
A general peer-to-peer based distributed
computation network
Bachelor of Science Thesis in Computer Science and Engineering

JACK PETTERSSON
LEIF SCHELIN
NIKLAS WÄRVIK
JOAKIM ÖHMAN

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, June 2014

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet. The Author warrants that he/she is the
author to the Work, and warrants that the Work does not contain text, pictures or other
material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

A general peer-to-peer based distributed computation network

J. Pettersson,
L. Schelin,
N. Wärvik,
J. Öhman

c© J. Pettersson, June 2014.
c© L. Schelin, June 2014.
c© N. Wärvik, June 2014.
c© J. Öhman, June 2014.

Examiner: J. Skansholm

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000
Department of Computer Science and Engineering
Göteborg, Sweden June 2014

A general peer-to-peer based
distributed computation network
Bachelor of Science Thesis in Computer Science and Engineering

JACK PETTERSSON
LEIF SCHELIN

NIKLAS WÄRVIK
JOAKIM ÖHMAN

Abstract

We consider how a decentralised computation system would work
when each participant could create computation code as well as ex-
ecuting other participants’ code. A protocol is proposed that allows
such collaboration to take place, assuming that no participant can be
trusted. We consider briefly how the computation code itself can be
executed in a safe manner.

The primary focus of this thesis is to investigate how to increase
the reliability of the computation results, as some participants can be
assumed to return incorrect results. Furthermore, a prototype that
demonstrates the key principles of the theoretical results is also devel-
oped. The methods developed are found to be correct and working, but
unfortunately does not contribute very much in terms of functionality
or advantages for the end user.

i

Sammanfattning

Vi beaktar hur ett decentraliserat beräkningsnätverk skulle fungera
om varje nod både kunde utföra och skapa beräkningar. Vidare föreslås
ett protokoll som tillhandahåller detta, även under förutsättningen att
ingen deltagare är pålitlig. Vi överväger också hur beräkningarna kan
genomföras på ett säkert sätt.

Det primära syftet med rapporten är att undersöka hur tillförlit-
ligheten hos beräkningsresultaten kan ökas, då deltagare kan antagas
returnera falska resultat. Dessutom utvecklas en prototyp som åskåd-
liggör de viktigaste principerna och teoretiska slutsatserna. De utveck-
lade metoderna fungerar men tillför dessvärre inga betydande förbätt-
ringar för slutanvändaren.

ii

Acknowledgements

This thesis has benefited greatly from the continuous support and
enthusiasm of our supervisor Dr. Andreas Abel, to whom we are very
grateful. We would also like to thank Prof. Mattias Wahde for suggest-
ing several complex functions we could use as examples. Finally, Jack
would like to thank Johan Gustafsson for the interesting discussion
which led to the initial idea for the project.

iii

Contents
1 Introduction 1

1.1 Purpose . 2
1.2 Requirements . 3
1.3 Delimitations . 4

2 Architecture 5

3 Example computations 6
3.1 Prime calculations . 6
3.2 Stochastic optimisation . 6

4 Literature studies on distributed algorithms 8
4.1 Failing nodes . 8
4.2 Asynchronous systems . 8
4.3 Consensus about results . 8

4.3.1 Block chain . 9
4.3.2 BFT-CUP . 11

5 Theoretical results 12
5.1 Validity of results . 12

5.1.1 Replication and the active job owner 12
5.1.2 Quality function . 13

5.2 Probabilistic model . 14
5.3 Reputation model . 17
5.4 Replica timeout . 18
5.5 Smart assignment of tasks . 20

6 The prototype 24
6.1 Prototype architecture . 25
6.2 Secure execution . 25
6.3 Functionality . 27

6.3.1 Distributed storage and network: TomP2P 27
6.3.2 Proof-of-work: Hashcash-cookies 28
6.3.3 Cryptography: Apache Shiro and Bouncy Castle 31
6.3.4 Message passing . 33
6.3.5 File management . 34

6.4 Connecting to the peer-to-peer network 34

iv

7 System properties 35
7.1 Security against malicious code 35
7.2 Reliability of results . 36
7.3 Comparison with BOINC . 36

8 Discussion of theoretical results 37

9 Social impact of the system 39

10 Future work 40

11 Conclusion 40

References 42

A Work process 46
A.1 Responsibilities . 46
A.2 Development process . 47
A.3 Version control system . 47

B Technologies 48
B.1 Java . 48
B.2 TestNG . 48
B.3 Maven . 48
B.4 Gson . 49

Glossary 50

v

1 Introduction
Distributed systems have been gaining more and more attention in recent
years. One reason for this is that a lot of computation power goes unused
for large amounts of time, which instead could be used in a collaborative
manner by a distributed system. Systems such as BOINC and Cosm help
research projects (for example Folding@Home and Einstein@Home) in har-
nessing unused resources from thousands of volunteers to find solutions to
complex problems (BOINC 2014a; Cosm 2014). These networks work as an
alternative to supercomputers which are expensive to buy and maintain.

Such centralised systems generally suffer from two major drawbacks.
Firstly, they can be vulnerable to attacks due to the single point of fail-
ure, for example denial of service attacks. Secondly, they often require a lot
of resources and knowledge in order to set up a server to delegate tasks as
well as to collect and validate results.

Decentralised systems such as Freenet, Bitcoin and Namecoin, to name
a few, have proven that it is sometimes possible to decentralise tasks that
have generally been thought to require central coordination (Freenet 2014;
Nakamoto 2008a; Namecoin 2014). Hence, we aim to introduce a peer-to-peer
based computation system that lets any peer upload tasks to be performed
and choose freely which other computations to work on.

Ideally, using this system to perform a resource intensive computation
would only require a bit of programming knowledge and that others find its
purpose meaningful. Consequently, one does not need access to supercom-
puters as long as there are participants willing to provide computation power.
This system could be useful for universities which often have extensive re-
sources in standby. People interested in research could also collaborate with
the universities by providing computation power. The system would also be
useful for the same research as the existing centralised systems for distributed
computations, without the need for the resources and knowledge required to
set up a central server.

Preliminaries The reader is assumed to know fundamental computer sci-
ence, in particular data structures, complexity theory and basic cryptogra-
phy, as well as discrete mathematics and mathematical statistics. Terms and
concepts specific for this thesis are explained in text and can also be found
in the glossary in the appendix.

1

1.1 Purpose

The aim of this thesis is to investigate how peer-to-peer based computation
systems with free participation would work. Furthermore, we intend to de-
termine methods for such a system to produce reliable computation results.
A software prototype is developed and implemented to demonstrate the key
principles of these methods.

Essential properties of the system The essential properties of the sys-
tem can be summarised in the following four points:

• Decentralisation using peer-to-peer technologies

• Free participation

• Reliability of results

• Secure participation

The paramount requirements of the system are decentralisation and free
participation as these form the foundation of this thesis. Decentralisation
will make the network as a whole hard to disrupt as it does not depend on
any single node to function.

Free participation refers to letting any computer join the network to par-
ticipate in working for others and in requesting computations to be executed.
Nodes that execute computation code will hence be referred to as workers.
Nodes that create new computations are referred to as job owners.

The computed results in the network should be reliable solutions to the
given problems. This is vital for the system to be useful.

Users should be confident that executing computation code is purely com-
putational. BOINC1 establishes this by only letting a small number of trusted
people produce computation code (BOINC 2014a). However, when anyone
can write computation code, safety from harm should be guaranteed in a
more strict sense. If the users do not feel safe, they will probably be more
reluctant to participate in computations.

Main challenges to solve Following the properties are a set of challenges
that must be solved. The most central challenges are:

• Byzantine nodes
1The centralised computation system used by Einstein@Home and many others.

2

• Malicious code

A Byzantine node is a computer in the network that behaves in an un-
expected and potentially harmful way. This is important to consider, as any
computer can join the network and any node can participate in computa-
tions. Most importantly, Byzantine nodes can return invalid results for a
computation, whether this is intentional by the user or not.

Malicious code must be prevented from being executed on a worker. If
this is disregarded, serious consequences like virus injection can happen to a
worker, or a worker can unknowingly become part of a botnet2 that in turn
hurts third parties. This would be a huge security threat for a user of the
network. If the system can be misused, people may also be more reluctant
to volunteer.

1.2 Requirements

For the system to work and function well, certain requirements must be
realised. Here we present the essential properties the system needs.

Functional requirements The following functionality should be facili-
tated by the system.

• Each worker should be free to choose which computations it wants to
contribute to.

• Nodes should be able to get computations to work on and upload the
respective results to the network. The work itself should be possible to
do offline.

• Computation code and results should be stored in a distributed storage.

• All files in the distributed storage should be safe from modification by
Byzantine nodes.

• Workers and job owners should be able to go offline without disrupting
the network. However, it is reasonable to require that, at all times,
a minimum number of nodes should be connected to the network to
ensure stability and no data loss, but it should not be required of any
specific node.

2A group of computers that cooperate over a network, often for a malicious intent
against a third party.

3

• It should be safe for workers to execute computations. If they are not
protected, harmful code may destroy a user’s data or make it part of a
botnet without the user knowing it.

Non-functional requirements Security should be good enough for the
prototype to be open source. Even if a hacker knows in detail how it is
implemented it should still withstand attacks. This is consistent with good
practice in modern cryptography, where security is achieved through the
secrecy of the key rather than through obscurity of the cryptographic method
(Basin et al. 2011; Furnell et al. 2008; Kerckhoffs 1883).

1.3 Delimitations

It is beyond the scope of this project to search the computation code for
bugs. Compilation failures and runtime errors that crash the program will
however be reported.

Truthful executions of a task are assumed to always return the same
result, even when run on different computers. This is relevant since the re-
sults of floating point computations can vary between different architectures
(Muller et al. 2010). Code using floating point operations has been shown to
behave differently for the same hardware using the same compiler when run
on different operating systems. This will have to be taken into consideration
by the job owner when implementing a task that extensively uses floating
point operations.

The prototype will not facilitate the option for job owners to write compu-
tations in an arbitrary programming language. One specific language will be
chosen for computations. Only code that can be guaranteed to not perform
any unsafe operations, such as IO, during execution will be accepted. This
means that all data necessary to perform a computation must be present
before it is executed. Note that for stochastic algorithms, a seed used to gen-
erate chance can be sent as an input parameter to the computation rather
than be created during runtime. If the randomness is only used to gener-
ate a few numbers, those can be computed by the job owner and sent as
parameters instead of the seed.

Performance can be considered important in a computation system. In
this thesis however, security of participation and reliability of results take
precedence over performance. It does not matter how fast a system is if the
results cannot be trusted.

4

2 Architecture
The basic architecture of the system consists of six parts, which is visualised
in Figure 1. Each part will be discussed later in this thesis.

The connectivity between peers is solved in two steps: the message pass-
ing interface allows for direct communication and the distributed storage
facilitates efficient file transfer. The secure execution handles executing com-
putation code in a secure manner. The task management takes care of the
handling and assignment of tasks, which is very important for the job owner.
The controller part binds the system together and the user interface (UI)
interacts with the user.

Secure Execution

Controller UI

Task Management

Message Passing
Interface

Distributed Storage

Figure 1: Illustration of the high-level architecture of the system.

Simple scenario When the program starts, it connects to the distributed
storage and starts listening for messages. At this time, a job owner can check
in the distributed storage for results that have been computed while he has
been offline. The results can then be validated to see if they are correct.
The job owner can also create new tasks with the task management that are
uploaded to the distributed storage.

A worker can request a task from a job owner by sending a message. The
job owner then lets the task management decide which task the worker should
work on and sends a message containing the location for the necessary files

5

in the distributed storage. The worker can download the task and execute
it in the secure execution environment. The result of the computation can
then be uploaded to the distributed storage and the worker can notify the
job owner with a message that the task is complete. If the job owner is
currently offline, he will notice the result in the distributed storage when he
comes online.

3 Example computations
Two mathematical problems were chosen to demonstrate the capabilities of
the prototype. They were both meant to be simple and easily understood
while being very different in nature. The first relies on deterministic algo-
rithms and produces results that can be checked for correctness. The second
relies on stochastic algorithms and produces results that are hard to check if
they are correct. They will be referred to throughout the thesis to exemplify
different principles.

3.1 Prime calculations

The first example is the familiar problem of calculating prime numbers. The
job owner decides what intervals of primes should be calculated. Each interval
becomes a task for a worker to solve. The first task must be to calculate all
primes between 2 and n. Using the results from the first task, new tasks can
be created to calculate all prime numbers up to n2. Though more efficient
algorithms exist, a very simple algorithm was implemented for the prime
search as the searching itself is not the focus of the thesis.

3.2 Stochastic optimisation

In order to demonstrate that the developed prototype can handle very dif-
ferent kinds of tasks, a stochastic problem was chosen as the second exam-
ple. Stochastic optimisations can be faster than exact analytical solutions
to many complex optimisation problems (Schneider and Kirkpatrick 2006).
There are many different algorithms or heuristics that use randomness to
calculate optimal parameters to a system. One kind of stochastic algorithms
are sometimes referred to as Monte Carlo (MC) algorithms. They do not
always return the optimal result, but are instead bounded in time. The op-
timisation problem we chose as our example is described below, along with
a brief discussion of the MC algorithm used to solve it.

6

Figure 2: The Langermann function in two dimensions.

Langermann The problem example in question is to optimise the two-
dimensional Langermann function over a finite interval. The appearance of
the function is illustrated in Figure 2. Note especially that there are many
stationary points separated by barriers. The multitude of potential optimum
points make traditional, analytical methods relying on gradients infeasible.
Traditional, numeric methods such as the Gradient descent are instead hin-
dered by the barriers. This makes the Langermann function very useful for
benchmarking of optimisation algorithms, for which it is also recommended
(Molga and Smutnicki 2005).

This specific application of stochastic optimisation problems was chosen
as it is very simple to understand and visualise. An even more complex
but realistic scenario is to optimise a simulation with many variables. If the
system to be optimised has many parameters, one can divide the parameter
space into several tasks and apply either approach to the task of optimising
the system in the respective limited parameter space. With the Langermann
example, one task could solve the optimal point in the interval 1 ≤ x ≤ 2
and 0 ≤ y ≤ 1.

Implementation The implemented stochastic algorithm is a very simple
MC algorithm that only randomises points and evaluates them; the tested

7

point with the highest function value is returned to the job owner. The
implemented Langermann function was positively verified against published
Matlab code written by Surjanovic and Bingham (2013).

4 Literature studies on distributed algorithms
As stated in Section 1.1, one of the main challenges to solve is that of invalid
results and an essential property is decentralisation. With the correct algo-
rithm(s), it might be possible to combine these two concerns in a way that
enables the validation of results to be done in a purely decentralised manner.
Thus, the area of distributed algorithms was researched and the results are
summarised in this section.

4.1 Failing nodes

When discussing distributed algorithms in general, an important concept
is that of failures (Lynch 1996). There are two kinds of failures a process
can exhibit: stopping failures — processes that simply stop communicating
— and Byzantine failures — processes that fail in arbitrary ways, such as
processing requests incorrectly or producing inconsistent output. Naturally,
we will have to take both kinds into consideration. Stopping failures are
handled with timeouts, which are described further in Section 5.4. This
section only discusses Byzantine failures.

4.2 Asynchronous systems

An asynchronous system is a multi-process system in which the actions of the
processes are not synchronised by a global clock (ibid.). Instead, each process
acts independently of all the others, synchronising with them exclusively
through communication channels. Since this is an apt description of the
system we aim to develop, the field of distributed algorithms for asynchronous
systems is of high interest.

4.3 Consensus about results

The consensus problem is a classical one in distributed computing, with the
goal being for a number of processes to propose at most one value each and
then agreeing on exactly one of them (Pease et al. 1980). This is relevant
because each decision about whether to accept or reject a certain result can
be seen as a consensus problem: whenever a worker publishes a result, all the

8

other nodes perform a validation and propose whatever it outputs. For this
to function well, the validation has to be relatively cheap. This is certainly
not always the case, but could be seen as a delimitation even though it would
lead to a less useful system.

Unfortunately, to deterministically achieve consensus in bounded time
while allowing processes to fail has been proved to be impossible in an asyn-
chronous system without any constraints imposed on it (Fischer et al. 1985).
For most practical applications, this was solved probabilistically in 2008 with
the introduction of the block chain data structure (Miller and LaViola 2014;
Nakamoto 2008a,b). Assuming that the system has certain properties, the
problem has also been solved deterministically by Alchieri et al., who re-
ferred to the problem as BFT-CUP. Both of these solutions are presented
and examined below.

4.3.1 Block chain

A block chain is a chain of blocks, each containing transactions, the data
objects that are agreed upon (Nakamoto 2008a). When a participant creates
a transaction, it is broadcast to all other participants, which will include it
in their next block if they find it to be valid. A new block is created by the
first participant to find a certain proof-of-work, which it includes in the new
block, together with all valid transactions that have not yet been included in
any previous block.

The new block is then broadcast to the network and upon receipt of a
valid block, each participant adds it to the end of its copy of the block chain
and starts working on the next block. The hash of the latest block is then
seen as the challenge for the next proof-of-work3. Figure 3 shows the basic
structure of a block chain. The process in which nodes continuously compete
to find the next proof-of-work is called mining.

Honest participants always consider the longest chain to be the correct
one. This means that in order to have them accept an invalid transaction, an
attacker would have to find proof-of-works consistently faster than the rest
of the network together. Provided that the honest nodes control a majority
of the network’s computational power, the probability of this is negligible, as
shown by Nakamoto (2008a).

With all this in mind, it would be very tempting to use a block chain
in our system, using results as transactions. Unfortunately, this is based on
the false assumption that nodes can use 100% of their computation power to

3The point to take from this is that each block depends on the previous one, meaning
that blocks cannot be created in advance or changed afterwards. For a detailed explanation
of proof-of-work and challenges, see Section 6.3.2.

9

Figure 3: The basic structure of a block chain. In order for a block
to be considered valid, its nonce has to be a proof-of-work for when
the hash of the previous block is used as a challenge. The transactions
of the block are shown beneath. (Nakamoto 2008a)

secure the network, while at the same time producing results. In other words,
the method for producing results stands in stark contrast to the method for
reaching consensus about them.

0% 20% 40% 60% 80% 100%
0%

10%

20%

30%

40%

50%

CPU share used for mining by honest nodes

C
P
U

sh
ar
e
ne
ed
ed

fo
r
a
ta
ke
-o
ve
r

Figure 4: Plot showing the relationship between the amount of power
honest nodes ”waste” at mining and the power an attacker needs to be
able to take over the system.

One could of course have honest nodes use only a fraction m of their
power for mining and the rest for computing results. This would lead to the
relationship t = m

1+m
, with t being the fraction of the network’s power an

attacker needs to control it. As seen in the plot in Figure 4, this would either
lead to a high ”waste” of power or low security. For example, even if the
honest nodes ”wasted” as much as 30% of their power on mining, an attacker
would only need to control 23% of the network’s power to be able to control

10

it. This makes a block chain highly unsuitable for our purposes.

4.3.2 BFT-CUP

The block chain solves the Byzantine consensus problem in the quite unusual
way of making assumptions on the computational power in the network.
Contrastingly, most traditional solutions make assumptions on the maximum
number of simultaneous failures instead. Most of these also assume a known
set of processes, which we cannot assume, but Alchieri et al. have defined —
and solved — the highly relevant BFT-CUP4 problem (2008).

In order to handle up to f simultaneous failures, their solution requires
that the processes have certain knowledge of each other. The weakest possible
constraints that this knowledge needs to meet are described below in terms
of k which is related to f by k ≥ 2f + 1. For instance, if the system is to
withstand f = 10 failures, k ≥ 21 is necessary.

In the constraints, G refers to the directed graph representing which nodes
have knowledge of which.

• G is weakly connected.

• If G is reduced to its k-strongly connected components, the result is a
directed acyclic graph with exactly one sink.

• For any pair of k-strongly connected components (Gi, Gj) with a path
from Gi to Gj, there are at least k node-disjoint paths from Gi to Gj.

As mentioned, this is only the weakest constraints possible; G could as
well be k-strongly connected, or be a complete graph. The problem is that
even though these are the absolutely weakest constraints needed to be able to
reach consensus, they are still very limiting. At the point in the project where
these matters were researched, it had already been decided that a distributed
hash-table (DHT) should be used as the foundation for the overlay network
(see Section 6.3.1 for details), but none of the common DHT algorithms
satisfy these constraints (Tanner 2005).

A possible course of action would of course be to design a new overlay
network that enforces these constraints. This is well outside the scope of this
project, but an interesting future direction that should be researched further.
For the purpose of this project though, the idea of performing validations in
a decentralised manner is nonviable.

4Byzantine Fault-Tolerant Consensus with Unknown Participants

11

5 Theoretical results
The disheartening results of our research into distributed algorithms led us
to construct our own model for ensuring a high probability of the system
producing reliable results.

When designing a peer-to-peer based computation system with free par-
ticipation, there are several problems to consider. In this section we will
explore some properties of such a system and present our solutions to these
problems. Below, we will go through how to ensure validity of computa-
tion results and different models that further ascertain correctness in results.
Most of these concepts describe the part of the architecture called task man-
agement, mentioned in Section 2.

5.1 Validity of results

With all nodes being mutually unknown and untrusted, a job owner cannot
trust that the workers’ results are indeed the correct solutions to their cor-
responding tasks. The results will have to be validated in some way before
they can be accepted, either as a part of the solution to the larger problem
or as input to dependent tasks. The result that is considered most correct
after validation is called canonical.

Tasks in the prime number example will always return a list of numbers.
As a whole, a result can be considered to be either correct or incorrect.
However, it can be difficult to know if all prime numbers in the given interval
are returned, that is if the result is complete. As an example, when computing
all primes in the range [1, 10], the result {2, 3, 4, . . . , 10} is clearly incorrect
as it contains non-prime numbers. For the same task, the result {2, 3, 7} is
incomplete as the number 5 is missing.

Any element in the list can be tested to be true or false by using absolute
or probabilistic methods but it is more difficult to test that no numbers are
missing. Incorrect results are thus often rather easy to discover with a simple
validation function that checks some property of a result. However, running
a similar function on each element in an incomplete result will fail to discover
any missing solutions.

5.1.1 Replication and the active job owner

It is enough that one worker node calculates a task if it is possible to create a
validation function with low time complexity that checks if the result is both
correct and complete. Otherwise, the task must be replicated to multiple
workers in order to recognise deceitful nodes, which return faulty results.

12

Thus, from one task, many replicas are created and each is given to a different
worker.

Since replication as a method for validity relies on that at least one truth-
ful node works on a task, allowing untrusted nodes to manage the distribution
of replicas would open up for attacks. For example, a group of deceitful nodes
could vote for all replicas of a task to be sent to themselves. Additionally, in
order to avoid assigning the same task to very many workers while another
task goes unassigned, some record needs to be kept over which workers are
working on which tasks. Should this information be distributed over the
network (and by extension to untrusted nodes), there can be no guarantees
that it would be correct.

Hence, we introduce an active job owner, who manages the replication of
tasks and comparing the replica results. Note that this weakens the notion
in which this project can be considered peer-to-peer. It was considered moti-
vated as it makes the set of problems which the system is useful for substan-
tially larger. Note further that for tasks that are in no need for replication,
the process of computing and validating their tasks can be done completely
in a peer-to-peer manner. The prototype developed for this project always
works with an active job owner for the sake of generality and simplicity.

5.1.2 Quality function

Since the job owner should be able to compare the results of each task replica
in a way that distinguishes which result is the correct one, or at least which
is the better one, the need arises for a function that enables comparison of
different results for the same task. This function will be referred to as the
quality function and should be implemented by the job owner. For some
optimisation problems, it can be difficult to validate that the result was the
expected one given the input, but the quality of the result can be checked
easily by applying the target function to the solution.

The example task of optimising the Langermann function, which is de-
scribed in Section 3.2 , will always return one coordinate rather than a list
of elements. Therefore, the result will always be complete. Any result that
is syntactically correct cannot be said to be false, it can only be said to have
a certain quality. That quality can be evaluated in constant time and thus
be quickly compared to other results. For this example, the quality function
in the validation evaluates the Langermann function on the proposed coor-
dinate. This kind of validation would also be useful for other optimisation
problems such as the Travelling Salesman Problem.

For prime calculation on an interval, the quality function can be imple-
mented in several ways. For example, the computation algorithm can return

13

all non-primes in the interval, with a factor for each non-prime as proof. The
quality function would then have to check that the proof is correct and also
check a number of samples of proposed prime numbers in the interval with
a test for primality such as the Fermat primality test or the Polynomial test
(Batten 2013).

As the quality function runs on the job owner’s computer, it should be
considerably less expensive to compute than the task itself. If this was not
the case, distributing the computation would not increase the job owner’s
performance. Possibly, validation could be distributed to be performed by
workers. However, it would be difficult to ensure that the validation had
been done correctly as the validation itself would have to be validated.

In the prototype, all validation is done by the job owner. This has the
advantage that even though the devious programmer that constructs deceitful
nodes can read the computation code, the quality function is unknown to him.
Faulty results can be constructed intelligently in general but can never be
designed to satisfy an unknown quality function.

The quality function can also return an error code when a result is consid-
ered invalid, for example if it does not meet the conditions in the task. This
means that tasks that can be validated fast with certainty, such as recreating
hashes, only need to use one replica per task. If the result is correct, a qual-
ity value will be returned, otherwise an error code is returned. If the quality
method exits abruptly, a different error code is returned which is interpreted
as a bug in the quality method code.

5.2 Probabilistic model

In this section we calculate the probability that a set of cooperating deceitful
nodes, so called Sybil nodes, would be assigned all the replicas of some task.
If they were, they could return the same faulty result and thus fool the job
owner that their result is correct. Otherwise, if at least one truthful result
was returned, the false results would be discarded. This model motivates the
use of the concept proof-of-work.

Assume a job owner will give a task replica to any node that asks for one.
Assume further that the job owner has R replicas for each task to hand out
and that no worker may get two replicas from the same task. Let k denote the
average time it takes to work on any task and let d denote the time it takes
to be assigned a new task. Let N denote the total number of nodes that are
working for this job owner whereof B are cooperating deceitful nodes. Then
on average λr requests will be sent from truthful nodes to the job owner each
time interval:

14

λr =
N −B
d+ k

Let tb denote the time it takes for R deceitful requests to finish. This
depends on the ceiling function since B requests can be sent in parallel:

tb =

⌈
R

B

⌉
d

Let λ′r denote the average amount of requests from truthful nodes during
a time interval of length tb:

λ′r = λrtb

Let p denote the ratio of the time it takes to be assigned a new task with
the time it takes to compute a task:

p ≡ d

k

Let X be a stochastic variable that denotes the number of truthful re-
quests within time tb. The probability of no truthful request within time tb
can then be modelled using a Poisson distribution:

P (X = x;λ) =
λxe−λ

x!

P (X = 0;λ′r) = e−λ
′
r

λ′r =
p

1 + p
(N −B)

⌈
R

B

⌉
If p was zero, the probability of Sybil success equals e0 = 1. A deceitful

node in this model could send infinitely many requests right at the start and
thus precede any truthful nodes. In reality, p is not absolutely zero but indeed
very small since sending a request takes much shorter time than solving a
complex, perhaps NP-complete, problem.

Given this model and assuming a fixed number of nodes N and B, one
must increase p which is the relative time it takes to be handed a task com-
pared to the time it takes to compute a task. This uses the concept of
proof-of-work that has been proposed in earlier work to minimise the effect
of false nodes (Douceur 2002). It should however be noted that increasing
the challenge difficulty wastes computation power in the system. The impact
of p on λ′r is shown in Figure 5. Note that the gain of increasing the difficulty
drops after about p > 0.3. In other words, the gained reliability by improving

15

Figure 5: Plot of p
1+p : how higher relative difficulty in proof-of-work

p affects λ′r. Higher λ′r leads to lower success rate for a Sybil attack.

challenges is not worth the cost of the wasted computation power, after a
certain point.

Proof-of-work Requiring connecting nodes to solve a small computational
puzzle (i.e. presenting a proof-of-work, which should be easily verifiable by
the job owner) is an old way to counter denial of service (DoS) attacks and
reduce spam in a network. If the deceitful nodes try to corrupt a result,
they will have to request tasks as often as possible in order to maximise their
probability of acquiring all the replicas of a certain task. Thus, imposing a
cost on nodes seeking to acquire a new task will be more expensive for the
deceitful nodes than for the truthful nodes.

Increase number of replicas A partial countermeasure would be to in-
crease the number of replicas, R, per task which is quite intuitive. Adding
more replicas without introducing the proof-of-work concept would however
not be sufficient.

Impact This mathematical model gives some insight for probabilistic de-
fence against deceitful nodes. Most importantly it shows that if any node
is trusted to cooperate in the computations, some proof-of-work must be
added in order to safeguard the validity of the result. It also demonstrates
how adding replicas compared to increasing the proof-of-work difficulty scales
for many nodes.

16

5.3 Reputation model

The previous model demonstrated how proof-of-work was necessary given
that any node was trusted to cooperate. One way to continue is to identify
which nodes are truthful and which are not. This can be done by storing a
value representing the trust for a node called reputation. Since the network
is entirely asynchronous, the reputation of a node cannot be global lest it
would risk corruption. If nodes indeed could vote on reputation, many Sybil
nodes could vote on each other and then dominate the network. Instead,
trust must be handled separately for each job owner.

Digital signatures Since the network is asynchronous and does not re-
quire any registration in the conventional sense, it is impossible to identify
deceitful nodes because they can create a new identity simply by rejoining
the network or spawning a new Sybil node. Truthful nodes can however keep
their identity, even after being offline, by saving a private identifier. This
identifier must be able to be authenticated by the job owner without risking
interception of the message.

Using asymmetric cryptographic key-pairs as identities is both quite prac-
tical and secure. Results can be signed with the node’s private key before be-
ing uploaded and then be verified using the corresponding public key (Kerry
and Gallagher 2013). This ensures that the result was not uploaded by some-
one else, so that if it is found to be unsatisfactory in some way, action will
not be taken against an innocent node.

Reputation Since the job owner can with certainty recognise nodes that
keep their identities, the job owner can choose to trust previously truthful
nodes more than unknown nodes. Nodes can gain reputation by working on
the job owners tasks. When the results for the same task differ, only the
workers that produced the best solution, measured by quality, are rewarded
with increased reputation. The others are considered deceitful and thus lose
reputation. This comparison of results is done at the time of validation.

Before validation is allowed to occur, enough replicas must have been
returned and the sum of the respective workers reputation must be high
enough. As a result, new worker nodes can only gain reputation by returning
the same result as nodes who already have some reputation. Hence, it will
sometimes be necessary for the job owner to work himself since at the starting
point, only himself is trusted. To work oneself is a decision taken dynamically
whenever the following conditions hold true:

1. there is currently no task that has its reputation demand fulfilled,

17

2. the sum of the reputation of all active workers is less than what the
job owner expects for one task.

When the first condition is false, any worker, including a newcomer, could
finish that task and get increased reputation which may satisfy the current
task. For the second condition, active workers must be defined. A worker
is considered active when it is given a replica to solve. The worker becomes
passive by not asking for work again for a certain amount of time. A passive
worker that is given a new replica is considered active once again.

5.4 Replica timeout

When a worker is given a replica, the job owner assumes that the worker will
return a result for it. However, at some point a replica must be considered
lost as it is assumed that workers can drop out at any time. This is referred
to as a timeout which is a concept also used by BOINC 2014. Two example
scenarios are shown in Figures 6a and 6b.

Note that the timeout of a replica differs from the timeout of a worker. A
replica timeout makes the job owner assume that the worker will not return
a result. A worker timeout makes the job owner assume that the worker will
not come around to ask for a new task any time soon. The time interval
for both types of timeouts should however be related. In the prototype, the
timeout interval for workers equals twice the timeout interval for replicas.

When validation can be made but there are pending replicas that have
not yet timed out, either the validation could be made directly or postponed
until they have either returned or timed out. These alternatives are depicted
in Figure 6c where a validation would occur at time a and a postponed
validation at time b. In the prototype in order to achieve maximum certainty
in the validation, postponing was chosen.

For direct validation without waiting, a potential Sybil attack could be
made by two workers who know that they are working on the same task
through deduction on the input files and subsequently return identical but
false results. One might think that such a behaviour would be a threat
since one does not wait for the other replicas before validation. However,
the reputation model requires a certain amount of trust before validation is
made which would either require the Sybil nodes to gain reputation before
doing the attack or require there to be another well trusted worker with a
returned result. In the first case, the Sybil attack is counter productive as
it helps the job owner more than it can hope to destroy. In the second case,
the trusted worker is very likely to give a truthful result which would negate
the attack.

18

(a) Two workers are given replicas
of the same task. Validation occurs
when both return their respective re-
sults.

(b) The second replica times out.
That replica is assumed to be lost so
a new replica from the same task is
given to a third worker.

(c) The second replica times out so a new replica is given to
a third worker. Validation could occur at point a when the
second worker returns his result. The job owner must choose
if it should validate directly or wait for the third replica to
return.

Figure 6: These are three possible scenarios of timeouts depicting
when validation can occur. The giving of replicas is depicted with
circles while the publishing of results is depicted with squares. Timeout
is depicted with a dashed line.

For postponing the validation, a new attack strategy may be produced.
Every new Sybil node could acquire replicas at regular time intervals and thus
postpone the validation indefinitely. Two trivial solutions exist: either the
job owner could deny giving a new replica from a task that can be validated
or the job owner can remember which workers arrived after validation was
possible. In the latter case, the validation will only be postponed until all
the original workers have returned or timed out. The excess workers can still
gain reputation and or improve the result after validation as latecomers.

Latecomers After a task has been validated, additional results from repli-
cas may return from excess workers or timed out workers, such as in Figure
6c. These results can be assimilated with the canonical result by comparing if
they are equal and also by comparing their quality. If the added result equals
the canonical, the worker will gain reputation. Otherwise, the two results
are compared in further detail by calculating the quality of the late result. If
the quality is higher than that of the canonical result the worker’s reputation
increases, the stored result is replaced and the previous reputation of workers
advocating the false result decreases. If the new result is deemed worse than

19

the previously proposed, the worker loses reputation and the stored result is
unaffected.

Removal of a task A task must not be given to new workers after it has
been validated. Latecomers that have already started on it may finish and
assimilate their result as was described above but no new workers should be
able to start working on it. If they were allowed, one worker node could solve
the task truthfully and store the result locally. When the job owner would
be out of tasks, new Sybil nodes could be assigned old tasks and simply
return the stored result. This would allow an intelligent attacker to give his
Sybil nodes free reputation and thus nullify the protection of the reputation
system.

5.5 Smart assignment of tasks

When a job owner has several tasks and there are several workers with differ-
ent reputation, the job owner should assign tasks to workers as intelligently
as possible in order to speed on the process of computing the tasks. Opti-
mally, tasks that require much reputation should be given to workers with
high reputation and vice versa. If the workers’ reputation is not taken into
account, work may be performed in vain as extra replicas may need to be pro-
duced in order to fulfil the reputation requirement. When a worker then asks
for work, the job owner should find a task that suits the worker’s reputation:

w = reputation of worker

p = additional reputation needed for a task

r = additional replicas needed for a task

p̄ = average reputation per replica

p̄ =
p

r

Optimally, a task should be finished without extra replicas and minimal
excess reputation. If it was possible, a task should be found such that the
worker reputation equals the average need of the task: p̄ = w. If that could
always be the case, no extra replicas would ever have to be produced and
there would be no excess reputation. This scenario is depicted by the middle
arrow in Figure 7. As shown in the picture, the average does not change
value in this case since 3

3
= 2

2
.

20

Figure 7: Depiction of how a task changes p̄ value after being given
to a new worker depending on the workers reputation.

Normal case Often in a running system, there is no task with exactly the
same expected reputation as a given worker. In order to meet the reputation
need without extra replicas, a task should be assigned such that the worker
reputation exceeds the anticipated need: p̄ ≤ w. Eventually this can lead
to excess reputation but that can be minimised by choosing a task with the
average p̄ as close to the worker reputation w as possible. Any excess reputa-
tion will decrease the average value p̄ for the next worker which subsequently
can have a lower reputation to work on this task than otherwise. This is il-
lustrated by the left arrow in Figure 7. Thus, the higher reputation a worker
has, the lower reputation his co-workers on the task can have. This is an
essential characteristic as this regulates trust and tests untrusted workers,
who could be Sybil nodes, against the most trusted workers who have proven
themselves during a long time.

If there are no p̄ ≤ w, the job owner should do the second best thing: to
give a task with p̄ > w as close to w as possible. This reputation deficiency
will increase the average need p̄ for this task so next time it will be given to
workers with higher reputation. This scenario is depicted by the right arrow
in Figure 7. Also for this case, the self-regulating characteristic described
above is proven to be true.

The concept of the average need p̄ is extended to be more abstract than
a simple average. To deal with some special cases, it must be considered an
arbitrary number used to represent the order in a collection of tasks so that
tasks can be assigned workers in an intelligent way.

21

Figure 8: Example of a scenario when the reputation requirement of
a task is met but not the requirement for replication. The two tasks
on the left do not need more reputation to be validated compared to
the task of initial state on the right.

Special case 1 The first special case occurs when the reputation require-
ment is met but not the minimal number of replicas. Any node could move
such a task closer to validation by working on it, disregarding the node’s rep-
utation. Newcomers who have reputation zero will primarily work on these
tasks that already have enough reputation since p̄ = p

r
= 0.

However, tasks closer to completion should be prioritised, so instead p̄
will be considered negative with the distance to zero reflecting how many
replicas there are left. One successful model for this is p̄ = −r. This model
is illustrated in Figure 8. In the figure, the task with only one replica left
will always be chosen before the task with two replicas left. If the worker
has a reputation greater than or equal to 3

3
, he will be given the task to the

right instead.

Special case 2 Another special case is the inverse of the first special case:
when the requirement for minimal number of replicas is met but not the
requirement for reputation. This can happen when the majority of workers
cannot find a suitable task such that p̄ ≤ w. When this condition occurs,
the task would only need one extra replica if the worker had high enough
reputation. Therefore, let p̄ = p. Even if there is no such worker with that
high reputation, eventually, the workers with highest reputation will get to
work on this. If the sum of the workers are insufficient, the job owner himself
will work on it as described above so that the workers can gain reputation
for the next task.

Special case 3 The very last case is when all requirements for a task are
met. It is possible for such a task to still not be validated because it might
be waiting on a replica that has not yet returned. This kind of task should
be chosen as the very last alternative if any, thus p̄ is proposed to take the

22

value of positive infinity.

Summary The four cases are summarised below:

p̄ (p, r) =

p
r

p > 0, r > 0

−r p ≤ 0, r > 0

p p > 0, r ≤ 0

∞ p ≤ 0, r ≤ 0

The parameters p and r are not trivial to optimise as several goals need
to be achieved. First of all, security of validation must be maximised while
minimising replication and job owner effort. To produce and analyse a ma-
thematical model for this is considered future work.

Reputation in the Prime number example For the prime number
example, reputation can be used quite straightforwardly to increase the re-
liability in the results. For prime numbers, it is critical that no errors are
missed as the results are used as input for future tasks.

Reputation in the Langermann example The Langermann example,
described in Section 3.2 is a stochastic computation and hence depends on
a seed for generating pseudo-random numbers. Because of this, the problem
of optimising can be structured in tasks in two different ways: either as a
single task that is replicated many times or as many tasks.

The most natural would be to follow the one-task approach where different
nodes get the same input data but generate the seed dynamically. If this
is done, only the worker that produces the very best result can be given
reputation to not risk rewarding deceitful nodes. The other workers should
not lose reputation since they might have been working truthfully but have
had worse luck with the seed. The main advantage of this approach is that
all results are compared automatically by the validation which creates less
work for the job owner.

For the second approach with many tasks, the respective seed for each
task would have to be generated in advance by the job owner. As the same
seed is used for all replicas of a task, reputation can be given fairly as they
can be compared against each other. However, this would waste computation
power. Similarly to the other case, one could also set the number of minimal
replicas to one but requiring a certain amount of reputation. Then truthful
nodes could get the reputation they deserve while Sybil nodes still would
have to be checked against nodes with high reputation. Compared to the

23

previous approach of only one task, it creates a small overhead for the job
owner but makes the reputation system more fair. In either case, a useful
solution is very likely to be produced while cheating nodes do not constitute
a problem as long as they do not gain reputation without deserving it.

6 The prototype
We implemented a prototype in Java (Source code 2014) to demonstrate our
theoretical results (see Section 5). As a result, it is platform independent.
This section describes the prototype-specific solutions; other implementations
could be used to solve the same problems as the ones described here. The
process and technologies used when developing the prototype are discussed
in appendices A and B.

Task Management

Controller

TomP2P

UI

Message Passing
Interface

Distributed Storage

File Management
Message Passing

Protocol

Proof-of-work Cryptography

Replication Reputation

Validation

CLI

Compilation

Computation

Secure Execution
(Safe Haskell)

Figure 9: Illustration of the architecture of the prototype. The
dashed subparts, validation and computation, are written in Haskell
by the job owner.

24

6.1 Prototype architecture

The realised prototype implements the general architecture that was intro-
duced in Section 2. The specific architecture used for this prototype is briefly
summarised in this section and illustrated in Figure 9.

The connectivity parts: distributed storage and message passing interface
are realised with an external library, which will be discussed in Section 6.3.1.
The details of the task management have been discussed previously in Sec-
tion 5. Our methods presented there, such as reputation and validation, are
implemented in a module called Client in the prototype (Source code 2014).
The secure execution part will be discussed in detail in Section 6.2. This
part is implemented in the prototype as the module called TaskBuilder.

The controller part is also implemented in the module called Client. The
respective subparts will be discussed in different sections. The proof-of-work
was motivated in the theory in Section 5.2. The specific implementation
of proof-of-work in this prototype will be presented in Section 6.3.2. The
cryptography subpart facilitates encryption of messages and signing of re-
sults. This will be discussed in Section 6.3.3. The message passing protocol
we have designed for exchanging information between workers and job own-
ers is described in Section 6.3.4. The file management will be discussed in
Section 6.3.5.

The user interface (UI) consists of a command line interface (CLI). In
the source code, this can be found in the module called UI. The user can
only interact with the prototype through the UI module, which consequently
defines what a user can do.

6.2 Secure execution

Because all nodes have the right to post jobs on the network and participants
are mutually unknown and untrusted, great care must be taken in order to
ensure that the code in a job cannot do anything else than perform compu-
tation on the given input. The potential consequences could be devastating,
both for the individual users if their hard drives were erased or injected with
malware, but more importantly a lot of completely unrelated entities could
suffer if our network was used to create a botnet. This is a key ethical issue
to solve.

In order to provide safety for the worker nodes, the computations must
be guaranteed to be secure or run in a sealed environment, referred to as a
sandbox. Secure languages have the advantage of giving a guarantee that
the code cannot do unauthorised I/O-operations. On the other hand, there
have been cases where code running inside a sealed environment have broken

25

out and taken control of the machine (Ray and Schultz 2009). Safe envi-
ronments also seemed to be platform dependent which would contradict the
requirements of portability.

Safe Haskell The language that job owners can implement computation
code in is Safe Haskell. Before it can be described, some features of the
ordinary Haskell language need to be explained. Haskell is a programming
language composed of pure functions, in the sense that the functions behave
like mathematical functions: the same input of a function call always result in
the same output and does not cause any side-effects (Milewski 2013). Input
and output operations however, causes side-effects and may return different
results, therefore they are considered to be actions and they have the type
IO. This makes it easy to see if a piece of code can access a system and its files
or if it only may perform a computation in memory. However, other features
of Haskell lets input and output operations be performed unsafely in pure
computational typed functions, preventing safe behaviour to be ensured.

First introduced in GHC 7.2, Safe Haskell is an extension to the Haskell
language that disables all features of Haskell that are deemed unsafe and
prevents unsafe code from being compiled (Haskell 2014; Terei et al. 2013).
This ensures that computational functions remain pure. Using this, an ex-
ternal program can call pure computational functions safely, only allowing
computation in memory. One disadvantage however is that, as of yet, Safe
Haskell does not guarantee safety during compilation. Terei et al. state that
disabling certain functionality, including the C preprocessor, should make
compilation safe. To be perfectly safe however, the compilation must run in
a sandbox.

For purposes of practicality, some modules need to be allowed to use
unsafe operations. In order to allow a program to be compiled that uses a
module with unsafe code, that module most be considered trustworthy. This
imposes a risk: if a module exporting an unsafe function is trusted, that
function may be used in an untrusted program. Therefore the choice of code
to trust must be handled with care.

Alternatives to Safe Haskell Other safe languages were considered such
as Joe-E (Joe-E 2014) and E (ERights 2014). Joe-E was discarded since it
required the installation of Eclipse and a plug-in to compile the Joe-E code.
This was not acceptable as a minimal installation of Eclipse itself use about
150 MB (Eclipse 2014). E on the other hand was an interpreted language
but proved to be quite unsuitable for computations which is demonstrated
by our performance test below.

26

Testing language performance The performance of C, E and Safe
Haskell for usage as computational languages were evaluated and compared.
While C cannot be used in our implementation since it is not a safe lan-
guage, it is usable as a comparison against E and Safe Haskell. A test was
created that was intended to be as fair as possible. As the test was very
simple to program without using any library functions and mostly required
CPU power, it should be a reasonably fair comparison between C, E and
Haskell. The algorithm checked for every integer up to a certain point if it
was divisible with any other number, that is if it was a prime number.

The test was run multiple times on different computers. Safe Haskell
performed well in test, only taking 4 times longer than C, making it a strong
candidate for demanding computations. E however did not perform well, be-
ing 1,100 times slower than C, making even simple computations unfeasible.

6.3 Functionality

In the prototype the reputation model and smart assignment are imple-
mented as described in Section 5. Tasks are grouped together as a job to
be easier to organise and see which tasks belong together. A job is deemed
completed once every task is finished. For workers to be able to work on a
task a job owner has to post a job to make it available for the network. The
job owner replicates each task in the job and assigns the replicas to workers.
Additionally, the implementation of distributed storage, proof-of-work and
cryptography is presented below.

6.3.1 Distributed storage and network: TomP2P

TomP2P is a library used for distributed data storage (TomP2P 2014b). As
can be seen in Figure 9, TomP2P implements both the distributed storage
and the message passing interface. The data storage in the system has a
few requirements that TomP2P fulfills. Firstly, nodes need to know each
other over a fault tolerant network that expects nodes to drop out sooner or
later as it is not expected of the users of the system to be online at all time.
Secondly, the nodes also need to be able to send files and messages to each
other, otherwise there is no means to communicate. Furthermore nodes must
be able to send files to each other without being online at the same time to
make the work of the prototype more fluid. However, it is not possible to
send messages to nodes that are offline.

TomP2P implements a DHT (ibid.). It is a fully decentralised Key-Value
storage model that often is categorised as a type of NoSQL database (NoSQL
2014). Being master-less is an important requirement as single-point failures

27

need to be avoided. Generally, using cryptographic methods, files in a DHT
can be ensured not to be modified but they can still be denied access to, or be
deleted, by Sybil nodes (Balakrishnan et al. 2003). TomP2P however offers
functionality for protecting values against modification and deletion(TomP2P
2014a). Other libraries such as Voldemort (Project Voldemort 2014) were
also studied but they did not offer the same key protection as TomP2P did.
Furthermore, both the prototype and TomP2P are open source and therefore
anyone who is interested in the source can look up TomP2P’s source code as
well.

Since TomP2P met the requirements, other distributed storage solutions
were disregarded such as the Column store model implemented by the Cas-
sandra library (Apache 2014c; NoSQL 2014). The greatest difference was
the possibility to do search queries in the database, as Cassandra facilitates
advanced queries in its own query language, ”CQL”, while a DHT required
the peer to always know exactly what key data is stored at. One advantage
of the strict Key-Value model was that it was more difficult for Sybil nodes
to find and delete objects in the database. Cassandra was designed for run-
ning on a server cluster where each node is to be trusted whereas TomP2P
was designed for a peer-to-peer network where keys could be protected both
implicitly by unknown key and explicitly by key domain (TomP2P 2014a).
The security features of Cassandra took place between the querying clients
and the server cluster (DataStax 2014).

6.3.2 Proof-of-work: Hashcash-cookies

As mentioned previously, a proof-of-work system is needed in order to lessen
the risk of deceitful nodes succeeding to report incorrect results. This section
presents the proof-of-work system used in the prototype and aims to motivate
the choices made when developing it.

Figure 10: The basic structure of a challenge-response protocol.
(Coelho 2008)

28

Challenge-response The proof-of-work systems we deem as most appro-
priate to use are those based on the so-called challenge-response protocol.
In these, a challenge is issued to each node requesting access to a resource,
as seen in Figure 10. The challenge is then solved by the requester and only
upon successful verification of the solution is the requester granted access to
the resource. The fact that the challenge is picked by the resource provider
allows the difficulty of the challenges to be tweaked according to the current
state of the system in general and the requester in particular.

However, if such a protocol only included what is outlined above, the
provider would have to remember which challenges it has issued in order to
prevent nodes to create their own challenges. This would be O(npending) in
space complexity, with npending being the number of issued challenges that
have not yet been solved. Since any node could request any number of
challenges, this would make the proof-of-work system itself vulnerable to DoS
attacks, the very problem it is trying to counter! Fortunately, this problem
has a relatively simple solution: the provider sends a message authentication
code (MAC) of the challenge together with the actual challenge and requires
both of them to be returned together with the solution. This allows the
provider to verify in constant time that the challenge was indeed issued by
himself, without having to store any information about it while waiting for
a response (Back 2002).

Reusable solutions The ability to tweak difficulties and the lack of space
overhead makes the challenge-response protocol seem very attractive, but the
advantage of not having to save either challenges or solutions introduces a
new problem. Without any information on which solutions it has accepted,
how does the provider know if a particular solution is being reused? In the
setting where proof-of-work systems are traditionally used (and are indeed
designed for), a unique service name is included in each challenge, specifying
which resource its solution grants access to. Relying on this method would
require our system to reserve a specific task for a specific requester before a
challenge has been solved, which would be very inefficient and vulnerable to
DoS attacks.

Instead, the job owner in our prototype relies on a ”score” associated with
each registered worker. The score is included in the challenges sent to the
worker and changes in an unpredictable way upon successful verification of
a solution. This makes old solutions unusable, while requiring O(nworkers)
space complexity and constant time for lookups, using a hash table. As
the score is not saved until the worker has registered, Byzantine node(s)
seeking to maximise nworkers would have to solve one registration challenge

29

per increment. This makes O(nworkers) a huge improvement over O(npending),
which would increment on each request made.

Figure 11: The basic structure of a solution-verification protocol
(Coelho 2008).

Solution-verification In contrast to the challenge-response protocol, the
solution-verification protocol works by allowing a proof-of-work to be com-
puted without the need for the resource provider to issue the challenge, as
seen in Figure 11 (Coelho 2008). This is primarily applicable whenever the
requester can be assumed to know exactly which resource it is requesting ac-
cess to, or when timestamps are a good way to differentiate between different
requests from the same node. The traditional setting is when the requester
wants to send an e-mail through the resource provider’s e-mail server —
the requester chooses a challenge consisting, for example, of a timestamp
and the sender’s and receiver’s e-mail addresses. The challenge and its so-
lution is then sent along with the e-mail, which proves that the requester
has performed some work in order to send the e-mail, with higher difficulties
presenting stronger proofs that the requester is not a spammer.

Upon receipt of this proof-of-work, the provider has to check 1) that the
choice of problem is acceptable, 2) that the solution indeed solves the problem
and 3) that the same problem has not been used by a requester before. The
first two conditions can definitely be checked efficiently in our setting, but
the last one requires checking new solutions against all the previous ones.
This can be a cheap process with a good data structure (O(1) with a hash
table), but it will of course be of O(nsolutions) space complexity. As each
worker will be required to present a proof-of-work for each task it works on,
it is reasonable to assume that nworkers < nsolutions, even though the worst
case would be nworkers = nsolutions. This, together with the need for a unique
identifier for each request and the inability to tweak difficulties as needed,
led to the discarding of the solution-verification protocol.

30

Hashcash The Hashcash system was found to be satisfactory to the needs
of this project. It is well-tested and most notably used in Bitcoin min-
ing and Microsoft’s ”Coordinated Spam Reduction Initiative”, albeit with
a slightly modified and incompatible format in the latter case (Microsoft
2004; Nakamoto 2008a). Solutions are ensured to actually be proofs of work
through the pre-image resistance property of cryptographic hash functions,
stating that, given a hash h, it should be hard to find a message m such that
hash(m) = h (Back 2002; Rogaway and Shrimpton 2004).

Specifically, a challenge in Hashcash consists of a bitstring s and an integer
difficulty d. The requester’s task is to find another bitstring t, such that
hash(s||t) has a prefix of at least d zero-bits, with || denoting concatenation
of strings. The fastest known algorithm to solve this problem is brute force,
causing the expected time to find a solution to rise exponentially with d
(Back 2002).

The prototype employs a modified version of Hashcash with MAC (or
”Hashcash-cookies” (ibid.)), with s = hash(idjobowner||idworker||scoreworker).
Due to time limitations, d does not depend on either the worker’s reputation
or the general state of the system, even though such a feature was seen as
very attractive. It is instead fixed, with registration requiring more work
than authentication.

6.3.3 Cryptography: Apache Shiro and Bouncy Castle

Recalling the probabilistic model once more, digital signatures will be needed
in order to avoid punishing innocent nodes. The following section discusses
this and other cryptography-related features in the prototype as well as how
they relate to each other.

Digital signatures In order to provide integrity and authenticity of re-
sults, we use the digital signature algorithm (DSA) (Kerry and Gallagher
2013). Workers sign hashes of their results using their respective private DSA
key, uploading both the result and the signature to the DHT before notifying
the job owner. Being an asymmetric algorithm, a registering worker has to
provide the job owner with its public DSA key in some sort of handshake
before the job owner can verify the worker’s results.

Secure message passing Integrity and authenticity of results are not
enough however: numerous messages are sent back and forth between job
owners and workers, some of them containing information that only the in-
tended recipient should be able to access. The standard way to provide
confidentiality of messages as well as integrity and authenticity, is to use an

31

authenticated encryption algorithm (Bellare and Namprempre 2000). AES-
GCM was deemed to be the most appropriate such algorithm for the pro-
totype, because of AES’s strong security together with GCM’s relative ef-
ficiency for short messages and unpatented status (Bogdanov et al. 2011;
Švenda 2004).

Key agreement Since AES is a symmetric encryption algorithm, the par-
ticipants are required to establish a shared secret key before any secure com-
munication can take place. To do this, while at the same time preventing
any adversary to retrieve the key, is a classic problem in modern cryptog-
raphy, solved by the key agreement algorithm Diffie-Hellman. In it, each of
the two participants have one private key — which is kept secret — and one
public key — which is sent to the other participant, possibly over an insecure
channel.

The algorithm ensures that the two participants obtain the same secret
key through a property of modular arithmetic, stating that (ga)b ≡p (gb)a.
Here g and p are publicly known, while a and b are the private Diffie-Hellman
keys of the participants and ga and gb are their respective public keys (Diffie
and Hellman 1976). It is hard to retrieve a from ga due to the discrete
logarithm problem which is thought to be NP-intermediate, that is, being
in NP but neither in P nor NP-complete (Atallah 1998). It is worth noting
that is not proven that NP-intermediate exists as it is still debated whether
P equals NP or not.

Handshake Subsequently, in order for the nodes to be able to agree on
a secret key, the aforementioned handshake will have to consist of a public
Diffie-Hellman key as well as the public DSA key. The former will have to be
accompanied by a signed hash in order to discover man-in-the-middle attacks
where an active adversary replaces the Diffie-Hellman key in a handshake.
This will guarantee that the secret key is negotiated with the correct node,
even though we do not know anything about the node in question, only that
it is in possession of both keys.

A summary of the protocol for exchanging public keys and establishing a
shared secret key follows below (verification of signatures omitted for clarity):

A→ B : {DSAApub
, DHApub

, signA(hash(DHApub
))}

B computes : SAB = agree(DHApub
, DHBpriv

)

B → A : {DSABpub
, DHBpub

, signB(hash(DHBpub
))}

A computes : SAB = agree(DHBpub
, DHApriv

)

32

A and B now share the same secret key SAB and both have verified that
the node that owns the private DSA key is the same as the one they agreed on
the secret key with. Thus, in further communications both can be sure that
they are communicating with the correct node. Additionally, when either
one of them uploads a result for the other to see, it can verify that the result
was uploaded by the same node with whom it is communicating.

Implementation Since all versions of JDK 7 does not provide support for
block ciphers in GCM mode (Wetmore 2011), our cryptographic functions
rely on the Bouncy Castle API (Bouncy Castle 2013). It has a footprint
of only 2.6 MB, a cheap price to pay to avoid either risking broken code
on certain machines or building our own authenticated encryption algorithm
through composing an encryption function with a MAC-function. The latter
option is certainly non-trivial and opens up to programming errors (Krawczyk
2001). Apache Shiro is also used, in order to provide a simpler and more in-
tuitive wrapper interface to Java’s standard cryptographic libraries (Apache
2014b).

6.3.4 Message passing

Message passing is the protocol used by the job owner and the workers for
communication pertaining to tasks. It requires both the job owner and the
worker to be online simultaneously when requesting and assigning tasks.
When a worker has finished executing a task, the job owner will be notified
immediately with a message if he is online. Otherwise, the job owner will
obtain the result as soon as he comes online by querying the distributed data
storage. If the task could not be compiled or if it crashed unexpectedly while
the job owner was offline, that information could be uploaded to the same
location as the result would have been uploaded to.

As illustrated in Figure 12, a worker initiates the communication with the
job owner by sending a challenge request, receiving a challenge as reply. The
worker solves the challenge and sends a task request containing the solution
to the job owner, who then returns a task. Finally, the worker executes the
task, uploads the result and notifies the job owner.

In this process, two things can halt the communication. Firstly, if the
job owner has no tasks available, for example if no job has been posted or if
all jobs are completed, then the worker will be notified and will not receive
a task. Secondly, if the task is implemented incorrectly so that the worker
cannot execute it, the job owner will be notified and no result uploaded.

33

Figure 12: The message passing protocol when successfully working
on a task. The normal line represents a message that needs an answer
and the dotted line represents a message that do not require a reply.

6.3.5 File management

During installation, the directoy .gdcn is created in the user’s home directory
where local files are saved. Files are created and updated during runtime to
maintain the state of the program when it is restarted. Most important are
the cryptographic keys, as they are necessary for the peers to keep their
identities in the network. The task files are located in subdirectories, one for
each job. The information about a task is stored in a JSON-file so that the
client knows which files are to be used when executing the Haskell code.

6.4 Connecting to the peer-to-peer network

A peer-to-peer network was chosen as the underlying structure and conse-
quently there is no central server for peers to connect to. Two peers in the
same local network can find each other by broadcasting, but this is not pos-
sible if they are on different networks. However, peers on different networks
still need to be able to find each other, which is commonly accomplished
through bootstrapping (Buford and Yu 2010).

Bootstrapping is when a peer initially connects to a peer-to-peer network.
As there are no servers to connect to, a joining peer instead connects to
an already existing peer in the network. The existing peer then provides

34

the connecting peer with information about the state of the network and
protocols used, allowing it to communicate with the rest of the peers in
network. The peer that provides this information is called a bootstrapping
peer.

For new peers to find the network, a number of stable peers should be
used as a core network. New peers can bootstrap to this core network and
find the rest of the network through them. The core network is not acting as a
server but is a normal peer and consequently does not have any more control
over the network than any other peer in the network. The bootstrapping
peer currently used by the prototype is predefined, so that new users can
bootstrap to it easily.

Peers that have previously connected to the network initially attempt to
connect to peers they have connected to earlier. This means that even if
the core network should go offline, the only result would be that new peers
cannot find the network, as old peers would be able to reconnect without
any trouble. Naturally, if no earlier known peer is online, old peers need to
bootstrap to the core network as well.

7 System properties
In this section the results of this thesis are recapitulated. Specifically, we
summarise which problems have been solved and to what extent.

7.1 Security against malicious code

A major concern was how to ensure the safety of the workers when the author
of the computation code is unknown and untrusted. As any malicious code
would require IO operations, malicious code produces compiler errors in Safe
Haskell (Terei et al. 2013). Safe Haskell can guarantee that no unsafe code
is compiled by users. Anything that Safe Haskell does not catch is beyond
the scope of this project. Notably, Safe Haskell cannot guarantee that the
compilation itself is completely safe.

The input files for computation code however poses a potential security
threat. Currently, any binary files are accepted as input. This means that the
input files may contain malware that go undetected. Possibly they could be
started by preprocessor commands at compilation time of the computation
code. How to counter this kind of attack is considered future work.

35

7.2 Reliability of results

The proposed system and implemented prototype cannot guarantee that ev-
ery result is correct. Sybil nodes could be assigned all replicas of a task and
return identical but false results. It would however require them to work
truthfully for some time, which would help the job owner. As the Sybil
nodes are unaware of what settings the job owner uses, they can never know
when to strike with certainty. Furthermore, if a fraud is successful and the
same nodes are caught later on, their previously accepted results may be
re-evaluated.

The probability of deceitful success also depends on the kind of compu-
tation. If it is a Monte Carlo algorithm optimising a system, one false result
has little impact as it will be compared against other solutions from other
tasks. On the other hand, for an isolated task, a deceitful result is impossible
to discover as it cannot be incorrect per definition, only of very low quality.

7.3 Comparison with BOINC

As mentioned earlier, BOINC is a common platform for making distributed
volunteer computations (BOINC 2014a). Here, we point out the key differ-
ences between BOINC and our methods and prototype. This is interesting as
our system, during development, has converged towards the BOINC design,
motivated by security reasons.

The asymmetric relation between job owner and worker exist in both
systems. Workers are considered untrusted, which motivates the replication
of tasks in both systems. In BOINC the workers always trust the job owner,
while in our system the job owner need not to be trusted as the execution
is considered safe. BOINC computations are written in C which generally
run faster than Haskell, but needs to be compiled in advance by the job
owner for different platforms. This also means that the computation code
is unknown by the workers in BOINC. In contrast, our system is highly
platform-independent and the computation code is available for workers to
read.

An alternative implementation of BOINC is V-BOINC that runs BOINC
in a sealed off virtual environment (McGilvary 2013). This keeps the advan-
tages of BOINC while reducing platform-dependence and the required trust
of the job owner.

The greatest achievement of our system is the protection against Sybil
nodes by proof-of-work and reputation. BOINC allows workers to gain
”credit” but it does not affect the system; it is merely a token of appreci-
ation and recognition to the user (BOINC 2014a). BOINC however facilitate

36

a feature called ”adaptive replication” that use probabilities to decide when
a task should be replicated based on a worker’s failure rate. The concept is
similar to our reputation system but is implemented differently.

Furthermore, BOINC requires the job owner to run a server continuously.
In our system, it is enough for the job owner to come online once in a while.
On the other hand, if the reputation method is used, the job owner will be
required to work on tasks if the available workers have too low reputation.

8 Discussion of theoretical results
In this section, we discuss our solutions presented in Section 5. As long as
deceitful nodes can be assumed to exist and results cannot be ascertained
to be correct but need to be reliable, some replication of tasks must be
made. However, replication alone cannot guarantee success as Sybil nodes
can cooperate and deduce which replica belongs to which task.

Two methods are proposed to counter this kind of attack: proof-of-work
and reputation. Neither of them can guarantee absoluteness but they can
increase the expected reliability of results as well as making it more difficult
for an attacker.

Proof-of-work The proof-of-work method increases the probability for the
Sybil nodes to fail in their attack but more importantly it increases the cost
for an attack. The mathematical model shows that reliability increases with
more replicas, harder challenges and more truthful workers. More replicas
and harder challenges however lead to more wasted computation power.

Increasing challenge difficulty overall however leads to a much higher cost
for performing a Sybil attack as each Sybil node must solve an individual
challenge before getting a task to work on. This increased cost may demo-
tivate potential attackers, but will also waste more of the truthful worker’s
computation power.

Challenge difficulties could however be changed dynamically for specific
workers. As an analogy, when a book is not returned in time to a library,
a fee should be paid. Similarly, when a worker has been given several tasks
that have timed out without returning any result for them, a more difficult
challenge can be given as a ”fee” when asking for a new task. This would not
affect truthful nodes, even when working on several tasks in parallel, as the
difficulty only increases after timeout and truthful nodes solve tasks before
asking for more. Deceitful nodes that attempt to prolong the computation
process by asking for many tasks without solving any one of them, would
however be countered.

37

Reputation The reputation method considers any unknown worker as un-
trusted. In order for a Sybil node to do any damage, it must first receive trust
by working truthfully, since its results will be compared primarily against
well-trusted workers. Only after becoming trusted, it can hope to return
false results without the job owner noticing. After spending considerable
time to earn reputation, the attacker can never know for sure that the false
result will be accepted as the number of replicas of a task is dynamic. The
trusted Sybil node will sooner or later be compared against a truthful node
and lose all of its accumulated reputation.

The reputation model thus increases the reliability of results. A successful
Sybil node would have to be more complex in deducing when it should return
a truthful result and when it should give a false result in order to dupe the job
owner as efficiently as possible. The cost of making an attack would be very
high as a Sybil node would have to solve multiple tasks before getting trust.
The chance of a successful Sybil attack would also be quite low, assuming
there are any truthful nodes at all.

The greatest disadvantage of the reputation model is that in the begin-
ning, the job owner client will have to work itself, as it is the only trusted
worker.

Combination The two methods can be combined by using both challenges
and reputation. Workers with higher reputation can be given easier chal-
lenges to solve, so the proof-of-work will only significantly affect untrusted
workers. This would maintain a high cost for creating Sybil nodes while
reducing wasted computation power for truthful workers.

Smart assignment The smart assignment feature makes the system more
efficient by reducing both average wait time for tasks and wasted task repli-
cation. A positive side-effect is that low-reputation workers most often will
be paired with high-reputation workers rather than allowing a group of low-
reputation workers to finish a task.

As the procedure is primarily designed for newcomer scenarios, it may
have to be adjusted for steady state scenarios. For example, if the job owner
has very many tasks and only a few but truthful workers, the workers will
gain a very high reputation and hence will be assigned to work on different
tasks. This means that many tasks are started but that few are finished.
This depends on what parameter values have been chosen for the reputation
model. If only one replica is required but large reputation, this scenario would
work quite well. However, that setting is disadvantageous for a scenario
with many newcomers. Throughput in this case would typically benefit from

38

requiring many replicas but low reputation.
Hence, parameter values for the reputation model can be tailored to fit

one scenario very well but it is difficult to find a set of values that work well
for any possible scenario. In the future, the procedure could be made more
intelligent to dynamically adapt to different situations.

9 Social impact of the system
We have previously discussed what effects our theoretical solutions have on
an arbitrary decentralised computation system with free participation. We
will here discuss how such a system and the prototype can affect society at
large.

Future uses Our research about peer-to-peer technologies and our solu-
tions can be used in many situations where computation power can be in-
creased through the help of untrusted participants. It might be more resource
heavy for each node participating compared to systems designed for environ-
ments with trusted participants, however the gain in resources by allowing
untrusted participants is huge considering most users on the Internet are
untrusted.

Research potential This network was designed to keep down the resource
use of the job owner while still producing reliable results in an environment
with untrusted participants. As such, professional and hobby researchers
without much computer power can gain more resources from volunteers. If
our network is widely used for this purpose, more research can be done in
fields were much computation power is needed.

Malicious jobs It is impossible in our system to force a worker to execute
malicious code. However, jobs with results that can be used for harmful
purposes cannot be prevented. As an example, a job specified to crack cryp-
tographic keys, can harm third parties that use such keys. A system that
prevents this requires a method to judge if a computation is morally right to
perform. This is not in scope of this project.

Haskell Since our prototype requires computation code to be written in
Haskell, awareness about Haskell and its advantages would increase. Follow-
ing this and the fact that job code must be distributed as readable source
code, gives workers the opportunity to study a job owner’s code. With this,
users can learn from each other.

39

However, if a job owner obfuscates his code by changing function and
variable names, the code will be much harder to study and the job owner
can keep his code a little more secret (Sun and Huang 2014).

10 Future work
To the best of our knowledge, this thesis is the first attempt to design a
peer-to-peer based distributed computation system with free participation.
Hence, many things can be improved upon and explored further. The pro-
posed methods on reputation and proof-of-work can be improved upon by
optimising parameters and extending them. One proposed extension is to
dynamically change the difficulty of challenges.

Improving security is always a concern. Especially, methods for checking
input files are essential. Furthermore, compilation of computation code can
be made more secure by introducing a sandbox environment.

A desired feature, that can be difficult to achieve, is the ability to validate
results and assign workers to tasks in a decentralised manner that is safe
against Byzantine nodes and does not require the job owner to be online.
The results regarding BFT-CUP presented in Section 4.3.2 are most likely
highly relevant when researching this further. One approach is to create a
new overlay network that meet the requirements for using the the BFT-CUP
solution presented by Alchieri et al. (2008).

Recently, a DHT implementation was proposed for higher resistance
against Byzantine nodes (Young et al. 2013). Even though that solution
is not directly applicable to this system, new insights may be drawn from
related work that are yet to be published.

The prototype itself can be improved upon by increasing ease of use and
options to limit use of computer resource such as storage and CPU consump-
tion. Furthermore, enabling use of GPU for computations would potentially
improve system performance.

11 Conclusion
The produced network offers free participation without a formal registration
process. The network is autonomous without any central point of control but
the relationship between worker and job owner is, of necessity, asymmetric.
However, any peer can be a job owner; thus there is opportunity for efficient
cooperation between users.

No trust between nodes is necessary in the network: workers do not need

40

to trust the job owner and vice versa. In a different system, where all nodes
are known to be truthful, any node could post a job to a global queue.
However, if this design was used in the presence of Byzantine nodes, they
could corrupt the queue. Hence, the job owner must be online when a worker
is assigned a task.

Potential attackers can create Sybil nodes that eventually can dupe a job
owner in accepting a false result. Such an attack would have a very low suc-
cess rate and high cost in terms of computer resources. Concerning malicious
intents, our system can never be used as a botnet. However, without further
measures, the input files of jobs may contain malicious content. Neverthe-
less, that content cannot be activated within the computation code, neither
during compile time nor runtime.

Decentralised computation networks with free participation may not be
motivated as they do not improve usability significantly over existing sys-
tems such as BOINC. Most of the results are however applicable to any
distributed computation system. For example, BOINC could benefit from
using Safe Haskell, the reputation model and the proof-of-work system. For
decentralised computation systems to be useful, distributed assignment of
tasks and distributed validation of results should be investigated further.

41

References
Alchieri, Eduardo A. et al. (2008). “Byzantine Consensus with Unknown Partic-

ipants”. In: Proceedings of the 12th International Conference on Principles of
Distributed Systems. OPODIS ’08. Luxor, Egypt: Springer-Verlag, pp. 22–40.
isbn: 978-3-540-92220-9. doi: 10.1007/978-3-540-92221-6_4. http://dx.
doi.org/10.1007/978-3-540-92221-6_4.

Apache (2014a). Apache Ant. http://ant.apache.org (2014-05-19).
— (2014b). Apache Shiro Features Overview. http : / / shiro . apache . org /

features.html (2014-05-13).
— (2014c). Cassandra. http://cassandra.apache.org/ (2014-03-26).
— (2014d). Maven. http://maven.apache.org (2014-03-21).
Atallah, Mikhail J. (1998). “Reducibility and Completeness”. In: Algorithms and

Theory of Computation Handbook. Chap. 28, p. 14.
Back, Adam (2002). Hashcash - A Denial of Service Counter-Measure. http://

www.hashcash.org/papers/hashcash.pdf (2014-04-15).
Balakrishnan, Hari et al. (2003). “Looking up data in P2P systems”. In: Commu-

nications of the ACM 46.2, pp. 43–48. doi: 10.1145/606272.606299.
Basin, David, Patrick Schaller, and Michael Schläpfer (2011). Applied Information

Security. English. Springer Berlin Heidelberg. Chap. 1, p. 3. isbn: 978-3-642-
24473-5. doi: 10.1007/978-3-642-24474-2_1. http://dx.doi.org/10.
1007/978-3-642-24474-2_1.

Batten, Lynn (2013). Public Key Cryptography:Applications and Attacks. Wiley-
IEEE Press. Chap. 6, pp. 133–150. isbn: 9781118482261. doi: 10 . 1002 /
9781118482261.ch7.

Belapurkar, Abhijit (2009). Distributed systems security : issues, processes, and
solutions. Chichester, UK: John Wiley & Sons, pp. 21–22. isbn: 978-0-470-
51988-2.

Bellare, Mihir and Chanathip Namprempre (2000). “Authenticated Encryption:
Relations among Notions and Analysis of the Generic Composition Paradigm”.
English. In: Advances in Cryptology — ASIACRYPT 2000. Ed. by Tatsuaki
Okamoto. Vol. 1976. Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, pp. 531–545. isbn: 978-3-540-41404-9. doi: 10.1007/3-540-44448-
3_41. http://dx.doi.org/10.1007/3-540-44448-3_41.

Bogdanov, Andrey, Dmitry Khovratovich, and Christian Rechberger (2011). “Bi-
clique Cryptanalysis of the Full AES”. In: Advances in Cryptology – ASI-
ACRYPT 2011. Ed. by DongHoon Lee and Xiaoyun Wang. Vol. 7073. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, pp. 344–371. isbn: 978-
3-642-25384-3. doi: 10.1007/978-3-642-25385-0_19. http://dx.doi.org/
10.1007/978-3-642-25385-0_19.

BOINC (2014a). Computing with BOINC. http://boinc.berkeley.edu/trac/
wiki/ProjectMain (2014-03-20).

42

http://dx.doi.org/10.1007/978-3-540-92221-6_4
http://dx.doi.org/10.1007/978-3-540-92221-6_4
http://dx.doi.org/10.1007/978-3-540-92221-6_4
http://ant.apache.org
http://shiro.apache.org/features.html
http://shiro.apache.org/features.html
http://cassandra.apache.org/
http://maven.apache.org
http://www.hashcash.org/papers/hashcash.pdf
http://www.hashcash.org/papers/hashcash.pdf
http://dx.doi.org/10.1145/606272.606299
http://dx.doi.org/10.1007/978-3-642-24474-2_1
http://dx.doi.org/10.1007/978-3-642-24474-2_1
http://dx.doi.org/10.1007/978-3-642-24474-2_1
http://dx.doi.org/10.1002/9781118482261.ch7
http://dx.doi.org/10.1002/9781118482261.ch7
http://dx.doi.org/10.1007/3-540-44448-3_41
http://dx.doi.org/10.1007/3-540-44448-3_41
http://dx.doi.org/10.1007/3-540-44448-3_41
http://dx.doi.org/10.1007/978-3-642-25385-0_19
http://dx.doi.org/10.1007/978-3-642-25385-0_19
http://dx.doi.org/10.1007/978-3-642-25385-0_19
http://boinc.berkeley.edu/trac/wiki/ProjectMain
http://boinc.berkeley.edu/trac/wiki/ProjectMain

BOINC (2014b). Redundancy and errors. http://boinc.berkeley.edu/trac/
wiki/JobReplication (2014-04-30).

Buford, John and Heather Yu (2010). “Peer-to-Peer Networking and Applications:
Synopsis and Research Directions”. In: Handbook of peer-to-peer networking.
Ed. by Xuemin Shen et al. Heidelberg: Springer. isbn: 978-0-387-09750-3.

Coelho, Fabien (2008). “An (Almost) Constant-Effort Solution-Verification Proof-
of-Work Protocol based on Merkle Trees”. In: Africa Crypt 2008. Ed. by Serge
Vaudenay. LNCS 5023. Cryptology eprint Archive 2007/433. Springer Verlag,
pp. 80–93. http://eprint.iacr.org/2007/433.pdf.

Cosm (2014). The Cosm Project. Mithral Inc. http://www.mithral.com/cosm/
(2014-05-14).

DataStax (2014). Securing Cassandra. http://www.datastax.com/documentation/
cassandra/1.2/cassandra/security/secure_intro.html (2014-03-26).

Diffie, Whitfield and Martin E. Hellman (1976). “New directions in cryptography”.
In: Information Theory, IEEE Transactions on 22.6, pp. 644–654. issn: 0018-
9448. doi: 10.1109/TIT.1976.1055638.

Douceur, John R. (2002). “The Sybil Attack”. In: Peer-to-Peer Systems. Cambridge,
MA, USA: Springer Berlin Heidelberg, pp. 251–260. isbn: 978-3-540-45748-0.
doi: 10.1007/3-540-45748-8_24.

Eclipse (2014). Eclipse. https://www.eclipse.org/downloads/ (2014-03-28).
ERights (2014). ERights. http://www.erights.org (2014-03-28).
Fischer, Michael, Nancy Lynch, and Michael Paterson (1985). “Impossibility of

distributed consensus with one faulty process”. English. In: Journal of the ACM
(JACM) 32.2, pp. 374–382. www.summon.com.

Freenet (2014). What is Freenet? https://freenetproject.org/whatis.html
(2014-05-14).

Furnell, Steven, Sokratis Katsikas, and Javier Lopez (2008). Securing Informa-
tion and Communications Systems : Principles, Technologies, and Applications.
Norwood, MA, USA: Artech House. Chap. 7.2, p. 106.

Git (2014). git. http://git-scm.com (2014-04-30).
Google (2014). Google-Gson. https : / / code . google . com / p / google - gson/

(2014-05-19).
Haskell (2014). Safe Haskell. https://www.haskell.org/ghc/docs/7.4.1/html/

users_guide/safe-haskell.html (2014-03-28).
Joe-E (2014). Joe-E. https://code.google.com/p/joe-e/ (2014-03-28).
JUnit (2014). JUnit. http://junit.org/ (2014-05-19).
Kerckhoffs, Auguste (1883). “La cryptographie militaire”. In: Journal des sciences

militaires IX, pp. 161–191.
Kerry, Cameron F. and Patrick D. Gallagher (2013). Digital Signature Standard

(DSS). National Institute of Standards and Technology.
Krawczyk, Hugo (2001). “The Order of Encryption and Authentication for Pro-

tecting Communications (or: How Secure Is SSL?)” English. In: Advances in
Cryptology — CRYPTO 2001. Ed. by Joe Kilian. Vol. 2139. Lecture Notes in

43

http://boinc.berkeley.edu/trac/wiki/JobReplication
http://boinc.berkeley.edu/trac/wiki/JobReplication
http://eprint.iacr.org/2007/433.pdf
http://www.mithral.com/cosm/
http://www.datastax.com/documentation/cassandra/1.2/cassandra/security/secure_intro.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/security/secure_intro.html
http://dx.doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.1007/3-540-45748-8_24
https://www.eclipse.org/downloads/
http://www.erights.org
www.summon.com
https://freenetproject.org/whatis.html
http://git-scm.com
https://code.google.com/p/google-gson/
https://www.haskell.org/ghc/docs/7.4.1/html/users_guide/safe-haskell.html
https://www.haskell.org/ghc/docs/7.4.1/html/users_guide/safe-haskell.html
https://code.google.com/p/joe-e/
http://junit.org/

Computer Science. Springer Berlin Heidelberg, pp. 310–331. isbn: 978-3-540-
42456-7. doi: 10.1007/3-540-44647-8_19. http://dx.doi.org/10.1007/3-
540-44647-8_19.

Legion of the Bouncy Castle Inc. (2013). The Legion of the Bouncy Castle. https:
//www.bouncycastle.org/java.html (2014-05-15).

Lynch, Nancy A. (1996). Distributed Algorithms. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc. Chap. 1. isbn: 1558603484.

McGilvary, Gary (2013). V-BOINC Manual. http://homepages.inf.ed.ac.uk/
s0678915/vboinc/VBOINC_Manual.pdf (2014-05-16).

Microsoft Corporation (2004). The Coordinated Spam Reduction Initiative: A Tech-
nology and Policy Proposal. http://download.microsoft.com/download/7/
6/b/76b1a9e6-e240-4678-bcc7-fa2d4c1142ea/csri.pdf (2014-04-15).

Milewski, Bartosz (2013). Basics of Haskell. https://www.fpcomplete.com/
school/starting-with-haskell/basics-of-haskell/3-pure-functions-
laziness-io (2014-05-05).

Miller, Andrew and Joseph LaViola (2014). “Anonymous Byzantine Consensus
from Moderately-Hard Puzzles: A Model for Bitcoin”. https://socrates1024.
s3.amazonaws.com/consensus.pdf (2014-05-16).

Molga, Marcin and Czesław Smutnicki (2005). “Test functions for optimization
needs”. http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf
(2014-05-03).

Muller, Jean-Michel et al. (2010). Handbook of Floating-Point Arithmetic. Boston:
Birkhäuser. Chap. 7.1, pp. 205–209. isbn: 978-0-8176-4705-6. doi: 10.1007/
978-0-8176-4705-6.

Nakamoto, Satoshi (2008a). “Bitcoin: A Peer-to-Peer Electronic Cash System”.
https://bitcoin.org/bitcoin.pdf (2014-04-15).

— (2008b). Re: Bitcoin P2P e-cash paper. http://www.mail- archive.com/
cryptography@metzdowd.com/msg09997.html (2014-05-16).

Namecoin (2014). Namecoin. http://namecoin.info/ (2014-05-14).
NoSQL (2014). List of NoSQL databases. http://nosql-database.org/ (2014-03-26).
O’Brien, Timothy and Sonatype (2008). Maven: The Definitive Guide. Sebastopol,

CA, USA: O’Reilly Media, pp. 8–10. isbn: 9780596517335.
Pease, M., R. Shostak, and L. Lamport (1980). “Reaching Agreement in the Pres-

ence of Faults”. In: J. ACM 27.2, pp. 228–234. issn: 0004-5411. doi: 10.1145/
322186.322188. http://doi.acm.org/10.1145/322186.322188.

Project Voldemort (2014). Project Voldemort. http://www.project-voldemort.
com/voldemort/ (2014-03-26).

Ray, Edward and Eugene Schultz (2009). “Virtualization Security”. In: Proceedings
of the 5th Annual Workshop on Cyber Security and Information Intelligence Re-
search: Cyber Security and Information Intelligence Challenges and Strategies.
CSIIRW ’09. Oak Ridge, Tennessee: ACM, 42:2–42:3. isbn: 978-1-60558-518-5.
doi: 10.1145/1558607.1558655. http://doi.acm.org/10.1145/1558607.
1558655.

44

http://dx.doi.org/10.1007/3-540-44647-8_19
http://dx.doi.org/10.1007/3-540-44647-8_19
http://dx.doi.org/10.1007/3-540-44647-8_19
https://www.bouncycastle.org/java.html
https://www.bouncycastle.org/java.html
http://homepages.inf.ed.ac.uk/s0678915/vboinc/VBOINC_Manual.pdf
http://homepages.inf.ed.ac.uk/s0678915/vboinc/VBOINC_Manual.pdf
http://download.microsoft.com/download/7/6/b/76b1a9e6-e240-4678-bcc7-fa2d4c1142ea/csri.pdf
http://download.microsoft.com/download/7/6/b/76b1a9e6-e240-4678-bcc7-fa2d4c1142ea/csri.pdf
https://www.fpcomplete.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io
https://www.fpcomplete.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io
https://www.fpcomplete.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io
https://socrates1024.s3.amazonaws.com/consensus.pdf
https://socrates1024.s3.amazonaws.com/consensus.pdf
http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf
http://dx.doi.org/10.1007/978-0-8176-4705-6
http://dx.doi.org/10.1007/978-0-8176-4705-6
https://bitcoin.org/bitcoin.pdf
http://www.mail-archive.com/cryptography@metzdowd.com/msg09997.html
http://www.mail-archive.com/cryptography@metzdowd.com/msg09997.html
http://namecoin.info/
http://nosql-database.org/
http://dx.doi.org/10.1145/322186.322188
http://dx.doi.org/10.1145/322186.322188
http://doi.acm.org/10.1145/322186.322188
http://www.project-voldemort.com/voldemort/
http://www.project-voldemort.com/voldemort/
http://dx.doi.org/10.1145/1558607.1558655
http://doi.acm.org/10.1145/1558607.1558655
http://doi.acm.org/10.1145/1558607.1558655

Rogaway, Phillip and Thomas Shrimpton (2004). “Cryptographic Hash-Function
Basics: Definitions, Implications, and Separations for Preimage Resistance,
Second-Preimage Resistance, and Collision Resistance”. In: Fast Software En-
cryption. Ed. by Bimal Roy and Willi Meier. Vol. 3017. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, pp. 371–388. isbn: 978-3-540-22171-
5. doi: 10.1007/978-3-540-25937-4_24. http://dx.doi.org/10.1007/978-
3-540-25937-4_24.

Schneider, Johannes J. and Scott Kirkpatrick (2006). Stochastic Optimization. Ger-
many: Springer-Verlag Berlin Heidelberg. isbn: 978-3-540-34559-6.

Schwaber, Ken and Jeff Sutherland (2013). The Scrum Guide. https://www.
scrum.org/Portals/0/Documents/Scrum%20Guides/2013/Scrum-Guide.pdf
(2014-04-10).

Source code (2014). GDCN. GitHub. https://github.com/GDCN.
Sun, Yongyong and Guangqiu Huang (2014). “Code Obfuscation Technology Based

on Renaming Identifier”. English. In: Proceedings of the 9th International Sym-
posium on Linear Drives for Industry Applications, Volume 1. Ed. by Xiaozhu
Liu and Yunyue Ye. Vol. 270. Lecture Notes in Electrical Engineering. Springer
Berlin Heidelberg, pp. 625–631. isbn: 978-3-642-40617-1. doi: 10.1007/978-
3-642-40618-8_81. http://dx.doi.org/10.1007/978-3-642-40618-8_81.

Surjanovic, Sonja and Derek Bingham (2013). Langermann function. http://www.
sfu.ca/~ssurjano/Code/langerm.html (2014-05-03).

Švenda, Petr (2004). Basic comparison of Modes for Authenticated-Encryption
(IAPM, XCBC, OCB, CCM, EAX, CWC, GCM, PCFB, CS). report. Masaryk
University in Brno, Faculty of Informatics. http : / / www . fi . muni . cz /
~xsvenda/docs/AE_comparison_ipics04.pdf (2014-05-09).

Tanner, Timo (2005). Distributed Hash Tables in P2P Systems - A literary survey.
Seminar on Internetworking.

Terei, David et al. (2013). “Safe Haskell”. In: Proceedings of the 2012 Haskell Sym-
posium. Ed. by Andy Gill. New York, NY, USA: ACM, pp. 137–148. isbn:
978-1-4503-1574-6. doi: 10.1145/2364506.2364524.

TestNG (2013). TestNG. http://testng.org/doc/index.html (2014-04-10).
TomP2P (2014a). Domain and Entry Protection Mechanisms. http://tomp2p.

net/doc/advanced/ (2014-03-28).
— (2014b). TomP2P. http://tomp2p.net (2014-03-21).
Wetmore, Brad (2011). Provide API changes to support future GCM AEAD ciphers.

Oracle. http://mail.openjdk.java.net/pipermail/security-dev/2011-
April/003097.html (2014-05-12).

Young, Maxwell et al. (2013). “Towards Practical Communication in Byzantine-
Resistant DHTs”. In: IEEE/ACM Transactions on Networking 21.1, pp. 190–
203. issn: 1063-6692. doi: 10.1109/TNET.2012.2195729.

45

http://dx.doi.org/10.1007/978-3-540-25937-4_24
http://dx.doi.org/10.1007/978-3-540-25937-4_24
http://dx.doi.org/10.1007/978-3-540-25937-4_24
https://www.scrum.org/Portals/0/Documents/Scrum%20Guides/2013/Scrum-Guide.pdf
https://www.scrum.org/Portals/0/Documents/Scrum%20Guides/2013/Scrum-Guide.pdf
https://github.com/GDCN
http://dx.doi.org/10.1007/978-3-642-40618-8_81
http://dx.doi.org/10.1007/978-3-642-40618-8_81
http://dx.doi.org/10.1007/978-3-642-40618-8_81
http://www.sfu.ca/~ssurjano/Code/langerm.html
http://www.sfu.ca/~ssurjano/Code/langerm.html
http://www.fi.muni.cz/~xsvenda/docs/AE_comparison_ipics04.pdf
http://www.fi.muni.cz/~xsvenda/docs/AE_comparison_ipics04.pdf
http://dx.doi.org/10.1145/2364506.2364524
http://testng.org/doc/index.html
http://tomp2p.net/doc/advanced/
http://tomp2p.net/doc/advanced/
http://tomp2p.net
http://mail.openjdk.java.net/pipermail/security-dev/2011-April/003097.html
http://mail.openjdk.java.net/pipermail/security-dev/2011-April/003097.html
http://dx.doi.org/10.1109/TNET.2012.2195729

A Work process
To be able to ensure progression and quality of this project, the group needed
a strategy. The work process and individual responsibilities are described in
this section.

A.1 Responsibilities

In interest of quality and productivity, five roles or sets of responsibilities
were elicited and assigned to different members of the development team,
namely Product owner, Project leader, Security manager, Editor and Cal-
endar master. Some responsibilities were shared by all members such as
documenting.

Product owner The Product owner was given the responsibility of defend-
ing the interests of the end user. The key effort was to prioritise and update
the backlog of features that were going to be implemented. The Product
owner was also specifically consulted whenever an implementation decision
would affect the end user. Jack Pettersson was assigned this role.

Project leader The Project leader was responsible for managing the de-
velopment process. This consisted primarily of preparing and leading each
group meeting as well as organising the development iterations. It was im-
portant for the Project leader that the right decisions were taken at the
right time with the necessary information. Another important responsibility
of the Project leader was to ensure that each member participated in the
discussions. Leif Schelin was assigned this role.

Security manager Since security is difficult or impossible to append to
an existing project (Belapurkar 2009), Joakim Öhman was assigned the re-
sponsibility of always advocating the product security, especially the security
of the worker nodes.

Editor Jack Pettersson was given this responsibility of advocating the qual-
ity of the final report so that it would not be forgotten in the midst of de-
velopment. He also facilitated technical support with LaTeX throughout the
writing process.

Calendar master The Calendar master was responsible for updating the
group calendar and ensuring that each group meeting would have a room

46

booked. It was also his responsibility to remind each team member of up-
coming deadlines and events. This role was given to Niklas Wärvik.

A.2 Development process

The development process was based on Scrum (Schwaber and Sutherland
2013) but with a few minor modifications. A feature backlog was created and
updated but no story points were assigned. The time interval for each Sprint
was set to two weeks. Meetings were held each Sprint for Sprint planning
and Sprint retrospective but not for Sprint review. During development, each
member took initiative to work rather than being assigned work.

A.3 Version control system

Distributed development with the version control system Git was used
throughout the project (Git 2014). The master branch contained the different
releases of the prototype to make certain that there always were a working
version without any dysfunctional parts. To minimise merging problems,
a development branch was used for the latest functioning version and this
branch was merged with the master branch after each sprint. When a new
feature was to be implemented, a new branch was created from development
branch and was merged back into development when it was finished and bug-
free. Consequently it was certain that every feature in the master branch
was finished and could be used in the final revision and when a new branch
was created from the development branch the code was functioning.

47

B Technologies
In the development of the prototype, several technologies were used that are
not directly related to its functionality. This section briefly introduces and
motivates the use of them.

B.1 Java

The prototype is implemented in the programming language Java. Java
was chosen for multiple reasons. Firstly, all group members had previous
experience with Java and knew the syntax. Secondly, Java is cross-platform,
making the prototype executable on all computers which has Java installed
as it does not contain any operating system dependent binaries. Finally, Java
is a widely used programming language and owing to this there are numerous
libraries. A couple of those libraries are used in the project such as TomP2P
and the ones mentioned later in this section.

B.2 TestNG

TestNG is a testing framework used to test the Java code in the project
(TestNG 2013). It can be used for unit testing, in addition to integration
and system testing. Being inspired by JUnit (JUnit 2014), it has a similar
syntax and moreover it can perform the same tasks as JUnit. TestNG is
customisable in multiple ways, for instance it is possible to specify which
group a test should belong to, enabling to run faster tests more often and
slower tests less often. Customisation is done in an XML-file, but it is not a
requirement for the tests to be executed.

B.3 Maven

Maven is a management tool for software projects that facilitates automated
building and testing (Apache 2014d). With Maven, a project can be built
effortlessly from command line no matter what IDE was used to develop
it. Unit tests run automatically when building. Compared to Ant (Apache
2014a), it is much simpler to use Maven if you follow the standard conven-
tions (O’Brien and Sonatype 2008). These conventions are easy to follow,
especially when using an IDE with Maven support.

Dependencies, such as libraries, are downloaded by Maven, ensuring that
all developers use the same versions of the libraries. When developing, an-
other advantage of using Maven is that dependencies between modules are

48

always explicit. Thus it is very easy to make sure that the modules follow a
good structure, for example that no module depends on the user interface.

B.4 Gson

Information concerning each task, such as which files should be used as input
to it, must be specified by the job owner. For each task, a json file is created
by the job owner and put in the proper directory. This information is read
dynamically by the program, using the Gson parsing library (Google 2014).

49

Glossary
Byzantine A process in a system that exhibits unexpected behaviour, such

as processing requests incorrectly or producing inconsistent output.
(One example is a deceitful node)

canonical Result that is considered correct by validation.

deceitful Node who attempts to disrupt the network, for example by giving
false results or spamming.

DHT (distributed hash-table) A decentralized distributed storage with a Key-
Value interface.

DoS (denial of service) An attack in which the attacker aims to make the tar-
get system unusable, often by flooding it with traffic in order to deplete
its resources.

job Problem that has been expressed in code for nodes.

job owner The node who has put a certain job on the network.

MAC (message authentication code) A short piece of information used to ascer-
tain the integrity and authenticity of a message.

man-in-the-middle Type of attack in which an eavesdropper communi-
cates with the victims separately and relays messages between them,
while pretending to be the other party to both.

MC (Monte Carlo) A stochastic algorithm that produces a result in known
time without guarantee of optimum.

node A participator in the network. A single computer can run several
nodes.

post Job owner posts a job to be computed.

problem An actual problem, not yet expressed to be understandable by the
system.

proof-of-work Either an algorithm which aims to produce a proof that a
certain amount of computation power has been used, or the result of
such an algorithm (i.e. the proof).

50

quality Property of a result that describes how good it is.

quality function Haskell function created by job owner to compute the
quality of a result.

replica Replication instance of a task.

replication Sending the same task to multiple nodes.

reputation A value representing how truthful a node has been in the past
towards a certain job owner.

result The output from a finished task.

sandbox A sealed environment that can only interact with the rest of the
computer through a secure interface.

Sybil A Byzantine node that cooperate with other Sybil nodes for a deceitful
or otherwise malicious intent.

task A small self-contained part of a job that is computed by a single node.

truthful A node that behave expectedly, that is, not Byzantine.

validation The process of determining if a result is correct or not.

worker A node that works on a task.

51

	Introduction
	Purpose
	Requirements
	Delimitations

	Architecture
	Example computations
	Prime calculations
	Stochastic optimisation

	Literature studies on distributed algorithms
	Failing nodes
	Asynchronous systems
	Consensus about results
	Block chain
	BFT-CUP

	Theoretical results
	Validity of results
	Replication and the active job owner
	Quality function

	Probabilistic model
	Reputation model
	Replica timeout
	Smart assignment of tasks

	The prototype
	Prototype architecture
	Secure execution
	Functionality
	Distributed storage and network: TomP2P
	Proof-of-work: Hashcash-cookies
	Cryptography: Apache Shiro and Bouncy Castle
	Message passing
	File management

	Connecting to the peer-to-peer network

	System properties
	Security against malicious code
	Reliability of results
	Comparison with BOINC

	Discussion of theoretical results
	Social impact of the system
	Future work
	Conclusion
	References
	Work process
	Responsibilities
	Development process
	Version control system

	Technologies
	Java
	TestNG
	Maven
	Gson

	Glossary

