
 
 

University of Gothenburg 
Chalmers University of Technology 
Department of Computer Science and Engineering 
Göteborg, Sweden,  August 2014 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Grammar-based suggestion engine with keyword 
search 
Master of Science Thesis in Computer Science 
 
 
 

MARTIN AGFJORD 



 
The Author grants to Chalmers University of Technology and University of Gothenburg  
the non-exclusive right to publish the Work electronically and in a non-commercial 
purpose make it accessible on the Internet.  
The Author warrants that he/she is the author to the Work, and warrants that the Work 
does not contain text, pictures or other material that violates copyright law.  
 
The Author shall, when transferring the rights of the Work to a third party (for example a 
publisher or a company), acknowledge the third party about this agreement. If the Author 
has signed a copyright agreement with a third party regarding the Work, the Author 
warrants hereby that he/she has obtained any necessary permission from this third party to 
let Chalmers University of Technology and University of Gothenburg  store the Work 
electronically and make it accessible on the Internet. 
 
 
 
 
Grammar-based suggestion engine with keyword search 
 
 
© MARTIN AGFJORD, August 2014. 
 
 
Examiner: KRASIMIR ANGELOV 
 
 
 
 
University of Gothenburg 
Chalmers University of Technology 
Department of Computer Science and Engineering 
SE-412 96 Göteborg 
Sweden 
Telephone + 46 (0)31-772 1000 
 
 
 
 
 
 
Department of Computer Science and Engineering 
Göteborg, Sweden August 2014 



A B S T R A C T

In this thesis we investigate how we can develop an application which can
translate sentences formulated in natural languages (English and Swedish) into
a query language. We also build a suggestion engine which offers suggestions
to a user based on a partial or invalid sentence. The purpose of the suggestion
engine is to help the user to find valid sentences that the application can trans-
late.

We implement the translation by using a computational grammar. The gram-
mar is developed by using Grammatical Framework (GF), which is a develop-
ment platform for building natural language grammars. We take two ap-
proaches on building the natural language parts of the grammar. The first
is concatenation of strings and the second is by using the GF Resource Grammar
Library. The query part is implemented with concatenation of strings.

The results show that it is more suitable to develop the natural language parts
of the grammar by concatenating strings but only if the developer has good
knowledge of the natural language. By concatenating strings, we can map
all sorts of ungrammatical sentences to a grammatical sentence which is not
possible with the GF Resource grammar library. This mapping makes the sug-
gestion engine more powerful.

Keywords: Grammar, Grammatical Framework, GF, Natural language, Query
language, Translation, Suggestion engine, Apache, Solr, Lucene, Tomcat, Maven,
Java EE, Functional programming

A demo of the application and the source code can be found at thesis.agfjord.se

i

http://thesis.agfjord.se/


We have seen that computer programming is an art, because it applies accumulated
knowledge to the world, because it requires skill and ingenuity, and especially because
it produces objects of beauty. A programmer who subconsciously views himself as an
artist will enjoy what he does and will do it better.

— Donald E. Knuth [1]

A C K N O W L E D G M E N T S

I want to thank my supervisor Krasimir Angelov for his guidance throughout
the whole project. He has always showed great interest in my work from the
very beginning until the end.

I also want to thank the whole Findwise organization, where I did most of
the programming work. In particular, a special thanks to Svetoslav Marinov
who came up with the project idea. Also a special thanks to Per Fredelius who
was my advisor at Findwise. Per inspired me with many ideas to the project.

As this thesis ends the academic part of my life, I also want to thank other
people who have helped me during my time as a student.

I want to thank my friends in Monaden1 and in Hilbert2. Their company
and help have been invaluable.

Finally, I want to thank my family and my girlfriend Nellie for always sup-
porting and believing in me. I wouldn’t be where I am now if it weren’t for
them.

Thank you!

—
Martin Agfjord
Gothenburg, August 26, 2014

1 The lunchroom for computer science students at University of Gothenburg
2 The lunchroom for physics students at University of Gothenburg

ii



C O N T E N T S

1 introduction 1

1.1 A demand for a new user interface 1

1.2 A natural language interface 1

1.3 Problem description 1

1.4 A proposed solution 2

1.5 Related work 3

2 a simple grammar 5

2.1 Abstract syntax 5

2.2 Concrete syntax 6

2.3 Translation 8

2.4 GF resource grammar library 9

2.5 Generalizing the concrete syntax 11

3 application development 14

3.1 Brief description of the application 14

3.2 Grammar development with the RGL 18

3.3 Suggestion engine 26

3.4 Alternative implementation without the RGL 33

3.5 Generation of mock data 35

4 results 37

4.1 Translations 37

4.2 Suggestions 45

5 conclusions 50

5.1 A brief discussion about the results 50

5.2 Comparison of the RGL and simple concatenation 50

5.3 Suggestion Engine 51

5.4 Known issues 52

5.5 Future work 52

a gf shell and runtime systems 54

a.1 GF shell 54

a.2 GF runtime systems 54

b installing the application 58

b.1 Installing and configurating Apache Tomcat 58

b.2 Uploading the Solr-service 59

b.3 Generating mock-data 59

b.4 Uploading the website 60

bibliography 61

iii



A C R O N Y M S

GF Grammatical Framework

RGL Resource Grammar Library

Java EE Java Enterprise Edition

PGF Portable Grammar Format

iv



This page is intentionally left (almost) blank.



1
I N T R O D U C T I O N

1.1 a demand for a new user interface

It is complex for an average person to retrieve data by using query languages.
Many applications make use of specifically designed graphical elements in or-
der to facilitate for the end user to create queries. However, as data on the web
is constantly growing it is increasingly harder to design such elements to cover
the whole data set [2][p. 5].

Another approach of designing a user interface is by allowing the user to for-
mulate instructions in a natural language. There exists evidence that this type A natural language

is a language that
humans use to
communicate with
each other.

of user interface is more satisfactory by end users than the traditional approach
[3].

The beauty of writing instructions in a natural language is that there is no
limitation of how a user can express herself, assuming that the machine which
interprets the natural language instructions can extract the semantics from the
instructions she writes.

1.2 a natural language interface

We will in this thesis investigate how we can create a user interface which
allows us to execute queries in a query language by expressing instructions in
a natural language. In other words, we investigate how we can translate from
a natural language into a query language. A query language is

a computer language
which is used to
query a database or
index.

1.3 problem description

How can one retrieve information from a computer by writing instructions in
a natural language? The inspiration for this thesis came from Facebook graph
search1, which is a service that allows users to search for entities by asking
Facebook’s social graph for information in a natural language [4].

In this project, we have chosen to examine how a similar service can be
realized. We have limited the project to handle instructions that can occur
naturally in the intranet of a software development company. We assume
that there exists a database with information about employees, customers and
projects. A typical instruction in this environment could be

1 https://www.facebook.com/about/graphsearch

1

https://www.facebook.com/about/graphsearch


1.4 a proposed solution 2

people who know Java

The answer would be a list of all employees in the database who have some
degree of expertise of the programming language Java. However, when using
search engines, expert users do not use instructions as the one above. They
simply rely purely on keywords [5]. The following instruction is more suited
for expert users

people java

How can we create a user interface that is sufficient for both regular and
expert users? How can we translate these instructions into machine readable
queries?

1.4 a proposed solution

Query languages require precise syntax, we therefore need precise translation
from a natural language into a query language. Since we have a limited scope
of instructions, we know all instructions that the program shall support and
we know how their machine readable representation shall look like. We only
need a tool which we can use to make the mapping between natural language
and query language.

We will in this thesis use a computational grammar to extract the semantics
from a natural language sentence. We are then going to use the semantics to
produce a query string in a query language.

There exists different grammar formalisms where attribute grammars [6] and
context-free grammars [7][pp. 77-106] (along with the Backus Naur Form
(BNF) [8] notation) are the two most well-known. These two are mostly used
for formally describing programming languages.

In this thesis, we will use the Grammatical Framework (GF) which is another
grammar formalism [9] based on Martin-Löf’s type theory [10]. GF is specifi-
cally designed for building grammars for natural languages.

A grammar defined by GF is a set of structural rules which decide how words
can be created and be combined into clauses and phrases. By expressing how
words can be combined into an instruction in one language one can also use
the same logic to express how the same instruction can be produced in an-
other language. A multilingual grammar is a special type of grammar which
can translate between two or more languages. We will describe GF more in
detail in Section 1.5.



1.5 related work 3

1.5 related work

This section presents two important projects that this project has been based
on.

1.5.1 Facebook graph search

Facebook graph search [4] is a search engine which consists of a user interface
where the user can formulate an instruction in a natural language as a string.
The semantics of a natural language instruction is extracted while parsing the
string.

The natural language that can be understood by Facebook Graph Search is
represented by a weighted context free grammar (WCFG) [11]. The grammar
consists of a set of production rules which are used to extract one or more
semantic parse trees from a natural language sentence. The parse tree(s) rep-
resent the meaning of the sentence in a semantic way. This tree can be sent to
Unicorn, which is a software for retrieving information from Facebook’s social
graph [4].

Entity recognition

Facebook’s grammar also supports entity recognition, which means that the
grammar tries to find the suitable type of a word if it thinks it represents an
object in the social graph. For example, if the user types people who live in
San Fransisco then the grammar can with high confidence express that San
Fransisco is an object of the type Location. This is achieved by using n-gram
based language models in order to obtain the type with the highest probability.

Lexical analysis

Synonyms are supported by the grammar. Synonyms could be words or
phrases. For example the phrase people who like surfing has the synonyms people
who surf and surfers. They are defined to have equivalent semantics.

Since computers normally only accept perfectly correct input when dealing
with machine instructions, Facebook have added support of grammatically in-
correct sentences to the grammar. It can therefore map the sentence people who
works at facebook into people who work at Facebook.

1.5.2 Grammatical Framework

Natural languages contain a lot ambiguities and can often differ a lot on a lin-
guistic level. Those properties makes it very hard and exhausting to develop
accurate natural language interpreters [3]. In order to make use of previous



1.5 related work 4

research in the field, we will make us of Grammatical Framework (GF), which
is an open source functional programming language for creating grammars
that can interpret natural languages [12, p. 1]. GF features a strong type sys-
tem, it adopts abstract and concrete syntax rules and it offers reusable libraries
to facilitate design of grammars [13]. For a reader with a background within
compilers, one can see that GF is very much based on the theory of program-
ming languages as they also make use of abstract and concrete syntaxes [14,
pp. 69-70].

Abstract syntax is a tree representation which captures the meaning (i.e. the
semantics) of a sentence, and leaves out anything irrelevant. The concrete
syntax describes how an abstract syntax tree is represented as a string in a
language.

When designing abstract and concrete syntaxes one make us of functions.
The functions are defined in the abstract syntax and designs how the a tree
can be built by combining values from the functions. The concrete syntax pur-
pose is to add rules to the functions which are used to extract the semantics of
strings to build abstract syntax trees. Conversely, if one has an abstract syntax
tree, one can use the functions to create a sentence.

With both abstract and concrete syntaxes, GF is able to create a parser and
a linearizer for all given concrete languages. The parser translates a string into
abstract syntax trees and the linearizer translates abstract syntax trees into a
string representations for a specified concrete syntax. In addition, GF also of-
fers a generator for abstract syntax trees that can generate all possible abstract
syntax trees.

Because GF separates between abstract and concrete syntax, one can easily
add a new concrete syntax (a new language) to an existing abstract syntax.
This advantage makes it easy to parse a string in one language and obtain an
abstract syntax tree which can be linearized into many concrete syntaxes.

GF’s translation approach is different from previous translation approaches
and allows translation between languages that are not closely related from a
structural point of view [15][p. 9].



2
A S I M P L E G R A M M A R

This chapter presents an example of how GF can be used to create a grammar
that can translate the sentence people who know Java into Apache Solr query
language and vice verca. Apache Solr is a search platform based on Apache
Lucene [16].

2.1 abstract syntax

To model the meaning of a sentence, GF adopts the use of functions and cate-
gories. A category (cat) in GF is the same as a data type. We start by listing
the categories we need, as seen in Figure 1 on lines 3-7. We then define the
values that our data types can take. This is achieved by using functions. The
functions in an abstract syntax are usually not implemented, we can therefore
only see the function declarations. The reason is because we only want to
model the semantics at the abstract level. How the semantics are implemented
in a specific language is irrelevant, because we want to keep the abstract syn-
tax as language independent as possible in order to make it easier to develop
concrete syntaxes.

We define a function Java : Object which means that Java is a constant
and returns a value of type Object. Know takes one argument of the type A function without

arguments is called
a constant in lazy
functional
programming
languages.

Object and returns a value of type Relation.
An instruction can be created by obtaining a value of the type Instruction.

Only MkInstruction returns the desired type and it takes two arguments, one
of type Subject the other of type Relation.

5



2.2 concrete syntax 6

1 abstract Instrucs = {

2 flags startcat = Instruction;

3 cat

4 Instruction ; -- An Instruction

5 Subject ; -- The subject of an instruction

6 Relation ; -- A verb phrase

7 Object ; -- an object

8

9 fun

10 MkInstruction : Subject -> Relation -> Instruction ;

11 People : Subject ;

12 Know : Object -> Relation ;

13 Java : Object ;

14 }

Figure 1: Abstract syntax

2.2 concrete syntax

We are now going to implement the linearizations of the function declarations
we just defined in the abstract syntax. This implementation makes it possible
to linearize abstract syntax trees into concrete syntax. We will start by defining
the concrete syntax for English.

2.2.1 English concrete syntax

Figure 2 shows the implementation of the concrete syntax for English. Cat-
egories are linearized by the keyword lincat, which literally means the lin-
earization of categories. A category is linearized by assigning a data type to it.
Here we assign all categories to be of the type string, which means that all our
linearization functions also must return a string. The functions are linearized
by using the keyword lin. We linearize Java by returning the string "Java",
as it is a constant function. Analogously, "people" is returned by People.
The function Know takes one parameter. This parameter is appended on the
string "know". Finally, MkInstruction takes two arguments, where subject is
prepended and relation is appended on "who". One can easily see how these
functions can be used to construct the sentence people who know Java.



2.2 concrete syntax 7

1 concrete InstrucsEng of Instrucs = {

2 lincat

3 Instruction = Str ;

4 Subject = Str ;

5 Relation = Str ;

6 Object = Str ;

7 lin

8 MkInstruction subject relation = subject ++ "who" ++ relation ;

9 People = "people" ;

10 Know object = "know" ++ object ;

11 Java = "Java" ;

12 }

Figure 2: English concrete syntax

2.2.2 Solr concrete syntax

The final step in this example is to linearize the same abstract syntax into
Solr concrete syntax. As Figure 3 shows, the categories are strings as in
English. The function linearizations are however different. People returns
"object_type : Person", we assume that the Solr-schema has a field with
the name object_type which represents the type of a document. Similarly, we
make another assumption about Know. MkInstruction is also implemented dif-
ferently, here we can see that the result is going to be a query string by looking A query string is a

part of a URL, e.g.
foo.com?q=name

at the first part "q=" which is prepended on the subject. We then append "AND"

together with relation in order to create a valid Solr query.

1 concrete InstrucsSolr of Instrucs = {

2 lincat

3 Instruction = Str ;

4 Subject = Str ;

5 Relation = Str ;

6 Object = Str ;

7

8 lin

9 MkInstruction subject relation = "q=" ++ subject ++ "AND" ++ relation ;

10 People = "object_type : Person" ;

11 Know object = "expertise : " ++ object ;

12 Java = "Java" ;

13 }

Figure 3: Solr concrete syntax



2.3 translation 8

2.3 translation

In order to make any translations, we need to use the GF runtime system. The
runtime system we will use in this section is the shell application, which allows
us to load our GF source code and use parsers, linearizers and generators. In
addition to the shell application, there also exists programming libraries for
GF in C, Haskell, Java and Python. These libraries can be used to build a
translation application which does not require the user to have GF installed.

$ gf InstrucsEng.gf InstrucsSolr.gf

* * *

* *

* *

*

*

* * * * * * *

* * *

* * * * * *

* * *

* * *

This is GF version 3.5.12-darcs.

No detailed version info available

Built on linux/x86_64 with ghc-7.6, flags: interrupt server

License: see help -license.

Bug reports: http://code.google.com/p/grammatical-framework/issues/list

- compiling Instrucs.gf... write file Instrucs.gfo

- compiling InstrucsEng.gf... write file InstrucsEng.gfo

- compiling InstrucsSolr.gf... write file InstrucsSolr.gfo

linking ... OK

Languages: InstrucsEng InstrucsSolr

Instrucs>

Figure 4: GF shell prompt

A string can be parsed into an abstract syntax tree.

Instrucs> parse -lang=InstrucsEng "people who know Java"

MkInstruction People (Know Java)

Figure 5: Parse a string

Abstract syntax trees can be linearized into concrete syntaxes, here we lin-
earize one abstract syntax tree into all known concrete syntaxes.



2.4 gf resource grammar library 9

Instrucs> linearize MkInstruction People (Know Java)

people who know Java

q= object_type : Person AND expertise : Java

Figure 6: Linearize an abstract syntax tree

Finally, a string can be translated from one concrete syntax into another.
Here we translate from InstrucsEng into InstrucsSolr. We use a pipeline to
pass the result of the parsing as an argument to the linearizing function. Note
how we use p instead of parse and l instead of linearize. They are just
shorthands of their longer representations.

Instrucs> p -lang=InstrucsEng "people who know Java" | l -lang=InstrucsSolr

q= object_type : Person AND expertise : Java

Figure 7: Translate between concrete syntaxes

2.4 gf resource grammar library

The previous example is fairly easy to understand, but it also make use of En-
glish, a well-known natural language. It is much harder to create a concrete
syntax that implements a lesser known natural language by using concatena-
tion. Even though a user might know correct translation of the individual
words to use, she might not know how to use them in a grammatically correct
sentence. It is often the case that if one directly translates a sentence, i.e. just
translate each word by word, one ends up in a grammatically incorrect sen-
tence.

The GF Resource Grammar Library (RGL) [13] is a set of grammars which
implements the morphology and basic syntax of currently 29 languages [17].
In other words, it contains functions and categories which describes the struc-
ture of natural languages. One can therefore create values of specific types
from the words of a sentence and then combine the words by using functions
in order to create a grammatically correct phrase or sentence. We say that a
developer does only need to have knowledge of her domain, i.e. the individ-
ual words to use, and does not have any specific linguistic knowledge of the
natural language.

Example usage of the RGL in a grammar

In this section, we will present how the previous concrete syntax for English
can be implemented by using the RGL. We will also show how this grammar



2.4 gf resource grammar library 10

can be further generalized into an incomplete concrete syntax which can be
used by both English and Swedish.

Figure 8 shows the concrete syntax for English by using the RGL. The cate-
gories are now set to be types that exists in the RGL and the functions are now
using RGL-functions in order to create values of the correct types.

The most simple function in this case is People, which shall return a noun.
A noun can be created by using the operation mkN. We create a noun which has An operation in GF

is a function which
can be called by
linearization
functions.

the singular form "person" and plural form "people", we will never use the
singular form in this grammar, but it will become handy later in the thesis to
use both singular and plural forms.

Java returns a noun phrase which is created by the function mkNP, however,
we create a noun phrase by converting a proper name which is initialized as
Java. Know returns a relative sentence. A relative sentence can for example be
who know Java. A relative sentence is constructed by first creating a verb phrase
from a verb and an object. This verb phrase is then used together with the
constant which_RP to create a relative clause. Finally, we convert the relative
clause into a relative sentence. This is achieved by using a self made operation
named mkRS’, the purpose of this operation is to make the code easier to read
and also in the future reuse code.

1 concrete InstrucsEng of Instrucs = open SyntaxEng, ParadigmsEng in {

2 lincat

3 Instruction = Utt ;

4 Subject = N ;

5 Relation = RS ;

6 Object = NP ;

7

8 lin

9 MkInstruction subject relation = mkUtt

10 (mkNP aPl_Det (mkCN subject relation)) ;

11 People = mkN "person" "people" ;

12 Know object = mkRS’ (mkVP (mkV2 (mkV "know") object)) ;

13 Java = mkNP (mkPN "Java") ;

14

15 oper

16 mkRS’ : VP -> RS = \vp -> mkRS (mkRCl which_RP vp) ;

17 }

Figure 8: English concrete syntax using the RGL

The only thing that is left is to combine a noun with a relative sentence, e.g.
combine people with who know Java. This is done by using the operation mkCN

to create a common noun. As common nouns do not have any determiners,
we have to construct a noun phrase together with the determiner aPl_Det in
order to select only the plural forms. Lastly we convert the noun phrase into
an utterance in order to only allow the nominative form of the sentence (we



2.5 generalizing the concrete syntax 11

would otherwise end up with with multiple equal abstract syntax trees when
parsing a sentence).

2.5 generalizing the concrete syntax

This section describes how the concrete syntax can be generalized into an in-
complete concerete syntax and then be instantiated by two concrete syntaxes, one
for English and one for Swedish.

An incomplete concrete syntax

As we already have designed the concrete syntax for English, we can fairly
easy convert it to a generalised version. The incomplete concrete syntax can be
seen in Figure 9. We no longer have any strings defined, as we want to keep
the syntax generalised. Constants are used in place of strings, and they are
imported from the lexicon interface LexInstrucs.

1 incomplete concrete InstrucsI of Instrucs = open Syntax, LexInstrucs in {

2 lincat

3 Instruction = Utt ;

4 Subject = N ;

5 Relation = RS ;

6 Object = NP ;

7

8 lin

9 MkInstruction subject relation = mkUtt

10 (mkNP aPl_Det (mkCN subject relation)) ;

11 People = person_N ;

12 Know object = mkRS’ (mkVP know_V2 object) ;

13 Java = java_NP ;

14

15 oper

16 mkRS’ : VP -> RS = \vp -> mkRS (mkRCl which_RP vp) ;

17 }

Figure 9: Incomplete concrete syntax

LexInstrucs is an interface, which means that it only provides declarations.
Figure 10 shows that we have one operation declaration for each word we want
to use in the concrete syntax. Because we do not implement the operations,
it is possible to create multiple instances of the lexicon where each one can
implement the lexicon differently.



2.5 generalizing the concrete syntax 12

1 interface LexInstrucs = open Syntax in {

2 oper

3 person_N : N ;

4 know_V2 : V2 ;

5 java_NP : NP ;

6 }

Figure 10: Lexicon interface

Figure 11 shows how the operations defined in LexInstrucs are implemented
in LexInstrucsEng. We represent the words in the same way as in the old ver-
sion of the concrete syntax for English.

1 instance LexInstrucsEng of LexInstrucs = open SyntaxEng, ParadigmsEng in {

2 oper

3 person_N = mkN "person" "people" ;

4 know_V2 = mkV2 (mkV "know") ;

5 java_NP = mkNP (mkPN "Java");

6 }

Figure 11: Lexicon instantiation of English

Figure 12 shows another instance of LexInstrucs, the lexicon for Swedish. The definition of
know_V2 is taken
from
StructuralSwe.gf in
the RGL

1 instance LexInstrucsSwe of LexInstrucs = open SyntaxSwe, ParadigmsSwe in {

2 oper

3 person_N = mkN "person" "personer" ;

4 know_V2 = mkV2 (mkV "kunna" "kan" "kunn" "kunde" "kunnat" "kunnen") ;

5 java_NP = mkNP (mkPN "Java");

6 }

Figure 12: Lexicon instantiation of Swedish

We are now ready to instantiate the incomplete concrete syntax. The code
below describes how InstrucsI is instantiated as InstrucsEng. Note how we
override Syntax with SyntaxEng and LexInstrucs with LexInstrucsEng.

1 concrete InstrucsEng of Instrucs = InstrucsI with

2 (Syntax = SyntaxEng),

3 (LexInstrucs = LexInstrucsEng)

4 ** open ParadigmsEng in {}

Figure 13: English instantiation of the incomplete concrete syntax



2.5 generalizing the concrete syntax 13

Analogously, we create an instance for Swedish concrete syntax by instanti-
ating InstrucsI and overriding with different files.

1 concrete InstrucsSwe of Instrucs = InstrucsI with

2 (Syntax = SyntaxSwe),

3 (LexInstrucs = LexInstrucsSwe)

4 ** open ParadigmsSwe in {}

Figure 14: Swedish instantiation of the incomplete concrete syntax

If we load the GF-shell with InstrucsEng.gf and InstrucsSwe.gf we can
make the following translation from English to Swedish.

1 Instrucs> p -lang=InstrucsEng "people who know Java" | l -lang=InstrucsSwe

2 personer som kan Java

Figure 15: Swedish instantiation of the incomplete concrete syntax

Whats really interesting is that we now can go from both English and Swedish
into abstract syntax, and by extension, also to Solr-syntax.



3
A P P L I C AT I O N D E V E L O P M E N T

3.1 brief description of the application

We begin by describing what the different parts of the application and the why
we need them.

3.1.1 Generation of mock data

As described in Section 1.3, we want to develop an application which can trans-
late natural language questions that refers to entities in a database or index
owned by a software development company. This project has been made with
strong collaboration with Findwise, a company with focus on search driven
solutions. Findwise has an index with information about employees, projects
and customers. However, it is not possible to use their information because
it is confidential and cannot be published in a master thesis. A different ap-
proach to get hold of relevant data is to generate mock data that is inspired
by Findwise’s data model. Mock data in this project is simply generated data
from files that can be used to simulate a real world example application.

3.1.2 Grammar development

The grammar in Chapter 2 can only translate the instruction people who know
Java in English and Swedish into Solr query language. The grammar needs to
be extended to handle any programming language that exists in the mock data,
not only Java. The grammar also needs to support more instructions in order
to make a more realistic use case. We have chosen to support the following
instructions:

English Solr query language

people who know Java q= object_type : Person AND KNOWS : Java

people who work in London q= object_type : Person AND WORKS_IN : London

people who work with Unicef q= object_type : Person AND WORKS_WITH : Unicef

customers who use Solr q= object_type : Customer AND USES : Solr

projects who use Solr q= object_type : Project AND USES : Solr

Figure 16: All sentences supported by the application

Two more cases have been added to instructions regarding people. In addi-
tion, two new type of instructions has been added, translations about customers

14



3.1 brief description of the application 15

and projects. Note that Figure 16 only shows specific instances of instructions.
These instances are based on data in the mock-database, where we assume
that the words Java, London, Unicef and Solr exists in the database. It should be
possible to express every word available in the database in an instruction. For
example if Paris is a city in the database we can create the instruction people
who work in Paris.

3.1.3 Suggestions

If a user has no idea of which instructions the application can translate, how
can she use the application? This thesis uses a narrow application grammar,
which means that it only covers specified sentences. Therefore, if a sentence
has one character in the wrong place, GF will not be able to translate anything.
This problem can be solved by using a wide coverage grammar, an example
of an application that adopts this technique is the GF android app [18, p. 41].
This project however, does not use this technique due to lack of documentation
of how it is accomplished.

GF has the power to suggest valid words of an incomplete sentence by using
incremental parsing [19]. This means that even though a user do not know
what to type, the application can suggest valid words to use. If the user
chooses to add one of those words, the suggestion engine can show a new
list of words that will match the new partial sentence.

However, this method does not support the use of only keywords, since one
cannot start a sentence with for example the word Java. It is also inflexible as
it does not support the use of words outside the grammar. For example, in the
sentence all people who know Java, the parser would not be able to parse the
word all.

This thesis takes a different approach on a suggestion engine. Instead of
suggesting one word at a time, one can suggest a whole sentence based on
what the user has typed so far. This is achieved by generating all possible sen-
tences that the application can translate (up to a certain size) and index them
in Apache Solr. This makes it very easy to search on matching sentences, we
also gain powerful techniques such as approximate string matching [20][p. 22].

By using this approach, if a user types a sentence in the application, it will
search in the index on instructions related to the string and will retrieve the
most relevant instructions.

As the suggestion engine uses a search platform, it is possible to type any
word that exists in a sentence and get suggestions, even only keywords like
’people java’ will suggest instructions that can be formulated with these two
words.



3.1 brief description of the application 16

3.1.4 Runtime environment

The chosen programming language for this project is Java. The main reason
is because it is Findwise’s primary programming language. It is also very
well known among many companies in the world. Many professional Java-
developers adopt a specific development platform, Java Enterprise Edition
(Java EE) [21]. This platform provides many libraries that can be scaled to
work in an enterprise environment. This project also adopts Java EE.

3.1.5 Handling dependencies

A typical Java EE project makes use of several libraries, in computer science
terms we say that a project can have other libraries as dependencies. It is not
unusual that these libraries also have their own dependencies. Larger projects
can therefore have a lot of dependencies, so many that it becomes hard to
keep track of them. This project makes use of an open source tool called
Apache Maven [22] to handle dependencies. One simply lists all libraries the
project shall have access to, then Maven will automatically fetch them and their
dependencies. This also makes the application more flexible, as it do not have
to include the needed libraries in the application.

3.1.6 Input and output presentation

Besides handling translation and suggestions, the application also needs to
handle input and present its results in some way. This application takes input
and presents output by using a web graphical user interface (web gui).



3.1 brief description of the application 17

3.1.7 Information flow

This section aims to describe how the information flows in the application
when a user starts to type words in the input field and then obtains relevant
data.

Figure 17: Information flow in the application

A JavaScript-listener is active on the input field. When a user types letters
into the input field, the listener will send the input to a the Java-application
which will run the suggestion algorithm on the input. The suggestion algo-
rithm is making multiple requests to the Solr index in order to obtain sugges-
tions. The suggestions are sent back to the user and are presented by using
JavaScript.

If a user chooses to translate a sentence (by pushing enter while focusing on
the input field), another JavaScript function will be executed which sends the
phrase or sentence to the Java application. This sentence is parsed into one or
multiple abstract syntax trees by using PGF [23][p. 14]. The resulting abstract
syntax tree(s) are linearized into all possible concrete syntaxes and returned to
the web application. The web application present the result to the user.

In addition to presenting the result, it also creates a hyperlink of each Solr
linearization. This hyperlink leads to the Solr index and is an executable ver-
sion of the Solr linearization.

3.1.8 Running the application

Web applications built in Java usually have the WAR file format. It is a special
JAR-file which includes classes, dependencies and web pages. This project uses



3.2 grammar development with the rgl 18

an open source web server called Apache Tomcat [24] to host a web application
by exporting our application as a WAR-file. Apache Tomcat will make the
application available by using HTTP-requests and spawn a new thread for
each request.

Details about the runtime environment can be found in Appendix A and
Appendix B.

3.2 grammar development with the rgl

This section continues the work on the grammar introduced in Chapter 2.

3.2.1 Supported instructions

The example grammar could only translate one instruction. This instruction
in English is people who know Java. It is easy to extend this grammar to support
more programming languages, for example, to support Python one can add a
function Python : Object in the abstract syntax and implement it as Python

= "python" in the concrete syntaxes. However, this approach makes the gram-
mar inflexible because we need to extend the grammar every time we want to
add a new programming language.

3.2.2 Names

Defining a new function for each programming language is not a good idea,
as described in the previous section. A better solution would be to make one
function that could be used by any programming language.

One intuitive approach to solve this problem is to create a function MkObject

: String -> Object. The implementation for this function would be

1 -- Abstract syntax

2 MkObject : String -> Object ;

3 -- RGL implementation

4 MkObject str = mkNP (mkPN str.s) ; -- PN = Proper Name

5 -- Solr implementation

6 MkObject str = str.s ;

Figure 18: Intuitive approach on names

The GF-code compiles, and the parsing and linearization by using Solr query
language works. Unfortunately, this approach does not work with the RGL,
because the mkPN-operation directly tries to manipulate the string which of
course cannot be done when it is arbitrary.

Fortunately, there exists a built in category which can be used for exactly
these situations. We use the category Symb, along with the function MkSymb :



3.2 grammar development with the rgl 19

String -> Symb to represent arbitrary strings. We can then use the function
SymbPN to create a proper name and finally create a noun phrase.

1 -- Abstract syntax

2 MkObject : Symb -> Object ;

3 -- RGL implementation

4 MkObject symb = mkNP (SymbPN symb) ; -- PN = Proper Name

5 -- Solr implementation

6 MkObject symb = symb.s ; -- Symb has the type { s : Str }

Figure 19: Working approach on names

By using this solution, we can translate the sentence people who know Foo,
where Foo can be anything.

3.2.2 Recognition of names

We said that Foo can be anything in the previous example, but we can also
replace it with Foo Bar Baz... and the words could continue forever as long as
the first letter in each word is in uppercase. This is how the Java runtime for
GF recognizes names by default, but one can also use a customized definition.

3.2.3 Extending the grammar

It is not trivial to extend the grammar to support the instructions described
in Section 3.1. One has to take into account that it shall not be possible to
translate invalid instructions like projects who work in London. We will in this
section first extend the abstract syntax to support the new instructions and
then extend the concrete syntaxes.

Abstract syntax

We begin by removing the category Subject and replacing it with three new
categories: Internal, External and Resource. The function People will return
a value of the type Internal and Customer and Project will return values of
the types External and Resource respectively.



3.2 grammar development with the rgl 20

1 -- Instructions.gf

2 cat

3 Internal ;

4 External ;

5 Resource ;

6 fun

7 People : Internal ;

8 Customer : External ;

9 Project : Resource ;

Figure 20: Abstract syntax with new categories and functions for subjects

In addition to adding new subject categories, three new categories for rela-
tions are also introduced: InternalRelation, ExternalRelation and ResourceRelation

(Relation is removed). The idea is to link subject types to the correct relation
types. For instance, we link a value of the type Internal with a value of type
InternalRelation.

All relation functions are changed to return the correct type. For example,
Know is changed to return a value of the type InternalRelation. This means
that only People can be used together with Know, as desired. The new relation
implementations can be seen in Figure 21.

1 cat

2 InternalRelation ;

3 ExternalRelation ;

4 ResourceRelation ;

5 fun

6 Know : Object -> InternalRelation ;

7 UseExt : Object -> ExternalRelation ;

8 UseRes : Object -> ResourceRelation ;

9 WorkIn : Object -> InternalRelation ;

10 WorkWith : Object -> InternalRelation ;

Figure 21: Abstract syntax with new categories and functions for relations

The last thing to modify is how subjects and relations are combined. In
Figure 22, the function MkInstruction is replaced by three new functions:
InstrucInternal, InstrucExternal and InstrucResource. However, as we
do not need to make a distinction between different type of instructions at this
level, all three functions returns a value of the type Instruction.



3.2 grammar development with the rgl 21

1 cat

2 Instruction ;

3 fun

4 InstrucInternal : Internal -> InternalRelation -> Instruction ;

5 InstrucExternal : External -> ExternalRelation -> Instruction ;

6 InstrucResource : Resource -> ResourceRelation -> Instruction ;

Figure 22: Abstract syntax with new categories and functions for instructions

3.2.3 Concrete syntax using the RGL

As the abstract syntax has changed, the concrete syntaxes have to be modifed
as well. This section explains how the generalised concrete syntax which uses
the RGL is implemeneted.

Figure 23 shows how the categories has been implemented. The new cate-
gories are implemented in the same way as the previous.

1 lincat

2 Instruction = Utt ;

3 Internal, External, Resource = N ;

4 InternalRelation, ExternalRelation, ResourceRelation = VP ;

Figure 23: Concrete syntax using the RGL with new category implementations

The new subject functions are implemented in the same way as People.

1 lin

2 People = person_N ;

3 Customer = customer_N ;

4 Project = project_N ;

Figure 24: RGL concrete syntax with new subject implementations

Four new relation functions are added. Line 5-6 in Figure 25 shows how we
use the verb work_V together with two prepositions, in_Prep and with_Prep in
order correctly linearize into work in Foo and work with Foo respectively (Foo is
the value of object. The relation implementations make use of an operation
mkRS’ to reuse code.



3.2 grammar development with the rgl 22

1 lin

2 Know object = mkRS’ (mkVP know_V2 object) ;

3 UseExt object = mkRS’ (mkVP use_V2 object) ;

4 UseRes object = mkRS’ (mkVP use_V2 object) ;

5 WorkIn object = mkRS’ (mkVP (mkV2 work_V in_Prep) object) ;

6 WorkWith object = mkRS’ (mkVP (mkV2 work_V with_Prep) object) ;

7

8 oper

9 -- Make a relative sentence

10 mkRS’ : VP -> RS = \vp -> mkRS (mkRCl which_RP vp) ;

Figure 25: Concrete syntax using the RGL with new relation implementations

Subjects and relations are combined as before, but as this solution has three
functions instead of one, a new operation mkI has been defined in order to
reuse code.

1 lin

2 InstrucInternal internal relation = mkI internal relation ;

3 InstrucExternal external relation = mkI external relation ;

4 InstrucResource resource’ relation = mkI resource’ relation ;

5

6 oper

7 mkI : N -> RS -> Utt = \noun,rs -> mkUtt (mkNP aPl_Det (mkCN noun rs)) ;

Figure 26: Concrete syntax using the RGL with new instruction implementations

Concrete syntax for Solr

This section describes how the concrete syntax for Solr is modified to work
with the new abstract syntax.

The new categories are all defined as strings.

1 lincat

2 Instruction = Str ;

3 Internal, External, Resource = Str ;

4 InternalRelation, ExternalRelation, ResourceRelation = Str ;

5 Object = Str ;

Figure 27: Solr concrete syntax with new implementation of categories

Subject types are hard coded into strings. We assume that these strings exists
in the Solr index.



3.2 grammar development with the rgl 23

1 lin

2 People = "Person" ;

3 Customer = "Organization" ;

4 Project = "Project" ;

Figure 28: Solr concrete syntax with new subject implementations

We also make an assumption about how the relations are defined in the Solr
index.

1 lin

2 Know obj = "KNOWS" ++ ":" ++ obj ;

3 UseExt obj = "USES" ++ ":" ++ obj ;

4 UseRes obj = "USES" ++ ":" ++ obj ;

5 WorkWith obj = "WORKS_WITH" ++ ":" ++ obj ;

6 WorkIn obj = "WORKS_IN" ++ ":" ++ obj ;

Figure 29: Solr concrete syntax with new relation implementations

As in the concrete syntax using the RGL, also an operation is defined and
used by the three functions.

1 lin

2 InstrucInternal internal relation = select internal relation ;

3 InstrucExternal external relation = select external relation ;

4 InstrucResource resource’ relation = select resource’ relation;

5

6 oper

7 select : Str -> Str -> Str = \subj,relation ->

8 "select?q=*:*&wt=json&fq=" ++ "object_type :"

9 ++ subj ++ "AND" ++ relation ;

Figure 30: Solr concrete syntax with new instruction implementations

3.2.4 Boolean operators

The grammar is now powerful enough to translate a variety of questions. To
make it even more powerful, one could use boolean operators in order to com-
bine relations. For example, an instruction that could be useful is people who
know Java and Python. Another useful instruction is people who know Java and
work in Gothenburg. This section explains how the grammar can be extended
to support these kind of instructions.

In addition to the previous example with the boolean operator and, we will
also add support for the boolean operator or. We begin by adding functionality
to support boolean operators to combine values of the type Object. As seen in



3.2 grammar development with the rgl 24

Figure 31, two new functions are defined in the abstract syntax to handle these
cases, one for each operator.

1 fun

2 And_O : Object -> Object -> Object ;

3 Or_O : Object -> Object -> Object ;

Figure 31: Abstract syntax for boolean operators and objects

The RGL implementation is shown in Figure 32.

1 lin

2 And_O o1 o2 = mkNP and_Conj o1 o2 ;

3 Or_O o1 o2 = mkNP or_Conj o1 o2 ;

Figure 32: Concrete syntax using the RGL for boolean operators and objects

The Solr implementation is shown in Figure 33. We add AND or OR between
the two objects.

1 lin

2 And_O o1 o2 = "(" ++ o1 ++ "AND" ++ o2 ++ ")" ;

3 Or_O o1 o2 = "(" ++ o1 ++ "OR" ++ o2 ++ ")" ;

Figure 33: Solr concrete syntax for boolean operators and objects

It is now possible to express people who know Java and Python. In order to use
boolean operators with whole relations like people who know Java and work in
Gothenburg, the grammar has to be further extended.

We must also take into account that it shall only be possible to combine
relation that are possible to express in the current sentence. Therefore, we
need to define the boolean logic three times, as we have three different types
of instructions.

1 fun

2 InternalAnd : InternalRelation -> InternalRelation -> InternalRelation ;

3 InternalOr : InternalRelation -> InternalRelation -> InternalRelation ;

4

5 ExternalAnd : ExternalRelation -> ExternalRelation -> ExternalRelation ;

6 ExternalOr : ExternalRelation -> ExternalRelation -> ExternalRelation ;

7

8 ResourceAnd : ResourceRelation -> ResourceRelation -> ResourceRelation ;

9 ResourceOr : ResourceRelation -> ResourceRelation -> ResourceRelation ;

Figure 34: Abstract syntax for boolean operators and relations



3.2 grammar development with the rgl 25

Instead of combining noun phrases as in Figure 32, here we combine relative
sentences in the RGL implementation.

1 lin

2 InternalAnd rs1 rs2 = mkRS and_Conj rs1 rs2 ;

3 InternalOr rs1 rs2 = mkRS or_Conj rs1 rs2 ;

4

5 ExternalAnd rs1 rs2 = mkRS and_Conj rs1 rs2 ;

6 ExternalAnd rs1 rs2 = mkRS or_Conj rs1 rs2 ;

7

8 ResourceAnd rs1 rs2 = mkRS and_Conj rs1 rs2 ;

9 ResourceOr rs1 rs2 = mkRS or_Conj rs1 rs2 ;

Figure 35: Concrete syntax using the RGL for boolean operators and relations

The Solr implementation is fairly straight forward, similarly as with values
of the type Object, we also add AND or OR between the strings. The only differ-
ence is that we do it three times as we have three different subject types.

1 lin

2 InternalAnd s1 s2 = "(" ++ s1 ++ "AND" ++ s2 ++ ")";

3 InternalOr s1 s2 = "(" ++ s1 ++ " OR " ++ s2 ++ ")";

4

5 ExternalAnd s1 s2 = "(" ++ s1 ++ "AND" ++ s2 ++ ")";

6 ExternalOr s1 s2 = "(" ++ s1 ++ " OR " ++ s2 ++ ")";

7

8 ResourceAnd s1 s2 = "(" ++ s1 ++ "AND" ++ s2 ++ ")";

9 ResourceOr s1 s2 = "(" ++ s1 ++ " OR " ++ s2 ++ ")";

Figure 36: Solr concrete syntax for boolean operators and relations

3.2.4 Boolean operators and ambiguity

Our definition of boolean operations can create ambiguous instructions. An
ambiguous instruction can be interpreted by the program in more than one
way. For example people who know Java or Python and Haskell could be in-
terpreted as ’people who know (Java or Python) and Haskell’ or it can be
interpreted as ’people who know Java or (Python and Haskell)’. GF auto-
matically detects ambiguity and will return several abstract syntax trees while
parsing an instruction which is ambiguous.

3.2.4 Infinitely many instructions

The boolean operators we just defined are recursively defined, because they
take two arguments of a certain type, and they use those two arguments to
create a value of the same type. This means that the resulting value can actually
be used in the same function to create another value, and this goes on forever.



3.3 suggestion engine 26

3.3 suggestion engine

The suggestion engine shall generate all possible instructions in all natural
languages and store them in an Apache Solr index. It is suitable to use the
generator which GF offers to generate abstract syntax trees and linearize them
into the specified concrete languages (English and Swedish in this case).

The generator can be accessed through the GF-shell. Figure 37 shows how
the function generate_trees is executed to generate all trees with the depth 4.
By depth, we mean the maximum number edges between a leaf and the root
element.

Instrucs> generate_trees

InstrucExternal Customer (UseExt (MkObject (MkSymb "Foo")))

InstrucInternal People (Know (MkObject (MkSymb "Foo")))

InstrucInternal People (WorkIn (MkObject (MkSymb "Foo")))

InstrucInternal People (WorkWith (MkObject (MkSymb "Foo")))

InstrucResource Project (UseRes (MkObject (MkSymb "Foo")))

Figure 37: generate_trees is used to create all abstract syntax trees with max depth 4

Figure 37 shows 5 trees, but there exists many more trees. The reason GF Actually, there
exists infinitely
many trees, as we
have recursive
functions in the
abstract syntax.

only generates 5 trees is because the default depth setting is 4. If we increase
the depth we will obtain more trees, as it then will include trees containing
boolean operators. By increasing the max depth to 5, GF will generate 36 trees.
With depth 6, GF will generate 321 trees.

It is often good to visualize trees to understand them better. Figure 38 shows
two abstract syntax trees, the first one with depth 4 and the second with depth
5. One can easily see that the former has maximum 4 edges between root and
leaf by counting the edges between InstrucInternal and "Foo", and the latter
has maximum 5 edges between root and leaf.



3.3 suggestion engine 27

InstrucInternal : Instruction

People : Internal Know : InternalRelation

MkObject : Object

MkSymb : Symb

"Foo"

InstrucInternal : Instruction

People : Internal Know : InternalRelation

And_O : Object

MkObject : Object MkObject : Object

MkSymb : Symb

"Foo"

MkSymb : Symb

"Foo"

Figure 38: Visualization of abstract syntax trees with depth 4 and 5

3.3.1 Populating the Solr index

It is now time to linearize the generated trees and store them in a Solr index
that is dedicated to store linearizations. By doing so, we will be able to search
on instructions by using words that exists in the instructions. What we cannot
do is to search on names, because the names does not occur in the instructions,
instead they only contain a placeholder for a name ("Foo"). It will therefore
only suggest instructions like people who know Foo and Foo which is a useless
suggestion.

We want to be able to suggest relevant names. If the user database contains
a person which knows Java, then we also want to suggest instructions based
on that name. This requirement forces us to change the application once more.

A naïve solution would be to fetch all distinct names from the database and
create all possible instructions that a user shall be able to express with these
names. For an instruction like people who know Foo or Foo and works in Foo and if
the database contains 10 programming languages and 5 cities we would then
have to generate 10 ∗ 10 ∗ 5 = 500 instructions. This is clearly not suitable, as
GF generates 321 trees (with depth 6).

A better approach on the problem is to store all distinct names in a sepa-
rate index. When a user begins to type an instruction, the application checks
each word the user has typed. If a word exists in the name-index, then treat
it as a name and replace it with Foo, then query the linearizations index. Re-



3.3 suggestion engine 28

trieve the results, and change back Foo to the original name. However, as the
application do not make any distinction between different type of names, we
could end up with suggestions like people who work in Python, because Python
was replaced by Foo. Luckily, this problem can be resolved by introducing a
distinction between different types of names in the grammar.

3.3.2 Introducing name types

This application uses four different kind of names. Programming languages
are used together with the Know relation. Organizations are used with the
WorkWith relation. Locations are used with the WorkIn relation. Lastly, modules
are used with the Use relation. We extend the grammar to support these new
name types.

Figure 39 shows the new abstract syntax. Line 3 defines new name types.
Line 7-10 defines how the names are instantiated. Lines 13-23 defines how
names can be combined by using boolean operators. Note how we use the
type Skill for programming languages.

1 cat

2 -- Names

3 Skill ; Organization ; Location ; Module ;

4

5 fun

6 -- Create unknown names

7 MkSkill : Symb -> Skill ;

8 MkOrganization : Symb -> Organization ;

9 MkModule: Symb -> Module ;

10 MkLocation : Symb -> Location ;

11

12 -- Boolean operators for Organizations

13 And_S : Skill -> Skill -> Skill ;

14 Or_S : Skill -> Skill -> Skill ;

15

16 And_O : Organization -> Organization -> Organization ;

17 Or_O : Organization -> Organization -> Organization ;

18

19 And_L : Location -> Location -> Location ;

20 Or_L : Location -> Location -> Location ;

21

22 And_M : Module -> Module -> Module ;

23 Or_M : Module -> Module -> Module ;

Figure 39: Abstract syntax with new name types

The concrete syntax for these new functions are implemented in the same
way as the ones we removed (category Object and functions MkObject, And_O
and Or_O). We have omitted the new concrete syntaxes from the thesis as they



3.3 suggestion engine 29

do not contribute to anything new.

As the grammar has changed, also the abstract syntax trees has changed. Fig-
ure 40 shows how GF now generates all trees with depth 4.

Instrucs> generate_trees

InstrucExternal Customer (UseExt (MkModule (MkSymb "Foo")))

InstrucInternal People (Know (MkSkill (MkSymb "Foo")))

InstrucInternal People (WorkIn (MkLocation (MkSymb "Foo")))

InstrucInternal People (WorkWith (MkOrganization (MkSymb "Foo")))

InstrucResource Project (UseRes (MkModule (MkSymb "Foo")))

Figure 40: Abstract syntax trees with name types

As the index stores the linearizations of each tree it is important to post pro-
cess each linearization in order to preserve the type information. Currently,
the type of each name would be lost when linearized, for example MkSkill

(MkSymb "Foo") is linearized into just "Foo" if using the english concrete syn-
tax.

To preserve type information, we replace each "Foo" with the current name
type + an index. Figure 41 shows an example.

InstrucInternal People (InternalAnd (Know

(And_S (MkSkill (MkSymb "Skill0")) (MkSkill (MkSymb "Skill1"))))

(WorkIn (MkLocation (MkSymb "Location0"))))

Figure 41: An abstract syntax tree with name types and changed names

The previous example linearizes into people who know Skill0 and Skill1 and
who work in Location0 by using the concrete syntax for English. We generate
all trees again, linearize them into all natural languages and store them in the
linearizations index.

In addition, as we store each name in a separate index, we associate each
name with its type. By doing so, we can easily find out if a word is a name
and then find out what type that name has.

The grammar and the Solr indices are now complete. The application can
now suggest relevant sentences even though the user only has typed names
(provided that the names exists in the name index). Figure 42 shows the
pseudocode for the suggestion algorithm with informative comments. This
algorithm is executed by the Java-application when a user has typed a partial
question.



3.3 suggestion engine 30

1 suggestions(sentence) {

2 // sentence = "persons who knew java or python and work in London"

3 // names[] = {Java, Python, London}

4 names[] = extractNames(sentence);

5

6 // "persons who knew java or python and work in London" ===>

7 // "persons who knew Skill0 or Skill1 and work in Location0"

8 sentence = replaceNamesWithTypes(sentence, names);

9

10 // suggestions =

11 // { "people who know Skill0 or Skill1 and who work in Location0", ... }

12 suggestions[] = findSentences(sentence);

13

14 foreach suggestion in suggestions {

15 // "people who know Skill0 or Skill1 and who work in Location0" ===>

16 // "people who know Java or Python and who work in London"

17 suggestion = restoreNames(names, suggestion);

18 }

19 return suggestions;

20 }

Figure 42: Pseudocode for the suggestion algorithm

3.3.2 Supporting more sentences

This section aims to add better accuracy to the suggestion engine by lineariz-
ing different variations of a sentence. In other words, we make it possible to
linearize an abstract syntax tree into multiple strings.

When normally linearizing an abstract syntax tree in the GF-shell always
gets just one result. However, there exists a parameter -list which can be
used to obtain all possible ways of representing the abstract syntax tree.

GF adopts the pipe symbol to express that two elements are semantically equiv-
alent. The following sections describes how the pipe symbol can be used to
further extend the grammar.

We extend the grammar to treat a subject in singular form the same as a
subject in plural form. I.e. the sentences a person which knows Java is the same
as people who know Java. As we treat them equivalent, they will have the same
abstract syntax tree, and this tree will linearize to only one Solr query, hence
if we translate a person who knows Java into Solr, we will obtain a query that
retrieves multiple results. The implementation of this extension is achieved by
modifying the operation mkI (defined in Figure 26). The modification can be
seen in Figure 43. The reason why the plural version is chosen as the preferable
sentence is because aPl_Det is listed before aSg_Det.



3.3 suggestion engine 31

1 oper

2 mkI : N -> RS -> Utt = \noun_N,rs_RS -> mkUtt (mkNP (aPl_Det | aSg_Det)

3 (mkCN noun_N rs_RS)) ;

Figure 43: Treating singular form equivalent to plural form

The second extension is to add support of the word that so we can express
sentences like people that know Java. This is achieved by moving the relative
pronoun from the concrete syntax to the lexicon and adding support of mul-
tiple relative pronouns by using the variance function. Figure 44 shows how
we define a new constant operation which will provide the concrete syntaxes
with a relative pronoun.

1 interface LexInstrucs = open Syntax in {

2 oper

3 ...

4 who_RP : RP ;

5 }

Figure 44: Adding a new relative pronoun to the lexicon interface

We then implement the constant operation we just defined. In English, we
use the variance function to allow both which_RP and that_RP.

1 instance LexInstrucsEng of LexInstrucs = open Prelude, SyntaxEng,

2 ParadigmsEng, ExtraEng in {

3 oper

4 ...

5 who_RP = which_RP | that_RP ;

6 }

Figure 45: Defining the new relative pronoun in English

It is not possible to express the relative pronoun in more than one way in
Swedish, so we let the new operation be implemented to return which_RP.

1 instance LexInstrucsSwe of LexInstrucs = open SyntaxSwe, ParadigmsSwe in {

2 oper

3 ...

4 who_RP = which_RP ;

5 }

Figure 46: Defining the new relative pronoun in Swedish



3.3 suggestion engine 32

Finally we change the operation mkRS’ to use the new constant operation we
defined in the lexicon.

1 oper

2 mkRS’ : VP -> RS = \vp -> mkRS (mkRCl who_RP vp) ;

Figure 47: Usage of the new relative pronoun

The third extension is to treat the progressive form of a verb as the same
as the regular form. A progressive form of a verb indicates that something is
happening right now or was happening or will be happening. The grammar in
this project only supports present tense, so it will only cover progressive verbs
which expresses that something is happening right now. This is achieved by
using the variance function again.

1 oper

2 mkRS’ : VP -> RS = \vp -> mkRS (mkRCl who_RP (vp | progressiveVP vp)) ;

Figure 48: Treating progressive verb equivalent normal form

However, not all verbs can be used in progressive form. An example of such
verb is know. An example of know in progressive form is people who are knowing
Java which is not grammatically correct. Although it might look ugly, it is not
an issue for our application as the suggestion engine only suggest the most
suitable suggestion. The extension will contribute to make the suggestion en-
gine richer as it allows users to use invalid instructions.

If we now linearize the abstract syntax tree which represents the sentence peo-
ple who know Java we will obtain several linearizations (see Figure 49) which
by the program are treated to be semantically equivalent. Note how the first
linearization is the one we treat as the correct one. It is not a coincidence that
it is listed first. The first argument when using the variance function is always
linearized first, so we make sure that all the correct linearizations is in the be-
ginning of the list. We can then use this to map the incorrect representations
to the correct ones in the suggestion engine.



3.4 alternative implementation without the rgl 33

Languages: InstrucsEngRGL

Instrucs> l -lang=InstrucsEngRGL -list

> InstrucInternal People (Know_R (MkSkill (MkSymb "Java")))

people who know Java, , people who are knowing Java, , people that know Java,

people that are knowing Java, persons who know Java,

persons who are knowing Java, persons that know Java,

persons that are knowing Java, a person which knows Java,

a person which is knowing Java, a person that knows Java,

a person that is knowing Java

Figure 49: Obtaining multiple linearizations by using -list

3.4 alternative implementation without the rgl

We have implemented the concrete syntax for English by using the RGL. This
section shows how the same functionality can be achieved by concatenating
strings. The purpose of this section is to be able to compare the complexity of
a concrete syntax developed by using RGL and by concatenating strings.

As we concatenate strings in this implementation, all categories are defined
as strings.

1 lincat

2 Instruction = Str ;

3 Internal, External, Resource = Str ;

4 InternalRelation, ExternalRelation, ResourceRelation = Str ;

5 Skill, Organization, Location, Module = Str ;

Figure 50: Concrete syntax for English by concatenating strings with implementation
of categories

In order to achieve the same functionality as the concrete syntax using the
RGL, we use variance of strings to support both singular and plural forms. We
also use variance to make persons a synonym for people.

1 lin

2 People = "people" | "persons" | "person" ;

3 Customer = "customers" | "customer" ;

4 Project = "projects" | "project" ;

Figure 51: Concrete syntax for English by concatenating strings with implementation
of subjects

As with subjects, variance is also used with relations.



3.4 alternative implementation without the rgl 34

1 lin

2 Know_R obj = ("know" | "knows") ++ obj;

3 UseExt_R obj = ("use" | "uses") ++ obj ;

4 UseRes_R obj = ("use" | "uses") ++ obj ;

5 WorkWith_R obj = ("work with" | "works with") ++ obj ;

6 WorkIn_R obj = ("work in" | "works in") ++ obj ;

Figure 52: Concrete syntax for English by concatenating strings with implementation
of relations

An instruction is created by concatenating a subject with a relation. In be-
tween them we use variance to support connecting words who, which and that.

1 lin

2 InstrucInternal internal relation = internal ++

3 ("who" | "which" | "that") ++ relation ;

4 InstrucExternal external relation = external ++

5 ("who" | "which" | "that") ++ relation ;

6 InstrucResource resource’ relation = resource’ ++

7 ("which" | "that") ++ relation ;

Figure 53: Concrete syntax for English by concatenating strings with implementation
of instructions

A name is just a string.

1 lin

2 MkSkill s = s.s ;

3 MkOrganization s = s.s ;

4 MkLocation s = s.s ;

5 MkModule s = s.s ;

Figure 54: Concrete syntax for English by concatenating strings with implementation
of name

Two names are combined by adding the boolean operator in between them.



3.5 generation of mock data 35

1 lin

2 And_S s1 s2 = s1 ++ "and" ++ s2 ;

3 Or_S s1 s2 = s1 ++ "or" ++ s2 ;

4

5 And_O s1 s2 = s1 ++ "and" ++ s2 ;

6 Or_O s1 s2 = s1 ++ "or" ++ s2 ;

7

8 And_L s1 s2 = s1 ++ "and" ++ s2 ;

9 Or_L s1 s2 = s1 ++ "or" ++ s2 ;

10

11 And_M s1 s2 = s1 ++ "and" ++ s2 ;

12 Or_M s1 s2 = s1 ++ "or" ++ s2 ;

Figure 55: Concrete syntax for English by concatenating strings with implementation
of boolean operators for names

As with boolean operators for names, two relations are combined by adding
the boolean operator in between them.

1 lin

2 InternalAnd s1 s2 = s1 ++ "and" ++ s2 ;

3 InternalOr s1 s2 = s1 ++ "or" ++ s2 ;

4

5 ExternalAnd s1 s2 = s1 ++ "and" ++ s2 ;

6 ExternalOr s1 s2 = s1 ++ "or" ++ s2 ;

7

8 ResourceAnd s1 s2 = s1 ++ "and" ++ s2 ;

9 ResourceOr s1 s2 = s1 ++ "or" ++ s2 ;

Figure 56: Concrete syntax for English by concatenating strings with implementation
of boolean operators for relations

3.5 generation of mock data

This section describes how the data used by the application is generated. In
order to generate data, we must know what to generate. From Section 3.1 we
know the Solr queries our index must support. We have three different types
of objects: Customer, Person and Project. Each of these types of objects has their
own data. A customer shall have one value, a list of technologies it uses. A
person shall have three values, a list of programming languages it knows, a list
of cities it works in and a list of organizations it has been or are working with.
A project shall have one value, the same as a customer, a list of technologies
it uses. In addition to these requirements by the grammar, customers and
persons also have names. Figure 57 shows an example of data that could exists
in the Solr index.



3.5 generation of mock data 36

1 { // Customer

2 "name" : "Amnesty"

3 "object_type" : "Customer",

4 "USES" : ["Solr", "Tomcat", "GF"]

5 },

6 { // Person

7 "name" : "Jane Doe"

8 "object_type" : "Person",

9 "KNOWS" : ["Java", "Python", "C"],

10 "WORKS_IN" : ["London", "Gothenburg"],

11 "WORKS_WITH" : ["Amnesty", "Unicef"]

12 },

13 { // Project

14 "object_type" : "Project",

15 "USES" : ["Android", "GF"]

16 }

Figure 57: Example data in JSON

Mock data is generated by combining data from text-files. We have two text-
files concerning personal names (first_names.txt and last_names.txt). One
text-file with organization names (charity_organizations.txt). One text file
about programming languages (programming_languages.txt). Lastly, one text
file containing cities (cities.txt).

An object is generated by taking one value from each text file that the object
needs. For instance, to create an object of the type Person, we fetch values from
first_names.txt, last_names.txt, programming_languages.txt, cities.txt
and charity_organizations.txt. The values are randomly chosen from the
text files. The object is then exported to Solr to be stored in the index.



4
R E S U LT S

This chapter presents results from the end application.

4.1 translations

We begin by demonstrating how a few sentences are parsed into an abstract
syntax which is linearized into all possible concrete syntaxes. The input is
shown in the first box in each figure (with input language as a comment) and
the result in second (larger) box. The result of a translation is JSON-data, given
by the application.

The solr linearization of each abstract syntax tree is a clickable hyper-link
in the web application. This link leads to an actual execution of a HTTP-GET
request to the Solr engine. All such links leads to a Solr result which correctly
filters data depending on the query. This data is however omitted from the
results as the actual translations (and suggestions) are the main results of this
project.

The first five figures shows the simplest translations. They include all sub-
jects and all types of names. Each one contains one subject, one verb and one
name of a certain type.

37



4.1 translations 38

Figure 58 shows that the word Java is of the type Skill.

-- EnglishRGL

people who know Java

1 [

2 {

3 ’ast’: ’InstrucInternal People (Know_R (MkSkill (MkSymb "Java")))’,

4 ’linearizations’: [

5 {

6 ’query’: ’people who know Java’,

7 ’language’: ’InstrucsEngConcat’

8 },

9 {

10 ’query’: ’people who know Java’,

11 ’language’: ’InstrucsEngRGL’

12 },

13 {

14 ’query’: ’select?q=*:*&wt=json&fq= object_type : Person AND KNOWS : ( Java )’,

15 ’language’: ’InstrucsSolr’

16 },

17 {

18 ’query’: ’personer som kan Java’,

19 ’language’: ’InstrucsSweRGL’

20 }

21 ]

22 }

23 ]

Figure 58: Translation including people and a name of type Skill



4.1 translations 39

Figure 59 shows that the word London is of the type Location.

-- English RGL

people who work in London

1 [

2 {

3 ’ast’: ’InstrucInternal People (WorkIn_R (MkLocation (MkSymb "London")))’,

4 ’linearizations’: [

5 {

6 ’query’: ’people who work in London’,

7 ’language’: ’InstrucsEngConcat’

8 },

9 {

10 ’query’: ’people who work in London’,

11 ’language’: ’InstrucsEngRGL’

12 },

13 {

14 ’query’: ’select?q=*:*&wt=json&fq= object_type : Person AND WORKS_IN : ( London )’,

15 ’language’: ’InstrucsSolr’

16 },

17 {

18 ’query’: ’personer som arbetar i London’,

19 ’language’: ’InstrucsSweRGL’

20 }

21 ]

22 }

23 ]

Figure 59: Translation including people and a name of type Location



4.1 translations 40

Figure 60 shows that the word Amnesty is of the type Organization.

-- EnglishRGL

people who work with Amnesty

1 [

2 {

3 ’ast’: ’InstrucInternal People (WorkWith_R (MkOrganization (MkSymb "Amnesty")))’,

4 ’linearizations’: [

5 {

6 ’query’: ’people who work with Amnesty’,

7 ’language’: ’InstrucsEngConcat’

8 },

9 {

10 ’query’: ’people who work with Amnesty’,

11 ’language’: ’InstrucsEngRGL’

12 },

13 {

14 ’query’: ’select?q=*:*&wt=json&fq= object_type : Person AND WORKS_WITH : ( Amnesty )’,

15 ’language’: ’InstrucsSolr’

16 },

17 {

18 ’query’: ’personer som arbetar med Amnesty’,

19 ’language’: ’InstrucsSwe’

20 }

21 ]

22 }

23 ]

Figure 60: Translation including people and a name of type Organization



4.1 translations 41

Figure 61 shows that the word Solr is of the type Module.

-- EnglishRGL

customers who use Solr

1 [

2 {

3 ’ast’: ’InstrucExternal Customer (UseExt_R (MkModule (MkSymb "Solr")))’,

4 ’linearizations’: [

5 {

6 ’query’: ’customers who use Solr’,

7 ’language’: ’InstrucsEngConcat’

8 },

9 {

10 ’query’: ’customers who use Solr’,

11 ’language’: ’InstrucsEngRGL’

12 },

13 {

14 ’query’: ’select?q=*:*&wt=json&fq= object_type : Organization AND USES : ( Solr )’,

15 ’language’: ’InstrucsSolr’

16 },

17 {

18 ’query’: ’kunder som använder Solr’,

19 ’language’: ’InstrucsSwe’

20 }

21 ]

22 }

23 ]

Figure 61: Translation including customer and a name of type Module



4.1 translations 42

Similarly, also Figure 62 shows that the word Solr is of the type Module.

-- EnglishRGL

projects who use Solr

1 [

2 {

3 ’ast’: ’InstrucResource Project (UseRes_R (MkModule (MkSymb "Solr")))’,

4 ’linearizations’: [

5 {

6 ’query’: ’projects who use Solr’,

7 ’language’: ’InstrucsEngConcat’

8 },

9 {

10 ’query’: ’projects who use Solr’,

11 ’language’: ’InstrucsEngRGL’

12 },

13 {

14 ’query’: ’select?q=*:*&wt=json&fq= object_type : Project AND USES : ( Solr )’,

15 ’language’: ’InstrucsSolr’

16 },

17 {

18 ’query’: ’projekt som använder Solr’,

19 ’language’: ’InstrucsSwe’

20 }

21 ]

22 }

23 ]

Figure 62: Translation including project and a name of type Module



4.1 translations 43

Figure 63 shows how the applications handles the boolean operator and. The
application handles the case for or similarly.

-- EnglishRGL

people who know Java and Python

1 [

2 {

3 ’ast’: ’InstrucInternal People (Know_R (And_S (MkSkill (MkSymb "Java"))

4 (MkSkill (MkSymb "Python"))))’,

5 ’linearizations’: [

6 {

7 ’query’: ’people who know Java and Python’,

8 ’language’: ’InstrucsEngConcat’

9 },

10 {

11 ’query’: ’people who know Java and Python’,

12 ’language’: ’InstrucsEngRGL’

13 },

14 {

15 ’query’: ’select?q=*:*&wt=json&fq= object_type : Person AND

16 KNOWS : ( ( Java ) AND ( Python ) )’,

17 ’language’: ’InstrucsSolr’

18 },

19 {

20 ’query’: ’personer som kan Java och Python’,

21 ’language’: ’InstrucsSwe’

22 }

23 ]

24 }

25 ]

Figure 63: Translation including people and two names of the type Skill

Figure 64 (on the next page) shows how the application handles an ambigu-
ous instruction. Two abstract syntax trees are seen in the result, as there are
two ways of interpreting the instruction. The different interpretations can be
modelled as follows: people who know (Java and Python) or Haskell or people who
know Java and (Python or Haskell).



4.1 translations 44

-- EnglishRGL

people who know Java and Python or Haskell

1 [

2 {

3 ’ast’: ’InstrucInternal People (Know_R (Or_S (And_S (MkSkill (MkSymb "Java"))

4 (MkSkill (MkSymb "Python"))) (MkSkill (MkSymb "Haskell"))))’,

5 ’linearizations’: [

6 {

7 ’query’: ’people who know Java and Python or Haskell’,

8 ’language’: ’InstrucsEngConcat’

9 },

10 {

11 ’query’: ’people who know Java and Python or Haskell’,

12 ’language’: ’InstrucsEngRGL’

13 },

14 {

15 ’query’: ’select?q=*:*&wt=json&fq= object_type : Person AND

16 KNOWS : ( ( ( Java ) AND ( Python ) ) OR ( Haskell ) )’,

17 ’language’: ’InstrucsSolr’

18 },

19 {

20 ’query’: ’personer som kan Java och Python eller Haskell’,

21 ’language’: ’InstrucsSwe’

22 }

23 ]

24 },

25 {

26 ’ast’: ’InstrucInternal People (Know_R (And_S (MkSkill (MkSymb "Java"))

27 (Or_S (MkSkill (MkSymb "Python")) (MkSkill (MkSymb "Haskell")))))’,

28 ’linearizations’: [

29 {

30 ’query’: ’people who know Java and Python or Haskell’,

31 ’language’: ’InstrucsEngConcat’

32 },

33 {

34 ’query’: ’people who know Java and Python or Haskell’,

35 ’language’: ’InstrucsEngRGL’

36 },

37 {

38 ’query’: ’select?q=*:*&wt=json&fq= object_type : Person AND

39 KNOWS : ( ( Java ) AND ( ( Python ) OR ( Haskell ) ) )’,

40 ’language’: ’InstrucsSolr’

41 },

42 {

43 ’query’: ’personer som kan Java och Python eller Haskell’,

44 ’language’: ’InstrucsSwe’

45 }

46 ]

47 }

48 ]

Figure 64: Translation of an ambiguous instruction involving people and three names
of the type Skill



4.2 suggestions 45

4.2 suggestions

This section shows how the application reacts to input before the user has
chosen to translate the instruction. Each figure shows an image of how the
application suggest valid sentences from a partial instruction.

Figure 65 shows suggestions based on the first word in a valid sentence.

Figure 65: Suggestions based on the word people by using EnglishRGL or English-
Concat

Figure 66 shows that it is possible to use a combination of words to retrieve
suggestions. It also shows that we can use the first and the last word to get
suggestions.

Figure 66: Suggestions based on the words people java by using EnglishRGL or En-
glishConcat

Figure 67 demonstrates that the words do not have to be the first or last
words in the sentence.

Figure 67: Suggestions based on the words who know by using EnglishRGL or English-
Concat



4.2 suggestions 46

The next four figures shows how it is possible to retreive suggestions based
on only names.

Figure 68: Suggestions based on a name of type Skill by using EnglishRGL or English-
Concat

Figure 69: Suggestions based on a name of type Location by using EnglishRGL or
EnglishConcat

Figure 70: Suggestions based on a name of type Organization by using EnglishRGL or
EnglishConcat



4.2 suggestions 47

Figure 71: Suggestions based on a name of type Module by using EnglishRGL or En-
glishConcat

Figure 72 shows suggestions based on two names of the same type.

Figure 72: Suggestions based on two names of type Skill by using EnglishRGL or En-
glishConcat

Figure 73 shows that names do not have to be of the same type to suggest
relevant instructions.

Figure 73: Suggestions based on two names of different types by using EnglishRGL or
EnglishConcat

Figure 74 shows how we can use the word persons in order to get sug-
gestions. The word persons does not exist in any suggestion, but as it is a
synonym to people, the application suggest relevant instructions.



4.2 suggestions 48

Figure 74: Synonyms based on a synonym by using EnglishRGL or EnglishConcat

Also Figure 75 shows how we can get suggestions based on another syn-
onym. Both EnglishRGL and EnglishConcat gives suggestions based on the
word that.

Figure 75: Synonyms based on a synonym by using EnglishConcat

Figure 76 shows how the application shows relevant suggestion based on
a misspelled word. This is achieved by using a approximate string matching
algorithm in Solr.

Figure 76: Suggestions based on a misspelled word by using EnglishRGL or English-
Concat

Figure 77 and Figure 78 show how the same word can obtain different sug-
gestions by using the concrete languages EnglishRGL and EnglishConcat.



4.2 suggestions 49

Figure 77: Suggestions based on the string projects by using EnglishRGL

Figure 78: Suggestions based on the string projects by using EnglishConcat

Lastly, Figure 79 demonstrates that the application can also give suggestions
in Swedish. The application can translate valid Swedish sentences as long as
the user has chosen SwedishRGL as input language in the application. All
instructions that can be translated from EnglishRGL can also be translated
from SwedishRGL.

Figure 79: Suggestions in Swedish by using SwedishRGL



5
C O N C L U S I O N S

5.1 a brief discussion about the results

The results are overall very positive. We have managed to build a system which
can translate a small subset of instructions formulated in English or Swedish
into Solr query language which represent the same semantics. In addition,
as the results show, we can obtain relevant suggestions of instructions based
on a partial sentence or by just using keywords - which was exacly what we
wanted.

5.2 comparison of the rgl and simple concatenation

We developed a concrete syntax for English by using the RGL (EngRGL) and
one for English by concatenating strings (EngConcat). EngRGL is without
doubt the most complex and least intuitive if the reader has no prior knowl-
edge of the RGL. Conversely, EngConcat is very instuitive and straight forward
for any reader with basic knowledge of programming. The two syntaxes sup-
ports equally many abstract syntax trees, but as we have added more variations
of linearizations to EngConcat, it is possible to represent a few abstract syntax
trees in more ways in EngConcat than in EngRGL. One example is people who
know Java and work in London which we could not express by using the RGL.
We had to content ourselves with the sentence people who know Java and who
work in London.

5.2.1 Support for ungrammatical sentences

Concatenation of strings make it possible to create all kind of different (and
strange) linearizations with the variance function. For instance, we can mix
singular words with plural words and make it possible to map sentences ex-
pressed in bad grammar into a correct suggestion. One example is people which
knows Java where the correct representation is people who know Java, but it is
very clear that we should treat them semantically equivalent.

By doing so, users with little knowledge of writing in English have a higher
probability of finding the correct sentence by using this approach. This tech-
nique is not supported by the RGL.

50



5.3 suggestion engine 51

5.2.2 The RGL produces an invalid sentence

Another problem we had with the RGL is the constant which_RP which lin-
earizes into which if the subject is in singular form and who if the subject is in
plural form. The RGL does not take into account that this rule is only valid
if the subject refers to a group of humans, it applies the rule to any group of
things. This is probably a bug which will be fixed soon.

5.2.3 RGL and concatenation - Conclusions

We found out that concatenation is much more suitable when developing a
project which translates from a natural language into machine readable instruc-
tions. However, this conclusion assumes that the developer of the grammar has
knowledge of the natural language in order to correctly map ungrammatical
sentences into their grammatical representations. If the developer is not an ex-
pert of the natural language, it will be very hard to use concatenation since she
might not now which sentence that is the correct one. The RGL can be used
in such cases, but then only grammatical sentences can be produced and there
might be cases when it is not possible the articulate a sentence in a speficic
way.

5.3 suggestion engine

We generate all possible sentences and store the result in a Solr index. This
provides us with a strong suggestion engine which can suggest relevant sug-
gestions based on a partial sentence or only keywords. We can also generate
all possible Solr queries and also store them in the index. If we now link each
suggestion to the corresponding Solr query, we get a very fast and efficient
translating service (faster than translating with GF). However, if we do so, the
end application does not use the grammar at all. The grammar is only used for
initialization when we generate the instructions in natural languages and Solr
syntax. It is however unknown if this is an optimal solution. If so, is it worth
to invest time to learn GF with its programming language and libraries to just
generate sentences? As with learning any programming language, this varies
depending on the learning person. How complex it is to generate sentences in
a stand alone application without GF and a grammar is also unknown.

We conclude that we are unsure if the method of using a Solr index is the
right approach on suggestions together with a grammar.



5.4 known issues 52

5.4 known issues

Incorrect English grammar

As described in Section 5.2, the concrete syntax based on the RGL does not
properly linearize the plural form of the constant which_RP when using a sub-
ject that does not refer to a group of humans.

Name suggestions

The suggestion engine splits the input on words. It checks if a word can be
represented by a name. However, the application will not find names based
on multiple words. If a name is Apache Solr then at the current implementation
we would replace Apache with Apache Tomcat and Solr with Apache Solr if both
names existed in the index. The reason is because the application simply takes
the first name it finds. A better solution would try to find longer names first
in order to get more precise results.

PGF runtime

As described in Appendix A, the Java runtime make us of the PGF-format
when dealing with grammars. The Java class org.grammaticalframework.pgf.PGF
sometimes can not be initialized properly. It is unknown why this occur, but it
might depend on how Tomcat handles its native resources, as the PGF-class is
a connector to the native libraries. The problem can be temporarly solved by
redeploying the application.

Limited amount of suggestions

Suggestions are limited to depth 6 of an abstract syntax tree. This means
maximum 6 edges from root to leaf in an abstract syntax tree. It is therefore not
possible to get suggestions containing many names. The depth can however
be increased in the program.

5.5 future work

Improvments of suggestions

The suggestions obtained from the appliction are relevant to the input words,
but they can definitely be better. The suggestion engine do not give any sugges-
tions when the textbox is empty, in other words, it does not give suggestions
based on no words. For a user that has no clue of what to type, a suggestion
of base sentences could help the user to get to know the system.



5.5 future work 53

If one starts to type a partial instruction that does not contain any name, e.g.
people who know, then the application will suggest the sentence people who know
Lisp. The reason is because application automatically tries to fill the missing
name, and Lisp is the first name of the type Skill it finds. It would be good to
use some heuristic that can learn what the most relevant name of the specific
type would be.

Another nice improvement of the suggestion engine is to automatically choose
the first suggestion available if the user tries to translate an invalid instruction.
Or at least ask the user if the suggested sentence is what they meant.

Instructions in speech

Speech recognition software translate from speech to text. If one has access to
such software, it is relatively easy to enable speech to instructions translation
by using the application developed in this project. One simply uses the speech
recognition software to translate speech to text, and then take the text and
use it as input to the program. The program will show the most relevant
suggestions based on the input.

Proper handling of ambiguous instructions

If one translates an ambiguous instruction, the application will show all re-
sulting abstract syntax trees with their corresponding linearizations. A better
program would ask the user to clarify the instruction or choose one of the
abstract syntax trees as the one to use. Both alternatives are non trivial to
implement, since the former need a better grammar in order to distinguish
between ambiguous instructions and the latter need some heuristic to know
which instruction to choose.



A
G F S H E L L A N D R U N T I M E S Y S T E M S

This appendix describes how the dependencies of the application can be in-
stalled.

a.1 gf shell

The GF shell [12][p. 31] is the interpreter which can be used together with
GF-grammars. The shell is used by the application when generating abstract
syntax trees and is therefore needed in order to use the application.

An easy and convenient method of installing GF is by using the Haskell
program cabal [25]. Cabal is available if the haskell platform [26] is installed
on a system. The haskell platform can be installed on Debian by executing

sudo apt-get install haskell-platform

Run ’cabal update’ in a shell to download the latest package list from
hackage.haskell.org. GF can now be installed by executing:

$ cabal install gf

The GF-binary can now be found in ~/.cabal/bin/gf. Append this direc-
tory to the path variable:

export PATH=$PATH:~/.cabal/bin/gf

Note that export does not set $PATH permanently, so add the command to
~/.bashrc or similar.

a.2 gf runtime systems

While the GF-shell is a powerful tool, it is not very convenient to interact with
when programming an application. Luckily, the creators of GF has thought
about this and built embeddable runtime systems for a few programming lan-
guages [23, p. 3]. These runtime systems makes it possible to interact with
a grammar directly through language specific data types. We have chosen to
work with the Java-runtime system in this project.

54



A.2 gf runtime systems 55

1.2.1 Portable Grammar Format

The GF-shell interacts with grammars by interpreting the GF programming
language. This allows us to write our grammars in a simple and convenient
syntax. Interpreting the GF programming language directly is however a heavy
operation [23][p. 13], especially with larger grammars. This is where the
Portable Grammar Format (PGF) [23][p. 14] comes in. PGF is a custom made
machine language which is created by compiling a grammar with GF into a
PGF-file. The runtime systems works exclusively with PGF-files.

1.2.2 GF libraries

In order to use the Java-runtime, we first need to build a few libraries which
are used by the runtime system. The Java-runtime system depends on the C-
runtime system and a special wrapper between the C- and the Java-runtime.
The libraries are platform dependent. There are some some pre-generated li-
braries in the GF-project, but we have chosen to build the libraries from source
in this tutorial. The main reason is because we want to make the project suit-
able for many architectures. We will start by building and installing the C-
libraries. We will then go through how we can build the wrapper library.

1.2.2 Building and installing the C-runtime

Start by fetching the needed dependencies

$ sudo apt-get install gcc autoconf libtool

Download the latest source code of GF from GitHub.

$ git clone https://github.com/GrammaticalFramework/GF.git

It is also possible to download the project as an archive by visiting the repos-
itory url.

You will receive a directory GF/. Change the current working directory to
the C-runtime folder.

$ cd GF/src/runtime/c/

Generate a configuration file

$ autoreconf -i

Check that all dependencies are met

$ ./configure

If there exists a dependency that is not fulfilled, try to install an appropriate
package using your package-manager.



A.2 gf runtime systems 56

Build the program

$ make

Install the libraries you just built

$ sudo make install

Make sure the installed libraries are installed into /usr/local/lib. It is
crucial that they exists in that directory in order for the program to work.

1.2.3 Building and installing the C to Java wrapper library

Start by installing the needed dependency

$ sudo apt-get install g++

The wrapper is built by using a script which is executed in Eclipse [27]. This
step assumes that you have Eclipse installed with the CDT-plugin [28]. If you
don’t have Eclipse, you can download it with your package manager, just do
not forget to install the CDT-plugin.

Start Eclipse and choose File > Import.. in the menu. Choose Import

Existing Projects into Workspace and click on the Next button. Select Browse...
and navigate to the location where you downloaded GF from GitHub and
press enter. Uncheck everything except jpgf and click on Finish. You have
now imported the project which can build the Java-runtime system.

Eclipse need to have pointers to some directories of the Java virtual machine.
It is unfortunately not possible to use environment variables in eclipse, so we
need therefore to set the values manually.

Right-click on the project and choose Properties. Expand the C/C++ Build

menu, click on Settings. Click on Includes which is located below GCC C

Compiler. You will see one directory listed in the textbox. You need to check
that this directory exists. If not, change it to the correct one. For instance,
this tutorial was written using Debian 7 amd64 with Oracle Java 8, hence the
correct directory is

/usr/lib/jvm/java-8-oracle/include

In addition, one more directory is also needed by the project to build prop-
erly.

/usr/lib/jvm/java-8-oracle/include/linux

The project also needs another flag in order to build properly. In the Properties-
window, click on Miscellaneous below GCC C Compiler. Add -fPIC to the text
field next to Other flags. Click on Ok to save the settings.



A.2 gf runtime systems 57

You can now build the project by choosing Project > Build Project in the
menu. If everything went well you shall have generated a file libjpgf.so

in Release (posix)/. You can check that the dependencies of libjpgf.so is
fulfilled (i.e. it finds the C-runtime) by executing the following in a terminal

$ ldd libjpgf.so

If you do not see ’not found’ anywhere in the results, all dependencies are
met. However if the C-runtime libraries are missing then LD_LIBRARY_PATH is
probably not set. This is achieved by executing the following in the terminal:

$ export LD_LIBRARY_PATH=/usr/local/lib

This is only a one time setting and the variable will not exist for the next
terminal session. This is however not a problem, since the libraries will be
used by Apache Tomcat which will set the variable at startup.

Finish the tutorial by moving the wrapper library to the correct location.

$ mv libjpgf.so /usr/local/lib



B
I N S TA L L I N G T H E A P P L I C AT I O N

While Appendix A focused on installing GF-related dependencies, this ap-
pendix explains how the application can be installed into an application server.
Note that the application will not run unless all GF-dependencies are installed.
The application (and the source code) can be downloaded from thesis.agfjord.se
where also a working demo of the application can be found.

b.1 installing and configurating apache tomcat

This application can be executed by using any application server that supports
WAR-files. The WAR-file in this project is built using Maven, which can also
upload the file to an instance of the application server Tomcat. This method is
very convenient since it automates a lot work. The following section describes
how to install and configure Tomcat and Maven to work with this project.

Download and install Tomcat 8 and Maven (here by using aptitude package-
manager).

$ sudo apt-get install tomcat8 tomcat8-admin maven

Tomcat requires an uploader to have the correct permissions.
Edit /etc/tomcat8/tomcat-users.xml and add the following:

/etc/tomcat8/tomcat-users.xml

------------------------------------------------

<tomcat-users>

<role rolename="manager-gui"/>

<role rolename="manager-script"/>

<user username="admin" password="secr3t" roles="manager-gui,manager-script"/>

</tomcat-users>

As the application will use the generated wrapper library libjpgf.so, we
need to make a proper reference to this library and its dependencies (the C-
libraries). This is achieved by creating a new file setenv.sh in the directory
/usr/share/tomcat8/bin/, the location of this directory can differ on differ-
ent Linux-distributions. The directory shall contain the file catalina.sh, so a
search on the file should show the correct directory.

Create the file setenv.sh and add the following

58

http://thesis.agfjord.se/


B.2 uploading the solr-service 59

/usr/share/tomcat8/bin/setenv.sh

------------------------------------------------

#!/bin/sh

export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH

export JAVA_OPTS=’-Dsolr.solr.home=<project_workspace>/solr-instrucs’

Note that <project_workspace> must be replaced by the actual location of
the workspace, and make sure it is writeable by Tomcat. Restart Tomcat for
the changes to take effect.

$ sudo service tomcat8 restart

The next thing we would like to do is to allow Maven to upload applications
to Tomcat. As Tomcat now has an admin user with a password, we can use
this to setup a server definition in Maven.
Add the following to /etc/maven/settings.xml

/etc/maven/settings.xml

------------------------------------------------

<servers>

<server>

<id>localTomcatServer</id>

<username>admin</username>

<password>secr3t</password>

</server>

</servers>

The field id is used by the application to define that it shall be uploaded to
the server we just specified.

b.2 uploading the solr-service

The application makes use of a Solr-service which is bundled as a maven
project inside <project_workspace>/solr_mvn. The Solr-service can be up-
loaded to Tomcat by executing the following:

$ cd <project_directory>/solr_mvn/

$ mvn tomcat7:deploy

b.3 generating mock-data

We generate mock-data for the suggestion engine by executing a program. The
program uses a the jar file org.grammaticalframework.pgf.jar as dependency,
the jar must therefore be added to the local maven repository. Execute the
following:



B.4 uploading the website 60

$ cd <project_directory>/

$ mvn install:install-file -Dfile=org.grammaticalframework.pgf.jar

-DgroupId=org.grammaticalframework

-DartifactId=pgf -Dversion=1.0 -Dpackaging=jar

Mock data can now be generated by executing the following:

$ cd <project_directory>/mock-data/

$ mvn compile

$ export MAVEN_OPTS=’-Djava.library.path=/usr/local/lib’

$ mvn exec:java -Dexec.mainClass="org.agfjord.graph.Main"

There also exists a script populize_solr inside mock-data/ that is more con-
venient to use.

b.4 uploading the website

The project can be uploaded to tomcat by executing the following:

$ cd <project_directory>/nlparser/

$ mvn tomcat7:deploy

The application shall now be accessible through the URL
http://localhost:8080/nlparser.

http://localhost:8080/nlparser


B I B L I O G R A P H Y

[1] Donald E. Knuth. Computer Programming as an Art. Communications of
the ACM, 17(12):667–673, December 1974. (Cited on page ii.)

[2] Danica D. Damljanovic. Natural Language Interfaces to Conceptual Mod-
els. 2011. URL http://gate.ac.uk/sale/dd/thesis/thesis.pdf. [Online;
accessed 9-August-2014]. (Cited on page 1.)

[3] Esther Kaufmann and Abraham Bernstein. How useful are natural lan-
guage interfaces to the semantic web for casual end-users? 6th In-
ternational Semantic Web Conference, 2nd Asian Semantic Web Conference,
ISWC 2007 + ASWC 2007, Busan, Korea, November 11-15, 2007. Proceed-
ings, pages 281–294, 2007. URL http://www.cs.xu.edu/csci390/08s/

NLInterfacesUsefulToEndUsers.pdf. (Cited on pages 1 and 3.)

[4] Unicorn: A System for Searching the Social Graph. International Conference
on Very Large Data Bases (VLDB). URL http://www.vldb.org/pvldb/vol6/

p1150-curtiss.pdf. [Online; accessed 24-July-2014]. (Cited on pages 1

and 3.)

[5] Marissa Mayer. Seattle Conference on Scalability: Scaling Google for
Every User, 2007. URL https://www.youtube.com/watch?v=Syc3axgRsBw.
[Online; accessed 1-July-2014]. (Cited on page 2.)

[6] Donald E. Knuth. Semantics of context-free languages. Mathematical sys-
tems theory, 2(2):127–145, 1968. ISSN 0025-5661. doi: 10.1007/BF01692511.
(Cited on page 2.)

[7] John E. Hopcroft and Jeffrey D. Ullman. Introduction To Automata Theory,
Languages, And Computation. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1st edition, 1990. ISBN 020102988X. (Cited on
page 2.)

[8] Donald E. Knuth. Backus Normal Form vs. Backus Naur Form. Com-
mun. ACM, 7(12):735–736, December 1964. ISSN 0001-0782. doi: 10.
1145/355588.365140. URL http://doi.acm.org/10.1145/355588.365140.
(Cited on page 2.)

[9] Aarne Ranta. Grammatical framework: A type-theoretical grammar for-
malism. journal of functional programming. Journal of Functional Program-
ming, 14(2):145–189, 2004. URL http://www.cse.chalmers.se/~aarne/

articles/gf-jfp.pdf. (Cited on page 2.)

61

http://gate.ac.uk/sale/dd/thesis/thesis.pdf
http://www.cs.xu.edu/csci390/08s/NLInterfacesUsefulToEndUsers.pdf
http://www.cs.xu.edu/csci390/08s/NLInterfacesUsefulToEndUsers.pdf
http://www.vldb.org/pvldb/vol6/p1150-curtiss.pdf
http://www.vldb.org/pvldb/vol6/p1150-curtiss.pdf
https://www.youtube.com/watch?v=Syc3axgRsBw
http://doi.acm.org/10.1145/355588.365140
http://www.cse.chalmers.se/~aarne/articles/gf-jfp.pdf
http://www.cse.chalmers.se/~aarne/articles/gf-jfp.pdf


bibliography 62

[10] Per Martin-Löf and Giovanni Sambdin. Intuitionistic type theory.
1984. URL http://www.cs.cmu.edu/afs/cs/Web/People/crary/819-f09/

Martin-Lof80.pdf. [Online; accessed 10-August-2014]. (Cited on page 2.)

[11] Xiao Li. Under the Hood: The natural language interface of Graph Search,
2013. URL https://www.facebook.com/notes/facebook-engineering/

under-the-hood-the-natural-language-interface-of-graph-search/

10151432733048920. [Online; accessed 23-July-2014]. (Cited on page 3.)

[12] Aarne Ranta. Grammatical Framework: Programming with Multilingual Gram-
mars. CSLI Publications, Stanford, 2011. ISBN-10: 1-57586-626-9 (Paper),
1-57586-627-7 (Cloth). (Cited on pages 4 and 54.)

[13] Aarne Ranta. The GF resource grammar library. Linguistic Issues in
Language Technology, 2009. URL http://elanguage.net/journals/index.

php/lilt/article/viewFile/214/158.Rosetta. (Cited on pages 4 and 9.)

[14] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princi-
ples, Techniques, and Tools. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1986. ISBN 0-201-10088-6. (Cited on page 4.)

[15] Ramona Enache. Frontiers of Multilingual Grammar Develop-
ment. Chalmers University of Technology, Göteborg, 2013.
URL http://publications.lib.chalmers.se/publication/

183497-frontiers-of-multilingual-grammar-development. ISBN-13:
978-91-628-8787-2. (Cited on page 4.)

[16] Rafał Kuć. Apache Solr 3.1 cookbook. Packt Publishing, Birmingham, UK,
2011. (Cited on page 5.)

[17] Björn Bringert, Thomas Hallgren, and Aarne Ranta. GF Resource Gram-
mar Library: Synopsis. http://www.grammaticalframework.org/lib/

doc/synopsis.html. [Online; accessed 10-August-2014]. (Cited on page 9.)

[18] Krasimir Angelov, Björn Bringert, and Aarne Ranta. Speech-enabled hy-
brid multilingual translation for mobile devices. EACL 2014, page 41, 2014.
URL http://www.aclweb.org/anthology/E/E14/E14-2011.pdf. (Cited on
page 15.)

[19] Krasimir Angelov. Incremental parsing with parallel multiple context-
free grammars. In European Chapter of the Association for Computational
Linguistics, 2009. URL www.aclweb.org/anthology/E09-1009. (Cited on
page 15.)

[20] Andrzej Bialecki, Robert Muir, and Grant Ingersoll. Apache Lucene
4. http://opensearchlab.otago.ac.nz/paper_10.pdf, 2012. [Online; ac-
cessed 20-June-2014]. (Cited on page 15.)

http://www.cs.cmu.edu/afs/cs/Web/People/crary/819-f09/Martin-Lof80.pdf
http://www.cs.cmu.edu/afs/cs/Web/People/crary/819-f09/Martin-Lof80.pdf
https://www.facebook.com/notes/facebook-engineering/under-the-hood-the-natural-language-interface-of-graph-search/10151432733048920
https://www.facebook.com/notes/facebook-engineering/under-the-hood-the-natural-language-interface-of-graph-search/10151432733048920
https://www.facebook.com/notes/facebook-engineering/under-the-hood-the-natural-language-interface-of-graph-search/10151432733048920
http://elanguage.net/journals/index.php/lilt/article/viewFile/214/158.Rosetta
http://elanguage.net/journals/index.php/lilt/article/viewFile/214/158.Rosetta
http://publications.lib.chalmers.se/publication/183497-frontiers-of-multilingual-grammar-development
http://publications.lib.chalmers.se/publication/183497-frontiers-of-multilingual-grammar-development
http://www.grammaticalframework.org/lib/doc/synopsis.html
http://www.grammaticalframework.org/lib/doc/synopsis.html
http://www.aclweb.org/anthology/E/E14/E14-2011.pdf
www.aclweb.org/anthology/E09-1009
http://opensearchlab.otago.ac.nz/paper_10.pdf


bibliography 63

[21] Ricardo Jimenez-Peris and Marta Patiño-Martinez. Java Enterprise Edi-
tion. In Ling Liu and M.Tamer Özsu, editors, Encyclopedia of Database Sys-
tems, pages 1578–1579. Springer US, 2009. ISBN 978-0-387-35544-3. doi:
10.1007/978-0-387-39940-9_1542. (Cited on page 16.)

[22] Jason Van Zyl. Maven - the definitive guide: everything you need to know from
ideation to deployment. O’Reilly, 2008. ISBN 978-0-596-51733-5. (Cited on
page 16.)

[23] Krasimir Angelov. The Mechanics of the Grammatical Frame-
work. Chalmers University of Technology, Göteborg, 2011.
URL http://publications.lib.chalmers.se/publication/

149979-the-mechanics-of-the-grammatical-framework. ISBN-13:
978-91-7385-605-8. (Cited on pages 17, 54, and 55.)

[24] Vivek Chopra, Sing Li, and Jeff Genender. Professional Apache Tomcat 6.
Wrox, 2011. ISBN 978-0-471-75361-2. (Cited on page 18.)

[25] Isaac Jones. The Haskell Cabal, a common architecture for building ap-
plications and libraries. URL http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.127.9361. [Online; accessed 9-August-2014]. (Cited
on page 54.)

[26] The Haskell Platform. URL: https://www.haskell.org/platform/. [On-
line; accessed 10-August-2014]. (Cited on page 54.)

[27] Steve Holzner. Eclipse Cookbook. O’Reilly Media, Inc., 1 edition, 2004. ISBN
978-0-596-00710-2. (Cited on page 56.)

[28] Eclipse Foundation. Eclipse CDT. URL http://www.eclipse.org/cdt/.
[Online; accessed 10-August-2014]. (Cited on page 56.)

http://publications.lib.chalmers.se/publication/149979-the-mechanics-of-the-grammatical-framework
http://publications.lib.chalmers.se/publication/149979-the-mechanics-of-the-grammatical-framework
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.127.9361
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.127.9361
https://www.haskell.org/platform/
http://www.eclipse.org/cdt/

	Cover
	Abstract
	Acknowledgments
	Contents
	Acronyms
	1 Introduction
	1.1 A demand for a new user interface
	1.2 A natural language interface
	1.3 Problem description
	1.4 A proposed solution
	1.5 Related work

	2 A simple grammar
	2.1 Abstract syntax
	2.2 Concrete syntax
	2.3 Translation
	2.4 GF resource grammar library
	2.5 Generalizing the concrete syntax

	3 Application development
	3.1 Brief description of the application
	3.2 Grammar development with the RGL
	3.3 Suggestion engine
	3.4 Alternative implementation without the RGL
	3.5 Generation of mock data

	4 Results
	4.1 Translations
	4.2 Suggestions

	5 Conclusions
	5.1 A brief discussion about the results
	5.2 Comparison of the RGL and simple concatenation
	5.3 Suggestion Engine
	5.4 Known issues
	5.5 Future work

	A GF shell and runtime systems
	A.1 GF shell
	A.2 GF runtime systems

	B Installing the application
	B.1 Installing and configurating Apache Tomcat
	B.2 Uploading the Solr-service
	B.3 Generating mock-data
	B.4 Uploading the website

	Bibliography

