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Abstract

Conventional approaches for decision making often assume that
access to full information is possible. Nevertheless, such ex-
plicit knowledge about the model’s dynamics is seldom available
in practical applications. In this thesis the problem of the con-
struction of a plan for a sequence of decisions under an uncer-
tain adversarial environment is addressed. The uncertainty of
the information is modeled via a set of sequential Markov deci-
sion processes and a number of methods are utilized in order to
produce a robust plan, depending on the setting. Additionally,
the intractability of the computation of an exact solution, with
the Cutting Plane method, is shown, in the case where policy
value hyperplanes are viewed as potential cuts.

Keywords. Markov decision process, uncertainty, worst-case prior, robustness, cutting-
plane, NP-hard, weighted majority algorithm, wma-pusr, contextual bandits.





Acknowledgement

It seems a rather impossible task to list, in so little space, all the persons that had an
influence on me, during the writing of my thesis. I feel lucky to have had so many
inspirational people present in my student life.

First of all I would like to express my gratitude to one of the most intelligent persons
I have ever met, my advisor Christos Dimitrakakis, for without his priceless guidance
this thesis wouldn’t exist. Thank you for your trust and for giving me the opportunity
to work with such an interesting project.

Furthermore, I would like to thank Laerti Vasso and Martynas Šeškaitis for the
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1
Introduction

‘Uncertainty is the only certainty
there is.’

—John Allen Paulos

1.1 Uncertainty

T
here are times where a decision needs to be made with incomplete or cen-
sored information. This lack of knowledge leads unavoidably to occasions where
the expected outcome of an action is inaccurate. Such inaccuracies in plan-
ning are usually extremely undesirable, and thus managing to operate in such

uncertain conditions is an important issue.
Uncertainty about the environment generates a lot of issues for optimal planning.

Conventional approaches for decision making usually assume perfect information. That
means that the parameters of the entertained models are accurately known and all the
relevant probability distributions for the participating random variables are explicitly
specified. Nonetheless, these assumptions are a bit unrealistic and this kind of definite
knowledge about the involved dynamics is infrequently encountered in practical appli-
cations. A policy, i.e. a plan, constructed based on inaccurate calibrations is bound to
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1.2. SEQUENTIAL MDPS CHAPTER 1. INTRODUCTION

suffer from inadequate performance or -even worse- infeasibility of the actions prescribed
by the policy may arise.

When one is forced to take action while the information at hand is deficient, mistakes
happen with higher probability. Any structured and methodical approach to plan opti-
mally in such cases carries a risk, rooted on that uncertainty. Nevertheless the execution
of an act however certain or uncertain one is for it’s efficiency, reveals potential infor-
mation about the dynamics of the environment and this new knowledge can be used to
further formulate a plan of actions. Therefore deciding to explore the effects that actions
have to the environment may be useful if the information at hand at that point is be-
lieved not to be sufficient. On the other hand if one has adequate information, then there
is no use to choose speculative actions that may eventually end-up being sub-optimal.
Learning to manage the trade-off between exploration and exploitation is an essential
component of efficient planning under uncertainty and thus artificial intelligence algo-
rithms which balance these concepts effectively can demonstrate an extraordinary degree
of competency in situations where the dynamics are unclear.

1.2 Sequential Markov Decision Problems

There are many ways to approach sequential decision making. In this section we describe
and discuss the Markov decision process framework under which we will be operating.
The Markov decision process model (often encountered as stochastic dynamic programs
or stochastic control programs in the literature) is useful for modelling sequential decision
making when the outcomes are not certain.

To describe this procedure, consider a Decision Maker, who at a specified point of
time, faces the problem of taking a decision. She observes her environment and considers
the alternatives that are available to her at this given point. After evaluating her options,
she decides on an action and executes it. This action has two immediate effects:

1. the Decision Maker receives a reward (or pays a cost)

2. the environment is affected perchance by the action in some way.

At this consequent point in time, the Decision Maker faces an analogous problem, but
now the environment may have changed and the available actions may not be the same
any more. This sequence of decisions generates a string of rewards. The Decision Maker
tries to plan her actions accordingly with the goal of maximizing her total reward.
Of course, if the rewards are negative, they can be interpreted as costs, and then the
intention of the Decision Maker would be to minimize the total cost.

In order to model and approach rigorously the above succession of events, we give
the following definition:

Definition 1.1. A Markov decision process is a quadruple µ = 〈S,A,R,P〉, where

• S is a set of states (we will be referring to this as the state space)

2



1.2. SEQUENTIAL MDPS CHAPTER 1. INTRODUCTION

• if As is a set of actions that are available to the Decision Maker while in state
s ∈ S, then denote by A the collection of all possible actions, i.e. A =

⋃
s∈S As

(we will be referring to A as the action space)

• R(ω, a, s) is a reward function that describes the distribution over the rewards
realized when selecting the action a ∈ A, while in state s ∈ S. The argument ω is
used to generate stochastic rewards.

• Pa(s′ | s) is the transition probability from state s to state s′ if action a is chosen
while in state s′.

Remark 1.2. One factor that is also important to consider is the time horizon T , which
might be finite or infinite. To include the time horizon in the description of the problem
we may write µ = 〈S,A,R,P, T 〉 and refer to this 5-tuple as a Markov decision problem.

Now we can describe the decision making procedure in the language of Markov deci-
sion problems as follows.

A Decision Maker has to take a sequence of decisions. At each decision epoch t ≤ T ,
she observes her environment, represented by a system state s ∈ S and evaluates her
choices, by examining the action space A. She selects and performs an action a ∈ A.
As a result to this action

1. she receives an immediate reward r
(t)
a,s according to R(ω, a, s) and

2. the system advances to a new state s′ ∈ S at a later point in time t′ = t + 1,
according to a probability distribution Pa(s′|s) imposed by the chosen action.

Both the rewards and the transition probabilities depend on previous states and actions
only through the current system state. That means that Pa(s′ | s) depends only the
previous state s (and the action a), and not on older states that the system might have
occupied (or older actions taken by the Decision Maker). Thus

P [ Sn+1 = s | S1 = s1, S2 = s2, . . . Sn = sn ] = P [ Sn+1 = s | Sn = sn ] ,

where Si, i = 1,2, . . . , n, n ∈ N, are random variables representing the state of the
system at the time time point ti.

As this procedure moves forward in time, the Decision Maker makes choices in the
different system states, resulting in a (finite or infinite) sequence of rewards (or costs).

States

At each decision time point, one system state is active. Recall that we denoted the state
space by S. The set S may be one of the following types:

• an arbitrary finite set

• an arbitrary infinite, but countable set

• a compact subset of a Euclidean space of finite dimension

• a non-empty Borel subset of complete, separable metric spaces
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Actions

Actions represent the Decision Maker’s alternatives on how to deal with each state. Since
the system is ongoing and next states depend on previous actions (through a probability
distribution), the Decision Maker needs to avoid being short-sighted and try not to take
any decision myopically. An action that may seem very attractive now, may be, in
reality, not the optimal choice, as there is a possibility that such an action will drop
the system into some very unfavorable states in the future. Anticipating rewards on the
future states can be a deciding factor on how well the Decision Maker will perform in
total. The set of available actions As, while in state s, can be either one of the types
described for the state space.

Rewards

Every time the Decision Maker chooses an action from the action space, she receives a
reward ra,s := ra,s(ω). These rewards are stochastic and are generated according to a
probability distribution. More specifically, they depend on the selected action a ∈ A, on
the current system state s ∈ S and on the outcome of an experiment ω in an outcomes
space Ω. The set Ω must be non-empty and can contain anything. The action a must
be decided before knowing the outcome of the experiment ω.

Assumption 1.3. (Outcomes). For every a ∈ A and s ∈ S there exists a probability
measure P on the measurable space 〈Ω,Σ〉 such that the probability of the random
outcome ω being in E ⊂ Ω is

P (E) = P [ ω ∈ E ] , ∀E ∈ Σ.

Definition 1.4. (Reward function). A reward function R : Ω × A × S −→ R defines
the reward obtained by action a ∈ A, while in state s ∈ S and the experiment outcome
is ω ∈ Ω:

ra,s = R(ω, a, s).

There will be a reward for each time epoch t, so {r(t)
a,s}t≤T will be a sequence of

random variables. The rewards have the markovian property, that is they depend only
on the current state and action and not on the history of decisions or states. Adding up
all the rewards creates the total reward. Maximizing the total reward is the main intent
of the Decision Maker.

Transition Probabilities

Every action the Decision Maker takes may have an effect to the environment. Hence
every action causes the system to evolve to a new state. The way that the system jumps
from one state to another, is dictated by a probability distribution
Pa(· | ·) : S2 × A → [0,1], which has the markovian property as well. Of course the
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system is allowed to jump right into the same state, i.e. Pa(s | s) can be positive. Also,
for every s ∈ S we assume ∑

s′∈S
Pa(s′ | s) ≤ 1

The expected value of a state s, at decision time t, may be evaluated as follows:∑
s′∈S

E
[
ra,s′

]
· Pa(s′ | s)

Decision Rules

Decision rules are a way to describe how the Decision Maker decides on actions. They
act as a prescription on what action to choose while in a certain state.

Decision rules can be

• History dependent
d : (S ×A)T × S → A

where T ≤ T − 1 or

• Markovian (memoryless)
d : S → A

according to their degree of dependence to past information and can also be classified as

• Deterministic or

• Randomized

All the above combinations create four types of decision rules.

Policies

Define a policy, strategy, or plan as

π = (d1, d2, . . . , dt, . . . )

which is a vector with dimension T , containing an action (specified by a decision rule)
for every decision time point t, t ≤ T . A policy instructs the decision maker on what
action choices should be made in any possible future state. We call a policy stationary
if it has the form:

π = (d, d, . . . )

We can classify policies in the following categories:

• History dependent or

• Markovian

5
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depending to their degree of dependence to past information and can also be separated
to

• Deterministic or

• Randomized

The most general type is policies which are randomized and history dependent,
whereas the most specific are stationary Markov deterministic policies.
If at time t the system occupies the state s(t) and actions a follow a specific policy π,
then we will use the following explicit notation for the rewards:

r
(t)

a∼π,s(t)

or the more simper ra,s if the above is implied easily from the context.

Discounting

Consider a Markov decision problem, with an infinite time horizon T . Let π1, π2 be two
policies and their corresponding rewards for each time epoch:

R1 = (r1, r2, . . . ) for π1 and

R2 = (2r1, 2r2, . . . ) for π2,

where rt ≥ 1
2 , t = 1, 2, ....

Obviously, policy π2 seems to be more attractive than policy π1, since the reward
on each time epoch is double. However, adding up all the rewards to obtain the total
reward we get

∑
t=1,2,... rt =

∑
t=1,2,... 2rt = ∞, making the two policies incomparable

with respect to their total value.
One way to solve this issue is to introduce a discount factor γ ∈ [0,1). Then∑

t=1,2,...

γtrt ≤
∑

t=1,2,...

2γtrt <∞

and we can easily decide which policy is preferable.
An intuitive explanation for the discount factor γ is that it balances relative preferable

weights of current and future payments, with small values of γ prioritizing short-term
rewards and larger values giving more emphasis to long-term gains.

1.3 Description & Formulation of the Problem

1.3.1 A Model of Possible Scenarios

Consider a Decision Maker who faces the problem of making a sequence of decisions, but
her knowledge about the environment and what would happen precisely if she interacted
with it, is limited or noisy. The first assumption we do is that the Decision Maker is

6
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a reasonable thinker with no gambling tendencies and so the strategy of blindly select-
ing actions in the hope of landing something good, is not in the list of considerations.
Hence, since we suppose that she wants to try and design a reasonable plan, she needs to
take advantage of the available information. Considering that she does not have precise
knowledge of the dynamics at play, trying to specify the parameters/variables of an ex-
plicit model in her attempt to optimize her actions, would be much of a risky speculation.
Thus, based on the limited information she possess, we assume that she has some kind
of belief about the dynamics of the world and she is willing to consider different possible
scenarios. Instead of considering a Markov decision problem with uncertain dynamics,
that might be proven to be completely off, we choose to model the uncertainty in the
following way:
→ we consider a set M of Markov decision problems, that contains candidates

µj = 〈S,A,R,P,T 〉 j = 1, . . . , |M|.

Each one of the µj ’s describes an alternative possibility for the properties of the envi-
ronment. If the Decision Maker is very unsure about the dynamics of the model she is
interacting with, then the set M will contain a variety of very different µj ’s, whereas
if she has a strong belief of what the dynamics look like then the set M can be less
diversified. So the cardinality and properties of the set M depend on the amount and
nature of the available information.

In order to find the safest possible policy (which will produce different rewards un-
der different µj ’s!) we adopt one more hypothesis: we assume that the MDP µ that
the Decision Maker is going to interact with, is chosen by an Adversary, in the most
unfavourable (for the Decision Maker) way.

1.3.2 The Worst-Case Prior

Denote by ξ ∈ [0,1]M the probability distribution that represents the Decision Maker’s
belief of the selection of µ by the Adversary. To be more specific

ξ , (ξ1, ξ2, . . . , ξM )> , (1.1)

where M = |M| and ∑
m∈{1,2,...,M}

ξm = 1 (1.2)

so every ξm assigns a probability to the possibility of interacting with µm. One of the
issues that the Decision Maker will have to face, by using such a model, will be to
determine the worst case prior distribution ξ?, in order to base her decisions on and pick
a robust policy π?.

1.4 Overview of the Solution & Contribution of the Thesis

A formulation of uncertainty via a set of possible Markov decision problem environments
and a minimax optimization over them has, to our best knowledge, not been addressed
in the literature so far. The prime motivation for proceeding with such modelling is:

7
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• Decision making schemes that consider only one model and try to estimate its
uncertain dynamics, might suffer from approximation errors. These inaccuracies
may be proven catastrophic for the performance of the policies produced within
this kind of model.

• Considering distinct (mutually exclusive or not) possible scenarios to deal with
decision making is an effective problem solving technique that allows for more
flexibility and guarantees that no stone will be left unturned.

• Minimax decisions are the best possible play against the worst case scenario. This
is a natural approach when we want to guard against an adversarial environment.

The first part of the thesis deals with the case of an infinite number of decisions. We
illustrate how approaching any kind of optimization (not just a minimax) with the
Cutting-plane method, that seems rather promising, given the visual representation of
a possible solution, turns out to be intractable.

In the second part, where a finite decision horizon is assumed, we start by approaching
the problem in a very straightforward way and use uniform sampling to proceed.

Afterwards, the Weighted Majority algorithm is applied to our problem, under spe-
cific assumptions. These assumptions are weakened in the next section and we modify
the algorithm to fit the more general case. We prove performance guarantees and a
regret bound theorem for the modified algorithm (Lemma 4.1, Theorem 4.5, Corollary
4.6, Theorem 4.8, Corollary 4.9).

Lastly, the reinforced learning algorithm SupLinRel is used, in the most general
setting and the regret bound is given, for our case (Theorem 5.2).

Proofs of theorems that already exist in other sources are omitted and all the basic
mathematical concepts involved can be found in the Appendix.

8
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Figure 1.1: Reading Guide.
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2
The Cutting-Plane Method

‘Prediction is very difficult, especially
about the future.’

—Niels Bohr

In this chapter we consider Markov decision problems with infinite horizon T . Moti-
vated by the visual representation of the solution(s), we investigate if the Cutting-plane
method can be used in order to retrieve an optimal policy.

2.1 Policy Values and Visuals

Consider a Markov decision problem µ = 〈S,A,R,P,T 〉, T = ∞ and an arbitrary
policy set Π. It is important to note that we do not restrict the policy space Π. These
policies in Π can be of any kind: deterministic, randomized, may or may not have the
Markov property etc. When the Decision Maker chooses actions a according to some

policy π in each time step t, she receives a reward r
(t)

a∼π,s(t) that depends on the current

state of the system and the action a through a probabilistic distribution Ra,s. That

means that each reward r
(t)

a∼π,s(t) is a random variable.

The value of action a ∈ A when in state s ∈ S:

V a
s , E [ ra,s ] .

So, for a given state s, for every action a corresponds a V a
s ∈ R.

Since the reward of each action is a random variable, the discounted total reward

from following actions prescribed by a policy π:
∑T

t=1 γ
tr

(t)

a∼π,s(t) , (where γ ∈ (0,1)),

is also a random variable. Define the policy value of policy π when in µ as the expected

10
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value of the total reward:

V π
µ , E

[ T∑
t=1

γtr
(t)

a∼π,s(t)

]
.

So, for each π ∈ Π corresponds a V π
µ ∈ R.

Now, consider a set of Markov decision problems M, with |M| = M and let ξ be a
vector of probabilities in [0,1]M as in (1.1).

Let Vπ be the 1×M vector of values for policy π for the given set of Markov decision
problems M:

Vπ , (V π
µ1 , V

π
µ2 , . . . ,V

π
µM

)

and let V π
ξ be the weighted mean value of the policy π with respect to the distribution

vector ξ ∈ [0,1]M×1:

V π
ξ , Vπ · ξ =

M∑
m=1

V π
µmξm

˙

So, each policy π receives a different value V π
ξm
∈ R depending on ξm, m = 1,2, . . . ,M.

That essentially means that each policy value is an M -dimensional hyperplane.

0.0 0.2 0.4 0.6 0.8 1.0
ξm

V
ξπ

πi
πj
πk

Figure 2.1: 2D slice plot of policy values for three distinct policies. Policy values are in
fact M -dimensional hyperplanes.
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Figure 2.2: 3D slice plot of the policy value for a policy.

Furthermore, denote by Vξ the 1×N vector containing the ξ-weighted mean values
for each policy:

Vξ = (V π1
ξ , V π2

ξ , . . . ,V πN
ξ ),

where πi ∈ Π and |Π| = N .

2.1.1 Supremum Values

The Decision Maker tries to maximize her total reward, so policies with a higher value
are obviously preferred. When V π

ξ > V π′
ξ for all ξ, then π strongly dominates π′.

Denote by VM,Π (or simply V) the lowest upper bound of V π
ξ for π ∈ Π, ξ ∈ [0,1]M .

Since V is an upper bound for the policy values, there does not exist a policy π such
that V < V π

ξ . The Decision Maker, thus, tries to find a policy that is as close to the V
as possible. Of course some policies may have higher values than others for a specific ξ
and a lower value for another ξ′. When V π

ξ > V π′
ξ for some ξ then π weakly dominates

π′ in these ξ’s. Our goal is to estimate the worst case ξ and pick the policy that is closer
to V at that point.

The following theorem will help us to see how an optimal solution, among the policies
of Π, will look like.

12
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Theorem 2.1. Let (fi)i∈I be convex functions on a convex compact set X ⊆ RN . Then
f , supi fi is convex.

Proof. Let x, y ∈ X and θ ∈ [0,1]. Every fi is convex and f ≥ fi for every i. Thus

fi (θx+ (1− θ)y) ≤ θfi(x) + (1− θ)fi(y) ≤ θf(x) + (1− θ)f(y) ∀i ∈ I

Taking the sup over all i’s we obtain that f is convex:

f (θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

Corollary 2.2. Since the expected value of a random variable is linear (and thus convex),
the above holds for V π

ξ and their supremum V.

Additionally, if the policy space Π contains an infinite number of policies then V can
be strictly convex.

0.0 0.2 0.4 0.6 0.8 1.0
ξm

V
ξπ

supVξ
πi

Vξ
πi

0.0 0.2 0.4 0.6 0.8 1.0
ξm

V
ξπ

supVξ
πi

Vξ
πi

Figure 2.3: (Left) A convex V. (Right)A strictly convex V. This can only happen if
|Π| =∞.

If, given a certain policy π ∈ Π that has a value V π
ξ for some ξ, we can exclude all

arbitrary policies that perform worse than π (the ones that have values less than π’s for
that ξ), then we decrease the possibility to choose a sub-optimal policy. Then we can
focus on the policies that have a value higher than V π

ξ and repeat the above. This way

we can continually improve our selections until we are as close to V as desired.
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Figure 2.4: All policies that lie in the shaded area have a value lower than the selected
policy (blue) and thus can be excluded.

So, our goal is to find a policy that maximizes the total reward (or minimizes the
distance between V and the hyperplane that corresponds to the reward of the policy)
subject to a number of linear constraints. Each constraint is the hyperplane of the policy
values. In the following segment, we describe a method that can be used to approach
this problem.

2.2 The Cutting-Plane Method

In this section a method for solving convex optimization problems is described. The
method is based on the utilization of cutting-planes, which are hyperplanes that divide
the space into two subspaces: one that contains the optimal points and one that does
not. The objective of cutting-plane methods is to detect a point in a convex set X ⊆ Rn,
which is called the target set. In an optimization problem, X can be taken as the set of
optimal (or ε-suboptimal) points for the problem and so by using this method we can
find an optimal (or ε-suboptimal) point which will be the solution.

This is done in two steps. First, we pick a point x ∈ Rn. Then we query an oracle,
which examines the position of x and returns the following information:

• either x ∈ X and thus we have a solution to the optimization problem

• or x /∈ X and the oracle produces a separating hyperplane between x and X, i.e.,
a 6= 0 and b such that

a>z ≤ b for z ∈ X, a>x ≥ b.

14
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Figure 2.5: A cutting-plane, for the target set X, at the query point x, is defined by the
inequality a>z ≤ b. The search for an optimal point x? ∈ X can be continued only within
the shaded half-space. The unshaded half-space {z | a>z > b} does not contain any points
of X.

Cuts & Polyhedrons

The above hyperplane is called a cutting-plane since it cuts out the half-space {z | a>z >
b}. No such point could be in the target set X and therefore we stop considering all
these points in our investigation towards a solution (Figure (2.5)).

There are two types of cuts that can be considered:

• neutral cuts, where the query point x is contained in the cutting plane ztz = b

• deep cuts, where the query point x lies in the interior of the half-space that is being
excluded from the search

Figure 2.6: A neutral and a deep cut. In the neutral cut the query point x is on the
boundary of the half-space that is about to be excluded.

These cuts form a decreasing sequence of polyhedrons P that contain the target set
X.

15



2.2. THE CUTTING-PLANE METHOD CHAPTER 2. THE C-P METHOD

Figure 2.7: X ⊆ · · · ⊆ Pk+1 ⊆ Pk ⊆ . . .

2.2.1 Finding the cuts

After picking the query point x there are two things that need to be decided by the oracle:
1)the feasibility and 2)optimality of the query point x must be assessed. We illustrate
how the above issues can be approached separately and then we combine them together
in order to see how an optimal point of a constrained optimization can be retrieved.

Unconstrained minimization

First, consider the optimization problem

min f0(x),

where f0 is convex and no more constraints apply. In order to construct a cutting-plane,
at x we may proceed as follows:

• Find a sub-gradient g ∈ ∂f0(x). If f0(x) is differentiable then g = ∇f0(x)

• If g = 0 then x ∈ X and we are done

• If g 6= 0 then:

– By the definition of the sub-gradient:

f0(x) + g>(z − x) ≤ f0(z)

So if z satisfies g> · (z− x) > 0, then f0(z) > f0(x). This means that z is not
optimal. So for a point z to be optimal (i.e. for z ∈ X) we need:

g>(z − x) ≤ 0 (2.1)

and g>(z − x) = 0 for z = x. So (2.1) is a neutral cutting-plane at x.

That means that we can remove the half-space {z | g> · (z− x) > 0} from consideration
since all points in it have an objective value larger than the point x, and so cannot be
optimal. Figure 2.5.
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The Problem of Feasibility

Consider the following problem
Find x

subject to fi(x) ≤ 0, j = 1,2, . . . ,m,

where fi are convex. Here we take the target set X as the feasible set.
To find a cut for this problem at the point x we continue as follows:

• if x is feasible then it satisfies fi(x) ≤ 0 for all i = 1, 2, ...,m. Then x ∈ X.

• if x /∈ X then ∃j : fj(x) > 0. Let gj ∈ ∂fj(x) be a sub-gradient. Since fi(z) ≥
fj(x) + g>j (z − x), if fj(x) + g>j (z − x) > 0 then fj(z) > 0 and z violates the j-th
constraint. That means that any feasible z satisfies

fj(x) + g>(z − x) ≤ 0.

This is a deep cut, since fj(x) > 0. Here we remove the half-space {z | fj(x) +
g>(z−x) ≥ 0 because all points that lie in it violate the j-th constraint, as x does,
and thus they are not feasible.

Constrained Optimization Problem

By combining the above methods, we can find a cut for the problem:

min f0(x)

subject to
fi(x) ≤ 0, i = 1, 2, ...,m,

where fj , j = 0, 1, ...,m are convex. Here X is the set of optimal points.
Pick a query point x First we need to check if it is feasible or not.

• if x is infeasible we can produce the following cut:

fj(x) + g>j (z − x) ≤ 0,

where j is the index of the violated constraint and gj ∈ ∂fj(x). This cut is called
a feasibility cut, since we filter out the half-plane of infeasible points (the ones that
violate the j-th constraint).

• if x is feasible, then find g0 ∈ ∂f0(x). If g0 = 0 then x is optimal.

If g0 6= 0 we can construct a cutting-plane

g>0 (z − x) ≤ 0

which is an objective cut. The half-space {z | g>0 (z − x) > 0} is put out of consid-
eration, since all such points have an objective value larger than x, and thus are
sub-optimal.
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Selecting the query point x

The query point x can be chosen in many ways. We would like to exclude as much of the
previous polyhedron as possible, with every iteration, therefore x(k+1) should lie near
the center of the polyhedron Pk. Some alternatives are listed below. Choose x(k+1) as:

• the center of gravity of Pk

• the center of the largest ball contained in Pk (Chebyshev center)

• the center of maximum volume ellipsoid contained in Pk (MVE)

• the analytic center of the inequalities defining Pk (ACCPM).

2.2.2 Using the Cutting-Plane Method

Our problem seems to have features that make the cutting-plane method very promising.
Every policy π ∈ Π has a corresponding hyperplane and we can view every hyperplane
as a potential cut. Choosing the optimal set X to be the set of points z ∈ RM such that

V≤ z, the cutting-planes produced will come closer to V with every iteration. In the
last iteration we will have a number of cutting-planes very close to V and each one of
them corresponds to a policy. We can choose one of them (or combine them) to create a
(randomizing) policy which will exhibit close to optimal performance. Ideally a convex
combination of the cutting-planes will be touching V in some point. If this optimal policy
touches V in the most unfavourable point (minξ maxπ V

π
ξ ), then it is a robust policy.

0.0 0.2 0.4 0.6 0.8 1.0
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ξπ

Figure 2.8: A robust policy.
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The Algorithm

Algorithm 1 Cutting-plane

We are given an initial polyhedron Po : X ⊆ Po, where X is the (target) set of optimal
points.

k ← 0
loop

Query the cutting plane oracle at xk+1

if oracle decides that xk+1 ∈ X, then Quit
else add the new cutting plane inequality:

Pk+1 ← Pk ∩ {z | aT z ≤ b}
end if

if Pk = ∅ then Quit
end if

k ← k + 1

end loop

2.3 NP-hardness

There are several issues that need to be addressed in the above algorithm, especially
concerning how exactly the oracle works. However, let’s skip forward. In the end1 of the
procedure we would have to match the cutting-planes that form the last polyhedron to
specific policies. Therefore we arrive in the following decision problem:

Definition 2.3. (The stochastic-blind-policy problem). Given a discounted Markov de-
cision problem and a target policy value V ∈ RM , is there a mixed policy π that earns
Vπ ≥ V ?

This problem is already addressed by Vlassis et al in [VLB12]. As it turns out,
the stochastic-blind-policy problem is NP-hard2 and hence intractable. This means that
since we need to solve this decision problem to complete our optimization, independently
on how we arrive at this stage, if we need to match a hyperplane-cut to a policy, then
the problem cannot be solved in polynomial time.

1It seems reasonable to argue that this decision problem of definition 2.3 needs to be dealt by the
oracle, in each iteration, as well. Nevertheless, in the end of the procedure we can’t avoid that we will
need to match the edges of the polyhedron (the cuts) to specific policies, even if the oracle manages to
bypass this issue somehow.

2More specifically the stochastic-blind-controller problem is NP-hard, in PSPACE and SQRT-SUM-
hard.
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The complexity of approximate optimizations for the stochastic-blind-policy problem
is still an open question. Only the case of the deterministic controllers is addressed in
the related literature (see [LGM01]).
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3
A Naive Algorithm

As the Decision Maker takes actions, a stream of rewards is generated. One of the issues
here is that these rewards are stochastic: they are random variables that follow some
distribution. Thus, in order to evaluate what is to be expected by following each policy,
a Monte Carlo sampling can be performed to obtain approximations of the expected
value of the policies’ total rewards. By performing a minimax optimization, using these
approximations, an estimate of the worst case prior distribution ξ can be retrieved. The
algorithm laid out here has a major downside though: it is possible that some of the
policies do not influence the outcome of the optimization in any way, and therefore the
algorithm loses time with approximations that turn out to be useless (see Figure 3.1).
We feel that the name naive describes this drawback of the algorithm appropriately.
More sophisticated approaches to follow in later chapters.1

3.1 Uniform Sampling

3.1.1 Notation & Definitions

Before proceeding, we need some definitions.
Let M be a set of Markov decision problems and let Π be a set of policies, which

provide decision rules for each state s ∈ S.

Definition 3.1. Define the discounted realized utility of a policy as the discounted sum
of the rewards received at each time step, while in µ ∈M :

Uπµ ,
∑

1≤t≤T
γt r

(t)

a∼π,s(t) ,

1For instance, in Chapter 4 the estimation of ξ is approached obliquely by comparing policy per-
formance directly. By following the procedure described, the Decision Maker obtains a robust policy
without the need of an explicit calculation of ξ beforehand. In Chapter 5 the policies that perform
sub-optimally with high probability, are filtered out and therefore there is no time spent dealing with
inefficient policies.
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Figure 3.1: Not all policies contribute to the minimax optimization. If all policies are dealt
uniformly, a lot of time is spent sampling useless policies.

where the rewards r
(t)

a∼π,s(t) were generated by the reward function that corresponds to µ,

actions a follow the policy plan π and γ represents a discount factor2 such that 0 ≤ γ ≤ 1.

For each policy π ∈ Π, denote the value of the policy, while in µ ∈M, as the expected
utility obtained from following this policy, as follows:

V π
µ , E

[
Uπµ

]
.

We can approximate the true value of each policy by utilizing a Monte Carlo method
and so we need the following notation:

Denote the Monte Carlo approximation of policy π ∈ Π, while in µ ∈M, at the Sth

iteration as

V̂ π,(S)
µ ,

1

S

S∑
s=1

Uπ,(S)
µ ,

where Uπ,(S)
µ is the discounted realized utility of the policy π (as defined above) at the

Sth iteration.
Let e

π,(S)
µ be the error of each Monte Carlo approximation (after S iterations) for

the policy π while in µ, ie.
eπ,(S)
µ , |V̂ π,(S)

µ − V π
µ |.

Let Vπ be the 1×M vector of values for policy π for the given set of Markov decision
problems M:

Vπ = (V π
µ1 , V

π
µ2 , . . . ,V

π
µM

).

2If the time horizon T is not finite then the discount factor γ needs to be strictly less than unity,
otherwise the sum of the discounted rewards might explode to infinity. In this section the time horizon
will be finite though.
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and let V π
ξ be the weighted mean value of the policy π with respect to the distribution

vector ξ ∈ [0,1]M×1:
V π
ξ , Vπ · ξ.

Definition 3.2. Let C(s) be a confidence set for the episode s, i.e.

C(s) ,
{
π : |V̂ π,(S)

µ − V π
µ | < ε with probability 1− δ

}
, δ ∈ (0,1).

3.1.2 Approximating the Policy Values with Uniform Sampling

Here we focus on the case when T < ∞ and Π is a set of arbitrary policies. We start
by approximating the values of the policies in Π with a Monte Carlo simulation for S
iterations. A visualization of an approximated policy value can be seen in Figure 3.2.

0.0 0.2 0.4 0.6 0.8 1.0
ξm

V
ξπ

Figure 3.2: The Monte Carlo approximated value of a policy given different values for ξ.
The true value of V πµ lies somewhere inside the shaded area. The width of the shaded area
diminishes with the iterations, since the error becomes smaller.

After obtaining these values, choose a ξ such that

min
ξ

max
π

V π
ξ

for policies π ∈ Π. This will be a close approximation to the true ξ?, since π ∈ C(S) with
high probability. We define the confidence sets C(S) in the next section, after retrieving
the relevant error bounds.

A robust policy can be chosen as a π such that maximizes V π
ξ̂?

.
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3.1.3 The Uniform Sampling Algorithm

Algorithm 2 Uniform Sampling

Parameters: δ ∈ (0,1), γ ∈ (0,1),S>0
Inputs :M, Π
For s = 1,2, . . . , S do:

Uπ,(s)µ ←
∑

1≤t≤T
γt r

(t)

a∼π,s(t) ∀µ ∈M ∀π ∈ Π

End For

V̂
π,(S)
µ ← 1

S

∑S
s=1 U

π,(s)
µ , ∀µ ∈M ∀π ∈ Π

Set ξ̂? so that minξ maxπ V
π
ξ

Select π ∈ argmaxV π
ξ̂?

3.1.4 Analysis

Error bounds

In this section, we retrieve bounds for the errors in order to estimate how close to the
true value of ξ? our estimated ξ̂? is. We assume that V π

(·) ∈ [0,1] ∀π. This condition can
be achieved by using appropriate scaling.

Lemma 3.1. For each policy π ∈ Π and each µ ∈ M, after S > 0 iterations, the
estimation of the error is at most ε with probability 1− exp

{
−2ε2S

}
, i.e.

P

[
eπ,(S)
µ ≥ ε

]
= e−2ε2S .

Proof. We will use the Chernoff-Hoeffding inequalities (See Appendix A).

Let ε > 0.
The probability of the error exceeding ε:

P

[
eπ,(S)
µ ≥ ε

]
=

P

[
|V̂ π,(S)
µ − V π

µ | ≥ ε
]

=

P

[ ∣∣∣∣∣ 1S
S∑
s=1

Uπ,(s)µ − 1

S

S∑
s=1

E

[
Uπ,(s)µ

]∣∣∣∣∣ ≥ ε
]
≤ (by using Theorem A.18)

exp

{
−2

(εS)2

S

}
= e−2ε2S . (3.1)
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Now, using the above result, we can define the confidence set for episode s:

C(s) ,

{
π : |V̂ π,(s)

µ − V π
µ | <

√
− loge δ

2s
with probability 1− δ

}
, δ ∈ (0,1).

A number of policies πi, i = 1,2,...,N can be combined to create a mixed policy π

with weights wi ≥ 0, where not all wi are zero, that is, the Decision Maker assigns a
probability

pj =
wj∑N
i=1wi

to each pure policy πj , j = 1,2,...,N and randomly selects one, using these probabilities.
Then we can use Lemma 3.1 to bound the total error.

Lemma 3.2. For a mixed policy π the total error e
π,(S)
µ is at most ε with probability

1−
N∑
j=1

exp
{
−2ε2S

}
, i.e.

P

[
eπ,(S)
µ ≥ ε

]
≤

N∑
j=1

exp
{
−2ε2S

}
,

where S is the number of Monte-Carlo simulations used to approximate the value of the
policy πj , ∀j ∈ {1,2, . . . ,N}.

Proof.
Let ε > 0.
If

pjej < pjε ∀j ∈ {1,2, . . . , N}

then by summing up for all j we obtain

N∑
j=1

pjej <

N∑
j=1

pjε =

N∑
j=1

wjε∑N
i=1wi

= ε

∑N
j=1wj∑N
i=1wi

= ε.

Hence, the event (pjej < pjε ∀j ∈ {1,2,...,N}) implies
(∑N

j=1 pjej < ε
)

.

Thus,
(∑N

j=1 pjej ≥ ε
)

implies (pjej ≥ pjε for some j). Therefore, the probability of

the first is less than the probability of the second event. It follows that

P

[
eπ,(S)
µ ≥ ε

]
= P

 N∑
j=1

pje
πj ,(S)
µ ≥ ε

 <
P

[
pje

πj ,(S)
µ ≥ pjε, for some j

]
=
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P

[
e
πj ,(S)
µ ≥ ε, for some j

]
=

P

[
∃j ∈ {1,2,...,N} : e

πj ,(S)
µ > ε

]
=

P

 N⋃
j=1

{
e
πj ,(S)
µ > ε

}  sub-additivity

≤

N∑
j=1

P

[
e
πj ,(S)
µ ≥ ε

] Lemma 3.1
≤

N∑
j=1

exp
{
−2ε2S

}
.

Similarly, the following Lemma holds.

Lemma 3.3. For a mixed policy π (with weights pj = wj/
∑

iwi) and for a distribution
ξ = (ξ1, . . . , ξM ) with

∑
m ξm = 1, after S Monte Carlo simulations it holds:

P

 M∑
m=1

N∑
j=1

e
πj ,(S)
µ ≥ ε

 ≤ M∑
m=1

N∑
j=1

exp

−2

(
ξm

wjε∑N
i=1wi

)2

S

 .

Proof.
Let ε > 0.
The event

(
ej < ξm

wjε∑N
i=1 wi

∀m ∈ {1,2, . . . ,M} and ∀j ∈ {1, 2, ..., N}
)

implies
(∑M

m=1

∑N
j=1 ej < ε

)
.

Thus
(∑M

m=1

∑N
j=1 ej ≥ ε

)
implies

(
ej ≥ ξm wjε∑N

i=1 wi
for some m and some j

)
. Hence

the probability of the first is less than the probability of the second event. It follows
that

P

 N∑
j=1

e
πj ,(S)
µ ≥ ε

 <
P

[
e
πj ,(S)
µ ≥ ξm

wjε∑N
i=1wi

, for some m and some j

]
=

P

[
∃m ∈ {1,2,...,M} and ∃j ∈ {1,2,...,N} : e

πj
µ > ξm

wjε∑N
i=1wi

]
=

P

 M⋃
m=1

N⋃
j=1

{
e
πj
µ > ξm

wjε∑N
i=1wi

}  sub-additivity

≤
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M∑
m=1

N∑
j=1

P

[
e
πj
µ ≥ ξm

wjε∑N
i=1wi

]
(3.1)

≤

M∑
m=1

N∑
j=1

exp

−2

(
ξm

wjε∑N
i=1wi

)2

S

 .

True vs Sampled ξ

At this point we can retrieve probabilistic bounds on the error of the estimation of ξ? if
we bound the optimal value function appropriately.

To that end, choose two appropriate quadratics V ξ and Vξ that bound V ?
ξ from above

and below respectively.
To be more exact, define the optimal value function as:

V ?
ξ = max

π
V π
ξ ,

then we can define the upper and lower bounds respectively as:

V ξ = u+ (ξ − ξ?)>U(ξ − ξ?) and Vξ = `+ (ξ − ξ?)>L(ξ − ξ?)

for some `,u ∈ R, L, U ∈ RM×M , with the norms of the sub-gradients to obey:

‖∇Vξ‖ ≤ ‖∇V ?
ξ ‖ ≤ ‖∇V ξ‖. (3.2)

Then we can prove the following:

Theorem 3.3. Let ε > 0 and let Vξ, V ξ be two quadratic functions such that

‖∇Vξ‖ ≤ ‖∇V ?
ξ ‖ ≤ ‖∇V ξ‖.

Then the error in the estimation of ξ? is at most ε with probability 1−
∑N

j=1 exp
{
−2
(
ε||∇Vξ||

)2
S
}

.

Proof.
Let ε > 0 and let Vξ, V ξ be as described above. Then Taylor expansion series together
with inequality (3.2) give

|Vξ − V ?
ξ | ≤ ‖∇V

?
ξ‖‖ξ − ξ?‖ and |Vξ − V ?

ξ | ≥ ‖∇V?
ξ‖‖ξ − ξ?‖

or
|Vξ − V ?

ξ |
‖∇V ξ‖

≤ ‖ξ − ξ?‖ ≤
|Vξ − V ?

ξ |
‖∇V ξ‖

(3.3)
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The right hand side of inequality (3.3) implies that:

if
|Vξ − V ?

ξ |
‖∇V ξ‖

< ε then ‖ξ − ξ?‖ < ε.

Hence the first event implies the second, and consequently:

P [ ‖ξ − ξ?‖ < ε ] ≥ P
[
|Vξ − V ?

ξ | < ε||∇V ξ||
]

which means

P [ ‖ξ − ξ?‖ ≥ ε ] < P
[
|Vξ − V ?

ξ | ≥ ε||∇V ξ||
]

= P
[
eπµ ≥ ε||∇V ξ||

]
.

By using Lemma 3.2, we obtain the result.

Remark 3.4. Similarly, by using the upper bound (left hand side of ineq.(3.3)) we can
bound the probability of the error in V by the error in ξ.
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4
The Weighted Majority

Algorithm

In some occasions the outcomes of all the available actions are revealed fully or partially,
after choosing one of them (e.g. in the stock market, the historical prices of all stocks are
available for examination), so the alternatives can be compared by using this information,
to assess the degree of mistake of the last decision. In this chapter we consider this case,
and leave the alternative case, where only the reward/cost of the decided action can be
observed, after executing this particular action, for the next chapter.

Recall that the Decision Maker in her attempt to maximize her total reward, under
the uncertainty about her environment, envisions a set M of Markov decision processes,
that contains M candidates

µi = 〈S,A,R,P〉, i = 1, 2, . . . , M.

So, each one of the µi’s describes a possible environment that she needs to deal with.
Now she needs to allocate probabilities to each one of the components of M, so she
can estimate the value of each alternative policy that she might consider applying. We
denoted this distribution of probabilities by ξ ∈ RM .

In order to decide on how to achieve this, a very reasonable way of proceeding
would be to start with an initial distribution, choose the policies accordingly, observe
the outcomes and modify the weights of each µi along the way. However, we can avoid
the trouble of computing ξ and focus directly on the evaluation of the policies. The idea
is that, if we find a policy that performs as desired, then we don’t really care if we are
dealing with µj or µi, i 6= j!

The next important idea, considering that we assumed adversarial behaviour for the
environment (because we are interested in finding a robust policy) is that we can view
our problem as a zero-sum game, where the Decision Maker competes against Nature,
by choosing policies.

29



CHAPTER 4. WEIGHTED MAJORITY

In this chapter we illustrate how the standard weighted majority algorithm(WMA)
can be used in fictitious play in order to identify a policy that outperforms the others
with high probability. Then we modify the algorithm to obtain a more general version
(WMA-PUSR) that fits better the uncertainty we are dealing with. The main idea of
the algorithm is that the Decision Maker gives higher weights to policies that perform
better and chooses what to do using a probability distribution based on these weights.
By observing the outcomes, she decreases the weights of policies that err, over time, in
order to arrive in a desired mixed policy that pays-off adequately.

4.0.5 A zero-sum game: Decision Maker VS Nature

Players: Decision Maker Nature(Adversary)

Actions: π µ (or a distribution ξ among them)

Reward at round k: x(µ(k),π(k)) −x(µ(k),π(k))

In each round k the Decision Maker adopts a policy π(k) by using a choice distribution
Q(k). Then, Nature reveals a ξ(k), which is chosen in an adversarial way, against the
Decision Maker’s choice distribution Q(k). The Decision Maker receives a reward that
depends on π(k) and ξ(k) (or rather on the µ(k) that was chosen by ξ(k)) and Nature
receives minus that reward. Both players try to maximize their total reward.

To be more specific on how ξ and π influence the rewards, we proceed with the
definitions section.

4.0.6 Notation & Definitions

We use similar notation, as in the previous chapter.
Let M be a set of Markov decision problems and let Π be a set of policies, which

provide decision rules for each state s ∈ S.
For each policy π ∈ Π, define the true value of the policy, while in µ ∈ M, as the

expected total reward obtained from following this policy:

V π
µ , E

 ∑
1≤t≤T

r
(t)

a∼π,s(t)

 ,
where actions a follow the policy π and the rewards r

(t)

a∼π,s(t) were generated with the

reward function that corresponds to the Markov decision problem µ. We assume that
the value of each policy lies in [−1,1].

Let Vπ be the 1×M vector of values for policy π for the given set of Markov decision
problems M:

Vπ = (V π
µ1 ,V

π
µ2 , . . . ,V

π
µM

)
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and let V π
ξ be the weighted mean value of the policy π with respect to the distribution

vector ξ ∈ [0,1]M×1:
V π
ξ , Vπ · ξ.

Moreover denote by Vξ the 1×N vector containing the ξ-weighted mean values for each
policy:

Vξ = (V π1
ξ ,V π2

ξ , . . . ,V πN
ξ ).

Denote by V̂
π,(S)
ξ the approximated policy value, after S rounds of Monte-Carlo

sampling.
Denote by EQ the mean:

EQ [Vξ] = Vξ · Q

where Q is a N × 1 vector of probabilities that sum up to unity.
Let Φ(k) ,

∑N
i=1wk,i be the potential function for step k.

Moreover, denote by xπi,k the total reward obtained by following policy πi, i =
1,2,...,N , in the k-th round. Observe that each xπi,k is a random variable that has an
expected value, equal to V πi

ξ .
Finally, denote by x(k) the vector of rewards of all policies up to round k:

x(k) = (xπ1,k, xπ2,k, . . . , xπN ,k).

4.0.7 The Weighted Majority Algorithm - The Standard Version

We start by assuming that in each round k the Decision Maker has full access to the
information regarding the rewards of the past round. That means that she can observe
the outcomes of all the actions that were available previously. Furthermore, we assume
that all rewards x(k) are not stochastically generated, for the time being. We gradually
weaken this assumptions in the next sections.
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Algorithm 3 WMA

Input:

• A set of policies Π, with |Π| = N

• A set of weights w(k) =
(
wi,k

)N
i=1

, a learning rate 0 < ` ≤ 1/2.

Initialize: wi,1 = 1.
For each round k:

1: DM(Decision Maker) normalizes the weights to get a distribution

Q(k) =
w(k)

Φ(k)

2: DM selects π(k) among πi, i = 1,2,...,N according to the distribution Q(k)

3: Adversary chooses ξ(k) ∈ argminξ(k)EQ(k)

[
Vξ(k)

]
4: DM receives reward xk,π(k) and observes xk,πi for all policies πi ∈ Π
5: DM calculates the next set of weights for i = 1, . . . , N :

wi,k+1 = (1 + ` xk,πi)wi,(k)

Remark 4.1. The Adversary chooses a randomizing distribution among the Markov
decision problems M and not necessarily a specific µ ∈ M, which allows for more
flexibility in the model. For instance, if there exist two optimal policies with the same
worst-case values for the Decision Maker (and thus she issues equal weights to them),
then there are three ξ’s for the adversary to choose as an optimal response (if the
Adversary’s action space consists of ξ’s), but only two µ’s (if the action space consists of
Markov decision problems). So the Decision Maker can include, in the way the problem
is approached here, more possibilities of what can happen in the future (more adversary
actions to be encountered). However, without loss of generality, we can reduce the search
space for ξ by restricting the adversarial moves to only deterministic choices. That means
that the Adversary can always choose a specific µ ∈M, i.e. a ξ(k) of the form

ξ(k) = (0, 0, ..., 0, 1, 0, ..., 0) (4.1)

to minimize the Decision Maker’s gains.
Indeed:

Proof. (By contradiction).
Fix a policy π and let

V π
ξ < V π

ξd

for every ξd = (0, 0, . . . , 0,

d-th
position
∧
1 , 0, . . . , 0), d = 1, . . . ,M,

where
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• ξ = (ξ1, . . . ,ξM )

• at least two of the ξm’s (1 ≤ m ≤M) in ξ are not zero and

• no two Markov decision problems in M give equal1 values for policy π.

Then
V π
ξ < V π

ξd
, d = 1, . . . ,M

Vπ · ξ < Vπ · ξd, d = 1, . . . ,M∑
1≤m≤M

ξmV
π
µm < V π

µd
, d = 1, . . . ,M (4.2)

Now, observe that∑
1≤m≤M

ξmV
π
µm >

∑
1≤m≤M

ξm min
1≤m≤M

V π
µm = min

1≤m≤M
V π
µm

∑
1≤m≤M

ξm = min
1≤m≤M

V π
µm (4.3)

therefore
(4.3),(4.2)

=⇒ min
1≤m≤M

V π
µm < V π

µd
, d = 1, . . . ,M (4.4)

Since equation (4.4) holds for every d = 1, . . . ,M , it also holds for the d that mini-
mizes Vπ

µd
. Thus, by taking minimum over all d’s, (4.4) yields

min
1≤m≤M

V π
µm < min

1≤d≤M
V π
µd

Contradiction.

Remark 4.2. Observe that in equation (4.3) the inequality is strict, since at least two
of the ξm’s (1 ≤ m ≤M) in ξ are not zero and we assumed that every Markov decision
problem gives a different reward for this policy. If we allow equal rewards for two different
Markov decision problems and it happens that the corresponding µm’s for these ξm’s give
equal values to V π

µm then the inequality is not strict, but this is an uninteresting case,
since the same policy performs equally well in both situations and so we can view these
different Markov decision problems as one (for this particular policy). In any case, the
Adversary cannot worsen the Decision Maker’s position by randomizing his choices of
Markov decision problems.

Another way to arrive to the same conclusion is to use the well known game-theoretic
result that if one player knows what action the other player has chosen, then there always
exists a deterministic optimal response.

So, in practice, we can reduce the adversarial action space to the ξ’s that demonstrate
the above form (eq.(4.1)), rather than the much larger one defined by equations (1.1)
and (1.2) (page 7).

1See also Remark 4.2
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In the following section we lay out a performance guarantee for this standard version
of the algorithm. Proofs of the two theorems below (in a cost, and not rewards form,
though) can be found in [AHK12]. However, in Section 4.0.9 we modify the algorithm
to allow for more uncertainty and prove a more general version of these theorems, for a
setting where not all policy rewards can be observed, after each round. There we take
a closer look on what happens in each iteration and discuss a possible scenario in order
to obtain a better understanding of how things work.

4.0.8 Analysis

The expected reward for sampling a policy π from the distribution Q(k) is

Eπ∼Q(k)
[xk,π] = x(k) · Q(k).

The total expected reward over all rounds is therefore

V(K)
WMA ,

K∑
k=1

x(k) · Q(k).

Theorem 4.3. Assume that all policy rewards lie in [−1,1]. Let 0 < ` ≤ 1/2. Then
the Multiplicative Weights algorithm guarantees that after K rounds, for any policy πi,
i = 1,2,...,N , it holds:

V(K)
WMA ≥

K∑
k=1

xk,πi − `
K∑
k=1

|xk,πi | −
logeN

`

Theorem 4.4. The Multiplicative Weights algorithm also guarantees that after K rounds,
for any distribution Q on the decisions, it holds:

V(K)
WMA ≥

K∑
k=1

(xk − `|xk|) · Q −
logeN

`

where |xk| is the vector obtained by taking the coordinate-wise absolute value of xk.

Proofs of the above theorems can be found in [AHK12], but can also be obtained as
specific cases of the results of the next section.

4.0.9 The Weighted Majority Algorithm / Unknown Stochastic Re-
wards Variation with Partial Information

Here we relax the assumption of the non-randomness of the rewards. Moreover, we
assume that in each round k, only the reward of the chosen action can be observed, but
there is some partial information available about the outcomes of the other (previous)
alternatives, in the form of the distribution ξ(k). More specifically, the information ξ(k)

that is revealed after the Decision Maker makes a move, concerns the action that the
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adversary chose, but it can be used to estimate the expected values of the rest of the
alternative policies. That means that in each round k the Adversary chooses and reveals
an unfavorable (for the Decision Maker) distribution ξ(k) (against the choice distribution
Q(k) that the Decision Maker has) and based on that selects a µ ∈ M. The Decision
Maker can’t compare the rewards of each policy directly, since they are not revealed,
but approximates their expected value using the ξ(k) and updates the rewards according
to these approximations.

We proceed by generalizing the Weighted Majority algorithm and the relevant theo-
rems accordingly.

Algorithm 4 WMA-PUSR

Input:

• A set of policies Π, with |Π| = N

• A set of weights w(k) =
(
wi,(k)

)N
i=1

, a learning rate 0 < ` ≤ 1/2.

Initialize: wi,1 = 1.
For each round k:

1: DM(Decision Maker) normalizes the weights to get a distribution

Q(k) =
w(k)

Φ(k)

2: DM selects policy π(k) according to the distribution Q(k)

3: Adversary chooses ξ(k) ∈ argminξ(k)EQ(k)

[
Vξ(k)

]
4: Adversary reveals ξ(k) to the DM
5: DM receives reward xk,π(k) and approximates V πi

ξ(k)
for all policies πi ∈ Π

6: DM calculates the next set of weights for i = 1, . . . ,N :

wi,k+1 = (1 + `V̂ πi
ξ(k)

)wi,(k),

where the approximations V̂ πi
ξ(k)

for i = 1, . . . , N, are obtained by sampling the Markov

decision problems indicated by ξ(k).

Now, the exact reward value of each alternative policy in the past round is not
known, but the DM calculates an approximation (since ξ(k) is revealed) in each round
and compares the policies based on that.

35



CHAPTER 4. WEIGHTED MAJORITY

4.0.10 Walk-through

By now, things may seem a bit complicated. To get a better insight of what happens in
each iteration, we demonstrate a possible, simple scenario.

Imagine that the Decision Maker in the beginning of round k has the weights wk−1

from the previous round. She normalizes them to obtain the distribution Q(k) which
describes the way that the policies are chosen (step 1 of the algorithm). For instance,
assume that there are N available policies π1, π2, . . . , πN . The distribution Q(k) =
(q1,k, q2,k, . . . qN,k) assigns to the the i-th policy πi,k a probability qi,k. Naturally, for
each k, the qi,k’s sum up to unity. The Decision Maker randomizes her action by using
Q(k) and plays a policy π(k).

Then, in step 2, the Adversary, knowing the values of all the policies, chooses a
distribution ξ(k) such that the expected reward for following the randomizing distribution
is minimized. Hence ξ(k) is selected to minimize

Vξ(k) · Q(k) = q1,kV
π1
ξ(k)

+ . . . + qN,kV
πN
ξ(k)

If we restrict ξ’s to vectors that look like ξ(k) = (0, 0, ..., 0, 1, 0, ..., 0) (see Remark 4.1,
page 32), then the Adversary chooses deterministically one Markov decision problem µ?,k,
rather than randomizing between many µ’s. This ξ(k) minimizes the convex combination
of the policy values (and thus is a best response), but all comes down to the expected
policy value under that specific Markov decision problem µ?,k. Indeed, by following the
definitions of page 30:

Vξ(k) · Q(k) = q1,kV
π1
ξ(k)

+ · · ·+ qN,kV
πN
ξ(k)

= q1,kVπ1 · ξ(k) + · · ·+ qN,kVπN · ξ(k) =

N∑
i=1

qi,kVπi · ξ(k)

N∑
i=1

qi,k(V
πi
µ1 ,V

πi
µ2 , . . . ,V

πi
µ? , . . . , V

πi
µM

) · (0, ..., 0, 1, 0, ..., 0)> =

N∑
i=1

qi,kV
πi
µ?,k

= Vµ?,k · Q(k),

which is the expected total reward, by following Q(k) when in µ?,k. In short, the Ad-
versary chooses the Markov decision problem in which the Decision Maker’s choice will
perform the worst.

Thereupon, the Adversary shows that ξ(k) to the Decision Maker.
So, the Decision Maker’s move in this round of the game is a randomizing policy Q(k)

and the Adversary’s move is a distribution ξ(k). The Decision maker plays the mixed
policy Q(k) which results to the policy πi to be implemented, with probability qi,k. The
Adversary uses ξ(k) to select the Markov decision problem µ?,k. That means that the
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Decision Maker takes the actions2 prescribed by this policy πi in each time step of the
Markov decision problem µ? and in the way collects all the rewards rµ?,k,πi,k . These
make up the total realized reward xk,π(k) of the policy.

Therefore, in step 4, the Decision Maker receives a reward xk,π(k) (which is a ran-

dom variable with expected value V
π(k)
µ?,k ). Thus, at this point the only new information

available to the Decision Maker is:

ξ(k) and xk,π(k) .

Now the Decision Maker knows which Markov decision problem she was interacting with
(or the distribution that was used to choose which one was it, if we don’t restrict ξ’s
to the deterministic choices, according to Remark 4.1), so she needs to compare the
performance of all the available pure policies, to see which of them performed better
and improve her randomizing rules if needed. To this end, she samples the policy values
from the chosen Markov decision problem(s) and updates the weights based on these
approximations (step 5).

4.0.11 Analysis

Since the information that can be observed in each round does not include the specific
policy rewards xk,π for all policies π (except from the one that is received), but the

Decision Maker is given only ξ(k), and since the algorithm uses V̂
π,(S)
ξ(k)

’s and not xk,π’s

to update the weights, Theorem 4.3 does not hold anymore. However, we can retrieve
similar results and obtain performance guarantees, by generalizing Theorem 4.3 and its
proof.

The value earned by using WMA-PUSR, over all rounds is

V(K)
WMA-PUSR , E

[
K∑
k=1

x(k) · Q(k)

]
=

K∑
k=1

Vξ(k) · Q(k)

where Q(k) = (qk,1, . . . ,qk,N ).
First, we prove a lemma for the approximated expected values.

Lemma 4.1. Assume that all policy rewards lie in [−1,1]. Let 0 < ` ≤ 1
2 . Then after

K rounds, it holds:

V
(K)
WMA-PUSR ≥

K∑
k=1

V̂ πi
ξ(k)
− `

K∑
k=1

|V̂ πi,(S)
ξ(k)

| − logeN

`

for all i = 1,2,...,N .

2Observe that the actions of the zero-sum game and the actions during the Markov decision problem
are not the same! In this game, an action for the Decision Maker is a mixed policy, whereas during
the Markov decision problem, the actions are elements of the set A, as described in the Introduction,
Definition 1.1 and Section 1.2, pages 2 and 4.
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Proof.
Φ(k+1) =

N∑
i=1

wi,(k+1) =

N∑
i=1

wi,(k)

(
1 + `V̂

πi,(S)
ξ(k)

)
= (since qi,(k) =

wi,(k)
Φ(k)

)

Φ(k) − `Φ(k)

N∑
i=1

V̂
πi,(S)
ξ(k)

qi,(k) =

Φ(k)

(
1 + `V̂

(S)
ξ(k)
· Q(k)

)
≤ Φ(k)e

`V̂
(S)
ξ(k)
·Q(k)

(4.5)

where the inequality 1 + x ≤ ex ∀x was used.
Therefore, after K rounds, by repeatedly applying inequality (4.5)

Φ(k+1) ≤ Φ(k) exp
(
`V̂

(S)
ξ(k)
· Q(k)

)
≤(

ΦK−1 exp
(
`V̂

(S)
ξ(K−1)

· Q(K−1)

))
exp

(
`V̂

(S)
ξ(k)
· Q(k)

)
≤ . . .

· · · ≤ Φ(1) exp

{
`
K∑
k=1

V̂
(S)
ξ(k)
· Q(k)

}
=

N exp

{
`

K∑
k=1

V̂
(S)
ξ(k)
· Q(k)

}
, (4.6)

since Φ(1) =
∑N

i=1wi,1 =
∑N

i=1 1 = N
Now, by using Bernoulli’s inequality:

(1 + `)x ≤ (1 + `x) for x ∈ [0,1]

and
(1− `)−x ≤ (1− `x) for x ∈ [−1,0],

since V̂
πi,(S)
ξ(k)

∈ [−1,1], we have:

Φ(k+1) ≥ wi,(k+1) =

wi,(k)

(
1 + `V̂

πi,(S)
ξ(k)

)
=(

wi,K−1

(
1 + `V̂ πi

ξ(K−1),S

))(
1 + `V̂

πi,(S)
ξ(k)

)
= . . .
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· · · =
K∏
k=1

(
1 + `V̂

πi,(S)
ξ(k)

)
≥ (1 + `)A · (1− `)−B (4.7)

where A =
∑

V̂
πi,(S)

ξ(k)
≥0

V̂
πi,(S)
ξ(k)

and B =
∑

V̂
πi,(S)

ξ(k)
<0

V̂
πi,(S)
ξ(k)

.

Combining (4.6) and (4.7)

N exp

{
`
K∑
k=1

V̂ξ(k) · Q(k)

}
≥ (1 + `)A · (1− `)−B

Taking logarithms (and substituting A for
∑

V̂
πi,(S)

ξ(k)
≥0

V̂
πi,(S)
ξ(k)

and B for
∑

V̂
πi,(S)

ξ(k)
<0

V̂
πi,(S)
ξ(k)

) we

obtain

logN + `
K∑
k=1

V̂
(S)
ξ(k)
· Q(k) ≥

∑
V̂
πi,(S)

ξ(k)
≥0

V̂
πi,(S)
ξ(k)

log(1 + `)−
∑

V̂
πi,(S)

ξ(k)
<0

V̂
πi,(S)
ξ(k)

log(1− `),

or, by re-arranging and dividing by `:

K∑
k=1

V̂
(S)
ξ(k)
· Q(k) ≥

1

`

∑
V̂
πi,(S)

ξ(k)
≥0

V̂
πi,(S)
ξ(k)

log(1+`)−1

`

∑
V̂
πi,(S)

ξ(k)
<0

V̂
πi,(S)
ξ(k)

log(1−`)− logN

`

Since
===============
− log(1−`)=log( 1

1−`)

=
1

`

∑
V̂
πi,(S)

ξ(k)
≥0

V̂
πi,(S)
ξ(k)

log(1 + `) +
1

`

∑
V̂
πi,(S)

ξ(k)
<0

V̂
πi,(S)
ξ(k)

log

(
1

1− `

)
− logN

`

(4.8)

≥

1

`

∑
V̂
πi,(S)

ξ(k)
≥0

V̂
πi,(S)
ξ(k)

(
`− `2

)
+

1

`

∑
V̂
πi,(S)

ξ(k)
<0

V̂
πi,(S)
ξ(k)

(`+ `2)− logN

`
=

K∑
k=1

V̂
πi,(S)
ξ(k)

− `
∑

V̂
πi,(S)

ξ(k)
≥0

V̂
πi,(S)
ξ(k)

+ `
∑

V̂
πi,(S)

ξ(k)
<0

V̂
πi,(S)
ξ(k)

− logN

`
=

K∑
k=1

V̂
πi,(S)
ξ(k)

− `
K∑
k=1

|V̂ πi,(S)
ξ(k)

| − logN

`
,

where we used that for ` ≤ 1
2 :

log(1 + `) ≥ `− `2 and log

(
1

1− `

)
≤ `+ `2. (4.8)

39



CHAPTER 4. WEIGHTED MAJORITY

Observe that if the rewards are not stochastic, then Lemma 4.1 is reduced to Theorem
4.3.

Transitioning from the approximations V̂
πi,(S)
ξ(k)

’s to the true values V πi
ξ(k)

an error term

E(S)
(k) (which depends on the number S of Monte Carlo iterations) needs to be introduced

in each round k. We bound each error term with the following theorem.

Theorem 4.5. (MAIN) Assume that all policy rewards lie in [−1,1]. Let 0 < ` ≤ 1
2 .

Let ε > 0. Then after K rounds, for the total expected rewards, it holds:

V
(K)
WMA-PUSR ≥

K∑
k=1

V πi
ξ(k)
− `

K∑
k=1

|V πi
ξ(k)
| − logeN

`
−

K∑
k=1

E(S)
(k) (4.9)

for all i = 1,2,...,N , where ξ(k) = (ξ1,k, . . . ,ξM,k),
∑

m ξm,k = 1, Q(k) = (q1,k, . . . ,qN,k),
∑

i qi,k =

1, E(S)
(k) is the error term of the k-th round (and S denotes the number of Monte Carlo

simulations during the sampling process):

E(S)
(k) =

∣∣∣∣Vξ(k) · Q(k) − V πi
ξ(k)

+ `|V πi
ξ(k)
|+ logeN

`
−
(
V̂

(S)
ξ(k)
· Q(k) − V̂

πi,(S)
ξ(k)

+ `|V̂ πi,(S)
ξ(k)

|+ logeN

`

)∣∣∣∣
and

P

[
E(S)

(k) < ε
]
≥ 1−

N∑
j=1

M∑
m=1

exp

{
−1

2

(
ξm,z

wj,zε

(1 + `)Φz

)2

S

}
.

where z = 1,2,..., k.

Proof. For each round k and every policy πi, i ∈ {1,2, . . . ,N}, the error:

E(S)
(k) =∣∣∣∣Vξ(k) · Q(k) − V πi

ξ(k)
+ `|V πi

ξ(k)
|+ logeN

`
−
(
V̂

(S)
ξ(k)
· Q(k) − V̂

πi,(S)
ξ(k)

+ `|V̂ πi,(S)
ξ(k)

|+ logeN

`

)∣∣∣∣ =∣∣∣∣Vξ(k) · Q(k) − V̂
(S)
ξ(k)
· Q(k) − V πi

ξ(k)
+ V̂

πi,(S)
ξ(k)

+ `|V πi
ξ(k)
| − `|V̂ πi,(S)

ξ(k)
|+

�
�
��logeN

`
−

�
�
��logeN

`

∣∣∣∣ =

∣∣∣(Vξ(k) − V̂ (S)
ξ(k)

)
· Q(k) +

(
V̂
πi,(S)
ξ(k)

− V πi
ξ(k)

)
+ `
(
|V πi
ξ(k)
| − |V̂ πi,(S)

ξ(k)
|
)∣∣∣ =

∣∣∣∣∣∣
N∑
j=1

(
V
πj
ξ(k)
− V̂ πj ,(S)

ξ(k)

)
qk,j +

(
V̂
πi,(S)
ξ(k)

− V πi
ξ(k)

)
+ `

(
|V πi
ξ(k)
| − |V̂ πi,(S)

ξ(k)
|
)∣∣∣∣∣∣ .

—————————————————
Below, where inequalities are involved, we use the monotonicity of the measure:

if the event A implies the event B
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then
P [ A ] ≤ P [ B ]

and so if α, β ∈ R such that α ≤ β then

P [ α ≥ ε ] ≤ P [ β ≥ ε ] ,

since α ≥ ε implies β ≥ ε .

P

[
E(S)

(k) ≥ ε
]

=

P

 ∣∣∣∣∣∣
N∑
j=1

(
V
πj
ξ(k)
− V̂ πj ,(S)

ξ(k)

)
qk,j +

(
V̂
πi,(S)
ξ(k)

− V πi
ξ(k)

)
+ `

(
|V πi
ξ(k)
| − |V̂ πi,(S)

ξ(k)
|
)∣∣∣∣∣∣ ≥ ε

 ≤ (triangle inequality )

P

 N∑
j=1

∣∣∣V πj
ξ(k)
− V̂ πj ,(S)

ξ(k)

∣∣∣ qk,j +
∣∣∣V̂ πi,(S)
ξ(k)

− V πi
ξ(k)

∣∣∣+ `
∣∣∣|V πi

ξ(k)
| − |V̂ πi,(S)

ξ(k)
|
∣∣∣ ≥ ε

 ≤ (since qk,j ≤ 1 )

P

 N∑
j=1

∣∣∣V πj
ξ(k)
− V̂ πj ,(S)

ξ(k)

∣∣∣+
∣∣∣V̂ πi,(S)
ξ(k)

− V πi
ξ(k)

∣∣∣+ `
∣∣∣|V πi

ξ(k)
| − |V̂ πi,(S)

ξ(k)
|
∣∣∣ ≥ ε

 ≤ (reverse triangle inequality )

P

 N∑
j=1

∣∣∣V πj
ξ(k)
− V̂ πj ,(S)

ξ(k)

∣∣∣+
∣∣∣V̂ πi,(S)
ξ(k)

− V πi
ξ(k)

∣∣∣+ `
∣∣∣V πi
ξ(k)
− V̂ πi,(S)

ξ(k)

∣∣∣ ≥ ε
 =

P

 N∑
j=1

∣∣∣V πj
ξ(k)
− V̂ πj ,(S)

ξ(k)

∣∣∣+
∣∣∣V̂ πi,(S)
ξ(k)

− V πi
ξ(k)

∣∣∣ (1 + `) ≥ ε


and since

N∑
j=1

∣∣∣V πj
ξ(k)
− V̂ πj ,(S)

ξ(k)

∣∣∣+
∣∣∣V̂ πi,(S)
ξ(k)

− V πi
ξ(k)

∣∣∣ ≤ 2
N∑
j=1

∣∣∣V πj
ξ(k)
− V̂ πj ,(S)

ξ(k)

∣∣∣
the above probability is less or equal to

P

 2 (1 + `)

N∑
j=1

∣∣∣V πj
ξ(k)
− V̂ πj ,(S)

ξ(k)

∣∣∣ ≥ ε
 =

P

 N∑
j=1

∣∣∣V πj
ξ(k)
− V̂ πj ,(S)

ξ(k)

∣∣∣ ≥ ε

2 (1 + `)

 =

P

 N∑
j=1

M∑
m=1

∣∣∣V πj
µm − V̂

πj ,(S)
µm

∣∣∣ ξm,k ≥ ε

2 (1 + `)

 ≤ (since ξm,k ≤ 1 )
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P

 N∑
j=1

M∑
m=1

∣∣∣V πj
µm − V̂

πj ,(S)
µm

∣∣∣ ≥ ε

2 (1 + `)

 =

P

 N∑
j=1

M∑
m=1

e
πj ,(S)
µm ≥ ε

2 (1 + `)

 ≤ (Lemma 3.3 (page 26)
)

N∑
j=1

M∑
m=1

exp

{
−2

(
ξm,z

wj,zε

2(1 + `)Φz

)2

S

}
,

with z∈ {1,2 . . . ,k}
The error bound can be further improved by applying Azuma’s Lemma, since the

difference of the true minus the approximated values possess the martingale property:

P

 ∑
1≤k≤K

E(S)
(k) < ε

 ≥ 1− 2 exp{−kε2/2}.

We can also obtain a result for a distribution P over πi’s, i = 1,2,...,N .

Corollary 4.6. After K rounds, for any distribution P ∈ RN×1 on the decisions, it
holds:

K∑
k=1

Vξ(k) · Q(k) ≥
K∑
k=1

(
Vξ(k) − `|Vξ(k) |

)
· P − logeN

`
−

K∑
k=1

E(S)
(k)

where |Vξ(k) | is the vector obtained by taking the coordinate-wise absolute value of Vξ(k) .

Proof. This result follows from Theorem 4.5, by taking convex combinations of the in-
equalities over all decisions π, with any distribution P:

Let P be an arbitrary distribution on the decisions π ∈ Π, that is

P = (p1, p2, . . . , pN ) with
N∑
i=1

pi = 1.

For every i = 1,2, . . . , N multiply the inequality (4.9) with pi and sum them up. We
obtain:

N∑
i=1

pi

K∑
k=1

Vξ(k) · Q(k) ≥
N∑
i=1

pi

(
K∑
k=1

V πi
ξ(k)
− `

K∑
k=1

|V πi
ξ(k)
| − logeN

`
−

K∑
k=1

E(S)
(k)

)

=

K∑
k=1

(
Vξ(k) − `|Vξ(k) |

)
· P − logeN

`
−

K∑
k=1

E(S)
(k) .
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Definition 4.7. The regret of the learning algorithm against the optimal distribution
P? ∈ argmaxP {Vξ(k) · P} is

B(K) =
K∑
k=1

Vξ(k) · P
? −

K∑
k=1

Vξ(k) · Q(k)

Corollary 4.6 can be used in order to bound the regret. To that end, we first prove
the following.

Theorem 4.8. After K rounds of applying the modified weighted majority algorithm
WMA-PUSR, for any distribution P it holds:

K∑
k=1

Vξ(k) · P −
K∑
k=1

Vξ(k) · Q(k) ≤ 2
√

logeNK +

K∑
k=1

E(S)
(k)

Proof. In what follows |Vξ(k) | is the vector obtained by taking the coordinate-wise abso-
lute value of Vξ(k) .

K∑
k=1

Vξ(k) · P −
K∑
k=1

Vξ(k) · Q(k) ≤ (by re-arranging Corollary 4.6)

`
K∑
k=1

|Vξ(k) | · P +
logeN

`
+

K∑
k=1

E(S)
(k) ≤ (Since

K∑
k=1

|Vξ(k)
| · P ≤ K)

`K +
logeN

`
+

K∑
k=1

E(S)
(k)

Substituting ` =
√

logeN
K we obtain

K∑
k=1

Vξ(k) · P −
K∑
k=1

Vξ(k) · Q(k) ≤
√

logeN

K
K +

logeN√
logeN
K

+

K∑
k=1

E(S)
(k) =

√
logeNK +

√
logeNK

K
+

K∑
k=1

E(S)
(k) =

√
logeNK

(
1 +

1

K

)
≤ 2
√

logeNK +
K∑
k=1

E(S)
(k) .

Corollary 4.9. When algorithm WMA-PUSR is run with parameter ` =
√

logeN
K then

the regret of the algorithm is bound by

B(K) ≤ 2
√

logeNK +

K∑
k=1

E(S)
(k) .
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Proof. Since Theorem 4.8 holds for every distribution P, it holds for P? as well, and
thus

B(K) =
K∑
k=1

Vξ(k) · P
? −

K∑
k=1

Vξ(k) · Q(k) ≤ 2
√

logeNK +
K∑
k=1

E(S)
(k) .
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5
Contextual Bandits

In the previous chapter we presumed that (some) information about all the previously
feasible alternatives becomes available after each round. Here, we relax this assumption
and we view our problem as a contextual bandits problem. In this setting only the
outcome of the selected action is revealed, making the assessment of the efficiency of
each decision more obscure.

5.1 Bandits

5.1.1 The Multi-Armed Bandit Problem

First let us describe the standard multi-armed bandit problem. We encounter the op-
portunity to play a row of slot-machines - also known as one-armed bandits, because of
their design: they were originally build with a lever attached on their side (arm) that
triggered the play and for their capacity to empty the players’ wallets (bandit). A re-
ward is produced from each machine every time its lever is pulled. This reward follows
a probability distribution, that corresponds to each machine. After every play, we only
observe the reward of the chosen machine only, so we don’t have full information about
all the machines. Assuming that some machines pay more than others and based on the
information we acquire by testing the machines for their rewards, we try to decide how
to play, in order to maximize our total profit, generated after a sequence of plays.

5.1.2 The Contextual Multi-Armed Bandit Problem

The main difference in this variation of the problem is that some contextual side-
information about the machines is available prior to the decision.

The multi-armed bandits model finds application in research project management
(e.g. pharmaceutical companies), where an allocation of recources among competing
projects must be done, under a fixed budget. The features of each project are not
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explicitly known, but (hopefully since they are research projects) they may become
better understood in the near future. Furthermore, the contextual bandits model has
been extensively used for targeted advertising, given the side information generated by
search engines.

It’s useful to think this context information as a multidimensional vector that con-
tains some clues for each machine. To fit this model to our problem we use a Monte
Carlo estimation of the worst case prior distribution ξ as side-information. The similar-
ities between the two problems seem auspicious. Observe Table 5.1.

Contextual Bandits Our problem

machines policies

context information an estimate of ξ

stochastic rewards for each machine stochastic policy values for each policy

different distribution of rewards different distribution of policy

for each machine values for each policy

we observe one reward in every round we observe one policy value in every round

Table 5.1: Comparison between the contextual bandits problem and the problem of finding
a robust policy for a set of Markov decision problems

5.2 Algorithms LinRel & SupLinRel

If we do not want to make the assumption that V ?
ξ is bounded by quadratics, as in

Chapter 3, or to use the uniform sampling algorithm and loose time involving sub-
optimal policies, then we may proceed differently. We utilize the algorithms LinRel

and SupLinRel, often used in contextual bandit problems, from [Aue02]. The algorithm
makes use of a feature vector of side information in order to create upper confidence
bounds for the expected reward of each policy. The side information we use here is an
estimate of ξ?, chosen by carrying out a minimax over confidence bounds assigned to
each policy. That means that the extracted policy will be a minimax policy over the
upper confidence bounds. The algorithms deal with the trade-off between exploration
and exploitation (ie. investigating for a balance between testing the environment to
find high profit actions while taking the empirically best action as often as possible) by
calculating these confidence bounds for the expected reward of each policy. Then the
policy with the greatest upper confidence bound is chosen. An important thing to note
in the algorithm is that, in our case, the feature vector ξi,(k) is the same for every policy,
but the weight vector Vi is different for every i. For that reason we need to slightly
modify the involved performance theorem, to fit our case, and we will obtain a lightly
worse bound on the loss/regret, by a constant (the number of policies).
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The reason that we might need to do some exploration (that is to test alternatives
for which we are still uncertain about their outcome), is that in each round, only the
chosen policy’s outcome is revealed. We need to make sure we have enough information
about the policies’ rewards in order to exploit them efficiently.

To give a sneak peak, the way that the reinforce learning algorithm SupLinRel op-
erates is the following. The feature vectors ξ(k) are filtered until further exploration is
needed or until the confidence is small enough, in each stage k. A policy π is allowed
to pass to the next stage, only if it is adequately close to the optimal choice, with high
probability. Policies that are not optimal are identified by comparing the width that is
assigned to them. By eliminating choices which are obviously bad, the possible loss is
reduced in the next stage.

5.2.1 Associative reinforcement learning with linear value functions

The setting

Denote by xi the total reward of policy πi. Recall that V πi
µj is the value of policy πi ∈ Π,

i = 1,2,...,N under µj ∈M, j = 1,2,...,M , where N = |Π| and M = |M|.
For every policy πi consider the vector of values

Vi = (V πi
µ1 ,V

πi
µ2 , . . . ,V

πi
µM

).

So every element of Vi corresponds to the value of a certain policy πi under a different
MDP µj . Also recall, once more, that the Decision Maker’s belief of which decision
problem she is interacting with, at stage k, is described by the vector of probabilities
ξ(k) ∈ RM , which assigns a probability to each µj ∈M.

At each time point k, the learning algorithm utilizes the feature vector ξ(k)
1. As in

[Aue02] we assume that all rewards xi are independent random variables with expecta-
tion:

E [ xi ] = V >i ξ(k), i = 1,2, . . . ,N,

where Vi is a vector in RM (which the reinforcement learning algorithm needs to learn
and approximate) and ξ(k) is the estimated worst case prior at time t. Furthermore we
assume that ||Vi|| ≤ 1 (and of course ||ξ(k)|| ≤ 1). Appropriate scaling may be required
to achieve this condition.

We apply the learning algorithms from [Aue02] in order to calculate upper confidence
bounds for the expected reward E [ xi ] = V >i ξ(k) of each policy. The algorithms handles
the trade off between exploitation (controlled by the estimation of the expectation) and
exploration (controlled by the width of the confidence interval) by calculating these
upper confidence bounds for E [ xi ] = V >i ξ(k). Then the policy with the greatest upper
confidence bound is chosen.

1In [Aue02] ξ is referred as a feature vector zi and Vi is a weight vector f , the same for every policy.
In our case ξ is the same for every policy πi and Vi are different.
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Choosing the Feature Vector

The only thing left, is to provide a feature vector of side-information to the algorithm at
each stage k. We select ξ(k) by performing a minimax according to the current confidence
bounds.

5.2.2 The Algorithms

Algorithm 5 LinRel

Parameters: δ ∈ [0,1], the number of trials K
Inputs: The indexes of chosen feature vectors, Ψ(k) ⊆ {1,2, . . . ,t− 1}, the new feature
vectors ξ1,(k),...,ξN,(k).

1: Let Ξ(m) = (ξi(τ),(τ))τ∈Ψ(k)
be the matrix of the selected feature vectors and x(m) =

(xi(τ),(τ))τ∈Ψ(k)
the vector of corresponding rewards.

2: Calculate the eigenvalue decomposition, i = 1, . . . ,N ,

Ξ(k) · Ξ>(k) = U>(k) ·∆(λ1,(k), . . . , λd,(k)) · U(k)

where λ1,(k), . . . ,λn,(k) ≥ 1, λn+1,(k), . . . ,λd,(k) < 1, and U>(k) · U(k) = ∆(1,...,1).

3: For each feature vector ξi,(k) set ξ̃i,(k) = (ξ̃i,1,(k), . . . , ξ̃i,d,(k)) = U(k) ·ξi,(k) and ũi,(k) =

(ξ̃i,1,(k), . . . ,ξ̃i,k,(k),0, . . . )
>, ṽi,(k) = (0, . . . ,0,ξ̃i,k+1,(k), . . . ,ξ̃i,d,(k))

>.
4: Calculate the upper confidence bounds and their widths

ucbi(k) = x(k) · ai(k)> + widthi(k).

where
widthi(k) = ||ai,(k)||

(√
loge(2NK/δ)

)
+ ||ṽi(k)||,

5: Select that alternative i(k) which maximizes the upper confidence bound ucbi(k).
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Algorithm 6 SupLinRel

Parameters: δ ∈ [0,1], the number of trials K
Initialization: Let S = logK and set Ψ(1)(1) = · · · = Ψ(S)(1) = ∅

1: for k = 1, ... , N do
2: Initialize the set of the indexes of the feasible alternatives A1 := {1, . . . , N}, set
s := 1.

3: Repeat until an alternative πi(k) is chosen:

I) Use LinRel with Ψ(s)(k) to calculate the upper confidence bound ucb
(s)
i (k) and

its widths width(s)(k) for all i ∈ A(s).

II) If width
(s)
i (k) > 1

2s for some i ∈ As then choose this alternative and store the

corresponding trial in Ψ(s),

Ψ(s)(1 + k) = Ψ(s)(k) ∪ {k},Ψ(σ)(1 + k) = Ψ(σ)(k) for s 6= σ.

III) Else if width
(s)
i (k) ≤ 1√

K
∀i ∈ As then choose that alternative i ∈ As which

maximizes the maximum upper confidence bound ucb
(s)
i (k). Do not store this

trial,
Ψ(σ)(1 + k) = Ψ(σ)(k) ∀σ = 1, . . . ,S.

IV) Else if width
(s)
i (k) ≤ 1

2s ∀i ∈ As then set

As+1 =

{
i ∈ As

∣∣∣ucb
(s)
i (k) ≥ max

j∈As
ucb

(s)(k)− 2
2s

j

}
and increase s by 1.

5.2.3 Analysis

In this section the aim, ultimately, is to bound the regret (ie. a measure of the degree of
mistakes) of the algorithm SupLinRel.We lay out the relevant results from [Aue02] to

arrive to a bound of order Õ(K
1
2 ), over K trials.

Estimating E [ xi ]

The calculation of upper confidence bounds for E [ xi ] = V >i ξ(k) is based on a weighted
sum of past rewards, as follows:

We write ξ(k) as a linear combination of previously chosen vectors ξ(τ), where τ ∈
Ψ(k) ⊆ {1,2,...,k − 1} are the previously selected indexes:

ξ(k) =
∑

τ∈Ψ(k)

a(τ)ξ(τ) = Ξ(m) · a(m)>,

for some coefficients a(k) ∈ R1×|Ψ(k)|, where Ξ(k) is a matrix of previously selected
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feature vectors. Then x(k) · a(k)> is a good estimator for Vi · ξ(k) since

Vi·ξ(k) = Vi
∑

τ∈Ψ(k)

a(τ)ξ(τ) =
∑

τ∈Ψ(k)

a(τ)(Vi·ξ(τ)) =
∑

τ∈Ψ(k)

a(τ)E
[
xi(τ)(τ)

]
= E [ x(k) ]·a(k)>

Probability of the error

Consider the eigenvalue decomposition

Ξ(k) · Ξ(k)> = U(k)> ·∆(λ1(k), . . . ,λd(k)) · U(k),

where λ1(k), . . . , λk(k) ≥ 1, λk+1, . . . ,λd(k) < 1 and U(k)>U(k) = ∆(1,...,1). Set

ξ̃(k) =
(
ξ̃1(k), . . . ,ξ̃d(k)

)>
= U(k) · ξ(k)

and

ũ(k) =
(
ξ̃1(k), . . . ,ξ̃k(k),0, . . . ,0

)>
, ṽ(k) =

(
0, . . . ,0, ξ̃k+1(k), . . . ,ξ̃d(k)

)>
.

We use a lemma from [Aue02] to bound the expected loss of the algorithm’s selection
against the optimal choice:

Lemma 5.1. Let δ ∈ [0,1] and let Ψ(k) be constructed in such a way that for fixed
zi(τ)(τ), τ ∈ Ψ(k), the rewards xi(τ)(τ), τ ∈ Ψ(k), are independent random variables with
means E

[
xi(τ)(τ)

]
= Vi · ξ(τ). Then, for all i ∈ {1, . . . , N},

P

[
|x(k) · a(k)> − Vi · ξ(k)| ≤ ||a(k)||

(√
2 log(2KN/δ)

)
+ ||ṽ(k)||

]
= 1− δ

K
.

where K is the number of trials.

Remark 5.1. For the above result to hold, we need the rewards xi(k)(k) to be indepen-

dent. This is directly related to the choices of the index sets Ψ(s)(k). We see how this is
accomplished later. Summing up the above error inequalities for all i = 1,2, . . . , N , the
bound becomes worse by a factor of N .

Confidence bounds

Before continuing to the confidence bounds, we need first to bound ||a(k)|| and ||v(k)||.
Auer et al prove the following lemma in [Aue02]:

Lemma 5.2. Let Ψ(k+1) = Ψ(k) ∪ {k}. The eigenvalues λ1(k), . . . ,λd(k) of Ξ(k) ·Ξ(k)>

and the eigenvalues λ1(k + 1), . . . ,λd(k + 1) of Ξ(k + 1) · Ξ(k + 1)> can be arranged in
such a way that λj(k) ≤ λj(k + 1) and

||a(k)||2 ≤ 10
∑

j:λj(k)≥1

λj(t+ 1)− λj(k)

λj(k)

||v(k)||2 ≤ 4
∑

j:λj(t+1)<5

|λj(t+ 1)− λj(k)|.
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The upper confidence bounds for every policy πi that LinRel constructs are:

ucbi(k) = x(k) · a(k)> + widthi(k),

where
widthi(k) = ||a(k)||

(√
log(2KN/δ)

)
+ ||ṽ(k)||.

In order to ensure that for each Ψ(s)(k) the chosen rewards xi(k)(k) are independent

for all t ∈ Ψ(s)(K+ 1) the algorithm SupLinRel(which uses LinRel as a subroutine) can
be used.

The regret

If the Decision Maker knew the true values Vi for all policies πi ∈ Π then she would
choose the policy that maximizes the expected reward, ie. π? ∈ argmaxi

{
Viξ(k)

}
. Thus

the regret of a learning algorithm against this optimal decision is given by

B(k) =
K∑
k=1

x?i(k)(k)−
K∑
k=1

xi(k)(k).

For our case the performance of SupLinRel is a bit worse (by a factor of N) than in
[Aue02], since the expected reward of each policy πi is governed by a different vector Vi
(and not with the same weight vector f as in [Aue02]) -see Remark 5.1. However the

the overall bound is still Õ
(√

K
)

. Again, from [Aue02], the following theorem holds:

Theorem 5.2. When algorithm SupLinRel is run with parameter δ/(1 + ln(K)) then
with probability 1− δ the regret of the algorithm is bounded by

B(K) ≤ 44N (1 + log (2NK log(K)))
3
2

√
KN + 2N

√
K.

———
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6
Conclusion

Decision makers often encounter the issue of uncertainty while trying to form plans
of actions. In this thesis instead of using uncertain model dynamics that might be
proven to be fatally erroneous, the uncertainty is modelled via a set of Markov decision
problems that represent different possible scenarios that might be true. The focus lies
in the question how to produce a minimax policy, ie. how to act optimally in the worst
possible case.

Both cases of an infinite number of decisions and a finite decision horizon are con-
sidered and depending on the case a number of different approaches are utilized.

6.0.4 Cutting-plane

This method is motivated by the visual representation of the solutions. We show that,
if each policy value hyperplane is viewed as a potential cut, then the problem of finding
an efficient policy against the set of Markov decision problems cannot be solved in
polynomial time, unless P = NP .

6.0.5 Uniform Sampling

Here we deal with the stochasticity of the policy rewards in a uniform way. Additional
assumptions of bounding the value function with quadratics allow us to retrieve a prob-
abilistic bound for the error of the approximation of the worst-case prior distribution of
the Markov decision problems. Knowledge of this worst-case prior enables us to choose
a policy that maximizes the rewards in this worst case scenario, with high probability.

6.0.6 Weighted Majority

We formulate our problem as a zero-sum game and directly apply a rewards-version
weighted majority algorithm to our problem, by making the assumption that all infor-
mation about the previous rewards becomes available in each round. We also show how
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the worst-case prior distribution can be restricted without loss of generality, reducing
the search space, in practice, to a smaller one (Remark 4.1). We give the standard
performance bound for a deterministic-rewards version of our case.

Additionally, we weaken the assumption of the availability of full past information
and the non-randomness of the outcomes and construct a more general variation of the
weighted majority algorithm that operates with stochastic rewards. Based on the idea
of the original performance theorem, we prove performance guarantees for this modified
algorithm and bound the regret, with high probability, by an order of O(

√
logK), over

K trials.

6.0.7 Contextual Bandits

In this setting the presumption of knowledge of all previous alternatives is fully relaxed.
A slight modification of the algorithms SupLinRel and LinRel is used to explore and
exploit the policy space with a regret bound of Õ(

√
K).

6.1 Future Directions

The Cutting Plane algorithm’s complexity classification as at least as hard as NP, as
demonstrated in this thesis, leads naturally to the question of the existence of a tractable
approximation of the problem’s solution, as the next step. The complexity of approx-
imate optimizations for the stochastic-blind-policy problem is still an open question.
Addressing this question will allow us more insight on the usefulness of the cutting plane
method in solving sequential decision problems.
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A
Preliminaries

This chapter contains the basic notions involved that are used in this thesis.

A.1 Linear Algebra

A.1.1 Eigenvalues & Eigenvectors

Definition A.1. Let A be a matrix. If there is a vector v ∈ Rn such that

Av = λv and v 6= 0

for some scalar λ, then v is called an eigenvector and λ is called an eigenvalue of the
matrix A.

Theorem A.2. Let M be a matrix, with N linearly independent eigenvectors vi, and
corresponding eigenvalues λi, i = 1,2, . . . ,N . Then there exist a N ×N matrix U such
that matrix M can be written as:

M = U∆U>

where the ith column of U is the eigenvector vi of M and ∆ is the diagonal matrix with
the eigenvalues λi as elements.

A.2 Analysis

A.2.1 Convex Analysis

Definition A.3. Let C be a set of points. If

x, y ∈ C, 0 ≤ θ ≤ 1
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implies
θx+ (1− θ)y ∈ C,

then C is called a convex set.

Definition A.4. Let X be a convex set and let f : X → R be a function. If

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x,y ∈ X and for all t ∈ [0,1], then f is called a convex function. If the inequality
is strict, then f is called strictly convex.

Theorem A.5. (Supporting Hyperplane Theorem). For every convex set C and point
x ∈ ϑC, there exists a hyperplane P through x, such that C is contained in one of the
half-spaces of P .

Theorem A.6. (Seperating Hyperplane Theorem). Let H1 and H2 be convex sets in Rn

with disjoint interior. Then ther eis a hyperplane {x | a>x = b} that seperates H1 and
H2.

A.2.2 Taylor

Theorem A.7. Let f : R → R be a k-times differentiable function at x0 ∈ R, then
there exists a real-valued function Rn(x,x0) so that

f(x)− f(x0) =
k∑

n=1

f (n)(x0)

n!
(x− x0)n +Rn(x,x0),

where Rn is called remainder and f (n) is the derivative of f (n−1). The remainder can be
written in the form

Rn(x,x0) =
1

(n+ 1)!
f (n+1)(ϑn)(x− x0)n+1

for some point ϑ ∈ (x0, x) ∪ (x, x0).

A.3 Measure Theory

Definition A.8. Let Ω be a set. A set Σ ⊆ P(Ω) is called a σ-algebra on Ω if the
following conditions are true:

• Ω ∈ Σ

• if A ∈ Σ then Ac ∈ Σ

• if Ai ∈ P(Ω), i = 1,2, . . . , then
⋃
iAi ∈ Ω
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Definition A.9. A structure 〈Ω, Σ〉 is called a measurable space if Σ is a σ−algebra on
Ω. The elements of Σ are called events.

Definition A.10. Let 〈Ω, Σ〉 be a measurable space. A function µ : Σ→ [−∞,+∞] is
called a measure on 〈Ω, Σ〉 if it satisfies the following properties:

• µ(∅) = 0

• If (Ai)i=1,2,... is a sequence of pairwise disjoint elements of the σ−algebra Σ, then

µ(
⋃

i=1,2...

Ai) =
∑

i=1,2,...

µ(Ai)

If Ω has measure equal to 1, ie. µ(Ω) = 1 then µ is called a probability measure.

Definition A.11. A measure space is a measurable space equipped with a non-negative
measure. That is, the triple 〈Ω, Σ, µ〉 is called a measure space if µ : Σ→ [0,+∞] is a
measure on 〈Ω, Σ〉. Additionally, if µ is a probability measure, then 〈Ω, Σ, µ〉 is called
a probability space.

Definition A.12. Let E ⊂ R. Define the Lebesgue outer measure µ?(E) as:

µ?(E) , inf

{ ∞∑
k=1

length(Ik) : Ik are open intervals with
⋃
k

Ik ⊃ E

}
.

Definition A.13. A set E ⊂ R is called Lebesgue measurable if for every subset A of
R, it holds:

µ?(A) = µ?(A ∪ E) + µ?(A ∪ Ec).

Then, the Lebesgue measure `(E) of the Lebesgue measurable set E is defined to be its
outer measure µ?(E).

Definition A.14. Let 〈Ω1, Σ1〉 and 〈Ω2, Σ2〉 be measurable spaces. Then, a function
f : Ω1 → Ω2 is called Σ1,Σ2-measurable if ∀Λ ∈ Ω2 : f−1(Λ) ∈ Σ1. If 〈Ω2, Σ2〉 =
〈R, B, `〉, where B is the Borel σ-algebra (ie. the smallest σ-algebra that contains the
open intervals, on R), and ` is the Lebesgue measure, then we call f Σ1-measurable.

Definition A.15. Let 〈Ω, Σ, µ〉 be a measure space. A function f : Ω→ R is called a
probability density function on Ω if f is:

• Σ-measurable

• non-negative µ-almost everywhere, and

•
∫

Ω f(x)dµ = 1.

A probability density function f on 〈Ω, Σ, µ〉 generates a probability measure P on
〈Ω, Σ〉 defined as

P(A) ,
∫
x∈A

f(x)dµ
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Definition A.16. Let 〈Ω, Σ,P〉 be a probability space. If a function Y : Ω → R is
measurable, then it is called a random variable.

Definition A.17. Let Y be a random variable defined on a probability space 〈Ω, Σ, P〉.
The expectation or expected value of the random variable Y is defined as

E [ Y ] ,
∫

Ω
Y dP

—

Theorem A.18. (Chernoff-Hoeffding) Let X1, . . . , Xn be independent random variables
in [0, 1], with expected values E [ Xi ] (not necessarily equal). Then, for λ > 0

P

[
n∑
i=1

Xi ≤
n∑
i=1

E [ Xi ]− λ

]
≤ exp{−2λ2/n}

and

P

[
n∑
i=1

Xi ≥
n∑
i=1

E [ Xi ] + λ

]
≤ exp{−2λ2/n}.

A.4 Computational Theory

A.4.1 Computational Complexity

Big- and Soft-Oh Notation

Definition A.19. Let f, g : R→ R be functions. Then g is an asymptotic upper bound
for f , and we write

f(x) ∈ O (g(x)) ,

if a positive integer c exists, such that

f(x) ≤ cg(x), as x→∞.

.

Definition A.20. Let f, g : R→ R be functions. We write f(x) ∈ Õ (g(x)) if

f(x) ∈ O
(
g(x) logθ g(x)

)
for some θ.

Definition A.21. A set Σ is called an alphabet if

Σ 6= ∅ and |Σ| <∞.
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A reduction is a way of transforming a problem X to another problem Y , so the
solution of Y can be used to solve X. More formally:

Definition A.22. Let A ⊆ Σ∗ and B ⊆ T ∗ be non-empty sets and let φ : Σ∗ → T ∗ be
a function. f is called a reduction of A to B if for every w:

w ∈ A⇔ φ(w) ∈ B.

Definition A.23. A Turing machine is a 7-tuple 〈Q,Σ,Γ, δ, qo, qaccept, qreject〉, where
Q,Σ,Γ are all finite sets and

• Q is the set of states

• Σ is the input alphabet, excluding the blank symbol .

• Γ is the tape alphabet, where ∈ Γ and Σ ⊆ Γ

• δ : Q× Γ→ Q× Γ× {L,R} is the transition function

• q0 ∈ Q is the starting state, qaccept is the accepting state, qreject is the rejectint
state

• qaccept 6= qreject.

Definition A.24. A non-deterministic Turing machine is a turing machine with a tran-
sition function

δ : Q× Γ→ P (Q× Γ× {L,R}) ,

where P(·) is the power-set operator.

Definition A.25.

• A problem belongs to the computational class NP if it is solvable in polynomial
time by a non-deterministic Turing machine.

• A problem belongs to the computational class NP-complete if it is in NP and if
every other NP problem can be reduced do it.

• A problem is said to belong to the computational class NP-hard if there exists an
NP-complete problem that is reducible in polynomial time to that problem.

Note that NP-hard problems cannot be solved in polynomial time unless P=NP
([VLL90]).
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