these conventions, it also becomes possible to represent the Majorana

15Readers familiar with the field of high-energy physics could be confused by these sentences.
When QFT is used, a vacuum, which is by definition the state of minimal energy, is also defined
(otherwise one speaks of false vacuum or metastable vacuum). Besides many practical and concep-
tual reasons [29], it is also difficult to imagine a different choice for the vacuum: naively speaking
when QFT is used the vacuum is the surface of the Dirac sea; since the sea is unbounded below
and above, it is difficult to imagine any other meaningful choice. In condensed matter the situation
is different, because the theories have a finite number of degrees of freedom, i.e. the Hilbert space
is typically finite dimensional. Therefore it is possible to choose a vacuum that is not the minimal
energy state (ground state). In fact in the solid state the Fermi volume is filled, adding electrons to
the vacuum; but it is the filled Fermi sphere, not the vacuum, that is the ground state of the theory.

16Please note that the kernel must not be confused with the ground state. The ground state is only
the state in the Hilbert space with the lowest energy. So far we have not mentioned the Hamiltonian,
which is an extra (important) structure, built on this formalism.
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operators on the basis set |0�, |1� = c†|0�. In fact starting from

c† →
�
�0|c†|0� �1|c†|0�
�0|c†|1� �1|c†|1�

�
=

�
0 1
0 0

�
,

equation (2.23) gives

γ → 1√
2

�
0 1
1 0

�
and µ → 1√

2

�
0 −i
i 0

�
.

Let us take a generic Hamiltonian and suppose that it is quadratic on a four
dimensional Hilbert space spanned by |0�, g†|0�, c†|0�, g†c†|0�, where g† =
(α+ iβ)/

√
2. Then

H = �1c
†c+ �2g

†g + λg†c+ λ∗c†g,

which is also

H =
�
c†, g†

� ��1 λ∗

λ �2

��
c
g

�
. (2.24)

This Hamiltonian is given in the standard fermionic representation (or com-
plex representation). Using the previous definitions one can rewrite it in the
Majorana representation (real representation):

H = �1
1

2
(1− iγµ+ iµγ) + �2

1

2
(1− iαβ + iβα) + (2.25)

+λR (iµα− iµα+ iβγ − iγβ) + iλI (αγ − γα+ βµ− µβ) .

where λ = λR+ iλI . Putting aside a shift of the energy (whose role will become
clear in the following) this Hamiltonian can be represented in a matrix form

H = i
�
γ, µ,α,β

�





0 − �1
2 λI −λR

�1
2 0 λR λI

−λI −λR 0 − �2
2

λR −λI
�2
2 0









γ
µ
α
β



 . (2.26)

Both (2.24) and (2.26) represent the same Hamiltonian. The first one is the
standard complex representation, i.e. it is given by a matrix whose elements
are complex numbers, the second is a real representation, which means that its
elements take values on the field of real numbers.17 The complex matrix (2.24)
can be diagonalized making use of a properly chosen unitary transformation
and one could argue that the same procedure should be followed for (2.26). The
reader can immediately see that this not the correct route. In fact, although
the eigenvalues could be found, the results would be meaningless, because the
diagonalization procedure would produce linear complex combinations of the

17The imaginary unit in front of the Hamiltonian clearly does not invalidate this sentence, because
it plays the role of a multiplicative prefactor. The imaginary unit is present because it is neces-
sary to have hermitian self-adjoint operators in quantum mechanics, in order to represent physical
observables. Clearly this goes beyond what was discussed by Dyson in Ref. [72], because in that
paper only the representation of a generic group of transformations was discussed. In this case
what matters is the representation of the generators of the group of transformations; clearly the
two objects are still related as usual.
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original Majoranas. The new objects created would not have (in general) Ma-
jorana character anymore, making the formalism not self-consistent. So (2.26)
does not have to be diagonalized; instead one has to find a transformation that
performs a block-diagonalization. To understand this, let us consider the case
of λ = 0, i.e. when the complex Hamiltonian (2.24) is already diagonal. Then
(2.26) looks like

H = i
�
γ, µ,α,β

�





0 − �1
2 0 0

�1
2 0 0 0
0 0 0 − �2

2
0 0 �2

2 0









γ
µ
α
β



 . (2.27)

This is the form of the Majorana Hamiltonian equivalent to the diagonal form
of the fermionic Hamiltonian without hybridization. The matrix form (2.27)
is exactly of the same form of the one used by Kitaev [6] in the discussion
of the polarized p-wave one dimensional superconductor of equation (2.2). The
peculiarity pointed out by Kitaev in his work is that there exists a sort of “double
spectrum” given by the two paired values �, −�, a point on which we will return
in a few paragraphs.

The question as to whether or not it is possible to obtain such block-diagonal
form has been answered long ago and a discussion about it can be found in
the paper [73] by Zumino, who proved that any 2n × 2n skew-symmetric real
square matrix can always be block-diagonalized making use of a real orthogonal
transformation O(2n). So to block-diagonalize (2.26) one has to use a O(4)
transformation. Actually, without loosing generality, one could focus the atten-
tion on the group SO(4), if the eigenvalues �i are not restricted to real positive
numbers. The interesting characteristic of this operation is that, as proved long
ago [66–69], the group SO(2n) acting on a set of 2n-objects that closes under
Euclidean Clifford algebra does not break the algebraic structure. In fact such
elements can be thought of as unit orthogonal vectors in the 2n-dimensional
Euclidean space. This set of orthonormal unit vectors is sent into another by
SO(2n) and the algebraic structure does not change. As example of the gener-
ation of a new set of Majoranas, let us act with SO(2) on the two Majoranas
γ, µ:

�
γ̃
µ̃

�
=

�
cos(θ) − sin(θ)
sin(θ) cos(θ)

��
γ
µ

�
=

�
cos(θ)γ − sin(θ)µ
cos(θ)µ+ sin(θ)γ

�
. (2.28)

The reader can check that γ̃2 = µ̃2 = 1/2 and {γ̃, µ̃} = 0. Using the new γ̃
and µ̃ to build the new fermion operator c̃†, one discovers that c̃† = exp(iθ)c†,
so the SO(2) matrix represents a complex phase transformation, but in a real
space representation.18

The orthogonal transformation that block-diagonalizes the Hamiltonian (2.26)
mixes the original Majoranas in a way that the new combinations form again
a set of properly defined Majorana fermions. So the new set of Majoranas
γ̃, µ̃, α̃, β̃ can be used to build well defined fermionic operators. At this point
the role of the “double spectrum” �, −� becomes clear: indeed the couples of
Majoranas must now be combined to produce fermionic operators and select
the vacuum state, following a given gauge choice. This gauge choice is always

18I invite the reader to re-examine the equations (2.19) in the light of this new information.
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twofold as we have seen, so depending upon the convention (2.23) one can have
two formally opposite, but physically equivalent, results. The equivalence of the
results is clear: for example let us consider (2.27) in the block diagonal form

H =
�̃1
2
(iµ̃γ̃ − iγ̃µ̃) +

�̃2
2
(iα̃β̃ − iβ̃α̃). (2.29)

Closing to a Clifford algebra, the new Majoranas can build proper fermion
operators g̃† = (γ̃+ iµ̃)/

√
2 and c̃† = (α̃+ iβ̃)/

√
2. The Hamiltonian then looks

like

H =
�̃1
2
(g̃†g̃ − g̃g̃†) +

�̃2
2
(c̃†c̃− c̃c̃†),

=
�̃1
2
(2g̃†g̃ − 1) +

�̃2
2
(2c̃†c̃− 1). (2.30)

This final form clearly depends upon the previous selection of the gauge that
fixes the form of the creation and annihilation operators, and the relation be-
tween the different choices is trivial. In this sense the Majorana representation
works symmetrically with respect to the two possible and inequivalent defini-
tions of the vacuum state. It is the gauge choice that one performs on the
definition of the fermionic operators that generates a specific form of the Hamil-
tonian. The “double spectrum” cited by Kitaev is a mere feature of this fact:
that the same physics can be described using many equivalent reference systems,
i.e. many equivalent reference vacuums and sets of fermionic operators. This
is why a constant term appeared in equation (2.25); that constant is supposed
to be compensated by the zero point energy that was not explicitly written in
(2.24). In principle the redundancy of the description should be present also in
the original fermionic representation, where a quadratic term should always be
written as

g†g − gg†

2
, (2.31)

reflecting the symmetry between the two possible choices of the vacuum. Picking
a vacuum permits us to rewrite the previous term as 2g†g−1, so the redundancy
is often not noted.

Concluding, the only difference between the two formalisms (standard and
Majorana based) is then purely algorithmic: in the complex (fermion) rep-
resentation the choice of the vacuum can be done at the beginning and the
diagonalization procedure will keep track of it; in the real (Majorana) one,
the diagonalization procedure automatically cancels any choice of the vacuum,
which therefore must be made afterwards. This is why, in the Majorana fermion
representation, the presence of superconducting terms is not problematic at all.
Having clarified the meaning of choosing a set of Majoranas and described its use
in building customized fermions, I will to move to more interesting situations,
using these same ideas for the study of interacting correlated systems.
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Chapter 3

Introduction to Paper A

3.1 Emergent Majoranas

Beside the details about the “double spectrum” and the block diago-
nalization procedure, the take home message of the previous Sec. 2.2
concerns the flexibility in the definition of the Majoranas. If proper

transformations are chosen, one can start from a set of Majoranas and obtain
a new set, with exactly the same properties. These Majoranas can then be
combined to build fermionic operators. But this is not mandatory: for exam-
ple one could be interested in building other degrees of freedom, such as spin
operators. During recent decades this has been often reported [36, 37, 74, 75],
mostly because the Majoranas offer a convenient alternative way to represent
spin operators. In fact three Majoranas µ1, µ2, µ3, can be combined to build the
operators Sk = −i�ijkµiµj (with no summation on the repeated indices), which
behave as spin operators, closing to a su(2) Lie algebra. The choice of which
operators are the most convenient to build depends completely on the type of
Hamiltonian under consideration and on the strategy (analytical or numerical)
that one is planning to use. The crucial point is that with the Majoranas it
is possible to customize the quantum coordinates, tailoring them to a specific
Hamiltonian.

So far nothing of what has been said is new. The real breakthrough comes
from the understanding that, given a system with n fermionic modes, the set
of 2n Majoranas that it generates is not the most general. There exists other
inequivalent sets that can be used to build up different (correlated) fermionic
degrees of freedom. The group of transformations that allows one to start from
a specific 2n Majorana set and obtain another well defined set is not simply
the linear group of transformations SO(2n), but it is indeed much larger and
includes also the group of non-linear canonical transformations. Since the Ma-
joranas close to Clifford algebra (see appendix A), then given 2n Majoranas one
can build the full algebra multiplying together the Majoranas in all the possible
ways. So the full Clifford algebra contains the 2n original single Majoranas, the�2n

2

�
bilinears, the

�2n
3

�
trilinears, and so on up to the single element that is

built multiplying together all the Majoranas γ1...γ2n. One can now note that,
for example, the term 2iγ1γ2γ3 resembles very much a Majorana, since it is
hermitean and it squares to 1. Indeed this is true for all the objects built mul-
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tiplying together an odd number of Majoranas: these objects form well defined
emergent Majorana fermions1 if properly multiplied by an imaginary unit (in
order to make them hermitean) and by a normalization dependent numerical
constant; fixing the normalization γ2 = 1 this numerical constant is always 1,
so we will stick to this normalization convention in this chapter. For example
in the case of two fermionic modes (four dimensional Hilbert space) one has:

original Majoranas γ1, γ2, γ3, γ4,

emergent Majoranas iγ1γ2γ3, iγ1γ2γ4, iγ1γ3γ4, iγ2γ3γ4.
(3.1)

In the formalism there is absolutely no reason behind the predilection of the
single Majorana fermions on the composite (emergent) Majoranas, so the only
discrimination can be done on the basis of the form of the Hamiltonian. There-
fore the emergent Majoranas have (in general) exactly the same dignity of the
original ones and can be mixed with them and among each other. Indeed the
only constraint is that these composite Majoranas must be chosen and mixed
properly, in order to create a new set of Majoranas that closes to Clifford alge-
bra. In the context of the SCES this is a potentially powerful property, since the
new set may “suit the Hamiltonian better”, representing the physics in a more
transparent way.

In paper A it is shown that such group of transformations, which allows for
this appropriate mixing of original and emergent Majoranas, is the group of
canonical transformations. In particular it is the canonical linear group if the
original Majoranas mix only among themselves, as in (2.28), and it is the more
general non-linear canonical group if also the mixing with composite Majoranas
is considered. Understanding these concepts makes it possible to grasp the
fundamental rationale behind the non-linear canonical transformations. The
very existence of this group relies on the equivalence of different Majoranas
existing inside the Clifford algebra, i.e. on the possibility of identifying an infinite
number of inequivalent 2n Majorana sets that can be used to build fermionic
operators able to span the entire Hilbert space.

As mentioned previously one may not be interested in building fermionic
operators. One could as well combine the Majoranas to obtain spin operators
(non-canonical transformation) that form a well defined Lie algebra (for exam-
ple su(2)). In this case instead of building an equivalent set of 2n Majorana
fermions, the original Clifford algebra is broken in two: one part still gives rise
to appropriate fermionic degrees of freedom, while the other part identifies spin
operators. The idea of using non-canonical transformations is, of course, not
original. As a matter of fact the Schrieffer-Wolff transformation is an example
of non-canonical transformation [22, 77, 78]. This transformation connects the
Periodic Anderson Model (PAM), where the Hilbert space is spanned by the
application of fermionic operators on a single vacuum state, and to the Kondo
Lattice (KL) model, where instead all the local states have two components: a
fermion part, describing the conduction electrons, and a spin part, describing
the quantum state of the impurity spins. In this thesis, also the Schrieffer-Wolff

1It is appropriate to warn the reader that the composite Majoranas mentioned previously (and in
all our scientific production) are now becoming the subject of research to the rest of the condensed
matter community. Following the recent works by Wilczek and Lee [2,76] these objects are more and
more often called emergent Majoranas. Because of this the terms composite or emergent Majoranas
will be considered interchangeable from now on and in the appended papers.
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transformation is re-conceptualized and generalized in the light of our results,
giving birth to the concept of hyperspin, introduced in paper A.

Of course choosing one approach over another, or the choice of one partic-
ular set of Majoranas over another, depends upon which representation “suits
the Hamiltonian more”. This is a quite relative concept, unless the Hamilto-
nian could be trivially diagonalized making use of the new degrees of freedom,
which is typically not the case. In a more objective fashion, one could say that
the choice of a representation depends on how convenient the form of the new
Hamiltonian is, i.e. how much physics we can capture easily (at zeroth approx-
imation) using one or the other representation. In the context of the SCES
this is a very natural idea: a generic SCES Hamiltonian generates correlations
between the dynamics of different fermionic modes; if one can choose a set of
new fermionic modes, which incorporate parts of these correlations, i.e. whose
free motion corresponds to the correlated motion of the original modes, then it
is probable that the study of the Hamiltonian in terms of these new modes will
be easier, since less approximations should be needed.

Although all these points are (thoroughly) explained in paper A, two exam-
ples will be provided also in this short introduction.

3.2 Examples

3.2.1 Canonical transformations
An example of a canonical non-linear transformation can be found in Ref. [24],
where the symmetries of the half-filled Hubbard model and the entire group of
its local (on-site) canonical transformations are studied. Here I will examine
this example to illustrate the concepts introduced in the previous section.

The local Hilbert space of the Hubbard model is generated by the four states:

|0� = |0↑� ⊗ |0↓�, (3.2)

| ↑� = c†
↑
|0↑� ⊗ |0↓�, | ↓� = c†

↓
|0↓� ⊗ |0↑� (3.3)

| ↑↓� = c†
↑
c†
↓
|0� = | ↑� ∧ | ↓�, (3.4)

where c↓|0� = c↑|0� = 0 and ∧ is the antisymmteric tensor product. We define

c†
↑
=

γ1 + iγ2
2

, c†
↓
=

γ3 + iγ4
2

, with γ2
i = 1. (3.5)

The canonical transformation group of this space is SU(2)⊗SU(2)⊗U(1)⊗Z2.
The transformation groups that compose the tensor tensor product are:

• the usual operation of spin rotation, given by the group SU(2):

c̃†
↑
= ac†

↑
+ bc†

↓
, c̃†

↓
= a∗c†

↓
− b∗c†

↑
, (3.6)

with |a|2 + |b|2 = 1, a, b ∈ C, so

|0̃� = |0�,
|↑̃� = a| ↑�+ b| ↓�, |↓̃� = a∗| ↓� − b∗| ↑�

|↑̃↓̃� = | ↑↓�.
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The generators of these transformations are the spin operators:

Sk = −i�ijkγiγj
1 + γ1γ2γ3γ4

4
, (3.7)

and evidently the transformation mixes linearly the original Majoranas to
obtain the new set. Using to (3.6) it is easy to find:

γ̃1 = Re(a)γ1 + Re(b)γ3 − Im(a)γ2 − Im(b)γ4,

γ̃2 = Re(a)γ2 + Re(b)γ4 + Im(a)γ1 + Im(b)γ3,

etc...
(3.8)

• the SU(2) pseudospin rotation operation:

c̃†
↑
= uc†

↑
− vc↓, c̃†

↓
= uc†

↓
+ vc↑, (3.9)

with |u|2 + |v|2 = 1, u, v ∈ C, therefore

|0̃� = u|0�+ v| ↑↓�,
|↑̃� = | ↑�, |↓̃� = | ↓�
|↑̃↓̃� = u| ↑↓� − v|0�;

In this case the generators of this transformations are the pseudospin
operators (see appendix C):

Ik = −i�ijkγiγj
1− γ1γ2γ3γ4

4
. (3.10)

Also in this case the transformation is linear. The new set of Majoranas
is:

γ̃1 = Re(u)γ1 + Re(v)γ3 − Im(u)γ2 + Im(v)γ4,

γ̃2 = Im(u)γ1 + Re(u)γ2 + Im(v)γ3 − Re(b)γ4,
etc...

(3.11)

• the Z2 total parity transformation (building block of the Shiba transfor-
mation [79]):

c̃†
↑
= c†

↑
, c̃†

↓
= c↓, (3.12)

that means

|0̃� = | ↓�,
|↑̃� = | ↑↓�, |↓̃� = |0�

|↑̃↓̃� = | ↑�;

the name of this transformation comes from the fact that the states with
even and odd parity are exchanged by it. Since the local Hilbert space of
the Hubbard model is very small, this is the only parity transformation
that can be done. In higher dimensional spaces, more involved transfor-
mations of this kind can be defined. In terms of Majoranas this transfor-
mation does not change the set, since it can be reabsorbed into a gauge
transformation of the definition of the fermionic creation/annihilation op-
erators. Otherwise one can imagine that the sign in front of one Majorana
gets inverted.
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• the group U(1), represented by the only non-linear component of the
canonical transformation group:

c̃†
↑
= c†

↑

�
1 +

�
e2iχ − 1

�
c↓c

†

↓

�
, c̃†

↓
= c†

↓

�
1 +

�
e2iχ − 1

�
c↑c

†

↑

�
. (3.13)

In the particular case of the Hubbard model this transformation changes
the phase in front of the double occupied state, with respect to the other
three states of the Hilbert space. In fact

|0̃� = |0�,
|↑̃� = | ↑�, |↓̃� = | ↓�
|↑̃↓̃� = e−i2χ| ↑↓�.

Even if trivial in the appearance, such a phase shift brings physical con-
sequences, as highlighted by studies of the correlated hopping Hubbard
model [80–82]. The operator that represents the transformation and leads
to the equations (3.13) is

R = exp

�
2iχ

�
c†
↑
c↑ −

1

2

��
c†
↓
c↓ −

1

2

��
; (3.14)

in fact one can check that R†cσR = c̃σ, beside a eiχ phase factor common
to both the operators. This operation is done very conveniently in the
Majorana representation where

R = exp
�
−i

χ

2
γ1γ2γ3γ4

�
, with γ2

i = 1. (3.15)

The generator of the transformation is the local parity operator, so the
transformation can only mix states with the same parity. One can see
that in terms of Majoranas the new set is given by γ̃i = R†γiR:

γ̃1 = cos(χ)γ1 − sin(χ)iγ2γ3γ4,

γ̃2 = cos(χ)γ2 + sin(χ)iγ1γ3γ4,

γ̃3 = cos(χ)γ3 − sin(χ)iγ1γ2γ4,

γ̃4 = cos(χ)γ4 + sin(χ)iγ2γ3γ4,

(3.16)

The last formulas make evident that the non-linear canonical transforma-
tion U(1) mixes (properly) the two sets of Majoranas in (3.1) γ1, γ2, γ3,
γ4 and iγ1γ2γ3, iγ1γ2γ4, iγ1γ3γ4, iγ2γ3γ4, which is exactly the kind of
operation explained in the previous section.

In higher dimensions (larger number of fermions) the group of canonical
transformations becomes much more involved and many more non-linear trans-
formations are allowed. Anyway it can be represented and handled very effi-
ciently within the Majorana representation. It must be mentioned that this
topic has been approached also in Ref. [26], but from a numerical perspective
and in terms of normal fermion operators only.
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3.2.2 Non-canonical transformations
The fact that three Majoranas multiplied together generate another Majorana,
opens fascinating opportunities in the context of the interacting systems. Let
us consider an interacting term of the form

−Uγ1γ2γ3γ4, (3.17)

that corresponds to the familiar fermionic interaction:

Uc†
↑
c↑c

†

↓
c↓ −

U

2
c†
↑
c↑ −

U

2
c†
↓
c↓ +

U

4
= U

�
c†
↑
c↑ −

1

2

��
c†
↓
c↓ −

1

2

�
,

i.e. the local interaction term of the half-filled Hubbard model.2 This operator is
invariant under the non-linear transformation (3.14). However it is not difficult
to notice that if one thinks of iγ1γ2γ3 as a single Majorana, introducing

γ0 = iγ1γ2γ3, (3.18)

then the four fermion term (3.17) becomes a simple quadratic term −i 12γ0γ4
and defining the fermionic operator h0 = (γ4 − iγ0)/2, the expression (3.17)
becomes

−U(h†

0h0 − 1/2).

So the original interacting problem becomes effectively a non-interacting one.
Clearly this cannot be the entire story: in fact the original Hilbert space was

four-dimensional, while the final one is only two-dimensional. Moreover it is
clear that this operation is not contained into the canonical group introduced in
the previous section and (therefore, as proved in paper A) the structure of the
Clifford algebra is not preserved. The (3.18) performs a non-canonical unitary
transformation of the quantum coordinates, that can easily be understood as
a transformation that changes the way of how the fermion operators are repre-
sented. Typically the creation operator of a spinful fermion is represented (for
example) as

c† =




γ1+iγ2

2

γ3+iγ4

2



 , (3.19)

however an equivalent way to represent it is [83]:

c† =
1

2




Φσ+

Φσz + iΨ



 , (3.20)

where Φ and Ψ are two Majorana fermions and σ are the Pauli matrices. Trying
to relate the two representations, one gets:

Φ = iγ1γ2γ3, Ψ = γ4 (3.21)
σx = +iγ2γ3, σy = +iγ3γ1, σz = −iγ1γ2. (3.22)

2Typically the term used is U/2
�
c
†
↑c↑ + c

†
↓c↓ − 1

�2
= U

�
c
†
↑c↑ − 1/2

��
c
†
↓c↓ − 1

2

�
+ U/4,

with the extra shift due to the usual zero point energy shift.
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The fermion operator h0 built previously (that from now on we will call “holon”)
is therefore obtained combining Φ and Ψ; besides the vacuum and single occu-
pied state of this fermion, one has also the two possible eigenstates of the spin
operator σz, that can be interpreted describing the internal degrees of freedom
of iγ1γ2γ3. In this representation the Hilbert space is not anymore generated
by the application of the fermionic operators on a single vacuum state, but it is
decomposed into two sectors:

{|0�, | ↑�, | ↓�, | ↑↓�} = {|0h�, |1h�}⊗ {| ⇑�, | ⇓�} (3.23)
= {|0h� ⊗ | ⇓�, |1h� ⊗ | ⇑�, |1h� ⊗ | ⇓�, |0h� ⊗ | ⇑�}

A detailed analysis can be found in paper A an in Section II of paper C. The
operators σi close to su(2) Lie algebra, and operate on a Hilbert space that I
will call SU(2)-sector or hyperspin sector of the Hilbert space. At first sight
this transformation looks quite inconvenient and abstract. Analyzing it more
carefully, it becomes evident that the transformation is actually very natural.
Rewriting the shifted term (3.17) as U(c†

↑
c↑ + c†

↓
c↓ − 1)2/2 = U(1− h†

0h0), and
looking at (3.23), it is evident that the states with �h†

0h0� = 1 are the single
fermion ones | ↑� and | ↓�, while the �h†

0h0� = 0 are |0� and | ↑↓�. As natural
consequence, the SU(2)-sector is interpreted3 as spin sector of the |1h� state
and pseudospin sector of the |0h� state. This non-canonical transformation is
therefore the reason behind the possibility to represent the spin operators in
terms of Majorana fermions [74, 84]. In terms of Majoranas the non-canonical
transformation breaks the Clifford algebra in two parts: one is related to the
holonic sector of the Hilbert space and that contains γ4, γ0 = iγ1γ2γ3 and their
product; the other instead contains the three Majoranas γ1, γ2, γ3 and their
bilinears, and it is clearly connected with the hyperspin sector of the Hilbert
space.

The analysis of any model can be performed also in this different non-purely
fermionic representation of the quantum operators. In the case of the Hubbard
model this was done in [25] and [83], and also the Heisenberg model is obtained
in the high U limit of the Hubbard one via this transformation (plus a projection
on the low energy sector) [23]. Clearly the change of representation generates
advantages diagonalizing the interaction term, but it makes the structure of
the hopping term much more complicated. In this representation the Hubbard
model has two kind of degrees of freedom: holons, associated to the fermion
h0, and (hyper-)spinons given by the modes of the SU(2) sector. The dynamics
of these modes is correlated because of the hopping term. The most obvious
advantages of this representation are evident in the limit of strong U . In that
case, to a good approximation, the ground state has one h0 fermion per site
and the Hamiltonian becomes expressible in terms of the SU(2) operators only;
but on the |1h� states the SU(2) operators are interpreted as spin operators.
Therefore one obtains the Heisenberg model, when it is seen as the low energy
effective Hamitlonian of the high U half-filled Hubbard model. So (correctly)
at infinite U , when the valence oscillations of the electrons are forbidden, the

3It is clear now why the choice for the phases of the Majoranas in the creation operators of the
up and down electrons has been changed: if c†↑ = (γ1 + iγ2)/

√
2, c†↓ = (γ3 + iγ4)/

√
2 had been

chosen, then the states with one holon would have corresponded to |0� and | ↑↓�, and consistently
the states with no holon | ↑�, | ↓�. The final result would have been equivalent, but slightly more
unnatural.
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half-filled Hubbard Hamiltonian turns into a pure spin model [25, 83]. Anyway
it is also possible to move away from the strong coupling limit, although the
dynamics of the holons and the spinons get entangled, requiring non-trivial
approximations.

The same kind of approach has been used in the description of the t-J model
[85–88] and also the strong coupling analysis of the Kondo lattice [89], reviewed
in the Sec. 6.3.1 shares the same concepts. Often the use of the non-linear non-
canonical transformations permits an exact treatment of the interacting terms
of the Hamiltonian, but it turns the hopping term into a complicated interaction
term between the states of generalized-spin sector of the Hilbert space and the
fermionic (holonic) ones.

This example was not particularly involved, since the number of local Ma-
joranas was indeed very low. However it is clear that the situation changes
when the number of fermionic modes increases. Using the Majorana fermion
framework a study of this kind can be done for any number of fermions n, since
it is straightforward to determine the set of hyperspin operators. All these con-
cepts are developed in paper A, where it is also explained the close conceptual
relation between this non-canonical approach and the idea of dynamical sym-
metries [90, 91]. Indeed the choice of the spin operators that one wants to use
in the description of the system must rely on the specific case that is subject of
analysis. The Majorana representation helps in identifying algebras that fulfill
specific symmetry criteria, but the choice of such criteria (and so also the choice
of how the Clifford algebra must be broken or reduced) depends upon the user
of the framework. The best way to do it is, probably, the identification of the
degenerate or quasi-degenerate subspaces of the local Hilbert space, that may be
optimally described by spin operators; this way to proceed has indeed much in
common with the analysis in nuclear and atomic physics based on the concepts
of Spectrum Generating Algebra and Dynamical Symmetries.

3.3 Achievements of Paper A
This (long) paper is divided into two parts. In the first one we developed the
foundations of the framework are developed in a mathematically complete way.
In particular we:

• characterized the group structure of the general group of canonical trans-
formations (which was only partially done in Ref. [24]);

• proved how the Clifford algebra generated by the Majorana fermions of
a local Hilbert space can be modified to obtain a Lie algebra (provid-
ing a Majorana representation of the Lie generators that was previously
unknown);

• showed how this Lie algebra can be restricted, in order to consider only the
generators of the canonical (linear and non-linear) transformations, con-
necting in this way the Clifford algebra generated by Majorana fermions
with the group of canonical transformations. This means that we con-
nected the mathematical abstraction of the non-linear canonical trans-
formations with the physics of the fermion modes, which represents a
non-trivial conceptual achievement;
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• provided a simple representation for the generators of the (non-)linear
canonical transformations and for the unitary transformations that they
generate; this result is important from a practical point of view, since it
strongly simplifies (also computationally) the use of non-linear transfor-
mations;

• associated to all these mathematical concepts a physical understanding,
in terms of composite (emergent) Majorana fermions.

In the second part instead we developed the idea of hyperspin. In particular:

• we defined the concept in a rigorous way;

• we showed how the Majorana fermion representation may be very useful
in the implementation of a dynamical symmetry approach also to SCES
systems.

Moreover we also provided a review of the main strategies that we have
elaborated to apply in an effective way the non-linear transformation in the
analysis of the SCES.
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Part II

Application: the Hubbard
model
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Chapter 4

The Mott Insulator

4.1 Metals and Insulators

An introduction to the features of the Mott Insulating phase has
no meaning without the definition of the terms insulator and metal.1
Such a definition must mediate between the colloquial meaning and the

mathematical rigor necessary in physics. In a naive way one could say that a
material is metallic if it allows for the conduction of electric current, and an
insulator otherwise. This definition is clearly too inaccurate, since everything
can (in principle) conduct current if the difference in voltage between its two
extremities is large enough, via dielectric breakdown. Thus, to give a more ac-
curate definition, it is better to consider the conductive properties of a material
in the presence of small external perturbation: a system is metallic if it conducts
current for an infinitesimal applied external electric field. The use of the small
field analysis, i.e. of the linear response approximation, makes this approach
quite universal, since it is rooted in the concepts of the Boltzman equation [94].
Keeping a semiclassical point of view and without focusing on the details, the
idea can be summarized as follows: in equilibrium, i.e. in absence of any ex-
ternal perturbation (electric field), the charge carriers are fully characterized
by a given probability distribution function f0, which depends on the degrees
of freedom necessary to describe the configuration (state) of the system and
upon the temperature. This equilibrium distribution is a stable fix point for the
probability distribution function of the system, in the sense that any (small)
deviation f1 from the equilibrium f0 is quickly suppressed by the dynamics of
the system. For example, if we excite a few electrons in the system increasing
their momentum, we modify the probability distribution function f = f0 + f1,
but since the electrons scatter against the phonons and loose energy, we must
expect that f relaxes to f0 after a typical time τ . If the deviation from equilib-
rium f1 is sustained by a steady external perturbation, then the system cannot
relax back to equilibrium and the competition between the external force (in
this case the external electric field Ei) and the internal restoring processes de-

1This brief introduction to the topic will necessarily follow the standard approaches, such as
Refs. [7, 92, 93], since these are textbook notions and not so much more can be added to the
discussion; however I decided not to entirely omit this discussion in order to keep the text fluent
and self-contained.

41
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termines the out of equilibrium form f(Ei) = f0 + f1(Ei) of the probability
distribution function, which in turns means that a steady current is flows in-
side the system [94]. Between the classical and the quantum case there are some
technical differences, due mostly to the fact that in the quantum case one has to
use a density matrix ρ = exp{−βH}/Z and not a probability distribution func-
tion, and due to the fact that the Hamiltonian picture of quantum mechanics
assumes the conservation of energy and a unitary evolution in time, which must
be “hidden under the carpet” in some circumstances (see for example discussion
in Ref [95]). Beside these technicalities, and as long as one treats macroscopic
systems, the basic concepts are the same. In both situations one can write the
current ji as ji = σijEj , where σij is the conductivity tensor. In the quan-
tum mechanical case this relation is given by the Kubo formula, which can be
derived2 assuming a small perturbation of the Hamiltonian:

HI = −
�

drAa(r, t) · ĵPa (r, t), (4.1)

where we decided to work in the Coulomb gauge �∇ · �A = 0 and the symbol ĵPa
stresses the fact that the coupling involves the paramagnetic contribution to the
electric current. In fact, keeping in mind the choice of the gauge and the fact
that all the observables must be gauge invariant, one can understand that there
are two different contributions to the current: a paramagnetic and a diamagnetic
contribution. This is due to the enforcement of minimal coupling rules between
the electrons and the electromagnetic field, which in the Schrödinger equation
implies the substitution:

i�∇ → i�∇+ e �A(�x, t), (4.2)

which determines the following formulas for the continuous current operator

ĵ(�x) = − ie

2m∗
Ψ̂†(x)

←→∇ Ψ̂(x)− e2

m∗

�A(�x, t)Ψ̂†(x)Ψ̂(x). (4.3)

So, evidently the response to a small external perturbation can be computed as
the sum of two contributions: the paramagnetic and the diamagnetic part of the
response. The latter is easily computed keeping only the part of the response
that is linear in the external field:

jDa (r, t) = �ĵDa (r, t)� = − e2

m∗
�Ψ̂†(x)Ψ̂(x)ρ0�Aa(�x, t) = −e2n

m∗
Aa(�x, t); (4.4)

The former instead can be calculated using the linear response approximation:

jPa (r, t) = �ĵPa (r, t)� ≈ i

� t

−∞

dt�
�

dr��
�
ĵPa (r, t), ĵPb (r�, t�)

�
�Ab(r

�, t�) (4.5)

= i

� t

−∞

dt�
�

dr�Tr
��

ĵPa (r, t), ĵPb (r�, t�)
�
ρ̂0
�
Ab(r

�, t�),

with the convention � = 1; equivalently

jPa (r, t) =

� +∞

−∞

dt�
�

dr�χ̃ret
ab (r, t, r

�, t�) ·Ab(r
�, t�), (4.6)

2Part of this derivation is taken from Refs. [93,96], although with some modifications, but many
other text on electron transport theory deal with the Kubo formula and the computation of the
conductivity. For example also Ref. [11] tackles the problem extensively.
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where χ̃ret
ab (r, t, r

�, t�) = i�
�
ĵPa (r, t), ĵPb (r�, t�)

�
�θ(t − t�) is the retarded current-

current response function. Explicitly χ̃ret
ab (�q,ω) is:

χ̃ret
ab (�q,ω) = i

�
dr�

� 0

−∞

dτTr
��

ĵPa (0, 0), ĵPb (�r�, τ)
�
ρ0
�
e−i�q�r�+iωτ+ητ , (4.7)

where η → 0 is the usual infinitesimal regularization coefficient, needed to en-
force the adiabatic switching on of the perturbation from t� → −∞.

Summing the two parts and performing a Fourier transform one gets:

ja(�q,ω) = Lab(�q,ω) ·Ab(�q,ω), (4.8)

where Lab(�q,ω) is given by

Lab(�q,ω) = χ̃ret
ab (�q,ω)−

ne2

m
δab. (4.9)

Formula (4.8) can be conveniently rewritten in terms of the applied electric field,
using the (Coulomb gauge) relation �E(�x, t) = −∂ �A(�x, t)/∂t:

ja(�q,ω) =
1

i(ω + iη)
Lab(�q,ω) · Eb(�q,ω). (4.10)

Therefore the conductivity is given by:

σab(�q,ω) =
1

i(ω + iη)

�
χ̃ret
ab (�q,ω)−

ne2

m
δab

�
. (4.11)

The difference between a metal and an insulator can now be defined exactly,
computing the transverse DC conductivity at zero temperature:

σDC
aa = lim

T→0
lim
ω→0

lim
�q→0

σaa(�q,ω). (4.12)

If such a limit is zero, then the material is an insulator, otherwise it is a metal.
It is worth stressing that it is the limit of the conductivity that determines
the difference between a metal and an insulator. In fact the gauge invariance
enforces the equality:3

χ̃ret
aa (�q, 0)−

ne2

m
= 0, ∀�q. (4.13)

One therefore understands that it is the limit of Lab(�q,ω) and not its value at
zero, which determines the metallic or insulating behavior. If Lab(�q,ω) is not

3Indeed a Gauge transformation acts as �A → �A + �∇α, φ → φ − ∂α/∂t, where the gauge
field is α(�x, t). The current response to this gauge field must necessarily be zero, since the gauge
transformation does not change the electric field. However Eq. (4.8) relates linearly the vector
potential and the current via Lab(�q,ω), so it is evident that if the former is changed also the latter
must change accordingly. In absence of external charges φ = 0, so if one uses α(�x, t) = α(�x), no
new scalar potential is induced. This means that in Fourier space only the ω = 0 component of
�A(�q,ω) is changed by the transformation and therefore this must imply a constraint on the value of
Lab(�q, 0). At this point one could argue that this must be true for any value of �A(�q,ω), so also for
�A(�q,ω) = 0. In this case, given (4.8) and considered the arbitrariness of α(�q), the only conclusion
is that (4.13) holds. For a full mathematical demonstration of this (and other) gauge constraints, I
suggest to read Ref. [96].
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zero for ω → 0, then the conductivity (4.11) becomes infinity, which means it
behaves as in a perfect conductor.4 If instead Lab(�q,ω) goes (quickly enough)
to zero, then the conductivity can also go to zero, as in an insulator.

Equivalently one could focus the attention on the behavior of χ̃ret
aa (�q,ω),

which is the object that must be computed carefully, depending on the current-
current commutator. Since the quantum average �

�
ĵPa (t), ĵPb (τ)

�
�0 can be per-

formed in any basis, the momentum basis seems the natural choice, since (in a
crystal) the crystalline momentum is a good quantum number. It is important
to point out that the computation of the conductivity depends upon the calcu-
lation of a four fermion average, so it is clear that electric conduction is a many
body phenomena, which cannot in general be described exactly in terms of sin-
gle particle properties or quantities. In particular it is clear that the conduction
of current concerns the coherent propagation of electron-hole pairs. Indeed, in
order to generate non-zero current at vanishing fields, two things must necessar-
ily happen [92]: there must be electron-hole excited states available at vanishing
energy; such electron-hole pairs must be able to generate coherent macroscopic
states, to be able to propagate through the entire system. Since it is partic-
ularly complicated to describe the coherent dynamics of an electron-hole pair,
typically these two quasi-particles are considered as uncorrelated, so that it is
enough to study the energy, the density and the properties of the single particle
excitations, for both electrons and holes, to discover whether the system is or is
not insulating. In particular one can determine if a gap ∆ exists, i.e. if energy
is required to add or remove an electron. If ∆ is not zero for both electrons
and holes the system is insulating. This approach has obvious limitations if
the system is correlated, since the operation of adding and removing electrons
seriously affects the eigenstates of the system and so also one-particle properties
as, for example, the density of states.

As mentioned in the previous discussion, the conduction properties can dis-
tinguish between an insulator and a conductor only at zero temperature. This is
due to the fact that temperature implies an incoherent occupation of conductive
quantum states also in the insulators. So at T �= 0 even a material classified
as insulator can conduct. However the insulators can be identified by the tem-
perature dependence of the conductivity. Indeed the conductivity tensor of an
insulator must show a temperature activated behavior like:

σab(0, 0, T ) ∝ exp

�
− ∆

kBT

�
, (4.14)

for kBT of the order of ∆ or smaller, where ∆ is the typical energy scale of
the insulator. In general such a value is given by the value of the gap at zero
temperature, though some variations may occur [92].

The classification of the insulators into different classes is done on the basis
of the origin of the gap ∆. The simplest classification comprises four different
classes of insulators:

i. Band insulators: in this case the gap is due to the energy of the orbitals
that give rise to the bands inside a material; if the electrons completely

4The reader can understand that the difference between a perfect metal and a superconductor
cannot be defined only on the basis of the transverse conductivity. The difference is enclosed in the
longitudinal behavior of the conductivity, which in a similar limit goes to zero in the case of a metal
and is finite for a superconductor.
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fill an integer number of bands, which means if the crystal has an even
number of electrons per unit cell, then there are no zero-energy single-
particle excitation states for the electrons and therefore the system is
insulating.

ii. Peierls and Stoner insulators: in these insulators the gap is gener-
ated by a symmetry reduction, which results in the establishment of a
band insulator [97, 98]. The symmetry breaking can involve the electron
wave function only (Stoner insulators) as well as distortions of the lattice
(Peierls insulators).

iii. Anderson insulators: in a system with lattice disorder the conduction
gap is not between the ground state and the first available excited state,
but between the ground state and the first excited state that is macro-
scopically extended over the entire system. Indeed the lattice disorder can
coherently scatter back the electrons, which effectively become caged: so
to create current one has to excite electrons with high energy, which are
able to escape this process.

iv. Mott insulators: in this case the gap is created by the local (screened)
interaction between the electrons, preventing them from moving freely in
the system. These are the insulators that are considered in paper B.

4.2 Mott physics

4.2.1 A correlation driven insulator
As mentioned in the previous section, the insulating character of a system can
be caused by the interactions between the electrons (or carriers in general),
via a process that is strongly reminiscent if the Wigner crystallization of a 2d
electron gas [99]. This idea developed by Mott [100] looks simple, but it hides
important technical problems. To clarify the concept, let us consider a half-
filled system. If no interaction is present the electrons are free to delocalize
over the entire system, jumping from site to site and occupying them randomly,
following only the restrictions enforced by the Pauli principle. In presence of a
small interaction this picture of free propagating electrons must still be valid, at
least for excitations infinitesimally close to the Fermi surface, since the Landau-
Fermi liquid theory [9,10] ensures the existence of a one-to-one correspondence
between the low energy states lying close to (on) the Fermi surface of the inter-
acting model and the eigenstates of the free model. However, if one imagines
increasing the interaction more and more, the possibility of a breakdown of
this picture must be considered, since the interaction prevents two electrons
(even of different spins) from approaching each other. At some point every elec-
tron must necessarily find itself frozen in one position, because its motion gets
stopped by the surrounding electrons that effectively generate an electrostatic
trap. Given that the electrons get confined into their positions, it seems plau-
sible that somewhere, between the non-interacting and the strongly interacting
limit, the Landau-Fermi liquid picture can break down since one cannot speak
anymore of propagating fermions (formally this can happen via a divergence of
the electron’s effective mass [10, 101–104]); thus the one-to-one correspondence
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(adiabatic connection) and therefore the Fermi surface do not necessarily have
to exist anymore.

The debate about the necessity of a Fermi-Liquid breakdown is still vivid,
and I leave to the reader the burden of exploring it, since it is only marginally
related to our work. Instead it is important to focus our attention on a less con-
troversial point: the fact that in the high (infinite) interaction regime, the most
natural degrees of freedom for the description of the system are no longer the
electrons, as already pointed out by Mott [100]. Indeed assume that the inter-
action is so intense5 that each electron gets stuck in one position (atomic limit),
without the possibility to delocalize and propagate, then little of their original
electronic nature is left. For example at the low energy scale the relevant de-
grees of freedom are spins, and the electrons (which generate the local momenta)
enter in the description only as virtual high energy degrees of freedom, which
are able to justify the spin-spin interaction via their virtual motion. In the case
of a half-filled system in the atomic limit this seems quite natural and indeed
what characterizes a Mott insulator is the appearance of local moments [92,100].
Away from half-filling the scenario is more complicated, but still very similar.
The electronic degrees of freedom are not good quantum coordinates and the
one-to-one mapping of Landau-Fermi liquid does not hold anymore, since some
excitations that exist in the interacting model do not have counterparts in the
free model [105,106]. Clearly away from half-filling the system is not anymore an
insulator, but rather it becomes a strongly correlated metal, where the current
is in general transported by the correlated motion of doubly-occupied and unoc-
cupied sites (or doublon-holon coherent states). Such a situation is analyzed in
detail in Ref. [105,106], where it is also pointed out that the process of creation
of these new degrees of freedom implies a full reorganization of the spectral dis-
tribution of the system, via a process known as spectral weight transfer. This
redistribution of the spectral weight and the mixing of UV and IR energy scales
proves that the electrons are no longer the proper degrees of freedom for the
description of the system, but correlated doublon-holon states must emerge as
fundamental particles. Such an emergence reminds us of the same mechanism
that binds quarks into mesons at low energy scales. Although this discussion is
very interesting, the present chapter will focus only on the half-filled case and
therefore on the properties of the insulating phase.

Surprisingly all this complex physics is summarized very well in a simple
model, due to Hubbard [8]:

HH = −t
�

�i,j�,σ

�
c†i,σcj,σ + h.c.

�
+ U

�

i

c†i,↑ci,↑c
†

i,↓ci,↓ + µ
�

i,σ

c†i,σci,σ, (4.15)

where the choice µ = −U/2 forces the half-filling of the system. The Hubbard
model makes the appearance of local moments in the high-U limit evident.
Indeed, in this limit, it is possible to map it exactly onto the Heisenberg model,
via a unitary transformation [23,107]. For pedagogical purposes, it is convenient
to show the main passages of this map. The first thing to do is to separate the
kinetic term into three main processes: the hopping of the holes Th, the hopping
of the doublons Td and the other type of hoppings Tmix. It must be pointed out
that the first two processes do not change the total local parity of the states,

5Or alternatively that the hopping is zero.
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while the last one does.

Th = −t
�

�i,j�,σ

�
(1− ni,−σ)c

†

i,σcj,σ(1− nj,−σ) + h.c.
�
,

Td = −t
�

�i,j�,σ

�
ni,−σc

†

i,σcj,σnj,−σ + h.c.
�
, (4.16)

Tmix = −t
�

�i,j�,σ

�
ni,−σc

†

i,σcj,σ(1− nj,−σ) + (1− ni,−σ)c
†

i,σcj,σnj,−σ + h.c
�
.

Since the third process implies an energy expense of order U , one expects its
suppression at high coupling, so a unitary transformation exp(−iS) with S = S†

can be set up to make this term disappear, at least at first order in S:

Heff = eiSHe−iS = H + i[S,H] +O(S2). (4.17)

Calling V the interacting term one has:

H = Td + Th + Tmix + V,

Heff = Td + Th + Tmix + V + i[S, Td + Th + Tmix + V ].
(4.18)

So, to make Tmix disappear, S must obey the following constraint:

i[S, Td + Th + V ] = −Tmix,

iS(Td + Th + V )− i(Td + Th + V )S = −Tmix.
(4.19)

Using the eigenstates and eigenvalues �i of Td + Th + V , one gets:

i
�

n,m

|n��n|S|m��m|�m − i
�

n,m

�n|n��n|S|m��m| = −Tmix, (4.20)

which immediately implies

S =
�

n,m

|n� �n|Tmix|m�
i(�n − �m)

�m|. (4.21)

Of course the �i are unknown, but one has to keep in mind that Tmix is non-
zero only if it connects a state from one parity sector to a state in another
parity sector (i.e. with different numbers of doublons and holes), and that in
the limit of infinite-U the parity sectors are very well separated in energy by the
interaction; so evidently in this limit �n− �m ≈ ±U . In conclusion, substituting
Tmix with (4.16) and keeping track of the parity of the states connected by the
different operators in Tmix, one gets:

S = −i
t

U

�

�i,j�,σ

�
ni,−σc

†

i,σcj,σ(1− nj,−σ)− (1− ni,−σ)c
†

i,σcj,σnj,−σ − h.c.
�
,

which is hermitian as expected. The new effective Hamiltonian is now

Heff = Th + Td + V + i[S, Tmix] +O(S2). (4.22)



48 Chapter 4 The Mott Insulator

At the first order of t/U there are no operators that mix the two parity sectors,
which can therefore be analyzed separately. Focusing on the sector with no
doublons (low-energy sector) and dropping the higher order terms one gets:6

Heff = Th + 4
t2

U

�

�i,j�

�
�Si · �Sj −

1

4
ninj

�
. (4.23)

Moreover at half-filling Th = 0, since there are no holes (given the fact that there
are no doublons) and �ninj� = 1 exactly [23, 107]. What one finds is therefore
that Heff is the Hamiltonian of the spin-1/2 Heisenberg model.

The reader has certainly noticed the many assumptions that are needed to
connect the Hubbard model with the Heisenberg model, i.e. to connect a model
for electrons propagating on a lattice to a model describing interacting spins.
Indeed this procedure shows very well that the Mott insulator is realized via the
appearance of local moments, although how this happens in the intermediate-U
region is still obscure. In fact the previous assumptions are justified only in the
U = ∞ limit, since only in this limit the contribution of the doublon hopping
and the higher order terms can be completely discarded.

The exact mechanism that leads to emergence of the Mott insulating phase
via an increase of U is still not well determined (see Sec. 4.2.2), however there
are no doubts about the fact that the increase of the correlations between the
electrons must drive this process. When one speaks about correlations there
is always quite a lot of confusion. Electrons are naturally correlated with each
other, because of the Pauli principle. This effect is present also in the Fermi
gas, where it produces the exchange-hole effect [93]: this is visible in the equal-
spin electron-density correlation function Pσ,σ(�x, �x�), which is related to the
probability of finding an electron in �x� given the presence of another electron
with the same spin in �x,

Pσ,σ(�x, �x
�) = ρ20

�
1−

�
3
sinx− x cosx

x3

�2
�
, (4.24)

with ρ0 the density of the gas (assuming translational and spin rotation invari-
ance) and x = |kF | |�x− �x�|. Between electrons with different spin the correlation
function is instead much simpler:

Pσ,−σ(�x, �x
�) = ρ20. (4.25)

The exchange correlation explained above is a trivial part of the correlation that
is not of interest in the present discussion. Of course it can lead in combination
with Coulomb interaction to dramatically important effects (e.g. Hund’s first
rule, Stoner ferromagnetism, RKKY interaction), but exchange is not the kind
of correlation that one has in mind speaking about Strongly Correlated Electron
Systems. The correlations beyond exchange are responsible for the involved
physics of these systems, and thus also of the Mott physics. The existence of
extra correlations is evident in the Mott insulator, since clearly Pσ,−σ(�x, �x) → 0
in the infinite-U limit.

6To be precise, performing carefully the maths and paying attention to the role of the chemical
potential, an energy shift −U/4 is also found, with respect to the non-interacting limit.
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To understand where the formalism hides these correlations, it is convenient
to analyze the structure of the density correlation function, which on the lattice
reads [92]:

Pσ,σ�(i, j) = �n̂σ(i)n̂σ�(j)� = �c†σ(i)c†σ�(j)cσ�(j)cσ(i)�. (4.26)

As stated previously, such a function is related to the probability of finding
an electron in i with spin σ, given the presence of an electron with spin σ�

in j. To compute (4.26) one has to perform the quantum average of the four
fermion operator c†σ(i)c

†

σ�(j)cσ�(j)cσ(i), which alternatively means that one has
to determine the two-particle Green’s function of the system. This task is trivial
in the case of a non interacting system, since one can factorize (4.26) into the
Hartree and Fock contributions7, or alternatively break the Green’s function
into the sum of the direct and the exchange contributions. In both cases what
guarantees the correctness of the result is always the Wick theorem:

P 0
σ,σ�(i, j) = �c†σ(i)cσ(i)��c†σ�(j)cσ�(j)� − �c†σ(i)cσ�(j)��c†σ�(j)cσ(i)�. (4.27)

The first term (Hartree) generates the ρ20 in both (4.24) and (4.25), while the
second gives the correction in (4.24).

Evidently, if the system is interacting, the situation becomes much more
complicated, since not all the correlation, but only the exchange is contained
within the Hartree-Fock terms. Typically a support function called the pair
correlation function is defined as

gσ,σ�(i, j) = �c†σ(i)c†σ�(j)cσ�(j)cσ(i)� − �c†σ(i)cσ(i)��c†σ�(j)cσ�(j)�. (4.28)

The non-trivial part of the correlations should more properly be described by

g(i, j)σ,σ� + �c†σ(i)cσ�(j)��c†σ�(j)cσ(i)�, (4.29)

which contains the pure many-body correlated effects. If such a function is zero
or very small, compared to the Hartree-Fock components, then the system is
weakly correlated. If instead this component dominates, the system is strongly
correlated.

It is clear that the computation of this quantity is crucial in the analysis of
the Hubbard model, since the term c†

↑
(i)c†

↓
(i)c↓(i)c↑(i) is the interaction term

and its value on the ground state determines the interaction contribution to
the energies of the eigenstates. Unfortunately the computation of Pσ,σ�(i, i) is
a formidable problem, which becomes very difficult to tackle at high-U, where
perturbative techniques typically break down. A technique that clearly cannot
take into account the strong correlation between the electrons is mean-field
analysis. In the light of the previous discussion this can be understood very
well, in fact the study of the Hubbard Hamiltonian via a mean-field decoupling8

assumes the approximation of the interaction term as:

�c†
↑
(i)c†

↓
(i)c↓(i)c↑(i)� ≈ �c†

↓
(i)c↓(i)��c†↑(i)c↑(i)� − �c†

↓
(i)c↑(i)��c†↑(i)c↓(i)�,

7Here the anomalous contribution of the Cooper pairing is neglected, because not relevant for
the present discussion.

8An introduction to mean-field decoupling schemes can be found in any condensed matter basic
textbook. However an effective scheme for its implementation can be found in the appendix B of
paper C.
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where the four mean-fields that appear on the r.h.s. must be determined self-
consistently or imposed on the base of symmetry arguments (see for example
appendix B of paper C). By construction this approximation of the interacting
term misses the contribution of the many-body correlations. Therefore a mean-
field description cannot capture the physics of a Strongly Correlated Electron
System, like the Mott insulator, since it completely neglects the correlations
that drive the physics. This is in complete contrast with the case, for example,
of Slater antiferromagnetic insulators, where instead the mean-field decoupling
perfectly describes the stabilization of the order that causes the insulating be-
havior. In paper B, thanks to the results of paper A, we challenge this paradigm,
since we show that using appropriate non-linear canonical transformations it is
possible to set up a mean-field analysis that includes part of the electronic cor-
relations. In this way we are able to give a description of the Mott insulating
phase, via a free fermion (mean-field) representation.

4.2.2 Metal-Insulator transition

Previously it has been shown that a system described by the Hubbard Hamil-
tonian (4.15) must turn from a metal to an insulator increasing the value of
the coupling U, via an increasing localization of the electrons. How this process
takes place is still subject of intense research. Evidently at some critical Uc

(at T = 0) the energy of the ground state characterized by delocalized (weakly
correlated) electrons and connected adiabatically to the non-interacting ground
state, must become higher than the energy of a state with localized (strongly
correlated) electrons that is instead adiabatically connected with the ground
state of the U → +∞ limit. Whether or not the transition between these two
states is discontinuous or continuous at zero or finite temperature, or whether or
not this transition preserves its properties in different circumstances (lattices, di-
mensions, etc...) is still the subject of debate (see for example [92,102,108–116]).

Since the Mott-insulating state is characterized by the appearance of local
moments, remnants of the localized electrons, it is clear that in principle the
ground-state could be highly degenerate, like the atomic limit one. The degen-
eracy is given by the fact that every local electron has a twofold spin degeneracy,
which is an unavoidable feature, unless the Mott state orders magnetically. In-
deed in many theoretical works on the Hubbard model an antiferromagnetic
dome often appears on top of the region where the metal-insulator transition
appears [92, 117, 118]. However the fact that these localized electrons develop
some spin order, is completely irrelevant from the point of view of the Mott
physics. The possible ordering is due to the fact that the Néel Temperature,
which rules the establishment of the antiferromagnetic spin order that we con-
sider as example, is quite high, so as soon as the local moments emerge they
also order; actually the same thing happens in the the Slater metallic state at
low coupling U, where the electrons coherently stabilize an antiferromagnetic
order. These two states are sometimes called correlated and uncorrelated anti-
ferromagnets, more details can be found in Ref. [118, 119]. For the purpose of
this discussion the properties of the antiferromagnetic phase are irrelevant, so
it will always be assumed that such a mechanism is suppressed by some kind of
frustration (for example induced by the lattice or by next-to-nearest neighbor
hopping).
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The study of the d = ∞ limit is very convenient, since using a Bethe lattice9

the results obtained using Dynamical Mean-Field Theory (DMFT [102]) become
exact, in a sense that will be clarified in the next paragraphs. Even if this sys-
tem is clearly unphysical and the final picture can be completely different in
real situations (see for example Ref. [116]), the DMFT study of the Hubbard
model phase diagram is paradigmatic in the context of general Metal-Insulator
transitions. In the light of the effectiveness of this method on the Bethe lat-
tice, it is convenient to summarize its findings concerning the Metal-insulator
transition, in order to identify the processes and the quantities important to
the establishment of a Mott state. Many details can be found in the original
papers [102,110,120], however I prefer the insight given in Ref. [121], where the
DMFT solutions are treated as they really are: fix points of a self-consistent
algorithm.

The DMFT algorithm permits the analysis a quantum interacting system,
mapping it onto a quantum impurity problem interacting with a bath. The
algorithm is self-consistent and is based on a cyclic update of the local im-
purity Green’s function, via the continuous calculation of its self-energy Σ(ω).
Comprehensive reviews of the method can be found in Refs. [102,122]), so it is
enough to just mention the main steps of the algorithm. The DMFT algorithm
is the logical (but technically involved) extension of standard Weiss single site
mean-field method: the basic idea is in fact the same, i.e. the conceptual sep-
aration of the system into a single site embedded into the rest of the system.
In this way the original problem gets mapped into the problem of an impurity
interacting with an external bath, where the properties of the bath must be
determined on the basis of the impurity’s properties, which in turn depend on
the mean-fields that the bath itself generates. One therefore understands that
the entire process must be based on a self-consistency procedure. The difference
between the standard Weiss mean-fields and the DMFT ones is that the first
are static, while the second are dynamic, i.e. they allow time modulation and
therefore a non-trivial spectral structure. In DMFT the procedure that permits
the separation of the problem into bath and impurity is called cavity construc-
tion and it is easily understood if one considers the path integral representation
of the partition function of the system Z in the grand-canonical ensemble, as in
Ref. [122]. The partition function depends upon the system’s action S, which
can be separated into three parts:

S = Slocal(c
∗

0, c0) +∆S(c∗0, c0, c
∗

i , ci) + Slattice(c
∗

i , ci), (4.30)

where Slocal is the part of the action describing a single local site i = 0, Slattice

describes the rest of the lattice with i �= 0, and ∆S describes the hopping of
the electrons from i = 0 to the rest of the lattice and vice-versa. In practice,
∆S determines the interaction between the local site and the rest of the system.
Of course the c∗j , cj symbols represent the Grassmann variables, since the use
of the action S assumes the path-integral representation. From this point the
algorithm evolves in a very straightforward way: the degrees of freedom c∗i , ci
are integrated out, so that computing the average of exp {∆S(c∗0, c0, c

∗
i , ci)} one

generates an effective action that is only a function of c∗0, c0 and that therefore
can be seen as the action of the bath on the local site i = 0. Predictably, the

9The term Bethe lattice in this thesis refers to the Bethe graph with infinite coordination num-
ber [11].
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problem is the averaging of exp {∆S(c∗0, c0, c
∗
i , ci)}, so it is in this passage that

many approximations are hidden. Indeed it can be proved that in the d → ∞
limit, only contributions to �exp {∆S(c∗0, c0, c

∗
i , ci)}� that depend upon the single

particle lattice Green’s function are not suppressed by the high dimensionality of
the system. This is due to the fact that, to be meaningful, the infinite limit must
be performed with a simultaneous rescaling of the hopping term t → t∗/

√
d. So

in the high dimensional limit it becomes possible to have an (exact) closed ex-
pression for the effective action generated by the term �exp {∆S(c∗0, c0, c

∗
i , ci)}�,

which depends only on the values of the hopping parameters between the local
site i = 0 and the bath, and on the Green’s function of the lattice itself. In
practice this means that

S → Slocal(c
∗

0, c0) +W(c∗0, c0), (4.31)

where W(c∗0, c0) are the mean-fields (typically called hybridization functions)
generated by �exp {∆S(c∗0, c0, c

∗
i , ci)}� and they are quadratic in c∗0 and c0. These

fields may be thought of as generated by virtual excursions of the impurity
electrons into the bath, so it is not surprising that dynamical effects appear. In
conclusion, one can map the original action into an effective quantum impurity
model, that can now be solved with some numerical technique (NRG, DMRG,
QMC, etc...). For sake of clarity, the action of the impurity model (in imaginary
time) is given by:

SIMP = −
� � β

0
dτ1dτ2

�

σ

c∗σ(τ1)

��
∂

∂τ1
− µ

�
δτ1τ2 +Wσ(τ1 − τ2)

�
cσ(τ2) +

+U

� β

0
dτc∗↑(τ)c↑(τ)c

∗

↓(τ)c↓(τ) (4.32)

It is important to stress that the previous equation is exact only in infinite
dimensions, since only in this limit the mean-fields appear so neatly in the
action. Assuming that one can compute the interacting Green’s function Gσ(ω)
of this impurity model (here the computational difficulties of DMFT are hidden),
it is possible to set up a self-consistent procedure. In fact, the other non-trivial
passage of the algorithm, i.e. the determination of the mean-fields W(c∗0, c0), is
indeed not necessary to the development of the algorithm, since their knowledge
can be inferred implicitly. In (4.32) one understand that defining the propagator
in the case U = 0 (bath Green’s function) as

G−1
σ (z) = z + µ−Wσ(z), (4.33)

then the full local propagator of (4.32) is:

G−1
σ (z) = z + µ−Wσ(z)− Σσ(z), (4.34)

= G−1
σ (z)− Σσ(z), (4.35)

where the algebra is typically carried out in Fourier transformed imaginary
time, so the functions can be evaluated on the Matsubara frequencies z = iωn.
Therefore, setting up the self-consistency procedure in a convenient way, the
computation of the dynamical mean-fields can be avoided:10

10The trivial spin index has been dropped in the following
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i. define the local Green’s function G0(z) (where 0 is the iteration number),
i.e. define a starting guess for the lattice self-energy Σ0(z) and average the
lattice Green’s function over the momentum space �k:

G0(z) =

�
d�k

(2π)d
1

z − �(�k) + µ− Σ0(z)

=

� +∞

−∞

d�
ρ(�)

z − �+ µ− Σ0(z)
,

(4.36)

where �(�k) and ρ(�) are the free dispersion and density of states respec-
tively;

ii. use G0(ω) and Σ0(ω) to compute the Green’s function G0(ω) that takes
into account the effect of the bath, using the relation (4.34);

iii. use G0(ω) to find the new local Green’s function G1(ω), by solving (nu-
merically) the interacting quantum impurity problem defined by the action
(4.32);

iv. extract the new self-energy Σ1(ω) = G0
−1(ω)−G1

−1(ω);

v. put G0(ω) = G1(ω), Σ0(ω) = Σ1(ω) and repeat from point (ii), until
convergence of the self-energy.

The reader has probably noticed that the entire procedure uses only local
propagators, which therefore are independent of �k. Since the method is based
on a mapping between the original problem and a quantum impurity problem,
this is not surprising. This �k independence is actually the greatest liability in
the DMFT, which by construction is not able to capture (non-trivial) non-local
correlations. However, in the limit d → ∞ this is not a problem at all, since
it has been proved that the self-energy is independent of �k in that limit [123].
Because of this independence, and because of the fact that the dynamical mean-
fields appear only quadratically in the effective action for the impurity (4.32),
the DMFT solutions are exact in the d → ∞ limit.

So the DMFT (exactly as for normal mean-field theory) is a self-consistent
procedure, and to solve the DMFT equations simply means to find a fix point for
the DMFT algorithm. The fixed points can be found changing the starting point,
i.e. changing the form of the local Green’s function of point (i) above. If just one
of them exists then the algorithm will converge to the fix point independently
upon the initial choice of G0(ω), or it will not converge at all. If n fix points
exist for the same value of parameters, then the algorithm will approach one
of the n fix points depending upon the initial condition (or again it may not
converge, depending upon the situation). These considerations automatically
determine the kind of processes that can be identified in the analysis of the phase
diagram of a model Hamiltonian. Indeed everything depends upon the evolution
of the fix points as function of some physical parameter, e.g. the strength of the
many-body interaction. This evolution cannot be arbitrarily wild, since the
fix points follow always a very simple rule: they either evolve adiabatically or
appear and disappear via bifurcation processes.11 Clearly with self-consistent

11The term bifurcation should be considered in its wider meaning, so indicating the separation of
one fix point (or more) into two or more fix points.
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Figure 4.1: Sketch of the infinite dimensional Hubbard model phase diagram, qualitatively similar
to the one obtained by DMFT [102, 122]. The blue and yellow dashed lines represent the critical
curves Uc,I(T ) and Uc,M (T ) respectively, and they form the boundaries of the coexistence region.
This region disappears above Tc, where instead a crossover region appears and where the distinction
between metal and insulator is not defined anymore. The two black dots indicate the two second
order critical points [102].

algorithms it is possible to find first and second (or higher) order transitions,
and also crossovers. In the first case one should expect the coexistence of two
solutions for a range of parameters around some critical value of the interaction
at which the two solutions exchange their status of ground-state; clearly in this
circumstance one has an abrupt change in the value of the order parameters
(in the physical quantities) used to distinguish the two states. In the second
circumstance instead, one must expect that a bifurcation of a the ground-state
fixed point takes place at a specific critical interaction value; in such a situation
one must expect a discontinuity of the derivative of the order parameters with
respect to the parameters that are driving the transition. In the third case
instead one expects no critical evolution of the fix point, which simply connects
adiabatically the non-interacting solution with the infinite interacting one.

The DMFT phase diagram of the Hubbard model, in the case of the infinite
dimensional Bethe lattice, is sketched in Fig. 4.1. The solution clearly shows
a first order phase transition at 0 < T < Tc, characterized by a hysteresis re-
gion between the interaction values Uc,I(T ) and Uc,M (T ), which represent the
minimum and maxim interaction values for the existence of the Mott-insulating
and the metallic solutions respectively. At T = Tc, Uc,I = Uc,M and above this
(second-order critical) point the phase transition turns into a smooth crossover.12

12The features of this transition are not at all unintresting and its understanding may hide the
explanation to the non-trival physics of the psudogap in high Temperature superconductors. In
particular the Widom line above Tc has been studied recently by many authors [124–126].
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Inside the hysteresis region three DMFT solutions can be found [121]: two stable
ones (Mott-insulating and metallic) and an “unstable” one.13 The characteriza-
tion of the full phase-diagram shows that the DMFT solutions form a continuous
surface in the order parameter space T, U,D (where D is the double occupancy
density), allowing therefore for the determination of a transition curve Uc(T )
via a Maxwell construction. In this picture the origin of the different critical
curves and points becomes straightforward: the Uc,M (T ) curve is given by the
merging (and mutual annihilation) of the stable metallic and unstable fix-points;
the Uc,I(T ) is instead given by the merging of the insulating and unstable fix-
points; the critical point Uc, Tc must evidently be of the second order, since
decreasing the temperature from T > Tc to T < Tc the three fix-points appear
as a pitchfork bifurcation of the only fix point that exists at T > Tc. At T = 0
one must necessarily have that Uc(T ) → Uc,M (T ), since the contribution of the
(high) entropy of the Mott-insulating state to the free energy becomes less and
less relevant for T → 0 and eventually vanishes at T = 0, turning the transition
into a second order one. This feature is anyway a characteristic of the d = ∞
Bethe lattice, since on different lattices and dimensions [128] the inclusion of
space fluctuations of the self-energy [129,130] and the consequent establishment
of correlations of the local spins keep Uc(T ) well separated from Uc,M (T ), for
any T < Tc.

Beside the structure of the phase diagram, the DMFT solutions allow us to
understand the role of two important quantities: the double occupancy density
D and the quasi-particle weight Z. One could argue that the double occupancy
parameter D is the most logical choice for the characterization of the Mott-
insulating state [110,120,121], since has to expect a huge difference between its
value in the metallic region (close to 1/4) and in the insulating region (close to
zero). In the light of the particle-hole symmetry that exists at half-filling, the
band parity parameter P = −(2n↑ − 1)(2n↓ − 1) seems an even better indicator
of the Mott-insulating feature of the quantum state. Indeed it is trivial to
understand that in the non-interacting limit �P � = 0, since the state must
contain the same contribution from states with �P � = 1 (single occupied) and
states with �P � = −1 (doubly occupied and unoccupied); accordingly in the
atomic limit �P � = 1. Clearly one expects these two values will only be slightly
modified close to the corresponding limits, so a value of �P � very different from
zero should be the signature of the predominance of the contribution of the
singly occupied states contribution to the wave-function, i.e. the signature of
Mott-insulating behavior. Therefore at the transition it is necessary to have
a jump in the average value of P (and equivalently in D, as well proved by
DMFT [102, 110, 121]). Although the previous considerations are correct, the
value of D or P cannot be used rigidly as an order parameter, since their value at
the transition (in the insulating side) is not exactly zero [102]; this is expected
since the Mott-insulator at finite t must be characterized by virtual hopping
processes. Therefore one can use D as an indication of the characteristics of
the ground-state, but then the results must be interpreted carefully, since given
the value of D or P of a solution one cannot say to which phase that solution
belongs; in other words, one cannot understand if the solution considered is
connected adiabatically to the non-interacting solution. This information is

13In this context unstable means that the energy of this solution is always higher than the other
two, so this state is never an acceptable trial ground-state of the system. For details see Ref. [121,
127].
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instead contained within the quasi-particle weight Z.
The parameter Z appears naturally in the Green’s function of an interacting

system [28, 93]. Remembering that the Green’s function of an electron system
is

Gσ,σ�(t, i; t�, j) = −i�Tcσ�(j, t�)c†σ(i, t)�, (4.37)

and assuming time and space translational invariance indicating τ = t − t�,
�x = i − j, one can perform a Fourier transform. Hence the Green’s functions
can be written using the Källen-Lehmann spectral representation [11,28]:

G(�k,ω) =

� +∞

−∞

dτd�xG(τ, �x)e−iωte−i�k·�x =
�

λ

���M(λ,�k)
���
2

ω − (�λ − iδ�)
(4.38)

where the trivial spin indices have been omitted for sake of notation, as usual
δ� = δsgn� and δ → 0+, and λ labels all the eigenstates of the (interacting)
system, so that

���M(λ,�k)
���
2

= �0|ck|λ��λ|c†k|0� for �λ > 0,
���M(λ,�k)

���
2

= �0|c†k|λ��λ|ck|0� for �λ < 0,

where |0� is the ground state of the interacting system. A derivation and a
complete discussion of the spectral representation can be found elsewhere [28,
93]. The only point that is important here to make is that M(λ,�k) depends upon
�λ|c†k|0� (and similarly �λ|ck|0�), which is the matrix element of the electron
(hole) creation operator c†k between the exact ground state of the system and
another exact eigenstate. So, in the case of a free system, M(λ,�k) must be
zero unless |λ� = c†k|0free� (and similar for the holes); instead in the case of an
interacting system the latter relation clearly does not have to be true. Of course
the total particle weight is unchanged by the interaction, and in fact it can be
proved that

�

λ

���M(λ,�k)
���
2
= 1, ∀�k, (4.39)

as a direct consequence of the fermion anticommutation relations of creation
and annihilation operators [11]. Only in the limit of a free system one has

that
���M(�,�k)

���
2
→ δ(� − �k), so that (4.38) is easily rewritten in the standard

representation as

G(�k,ω) → 1

ω − (�k − iδ�k)
, ∀k, (4.40)

where �k = 0 on the Fermi surface. The interactions blur the spectral function,
spreading

���M(�,�k)
���
2

on many eigenstates lambda at different energies, which
means that the Green’s function has a non-zero residue (cut-density) not only
at the original free particle pole position ω = �k, but also at other values of ω.
This means that the propagation of the electrons inside the many-body system
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happens not only via the coherent propagation of a single particle, but also via
incoherent many-particle processes. The quasi-particle weight Zk quantifies how
much (which portion) of the transport process still happens coherently, due to
the single particle component.

Another way to understand this quantity is to consider the effect of the in-
teractions on the creation/annihilation operators. Using the familiar concept of
adiabatic evolution, assuming that the interaction in the Hamiltonian is slowly
switched-on starting from t → −∞, it is possible to obtain new “dressed” cre-
ation/annihilation operators a†k, ak from the original operators c†k, ck [93], using
the unitary transformation generated by the time ordered interaction operator.
Reversing the relation one can in principle write:

c†k =
�

Zka
†

k +
�

k1+k3=k2+k

A(k1, k2; k3, k)a
†

k4
a†k3

ak2 + ...

Therefore it is possible to conclude that the Green’s function G(�k,ω) is indeed
built up by the superposition of many quantum processes that fully specify the
possible evolution of the excitation created in a given point at a given time.
These processes include the coherent propagation of a single mode, its partial
propagation followed by a decay, the propagation of incoherent many-particle
modes, etc... Of course this propagation can happen only along the “resonating
channels” of the system, i.e. via the eigenstates of the system. Therefore the
Green’s function of the system contains the full information about its eigen-
states. In particular the spectral function at a given value of �k and ω can be
computed by

A(�k,ω) = − 1

π
ImGret(�k,ω) =

�

λ

���M(�,�k)
���
2
δ(ω − �λ), (4.41)

which also means

A(�k,ω) = Z�k δ(ω − �̃�k) +
�

λ �=�k

���M(�,�k)
���
2
δ(ω − �λ). (4.42)

The function �̃k can be different from the original �k, since the center of the
quasiparticle peak can be shifted by the interactions (see footnote on the next
page). The density of states ρ(ω) is trivially obtained making the integral�
d�k δ(ω − �k) over the Brillouin zone. The latter form of the spectral function

exploits very efficiently the separation between the contribution of the coherent
single particle state and the incoherent ones. However this distinction should
be further refined, since the incoherent part contains both the contribution due
to the propagation of highly incoherent multi-particle states, and the one that
comes from the decay of the coherent single particle excitation into the particle
hole continuum. The two parts have very different behaviors, since the former
implies the development of a broad A(�k,ω) spread over the entire bandwidth,
while the latter is responsible for a broadening of the peak around �k, �̃k.

From the previous considerations one can conclude that Zk gives the over-
lap between the original non-interacting fermionic states and the interacting
ones. Therefore it is immediately clear that in a Landau-Fermi liquid one must
have Zk �= 0 for each |k| close (equal) to |kF |, otherwise clearly the one-to-one
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correspondence between the interacting and the non-interacting system breaks
down [9,10,93,104], since a vanishing Zk means that the exact interacting states
are orthogonal to the original ones and therefore not adiabatically connected
with them. The existence of a non-vanishing quasiparticle-weight at the Fermi
surface is however not the only feature characterizing the Fermi liquid. In fact,
beside the one-to-one correspondence between the quasi-particle states close to
the Fermi surface and the free states, it must also happen that the quasi-particle
states are “long-lived”, i.e. characterized by an extremely small (vanishing) scat-
tering time. The quasi-particles must be able to travel for a long time before
being damped by (decay into) the electron-hole continuum around the Fermi
surface. This, as mentioned, must correspond to the existence of a very nar-
row peak A(�k,ω) for |�k| = kF , around ω = �F , since a broadened peak should
imply the overlap of the coherent electron state with scattering state very close
in energy and therefore extremely efficient in the damping of the quasiparticle.
To understand this point it is convenient to change the representation of the
Green’s function, passing from the spectral to the self-energy one [11]. In such
a representation one has the advantage to be able to always think of (unstable)
particles propagating in the system, rather than as a simultaneous superposition
of coherent and incoherent contributions:

G(�k,ω) =
1

ω − (�k + Σ(ω,�k) + iδ�k)
, (4.43)

where we wrote down the formula for the standard Green’s function, but equiv-
alently one could write down all the other possible Green’s functions (such as
the retarded, etc...). This representation (given an appropriate self-energy Σ)
produces the same results of spectral one. In particular, if one separates the real
and imaginary part of the (retarded) self-energy: Σ(ω,�k) = ΣR(ω,�k)+iΣI(ω,�k),
one can see that

A(�k,ω) =
−ΣI(ω,�k)�

ω − �k + ΣR(ω,�k)
�2

+ ΣI
2(ω,�k)

. (4.44)

The imaginary part of the self-energy is inversely proportional to the typical
time needed for the coherent electron to decay on the many particle continuum.
If the dependence of Σ(ω,�k) on ω is not too pronounced, then A(�k,ω) looks
like a Lorentzian centered14 at �̃k = �k − ΣR(�̃k,�k) [10, 11]. Clearly the smaller
ΣI(ω,�k), the sharper the Lorentzian and therefore the more stable the particles
have to be. Thinking in these terms, it becomes possible [93] to approximately

14As visible the equation for �̃k is a self-consistent one. The meaning of this relation and the
role of the real part of the self-energy can be understood considering the spectral function at the
Fermi surface: the (hyper-)surface in k-space (kF ) where the imaginary part of the self-energy is
zero and that is put in correspondence to ω = 0. This means that at ω = �̃kF

= 0 we expect
to find the simple poles of the quasiparticles that live on the Fermi surface. The self-consistent
relation becomes 0 = �kF

− ΣR(0, kF ). Remembering that �k is given by the free dispersion ξk

as �k = ξk − µ, then ΣR(0, kF ) = ξkF
− µ. So the real part of the self-energy can be regarded

as a correction to the chemical potential. Such a correction is necessary to fit the correct number
of particles (states) inside the Fermi surface, fulfilling in this way the Luttinger theorem. In some
cases it is easy to know what this correction to the chemical potential must be. For example in the
Hubbard model at half filling µ = U/2, if the model is written as in (4.15), which can be taken into
account immediately writing the interaction term as (c†↑c↑ − 1/2)(c†↓c↓ − 1/2).
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Figure 4.2: Cartoon of the evolution of the DOS, as computed by DMFT on the Bethe lattice
at T = 0. A figure with the exact DMFT result can be found in [102]. The main features that
characterize the appearance of the Mott-Insulator are qualitatively reproduced. In particular the
appearance of the peak in the middle of the preformed quasiparticle gap. This peak disappears at the
Metal-Insulator transition, which happens slightly above Uc(T = 0)/t ≈ 3. The development of the
central peak is accompanied by the establishment of the two upper and lower Hubbard bands, which
have a quite rich structure below Uc(T = 0). In the figure such a structure is only sketched, marking
the appearance of two neat lumps near the edges of the preformed-gap. Above Uc the Hubbard bands
become more and more symmetric increasing U , approaching two semicircular DOS.

separate the Green’s function into the quasi-particle peak at energy �̃k and
incoherent parts, in the spirit of (4.42):

G(�k,ω) =
Zk

ω − �̃k − iδ�̃ − iZkΣI(�k, �̃k)
+Ginc(�k,ω), (4.45)

where, with respect to the approach that led to (4.42), one has

Z−1
k = 1− ∂ωΣR(�k,ω)

���
ω=�̃k

, (4.46)

moreover the life-time of the quasiparticles can be expressed as:

τ−1 = −ZkΣI(�k, �̃k). (4.47)

As mentioned previously the parameter Zk is important in the establishment
of the Fermi-liquid properties of a system. Typically, in systems where the
direction of the momentum is irrelevant as in the infinite dimensional Bethe
lattice, it is convenient to integrate any formula with respect to �k, since any
physical quantity can depend only upon ω. So one usually considers

Z = [1− ∂ωΣR(ω)]
−1

���
ω=�̃k

. (4.48)
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The understanding of the role played by Z is crucial in the interpretation of
the phase diagram of the Hubbard model. Indeed the DMFT solution, as well
as the Gutzwiller one [101], demonstrate that in the infinite dimensional Bethe
lattice the disappearance of the metallic solution takes place via a Gutzwiller-
Brinkmann-Rice transition, i.e. via a reduction of Z that eventually becomes
zero on the Fermi surface at a critical value of the coupling. This explains very
well the evolution of the density of states ρ(ω) with U , sketched in Fig. 4.2. At
small U the density of states is very close to the free one, which is determined
only by the geometric factor related to �k. Increasing U the states at extremes
of the band become less and less close to the original electronic states and the
incoherent part builds up the precursors of the upper and lower Hubbard bands.
At some point a peak becomes visible at the middle of a pre-formed gap (that
is not as clean as for T < Tc), between the two Hubbard bands. This peak
represents the only Fermi-Liquid-like part of the system, responsible for the
conduction properties of the systems.15 Increasing U the imaginary part of the
self-energy increases (with the exception of ΣI(0), which keeps its zero value, as
is normal in a Fermi liquid), but the quasi-particle weight Z decreases, making
the peak sharper and sharper, although its height at ω = 0 keeps constant at
ρ0(0). At a critical value Uc,M (T = 0) ≈ 3ρ0(0), the parameter Z goes to zero
and therefore the entire construction (the Fermi liquid picture) breaks down,
making the peak and the Fermi liquid disappear.

This is therefore the nature of the Metal-insulator transition in the infinite
dimensional Bethe lattice. The transition happens via the destruction of the
Fermi liquid, that survives into a (Kondo) peak in the middle of the insulating
Mott gap, until the interaction becomes too strong. The spectral weight is
pushed away from the Fermi surface by the interaction, and is accumulated
at typical energy scales of order U . The eigenstates at these energies do not
resemble free electrons and cannot be described as such. It is important to keep
these concepts in mind, reading the introduction to paper B.

15Indeed inside the pre-formed gap at two energies ±ω∗, symmetrically placed around the peak,
a change in the slope of Σ(ω) can be found [122], which means that a Fermi-Liquid description is
valid only for |ω| < |ω∗| [131].



Chapter 5

Introduction to Paper B

5.1 Enlarged Mean-Field Scheme

In paper B we focused our attention on the mean-field description of the
Mott-Insulting phase, trying to understand if via the use of canonical non-
linear transformations it is possible to take into account the correlations

that cause the localization of the electrons and therefore the development of the
Mott insulating phase. This idea can be traced back to the considerations writ-
ten in paper A and Chapter 3, where we pointed out that with an appropriate
transformation a multifermionic term can be (typically only partially) turned
into a quadratic one. In order to do this for the case of the Hubbard model,
one has to act smartly, since it is clear that the only local non-linear transfor-
mation that exists in the Hilbert space of the Hubbard model commutes with
the interaction term. To tackle this problem, we considered a second auxiliary
lattice site beside each physical site. On this extra site is a spin-full fermion, so
every local auxiliary Hilbert space contains 4 states in total. These second sites
are not coupled with the original ones, so the auxiliary fermions cannot jump
from the auxiliary chain to the physical one; moreover we also assumed (for
sake of convenience) that no hopping between different auxiliary sites occurs.
Evidently this operation did not modify the quantum problem, in the sense
that any physical quantity of the original fermions does not get modified by the
addition of the auxiliary fermions. However the dimension of the local Hilbert
space and therefore the number of available non-linear transformations changes
tremendously.

Indicating with γ1, γ2, γ3, γ4 the Majorana fermions that correspond to
the physical fermions cσ, while using µ1, µ2, µ3, µ4 for the auxiliary Majorana
fermions, the half-filled Hubbard model Hamiltonian can be represented as:1

H =
it

4

�

a=1..4
�i,j�

γa(i)γa(j)−
U

4

�

i

γ1(i)γ2(i)γ3(i)γ4(i), (5.1)

where the sum over nearest neighbors �i, j� is meant to count every combination
once and not twice (so if γ(xn)γ(xn+1) is in the sum, then the term γ(xn+1)γ(xn)

1We also used a convenient gauge choice for the fermionic operators. For details see paper B.
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is absent). Evidently the µi do not appear, since we assumed no dynamics for
them. In this eight-Majorana local system there is a huge number of non-linear
transformations, since the canonical group is SU(4)⊗SU(4)⊗U(1)⊗Z2 and it
is therefore necessary to understand which transformations are more promising,
from an operative point of view. Since our aim is to apply a mean-field decompo-
sition scheme on the non-linearly transformed Hamiltonian, it seems a good idea
to use only transformations that leave the symmetries manifest. At half-filling
the Hubbard model is characterized by SO(4) and time-reversal symmetry, so
one has to look for generators of non-linear transformations that preserve these
symmetries. To obtain only the transformations that preserve SO(4) one has
to impose the commutation of the generator of the transformation with the
generators of SO(4), which in our case are:

Qab = iγaγb + iµaµb a > b,

where the local site index has been dropped. This task is conveniently performed
using a computer and special packages able to deal with Clifford algebras [132],
so that the computer can determine the appropriate combination of non-linear
generators. The resulting operators Sα must then be processed to check which
ones preserve the time-reversal invariance Θ, i.e.

ΘSαΘ
−1 = −Sα, (5.2)

with Θ that acts as explained in equation (4) of paper B.
This procedure shows that there are only two available non-linear transfor-

mations:

S1 = −
�

�

a=1..4

γaµa

�
γ1γ2γ3γ4, S2 = −

�
�

a=1..4

γaµa

�
µ1µ2µ3µ4. (5.3)

Consequently, the canonical transformations that we can consider are parametrized
by two angles θ1, θ2:

V = exp

�
i
θ1
2
S1 + i

θ2
2
S2

�
; (5.4)

the reader can check that [S1, S2] = 0 and that all the four terms that form
S1 (S2) commute with each other. This enormously simplifies the calculation,
allowing one to rewrite the transformation V as the multiplication of eight
combinations of sines, cosines and non-linear generators:

V =
�

j=1..4

�
cos

θ1
2

+ iS1,j sin
θ1
2

� �

j=1..4

�
cos

θ2
2

+ iS2,j sin
θ2
2

�
, (5.5)

with S1,j (S2,j) the j-th of the four components of S1 (S2), introduced in (5.3).
The transformation (5.5) can be used on the Majoranas (and in general on any
operator) that appear in (5.1).

The complete formulas for the transformed Majoranas and the transformed
interaction term can be found in the paper. However it is appropriate to point
out that using the transformation V one can partially diagonalize the interaction
term, since:

V γ1γ2γ3γ4V
† = − sin(4θ1 + 4θ2) + 2 sin(2θ1 − 2θ2)

8

�
�

a=1..4

iγaµa

�
+ ... (5.6)
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which is exactly the kind of result that one expects from a non-linear transfor-
mation. One can use this fact, setting up a mean-field theory for the approx-
imation of the transformed Hamiltonian. Rewriting it in terms of two spinful
fermions ai,σ, built using the γ-s and the µ-s exactly as the original ones,2 this
new form of the Hamiltonian can be studied with a mean-field approximation.
Of course such a Hamiltonian must contain a hybridization between the two
fermion species a1 and a2, since it appears explicitly in (5.6). The mean-field
Hamiltonian, with the same symmetries of the original one, looks like:

HMF = −
�

�i,j�,σ

�
t1a

†

1,σ(i)a1,σ(j) + t2a
†

2,σ(i)a2,σ(j)
�
+ λ

�

i,σ

�
a†1,σa2,σ

�
+ h.c.,(5.7)

where the real variational parameters t1, t2,λ have to be determined selfconsis-
tently.3

In contrast to a study performed directly on the original Hubbard Hamilto-
nian this mean-field analysis is not doomed to fail in the high-U limit, since the
partial diagonalization of the interaction grants a (partially) exact treatment
of the correlations (4.29), which forces λ �= 0 in the mean-field Hamiltonian
(5.7). Considering that the inclusion of these effects depends upon the trans-
formation V , one expects that optimizing the angles θ1 and θ2 it is possible
to find a good mean-field candidate ground-state for the Mott phase. In this
sense the transformation allows the enlargement of the variational mean-field
space, considering more involved trial states. In this respect it is important to
stress that the two angles are not mean-field parameters, but variational ones.
To find the best free-particle candidate ground-state one should therefore look
in the variational θ1, θ2 space for the best mean-field ground-state. This task
is conveniently undertaken by looking for the best local minima of the mean-
field energy functional in the space t1, t2,λ, θ1, θ2: indeed since any mean-field
state is a stationary point of the energy functional with respect to t1, t2,λ, and
since the θ1, θ2 space is compact4 (the energy functional is periodic in both the
angles), and moreover it shows no singularities, this procedure is fully justified.
The solution identified by this variational procedure retains all the pros of a tra-
ditional variational solution and in particular its energy is a variational upper
bound to the ground state energy.

The mean-field procedure guarantees that the ground state can be written
down in terms of free particles, i.e. it is expressible as a Slater determinant. Such
a Slater determinant however is completely different from the ones that can be
obtained in the traditional way (otherwise it would be impossible to go beyond
the known results). This can be understood looking at the local Green’s function
of the original electrons G11, written in terms of the ai Green’s functions G̃11,
in formula (10) of paper B:

G11 = ZG̃11 + 12B3B4G̃22(G̃
2
21 + G̃2

12) + 12B2
4G̃11(G̃11G̃22 + G̃12G̃21) + (5.8)

+48B2
2 h̄

2G̃11(G̃11G̃22 − G̃12G̃21) + 48B2
2G̃11(G̃11G̃22 − G̃12G̃21)

2,

2In the way we wrote the transformation there is actually no formal difference between the
physical fermions and the a1,σ ones, and the auxiliary fermion and the a2,σ ones. This is because
we interpreted (and set up) the coordinate transformation as active, instead of passive. There is
obviously no difference between the two procedures. Of course any physical operator needs to be
transformed accordingly before being used.

3The parameter λ must be real and not complex by SO(4) symmetry.
4This is a special property, due to the fact that S1 and S2 commute with each other. In more

general situations this may not be the case, so the analysis should be more careful.
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where the Bi, Z and h̄ are numerical parameters.5 The free propagation of
an original electron corresponds to the correlated propagation of single-, triple-
and penta-electron modes, and vice-versa. Consequently it seems possible that
a free state of the transformed fermions, capturing pure multi-particle physics
of the original electrons, corresponds to the sum of Slater determinants of the
original ones. In paper B we refer to the coefficient Z as “quasi-particle weight”;
I will comment in Sec. 5.2 on this choice of words.

It is worth mentioning that it seems inappropriate to speak about a final trial
ground state for the physical electrons. Indeed the solution found is a Slater
determinant written in terms of both species of transformed fermions, which
therefore become entangled. Consequently the original physical and auxiliary
fermions are entangled. Therefore if one wants to look only at the part com-
prising the original physical fermions, the information contained in the other
species should be integrated out. From this point of view, what we obtain is
not a trial state for the physical fermions, but a trial density matrix.

The exact form of this density matrix is irrelevant for most practical pur-
poses,6 in particular for the computation of the local density of states (DOS)
that can be obtained using the spectral representation of the Green’s function.
To compute the DOS one must take the retarded Green’s function G11(t, i, i)
of the original physical fermions and transform it via V in the new coordinate
system. For example consider the retarded Green’s function of the spin up elec-
trons and write it in terms of Majoranas, following for example the convention
of formula (22) in paper B:

G1,↑;1,↑(t, i, i) = −i�Tc↑(t, i, i)c
†

↑
(0, i, i)� (5.9)

= − i

2
�Tγ1(t)γ1(0)� −

i

2
�Tγ2(t)γ2(0)�,

where the imaginary time convention is used consistently with paper B, even
if not necessary for the argument. What one has to compute are therefore the
Majorana Green’s function:

g11 = −i�Tγa(t, i, i)γa(0, i, i)�, (5.10)

where a is the Majorana flavor index (which is irrelevant since all the flavors are
equivalent because of the SO(4) symmetries) and the average is taken over the
variational mean-field ground state. Using V , g11 can be expressed in terms of
transformed Majorana Green’s functions:

g̃11(t, i, j) = −i�T γ̃a(t, i)γ̃a(0, j)�, (5.11)
g̃12(t, i, j) = −i�T γ̃a(t, i)µ̃a(0, j)�, (5.12)
g̃22(t, i, j) = −i�T µ̃a(t, i)µ̃a(0, j)�, (5.13)

by performing explicitly the non-linear transformation

g11(t, i, j) = −i�TV γ1(t, i, i)V
†V γ1(0, i, i)V

†�. (5.14)

In the previous formulas the tildes remind us when we are working in the trans-
formed space. The result of the transformation V γ1(t, i, i)V † is given in formula

5Of course the spin index should also be indicated, but since it is trivial and cumbersome it is
not written explicitly.

6An important exception is clearly the computation of the entropy.
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(7) of paper B. Given this result one can apply the mean-field approximation
to compute all the Wick contractions of the terms that appear in (5.14). In
this way one generates the result (5.8), which expresses G11 in the new basis
as a sum of terms composed by multiple Green’s functions G̃nm of the new free
fermions ai,σ multiplied together. Clearly the previous recipe can be followed for
the computation of any quantum average and not only for the Green’s function.

Formula (56) in paper B, or equivalently formula (5.8) in this section, can
be used to determine the DOS of the physical part of the system, given that

ρ11(�) = − 1

π
Im

�
Gcc(�, i, i)

�
= − 1

π
Im (G11(�, i, i)) , (5.15)

and that it is possible to compute exactly the contribution to DOS provided
by the incoherent multi-particle part of the transformed Green’s function G11,
if one knows the Green’s function of the ai,σ fermions G̃nm (with n,m = 1, 2),
which indeed are given in formula (20) of paper B. For example on the Bethe
lattice the mean-field Green’s function −�Tτa1,σ(τ)a1,σ(0)� of the a1 fermion is
given in frequency space by:

G̃11(z) =
2z

z2 − λ2 +
√
z − z+

√
z − z−

√
z + z+

√
z + z−

, (5.16)

with z± =
�
t21 + λ2±|t1| and where we used the imaginary-time and frequency

formalism, which considerably simplifies the calculations. Because of the com-
posite structure of G(�, i, i), it is appropriate to write the Green’s function in
Lehman representation, so that in general

G(z, i, i) =

� +∞

−∞

ρ(�)

z − �
d�, (5.17)

which is exactly (4.38) if z = ω + iδsign(�), while it reduces to the retarded
Green’s function if z = ω+ iδ. This form is particularly useful in the case under
consideration, since it allows exact computation of the contribution to the DOS
of the multi-particle propagation. In fact, let us assume we know the value of
ρab(�) for each Green’s function G̃ab(ω). Then the contribution A3(�) to the DOS
of the three-component terms G̃ab(t)G̃a�b�(t)G̃a��b��(t) can be computed exactly
via the procedure highlighted in formulae (58)-(59)-(60) in the Supplementary
Material of paper B, resulting in the convolution of the three ρ(�) that appear
in the respective Green’s functions:

A3(�) =
1

π

� � �
d�2d�3ρab(�− �2 − �3)ρa�b�(�2)ρa��b��(�3), (5.18)

with the additional constraint that all the energies �1, �2, �− �2 − �3 must have
the same sign. The ρ(�) for the different Green’s functions are easily computed
using formula (20) of paper B, so for example on the Bethe lattice

ρ11(�) =
π |�|

�
(z2− − �2)(�2 − z2+)

λ4 − 2λ2�2 + �2z2+ + z−(�2 − z2+)
, (5.19)

for −z+ < � < −z− and z− < � < z+ and zero otherwise. So the DOS is readily
computed, with only extremely light numerics required.
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Figure 5.1: Both the figures refer to the d = 1 study: (a) the evolution of the trial mean-field
ground-states with the interaction parameter U , compared with the Hubbard-I solution, the antifer-
romagnetic ordered ground-state and the exact solution. (b) For MI1 and MI2 the value of the parity
operator average �P1� and the quasi-particle weight Z, computed for different values of U .

The results obtained with this enlarged mean-field scheme are indeed inter-
esting. We analyzed both the d = 1 and d = ∞ cases, but analysis can be
performed in other dimensions too. However, in both cases, we identified two
solutions MI1 and MI2. The first one is the best trial ground state from weak
to intermediate U , while the second is a good trial ground state at high U.
Both solutions enforce the unit occupancy of the lattice sites with increasing
U , although the MI2 solution is able to do it in a more coherent fashion (max-
imizing Z, the coherent single particle contribution to the Green’s function),
while MI1 tends to minimize such a contribution. This is shown in Fig. 5.1b.
As made evident by Fig. 5.2a, the larger coherence of MI2 is obtained using a
different non-linear transformation with respect to MI1; in fact one can see that
in U → +∞ the angles θ1 and θ2 are inverted in MI2 with respect to the MI1.

5.2 Results

A discussion of the results is presented in the paper, so in this brief introduc-
tion I will just stress the most important one, which is obtained in the Mott
insulating phase. The trial mean-field ground state MI2, in both the d = 1
and d = ∞ cases, proved itself energetically more convenient, with respect to
MI1. Interestingly, it is not the enforcement of the unit occupancy that makes
it our best trial mean-field ground state. This can be understood in the 1d
case, comparing Fig. 5.1a and Fig. 5.1b. The first figure shows the evolution
of the trial ground state energy (from which we subtracted the leading order
−U/4 energy shift) with U ; in the second are plotted for both MI1 and MI2 the
values of the parity operator average �P � and the value of quasi-particle weight
Z. In this context Z quantifies how much of the original electron Green’s func-
tion is given by the coherent component of the transformed fermions. The term
“quasi-particle weight” is slightly abused in this context. In fact it is always nec-
essary to keep in mind the two different operations that are performed in order
to obtain the trial solutions: the non-linear transformation and the mean-field
analysis. The first is an exact operation, while the second requires approxima-
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(b) Ground-state DOS in the d = ∞ case.

Figure 5.2: (a) the evolution of the non-linear rotation angles θ1 and θ2 with U , for both MI1
and MI2 in the d = 1 case. (b) The computed DOS on the best trial mean-field ground-state for
different values of U , in the case of a d = ∞ Bethe lattice. The Dos is given in natural units, so
to compare with Fig. 4.2 one has to multiply the y-ticks by πt; this operation shows that for U = 0
the DOS at ω = 0 has the same hight in both figures.

tions. The non-linear transformation maps the one-particle Green’s function
of the original electrons into the sum of a one-particle Green’s function and
many-particle Green’s functions for the new fermions. This second part is then
approximated within the mean-field approximation, producing the incoherent
contributions in (5.8) as well as coherent one that get summed to the original
one-particle Green’s function. The total coefficient in front of the coherent con-
tribution is Z. The quantity Z measures the “coherency” of the full procedure,
since its value depends on both the non-linear transformation and the mean-
field approximation. This is why we used the name “quasi-particle weight” to
indicate Z.

As evident MI2 at high coupling is energetically favorable to MI1. In par-
ticular it seems that for U → ∞ the energy density of MI2 is equal to the
energy density of MI1 minus J/4. In this sense, and considering the exact map
between Hubbard and Heisenberg Hamiltonian at high coupling, it seems that
MI2 captures the constant shift −J/4 present in the Heisenberg Hamiltonian,
together with the constant shift −U/4. Instead MI1 captures only this second
effect. Looking only at Fig. 5.1a and at the evolution of P1 in Fig. 5.1b, this
behavior is not comprehensible: indeed MI1 is at least as good as MI2 in the
enforcement of the single occupancy. The difference between the two states is
given by the opposite behavior of Z, which at high coupling goes to zero for
MI1 and to one for MI2. This different behavior is allowed by the extremely
different non-linear transformations used in the constructions of the two states
Fig. 5.2a. The MI2 state is more effective at describing the high coupling ground
state because it is able to give a more coherent representation of it, allowing to
capture more of the kinetic energy of the electron. In fact the kinetic energy
can be computed using G(0−, i, j) with i, j nearest neighbor indices, which can
be approximated in our enlarged mean-field scheme with a formula of the same
form of (5.8). In the case of MI2 this means that the kinetic energy depends
linearly on the nearest-neighbor Green’s function of the new fermions; while in
the MI1 case it depends upon the product of three of nearest-neighbor Green’s
function. It is clear that the value of the nearest-neighbor Green’s function of
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the new fermions goes down with increasing U , therefore the MI1 state is much
less efficient than the MI2 state to optimize the kinetic energy of the electron in
the U → +∞ limit. Thus, the fermions used in MI2 provide optimal eigenstates
for building the ground state as a trivial Slater determinant. In this sense we
are able to provide a free particle representation of the Mott insulating phase.

The MI1 phase is a bad variational trial ground-state also in the metallic
region, as shown in Fig. 5.2b. The density of states of MI1 is gapped for any U
also in d = ∞, although the gap is unphysical at small coupling. This tendency
of the gap to keep a small size can be interpreted as the tendency of the ground
state to be “as metallic as possible”. To improve the results one should allow for
more auxiliary bands, extending the variational space even more.

5.3 Achievements of Paper B
Briefly summarizing the main achievements contained in Paper B:

• a general strategy for the study of correlated models has been proposed;

• the enlarged mean-field analysis of the Hubbard model was performed in
different dimensions and in particular in d = 1 and d = ∞;

• a free particle description of the Mott insulating phase has been identified
as the MI2 trial mean-field ground state;

• a full characterization of the main properties of the non-linear mapping
that generates the states MI1 and MI2 has been performed.
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Chapter 6

The Kondo lattice model

The Kondo Lattice (KL) model plays a crucial role in condensed mat-
ter physics: it connects two different worlds, lying in the gap between
spin models and pure electron models. The competition between the

electron and the spin nature of the model generates new interesting physics,
that can hardly be explained using only the concepts that belong to either one
or the other world. The term KL indicates a system where a quantum spin is
located on each atomic site, together with electrons that are free to hop from site
to site. Among the spins and the electrons there exist a local spin-spin (Kondo)
coupling. Although many exotic variations of the model have been defined, in
this manuscript the term “Kondo lattice” will mean the model where the on-
site impurity spins have S2 = 3/4 and there exist only one species of hopping
electrons (single channel KL). Depending upon the structure of the lattice, the
average number of electrons per site nc, the temperature T , the Kondo coupling
J and the bandwidth t, the properties of the system can change drastically. The
Hamiltonian has the compact form:

H = −t
�

�i,j�,σ

�
c†σ(i)cσ(j) + c†σ(j)cσ(i)

�
+ (6.1)

+J
�

i

Sc(i) · Sf (i)− µ∗
�

i,σ

c†σ(i)cσ(i),

where Sc (Sf ) is the spin vector operator of the conduction electrons (impurity
spins), µ∗ the chemical potential, �i, j� denotes nearest neighbors and σ = ±1/2
indicates the two spin orientations respect to the quantization axis (that will
always be chosen as ẑ).

Obviously the interesting physics of the model is generated by the only in-
teraction term present. Because of it, the electrons and the local momenta
become correlated, offering a cornucopia of possible configurations for the sys-
tem, able to describe a huge variety of compounds: from Kondo insulators, to
heavy fermions superconductors and ferromagnetic metals. Many of the mech-
anisms that stabilize these phases (for example the glue of the unconventional
superconductors) are still object of research and represent an hot topic (see
discussion in Ref. [133] for details).

The minimal understanding of the KL has been elaborated by Doniach [134].
According to his picture, the interaction between electrons and spins generates

71



72 Chapter 6 The Kondo lattice model

two competing effects: the RKKY effect1 (an effective spin-spin interaction for
the impurity spins) and the Kondo effect. At low coupling it seems reason-
able that the electrons will not be very much affected by the coupling with
the impurity spins, so the effect of the coupling term is summarizable into an
effective spin-spin interaction (RKKY); the system will decrease the energy of
the ground-state optimizing the spin correlation function, eventually ordering
the spins.2 Increasing the coupling, the Kondo effect takes over, implying a
massive change in the electron wavefunction, that becomes entangled with the
spin state; of course the Kondo screening mechanism must be slightly different
than the one considered in the more famous Kondo model [78], because it must
take place coherently on every site. The competition between these two mech-
anism and the transition between the regimes where one or the other effect is
dominant, determines the interesting physics of the KL.

Doniach’s picture is considered good enough in two and three dimensions,
where it is believed that the transition between the two regimes passes through
a quantum phase transition [138–140]. In one dimension instead this minimal
picture is known to be inappropriate (except at half filling) and it seems that the
the number of competing effects needed to explain the different regions in the
phase diagram should be increased enormously, anticipating a probable failure
of this kind of approach [141, 142]. For example a first correction to Doniach’s
picture can be done considering a three-effect scenario, adding to the RKKY
and the Kondo effect also the double exchange mechanism. This three-effect
picture offers a justification for the ferromagnetic part of the phase diagram,
but it is still only an approximation, as will be explained in this chapter.

From now on we will mainly focus on the one-dimensional Kondo lattice
model (1dKL), assuming for simplicity only antiferromagnetic coupling J > 0.
The 1dKL is the only (low dimensional) KL that has been successfully charac-
terized, although some of its properties are still obscure. Vice-versa the scenario
is completely different in two and three dimensions where, despite a great de-
bate about the properties of the QPT, just a small part of the physics has been
analyzed theoretically. This difference is mostly due to a technical problem: the
absence of reliable and efficient methods for the analysis of the two and three
dimensional cases. The 1dKL has been treated efficiently making use of two
powerful techniques: bosonization (analytical [143, 144]) and DMRG (numeri-
cal [145]); both of them are much less effective in two and three dimensions and
therefore these are still open problems. Some recent results regarding the ferro-
magnetic phase in many dimensions [146] throw some shadows on the validity
of the Doniach’s picture also in two and three dimensions. It is therefore of
primary relevance to develop an approach that permits one to deal with these
systems. I believe that the approach explained in this manuscript will permit
such an analysis and will represent the appropriate way to deal with these open
questions; in paper C I try to convince the reader of this fact using the 1dKL
as benchmark.

1The name comes from the initials of the first authors that considered this effect: Ruderman,
Kittel [135], Kasuya [136] and Yosida [137]

2Of course this cannot be the case in one dimension; so one speaks typically about quasi-long
range orders.



6.1 From real materials to the model 73

6.1 From real materials to the model

A standard objection that is often raised when a theoretical work is presented
regards the applicability, or the “reality” of the models considered. It is possible
that already at this stage some worried readers are wondering about the physical
significance of the KL, therefore I considered appropriate the inclusion of a
preliminary section that deals with the derivation of the model.

f-orbitals

The KL Hamiltonian can represent a big variety of systems, that differ from
each other on the origin of the impurity spins. In principle they could have
nuclear origin, but in this case the coupling J would be too small to make
sense: in fact the form (6.1) assumes implicitly that the electron-spin coupling
is the dominant one and that all the other interactions (for example the local
Coulomb interaction among the conduction electrons) are negligible; therefore
an excessively small J is non-sensical.3 The spin could also represent more com-
plex structures, like for example a quantum dot: if the parameters of the dot
(gate and applied voltage) are properly chosen then the spin trapped in the dot
will behave like a spin impurity. However, considering more concrete scenarios
instead, the most interesting situation is when the local impurity spins have elec-
tronic origin, i.e., they are the low-energy degrees of freedom of electrons that
are localized by strong interactions. This situation is encountered in many real
materials, in particular in rare-earths4 (lanthanides plus Yttrium and Scandium)
and actinide compounds [7,78,133,147], that means in those elements that have
partially filled f-shells. In compounds built making use of these ions, it is im-
portant to distinguish between two types of the electrons: the f-electrons (often
called valence electrons) and the d- or s-electrons5 (called conduction electrons
in the rest of the manuscript). The difference between the two classes is due to
the different spatial extent of the wave function: while the s- and d-orbital are
(relatively) wide, the f-orbitals are much more compact [7, 148]. This has two
consequences: on the one hand the s- and d-orbitals generates broad conduction
bands, contrarily to the f-orbitals that remain strongly atomic in character and
their negligible hopping leads to almost flat bands; on the other hand the be-
havior of the valence (f-)electrons becomes completely dominated by Coulomb
interaction. Forgetting for the moment the (unavoidable) hybridization between
the conduction and the valence electrons, it is clear that the structure of the
f-electron system will be that of a Mott insulator. The 14-fold Hubbard Hamil-
tonian with vanishing hopping is a good (simplified) model to describe the main

3This should be studied making use of renormalization group analysis, in order to identify if the
couplings flow or not into the KL regime (more appropriately, into a KL fix point) for some energy
scale. A discussion of the applicability of the KL to one or another material goes beyond the aim
of this work, so I will not argue further along this line.

4If the reader does not have a periodic table at hand, I suggest to visit the page http://
www.ptable.com that contains many important informations, including a list of all the possible
compounds.

5I omit the principal quantum number, because it is clear that I refer to the s- and d- atomic
orbitals energetically in competition with the atomic f-orbitals (4f and 5f for lanthanides and ac-
tinides respectively). Are the (n + 1)s- or the nd- orbitals that compete respectively with almost
filled of almost empty nf-orbitals [7].

http://www.ptable.com
http://www.ptable.com
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features of the f-electrons subsystem:

Hf = U
�

i

14�

α,β=1
α �=β

f†

α(i)fα(i)f
†

β(i)fβ(i) + �f
�

i

14�

α

f†

α(i)fα(i). (6.2)

The spectrum of the valence electrons system will thus be built up by 14 local
states (labeled by f0, f1, ..., f14, where the number gives the number of electrons
per site) spaced by U , starting from the lowest at E = �f that is the energy of
the ionic level. The 14 comes from the number of degenerate atomic f-orbitals:
(2 · 3 + 1) = 7 due to the projection of the angular momentum and a factor
2 due to spin. The reader should not be tricked by presence of the N -fold
total multiplicity (with N the number of sites). Assuming for simplicity that
the configuration with no electrons is the one with minimal energy, one should
naively expect that the eigenstates of the system are spaced by steps of height
�f (that later becomes �f +U) and so that the system could get filled gradually,
varying the value of the Fermi level. This is wrong [7], and it depends on
the fact that the particle number in the system is determined by the chemical
potential, which rules the exchange of electrons among the f-subsystem, the d-
or s-band system and the reservoir represented by the rest of the universe. Still
neglecting the effect of the hybridization, it is instructive to study what happens
changing the chemical potential µ∗. Assuming for example that �f > 0, which
means that the lowest energy f-configuration is with no valence electrons per
site (f0), we can start to increase the chemical potential from the bottom of the
conduction band, that we set at µ∗ = 0. The density will increase continuously,
with the electrons that are hosted into the conduction band, until we reach
µ∗ = �f : only at that point will the electrons start to populate the f-orbitals,
filling the N quantum states. It is crucial to note that, although the energy
of these configurations is different, the free-energy H − µN is the same, so in
terms of the free-energy there exist a huge N -fold degeneracy. This means that
the number of electrons in the system can be increased enormously without
changing the chemical potential, up to the density of one electron per site. In
this situation, where only a partial number of f-states are filled, the system is
in the so called6 “mixed-valence” regime f0 − f1. It seems plausible that the
high entropy associated with states at fixed particle number can, in principle,
cause an interesting complication of the physics; in particular if the different
configurations get mixed by the hybridization with the conduction electrons
that for the moment we are still neglecting. The interesting physics described
by the KL, as we will see, is a particular case of this kind of phenomena caused by
the presence of a huge (thermodynamic) amount of degenerate configurations.
Increasing the chemical potential further there will be one valence electron per
site and the system will return to an integral-valence regime f1. When the
chemical potential reaches the value µ∗ = �f + U again the system enters into
a mixed-valence regime, indicated this time as f1 − f2, etc... In most of the
compounds the levels that fall close to the Fermi surface are the f0, f1 and f2,
so we will focus only on these possibilities.

6The nomenclature is quite wild; referring to the compounds the terms “mixed-valence”, “mixed-
configurations”, “fluctuating-valence” or “fluctuating-configuration” are synonymous. See Ref. [147]
for a complete review of the topic.
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Anderson local moment formation

The reader should start to have an idea of why in these compounds the KL
can be a relevant model: if the parameters are chosen in a correct way, it
is possible to force the f-subsystem to go into the integral-valence regime f1,
accommodating one electron per site, which then behave like a quantum spins
(local moment regime). However, in the light of what has been introduced so far,
this quantum top should have a 14-fold degeneracy, instead of the (spin-1/2)
2-fold degeneracy. This is due to the fact that up to now we neglected some
finer effects due to spin-orbit coupling and crystal-fields (see appendix B), that
split7 the 14-fold orbital degeneracy, leading to a 2-fold degenerate (rarely 4-
fold) orbital ground-state, where the two states form a time reversal doublet and
can therefore be modeled as a spin-1/2 degree of freedom [7]. Clearly this does
not invalidate the previous considerations for the integral- and mixed-valance
compounds.

Let us try to characterize the boundaries of this local moment regime [93,133]
for an isolated f-impurity, i.e. the interesting regime for the emergence of a KL.
In the light of the previous considerations, we are allowed to consider only a
2-fold spin-like degeneracy for the f-electron states, and therefore we can easily
enumerate the states that belong to the local Fock space:

|0�, | ↑f � = f†

↑
|0�, | ↓f � = f†

↓
|0�, | ↑f↓f � = f†

↑
f†

↓
|0�,

where |0� is the state with no electrons. Considering the interactions of the type
(6.2) it is evident that the energies will be

| ↑f↓f � → 2�f + U

| ↓f �, | ↑f � → �f

|0� → 0.

If we want to obtain a ground state that behaves like a quantum spin, it is
necessary to set the parameters �f and U in such a way that the lowest energy
states are | ↓f � and | ↑f �; this means also that the energies necessary to add or
remove one electron to the single occupied configuration must be positive:

remove → −�f

add → �f + U,

schematically
U

2
± (�f +

U

2
) > 0.

The different realizations are drawn in Fig. 6.1a. Clearly it is the smallest value
among |�f | and |U+�f | that sets the energy scale Es of the analysis. To be in the
local moment regime, i.e. no contribution from the vacant or doubly occupied
state in order to have in the ground-state f-wavefunction, every other energy
scale (for example the temperature) in the system must be smaller than Es.

These results hold in the case of an isolated impurity, i.e. with no hybridiza-
tion between the valence and the conduction electrons. In a real situation the

7Of course the temperature scale must be lower than the energy scale fixed by the two splitting
effects.
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f-impurity is embedded into the compound and the hybridization cannot be
switched off. The model that fully represents this situation is the Anderson
impurity model, if there is only one f-impurity in the system, or the Periodic
Anderson Model (PAM), if on each site an f-impurity is present. I write only
the latter for future convenience,

H = −t
�

�i,j�,σ

�
c†σ(i)cσ(j) + c†σ(j)cσ(i)

�
+ �f

�

i,σ

f†

σ(i)fσ(i) (6.3)

+V
�

i,σ

�
c†σ(i)fσ(i) + f†

σ(i)cσ(i)
�
− µ∗

�

i,σ

�
c†σ(i)cσ(i) + f†

σ(i)fσ(i)
�
,

+U
�

i

f†

↑
(i)f↑(i)f

†

↓
(i)f↓(i).

The presence of the hybridization modifies the previous results, introducing
the new parameter V into the game. If in the isolated case the only competition
was among �f , U and µ∗, now also V sets a new scale in the system. Crudely
speaking one expects that the local moment formation will still happen, but
only when V � Es, i.e. when the Coulomb interaction U and the ionic binding
energy �f dominate over the hybridization V . The latter in fact, mixing the
valence and the conduction electrons, adds weight coming from the empty and
the doubly occupied configurations to the ground state of the f-electrons. The
first contribution becomes inignificant decreasing �f ; the second by increasing U .

The first detailed analysis was carried out by Anderson, in the case of a
single impurity. In absence of interactions (U = 0), the coupling V determines
uniquely how strongly the valence and the conduction electrons are mixed with
each other and therefore how big the contribution of the double occupied and
vacant f-orbital to the ground-state configuration are. Because the conduction
and valence electrons are hybridized, neither of the two classes can be considered
an eigenstate of the system. So the singly occupied (pure) f-state can be though
of as an unstable state that has finite life-time, and decays into a different
states (into the continuum of the conduction electron states). We can estimate
the lifetime of this unstable state using the Fermi Golden rule:

1

τ
= ∆ =

2π

� |�in|Vin,out|out�|2ρout(�)δ(Ein − Eout). (6.4)

Given that the hybridization term conserves the spin polarization,8 we can treat
the up and down spin channels separately. The discussion will be simpler in this
way, because only one channel for the decay must be considered: the escape of
the valence electron. This is possible because so far we are assuming U = 0,
and this means that we are neglecting the only term in the Hamiltonian that
correlates the two up and down sectors.

In (6.4) the out-states are the states of the continuum and ρout(�) is the
density of states of the conduction electrons. In Fourier space

∆ = π
�

�k

|�f1
σ |V (�k)f†

σc�k,σ|�k,σ�c|
2δ(�f − �k,σ) (6.5)

= π

�
d�|V (�)|2ρ(�)δ(�f − �). (6.6)

8Via a unitary transformation this condition can always be achieved.
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(b) Anderson mean-field analysis;

Figure 6.1: The local moment phase diagram without hybridization: (a) without considering the
hybridization; (b) with the hybridization, in the the mean-field approximation; ∆ is the width of the
resonance. It is evident that the minimum value of U/∆ for the development of the local moment
is π. The coordinates of the critical point U/∆ = π and �f/∆ = −π/2 come from the solution of
the equations (6.13) and (6.14), for nf = 1.

This quantity is the width of the resonance and will be denoted by ∆(�f ). A
more precise derivation and discussion, in terms of Feynman diagrams is given
in [93]. According to the previous arguments, the (retarded) propagator in
imaginary time for such f-resonance must take the form

Gf (ω + iδ+) =
1

ω − �f − i∆(�f )
,

implying for the valence electron the density of states9

ρf (ω) = − 1

π

∆

(ω − �f )2 +∆2
, (6.7)

In principle also a V dependent correction to �f should be considered, but this
effect has not been considered in the previous formula, because irrelevant for
the following discussion.

Given this density of states it is possible to compute the average number of
electrons in the resonance (i.e. in the f-state) by integrating it up to the Fermi
level, fixed by µ∗:

�nf � = 2

� µ∗

−∞

d� ρf (�) =
2

π

�
π

2
− arctan

�
�f − µ∗

∆

��
=

2

π
arccot

�
�f − µ∗

∆

�
,

where the two comes from the two spin channels. For simplicity µ∗ will be set
to zero in the following.

Up to this point the f-electrons are fluctuating wildly, because on the one
hand they are in a state that is neither empty nor filled, but on the other
hand the two spin species are uncorrelated, therefore double occupancy is not
suppressed. In this situation one says that the f-electrons exhibit large charge
(or valence) fluctuations. To obtain the formation of the local moments, these
charge fluctuations must be quenched. Since the valence fluctuations are caused

9The explicit the dependence of ∆ on �f has been omitted, to avoid cluttering of the notation.
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by the hybridization, the only way to quench them is reducing its effect, making
the other parameters dominant and the vacant and double occupied states very
inconvenient in terms of energy. This means that the parameters U and �f must
be tuned properly, increasing significantly U and keeping �f way below the Fermi
level. For a critical Uc that depends upon ∆ the occupation will collapse to one
generating a local moment. To study this effect Anderson used a Hartree-Fock
decomposition of the quartic term, interpreting the degeneracy breaking of the
up and down f-spin species as the sign of the formation of a magnetic ground
state,i.e. of a local moment. This degeneracy breaking becomes apparent in the
solution by the development of a magnetic moment for the f-system, that in fact
has no magnetization if U = 0 because �nf,↑� = �nf,↓�. Proceeding with the
Hartree-Fock decomposition, the energies �f,↑ and �f,↓ become dependent upon
the average number of electrons that occupy respectively the f1

↓
and f1

↑
states:

Uf†

↑
f↑f

†

↓
f↓ → Uf†

↑
f↑�f†

↓
f↓�+ U�f†

↑
f↑�f†

↓
f↓ − U�f†

↑
f↑��f†

↓
f↓�, (6.8)

which is equivalent to a spin dependent shift of the f-energy level

�f,σ → �f + U�f†

σ̄fσ̄�, (6.9)

so
�nf,σ� =

1

π
arccot

�
�f + U�nf,σ̄�

∆

�
.

Defining the total density nf =
�

σ nf,σ and the magnetization M = �nf,↑�−
�nf,↓� one gets [93]:

nf =
1

π

�
arccot

�
�f + U(nf −M)/2

∆

�
+ arccot

�
�f + U(nf +M)/2

∆

��
,

(6.10)

M =
1

π

�
arccot

�
�f + U(nf −M)/2

∆

�
− arccot

�
�f + U(nf +M)/2

∆

��
.

(6.11)

We are interested in characterizing the local moment regime, i.e. the region that
supports solutions with M �= 0; this can be done noticing that the second equa-
tion is always true if M = 0, while the existence of non-trivial solutions implies
conditions on the parameters. Up to the second order in M these conditions
can be found linearizing (6.11) and the result is [93]:

1 =
U

π∆

1

1 +
�

�f+Unf/2
∆

�2 . (6.12)

If this condition is satisfied, every value of M is solution to the equation (6.11)
and the local moment appears; otherwise the only acceptable solution is M = 0.
Imposing M → 0+ on the first equation (6.10), one obtains

cot
�nfπ

2

�
=

�f + Unf/2

∆
. (6.13)
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This result and the previous can be combined to yield

1 =
U

π∆
sin2

�πnf

2

�
. (6.14)

This equations creates a relation among the parameters U , ∆ and nf . Evidently
there exists a minimum value Uc, below which no non-trivial solution to (6.11)
exists. Therefore for

U > Uc(nf ) =
π∆

sin2(πnf/2)
, (6.15)

a local moment is formed. This is an improvement of the previous result ob-
tained without the hybridization. The Anderson mean-field phase diagram for
the local moment formation is shown in Fig. 6.1b.

The total density nf is a function of �f , besides the two parameters ∆ and
U . The minimum critical value Uc is obtained for nf = 1, i.e. for U = −2�f .
The latter condition is not surprising: if U = −2�f the empty and double
occupied f-states become degenerate and it is this symmetry that forces the
f-system to be exactly half filled. If this symmetry condition is not fulfilled
then the total density inside the local moment region can be bigger or smaller
than one, depending on which excited configuration has the lowest energy. This
property is a feature of the mean-field solution. A recent Gutzwiller analysis
of the PAM [149] shows very well the parameter regimes that allows for single
occupation and moment formation. The local moment regime in the parameter
space, where the valence fluctuations are strongly quenched, is therefore quite
big and requires only �f � EF and U � ∆.

From the PAM to the KL

So far it has been established how the parameters must be chosen in order to
obtain the freezing of the charge fluctuations of the valence electrons and the
consequent formation of a local moment. In this situation the PAM contains too
much information. In fact good part of the physics that it describes is strongly
suppressed and is not relevant at sufficiently low energy scales. It would then
be appropriate to (properly) remove the quenched, high-energy physics of the
charge fluctuations and deal only with the low-energy part of the system, that
is composed by conduction electrons and free local spins. In this way what is
obtained is the Kondo lattice model (6.1).

It is important to understand the origin of the Kondo interaction term
J Sc · Sf . Starting from the considerations of the previous paragraph one could
erroneously conclude that there exists no interaction at all between the conduc-
tion electrons and the localized spins. In fact the effect of the hybridization has
been taken into account and it has been seen that, for properly chosen values of
the parameters, its mixing effect becomes completely quenched, strictly imply-
ing zero hybridization between f and c electrons deep inside the local moment
regime. This conclusion is not correct. In fact, although the valence electrons
are forced to the single occupied state, with no contribution to the wavefunction
coming from the vacant or double occupied state, they still have the possibility
to experience virtual excitations. The f -electron can virtually hop from the f -
state to the conduction band and back; or viceversa a conduction electron can
fall into the f-orbital, forming a virtual f-singlet, and then jump back into the
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conduction band. These processes create a correlation between the spin of the
conduction electrons and the localized valence electrons. The correlation must
be somehow represented in the effective theory that describes the low energy
physics of the PAM in terms of only conduction electrons and local moments;
the interaction term J Sc ·Sf is exactly the expression of this correlation, i.e. it
represents these virtual second-order hopping processes.

This way of looking at the system is based in the concepts of the renormal-
ization group approach [28,150–153], where the high energy degrees of freedom
are integrated out, down to the energy scale of interest. Their effect can be
summarized in the value of the coupling constant of the operators that appear
in the low energy Hamiltonian (that by definition is written in terms of low
energy degrees of freedom only). In the case of the PAM this procedure can
be implemented in a quite straightforward way. In fact in 1966 Schrieffer and
Wolff [22] discovered that using a unitary transformation the Hamiltonian of
the impurity Anderson Model could be reduced to the one of the Kondo Model.
The same transformation holds also for the PAM, that reduces to the KL [77]
at low energy.

To set up the Scrieffer-Wolff transformation one has to notice that the hy-
bridization term in (6.3) connects two sectors: the nf = 1 and nf = 0, 2, whose
degeneracy is then broken by the interaction, making them the low and high
energy sectors. Considering that the only effect of the quartic term is that of
creating this energy splitting, it is clear that we can think of the system as a
two level one, where the two levels (high and low energy) are connected by a
quadratic operator. The Hamiltonian of such system can be written schemati-
cally as

�
Hlow Vlow,high

Vhigh,low Hhigh

�
, (6.16)

with Vhigh,low = V †

low,high. Such a matrix can be diagonalized by a unitary
transformation U :

U
�

Hlow Vlow,high

Vhigh,low Hhigh

�
U† −→

�
H �

low 0
0 H �

high

�
. (6.17)

After this procedure the two sectors will be completely decoupled from each
other and the H �

low (H �

high) will be the effective Hamiltonian for the low (high)
energy sector.

On this rationale, Schrieffer and Wolff wrote [22] the formal expression

H � = eSHe−S , (6.18)

S is the generator of the unitary transformation U , while H is given by Hamil-
tonian of the impurity Anderson model

HIAM = H0 +H1,

where

H0 =
�

k,σ

�kc
†

σ,kcσ,k + �f
�

σ

f†

σfσ + Uf†

↑
f↑f

†

↓
f↓,

H1 =
�

k

�
Vk,fσc

†

σ,kfσ + V ∗

k,fσf
†

σcσ,k
�
.



6.1 From real materials to the model 81

They showed that a proper choice of S could be used to cancel every linear
operator in V from H �, realizing the diagonalization (6.17). Using a known
lemma of the Baker-Campbell-Hausdorff formula

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] + ...

it becomes clear that to cancel the first order terms in V of H � it is sufficient to
impose

[S,H0] = −H1, (6.19)

which means that S must be first order in V . Applying (6.18):

H � = H0 +H1 + [S,H0] + [S,H1] +
1

2
[S, [S,H0]] +O(V 3)

= H0 + [S,H1] +
1

2
[S, [S,H0]] +O(V 3)

= H0 + [S,H1]−
1

2
[S,H1] +O(V 3). (6.20)

So

H � ≈ H0 +
1

2
[S,H1], (6.21)

with 1
2 [S,H1] an effective interaction that does not connect the two sectors. The

equation (6.19) has the solution

S =
�

k,σ

Vk,fσ

�k − �f
(1− nf,σ̄)c

†

k,σfσ +
Vk,fσ

�k − �f − U
nf,σ̄c

†

k,σfσ − h.c. (6.22)

where nf,σ̄ = f†

σ̄fσ̄ enters through the definition of two projector operators.
This result can be found in the original paper Ref. [22], but an more extensive
discussion is done in Ref. [93]. Applying this form of S into (6.21) one gets:

1

2
[S,H1] ≈

�

k,k�,σ,σ�

�
c†k,σfσf

†

σ�ck�,σ�

�
1

�k − �f − U
+

1

�k� − �f − U

�
+ (6.23)

+f†

σ�ck�,σ�c†k,σfσ

�
− 1

�k − �f
− 1

�k� − �f

��
V ∗

k,fσVk�,fσ� (nf↑ − nf↓)
2.

The last squared term plays the role of a projector on the nf = 1 subspace,
so the effective interaction will operate only on that sector. The first two terms
describe the effect of the virtual processes

c+ f1 → f2 → c+ f1,

while the second two represent the virtual processes

f1 → f0 + c → f1.

Other terms appear in the calculation, but they can be neglected or reab-
sorbed into redefinitions of the parameters, if we assume that |�f |, U � 0, i.e.
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if the system is in the local moment regime and if there is a large separation
between the low and high energy sectors. Of course the sums take into account
all the possible channels of these processes. By rearranging the fermion creation
and annihilation operators, (6.23) can be rewritten as

Hint =
�

k,k�

Jk,k�Sc
k,k� · Sf , (6.24)

where Sc and Sf are the spin operators of the conduction and f-electrons re-
spectively, defined as

Sc
k,k� =

1

2
c†k,σ�τσ,σ�ck�,σ� , Sf =

1

2
f†

σ�τσ,σ�fσ� ,

with �τ the vector of the Pauli matrices.
The dominant virtual processes occur close to the Fermi surface, so we can

approximate k ≈ k� ≈ kF and �k ≈ EF . Therefore if we put EF = 0 (con-
sistently with the convention chosen at the beginning of this section), we can
approximate the k, k� dependent interaction by:

J = JkF ,kF = −2|VkF ,kF |2
U

�f (�f + U)
.

Imposing the symmetric condition U = −2�f on the Anderson model, one gets

J = JkF ,kF = −2|VkF ,kF |2
U

−U
2 (−

U
2 + U)

= 8
|VkF ,kF |2

U
,

that is the result cited numberless times in the KL literature.
Of course these results were found for the impurity Anderson model, however

they can be generalized straightforwardly to the PAM also, leading to the same
relation [22, 77]. It must be remembered that this result holds in the limit of
high U and it becomes exact when U → ∞. In taking the limit V has to
scale as

√
U , in order to obtain a finite J . Though this is an expansion in

V , it creates no problems because the higher order commutators in in (6.20)
are suppressed by higher powers in U , therefore they have no contribution,
if V diverges as prescribed [77]. In principle J could take any value if V →
∞, but in any meaningful system this condition is never fulfilled. A recent
numerical study [149] investigated the limits of this condition and showed that
there exist a maximum J that cannot be exceeded. In fact, for the Schrieffer-
Wolff transformation to be valid, the system has to be in the local moment
regime. As it has been discussed, this requires a fine balance between the
parameters U, �f and V . In particular there a exist critical value Uc below
which the system is in the mixed valence regime for any �f . The numerical
(Gutzwiller) analysis [149] shows that the critical Uc follows the relation

Uc

W
≈ 62.56

�
V

W

�1.54

,

where W is the conduction electrons bandwidth.10 Hence for each V there
exists a maximum coupling Jmax that cannot be further increased, because the
necessary decreasing of U would imply the transition into the mixed valence
regime.

10The study was performed assuming a constant density of states. The latter is the only free
parameter in the Gutzwiller study incorporating all the properties of the lattice.
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(a) Heavy fermion band structure.
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(b) Kondo Insulator band structure.

Figure 6.2: The typical band structure of the non interacting PAM. (a) the Fermi surface cuts the
f -like band, implying an high effective mass for the Landau quasiparticles; (b) the chemical potential
is set inside the gap, so the system is insulating. In both the picture the bands are doubly degenerate
and the dashed lines are the original (not hybridized) bands.

Heavy fermion compounds

Before continuing on the detailed description of the Kondo lattice, I thought ap-
propriate to explain what is the new and exotic physics is exhibited by the KL
and the PAM Hamiltonians. These systems are often named as heavy fermions
compounds. The name comes from the fact that these systems manifest unusual
properties, that fits well with the Landau-Fermi liquid picture, but only under
the assumption that the effective mass of the carriers is two or three order of
magnitudes larger than the bare one. The validity of the Fermi liquid picture,
means that the physical quantities follow some phenomenological behavior that
is explained by the assumption that the system is well described by Landau’s
quasiparticle argument. These quantities are: the specific heath CV , the spin
susceptibility χ and the compressibility κ ∝ dN/dµ, with N the total number
of particles and µ the chemical potential; all of them are proportional to the
effective mass of the fermionic Landau’s quasiparticles, that in turn is propor-
tional to the density of states at the Fermi surface.11 A detailed discussion
can be found in Ref. [104, 154], however it is typically said that a system has
a behavior consistent with the Fermi-liquid phenomenology if CV ∝ m∗kFT at
T � TF , χ ∝ m∗kF and dN/dµ ∝ m∗kF , where the last two proportionality
constants hide the information of the Landau structure factors (homogeneous
antisymmetric and symmetric respectively), besides various physical constants,
and kF is the Fermi momentum. The extremely high value of the mass in
the heavy fermion compounds, indicates an extremely high density of states
ν(E) = dΩ(�)/d�|E at the Fermi surface, where Ω(�) is the number of quantum
states that are available at the energy �. Of course this quantity can be rewrit-
ten in terms of the dispersion laws; in one dimension, where typically there
are only a discrete number of states per energy value �, the density of states is
proportional to the inverse of the derivate of the dispersion law (or sum of the
derivates in more complicated cases). So, in one dimension, the high effective
mass can be explained as the consequence of the presence of an almost flat band.

11Of course the Landau-Fermi liquid picture assumes the existence of a Fermi surface, i.e. of a
discontinuity in the occupation number of the quantum states in the Brillouine zone.
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In terms of the PAM this is easily understood: indeed the f -impurity fermions
form a flat band. These fermions develop dynamic thanks to the hybridization
with the conduction electrons, which changes the shape of the band and re-
defines the particles that contribute to the quasiparticle of the Landau-Fermi
liquid. Putting the interaction term U to zero in (6.3), this mechanism is quite
straightforward. In Fig. 6.2a are shown some examples of the typical shapes,
for the 1d band structures, that can be obtained. As can be seen a gap, pro-
portional to the hybridization, develops. The bands have an avoided crossing
structure and the analysis of the eigenvectors shows how both the bands con-
tains eigenstates with both c- and f−character. As a rule of thumbs, one can
use the distortion of the bands, respect to the original ones, as an indication of
the hybridization and the nature of the states: the more a band looks like an
original one, the less hybridized those states are. Clearly the maximum of the
hybridization happens when the cosine-like curve turns into a flat one.

The location of the chemical potential and of the original flat f -band can
greatly affect the physical properties of the system. In fact, if the chemical
potential is set in the gap, then the system is insulating. Instead if the Fermi
level intersects the lower band (or upper) the system is clearly a Fermi liquid,
but evidently the incredibly high density of states implies an incredibly high
effective mass.

In the context of the PAM with U = 0, the scenario is quite clear. The
situation becomes very much different if the interaction is turned on and (for
example) sent to infinity. Then, of course, the role (and meaning) of the bands
used so far becomes ambiguous and different approaches must be followed (for
example the numerical Gutzwiller projection method). The challenge is of course
to give a description of these heavy fermion compound only in terms of the
degrees of freedom of the KL, without considering the high energy physics of
the valence fluctuations of the f -electrons.

These heavy fermion compounds, both in the the KL and mixed valence
limit, can describe systems with many different properties. For example, if we
assume that the final density of state of the KL system will have a shape like
the one associated to the bands in Fig. 6.2b, then it is easy to understand
that putting the chemical potential in the gap, the system will be an insulator,
or better a Kondo insulator. This happens in the 1dKL at half-filling and
high Kondo coupling, as will be explained in Sec. 6.3.4 and both paper C and
paper D. Anyway the simplified picture given by the four band structure of
Fig. 6.2a does not typically apply. To understand what happens changing the
chemical potential (and the coupling) is the challenge posed by the analysis of
the phase-diagram of the 1dKL and the subject of paper C. A great amount
of work has been done by the community to solve this problem; the known
results will be introduced in the next section. As final note I would like to
point out to the reader two interesting studies that show how wide the physics
of the KL can be: the nature of the system can change so much that also
(unconventional) superconductive phases can be discovered, at least in 2d and
3d systems [155,156].
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6.2 Competing effects in the 1dKL
So far it has been shown why the Kondo lattice is a meaningful model: it
describes the interaction of conduction electrons with local spins that are the
only active low energy degrees of freedom, remnant of electrons that have been
localized by strong local interactions. From now on we can thus forget all the
details of the previous derivation and just deal with the Hamiltonian (6.1) that
I rewrite here, specializing it to the case of the 1dKL:

H = −t
�

i,σ

�
c†σ(i)cσ(i+ 1) + c†σ(i+ 1)cσ(i)

�
+ (6.25)

+J
�

i

Sc · Sf − µ∗
�

i,σ

c†σ(i)cσ(i),

One might expect that this problem, which as a matter of fact is just a particular
case of the PAM problem, should have an easy solution. This is not the case.
In fact the KL presents unique characteristics that put both our formal abilities
and our theoretical comprehension at test.

First of all, the degrees of freedom involved in the Hamiltonian are not
homogeneous, but belong to two different classes: fermions and spins. From a
technical point of view the simultaneous presence of both these classes causes
big complications. There exist many tools to treat spin systems and electron
systems, but most of them fail (or have big troubles) to describe a system that
contains both species. Techniques that are based on the fermionic nature of
the operators, have trouble to deal with the spin operators, for which no Wick
theorem exist. Tools that are instead used in the context of spins chains have
a hard time dealing with the fact that there is no direct interaction between
neighboring spins, since it is generated by the correlation between the electrons.

There exist two routes to avoid the pathologies of the different methods
and to find a solution to the problem. The first is to introduce a (fictitious)
interaction between neighboring spins. This interaction (that is physical and
could definitively exist in real materials) creates a new scale in the system. If
this scale is dominant, the interacting spin system and its modes (magnons) can
be used as starting point in the description of the KL. The drawback is that
in the end it becomes very complicated to get rid of this interaction, so the
system analyzed is not really the Kondo Lattice model, but the “Heisenberg-
Kondo lattice” model. The second possibility is to represent the spins in terms
of other particles, for example Schwinger bosons or fermions, as is done more
frequently, starting from the PAM and enforcing unit occupancy. Both these
possibilities have the problem that it is difficult to implement the constraint
on the extra particles, so it is complicated to assure the spin-1/2 character of
the local moment: indeed these kind of constraints can typically be fulfilled
only on the average and not on an operator level. Moreover, the use of extra
particles implies the enlargement of the Hilbert space. This is reflected in the
solutions also, that become more difficult to interpret. For example starting
from the PAM and enforcing unit f-electron occupancy: the original theory is
based on four bands (16-dimensional local Hilbert space), so it is clear that the
final solution, after the imposition of the constraint, will also have four bands.
The constraint will induce correlations between the fundamental modes and the
fillings of the bands, making the final answer not very transparent. Another
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drawback is the fact that in any study that starts from the PAM it is hard to
guarantee the complete absence of any effect12 due to charge fluctuations of the
f -electrons, and consequently the fact that the results are due uniquely to KL
physics [157]. From a formal point of view this means that the energy of the
ground states obtained with this approach are not variational upper bounds for
the real ground state energy.

These difficulties still represent a serious obstruction in the solution of the
KL. For the 1dKL the late nineties had to arrive, before a program of char-
acterization of the phase-diagram was carried out successfully [158]. While for
the 2dKL and the 3dKL, although some very interesting effects are subject of
debate [103, 133, 159–164], we are still far from a complete characterization of
the phase diagrams.

The core of the KL problem is the intimate relation that exist between
electrons and spins. In principle, the entanglement between the two species does
not allow for a neat separation of these two degrees of freedom and therefore
it becomes impossible to look at one part of the system, without considering
also the other. Because of this, a perturbative analysis in the limit J → 0
becomes conceptually wrong: in fact the point J = 0 is a singular point where
not just the interaction, but also the entanglement between the two species is
zero. Therefore the J = 0 ground state, where the spin system has an extremely
high degeneracy (entropy), cannot be used as starting point for a perturbative
analysis [150,165]. Despite this, the first considerations on the nature of the KL
ground state were carried on in a perturbative fashion, assuming that at small
J the effect of the entanglement is small and that a strict separation between
electrons and spins holds, while just for larger interactions this assumption
becomes wrong. This was the idea behind Doniach’s proposal in 1977 [134]. He
assumed that in the systems two regimes were in competition; one where the
two species can be thought of as separate and the other when the entanglement
plays a decisive role. In the first regime the electron-spin interaction term
would simply drive the establishment of an RKKY interaction (see Sec. 6.2.1)
between the local moments of the lattice, leaving the electron wavefunction
approximately untouched; in the second regime instead another kind of physics
is the dominant one: the Kondo physics (see Sec. 6.2.2), responsible for the
entanglement and implying a drastic change in the structure of the ground
state wavefunction. A comparison between the typical energy scales of these
two effects enables one to draw the Doniach phase-diagram, shown in Fig. 6.3.

This description works well in 2d and 3d KL around half-filling. Indeed it has
been proved experimentally that the system passes from one regime to the other
via a quantum phase transition [103,133]. In 1d instead it does not work; only at
half-filling it does give a qualitative description of the physics, but not as good
as in the higher dimensional cases. In particular no quantum phase transition
occurs [158]. The peculiarity of the 1d case can find an explanation in the low
dimensionality, and therefore the enhanced importance of quantum fluctuations.
Moreover, another complication should also be considered. In the 1dKL the
ferromagnetic phase is dominant in the phase diagram (covering the majority
of it, see Fig. 6.7). Such ferromagnetism is not explained by means of RKKY
interaction, but can be instead understood in terms of the double exchange

12With this we mean effects due to not instantaneous charge fluctuations. Of course the virtual
high-energy (and therefore instantaneous at the time scale of the KL) are necessary to produce the
Kondo coupling.
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Figure 6.3: Sketch of Doniach’s phase diagram. The two typical energy scales of the RKKY and
Kondo effect compete. Reducing the temperature the physics is dominated by the effect with the
highest energy scale, while the lowest one plays the role of a perturbation. Where the two scales
become very similar a quantum phase transition at zero temperature takes place at the critical point
QCP. The “funnel shaped” white region above the QCP is the zone at non zero temperature, affected
by the quantum critical behavior.

effect (see Sec. 6.2.3). A discussion about the relevance of this effect in higher
dimension is lacking, because no systematic investigation of the existence of a
ferromagnetic phase in the 2dKL and 3dKL has been carried out. Only recently
has this topic raised some interest [146,166], but it is still in a preliminary stage.

So far we did not mention a quite important conceptual complication that the
KL hides. There exist a rigorous theorem, known as “Luttinger theorem”, that
says that the volume encapsulated by the Fermi surface depends only upon the
density of the electrons. In one dimension it means that the value of the Fermi
momentum kF is proportional to the number of electrons in the system. The
question is: “which electrons?”. In the KL the only electrons are the conduction
electrons. But in real compounds the KL represents the low energy physics of
the PAM and the two Hamiltonians are adiabatically connected, so it would
seem more correct to count the number of c-electrons together with f-electrons.
The experiments say [103, 104, 133] that both scenarios apply to the KL where
there exist a transition between two regimes: one characterized by a large Fermi
surface, where it is the total density of the f - and c-electrons that determines
the Fermi volume, and another with a small Fermi surface, where instead it is
only the density of the c-electron that matters. How it is possible to justify
the Luttinger theorem in the context of the KL, without referring to the PAM,
is still source of debate [103, 104, 133, 159, 161, 162, 167–170]. In particular the
problem becomes really intriguing if one remembers that the spins could have
also nuclear origin.
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In the 1dKL most of the phase diagram is characterized by a small Fermi
surface, in the phases where a long range or quasi-long range order is present.
A large Fermi surface appears in the so called “polaronic liquid” that will be
discussed later. Although the work done in the manuscripts C and D does
not tackle directly the problem of the size of the Fermi surface, the results
contained in paper C shed some light on the low energy interpretation of this
Fermi surface collapse, in the sense that the picture that is obtained is consistent
with the polaronic liquid one.

To give the reader the possibility to understand the phase diagram of the
1dKL I will dedicate the next sections to the discussion of the three main rele-
vant effects mentioned previously: RKKY interaction, Kondo effect and double
exchange.

6.2.1 RKKY Interaction

The concept of RKKY interaction appeared for the first time in the context
of magnetic ordering of nuclear spins in metals [135–137]. It is obtained as a
second order effect in the coupling constant between the spins and the electrons.
The idea is that a spin impurity will polarize the surrounding electron medium,
causing an unbalance between the densities of the up and down electrons. These
oscillations goes under the name of Friedel oscillations (see Ref. [93]) and can
evidently be felt by the other spin impurities embedded into the system. The
final effect is that of an effective spin-spin interaction between the impurity
spins.13 The spin polarization of the electron medium is simply the response of
the electron liquid to an external perturbation, therefore it is determined by a
response function. It is typically assumed that the dynamics of the electrons is
much faster than the dynamics of the spin impurities, which as a consequence
can be thought of as static; therefore the relevant spin-susceptibility will be
the static one. The interaction is magnetic and couples with the spin of the
electron, therefore the magnetic response of the electron system is (in linear
response approximation and under the assumption of isotropy):

�Ma(�x)� = −Jχab(�x− �x�)�Sf
b (�x

�)�, (6.26)

where the minus comes from the fact that for antiferromagnetic interaction
J > 0 one wants antiparallel directions for the two vectors M and Sf . The
definition of the non-local spin dynamical (retarded) susceptibility is

χab(�x− �x�, t− t�) = i�[σa(x, t),σb(�x
�, t�)]�θ(t− t�), (6.27)

By standard arguments14, there exist a relation between the Fourier transform
of the latter quantity and the Fourier transform of

χT
ab(�x− �x�, t− t�) = (−i)2�Tσa(x, t)σb(�x

�, t�)� = δabχ
T (�x− �x�, t− t�), (6.28)

13This treatment follows Ref. [93] that I suggest the reader to consult for more details.
14The time ordered propagator χT (ω) has poles at ω = ωe + isign(ωe)δ+ just above or below

the real axis, while the (retarded) dynamical response χ(ω) function has poles only below the real
axis ω = ωe + iδ+, where in both cases ωe is energy of the excitation. It is thus evident that if
the poles of χT (ω) are shifted downwards, then in the limit of δ+ → 0 the two functions will be
identical (modulo different prefactors in the definitions, that have to be adjusted).
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with T the time ordering operator and the (−i)2 comes from the fact that the
σ operators are quadratic in the fermions. The relation is

χ(�q,ω) = Tr [χab(�q,ω)] = −iχT (�q,ω + iδ). (6.29)

This is very convenient because (6.28) is easily computed using Feynman dia-
grams, giving as result

χT (�q,ω) = −2i

�

�k

f(��k+�q)− f(��k)

(��k+�q − ��k)− ω
, (6.30)

so using the previous relation and in the limit of static response ω → 0:

χ(�q) = 2

�

�k

f(��k)− f(��k+�q)

��k+�q − ��k
. (6.31)

A second spin impurity located in �x will interact with the magnetization of the
electron gas in the same way, so

Hspin−spin = J Sf (�x)M(�x) = −J2χ(�x− �x�)Sf (�x)Sf (�x�). (6.32)

The effective interaction JRKKY (x− x�) = −J2χ(�x− �x�) is the RKKY interac-
tion. It has been computed for every dimension in Ref. [171], but the original
results in three dimensions can be found in Ref. [135–137]. In the first studies
the form of the interaction was found analyzing the effect of the spin-spin cou-
pling at second order in perturbation theory. Of course there is no difference in
the final result; in fact it is clear that (6.31) describes the perturbative effect of
particle-hole excitations created by the scattering against the spins.

The form of the RKKY interaction in 1D is

JRKKY (r = x− x�) = −J2m

2π

�
Si(2kF r)−

π

2

�
(6.33)

in real space and

JRKKY (q) =
1

2π

� +∞

−∞

JRKKY (r)e
iqrdq (6.34)

= −8J2m

q
ln

����
q − 2kF
q + 2kF

����

in Fourier space (see Fig. 6.4). To find these results it is necessary to assume
that the dispersion of the electrons is approximated at �F by a parabola k2/2m.
The function in Fourier space is found directly from (6.31) and it is known as
the Lindhard function, while the function Si(z) is the Sine Integral function:

Si(z) =
� z

0

sin(t)

t
dt.

The Lindhard function has a weak logarithmic divergence at q = 2kF . This is the
sign of a magnetic instability [172], therefore a system with RKKY interaction
should develop magnetic order with a typical momentum 2kF . This is not the
case in 1d because the quantum fluctuations are strong enough to suppress
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Figure 6.4: The RKKY interaction JRKKY (r), plotted as function of r for different values of
kF . The gridlines are put in correspondence of the lattice sites. The Fourier transform of the same
curves is plotted in the inset, for momenta q > 0. Evidently the peak is at 2kF ; it must be specified
that the system is at half-filling when kF = π/2.

ordering. The reader could think that this is a consequence of the Mermin-
Wagner theorem that forbids any symmetry ordering in 1d for any temperature.
This is not the case, because the RKKY interaction is long range and therefore
it is not covered by the Mermin-Wagner theorem that is limited to short range
interactions. In fact the asymptotic behavior of function JRKKY (r) is given by
cos(2kF r)/r3. The lack of spin order in 1d and 2d RKKY systems has been
proved in a rigorous way only in 2011 [173].

6.2.2 Kondo effect
Considering the vast literature on the topic (in particular Ref. [78]) it is not
necessary to write a detailed presentation of the Kondo effect. I will instead
focus the attention on the points that are functional for the continuation.

Let us consider a system where only one f-impurity is present. In section
(6.1) it has been shown that in order to obtain a local moment, the energy of
the single occupied state should be pushed far below the Fermi energy. In this
system the valence fluctuations of the f-electron are forbidden and only virtual
excitations can occur. The effect of the virtual excitations is summarized in the
low energy Hamiltonian by the electron-spin interaction, equation (6.24). As it
has been mentioned this interaction entangles the conduction electrons and the
impurity spin, that gets quenched and perfectly compensated at low tempera-
tures. Consequentially the final state is paramagnetic and one can think of it
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as if the conduction electrons, that continuously scatter against the impurity,
effectively accumulate around it generating a sort of spin polarized “cloud” that
forms a spin singlet (if J > 0) with the local impurity, screening completely the
impurity. This phenomenon is known as the Kondo effect.

The japanese physicist Jun Kondo was the first [174] to shed some light on
this kind of physics, convincing the world about its existence in 1964. However
the full understanding and characterization of the Kondo effect required many
years of work and needed also the elaboration of the new fundamental concept
of Renormalization Group (RG) by Wilson and Anderson [150,175].

Kondo discovered that, considering the third perturbative order of the scat-
tering of the electrons on the single spin impurity, it was possible to justify the
existence of the resistivity minima found experimentally at low temperature in
many conductors [78, 133]. His solution was not perfect, because it predicted a
divergence for the resistivity at T → 0, but this pathology was initially consid-
ered just a feature of used approximations. Many tried to improve the results,
using more precise perturbation expansions, and in particular Abrikosov played
a valuable role in the development of the re-summation techniques needed in
this problem [78]. However the pathology remained and in particular the typical
temperature scale where every expansion broke down was identified:

TK ≈ De1/2Jρ0 , (6.35)

where D half of the bandwidth of the conduction electrons and ρ0 is the density
of states at the Fermi level.

The failure of the perturbative approach in the Kondo model is often in-
troduced as a mystery (as it was historically) [78]. Now that the solutions are
known we can say that this failure was no mystery at all, indeed it is its success
at T > TK that is surprising. For these (high) temperatures in fact, the elec-
trons and the impurity spins are free and independent from each other. With
a not so inappropriate choice of words, we could say that electrons and spins
are asymptotically free at high energies. This (very non-trivial) high-energy
freedom is the reason behind the success of the perturbative approach at high
temperatures: in that regime the non-interacting electron and spin states are
convenient degrees of freedom for the representation of the physics, and the in-
teraction can be though of as a correction that causes only small modifications.
Below TK instead they represent a very poor choice; the structure of the ground
state changes so much that it is not possible to consider the effect of the in-
teraction as small and therefore the perturbative approach fails. Increasing the
temperature a sort of deconfinment of the particles is realized, that at a critical
temperature regain their “freedom” destroying the bound state (resonance) that
they were forming.15

The cause of confusion and problems is that the Hamiltonian of the Kondo
model, i.e. the one-site impurity analogous of (6.1)-(6.25), is already written in
terms of the high-energy degrees of freedom. This does not mean that it does
not describe the low-energy physics, but that it gives of it a very inconvenient
representation, so finding any result in the low energy regime becomes extremely
complicated. In terms of RG we can say that the free electrons and spins
are the eigenstates of the high-energy fix-point Hamiltonian. This fix-point is

15This reminds concepts coming from fundamental physics. For a comparison between quark and
Kondo physics the reader can start from Ref. [176].



92 Chapter 6 The Kondo lattice model

unstable under reduction of the energy scale, therefore the Hamiltonian flows
towards a second (infrared stable) fix-point Hamiltonian at low energy, described
by completely different eigenstates. The energy TK represents the cross-over
temperature between these two regimes, where one or the other Hamiltonian are
good approximations. Curiously both fix-points are Fermi liquid fix points [177].

The temperature-induced freedom of spin and electrons is due to the fact
that the Kondo effect is caused by a coherent scattering of the conduction elec-
trons against the impurity spin. This process creates a resonance (the low
energy bound state cited previously) at the Fermi level, that was discovered
by Abrikosov and Suhl [178] in 1965 and that is now called the “Kondo reso-
nance”. The reader should pay attention to not confuse this resonance with the
previously discussed (6.7), that was generated by valence-fluctuations, i.e., the
excitation of the f-impurity by adding or removing a valence electron. That res-
onance is located deep into the conduction band, or even below it. Conversely
the Abrikosov-Suhl-Kondo resonance does not involve any valence fluctuation
(if not in terms of the virtual excitations introduced previously in the discussion
of the Schriffer-Wolff transformation), but only the process of spin-flipping of
the local spin. Because of the degeneracy of the two spin states, this flipping
process has no energy cost; moreover it is evident from (6.24) that each flipping
requires the creation of a particle hole pair, so we should expect that the main
contribution to the flipping process comes from the electrons close (±TK) to
the Fermi surface that will be the only ones affected [157,179]. Because of these
reasons it is straightforward to understand that the Kondo resonance will be
localized at the Fermi surface, independently upon the energy of the f -state.

With the same line of thought, it is also possible to understand that the
width of the resonance will be related to TK . The resonance represents the
bound state of the impurity spins with a collective mode of the Fermi liquid,
particularly pronounced at the Fermi surface. Since this is an effect due to the
coherent flipping of the impurity spin, induced by the scattering of the conduc-
tion electrons, it is clear that if the incoherent flips due to thermal fluctuations
become too frequent, then the coherency gets lost and the resonance stops to
exist. So TK fixes the time scale for the critical decoherence. The width gives
an approximative idea of the (inverse) life-time of the resonance, i.e. crudely
speaking the average time that an electron needs to “escape” from it, or in
other words the time needed to loose coherence with the spin because of the
hybridization with the rest of the system. Therefore the width of the resonance
is approximately given by TK .

Wilson’s numerical RG enabled the exploration of the physical properties
below TK , but wasn’t able to give a clear picture of what happens at that
scale of energy. It was Nozieres [177] that understood what the structure of
the low-energy fixed point at T → 0 is, by realizing that it is described by
the Hamiltonian with J = +∞. In this case the problem is simplified because
one obtains that one electron gets localized into an unbreakable singlet con-
figuration with the spin on the impurity site. When relaxing the assumptions
and assuming the possibility of virtual excitations of this local Kondo singlet,
Nozieres found a form for the Hamiltonian of the electron liquid, expanding in
t/J . The elastic scattering of the electrons against the Kondo singlets causes
an effective interaction among the particles. This effect appears at the fourth
order, as a repulsive t4/J3 density-density interaction on the sites close to the
impurity. Considering higher orders, other sites get involved in the interaction.
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This describes the delocalization of the electron involved into the singlet, that
becomes increasingly delocalized decreasing J . In this way the screening cloud
gets formed.

Clearly the final picture is that of a Fermi liquid of N−1 electrons, interacting
with each other via a site dependent coupling, that is the effect induced by
the scattering agains the Kondo singlet. The existence of the correspondence
between the Kondo model and a Fermi liquid with local interaction is typically
denoted as “local Fermi liquid picture”.

The Kondo effect in the Kondo lattice: the exhaustion problem and
the modern perspective on Kondo physics

Besides the important contribution in the understanding of the Kondo effect,
Nozieres elaborated also an important critique [157,179] to the straightforward
application of the Kondo effect concepts to the KL. He pointed out that in
the Kondo lattice the picture of a Kondo effect realized on each site is quite
naive and leads to a problem named “Nozieres exhaustion”. The problem can
be stated as [180]: “if TK is the only energy scale of the problem, only electrons
within TK of the Fermi level are eligible to participate in magnetic screening of
impurities [...] the number of such effective electrons is

Neff = ρTK ≈ NL
TK

EF
� NL ” ,

with NL the number of sites, i.e. also the number of impurities. The consequence
is that, if the requirement is that the Kondo effect is realized on each site
(granting the existence of some sort of paramagnetic global Kondo singlet),
then an extremely small number of electrons has to screen an incredible higher
number of impurities. Though conceptually possible, the practical realization
of such a coherent screening phenomena seems quite improbable. Moreover
also the concept of screening cloud is dubious in the context of the KL. In fact
the screening cloud should extend spatially over many lattice sites l = vf/TK ≈
aEF /TK , so in materials with dense Kondo impurities interference effects should
be prominent. So far no experiment ever revealed such effects [133,157,180].

A first attempt to solve the problem was performed by Nozieres himself [157],
suggesting the existence of a second energy scale, the coherence Temperature
Tc � TK , that would have been the typical temperature necessary for the
formation of the coherent Kondo singlet in the lattice. However successive stud-
ies [181,182] demonstrated that TK remains the only characteristic temperature
in the KL. These results can hardly be understood in terms of the standard
arguments explained so far [180].

A radically different point of view has been recently proposed by Cole-
man [133], who considered the possibility that something conceptually wrong
is present in the “traditional” picture of the Kondo effect. The conceptually
wrong step is to consider as important for the screening only the electrons close
to the Fermi surface, instead of all the conduction electron states. This would
imply that also the “screening cloud” concept is wrong, or better, it is valid only
far from the impurity, where the electrons close to the Fermi surface (i.e. low
energy electron-hole scattering states) do rule the physics. This topic is still
quite controversial and not everybody agrees on the latter proposal, although
it solves the aforementioned conceptual problems and generates a meaningful
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background to study the physics of heavy electron compounds (see the vast
literature, for example Ref. [103,133,160–162,164,169,170,183]).

The transformations generated in the Papers C and D are conceptually very
similar to this latter proposal [133], so I will return to the topic later in Chapter
7. After familiarizing us with the concept of Kondo effect, it is appropriate to
continue explaining the third most important effect in the Kondo lattice: the
double exchange mechanism.

6.2.3 Double exchange
Double exchange is a mechanism that occurs in metals when propagating elec-
trons are present besides the local spins, and there exist a local interaction
between the hopping electrons and the local spins. It is clear that the KL de-
scribes this situation perfectly. Naively the effect can be explained as follows:
because the electrons like to hop conserving their spin (coherent hopping), then
the energy of the ground state will be lowered if two neighboring spin are or-
dered ferromagnetically (in the absence of direct spin-spin antiferromagnetic
interaction). Evidently the latter conclusion is independent upon the sign of
the local electron-spin interaction J , a fact that stresses even more the kinetic
origin of this spin-spin correlation. It is therefore clear that this mechanism is
very different from the RKKY interaction. In the double exchange it is in fact
the kinetic energy of the electrons that is optimized by a specific spin ordered
state and not vice-versa as in the RKKY, where the energy gain comes form the
spin sector of the theory.

The double exchange was discussed for the first time by Zener [184, 185],
in the context of manganese oxides compounds, trying to explain the correla-
tion between ferromagnetism and electrical conduction empirically discovered
in these materials. Later the microscopic explanation of the effect was formal-
ized by Anderson and Hasegawa [186], in a two-site toy model. The mechanism
proved itself valuable in the explanation of some features of magnetic crystals,
as was shown by deGennes few years later [187]. In these original works the
local spins were treated in a semiclassical (high S) approximation and the lo-
cal electron-spin interaction was considered ferromagnetic because of Hund’s
rule (the possibility to have local antiferromagnetic coupling would have been
discovered 10 years later, when Anderson discussed the local moment forma-
tion, as introduced previously). Under these assumptions, one discovers that
the hopping term of the electrons (obtained by direct evaluation of the overlap
integrals [186]) develops a parametric dependence on the relative orientation of
two consecutive local spins, expressible as [148,187]:

t̃ij = tij cos(θij/2),

where tij was the original hopping matrix and θij is the relative angle between
the two neighboring spins. Evidently the energy gain due to the delocalization
of the electron can be penalized or even cancelled in the extreme case of θ = π.
From this discussion one immediately understands that, in order for the double
exchange to be relevant, the spin impurities must be dense inside the system.
Therefore it is an effect relevant in the case of the Kondo lattice, but not in the
case of dilute magnetic impurities embedded in a metal.

The name “double exchange” is quite unfortunate. In fact it was clear from
the very beginning that this mechanism is quite different from the other ex-
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change effects that normally appear in magnetism [186]; in particular it cannot
be written as a direct interaction between spins. This difference comes from the
origin of the correlation between the spins. In magnetic materials it is typically
assumed that the relevant low-energy degrees of freedom, are only those of the
quantum spins on each site. These spins must have local origin and therefore
come from electrons that are localized16 by some kind of interaction (most of
the cases the Coulomb interaction). The low-energy spin Hamiltonian for the
magnetic system, i.e. the effective spin interactions, are thus generated by the
original electron processes and derived from the genuine electron models. De-
pending upon the kind of high-energy process that cause the correlation between
the electron states the low-energy effective spin-spin interaction is given differ-
ent names and, more important, different signs. The typical effects discussed in
magnetism are Coulomb exchange (Hund’s rule), direct exchange and superex-
change (both ferro and antiferromagnetic) [148, 172]. In the double exchange
mechanism the scenario is different: the electrons that generate the correlation
among the spins are not the same electrons that (after localization) generate the
spins. This extra degree of freedom given by the motion of the electrons, cre-
ates a difference between the double exchange and all the other exchanges [186],
implying the appearance of new physical effects (see Ref. [186,187]), depending
upon the specific circumstances considered.

In the KL the effect of double exchange is a bit more involved, because the
spins are quantum 1/2-spins (while the semiclassical approach is valid only with
spins where S2

local = s(s + 1), s � 1/2) and the local coupling J is antiferro-
magnetic, causing the consideration of not only the triplet local state, but also
of singlet one. In particular there exist a competition between double exchange
ordering and formation of the local singlets. An analysis of the double exchange
mechanism in the KL has been performed in Ref. [141, 142] on a two site KL
with J > 0 and I report it here. The analysis of the two site model is meaningful
because it highlights all crucial point, exactly as done in [186] for the J < 0
case.

Let us consider two spins-1/2 on two different sites on which one single
electron is delocalized and with J > 0 and diagonalize the full Hamiltonian:

H2−sites = −t
�

σ

�
c†1,σc2,σ + c†2,σc1,σ

�
+ J Sc

1 · Sf
1 + J Sc

2 · Sf
2.

The interaction does not connect the sectors with different total spin projection,
therefore the spaces spanned by states with Stot

z = 3/2 and 1/2 can be analyzed
separately (obviously the symmetric spaces with Stot

z → −Stot
z are redundant).

The physics in the Stot
z = 3/2 is the one described by [186], and it is too high in

energy if J > 0. The real ground state of the system must therefore lie in the
Stot
z = 1/2 subspace. Since the one electron Hilbert space is only 16 dimensional,

the simplest thing to to is to write down the Hamiltonian in matrix form and
diagonalize it. The lowest eigenvalue is

E0 = −J

4
− 1

2

�
J2 + 2Jt+ 4t2,

16If this is not true, but the magnetic properties (typically very tiny) arise in a regime where the
electrons are free, the phenomenon is called itinerant magnetism.



96 Chapter 6 The Kondo lattice model

0 2 4 6 80

0.25

0.5

0.75

1

0

Π�4

Π�2

x � J�t

4�3�
S 1

f
S 2

f �

A
ng
le
Θ

Figure 6.5: The spin-spin correlation function of equation (6.37), red continuous line. The angle
θ of equation (6.38), dashed blue line.

with a ground state given by

Z|ψ0� =
√
2
�
|KS�1| ⇑�2 + | ⇑�1|KS�2

�
+ (6.36)

+
t

J/4− E0

�
| ↓⇑�1| ⇑�2 + | ⇑�1| ↓⇑�2 − | ↑⇑�1| ⇓�2 − | ⇓�1| ↑⇑�2

�

where Z is a normalization constant and, among the two possible degenerate
choices, has been chosen the state Stot

z = +1/2. Here and in the rest of the
manuscript the thick arrows represent the states of impurity spins, while the
single arrow are the symbols for the occupied electron states (no thin arrow
means that no electron is present). The states |KS�i indicates the Kondo singlet
state (| ↓⇑�i − | ↑⇓�i)/

√
2 on site i.

For J/t → +∞ the state in the first bracket will be the ground-state of the
system, but in the opposite limit it will be the second bracket that dominates. It
must be stressed that Kondo singlet components are present also into the second
bracket and they must be separated out in order to make manifest the appear-
ance of the double exchange ferromagnetic ordering. This linear combination of
the Kondo singlets into the magnetically ordered solution is a recurring theme
of the ferromagnetic physics in the 1dKL.

To make manifest the ferromagnetic order induced by double exchange it
is appropriate to first compute the spin-spin correlations on the ground-state.
The spin-spin correlation (plotted in Fig. 6.5) function is

�ψ0|Sf
1 · Sf

2|ψ0�
�ψ0|ψ0�

=
1

4

3 · 2y
y2 + 2y + 4

with y =
J

t
+

�
J2

t2
+ 2

J

t
+ 4, (6.37)

where the 3 comes from the sum over the three components.
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It is clear that the more the Kondo singlet contribution becomes important,
the less the ferromagnetism is pronounced. It is possible to compute the relative
contribution of the singlet |KS� and ferromagnetic ordered |FE� parts on the
ground state [141,142], one gets

|ψ0� = sin(θ)|KS�+ cos(θ)|FE�

tan(θ) =

�
1

2

�
x+

�
x2 + 2x+ 4− 2

�
, with x = J/t. (6.38)

Evidently the ferromagnetic component becomes dominant at small coupling.
The double exchange is fundamental in order to explain the properties of the
Kondo lattice model.

6.3 The 1dKL phase-diagram
Now that this long introduction has been done, it is finally possible to focus on
the properties of the 1dKL. There are four parameters that control the system:
the bandwidth W (i.e. 2t for nearest neighbor hopping), the coupling J , the
conduction electron density nc and the temperature T . In the following just the
T = 0 case will be considered and in that case only two control parameters are
needed: the ratio x = J/t between the coupling and the kinetic energy of the
electrons (from now on the adimensional parameter x and the parameter J will
be indistinctly called coupling) and nc, determined by the chemical potential µ∗.
Following the literature I elaborated the phase diagram in Fig. 6.7. The main
contributions to the determination of this phase-diagram come from [188–190],
where the KL is solved making use of non-Abelian DMRG. These results have
been confirmed using exact diagonalization methods [191] and Abelian DMRG
[192]. A more detailed analysis can be found in Ref. [141,142,190].

In Fig. 6.7 I tried to schematically summarize all the main available results
at once. As can be seen there are many ambiguous regions, where also the nu-
merical approach has not yet given definitive answers. The analytical results are
limited to few areas, but concentrated at half-filling. There exist five different
regimes:

ferromagnetic metal: the blue area on the left that starts at nc = 0 and
J = 0 and stops at the paramagnetic black transition line;

the RKKY liquid: the paramagnetic red region extended close to J = 0 and
extends up to the crossover towards the polaronic liquid region and the
“wild” regions (these boundaries are still debated and not well determined
[141,142,190]);

the polaronic liquid: the upper green part of the paramagnetic dome, delim-
ited on left, right and top by two ferromagnetic phases and that crosses
over to the RKKY liquid and “wild” phases on the bottom;

the strange ferromagnetic metal: the blue tongue of ferromagnetism inside
the paramagnetic dome; its left and right boundaries (black thick lines)
have been well characterized; its properties are similar to the other ferro-
magnetic metal;
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Figure 6.6: Sketch of the shape of the phase diagram, from the late nineties. Reprinted figure with
permission from Ref. [158]. Copyright 1997 by the American Physical Society.

the “wild zones”: the three yellow areas; the physics is not at all understood
here, in particular between the ferromagnetic tongue and the RKKY liq-
uid, where some pockets of ferrometallic phase have been discovered [141,
142, 190], suggesting the presence of complicated competitions between
different phases;

the spin liquid: this phase behaves like a sharp singularity at nc = 1 in the
phase diagram; it is probably the most studied and most understood con-
figuration of the model, although the intermediate parameter region (and
therefore how the low coupling physics is connected to the high coupling
one) is still unknown; it is considered a prototype of Kondo Insulator.

These phases will be shortly reviewed now, but before a very short historical
introduction is necessary. The evolution of the knowledge of the KL phase
diagram is quite interesting and rich of twists. The first convincing result was
obtained by Fazekas and Müller [193] in 1991, using a mean-field approach.
They considered the competition between the magnetically ordered phases and
the formation of a global Kondo singlet, obtaining that the latter was dominating
at coupling x � 0.6; so no magnetic ordered was present above this critical
value of the coupling. Below it instead, they found stable ferromagnetic (at low
filling) and spiral spin-ordered mean field states mimicking at mean-field level
the pseudo long-range order created by the RKKY effect. In the years after,
it became clear that the mean-field result was not satisfactory, in particular
at high coupling where it was demonstrated analytically that a ferromagnetic
phase must appear [89,194]. An important step towards the solution came from
the Monte Carlo solution [195] of the KL at nc = 1/3 and 2/3 (where the sign
problem is less pronounced). This study proved that ferromagnetism indeed
exists in the KL, but is in a completely different region of the phase diagram,
with respect to what was predicted by the mean-field approach. The work
carried on in the following years, both with analytical and numerical approaches,

http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.69.809
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Figure 6.7: A sketch of the phase diagram of the zero temperature 1dKL, elaborated from the data
published in [188, 190]. The different colors represent different phases or regions. The ferromag-
netic phase and tongue (light-blue), the polaronic liquid phase (light-green), the RKKY liquid phase
(light-red) and the undefined “wild” regions (light-yellow). The thick red line at nc = 1 represents
the Kondo insultaing spin liquid phase. The thick dark lines that determines the ferromagnetic-
paramagnetic transition are well characterized. The dotted lines sketch instead the boundaries of the
zones where a determined phase exist. These boundaries do not have to be associated with any phase
transition they just intend to give an idea of where a well determined phase degrades towards a “wild”
still not well understood phase. The reader should be warned that close to half filling (nc � 0.95)
the errors of the numerical simulations grew enormously, so that part of the phase diagram is not
well understood. The details will be explained Sec. 6.3.3.

produced the phase diagram [196] sketched in Fig. 6.6. Three phases are visible:
ferromagnetic, paramagnetic and spin-liquid at half filling. This represented a
good starting point for the works of the following years, and a review on the
known properties up to this point can be found in Ref. [158].

After this blast of results the community had to wait for an important
turning point, represented by the two works of Honner and Gulacsi [197, 198],
who discovered how to conveniently bosonize the Hamiltonian of the KL away
from half filling. Using this technique they elaborated a low-energy effective
Hamiltonian for the spins, with which they characterized the ferromagnetic-
paramagnetic transition line and the properties of the system close to the transi-
tion. The result contrasted with the known phase diagram Fig. 6.6, in particular
it put an upper bound to the paramagnetic dome. This result found confirma-
tion in the non-Abelian DMRG analysis carried on few years later [188–190]. A
short review of all this kind of physics can be found in Ref. [141,142].

The last twist in the story happened only in 2012. An interesting DMFT
+ NRG result in the infinite dimensional KL [146] suggested the existence of
a strange “collaboration” between the Kondo effect and ferromagnetism; this
“collaborative state” was named spin-selective Kondo insulator (SSKI) and it
will be discussed later on. This mechanism represented a novelty in condensed
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matter physics and stimulated some of the authors of the work to check if such
a machanism was realized also in the 1dKL. The (surprising) results were pub-
lished by Peters and Kawakami in late 2012 [192]. The SSKI turned out to exist
also in one dimension, but (more important) it coincides with the ferromagnetic
metallic phase that covers the majority of the KL phase diagram. To this con-
torted, never ending story the results of paper C add a small twist, that will be
the subject of Chapter 7; here is instead more pertinent to continue with the
analysis of the KL.

6.3.1 The ferromagnetic metallic phase
Any doubts about the existence of a huge ferromagnetic metallic region, that
dominates the majority of the phase diagram, were washed away by two beau-
tiful exact results obtained by Sigrist and collaborators [89, 199]. Those works
treat the KL in the limits of infinitesimal density (one-electron only) and of
extremely high coupling (perturbative expansion in 1/J), discovering that in
both limits the ground state of the system is ferromagnetic. These two re-
sults fixes the boundaries of a ferromagnetic solution that must propagate in
the phase space until a magnetic phase transition occurs. The location of the
phase transition will be the subject of the next section. Before that, let us first
treat the two exact results in the extreme limits and the characterization of the
ferromagnetic metallic phase, as done by Peters [192], will be discussed.

S�0 nc�1S�0 nc�1

S�1�2 nc�0S�1�2 nc�0 S�1�2 nc�2S�1�2 nc�2

S�1 nc�1S�1 nc�1

� 3 J4

0

J
4

Figure 6.8: The local quantum levels for t = 0 in the
KL. S is the total spin, nc the number of conduction
electrons.

The high-coupling limit: the
result obtained in Ref. [89] is
based on a previous work by
Lacroix [194], who noticed the
formal and conceptual analogy
between the J = +∞ Kondo
lattice and the infinite-U Hub-
bard model. The idea of Lacroix
is strongly related to the con-
cepts developed by Nozieres and
his idea of “bachelor spins”, intro-
duced discussing the exhaustion
problem [157, 179, 180]. Let us
start from Nozieres picture of the
1dKL at half-filling and J = +∞.
The ground state can be obtained
from (6.1) putting t = 0 and will be composed by a lattice of local Kondo sin-
glets between an impurity spin and a conduction electron (see Fig. 6.8). To go
away from half-filling some electrons have to be removed, i.e. some singlets must
be broken and an equal number of spins left behind (named bachelor spins).

Because of the hopping term the electrons in the Kondo singlets will try to
delocalize, breaking their singlet, hopping on the unoccupied sites and forming
a new singlet. Clearly this process does not increase the energy and can as well
be seen as an effective hopping of the bachelor spins from site to site. Therefore
the KL model at filling nc < 1 can be mapped into a model of spin-1/2 holes
(so spinful fermions) moving on a lattice, where the density of the holes is
nh = 1 − nc. The only caution one has to take is that two spins cannot be on
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the same site, so it is necessary to add an infinite Hubbard repulsion among the
holes. The mathematical detail that has to be fixed is the relation between the
hopping parameter of the Hubbard model and the parameters of the KL model.
The infinite-U Hubbard model [200] can be written compactly as:

HH = b
�

i,σ

�
d†i,σdi+1,σ(1− ni,σ̄)(1− ni+1,σ̄) + h.c.

�
,

with b the hopping parameter and d†σ (dσ) the creation (annihilation) operator of
the spinful hole. Comparing the matrix elements between two states connected
by nearest-neighbor hopping processes, using this Hamiltonian and the Kondo
lattice Hamiltonian, Lacroix found

b = − t

2
.

As direct consequence all the results of the infinite U Hubbard model apply. In
particular the Nagaoka theorem, that predicts the existence of ferromagnetism
if only one hole in the Hubbard band is present. Via the mapping it means
that a single electron can ferromagnetically order the entire Kondo lattice (at
J = +∞). The extent of this ferromagnetic phase in the infinite U Hubbard
model is quite debated [7] and the existence of some critical Hubbard hole
density (i.e. Kondo electron density) that separates it from a paramagnetic
region is expected.

To go beyond these results Sigrist had to follow a similar path, defining a
non-linear canonical transformation (similar to Ref. [200]) on the Hamiltonian
(6.25), where he represented the spins making use of constrained Abrikosov
fermions

Sf
α(i) =

1

2

�

σ,σ�

f†

σ(i)τ
α
σσ�fσ�(i),

�

σ

f†

σfσ = 1, ∀i.

The complete derivation of the effective Hamiltonian can be found in the ap-
pendix of Ref. [89] and in the appendix17 A of Ref. [158], so I will not rewrite it
here, but simply comment on it. The derivation of the effective Hamiltonian goes
through the definition of non-linear operators18 that diagonalize the interaction
term. These operators create and annihilate local spin-singlets, spin triplets
and double occupied states, therefore they do not have easy (i.e. fermionic)
commutation relations. For example the operator

b†0(i) =
1√
2

�
f†

↑
(i)c†

↓
(i)− f†

↓
(i)c†

↑
(i)

�
,

if applied on an empty site, creates a local singlet on site i. Of course also
the constraint on the number of the Abrikosov fermions has to be rewritten
considering the presence of these new operators. Anyway the math can be
carried out and in particular the kinetic term can be recasted making use of
them. Conveniently new fermion operators can be defined as

f̃†

σ(i) =
�
1− c†

↑
(i)c↑(i)

� �
1− c†

↓
(i)c↓(i)

�
f†

σ(i).

17The reader should pay attention to the different notations and conventions used in the two
papers and to the presence of some annoying typos.

18In the following discussion the vacuum is assumed to be the state with no conduction electrons
and no Abrikosov fermions present. The operators defined bring the quantum system from the
vacuum to one of the 8 states of the local Kondo Hilbert space.
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These operators, when acting on the vacuum, create the state with one spin and
no electrons present (the bachelor spin states) and obey fermionic commutation
rules (among themself).

The hopping term gets very complicated, but in the high J limit it acts only
as a perturbation, and it is the interaction term (that now is diagonal) that
dominates. It is the form of the interaction term that drives the choice of the
next steps: using the non-linear operators it reads

−3

4
J
�

i

b†0(i)b0(i) +
J

4

�

i

�
b†1(i)b1(i) + b†2(i)b2(i) + b†3(i)b3(i)

�
,

where b†α(i) creates a triplet state on site. It is evident that if J → +∞ the
ground state, on which the hopping term will act as perturbation, will have
occupation number 1, on each site, for the b0 excitations and zero for bα. If
nc < 1 the states without a singlet b0 will instead contain a bachelor spin, i.e.
an f̃ -fermion. This is the complete picture at J → +∞ as Lacroix pointed out,
so to obtain the Hamiltonian for the bachelor spins, one has to write an effective
Hamiltonian with only these two degrees of freedom {b(†)0 , f̃ (†)

σ }. This can be
done using the kinetic term as perturbation on the chosen ground state, or acting
on H with a canonical transformation to eliminate any trace of operators that
contain different operators rather than b0 and f̃ (similar to the Schrieffer-Wolff
transformation). So

H̃ = e−SHeS = H + [H,S] + ...

that can be solved asking

(H −H �) + [H �, S] = 0,

where H � contains the interaction part plus the operators in the kinetic term
that include only operators {b(†)0 , f̃ (†)

σ }. One gets

�α|S|β� = �α|H �|β�
Eβ − Eα

,

where |α�, |β�, Eα, Eβ are eigenstates and eigenvalues of the (diagonal) inter-
action part. In this way the effective Hamiltonian obtained is:

H̃ = H0 +H1 +H2 +H3 +H4, (6.39)

with

H0 = − t

2

�

i,σ

b†0,if̃σ,if̃
†

σ,i+1b0,i+1 −
3J

4

�

i

b†0,ib0,i +H.c.,

H1 =
t2

2J

�

i,σ

b†0,i−1f̃σ,i−1f̃
†

σ�,if̃σ�,if̃
†

σ,i+1b0,i+1 +H.c.,

H2 = − t2

4J

�

i,σ

b†0,i−1f̃σ,i−1f̃
†

σ�,if̃σ,if̃
†

σ�,i+1b0,i+1 +H.c.,

H3 =
t2

6J

�

i,σ

b†0,i−1f̃σ,i−1b
†

0,ib0,if̃
†

σ,i+1b0,i+1 +H.c.,

H4 =
3t2

4J

�

i

b†0,ib0,i −
5t2

12J

�

i

b†0,ib0,ib
†

0,i+1b0,i+1 +H.c.,
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Making use of the constraint, that now reads
�

σ f
†

i,σfi,σ + b†0,ib0,i = 1, one
can trade local b-density operators for f̃ -density ones. The b0-operators that
sandwich the f̃ -operator’s structures can be dropped, because the b0 states can
be thought of as holes in a system with f̃ -fermions only19, and the Hamiltonian
for such a system looks, after some rearrangement, as the sum of the five parts:

H0 = − t

2

�

i,σ

f̃σ,if̃
†

σ,i+1 −
3J

4

�

i

1− ñi +H.c.,

H1 =
t2

2J

�

i,σ

f̃†

σ,i+1ñif̃σ,i−1 +H.c.,

H2 = − t2

4J

�

i,σ

f̃†

σ�,i+1f̃
†

σ,if̃σ�,if̃σ,i−1 +H.c.,

H3 =
t2

6J

�

i,σ

f̃†

σ,i+1(1− ñi)f̃σ,i−1 +H.c.,

H4 =
5t2

6J

�

i

ñi+1ñi −
t2

6J

�

i

(ñi + 4) +H.c.,

where ñi =
�

σ f̃
†

σ,ifσ,i is constrained site-by-site as ñi ≤ 1.
This is the effective Hamiltonian for the bachelor spins that is created by

the motion of conduction electrons, in a system where a local singlet is formed
on each site. Clearly H0 is the dominant term at t/J → 0 and is exactly the
same found by Lacroix. The motion of the singlets induces not just an effective
hopping for the bachelor spins, but also effective interactions. This Hamiltonian
can thus be analyzed [89] and the result is that for every number of bachelor
spins the ground-state is the one with the maximum possible spin. So at strong
coupling, i.e. at t/J → 0 the spin degeneracy is lifted and the ground state is
the maximally spin polarized ferromagnetic state, with total spin S = |nf̃ |/2,
that in KL terms means |1−nc|/2. Surprisingly the latter relation between the
density and the total spin polarization holds [196] for any value of J .

One-electron limit: Sigrist, Ueda and Tsunetsugu found the solution to this
insidious problem [158,199], although Lacroix’s mapping plus the Nagaoka the-
orem, already gave an exact result for the existence of ferromagnetic order with
one electron at J = +∞. To characterize the ground-state one starts considering
the KL with only Ising spin coupling.20 Such model has a trivial ground state,
with all the spins aligned and a free plane wave electron with spin antiparallel
(assuming J > 0 of course) to the local spins, delocalized on the entire lattice.
The total projection of the spin vector is Stot

z = |N − 1|/2. Turning on (slowly)
the flipping term, the ground-state will change adiabatically and the resulting

19Remember that b
†
0 does not create a conduction electron, but the entire singlet. Therefore the

operators b0,i does annihilate also the bachelor spin that occupies the site i. Therefore they have
no effect in the Hamiltonian, because acting on a state or they generate a zero or the vacuum of
the f̃ -fermions.

20The argument holds in any dimension and for any lattice, but here I focus on the one dimensional
case only.
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state must be written as:

|Ψ� =
N�

i=1




Aic†i,↓ + c†i,↑

N�

j=1

AijS−

j




 |0� ⊗ |FM�, (6.40)

where |0� is the electron vacuum and |FM� =
�N

i=1 | ⇑i�. The formula (6.40)
represents the linear combination of a plane wave electron with spin down and a
delocalized correlated state between an up electron and a magnon.21 In fact the
spin ladder operator generates a local (static) flipped spin, that in this model
is the fundamental excitation of the spin system (because no propagation exist
in absence of electrons). The magnon (i.e. the flipped spin) is delocalized on
the lattice, because the electron that generates it is also delocalized on the
lattice. The state (evidently ferromagnetic) is adiabatically connected to the
ground state of the previous simplified model, because the Kondo interaction
commutes with the total spin operator S2

tot and its z component Stot
z . Of course

the adiabatic connection does not imply that a state like (6.40) is the ground
state of the KL. To prove that this is the case, one has to go through the
demonstration of the following theorem [199]:

The ground state of the Kondo lattice model (in any dimension) with one
conduction electron has the total spin quantum number Stot = (N − 1)/2
and is unique apart from the (2Stot+1)-fold spin degeneracy, if the hopping
is negative (−t > 0) and the coupling is positive J > 0 (antiferromagnetic).

So to obtain the ground state one has to pick up properly the coefficients Ai

and Aij , in such a way that (6.40) is an egenstate of S2
tot with Stot = (N −1)/2.

Because (6.40) has Stot
z = (N − 1)/2 the condition to satisfy is S+

tot|Ψ� = 0.
This generates the constraint Ai +

�N
j Aij = 0, ∀i. Consequently to obtain the

ground-state, one has to solve the Schrödinger equation for (6.40), fulfilling the
latter constraint. The details can be found in the literature [141, 142, 158, 199]
and will not be repeated here.

The problem is solved easily in momentum space, in terms of the Fourier
transformed coefficents:

AK =
1√
N

L�

i=1

Aie−iKri , AK
q =

1

N

L�

i,j=1

Aije−iKrie−iq(ri−rj), (6.41)

giving as result

AK
q = − 1√

N

EK − J/4 + t
�

a e
iKa

EK − J/4 + t
�

a e
i(K+q)a

AK , (6.42)

where EK is the eigenvalue of the Schrödinger equation, that is found solving
a non-linear equation and that turns out to have the minima at K = 0. The
normalization is fixed by 1 = |AK |2 +

�
q |AK

q |2.
The details are irrelevant for the purpose of this section, while it is important

to focus the attention on one outcome of the discussion: the appearance of the
21The existence of some kind of bound state between an electron and a spin flip will be a familiar

idea from now on. The mechanism of the SSKI, the physics of the polaronic liquid and at the PM-
FM phase transition, the proposal of the composite heavy fermion and the formalism elaborated in
paper C, all end up dealing with this idea.
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Figure 6.9: (a) Example of the aspect of the modulating function A0
q in (6.42), for different values

of J fixing the momentum of the electron at K = 0. The curves represents the shape of the magnon
distribution into the polaron bound state. (b) The electron spin-impurity spin correlation functions
(main panel) and the function ξ(J) (inset), for the same values of J . The quantity ξ(J) gives the
spatial extent (the size) of the polaron.

polaron, an interesting bound state between a magnon and an electron. As can
be seen from (6.41)-(6.42), around an electron propagating with momentum K,
there exists a magnon that travels with small deviations q (the value is affected
by quantum uncertainty) from K, see Fig. 6.9a. The ground state is a linear
combination of a free electron propagating on a ferromagnetic spin chain and
a scattered state, and it can be though of as a bound state between a magnon
and an electron. This bound state is broad, with a size of many lattice sites and
a typical width that is given by the mean free path of the electron. Its spatial
extent can be determined by studying the electron-impurity spin correlation
function [158,199] of the ground-state (K = 0):

χ(r = ri − rj) = �Sc
iS

f
j� − �Sc

i��Sf
j� (6.43)

=
1

2
|AK=0|2

�
1−

�
1− E0 − J/4 + 2t

2t sinh(1/ξ)
e−r/ξ

�2
�

where

ξ−1 = arccosh
�
J/4− E0

2t

�
, (6.44)

gives the extent of the polaron, i.e. the typical distance up to which the electron
spin and the impurity spins are correlated. For J � t the correlation last for long
distances and falls down exponentially with a typical distance ξ ≈

�
2t/J � 1,

indicating that the electron can travel for long distances before getting scattered.
It also means that the electron and the magnon are only weakly bound. In the
opposite limit J � t the bound state becomes an extremely localized (it becomes
a Kondo singlet) and ξ ≈ 1/ ln(J/t), implying that �Sc

iSf
i� = −3δi,j/4.

Another important quantity is given by the correlation between the impurity
spins. It exhibits exponential behavior in the coherence length:

�Sf
iS

f
j� − �Sf

i��Sf
j� ∝ e−

r
ξ . (6.45)

Two processes characterize the polaron: the scatternig, that fixes its size, and
the propagation of the electron, that determines its internal structure. Inside the
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polaron (or between two scattering events, if one thinks in a semiclassical way)
the electron travels freely, ordering the spins ferromagnetically, as intuitively
understood in terms of double exchange. Therefore the spatial extent of the
polaron and the extent of the ferromagnetic correlation between the spins are
correlated. This property originates from the free electron component of the
wave-function (6.40). A good cartoon picture of the polaron is thus given by
an electron surrounded by many spins ordered antiparallel to it. The island of
ordered spins has the same extent as the polaron.

Summarizing: the 1dKL with only one electron has been completely solved
and characterized. The ground state is ferromagnetic with total spin Stot =
|N − 1|/2 and the electron forms a bound state with the magnon created by its
scattering events with the impurity spins. The bound state, i.e., the polaron, is
more and more localized with increasing coupling, and in the extreme limit of
infinite coupling the electron and the magnon move together as a Kondo singlet.
The polaron has a typical extent ξ that characterizes the correlation between
magnon and electron and can also be interpreted as the typical length scale
of the ferromagnetic correlation between the spins; this can be understood in
terms of double exchange. The picture of more and more localized polarons is
consistent with the strong coupling limit analyzed previously. In this sense it
is easier to imagine J as the controlling parameter of the deconfinement of the
polaron (formed by the electron and the magnon). At J = +∞ the two particles
are confined, i.e. they form an hardcore particle very well localized in space with
the size of a single lattice site, that can undergo hopping processes only keeping
the coherence between its two components. Decreasing the coupling the polaron
becomes “soft”, and the two constituent particles can “deconfine”, in the sense
that they undergo more independent hopping events. In this way the two bound
components (still keeping a certain degree of correlation) increase the size of
the polaron, that broadens and occupies many lattice sites; in doing this the
correlation between the spin of the conduction electron and the local impurity
spins is created.

The central region of the ferromagnetic phase: so far two limiting cases
have been analyzed, namely the one electron limit and the infinite coupling one.
These limits pave the way for the analysis of the more physical region of the
phase diagram at intermediate fillings and coupling. A first step towards the so-
lution was again done by Sigrist, Ueda and Tsunetsugu in Ref. [201]. Although
the work was purely numerical, they understood the key of the stabilization of
the ferromagnetic phase in the low carrier regime. In presence of more electrons
the interaction between the different polarons (i.e. the different ferromagneti-
cally ordered domains) becomes important. As long as the overlap (i.e. the
interaction) between the polarons is not too big the system keeps the global
ferromagnetic order, although the latter becomes a collective affair between dif-
ferent polarons. As a consequence one should expect some relation between the
polaron’s extent and the density: some critical density must exist, above which
the polarons become too packed, the overlaps too pronounced and a phase tran-
sition takes place. These considerations drove Honner and Gulacsi [197,198] in
the characterization of the FM-PM transition line. A nice introduction can be
found in Ref. [141, 142]. The physics at the transition will be discussed in the
next section.
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Although the boundaries of the FM phase were determined accurately in
Ref. [188–191], its nature remained somehow a mystery until the work by Peters
and Kawakami [192]. In fact the idea of an interaction between polarons is
convincing, but the exact microscopic realization is quite obscure. The results
in Ref. [192] demonstrate how the stability of the FM phase is granted by the
formation of the spin-selective Kondo insulator (SSKI). This mechanism was
originally discovered using DMFT+NRG in the infinite dimensional KL [146] in
the beginning of 2012. A subsequent DMRG study [192] of the 1d case showed
that the same mechanism takes place in the FM phase. This mechanism appears
naturally at a mean-field level, thanks to the (Majorana fermion based) map
elaborated in paper C. This mean-field picture gives a very nice description of
it, in complete agreement with the interpretations in Ref. [192].

The SSKI is naively explained by a cooperation of Kondo effect and double
exchange, realized via a highly asymmetric treatment of the two spin species
of the conduction electrons. The double exchange orders the spins ferromag-
netically (majority spins), granting a maximization of the kinetic energy of the
electrons, which gets accumulated in one spin species only (the majority elec-
trons). The interaction term contrasts this process, scattering the electrons from
one to the other spin species (the minority electrons) and generates flipped spins
(minority spins). In order to not loose the high contribution of the kinetic en-
ergy, due to the ferromagnetic coordination of the spins, the systems entangles
the majority spins and electrons with the minority ones, generating delocalized
Kondo singlets. In the wave function there are therefore two main components:
conduction (majority) electrons that travel (almost freely) on an highway of
ferromagnetically ordered spins, and Kondo singlets that take care of all the
troubles represented by the scattering terms. All the minority electrons end up
in a Kondo insulating phase, while the majority electrons behave as free (spin-
less) electrons on a lattice, generating the metallic properties. The spectral
function of the minority electrons (see Fig. 8 in Ref. [192]) shows the existence
of a gap at the Fermi level, for each value of J and nc. The gap is not present
in the spectral function of the majority electrons.

The situation can be described semiclassically recalling the polaronic picture.
Suppose that there are dilute polarons on the lattice. Each of them brings one
electron (majority) and a cloud of ferromagnetically (majority) ordered spins. If
there exist a small overlap between two polarons, then an exchange of electrons
between the two ferromagnetic islands can take place and a larger ferromagnetic
region can be stabilized, inhibiting the scattering on the overlapping boundary.
But since the existence of the scattering events is responsible for the generation
of the minority electron and spin populations, if the number of scattering events
is decreased by the coherent overlap of two polarons, clearly an asymmetry
between the majority and minority populations will occur.

Semiclassically this mechanism, given an electron density nc, suppresses the
Kondo physics, encapsulating all its effects into the creation of an optimized
number of delocalized Kondo singlets. With the formation of the singlets, the
majority electrons can propagate freely in the system, without causing any flip-
ping and therefore ordering the spins ferromagnetically. This process generates
an unusual correlation between the different quantities of the system. Assuming
translational invariance and denoting by �A� the average of an operator A on
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the ground state and on every site, one gets:

2�Sf
z �+ �mc� = �nc� − 1, (6.46)

where mc = c†
↑
c↑ − c†

↓
c↓ and nc = c†

↑
c↑ + c†

↓
c↓. This relation takes an even

simpler form in terms of Abrikosov fermions, but it becomes straightforward in
the formalism introduced in paper C, so I leave the discussion for Chapter 7.
It is very important to remark that evidence of the existence of the SSKI has
been found in both 1d with DMRG and infinite dimensions with DMFT+NRG.
This suggests the existence of a ferromagnetic phase, stabilized by the SSKI
formation, in every dimension at low fillings. This results agrees with the RG
analysis performed by Yamamoto in the 3dKL [166, 202–204], that suggested
the existence of such a phase, although in those studies an Heisenberg coupling
between the spins has been added for practical reasons. The SSKI seems there-
fore to be the key to understand ferromagnetism in the KL and a formalism
that is able to describe it in a simple way would be useful in future studies. I
argue that the approach developed in paper C fulfills all these criteria.

Concluding I would like to point out an annoying feature of the SSKI. This
mechanism is based on a very asymmetric role played by the two electron species.
The total wave-function is very complicated (entangling Kondo singlets with
the majority electron Fermi liquid) so it is difficult to imagine the structure
of the ground state. In order to do it we can think to (approximately) split
the wave-function in two parts: the first given by the Kondo singlets, where all
the minority electrons and some of the majority electrons bound to the spins;
the second where the majority electrons, left behind by the formation of the
Kondo singlets, behave as free spinless modes. It has been shown that at very
strong coupling all the electrons are bound into Kondo singlets and that it is
the effective hopping of the bachelor spins that generates the ferromagnetism.
Therefore at strong coupling the asymmetry among up and down electron species
does not seem to occur. As a consequence it seems improbable that the SSKI
can be the mechanism that stabilizes the ferromagnetism at high coupling, if
not with some variations to the (simplified) picture just introduced.

6.3.2 The FM-PM phase transition

The exact results at vanishing density and strong coupling, imply the existence
of a ferromagnetic-paramagnetic transition at some critical J-dependent elec-
tron density. This phase transition represented an enigma, until the publication
of the two works by Honner and Gulacsi [197,198]. They followed the idea that
the interaction between the polarons, and therefore the double exchange mech-
anism, is responsible for the stabilization of the ferromagnetic phase. On this
assumption they defined a sort of “smooth bosonization” procedure or “coarse
grained bosonization”. In the standard bosonization techniques the Bose fields,
representing the density or current oscillations and their momenta, are canoni-
cally conjugate and their commutator vanishes if the two fields are not on the
same site. To take into account the fact that the electron is smeared on many
sites (due to the broad spatial extent of the polaron) they considered a space
cutoff α in the definition of length, fixed by the the typical extent of the po-
laron. This uncertainty smears the bosonic fields, implying a change in the
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commutation relations that they modeled as

[φν(j),Πν�(0)] = 2iδν,ν�Jj(α),

where ν indicates the two possible sectors of charge and spin, j the distance in
lattice sites between the two field coordinates, φν(j) (θν(j)) is the Bose density
(current) field, Πν�(j) = −∂xθν(j) is the momentum of the field and Jj(α) is a
smearing function modeled as

Jj(α) =

� +∞

0
cos(kja)Λ2(k,α)dk,

where a is the lattice spacing. The function Λ(k,α) determines the smearing
in k-space. Different forms of the cut-off produce different results (and also the
normal Luttinger bosonization procedure, in the limit of α → 0, if Jj is chosen
properly), but for smooth cut-offs the authors noted no sensible difference. The
details can be found in the original papers and in Ref. [141,142].

A point that is stressed in the original papers (but not very much in the
reviews) is that this “smeared bosonization” is justified as long as the electron is
delocalized on many sites. At high coupling, where the localization due to the
Kondo effect is dominant, driving to the formation of “compact” Kondo singlets
(small size polarons), the procedure is not justified. An estimate in Ref. [197,198]
puts this limit at J/t ≈ 5, i.e. anyway quite far from the paramagnetic transition
line. Making use of this smeared bosonization procedure it is possible to expose
a term in the Hamiltonian that explicitly takes into account the effect of double
exchange effect, which is actually due to the delocalization of the electron inside
the polaron. The extra term in the Hamiltonian has the form

− a2J2

4π2vF

�

j,j�

Jj−j�(α)S
f
z (j)S

f
z (j

�),

and appears in the Hamiltonian after a properly chosen unitary transformation
[141, 142, 197, 198]. Although this term does not depend upon the Bose fields,
other operators in the Hamiltonian do have such dependence. In order to get
rid of the Bose field, i.e. to obtain a Hamiltonian for the spins only, they are
substituted by their average values on the non-interacting ground state. This
substitution is justified in the small coupling regime, where the two fields are
smooth. The final effective spin Hamiltonian reads:

Heff = −Jeff
�

j

Sf
z (j)S

f
z (j + 1) + (6.47)

+A
Ja

α

�

j

[cos(Kj) + cos(2kF ja)]S
f
x (j) +

−A
Ja

α

�

j

sin(Kj) sin(2kF ja)S
f
z (j).

where Kj is a function that counts the total Sf
z on the right and subtract the

total Sf
z on the left, therefore it is approximately zero in the thermodynamic

limit, into and close to the FM phase, and A is a normalization constant. So
the physics close to the transition is described by the first term, with

Jeff =
a2J2

2π2vF
J1(α),
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Figure 6.10: Sketch of the phase diagram of the effective spin Hamiltonian (6.47). The thick
orange continuous line is an example of a possible best fit for the FM-PM transition, according
to the form given by the formula (6.50). The top (bottom) dashed line represents a corresponding
possible boundary where the effect of disorder (order) become negligible. For more details and a
complete discussion see Ref. [197], where the best fit is plotted and analyzed in details.

plus the second one, that becomes AJa
α

�
j [1 + cos(2kF ja)]Sf

x (j). At incom-
mensurate fillings the term cos(2kF ja) oscillates randomly with respect to lattice
sites and it can (without any change in the physics) be represented by a random
variable hj described by the distribution function [197,198]

ρ(h) =
α

πAJa

�
1

1− [(αh/AJa)− 1]2
. (6.48)

This distribution function is not an outcome of the theory, but comes from
considerations [197, 198] on the spin flip processes that the random term has
to represent. Anyway, the most important final result (i.e. the location of the
FM-PM phase transition), is independent upon this choice.

It can be concluded that the (spin) physics at the paramagnetic transition
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and close to it, is governed by the effective Hamiltonian

Heff = −Jeff
�

j

Sf
z (j)S

f
z (j + 1)−

�
hjS

f
x (j), (6.49)

which is nothing but the quantum random transverse-field Ising Hamiltonian
[205], a known model that has a quantum order-disorder transition. In terms of
the KL parameters this transition occurs at

J

t
=

4π2A sin(πnc/2)

α
� +∞

0 dk cos(ka)Λ2(k,α)
. (6.50)

Clearly this formula has to be fitted to the (numerically) known critical points,
in order to obtain the α dependent prefactor. The result is shown in Fig. 6.10.
The choice of the distribution function (6.48) does not affect the location of
the transition line, but only the physics close to it and the position of the two
dashed lines.

The main outcome of this analysis is that the phase transition is expected
to happen at finite J even for nc → 1; this fact was in complete contrast
to the beliefs in the late nineties, and had to wait for the DMRG analysis
[188–190] to be confirmed. Moreover it gives an idea of the physics close to the
transition, although it must be stressed that, except for the location of the phase
transition line, the phase diagram of Fig. 6.10 is sensitive to arbitrary choices
and approximations, that makes it reliable only close to the phase-transition.
In particular at high couplings (J/t ≈ 5 in the graph) the approximation of
the smeared bosonization does not take into account the formation of compact
Kondo singlets.

For fixed density nc the relative effect of the transverse random field be-
comes more and more relevant, if compared with Jeff . This causes an increase
of the disorder in the ferromagnetic phase, that culminates at Jcrit(nc) with
the order-disorder phase transition [104, 139]. The ordered ferromagnet breaks
into independent islands of locally ordered spins, which become the low energy
degrees of freedom of the theory22 and generate a total paramagnetic phase.
This low energy effective description is well suited for the KL, where the con-
cept of islands of ordered spins appears naturally through the polarons. The
appearance of the disordered phase seems therefore perfectly consistent with
the known physics of the FM phase. For a critical value of the coupling (or
density) a coherent state among all the polarons becomes unstable, because the
overlap (so the interactions) among them increases too much. The globally or-
dered state (the SSKI) breaks and the polarons “melt” by beginning to move
independently making the system paramagnetic.

Considering that the polarons are the low energy degrees of freedom, it is
appropriate to name this phase polaronic liquid. A quite interesting observa-
tion from the DMRG analysis is that the Fermi surface in this polaronic liquid
phase is large. This result is obtained measuring the peak of the impurity spin
structure factor, shown in Fig. 6.11.

22The low energy of the dynamics is generated by the fact that any interaction among the polarons
has to flip the spin of an entire region, therefore it is a quite improbable and slow process.
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Figure 6.11: Sketch of the evolution of the peak of the spin-spin correlation function for electron
densities nc = 0.3, nc = 0.6, nc = 0.8 (respectively red, green and blue lines in both the main panel
and the inset) and varying coupling. Using the DMRG approach [188], the spin-spin correlation
function can be computed and its peak determined. The evolution of the peak is plotted in the main
panel. As evident from this sketch, when the system goes form one zone of the phase diagram to
another, the location of the peak changes. At J/t = 0 it is equal to 2kF (where in these units
2kF = nc) for each curve and that value remains as long as the system is in the RKKY liquid
phase (first plateaux of each curve). In correspondence of the polaronic liquid the value of the peak
falls to 2kF − π, showing the existence of a large Fermi surface (second plateaux of the green and
blue lines). Instead in the ferromagnetic phases the peak is located at zero; all the curves fall to
zero beyond a critical coupling that corresponds to the PM-FM transition, but the blue curve has
an extra region where the peak falls to zero, in correspondence of the ferromagnetic tongue. In the
wild zones the peak is instead in a transient regime, that is very visible in the red curve of the main
panel. The exact datas can be found in Ref. [142,188], from which this sketch has been inspired.

6.3.3 The RKKY liquid, wild zones and ferromagnetic
tongue

In the phase diagram, inside the paramagnetic dome, there are some regions
that still represent a challenge: the RKKY liquid phase, the wild regions and the
ferromagnetic tounge, that can be seen in red, yellow and blue in Fig. 6.7. With
the term RKKY liquid is meant the paramagnetic region of the phase diagram
where the RKKY behavior is dominant and causes a peak in the structure factor
S(k) of the impurity spins. This peak is the remnant of the divergence (6.34),
that is suppressed by the 1d quantum fluctuations. As can be seen in Fig. 6.11
below nc = 1/2 the peak of S(k) is always localized at 2kF for each J < Jc,
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marking the dominance of RKKY physics, and then at k = 0, indicating a phase
transition to the ferromagnetic phase. Increasing nc the evolution of the peak
marks two transitions: from 2kF to 2kF − π and from 2kF − π to zero; this
indicates that the system passes first from the RKKY liquid phase to a heavy
fermion one (polaronic liquid) and then, at higher J , from the polaronic liquid
phase to the ferromagnetic one (PM-FM disorder-order transition). At higher
fillings, the transition between the RKKY and polaronic liquid is separated by
another ferromagnetic phase, i.e. the “tongue”, indicated by the dashed line in
Fig. 6.11. About this tongue FM phase not so much can be said, except the
fact that it looks similar to the other FM one.

As pointed out in Ref. [141, 142, 190], the boundaries between these differ-
ent regions are not very well marked (see data plots in Ref. [141, 142, 190] and
Fig. 6.7). Under the ferromagnetic tongue there exist a region where a compe-
tition between the RKKY effect and the FM ordering becomes more significant
and makes the phase diagram complicated, causing the appearance of other fer-
romagnetic pockets. Moreover the transition between the RKKY liquid and the
polaronic liquid, as well as the nc < 1/2 transition between the RKKY liquid
and the FM phase, go through a set of intermediate states.

All this confusion can be explained by an important consideration, present
already in Ref. [158]: there is no nontrivial limit where the conduction electrons
and the localized spins can be considered independently in the 1dKL. This seems
particularly true in the case of the competition between the RKKY and the
Kondo effect. The first seems dominating only in the very weak J regime,
but quickly looses its importance and becomes seriously affected by the Kondo
physics.

The evidence suggests that in the 1dKL the concept of the RKKY effect is
not very well defined, because the regime of parameters where it is dominating
and (almost) unaffected by the Kondo physics is eventually very small (or maybe
absent). The only exception is given by the special phase that appears at nc = 1,
where the RKKY effect, tries to order the system antiferromagnetically. Up to
now the physics that comes from the collaboration of the RKKY and the Kondo
effect is still quite debated and not fully understood [103,104].

6.3.4 The spin-liquid phase at half-filling
This is probably the most studied phase of the 1dKL. What makes the value
nc = 1 different from all the others is the particle-hole symmetry. In fact
on bipartite lattices, if the Hamiltonian is particle hole symmetric as in the
case of the KL, the physics at nc > 1 is obtained from to the one at nc < 1,
through particle-hole transformation. This makes nc = 1 a very special point,
characterized not just by the invariance with respect to the operators Stot

x,y,z,
generators of the rotation symmetry group SU(2), but also to the pseudospin
operators Ix,y,z of the conduction electrons [158,206–208] (see also appendix C
for a quick introduction to the pseudospin concept). The latter symmetry is
broken away from half-filling, because the chemical potential enters multiplied
by Iz.

The existence of this extra symmetry changes completely the physics of the
system, forcing it into a so called “spin liquid phase”. A spin liquid phase is a
quite general term that indicates a huge variety of systems without any long
range spin order [153]. Typically a spin liquid is obtained starting from a (Neél)
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ordered state and adding frustration via next-nearest-neighbour spin-spin inter-
actions. When the classically ordered ground state becomes degenerate with
other states that differ by local spin flips, then one expects that the quantum
fluctuations will destroy the order, leaving the system in a globally paramag-
netic state. A classical example of spin liquid is given by Anderson’s resonant
valence bond system.

In the case of the 1dKL it is the Kondo interaction that induces the frustra-
tion on the spins, preventing the formation of long range order. It also causes
the development of gaps in both the charge and the spin sectors, making the
1dKL a prototypical Kondo insulator. The physics of this phase is not trivial,
so it is a very good idea to carefully define what is meant by “gap”. In the
literature four main gaps have been defined in the half-filled KL [158], but just
three are important for the rest of the discussion:

i. the spin gap: the spin gap ∆s[J ] is the energy required to excite the lowest
energy quantum state with total spin different from zero, without changing
the number of electrons

∆s[J ] = Egs(J,Nc = L, I = 0, S = 1)− Egs(J,Nc = L, I = 0, S = 0),

where L is the number of sites and Nc the number of electrons; this can
be done exciting a local spin triplet for example;

ii. the charge gap: the charge gap ∆c[J ] is the energy required to excite the
lowest energy quantum state with total pseudospin different from zero,
without changing the number of electrons

∆c[J ] = Egs(J,Nc = L, I = 1, S = 0)− Egs(J,Nc = L, I = 0, S = 0);

this state is for example realized by exciting a particle-hole pair, i.e. a
linear combination of |0� and | ↑↓�;

iii. the quasiparticle gap: this is the energy required to remove one electron
from the system, independently upon the spin or isospin configuration of
the Nc − 1 state.

∆qp[J ] = ENc−1(J,Nc = L− 1)− Egs(J,Nc = L, I = 0, S = 0);

by definition this is the important quantity that has to be studied when one
wants to break the Kondo insulating state varying the chemical potential,
in the fashion of the normal band insulators, that become conducting only
if a critical value for the chemical potential is reached.

The origin of the gaps is the crucial question that physicists have tried to
answer. A complete analysis requires the characterization of the structure of
the ground state. This is an issue because of the absence of a phase transition
between the behavior at low and high coupling, that are instead connected by a
smooth crossover [145, 158, 208–210]. To understand how the properties of the
high coupling limit are smoothly connected with those at low coupling (where for
example it exist a local antiferromagnetic spin order) is quite a challenge. This is
the umpteenth return of the unsolved riddle encountered away from half-filling:
how is it possible to understand the combined effect of the RKKY and Kondo
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mechanisms? The difference at nc = 1 is that the ferromagnetism is excluded
from the picture, because of the unbroken pseudospin symmetry, and just the
other two main characters are left. This makes the problem more treatable and
allows for the derivation of some exact results, that are fundamental for the
understanding of the nature of the ground state. The most important feature is
that the the ground state is a total singlet. This is formalized by the following
theorem

The ground state of the half-filled Kondo lattice model is unique and has
S = 0 for any J > 0 and in any dimension if the lattice is bipartite.

The original forms of the theorem and the proof can be found in Ref. [158,211–
213]. This theorem immediately complicates the task, because it implies the
presence of no long-range magnetic order in the system. However it does not
exclude the existence of a local magnetic order, that in fact exist as proved by a
second rigorous result. The theorem is demonstrated in Ref. [214] for the PAM,
but holds also in the KL limit:

Consider the ground state of the symmetric PAM at half filling |GS�
(on a bipartite lattice). At any U ≥ 0 [with U defined in (6.3)] and in
any dimension, the equal-time spin-spin correlation function between two
“supersites” (�r, γ), (�r�, γ�)

Sγ,γ
�
= �GS|Sγ(�r)Sγ�(�r�)|GS�,

with γ, γ� = c, f is

i. positive or zero, if γ = γ� and �r, �r� are in the same sublattice,
ii. negative or zero otherwise.

As shown in Ref. [158] this theorem means that in the 1dKL we have to expect a
maximum for both the impurities and electron spin-spin structure factor at q =
π. In practice it means that the system is locally ordered antiferromagnetically
and that the correlation between local impurity and electron spins is negative
(i.e. if the impurity spin points up, then the local electron spin will point down).
Of course this is not in contrast with the previous theorem, because it does not
imply the development of any long range order. This result was anticipated
numerically by the results published in Ref. [215].

Although these two rigorous theorems give the exact structure of the ground
state, they do not give any information about the nature of the gaps. To dis-
close these properties it is necessary to decrease the ambitions and use some
approximation. The strong coupling limit permits a study of the gaps and
their dependence upon J/t, using a perturbative expansion around the limit
J/t → +∞. The details can be found in Ref. [158, 207, 210] and here I will
report only the formulas for the gaps, valid at second order in the perturbative
expansion.

i. ∆s(J → +∞) = J − 20t2/3J , where the spin excitation are given by the
creation of local triplets [210].

ii. ∆c(J → +∞) = 3J/2 − 2t + t2/3J , is different from the spin gap. This
is an interesting feature that does not appear in normal band insulators.
In Ref. [158] the appearance of these two energy scales were interpreted
as a manifestation of charge-spin separation in 1d, but in Ref. [216, 217]
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it is instead proved that such separation does not happen in the 1dKL,
implying that the reason for the development of the two different energy
scales must be different.

iii. ∆qp(J → +∞) = 3J/4− t+ t2/6J = ∆c/2, this result is quite interesting.
In particular the factor 3J/4 that is due to the breaking of a local singlet
that has to be done in order to add or remove a particle to the system.
The importance of this fact will be remarked later discussing [165, 218]
and paper C, suggesting a close relation between the formation of Cooper
pairs in BCS and of Kondo singlets in the KL.

These results do not extend down to J/t → 0 and unfortunately a perturba-
tive expansion program at J/t → 0 cannot be carried out, because the ground
state at J = 0 does not share the structure of the KL one, as mentioned pre-
viously. Other strategies must be used, both from an analytical and numerical
point of view. In fact the problem gets more complicated also numerically, be-
cause of the non-local correlation existing among the spins. Anyway at low
coupling the gap has been characterized succesfully [145, 158, 206–210], disclos-
ing an unusual behavior. Of course all the gaps tend to zero approaching the
non-interacting regime, but they do so in different ways [158]. The spin gap
evolves as

∆s(J → 0) ∝ exp

�
− 8πt

3aJ

�
.

This energy scale should be compared with the Kondo temperature of the single
impurity (6.35), which turns out to be smaller. This means that the character-
istic spin energy scale of the KL is higher than the one of the single impurity
system, indicating that physics different form the usual Kondo effect is impor-
tant to describe the system. The charge gap evolves instead as [158]

∆c(J → 0) ≈ J

2
,

i.e. it goes to zero much slower than the spin gap, implying a divergent ratio
between the two quantities [207].

The analysis at low filling, has been carried out successfully by Le Hur
[216, 217], making use of non-Abelian bosonization, and Tsvelik [219], creating
a mapping on the O(3) non-linear sigma model. Although beautiful, these two
approaches have limitations. In fact the non-Abelian bosonization scheme de-
scribes extremely well the low energy physics, but relies on perturbative treat-
ment of the interactions, so for large J it is not reliable. The map to the
non-linear sigma model instead is based on semiclassical arguments that are
acceptable at J � 1, but becomes suspicious otherwise.

Chronologically the latter analysis was performed first. It is based on the
continuos path-integral representation of the Euclidean action for the spins
[152, 153, 220], that relies on the identification of the Berry phase for the lo-
cal spin field. The spin field is then decomposed23 in slow and fast components,
where the latter are then integrated out. In this way an effective Lagrangian,
that describes the slow varying components interacting with the fermions, is

23This is the semiclassical step, taking into account an antiferromagnetic predisposition of the
spins, so that the fast varying components of the field are the ferromagnetic ones, while the slow
ones give the antiferromagnetic structure
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obtained. The electron field is subsequently integrated out, but its determinant
is computed exactly, thanks to a formal equivalence with the effective action of
the gapless excitations of the Gross-Neveu model with U(M)×SU(N) symme-
try [219]. In turn this permits to write down an effective action for the slow
varying components of the spin field only. This generates a modification in the
effective Lagrangian for spin chains, adding an extra topological term to the
usual Haldane term [152, 153]. The final effect is that the spin excitations be-
come massive (gapped), in agreement with the numerical results [219]. It also
shows that at small coupling the excitations are massive triplets and that the
correlation lengths are very large, indicative of the fact that the RKKY effect
dominates at small J .

A problem of this solution is that it gives no indication about the behavior
of the electrons, because it focuses on the effective Lagrangian for the spin
field. The results of Le Hur [216, 217] do not share this limitation. The use of
non-Abelian bosonization enables to treat spin currents in a more rigorous way,
taking into consideration the involved commutation relation that the Lie group
algebraic structure of the spin operators induce on the spin currents. Besides
this (non-trivial) complication it proceeds as the usual bosonization, identifying
the charge and spin current operators for left an right movers. The derivation
is rather technical and can be found in the original papers. The results instead
are very neat and interesting.

What is found is that the KL at half filling is gapped in both the spin and
charge sectors, with a gap that varies linearly with the coupling, accompanied by
a weak (local) antiferromagnetic order. The reason for the appearance of the gap
for the electrons is quite natural: although the antiferromagnetic order for the
spin is not long ranged, the electrons feel the local staggered potential and they
scatter coherently as if the system was a perfect antiferromagnet. The charge
gap opens and the electrons develop a spin density wave structure, triggered
by the local spin order. This process also suppresses the typical charge-spin
separation.

The scenario at low coupling seems therefore quite clear and it follows well
the description given by the RKKY picture, if one considers also the backscatter-
ing of the electrons on the locally antiferromagnetic spin configuration. Instead
at high coupling everything change and a new ideas must come out. An inter-
esting prospective has been developed by Eder and collaborators in [165,218].

In those works the authors started considering the ground state of the infinite
coupling Kondo lattice |KI�, that is given by a set of Kondo singlets: one for
each lattice site. On this ground state the excitations are of the particle-hole
kind: an electron is taken from a site and put to a nearest one, leaving behind
a bachelor spin and forming on the new site a local singlet with the electron
already present there. These excitations are evidently stimulated moving away
from the J → +∞ limit and can be modeled using two fermionic operators
aσ(j) and bσ(j): with a†σ(j)|KI� a bachelor spin state |σ� is created on the site
j; performing instead with b†σ(j)|KI� the state | ↑↓�⊗ |σ� is created. Evidently a
charge fluctuation of the vacuum pairs a fermion a with a fermion b, which have
to be created or annihilated in pairs. The conduction electron hopping term
allows these fermions to propagate in the lattice, in the same fashion explained
in Sec. 6.3.1.

Under the assumption that the hopping of a and b does not leave behind
an excited state (i.e. a triplet state like for example | ↑⇑�), then the motion



118 Chapter 6 The Kondo lattice model

of these two fermionic excitations is coherent, which means that the particles
do not loose energy decaying into different states. This makes the description
of the charge fluctuations possible in terms of fermionic operators only and a
general effective Hamiltonian (valid only under these hypothesis and enforcing
no double occupancy of any site) for the fermions a and b can be written down
as:

H =
�

i,σ

∆a†σ(i)aσ(i) + ∆̄a†σ(i)aσ(i) +
�

i,j,σ

Vi,jb
†

σ(j)a
†

σ(i) + h.c.+

+
�

i,j,σ

V �

i,ja
†

σ(j)aσ(i) + V ��

i,jb
†

σ(j)bσ(i). (6.51)

The coefficient has to be fixed comparing the matrix elements of this matrix with
those of the KL Hamiltonian. The result is [165,218] Vi,j = −V �

i,j = V ��
i,j = ti,j/2

and ∆ = ∆̄ = 3J/4, leading to

E± =
�(k)±

�
4∆2 + �(k)2

2
, (6.52)

with �(k) a free electron band with bandwidth 2t. This is exactly the same result
obtained hybridizing a flat band f with a cosine like c band and that leads to
the avoided crossing typical of the Kondo Insulators, shown in Fig. 6.2b. The
most interesting result of this analysis is the origin of the gap, that resemble
very much a superconductive gap, due to the fact that to create an excitation
it is necessary to break a Cooper pair; in this case the role of the Cooper pairs
is played by the Kondo singlets, while the condensate is the ground state |KI�.

The reader should keep in mind this picture analyzing the paper C, be-
cause the result at half filling have exactly the same character. Moreover also
the SSKI state away from half filling suggest an analogy with the physics of
superconductivity.



Chapter 7

Introduction to Paper C

7.1 Majorana fermions and the Kondo lattice

A spin-1/2 system can be represented and studied in terms of Majorana
fermions [37, 38, 74, 221–224] and attempts to use the same approach
have been made also in the Kondo lattice [36,225–227], in the two chan-

nel Kondo model [75] and in the t-J model [84]. As mentioned in Chapter 3 and
explained thoroughly in paper A, su(2) spin operators can be represented using
three Majorana fermions µ1, µ2 and µ3 as Sk = −i�ijkµiµj . The description of
low energy spin-1/2 degrees of freedom is very convenient in the three Majorana
description, since it gives a faithful representation of them: no constraint must
be enforced on the Majoranas in order to obtain that S2 = 3/4. This is quite
different than (for example) slave fermions techniques, where the spins are rep-
resented in terms of projected f-impurity fermions [172]. Because of this reason,
an optimized trial state constructed using the Majorana representation of the
spins is a strict variational upper bound to the true ground state energy [226],
although some care has to be taken when studying the system [228]. Although
interesting this is not how the Majroana representation has been thought and
used in paper C, where instead the spirit of paper A has been followed.

In paper C the three Majorana representation of the spins, applied to the
KL model, is seen as the result of the Schrieffer-Wolff transformation. This
is easily understood using the example (3.2.2), since the term (3.17) appears
in the symmetric PAM as in (6.3) and it is the limit of its coupling constant
U → +∞ that gives rise to the KL model. In fact, the local interacting term of
the f-electrons in the symmetric PAM is:

U

�
f†

↑
f↑ −

1

2

��
f†

↓
f↓ −

1

2

�
= Uµ1µ2µ3µ4, (7.1)

where

f† =





µ1+iµ2√
2

−µ3+iµ4√
2



 . (7.2)

In the light of the concepts explained in paper A and Section 3.2, it is clear that
if the f-impurity fermions are represented in terms of their holon and hyperspin
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components, then it is straightforward to identify the energy separation of the
Hilbert space of the local f-electrons into two sectors: the low energy sector at
−U/4, containing the states with one f-holon (i.e. one f-fermion)

h†

f = [(2iµ1µ2µ3) + iµ4] /
√
2

on each site, and the high energy at U/4 containing those with no holon present
(i.e. empty or doubly occupied). The rationale behind of the shift −U/4 in (7.1)
thus becomes clear, so it is convenient to cancel it adding an extra U/4 to the
symmetric PAM Hamiltonian, retrieving its typical form (6.3). As explained
previously, the local low energy space of the f-impurity sector of the theory is
two dimensional, because of the hyperspin sector of the Hilbert space:

Hf,low = |1f,holon� ⊗ {| ⇑�f , | ⇓�f} = {| ↑�f , | ↓�f}.

It is clear that these states are associated with the local quantum levels of the
impurity spins. The total local Hilbert space is therefore obtained multiplying
Hf,low by the (local) conduction electron Hilbert space, spanned by

{|0�c, | ↑�c, | ↓�c, | ↑↓�c}.

As a consequence, the KL Hamiltonian can be rewritten in terms of the four
Majoranas of the conduction electrons γ1, γ2, γ3, γ4, plus the three Majoranas
µ1, µ2, µ3 that appear in the su(2) spin operators, which in the U infinite limit
coincide exactly with the hyperspin ones. This Majorana form of the Hamil-
tonian can be obtained also without any prior knowledge about the non-linear
transformations of the Hilbert space, starting from the original KL model and
using the Majorana based representation of the impurity spin operators [74].
Choosing the same gauge (7.2) for the representation of both the f and c spinors,
the KL Hamiltonian represented on the Majorana fermions is thus:

HKL = −it
�

i

(γ2,iγ1,i+1 − γ1,iγ2,i+1 − γ4,iγ3,i+i + γ3,iγ4,i+i) +

−µ∗
�

i

(1− iγ1γ2 + iγ3γ4) + J
�

i

�

α

Sα
c,iS

α
f,i, (7.3)

where the Sα
f,i are the su(2) operators of the holon-spinon representation of the

f -fermions operators (the sum on the indices is suppressed):

Sα
f = −i�αβσµβµσ,

and the Sα
c are instead the spin operators of the conduction electrons. Using

the usual fermionic representation

Sα
c =

1

2

�
c†
↑
, c†

↓

�
σα
a,b

�
c↑
c↓

�
, (7.4)

one discovers that

Sx
c = −i

γ2γ3 + γ1γ4
2

, Sy
c = −i

γ3γ1 + γ2γ4
2

, Sz
c = −i

γ1γ2 + γ3γ4
2

. (7.5)

The different form of these operators, with respect to the f -impurity ones, is
due to the fact that in the case of the f-impurity fermions the constraint of unit
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occupancy of the holon is fulfilled exactly in the Hilbert space of the KL, so the
hyperspin operators coincide with the spin ones. This is clearly not true for the
c-fermions, where the dynamic of the c-holon is not (in general) frozen by the
interaction. So all four γi Majoranas are still present.

Looking at (7.3) one can understand that there is an annoying feature hidden
within this representation: the presence of the extra third Majorana in the
spin representation, i.e. the fact that seven Majoranas and not six are in the
Hamiltonian. This feature was present also in the original works by Coleman,
Miranda and Tsvelik [225–227], who tried to follow this path. An innovative
way to look at it was developed few years ago and can be found in Ref. [229].
In that work it was pointed out that an exchange of the Majorana γ4 with the
three-composite 2iµ1µ2µ3 is a proper unitary transformation, that leaves the
Hamiltonian with six Majoranas; in other words it was proved that one of the
Majoranas is actually redundant, so in this representation a half-fermion degree
of freedom is unnecessary. Performing this exchange, the six Majoranas left can
be recombined into three spinless fermion which are enough to describe the local
Hilbert spaces of the KL. Of course there exists quite an arbitrariness in the
definition of these three fermions, since the six Majoranas can be combined in
many different ways. The original proof makes use of the numerical procedure
described in Ref. [26]; in paper C a mapping that permits verification of the
validity of the transformation by direct inspection is elaborated and then the
new three fermion representation is used in the analysis of the KL.

Formally the exchange

γ4 ←→ 2iµ1µ2µ3, (7.6)

is performed by a non-linear transformation of the degrees of freedom. This
transformation is generated by an object of the kind shown in (3.14); in terms
of Majoranas the transformation1 is given by

R = exp
�
−i

π

2
γ4µ1µ2µ3

�
. (7.7)

Clearly this transformation is not at all different from the transformation (3.14).
The real difference between the two situations is that in this case the Hilbert
space is the 8 dimensional Kondo one, so the effect of these kinds of non-linear
transformations is not as trivial as in the Hubbard case. One can consider this
transformation as a final part of the Schrieffer-Wolff one, able to turn it into
a canonical transformation, i.e. a transformation that starts from a fermionic
description of the PAM and gives a fermionic representation of its low energy
sector (the KL).

It is important to stress that the final representation of the local KL Hilbert
space is in terms of three unconstrained fermionic degrees of freedom. This goes
much beyond the previous purely fermionic representations of the KL, that in-
stead required the presence of four constrained fermions. Our representation
is instead constraint free and faithful, generating no extra states in the Hilbert
space. Equivalently, our transformation realizes an analytically exact implemen-
tation of the constraint of unit occupancy of the f-electron states. The final form

1For sake of elegance in this formula the convention of (3.14) is used, where the Majoranas have
the property γ2 = 1, so the generated exchange is γ4 ←→ iµ1µ2µ3. In the other convention
instead it becomes 4iγ4µ1µ2µ3, which also squares to −1.
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of the Hamiltonian is:

HM = −it
�

n

(γ2,nγ1,n+1 − γ1,nγ2,n+1 + γ3,nγ0,n+1 − γ0,iγ3,n+1) + (7.8)

+
J

4

�

n

i (γ1,nµ1,n + γ2,nµ2,n + γ3,nµ3,n) +

+
J

2

�

n

(γ2,nµ2,nγ3,nµ3,n + γ1,nµ1,nγ3,nµ3,n + γ1,nµ1,nγ2,nµ2,n) +

−µ∗
�

n

(1− iγ1,nγ1,n − iγ0,nγ3,n) ,

with
γ0 = 2iµ1µ2µ3,

used as short-hand notation. Of course the final non-linear transformation
makes the kinetic term more involved, exactly as the similar ones used in the
Hubbard [25,83] and t-J model [85–88] do; the interacting term becomes instead
partially quadratic. Moreover it is interesting to point out the nature of the final
c-density term, which is now partially quartic.

The studies in papers C and D tackle the previous Hamiltonian in two dif-
ferent ways. In paper C the fact the final Hamiltonian can be represented in
terms of fermions only is used; in paper D an approach that instead relies only
on the Majorana representation is developed.

7.1.1 Non-Linear Mean-Field study
In paper C we used the fact that the the Hamiltonian (7.8) can be represented
in terms of three fermions only. Starting from the six Majoranas γ1, γ2, γ3,
µ1, µ2, µ3, the (ad hoc) built fermionic operators are:

c† =
γ1 + iγ2√

2
, f† =

µ1 + iµ2√
2

, g† =
γ3 + iµ3√

2
. (7.9)

With these definitions the eight states of the local Hilbert space of the KL ac-
quire a fermionic structure and an exact map, shown in Section III of paper
C, between the new representation and the old one (in terms of conduction
electrons and impurity spins) is established. For the sake of completeness I
report here also the representation of the the cgf -fermions creation and anni-
hilation operators in terms of the previous conduction electrons and impurity
spin operators.

c† = c†
↑
, (7.10)

g† = −1

2

�
c†
↓
+ c↓ + (c†

↓
− c↓)2S

z
f

�
, (7.11)

f† = −i(c↓ − c†
↓
)S+. (7.12)

From a formal point of view, this mapping creates a new spinor, based on
the SU(3) symmetry group. In fact the three singly occupied states form an ir-
reducible representation of the SU(3) group, whose generators can be expressed
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in terms of combinations of bilinear and quadrilinear Majorana2 operators. Al-
though interesting, this aspect is is not developed in the paper.

Of course the map established in (7.9), from now on called cgf-map, is not
unique, but this particular choice is quite appropriate for the description of the
ferromagnetic phases of the KL. This can be understood by representing and
studying the Hamiltonian in terms of the cgf -fermions:

Hcgf = Hc +Hde +HJ +Hchem, (7.13)

with

Hc = −t
�

n,δ

�
c†ncn+1 + c†n+1cn

�
, (7.14)

Hde = +t
�

n,δ

��1
2
− f†

nfn
��

g†n − gn
��

g†n+1 + gn+1

�
+ (7.15)

−
�1
2
− f†

n+1fn+1

��
g†n + gn

��
g†n+1 − gn+1

��
,

HJ =
J

4

�

n

�
1− c†ncn − f†

nfn − g†ngn + 2c†ncnf
†

nfn
�
+ (7.16)

+
J

4

�

n

2g†ngn
�
i(c†nfn − f†

ncn)
�
.

The last term Hchem is given by the chemical potential:

Hchem = −µ∗
�

n

�
c†ncn − f†

nfn − g†ngn + 2f†

nfng
†

ngn + 1
�
.

There are two unusual features in this Hamiltonian: the presence of an involved
hopping term Hde, that correlates the hopping of the fermion g with the density
of the fermion f ; the partial quartic form of the conduction electron density
operator.

Of course to treat this Hamiltonian some approximations must be used. In
paper C the simplest possible treatment is undertaken: a mean-field approxi-
mation. In order to do this, a symmetry that simplifies the problem is identified
and imposed. It is in fact easy to check that the operator

�

n

A3(n) =
�

n

{iγ1(n)γ2(n) + iµ1(n)µ2(n)} , (7.17)

commutes with the Hamiltonian (7.13). We decided to keep this symmetry,
enforcing it also at the mean-field level, and so simplifying significantly the
problem. In fact all the hybridization channels between the g-fermions and the
other two get closed, together with all the superconducting c-f hybridization
channels. The mean field Hamiltonian gets thus separated into two parts: a c-f
part and a g part, and no quantum process, but only semiclassical ones (via

2Of course these operators can also be written in the original conduction electron creation and
annihilation operators, together with the impurity spin ones.
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the mean-fields), connect these two sectors. These two parts can be found in
Section IV of paper C and I rewrite here only the kinetic term of the g-fermions,
that comes from Hde:

HMF−de
g = t

�

n

��1
2
− Fn

��
g†n − gn

��
g†n+1 + gn+1

�
+ (7.18)

−
�1
2
− Fn+1

��
g†n + gn

��
g†n+1 − gn+1

��
.

Evidently if the mean-field Fn = �f†
nfn� has no spatial modulation (i.e. it is

the same on each site n), then a common factor can be gathered in front of the
sum, leading to

HMF−de
g =

�
1

2
− F

�
2t

�

n

�
g†g̃ + g̃†g

�
, (7.19)

that is a normal fermion hopping term, with a renormalized bandwidth. If now
one notices that according to (7.12)

1

2
− Fn =

1

2
− �f†(n)f(n)� = �−Sz(n)�, (7.20)

with Sz(n) the spin operator of the impurity spin on the nth site, then it
becomes clear that the renormalization term in front of HMF−de

g has purely
magnetic origin. If the KL is ordered ferromagnetically and fully polarized,
then the kinetic term of the g-fermions is maximal; instead if the polarization
is partial, because some spins are reversed by the Kondo scattering, then the
hopping of the g-fermions becomes (on the average) more difficult and the kinetic
term looses efficiency. This looks very much like the double exchange effect. This
interpretation is also supported by a quick look at (7.11) where it is evident that
if �Sz(n)� = 1/2, then g† = c†

↓
. So if the impurity spins are fully polarized and

have ferromagnetic order then the g- and c↓-fermions coincide. Therefore the
g-sector of the mean-field Hamiltonian describes the majority electrons.

It is worth pointing out that a renormalization effect of the conduction band
is obtained naturally, at mean field level, in our formalism. Typically, to observe
such effects, much more involved techniques (such as Gutzwiller projection)
must be used. This is an indication of the large number of physical effects
that can be addressed when studying a system using Majoranas and non-linear
transformations.

Another interesting property that strongly suggests that this formalism is
very much suited to the study of the ferromagnetic region of the KL, is the fact
that the symmetry operator (7.17), can be rewritten as

�

n

A3(n) =
1

2

�
2Sz

f + n̂c + m̂− 1
�
, (7.21)

with n̂c = c†
↑
c↑ + c†

↓
c↓, m̂ = c†

↑
c↑ − c†

↓
c↓. So at mean-field level, this necessarily

implies that

C = 2�Sz
f �+ �nc�+ �m� − 1, (7.22)

with C a real constant. This is exactly the same unusual commensurability
operator (6.46) discovered in 2012 [192]. The mean-field analysis of the solutions
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(see paper C) reveals that there exists a large region of the mean-field phase
diagram that occupies the same position of the SSKI and that also has C = 0,
in perfect agreement with the DMRG results.

The detailed characterization of the mean-field solutions can be found in the
appended paper, so I will not repeat it here. The analysis shows, at low coupling
J , the existence of two translational invariant, magnetic, possible configurations
of the ground state. The first (FM-I) has the characteristics of the SSKI, so the
local spins have ferromangnetic order, the commensurability parameter is zero,
the total spin polarization follows a linear dependence with the electron density3

and there exist a big imbalance between the populations of c↑ (minority) and
c↓ (majority) electron species. For a critical, J-dependent, value of the electron
density ncrit(J) the FM-I phase experiences a second order phase transition and
turns into a second ferromagnetic phase FM-II, which survives up to half-filling.
The transition line, for J � 2, is quite close to the known FM-PM transition line
characterized by the DMRG studies, so the FM-II phase is located inside the
paramagnetic dome. This phase competes with the spiral spin ordered mean-
field solutions (which are the best mean field realization of the RKKY liquid
phase), and (surprisingly) outperforms them also at very low couplings, show-
ing the importance of the entanglement between the spins and the electrons,
which evidently is more important than effect of non-local ordering. The FM-II
is therefore a possible ferromagnetic trial ground state, which beats the spiral
ordered mean-field solution and that extends up to half-filling. Indeed it seems
a perfect natural mean-field candidate for ground state of the phase in the fer-
romagnetic tongue. Moreover, exactly as the ferromagnetic tongue, this FM-II
phase disappears for J � 2. To my knowledge, there are no other theoretical
proposals that are able to justify the ferromagnetic tongue, i.e. that are able
to describe a low energy ferromagnetic state (able to outperform energetically
the spiral spin ordered mean-field state) at fillings nc � 1/2. Of course this
state should compete also with non-translationally invariant states, i.e. where
the mean-fields have a space modulation. Such states should be energetically
much better than the usual spiral spin ordered mean-field state, because they
take into account more of the Kondo interaction, and I expect that they should
represent the phase of the wild zones. Moreover they cannot be studied ef-
ficiently following the same procedure chosen for the translationally invariant
phase, but it is our belief that following some of the ideas of paper D, something
about such RKKY-Kondo competition could be learnt.

Returning to the FM-I and FM-II phases, the difference between the two is
found in the different nature of the electronic wave functions. In the FM-I phase,
as can be seen in paper C, the c↓ (majority) electrons have a Fermi surface, while
the c↑ electrons do not. This is due to the fact that the c↑ (minority) electrons
exist in the FM-I (SKKI) phase only as part of a delocalized Kondo singlet; there
are no free minority electrons, but only the ones bound to a spin-flip processes.
This is the nature of the spin-selective Kondo insulator, that is captured very
well by the cgf -mapping. In fact the c and f bands have the typical shape of the
Kondo singlet bands (the same shape that appears at half filling, see discussion
in paper C and Sec. 6.1), which is the typical avoided crossing structure common

3As proved in Ref. [192] this is a direct consequence of the value of the commensurability pa-
rameter. Moreover I must point out that we have chosen a different convention for the direction of
the ẑ polarization axis, so the commensurability operator discussed by Peters is mapped into (7.22)
by the inversion operation sz → −Sz , m → −m.
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(a) FM-II, x = 1.4 and nc = 0.95;
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(b) FM-I, x = 2.8 and nc = 0.67;

Figure 7.1: The mean-field band structure of the cgf -Hamiltonian. The blue line represents
the g-fermions, while the red an yellow one are the f-like and c-like bands. As can be seen only
the g-fermions cross the chemical potential, set at the level zero. In the two examples: (a) FM-II
mean-field band structure; (b) FM-I mean-field band-structure. Both figures are taken from paper
C.

to any heavy fermion theory (see figures 7.1a, 7.1b and 6.2b). It must be kept
in mind that only a part of the c↓ (majority) electrons is represented in the
g-fermions in this phase. A part is into the f -fermion, and in fact a part of the
c↓ electron wave function is necessary to create the Kondo singlets.

This configuration, which requires a high imbalance between the majority
and minority electron densities, becomes unstable if the total density is too big.
For nc > ncrit(J) some c↑ electrons are able to escape from the bonding process
and create a Fermi surface (Fig. 7.1a). The SSKI is still partially present, but
becomes less and less pronounced upon increasing the density, in the sense that
less and less minority electrons form the Kondo singlets.

The success of the cgf -map in the description of the FM phases of the KL
at low coupling is due to the asymmetric treatment of the the electron species,
which fits very well with what is realized in nature with the asymmetry of the
minority and majority electrons. The cgf -map links the breaking of the spin
symmetry (ferromagnetic ordering) with the breaking of the electron symmetry
between the two spin species. This can be seen in (7.19): evidently the same
physics is obtained for both F > 1/2 and F < 1/2. In fact, even if the latter con-
dition implies an upside-down g-band, it also causes an inversion in the meaning
of the g† operator that if F = 0 is equal to c↓. So the transformation that inverts
all the spins gets linked with the one that inverts creation-annihilation opera-
tors in the majority electron channel, changing the vacuum of g and implying
a total null effect. As long as the asymmetry in the spin and electron species
is kept, one expect the cgf -map to work well. Instead when this asymmetry is
at stake, i.e. when F approaches 1/2, meaning that the filled f -like band (red
line in 7.1a) approaches the Fermi level, the cgf -map cannot work. This is why
for J � 2 the mean field solution is not able to describe the polaronic liquid
phase, but it can only see a first order phase transition between the half-filled
solution and the one at ncrit(J). This transition is consistent with the picture of
polarons that melt into the polaronic liquid, but since the latter is a true para-
magnetic phase it cannot be described by this cgf mean-field analysis. Allowing
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for the hybridization of the g fermion with the other two this problem could be,
in principle, solved. However we have not yet examined this possibility.

Increasing further still the coupling (J � 6), the solutions become quite
meaningless. I believe that this is due to the fact that, although at high cou-
pling the ground state is ferromagnetic for every filling, the SSKI (as it has
been described in the previous paragraphs) is not anymore the mechanism that
stabilizes it, but something different must happen.

This mean field analysis produces interesting results also at half filling. In
that zone of the phase diagram two ground-states for J < 2 and J > 2 can be
found. The first is the ferromagnetic FM-II one, while the second is the Kondo
Insulating (KI) one, which tends asymptotically to the state with one Kondo
singlet per site at J → +∞. The ferromagnetic one is expected to be overtaken
by an analogous antiferromagnetic one, so it is not worth further considerations.
More interesting is the KI solution, which shows how the weight of the ground
state wavefunction is moved from the triplet to the singlet sector increasing J .
In the cgf -framework it is possible to characterize very well the quasi-particle
gap of the KI state, which can be measured studying how the critical µ∗, which
determines the breakdown (the disappearence) of the half-filled solution, evolves
with J . This result is consistent with the perturbative approximations around
the J → +∞ ground state, but differently from those, it does not share the
unphysical behavior for small J . Moreover the physical picture is very similar
to that explained in Ref. [165,218] and in Sec. 6.3.

Although vaguely successful the mean-field analysis of the cgf Hamiltonian
is not the best way to study the half-filled ground state. This is due to the fact
that the important competition is between the RKKY effect and the Kondo
effect. In the mean-field analysis the RKKY effect was suppressed; keeping the
mean field approach it could be possible to consider it, enlarging the unit cell
used for the analysis. This causes many computational problems (related to an
excessive number of the mean-field solutions and an excessively high dimensional
mean-field parameter space), so probably it does not represent the best way to
proceed. A different approach has been attempted in paper D. To understand
how to join the RKKY and the Kondo effect is important for the study of the
wild zones in the phase diagram away from half-filling, so it seems natural to
perform a complete study of the half-filled case, where the ferromagnetism is not
present and there exists a cross-over between a local antiferromagnetic regime
and the KI phase, and then later to apply the same techniques away from it.

7.1.2 Analogies with previous studies

The composite fermion: It is appropriate to point out an interesting connec-
tion existing between the fermionic degrees of freedom defined by the cgf -map
and those successfully used in other studies of similar systems. I refer in particu-
lar to the composite heavy fermion picture developed by Coleman [133]. In that
approach the local spins are represented making use of the “pseudo-fermions”,

σα,βf
†

α(j)fβ(j), (7.23)

with σα,β an N -dimensional representation of the Pauli matrices; in the normal
KL case N = 2. It becomes possible to decompose the Kondo interaction, now
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in the form of the four fermion interaction

HJ =
J

2
σα,βf

†

α(j)fβ(j)c
†

β(j)cα(j), (7.24)

with an Hubbard-Stratonovich transformation, introducing a dynamical com-
plex bosonic field V (j):

HJ → HJ [V, j] = V ∗(j)
�
c†β(j)fβ(j)

�
+ V (j)

�
f†

α(j)cα(j)
�
+ 2

V ∗(j)V (j)

J
.

Typically this operation is carried out in path-integral formalism, so the bosonic
(quantum4) field that decouples the interaction describes the fluctuating hy-
bridization between the conduction electrons and the pseudo-fermion (i.e., the
spins, if the constraint of unity occupancy is enforced). Typically it is difficult
to study the full Hamiltonian, so only the large N -limit is considered (large N-
approximation; in the previous formulas the 2 gets substituted by an N), where
N is the number of possible projections of the total spin of the local impurities
(which becomes the number of N species of f-electrons). In that approximation
the path integral becomes dominated by the saddle points of the V Lagranigian.
The large N approximation also solves another complicated issue. In fact a con-
straint has to be enforced on the pseudo-fermions, in order to imply the unit
occupancy in the case of N = 2. In the case of larger N the different constraint
�nf

tot� = N/2 has to be imposed [133], in order to obtain results that should
mimic the physics of the N = 2 case. To enforce this occupancy a dynamic
chemical potential (which must become an integration variable in the path in-
tegral) can be used. In the large N approximation the contribution from this
term is also dominated by its saddle point configuration and so it is easy to
handle.

The final picture that arises from this treatment is that of a “composite
fermion”, built by the conduction electron bound to a spin-flip of the local
moment [133]

1

N
σαβcα →

�
V ∗

J

�
fβ , (7.25)

so there exists a correlation between adding an electron and causing a spin flip
on the same site. These objects behave as fermions and come from a mix of the
spin impurity and the conduction electron operators. The parallelism with the
f -fermion of the cgf -map:

f† = −i(c↓ − c†
↓
)S+, (7.26)

is interesting and realizes almost the same operation. Clearly it is different from
the composite fermion introduced by Coleman, but it is also true that the f -
fermion of the cgf -map is a proper fermionic degree of freedom at N = 2, while
the same assertion is more problematic for the composite fermion. This is of
course due to the fact the the cgf -map requires no constraint to be enforced.

Confined and deconfined particles: I would like to suggest to the reader
another parallelism existing between this work and a nice result obtained by

4This means that the field is one of the integration variables of the path-intagral.



7.2 Achievements of paper C 129

Pépin in Ref. [164]. That paper deals with the description of the quantum
critical point, between the AFM phase and the Fermi liquid with large Fermi
surface (Kondo phase), that exists in the Kondo-Heisenberg model in more than
one dimension. In that case the author used the Schwinger boson representation
of the local impurity spins and suggested that a fermion is “released” when the
Kondo singlets experience, reducing the coupling J , a process of deconfinment.
The net result of this deconfinement process is the appearance of a spinless
gapless fermion. My personal feeling is that this fermion is (somehow) related
to the g fermion; I expect that a similar picture could hold also in the 1d KL at
half filling. At high J the g fermion band is “frozen” because it is fully occupied;
decreasing the coupling, the shape of the band changes, getting renormalized,
and moves upon approaching the Fermi surface. So at some J I would expect
some states to become unfilled and that the g-fermions will become relevant for
the dynamics.

The proposal in Ref. [164] has many similarities with this picture, although
it is clearly very different (and still suffers from an approximate realization
of the constraint on the Schwinger bosons). Anyway, this kind of deconfin-
ment process, that were also encountered reviewing the properties of the 1dKL,
appear to be more and more meaningful and this idea is present in many
works [103,162,169,183] that deal with the transition from the Kondo phase to
the magnetically ordered one. It is however interesting that this concept also
appeared in some works dealing with the t-J model [85–88], as a consequence
of a non-linear unitary transformation of the Hilbert space. This generates an
immediate consideration about the fact that in our Majorana based description
of the KL, we deal with the object γ0, that is formed by “gluing together” three
Majoranas. Is it possible that the process that moves weight from the “compact”
object γ0, to its components µ1, µ2, µ3, describes naturally these kinds of de-
confining processes? This was the question that we sought to answer in Paper
D.

7.2 Achievements of paper C
It is appropriate to summarize briefly and schematically the main achievements
described in the appended manuscript:

• definition of the cgf -map, i.e., of an unconstrained purely fermionic de-
scription of the Kondo Lattice model;

• alternative demonstration, by direct inspection, of the faithful represen-
tation of the KL Hamiltonian in the Majorana representation;

• identification in the cgf -form of the 1dKL Hamiltonian of a term respon-
sible for double exchange mechanism;

• discovery of the symmetry responsible for the definition of the “commen-
surability parameter”;

• justification of the ferromagnetic phase in the 1dKL phase diagram, via
simple mean-field analysis; this considerably improves the existing known
mean-field solutions;
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• identification of the phase FM-I with the SSKI phase; moreover a simple
interpretation of the latter and of its physics was provided;

• discovery of a mean-field ground state that could be a prototypical state
for the description of the ferromagnetic tongue inside the paramagnetic
dome; so far (to the best of my knowledge) this represents the only mean
field theoretical proposal able to justify this ferromagnetic phase;

• characterization of the ferromagnetic tongue and identification of the rea-
sons behind its high stability;

• recognition of the important role of the confinement of the fermionic de-
grees of freedom into composite particles; this is evidenced by the SSKI
phase, and by the KI phase at half-filling, which matches the known prop-
erties J → +∞;

• characterization of the quasiparticle gap in the half-filled case, consistent
with known perturbative results;

• confirmation of the Doniach picture at half-filling, where the AF and KI
phases are (at mean-field level) dominant at J → 0 and J → +∞ respec-
tively.



Chapter 8

Introduction to paper D

In paper D we deal with the half-filled KL only, focusing on the magnetic
and energetic properties of the ground state. In contrast to papers B and
C the focus of this work is on the spatial correlations in the system, which

we tried to capture using a very non trivial non-linear transformation in the
Brillouin zone. Optimizing this transformation with respect to the energy of
the ground state, we identified a process of “deconfinement” of the composite
Majorana, which was introduced in the previous chapter. The paper is divided
into two parts: in the first one we perform a variational study of the ground
state, building on the idea of the existence of a deconfinement process for the
Majoranas; in the second we develop some easy-to-handle rules to work with
Majorana fermion Hamiltonians, in the path integral formalism, and to deal
with the confinement/deconfinement process hypothesized in the first part in
terms of the path integral.

8.1 Deconfinement of emergent Majoranas
The paper is a follow-up of Ref. [229], where a (Majorana based) variational
optimization of the ground state was performed. In that work all the (good)
low coupling variational ground states were magnetically ordered, so the spin
rotation symmetry was broken. This is unacceptable for any prototype ground
state of the 1dKL, and so the result needed significant improvements. In order
to realize them, we started from the quadratic part of the Majorana Hamil-
tonian (7.8), analyzing it in Fourier space. It must be pointed out that we
chose a different gauge for the Majoranas with respect to paper C. The gauge
transformation used is

c†
↑
(ri) → ei

π
2 ric†

↑
(ri), c†

↓
(ri) → ei

π
2 ric†

↓
(ri).

This affects the form of the kinetic term that becomes

H = it
3�

a=0

�

i

γa(i+ 1)γa(i), (8.1)

where γ0 is still 2iµ1µ2µ3, so the kinetic term contains three quadratic terms
(a = 1, 2, 3) and one six-fermion term (a = 0). The three quadratic parts,
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together with the quadratic operators coming from the J-dependent interaction
part, form a quadratic Hamiltonian H(2).

It is straightforward to see that H(2) is diagonalized by a linear combina-
tion of the Majorana operators in the halved BZ. We parametrized the unitary
transformation1 with a k-dependent angle αk.

µ̃a(k) = cos(αk/2)µa(k) + i sin(αk/2)γa(k),

γ̃a(k) = cos(αk/2)γa(k) + i sin(αk/2)µa(k).

Anyway we did not chose the angle αk to diagonalize the quadratic part of the
Hamiltonian, but we kept it as a free variational (functional) parameter, that
has to be optimized to minimize the total energy, taking into account also the
effect of the four- and six-fermion terms.

In order to do this we studied how the rotation in the BZ affects the Majo-
ranas in real space and we discovered that the new set of Majoranas was formed
making a linear combination of µ and γ that belong to different sites. So per-
forming the rotation in the halved BZ, one obtains a non-local transformation
of the original Majorana set. We then rewrote the total Hamiltonian in terms
of this new set of Majoranas, and then computed its average on two different
trial ground states.

In the first trial state we consider that

�γ̃†
a(k)γ̃a(k)� = 0 or 1 for a = 0, 1, 2, 3,

�S̃a(ri)Sb(rj)� = δabδij/4, with S̃a(ri) = −i�abcµ̃a(ri)µ̃b(ri). (8.2)

These conditions mean that we considered the Majorana γ̃0, together with the
other ones, as the fundamental degrees of freedom. In practice we assumed
that this Majorana fermion is like a well defined single particle. Since γ̃0(ri) =
2iµ̃1(ri)µ̃2(ri)µ̃3(ri) it is natural to think of this particle as a confined state of
three Majoranas. At J → 0 the angle αk goes to zero, so

γ̃0(ri) → 2iµ1(ri)µ2(ri)µ3(ri).

Vice versa, increasing the angle, the contribution to γ̃0 of the Majoranas that
belong to different sites, becomes more and more important. At the same time
it can be seen that this causes a reduction of the renormalization factor in front
of the kinetic term, that in turn implies a decrease of the kinetic energy gained
by the hopping processes of the γ0 Majorana. We used these features to mimic
the deconfinement process of the Majoranas µ1, µ2 and µ3. At J → 0 the three
Majoranas can be thought of as forming a sort of “hard” bound state γ0, that
behaves as a single whole object, coherently hopping from site to site. Increasing
the coupling more and more, the size of the γ0 object becomes bigger and bigger
and its hopping, generated by a less and less coherent hopping of the constituent
Majoranas, becomes less efficient. This effective “soft” bound state is represented
by the local γ̃0 that in fact is built using Majoranas from different sites (and
of course mixing µ and γ components). In this process the configuration of
the rotated spin operators S̃a(ri) = −i�abcµ̃a(ri)µ̃b(ri) simply helps to optimize
the final configuration, whose energy depends also on the internal structure of

1I remind the reader that in the halved BZ the Majorana operators behave as standard fermion
operators.
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the soft bound state γ̃0. To impose a correlation (or complete de-correlation in
this case) on the rotated spin correlation function has the physical meaning of
imposing a correlation between the impurity spins on different sites and with
the electron spins. However, the optimized solution reveals a predisposition
towards antiferromagnetic correlation functions also imposing no correlation on
the rotated spins. It is important to stress that this is very different with
respect to the imposition of an order; as a consequence our state is able to be
non-magnetic, although magnetic correlations exist.

The result of the optimization can be found in the paper. The angle αk has
been optimized on the set of the continuous functions, i.e., Taylor expanding
the function around k = π/2 and leaving the coefficients as free parameters; a
good convergence of the results was obtained using only three or four orders in
the kn expansion. Qualitatively all the main features of the result are obtained
already, simply with the k0, i.e. αk = α = const, approximation. As is shown
in the paper the energy of our variational ground state has the correct (free)
limit at J → 0 and approaches it with the same behavior as the Neél ordered
one, i.e., as J2/t up to logarithmic corrections. It is fundamental to stress
that our trial ground state does not break the spin rotational symmetry, but
all the antiferromagnetic spin-spin correlation appear naturally and are short
ranged. This is clearly in strong contrast with the Neél ordered state, where the
antiferromagnetism is an input and the spin rotation symmetry is broken. In
this sense our variational state is qualitatively closer to the real ground state,
which also is a global singlet.

The variational result obtained in paper D improves significantly the pre-
vious, non-magnetic one, found in Ref. [229] and that instead describes the
dynamics of the system considering the Majoranas µ1, µ2 and µ3 as propa-
gating independently. It is therefore natural that such a state becomes the
energetically most favorable at high coupling, where one could imagine that
the deconfinement process is so advanced and the γ̃0 Majorana so soft, that
the three Majoranas behave independently. This deconfined state is obtained
imposing

�γ̃†

a(k)γ̃a(k)� = 0 for a = 1, 2, 3,

�µ̃†

a(k)µ̃a(k)� = 1 for a = 1, 2, 3.

Although a bit exotic, the features of our confined Majoranas ground state
are not completely new. In fact we obtain a variational band structure that
resembles closely the one hypothesized by Coleman, Miranda and Tsvelik in
Ref. [225–227]. These authors suggest also the persistence of a gapless Majorana
band in the half-filled Kondo lattice. Besides the different techniques chosen for
the calculation, the path followed by the two analyses is similar. Although
in Ref. [225–227] the initial Hamiltonian is redundant (seven Majoranas are
present), the three Majorana fermions representing the spins are integrated
out. This operation causes the opening of a gap in three of the four Majorana
modes coming from the free electron, while one remains gapless. It is not my
purpose to create a bridge between these works and paper D, but anyway such
a resemblance is suggestive.
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8.2 Majorana Path Integral
A problem of the first part of the paper is that in principle the results can be
significantly improved by considering different correlation functions between the
rotated spins. In practice, however, this turns out to be complicated, because it
is difficult to obtain a reliable perturbative recipe to order the (many) interaction
terms. We understood that our analysis would have benefited by a change in the
formalism used. In particular the path integral representation of the quantum
mechanics seemed very convenient for our purposes.

Unfortunately we were not able to find any reference in the literature that
explained how to use, in a practical way, the path integral formalism in imagi-
nary time with Majorana Hamiltonians. We were aware of the fact that math-
ematically the path integral for Majorana Hamiltonians is as well defined as
the one that deals with standard fermionic Hamiltonians (i.e. making use of
Grassmann numbers), as demonstrated by Casalbuoni in Ref. [230] and Berezin
and Marinov in Ref. [231]. These results have been applied to analyze spin
systems represented in terms of Majorana fermions, in particular by Vieira and
collaborators [36–38, 221–224], who developed interesting perturbative analysis
and diagrammatic rules for their studies. Some standard literature mentions
the possibility of building such path integrals to represent general fermionic
Hamiltonians [232] and also uses the path-integral representation [233, 234],
but without pointing out any clear standard recipe. A very complete, but ex-
tremely mathematical, reference can be found in Ref. [235], where it is clearly
stated that there exists two possible ways to deal with Majorana path integrals:
fermion halving, where the Majoranas in the Hamiltonian are paired up to form
fermions, and fermion doubling where instead to the n Majoranas in the Hamil-
tonian are paired to another n Majoranas, forming in this different way the
fermionic degrees of freedom on which the standard formalism can be applied.

All the previously cited literature follows the principle of fermion halving,
and few among those works focus on the development of a formalism useful
in condensed matter systems (where path integrals are often used to compute
thermal averages). We tried instead to use the method of fermion doubling,
in the imaginary time path integral. In doing so we obtained a general set of
rules that can be followed to treat Hamiltonians written in terms of Majorana
fermions. Our way to proceed seems very well suited for condensed matter
problems and it requires no change in the existing technique. The reason behind
the success of our approach lies in the fact that the addition of the n extra
Majoranas permits us to rewrite everything in terms of Grassmann numbers
using the standard definition of the Majorana variables: the Majorana operators
are

γα =
cα + c†α√

2
, µα = i

cα − c†α√
2

, (8.3)

where the set γ is formed by the original Majoranas, while the µ are those
inserted by the doubling operation. So, since the Grassmann variables related
to the operators c and c† are ξ and ξ∗, then the Majorana variable of the path
integral can be written as

ζ =
ξ + ξ∗√

2
, and ν =

ξ − ξ∗√
2

(8.4)
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and the measure form

dξdξ∗ = dνdζ, (8.5)

with ξ, ξ∗ two normal Grassmann numbers. The Majorana variables are a sim-
ple shorthand notation for these two linear combinations of the two independent
Grassmann numbers; hence they must have Grassmann character too. Conse-
quently we can use the standard formalism of Grassmann variables path integral.
Of course, we expect that the (unphysical) ν-s do not enter into the dynamics,
and in fact it is possible to integrate them out exactly, leaving an action that
contains only the Grassmann variables ζ. The only difference in the final result,
between the standard fermionic Lagrangians and the Majoranas Lagrangians,
in our path integral formulation, is given by a modified time evolution.

We performed the continuum limit of our results, obtaining consistently the
formulation described in Ref. [234]. Moreover we also performed a consistency
check computing some trivial averages for a free Hamiltonian.

These results proved the reliability of our procedure, so we decided that an
interesting test could be the direct application to the KL Hamiltonian in the
confined phase. In that situation a more involved analysis is needed. In fact,
as we have seen previously, the process that characterizes the ground state is
a sort of deconfinement of the three Majoranas that form the γ0. The opera-
tion of “gluing together” the three Majoranas is not straightforward, because it
implies some kind of correlation between the propagators of the three different
species, because the three (rotated) Majoranas have to propagate together in
space and time. A nice way to deal with this effect is to perform a fermionic
Hubbard-Stratonovich (FHS) transformation (exotic, but also used in Ref. [164])
to separate the two γ̃0 terms of the kinetic term, i.e., the two three-Majorana
components of the six fermion term. The new fermion field ξ, introduced by
the FHS, is coupled (locally in space and time) to the γ̃0 term and represents it
effectively. Performing later a second Hubbard-Stratonovich using this time a
Z2 gauge field to separate the µ1µ2 Majoranas from µ3, it becomes possible to
integrate out both µ1 and µ2, whose effect becomes summarized by the Z2 gauge
field. The latter behaves like a phase multiplying the µ3 Majorana and has no
dynamics, so it can be gauged away, transforming the variables associated with
µ3. Finally the ξ field also can be integrated out, so the only term left gives
back a simple action for the Majorana µ3.

In practice all these passages permit description of the motion of γ̃0 by the
motion by µ3. This is possible because it has been assumed that the rotated
spin-spin correlation function is (8.2). If this is not the case the final action
becomes more involved.

Once all of these passages have been done, it becomes possible to compute the
average value of the Hamiltonian and the entropy contribution to the Free energy
(which is the correct quantity to minimize in the case of finite temperature
calculations). Keeping the αk parametrization of the rotation, the Free energy
can be optimized exactly as in the first part of the paper. However, differently
from that situation, now it is possible to study in a more ordered and systematic
way the effect of the other terms of the Hamiltonian and of different correlation
between rotated spins. In this sense, we seem to have arrived at the discovery
of a powerful tool in the fermion ξ introduced by the FHS, which will be subject
of future studies.
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8.3 Achievements of paper D
Here again, it is appropriate to summarize briefly and schematically the main
achievements described in the appended manuscript:

• introduction of the deconfinement mechanism of the three composite Ma-
jorana object and definition of its connection with the physics of the 1dKL;

• realization of a variational trial state that is able to take into account the
effect of the deconfinement;

• identification of non-magnetic trial ground states for the 1dKL at half
filling, with the correct asymptotic behavior at J → 0;

• determination of practical and general rules for the representation and
analysis of Hamiltonians (actions) written in terms of Majoranas, in the
path integral formalism;

• definition of strategies able to describe and treat the deconfinement process
in the path integral formalism.



Part IV

Outlook and Appendices
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Chapter 9

Conclusions

In this thesis I analyzed the possibilities offered by the study of Strongly Corre-
lated Electron Systems in terms of Majorana fermions. Using this representation
of the quantum degrees of freedom it becomes easy to understand the origin of
the group of canonical transformations, in particular of its non-linear compo-
nents. One could object that in many circumstances, in past decades, non-linear
transformation have been used to simplify or to treat quantum problems and
therefore that the analysis here reported is simply a not novel application of
those concepts. I believe that such an objection is ill-posed, since it is undeniable
that the justification, the origin and the meanings of the non-linear canonical
transformations become clear only in the light of the work of this thesis and, in
particular, only thanks to the Majorana fermion representation of the quantum
operators. It is the understanding of the formal symmetry that exists between
Majoranas and Emergent Majoranas that makes possible the identification of
the full canonical group and that allows the optimization of such transforma-
tions, in clear contrast with (almost [26]) any prior study where some singular,
ad hoc, non-linear transformations have been defined and used. The novelty
offered by the technology developed in this thesis is the possibility to use and
interpret the full continuos group of canonical transformations, connecting it
also with the possibility to have non-canonical transformations and to apply in
a more straightforward way concepts and ideas of Dynamical Symmetries and
Spectrum Generating algebras. With respect to the previous existing literature,
this thesis creates a context in which the role of the non-linear transformations
can be clearly identified and justified.

I tried to convince the reader that the combined use of Majorana represen-
tation and non-linear transformation may help in the study of SCES. These
systems are typically characterized by the fight between the local and non-local
nature of the electron. The use of non-linear transformations can help in this
context, since it allows to define new fermions that hop with more difficulty and
therefore can mimic the increasing importance of the local physics. This can
be helpful in the study of a SCES model, since it can improve the efficiency
of our methods. Indeed the reader should never lose sight of the practical di-
mension of this discussion. The idea that I tried to defend in this thesis is not
that any SCES can be perfectly represented in terms of fermions only, which
can be generated via a non-linear transformation of the original ones. Such a
statement goes much beyond what has been proved and it is also of question-
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able truth. The position that I defend is much less radical, since I just want
to bring attention to the fact that it is plausible that in the SCES the orig-
inal description of the Hamiltonian in terms of electron creation-annihilation
operators may not be optimal. Therefore a change of coordinates may affect
positively the study of quantum systems. Coordinate changes are realized very
well by non-linear coordinate transformations, since they preserve the fermionic
nature of the quantum operators and define new fermions able to capture, at
zeroth approximation order, part of the electron’s correlations (and so many
non-trivial effects). In this sense the present analysis is not in conflict with any
other (analytical or numerical) method, but instead it is a valuable tool that
complements them.

We obtained evidence of the effectiveness of analysis based on non-linear
transformation in the case of the Hubbard and 1d Kondo lattice models. Al-
though both the analysis are not satisfactory from many points of view, it is
safe to say that the qualitative (and often quantitative) agreement between the
known results and our mean-field results in the non-trivial Mott insulating and
Spin Selective Kondo Insulating phases represent important non-trivial achieve-
ments, which justify a more detailed study of these non-linear (or Majorana
based) techniques. In both cases the analysis shows some regimes where the
transformations considered did not performed particularly well; in particular
the low coupling regime of the Hubbard model and the high-coupling regime
of the Kondo lattice model. It is my opinion that in both situations the inef-
ficiency is due to the not maximally general approach used. In the case of the
Hubbard model just one auxiliary band has been added, while in the Kondo lat-
tice the cgf fermions were not at all optimized, since we applied no non-linear
transformation on them. Future studies should focus on this issue, understand-
ing the best way to implement and select the “best” way to use the non-linear
transformations in the study of a generic system.

As final consideration I would like to stress how this work strongly re-
evaluates the importance of Majorana fermions, stressing even more the fragility
of the concept of the electron in condensed matter systems. In the case of
strongly correlated systems, where the Landau-Fermi liquid of dressed electrons
is at question, it seems more and more appropriate to give up the idea of electron
modes. This can be done only if one accepts the possibility that the electrons
are not (in condensed matter systems) the most fundamental degree of freedom.
The Majorana fermions are (at least from an algebraic point of view) a much
more meaningful fundamental degree of freedom, suitable in many different con-
text. This of course does not mean that to them should be recognized the status
of fundamental modes (as a matter of fact it makes no sense to “add a Majo-
rana to a system”), but that they naturally occupy the space of fundamental
(algebraic) degrees of freedom and, as such, they represent the most logic and
fundamental unit on which our analysis should be based.



Appendix A

Clifford algebras

Complete introductions to Clifford algebras can be found in the liter-
ature,1 so the role of this appendix is not that of providing a full review
on this (huge) subject, but to introduce the basic concepts that are re-

lated to this Thesis. In the following will be assumed a minimal knowledge of
differential geometry.

It is convenient to start in a very informal way as done in [236], considering
three symbols e1, e2, e3 and setting up a simple game giving the rules:

• we can form new symbols (words) multiplying (writing close to each other)
the symbols;

• we can linearly combine such symbols (words) also scaling them by a
number;

• the symbol (word) eiej can always be replaced by −ejei (and viceversa),
with i, j = 1, 2, 3;

• the symbol (word) eiei can always be replaced by the special symbol 1
(empty word).

Setting these rules between the symbols we have just defined an algebra. There
are of course infinite symbols (words) that are in this algebra (dictionary), but
just 8 of them are linearly independent (have different meanings) and all the
others can be obtained combining these 8 symbols:

1, e1, e2, e3, e1e2, e1e3, e2e3, e1e2e3. (A.1)

Clearly the choice of these "basic symbols" is not unique. If we start to play
this game, we would immediately see some familiar features. Let us for example
multiply the symbol

A = a1e1 + a2e2 + a3e3, ai ∈ R, (A.2)

by itself. One one obtains is

A2 = a21 + a22 + a23. (A.3)
1I personally found these two pedagogical reviews [69,236] quite complete, so I recommend them

to any reader that is new to this topic.

141



142 Chapter A Clifford algebras

Multiplying instead A by the symbol B = b1e1 + b2e2 + b3e3 one gets:

AB = (a1b1 + a2b2 + a3b3) + (A.4)
+(a2b3 − a3b2)e2e3 + (a3b1 − a1b3)e3e1 + (a1b2 − a2b1)e1e2.

It’s difficult to not notice the similarities of these operations with the standard
operations on vector spaces. In fact, if one interprets e1, e2, e3 as the orthogonal
unit vectors x̂, ŷ, ẑ one sees that:

A → �A, A2 = �A · �A,

where · is the scalar product, while in AB there is a part that is �A · �B summed
to another that looks like the cross product of �A× �B. Indeed if one embraces the
more general formalism offered by the tensor algebra built on a vector space, it is
not difficult to realize that the second term in AB is given by �A∧ �B, so the three
symbols e2e3, e3e1, e1e2 represent the three linearly independent component of
a rank 2 skew-symmetric tensor on a (Euclidean) 3d vector space.

The connection with the exterior (Grassmann) algebra is not a concidence.
Indeed, consider a vector space V of dimension d and its exterior algebra2 �V =�d

n=1

�(n) V , built using the antisymmetriezed tensor product ∧ to build all
the possible non-trivial skew-symmetric tensors (of rank n ≤ d). Then if one
considers the elements of

�
V algebra as basis of a vector space W and defines

the product:

vw = v · w + v ∧ v, (A.5)

with v · w = (v ⊗ w + w ⊗ v)/2 the operation equivalent of the scalar product
in (A.4), one obtains an algebra over W , which is called Clifford algebra, and
the previous product is named Clifford product. Typically, fixed a set of basic
objects e1, ..., en, the elements of W are divided into blades, depending upon
the number of basic objects that must be multiplied together to obtain them.
So the elements ei belong to the first blade, and correspond in the Grassman
representation to the vectors of V ; the elements eiej (with i �= j) belong to
the second blade and correspond to skew-symmetric rank two tensors in

�(2) V ;
and so on.

This way to introduce the Clifford algebra is quite convenient, since it al-
lows one to associate to the elements of the algebra (the words) a geometrical
meaning. Indeed, associating the basis vectors of V with basis vectors of the
Euclidean space, the formalism of the external algebra (and in particular the
concept of multi-forms) associate with the antisymmetric tensors of rank 2 a sur-
face element, to the antisymmetric tensors of rank 3 a volume element, and so
on [237]. The maximally antisymmetric tensor (of rank d if V is d-dimensional)
is called pseudoscalar and it gives the maximal-dimensional volume element of
the manifold, determining the orientation of the manifold (which can be positive
or negative, depending upon the sign of this form).

To represent a Clifford algebra in terms of exterior elements on a vector space
has some advantages and some disadvantages. The main advantage is that some
basic operations can be understood in terms of rotations of the basis vectors of

2We are assuming an Euclidean metric, so the difference between covariant and contravariant
tensors is irrelevant.
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V . For example take the Clifford algebra: Cl(R2) = {1, e1, e2, I = e1e2}. This
corresponds to the external algebra W of V = {e1 → x̂ = (1, 0); e2 → ŷ =
(0, 1)}, where evidently e1e2 is interpreted as x̂ ∧ ŷ, which in turn is the 2-
form that gives the surface element of the plane defined by V . Simply using in
a straightforward fashion the rules of the Clifford product, one can see that a
generic element a of V defined as a = a1e1+a2e2 becomes ā = a2e1−a1e2 when
multiplied on the right by I. Clearly a and ā are orthogonal to each other. So
the multiplication by the pseudoscalar realizes a rotation of ±π/2, where the
± depends upon the application of the I on the left or on the right. More in
general one can see that since I2 = −1 then

b = aeθI = a [cos(θ) + Isin(θ)] , (A.6)

corresponds to a rotation of a by an angle θ. A more general way to define this
operation is as

b = e−
θ
2Iae

θ
2I , (A.7)

that removes the problem of having to distinguish between left and right ap-
plication (beside having some extra advantages when handling larger algebras).
This is indeed a very practical way to represent rotations in a high-dimensional
space.

The previous paragraphs clarifies why it is trivial to say that the set of
bilinear objects obtained by 2n Majoranas generates closes to the Lie algebra
of so(2n): indeed each Majorana can be thought of as a unit vector in a 2n-
dimensional vector space V and the bilinears generate the rotations in planes
spanned by pairs of unit vectors

The main disadvantage of this geometric interpretation of the element of
the Clifford algebra as elements of the exterior algebra of V is that the geo-
metric intuition is completely lost when one considers combinations of elements
belonging to different blades of W . Clearly an object like

A = a0 + a1e1 + a3e1e2, (A.8)

has no clear geometrical meaning and also as tensor it does not make sense. Al-
though this object still belongs to the vector space W on which we have built the
Clifford algebra, defining the product (A.5), it is not possible to understand it if
one simply sticks to geometric interpretation and the multi-form representation.
The geometric representation brings us implicitly to think not in terms of W ,
but in terms of a set of separate subspaces {

�(p) V }, p = 1, ..., d, which cannot
be mixed in a straightforward way. Indeed, if one considers on the Clifford al-
gebra only the operations that have a geometrical meaning, only few operations
between different elements of W are allowed: rotations, dilatations (multiplying
the vectors by a scalar) and inversions (multiplying the vectors by −1). It is
important to give up such a geometric picture to use the Clifford algebra in its
full generality, which is exactly what we have done in the this Thesis.

Although much more could be said about the structure of the Clifford alge-
bras, it is not necessary to add any further detail to understand the content of
this Thesis.
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Appendix B

Crystal Fields and effective
spin

Let me start making clear that this appendix cannot and does not want
to give complete and comprehensive discussion of the complicated role
that the crystal fields play in condensed matter physics. Nor does it want

to be a mathematical introduction to group theory in physics. The aim of this
appendix is just to justify the degeneracy reduction in the ground state of the
f -impurities, explaining the rationale behind it. The discussion will be kept as
informal as possible, although I must assume a (not superficial) knowledge and
understanding of the notion of symmetry in quantum mechanics and some basic
concepts of group theory (like representation and irreducible representation),
that anyway are typically common to any solid state or high energy physicist.
As references for the most formal part I strongly suggest the classical book by
Weyl [238] and the (more modern) popular book by Cornwell [239]. Anyway
many different books contain the main notions, included the standard reference
on quantum mechanics as Ref. [240,241]. Instead for a comprehensive discussion
about the role of crystal fields a strongly recommend the book by Fazekas [7],
that will be the main reference for this entire chapter.

Let us consider the most used element in heavy fermion compounds: the
lanthanide Cerium (Ce). This element has, in its atomic form, two electrons in
the highest unfilled shells one, in the orbitals 4f and one in 5d. However when
embedded into a compound the orbitals are rearranged and some electrons are
donated to the other ions of the compound, so effectively the embedded Cerium
ion important in condensed matter physics is Ce3+ that has only one active
electron in the unfilled shell 4f, so its configuration is f1, following the notation
of Chapter 6.

In principle, as has been pointed out already, the state f1 is 14-times degen-
erate. However this degeneracy is broken two times: the first time at atomic
level, considering the (atomic) spin-orbit effect; the second time instead it is the
lattice that plays an important role, breaking the rotational symmetry of the
atomic Hamiltonian via the generation of crystal fields. Let us analyze these
concepts step by step.
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The first split due to spin-orbit coupling1 is easy to understand in the case
of one electron only:

∆ESO = GSO(L, S) �L · �S (B.1)

=
GSO(S,L)

2
{J(J + 1)− L(L+ 1)− S(S + 1)} .

With only one electron in an f1 state S = 1/2, L = 3 and J = 5/2 or 7/2.
In the Cerium GSO(1/2, 3) > 0 [7] and this implies that the energetically more
convenient states have J = 5/2. So this effect already splits the degeneracy of
the initial 14 dimensional space into two subspaces of dimension 6 (low energy)
and 8 (high energy). Let us focus on the low energy subspace, symbolically
written as H6.

By construction the H6 is a six dimensional irreducible representation (IR-
REP) of the rotation symmetry group, generated by the total angular momen-
tum operator.2 So far it has been assumed that all these states are degenerate;
this assumption is unneccesary, because the reason for the degeneracy is given
by the form of the Hamiltonian. Indeed lets take an Hamiltonian that is sym-
metric respect to a group G, i.e., that commutes with all the operators (unitary
or antiunitary) P (g) that represent the action of every g ∈ G on the Hilbert
space.3 Then

[H,P (g)] = 0, g ∈ G, (B.2)

so it is straightforward to realize that any eigenstate of H is also an eigenstate
of the symmetry operation P (g). This does not mean of course that

[P (g), P (g�)] = 0, ∀g, g�G; (B.3)

indeed the latter is true only for abelian groups. As a consequence, given a
generic eigenstate Φn of H that belongs to an IRREP of G, it must happen that

HP (g)Φn = P (g)HΦn = EnP (g)Ψn. (B.4)

This means that if G is a symmetry of the Hamiltonian and Φn and eigenstate,
then also all the states obtained as Ψn,g = P (g)Φn, ∀g ∈ G, are eigenstates
of the Hamiltonian with the same eigenvalue. So all the states that belong to
the same IRREP are degenerate and the dimension of the IRREP must be the
dimension of the multiplet:4 to break this kind of degeneracy it is necessary to
break the symmetry. This is exactly the role of the crystal fields.

1In some cases this is explained as an effect of the Hund’s third rule, that originates exactly from
the formula (B.1), but for many-electron states.

2Evidently the original 14 dimensional space is not an irreducible representation; indeed it is
the direct product of the two IRREPs of dimension seven and two. Although very confusing, I am
forced to use the notation, common to physics literature, that uses the term “representation” to
indicate both the vector (Hilbert in this case) space on which the group acts and the matrix form
of the operation that performs the action.

3Personally I believe that this is the most beautiful page of physics, but here there is no space
to discuss it deeply. Therefore I must summarize the results and also take a perspective on the
concept of symmetry that is more mathematical than conceptual.

4If the degeneracy is not enforced by the symmetry it is typically called accidental. The most
notorious example is give by the accidental degeneracy of the electronic levels of the hydrogen atom
if the spin-orbit interaction is neglected.
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The crystal fields represent the effect that the surrounding ions of an atom
embedded on a lattice site, have on the electrons of that particular atom. So they
play the role of an external potential on the local (on site) electron Hamiltonian.
Clearly this potential does not share the complete rotational symmetry of the
atomic Coulomb potential, but is instead characterized by the symmetry of the
lattice. Rephrasing, this means that the electron on an atom embedded in a
compound feels not only the (atomic) Coulomb potential, but also the effect of
an electric field that has the symmetry of the lattice. The total Hamiltonian is
therefore not anymore symmetric under the full rotational group, but only under
the action of the point group (the group of operations that does not change the
position of the atom considered, but transforms all the others sending the lattice
into itself), that is evidently just a finite subgroup. The crystal fields therefore
break the symmetry and so one should expect that they break the degeneracy
of the multiplet H6.

If the dimension of the original multiplet is odd the discussion is then
straightforward. In fact there exist a very accurate mathematical machinery [7]
that permits to decompose every finite dimensional IRREP of the rotation group
SO(3) on the IRREPs of finite subgroups. This does not sound so exotic: as
a matter of fact we are just saying that if in a Hamiltonian that is symmetric
under rotation is inserted a term that makes one direction preferable, then the
state that orients the electron wavefunction along that direction will have a
lower in energy.

The situation is a bit more involved in the case of even dimensional IR-
REPs, hence characterized by a fractional value of the total angular momentum
J . As known from basic quantum mechanics the even dimensional representa-
tions require the accurate identification of the rotation group, that in quantum
mechanics is not given by SO(3), but by SU(2). This permits to consider also
even dimensional IRREPs and the difference between the two cases is quite
fundamental: the action of the 2π rotation element on a state that belongs to
an odd dimensional IRREP, sends the states into itself; the same operation, if
performed on a state that belongs to an even IRREP, sends the state into minus
itself, and instead a rotation of 4π is required to send the state into itself. To
solve the problem one could pretend [7] that the group of rotations, when acting
on even dimensional IRREPs, is double (this requires the introduction of another
group element that makes the rotations between 0 and 2π different from those
from 2π and 4π) and in this way allowing for the use of the same mathematical
machinery that permits to split the multiplets into IRREPS of the subgroups.
The peculiarity is that also the new IRREPs must be even dimensional. This
fact is not accidental, but it has deep origins. In fact it can be proved that for
any system with an odd number of electrons (in general fractional spin parti-
cles), i.e. for each even dimensional IRREP of the rotation group because an
even number of electrons cannot generate a fractional total angular momentum,
the states appear in pairs. These pairs are connected by the operation of time
inversion [7] and the two states are degenerate if the Hamiltonian has the time
reversal symmetry. This has as consequence the so called Kramer’s theorem [7],
and in this case it implies that there exist a minimal double degeneracy enforced
by the time reversal symmetry and that cannot be broken by any geometrical
electrostatic effect.

This affects the embedded Cerium atom in the following way. Assume for
example to embed it in a lattice with an octahedron point group. Then it is
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mathematically known that the multiplet H6 is split into two IRREPS of di-
mension 2 and 4. Typically (but not always) the interaction parameters of the
crystal field favors the two dimensional IRREP, making it the ground state.
Therefore the ground state of the embedded Ce atom, where the only valence
electron will be naturally hosted, is formed by two degenerate states, connected
by time-reversal symmetry operation and both eigenstates of an angular mo-
mentum operator. Therefore they have the characteristics of spin states and the
degeneracy can be thought of as (but it is anyway mathematically isomorphic
to) a spin S = 1/2 doublet.



Appendix C

Spin and pseudospin

As discussed also in Chapter 3 there exist many ways to represent
the states of the Hilbert space. One way is in terms of fermionic op-
erators that, acting on a vacuum, generate the entire Hilbert space.

Another is to make use of group theory and organize the states according to the
IRREPS of the chosen symmetry groups.

Let us consider the local Hilbert space of the Hubbard model:

|0�,
c†
↑
|0� = | ↑�, c†

↓
|0� = | ↓�, (C.1)

c†
↑
c†
↓
|0� = | ↑↓�,

where I made use of the fermionic representation of the Hilbert space. The rep-
resentation can be changed, for example it is very well known (see also Appendix
B) that the subspace

c†
↑
|0� = | ↑�, c†

↓
|0� = | ↓�, (C.2)

forms a two dimensional IRREP of the rotation group, i.e. SU(2). As mentioned
in Appendix B and better in Ref. [7] this group can be thought of as a double
SO(3) group, where an element that discriminates between rotations of 0− 2π
and 2π − 4π has been added in order to obtain this double size of the group.1
The physical meaning of “spin” does not come from the mathematical structure,
but it must be provided by the microscopical derivation of the quantum states,
which imply the effect of the (physical) action of the rotation group on the states
of the space (C.1). On the base of this interpretation it becomes also possible to
define the representation of the time reversal operator, mentioned in appendix
B.

The interpretation of the group SU(2) that can act on (C.2) as the group
of rotations, and with its generators Sz, S+ and S− as the spin operators is
fundamental, when the physical interaction of the different degrees of freedom
among themselves and with the external perturbations have to be model. But
is is absolutely irrelevant from the point of view of the structure of the Hilbert

1SO(3) has as universal (double) cover the group SU(2), or in practice SO(3) ∼= SU(2)/{1 �
−1}, so for each element of SO(3) there exist two elements of SU(2).
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space. As a matter of fact, if just the space (C.1) is given, and no information
about the Hamiltonian nor how the Hamiltonian has been derived from the mi-
croscopical properties of the matter are give, then the different states, operators
and indices in (C.1) have no physical meaning, but only a mathematical one.

From this point of view it is evident how many more general symmetry
groups can be defined and used to classify the states of the Hilbert space (C.1)
or any other Hilbert space. Lets consider the particular example of (C.1), and
in particular on the part of the Hilbert space that was not considered during
the discussion of the spin operators:

|0�, | ↑↓�. (C.3)

In principle these two states can also form an irreducible representation of a
group SU(2). Of course this group cannot be put in correspondence to the
physical operation of rotation, but anyway it is a group that describes the
structure of this subspace. There must exist three generators

Iz, I+, I−, (C.4)

such that

Iz|0� = − 1
2 |0�, Iz| ↑↓� = + 1

2 | ↑↓�,
(C.5)

I+|0� = | ↑↓�, I+| ↑↓� = 0, I−| ↑↓� = |0�, I−|0� = 0.

These operators are the pseudospin operators and the symmetry group is called
group of the pseudospin rotations. In perfect analogy with the spin case, also
here there must exist an operator that represents the action of the Z2 group
(previously associate to time inversion, now still undetermined), that pairs up
the states of the even IRREPs. The connection with a symmetry group and
with a physical meaning can be discovered writing the operators Iα in terms of
the fermionic operators c†σ (assuming that to have identified them as electron
modes, i.e. to have identified the physical degrees of freedom of charge and spin,
meant as intrinsic angular momentum). The result is

Iz =
1

2

�
c†
↑
c†
↓
c↓c↑ − c↓c↑c

†

↑
c†
↓

�
, I+ = c†

↑
c†
↓
, I− = c↓c↑. (C.6)

The equivalent of the time inversion operator can be found easily remembering
that the time inversion is given by the operator T = iSyK on the two dimen-
sional IRREP, so its pseudospin analogous C is

C =
�
c↓c↑ − c†

↑
c†
↓

�
K, (C.7)

with K the complex conjugation operation. So far it seems that this group
and these operators are completely unphysical. I would like to point out to the
reader that it is actually possible (easy) to produce physical interactions that
act on the pseudospin operators and that try to polarize the pseudospin (break
the pseudospin symmetry), exactly as the magnetic field polarizes the spin. In
fact if in the Hamiltonian is present a pairing term

∆c†
↑
c†
↓
+∆∗c↓c↑, (C.8)
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it is easy to see that such a term is simply

∆I+ +∆I− = Re(∆)Ix + Im(∆)I− = �∆ · �I, (C.9)

with �∆ = (Re(∆), Im(∆), 0).
This should convince the reader that the “physical sense” of the symmetry

groups defined “ad hoc” to describe the structure of the Hilbert space is a matter
of personal taste, because anyway these operations can always be very well
characterized in terms of physical (measurable) quantities.

Much more could be said about it, but the complete discussion of these
topics is not part of this thesis, so I leave it for the future.
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