UNIVERSITY OF GOTHENBURG

Shard Selection in Distributed Collaborative Search
Engines

A design, implementation and evaluation of shard selection in
ElasticSearch

Master of Science Thesis in Computer Science

PER BERGLUND

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering
Goteborg, Sweden, June 2013

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Shard Selection in Distributed Collaborative Search Engines
A design, implementation and evaluation of shard selection in ElasticSearch

Per Berglund
© Per Berglund, June 2013.
Examiner: Marina Papatriantafilou

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Goteborg, Sweden June 2013

Abstract

To increase their scalability and reliability many search engines today are distributed
systems. In a distributed search engine several nodes collaborate in handling the search
operations. Usually each node is only responsible for one or a few parts of the index
used for storing and searching. These smaller index parts are usually referred to as
shards.

Lately ElasticSearch has emerged as a popular distributed search engine intended for
medium- and large scale searching. An ElasticSearch cluster could potentially consist of
a lot of nodes and shards. Sending a search query to all nodes and shards might result
in high latency when the size of the cluster is large or when the nodes are far apart
from each other. ElasticSearch provides some features for limiting the number of nodes
which participate in each search query in special cases, but generally each query will be
processed by all nodes and shards.

Shard selection is a method used to only forward queries to the shards which are es-
timated to be highly relevant to a query. In this thesis a shard selection plugin called
SAFE has been developed for ElasticSearch. SAFE implements four state of the art
shard selection algorithms and supports all current query types in ElasticSearch. The
purpose of SAFE is to further increase the scalability of ElasticSearch by limiting the
number of nodes which participate in each search query. The cost of using the plugin is
that there might be a negative effect on the search results.

The purpose of this thesis has been to evaluate to which extent SAFE affects the search
results in ElasticSearch. The four implemented algorithms have been compared in three
different experiments using two different data sets. Two new metrics called Pk@QN and
Modified Recall have been developed for this thesis which measures the relative per-
formance between exhaustive search and shard selection in a search engine like Elastic-
Search.

The results indicate that three algorithms in SAFE perform very well when documents
are distributed to shards depending on which linguistic topic they belong to. However if
documents are randomly allocated to shards, which is the standard approach in Elastic-
Search, then SAFE does not show any significant results and seems to be unusable.

This thesis shows that if a suitable document distribution policy is used and there is a
tolerance for losing some relevant documents in the search results then a shard selec-
tion implementations like SAFE could be used to further increase the scalability of a
distributed search engine, especially in a low resource environment.

Acknowledgements

This idea for this thesis came from Findwise AB, a search-oriented IT consultant com-
pany in Gothenburg. A special thanks to Karl Neyvaldt and Svetoslav Marinov at
Findwise for technical and academic advice. I would also like to thank Nawar Alkurdi
for her support and for helping me to get in touch with Findwise. Finally I would also like
to thank my supervisor and examiner Marina Papatriantafilou at Chalmers/University
of Goteborg for taking me on as a student and providing me with feedback and guidance.

Per Berglund, Gothenburg 2013-06-14

Contents

1 Introduction

1.1
1.2

Historical background,
Research aim
1.2.1 Problem description
1.22 Maingoals
1.2.3 Scope and limitationo oo oL

2 Background

2.1

2.2
2.3

2.4

2.5

2.6

Introduction to IR
2.1.1 Data representation for efficient searching
2.1.2 Document scoring
2.1.3 Evaluating IR systems
2.1.4 Sharding of indices L
2.1.5 Case study: ElasticSearch
Shard selection L
Lexicon algorithms oo
2.3.1 CORI
2.3.2 HighSim
Surrogate algorithms Lo
2.4.1 Best-N algorithm 0oL
242 ReDDe e
2.4.3 Sushi
2.4.4 Sampling-Based Hierarchical Relevance Estimation (SHiRE)

Other approaches L
2.5.1 Shard and query clustering oL
2.5.2 Highly discriminative keys
Document allocation policies
2.6.1 Random allocation L.
2.6.2 Attribute-based allocation 0L

CONTENTS

2.6.3 Topic-based allocation .
2.6.4 Time-based data flow .
2.7 Evaluating shard selection . . .

Shard Selection Algorithms Extension for ElasticSearch

3.1 Work-flow

32 SAFE
3.2.1 SAFE Requirements . .
3.2.2 Cluster configuration . .
3.2.3 Implemented algorithms
3.2.4 Refresh operation
3.2.5 Shard selection operation
3.2.6

Experiment

4.1 Datasets

4.2 Experimental setup

4.3 Metrics
4.3.1 Modified recall
432 Pk@QN

4.3.3 Average number of shards selected

Results and discussion

5.1 Experimental result
5.1.1 Modified recall
51.2 Pk@QN
5.1.3 Shard cutoff

5.2 Discussion

Conclusion

6.1 Futurework

6.2 Conclusion

Bibliography

Data set

A.1 Filters applied to Twitter API

Project reference manual
B.1 General information
B.2 README.md from Github

Handling of constraints presented by ElasticSearch and Lucene . .

ii

24
24
25
25
26
27
27
29
30

32
32
33
34
34
34
35

36
36
36
37
39
40

42
42
43

46

47
47

Introduction

HARD selection is an optimization for distributed search engines. The idea is that

a query should only be processed by nodes which are likely to return relevant

results. Shard selection is a well-researched problem to which many different

solutions have emerged over the past fifteen years. This chapter is concerned

with giving an understanding of why this problem exists and why it is important to
research. It will also clarify the goal of this thesis give a summary of the results.

1.1 Historical background

When the Internet was introduced in the early 90s there were few who could predict
the rapid growth of open information that would come. To enable users to find useful
websites there was a server hosted by the European Organization for Nuclear Research
(CERN)! which contained a list of available servers on the Internet [1]. Before long this
centralized index became unfeasible to use for finding relevant servers for a user’s need.
The method of finding information on the Internet was revolutionized when the first
search-engines appeared. By indexing web-pages from all over the world users could
suddenly find relevant information by just providing names or other terms that they
were interested in. As a result some of the most popular search-engines have grown into
global multi-billion dollar companies.

Search engines have since become vital in many areas of information technology. They
are used in all kinds of applications and organizations for navigating users, data-mining
and statistics. Deploying a search engine for a specific purpose today is often quite easy

!CERN: Accelerating science, http://home.web.cern.ch/

1.2. RESEARCH AIM CHAPTER 1. INTRODUCTION

and cheap since there are good open-source implementations and a growing knowledge-
base. One server in the mid-range performance spectrum is now able to handle several
gigabytes of data and hundreds of thousands of request without a problem.

Despite the increased capabilities of computers and networks there is still a need for
increased scalability in search engines since information grows at a staggering rate. Many
search engines today are distributed systems with several nodes collaborating in handling
the work-load. A common approach is to split the index into smaller parts called shards
and let each node be responsible for one or a few of them. By allowing new nodes to be
added and new shards to be created the scalability of the search engine is secure. By
replicating the shards to different nodes the reliability is also greatly enhanced since the
system can handle node failures.

Although distributed search engines provide enhanced scalability and reliability they do
not guarantee increased performance. The collaborating nodes might be far apart from
each other resulting in network-latency. Another aspect is that the nodes might not
have equal specifications, e.g. some nodes might have solid-state hard-drives while some
may not. This sparked a new research-area in the mid-90s called shard selection with
CORI [2] being the first successful algorithm. The idea is to identify a subset of the
nodes which are most likely to have relevant information for each search request. By
limiting the number of nodes which participate in each search request the scalability of
distributed search engines can be further increased. Many algorithms have since emerged
to tackle this problem depending on the architecture of the search engine and the data
that they handle.

1.2 Research aim

1.2.1 Problem description

ElasticSearch [3] has recently emerged as a popular search engine. One of the main
purposes of ElasticSearch is to provide an open source platform for large scale search-
ing. To achieve this goal the search engine is distributed and allows several nodes to
collaborate in handling the indexing and search operations. The search engines index is
split into smaller parts called shards and each node is only responsible for one or a few
shards.

When a user sends a query to an ElasticSearch cluster the results will not be returned
before all targeted nodes have processed the query against their shards. In a best case
scenario all nodes have equal performance, are put in the same location and are dedicated
ElasticSearch servers, in which case the query-to-result time will not be affected by how
many nodes process the search query. Usually this best case scenario cannot be achieved
which result in higher latency when the number of nodes in the cluster increases.

To tackle this problem ElasticSearch provides some features to limit the number of nodes

1.2. RESEARCH AIM CHAPTER 1. INTRODUCTION

which process each search query. When a query is targeting a specific document ID or a
specific document type only the nodes which contain these documents will be queried. A
more detailed discussion about these features can be found in section 2.1.5. Since these
features can only be used under special circumstances there are many cases in which all
nodes will have to process a search query which sets a clear limitation to the scalability
of ElasticSearch.

1.2.2 Main goals

The idea in this thesis is that a method called shard selection might solve the scalability
issue in ElasticSearch described in the previous section. A plugin for ElasticSearch will
provide the shard selection functionality and some of the most established shard selection
algorithms will be implemented to the plugin.

The goal of this thesis is to evaluate what effect the shard selection plugin will have on
the quality of the results from queries in ElasticSearch. This leads to the first research-
question:

How 1is the quality of search-results affected by the different shard selection
algorithms?

These results will indicate the usefulness of shard selection not only in ElasticSearch but
also in other distributed and collaborative search engines. The main difference given the
collaboration aspect is that some crucial statistics used in many algorithms are known
by all servers and doesn’t have to be estimated. This leads to the second research
question:

Which shard selection algorithms are most suitable for shard selection in a
collaborative distributed search engine?

1.2. RESEARCH AIM CHAPTER 1. INTRODUCTION

1.2.3 Scope and limitation

Search engine is a commonly used name for information retrieval (IR) systems since such
systems are searching for information rather than fetching information in a structured
way as in a database. In order to give the reader a good understanding of the problem
I will give an introduction to many concepts in information retrieval and some of the
most established models for information retrieval systems. I will also give an overview of
ElasticSearch but only the aspects which are relevant for shard selection. Except for these
two subjects the report is only concerned with different aspects of shard selection.

To be able to focus on shard selection this thesis uses two assumptions. The first as-
sumption is that the IR model used in ElasticSearch is sound and effective and that
the implementation of the model in ElasticSearch is correct. This leads to the second
assumption which states that all documents returned from ElasticSearch for a specific
search query are relevant to that query. As discussed in section 2.1.2 this is usually not
the case but by using this assumption the relative damage to the search results by shard
selection can be evaluated.

Since the aim of this thesis is to evaluate shard selection in a cooperative distributed
search engine (ElasticSearch) I will not go into much detail about the extra challenges
facing shard selection in un-cooperative distributed search engines. Examples of un-
cooperative distributed search engines are meta search engines which forwards a query
to several different search engines which are unaware of each other.

Background

If you steal from one author it’s
plagiarism; if you steal from many it’s
research

Wilson Mizner

NFORMATION RETRIEVAL and search engines are both large areas for research. Ev-
erything from indexing time to the quality of the search results is important for
the success of a search engine.

This chapter will start by introducing some on the key concepts that are related to
shard selection to provide a basic understanding of how a search engine operates. The
distributed search engine ElasticSearch will be used as a case study. Later the shard elec-
tion problem will be discussed including detailed explanations of some of the most tested
and established algorithms. Finally other aspects which could influence the performance
of the algorithms will be discussed.

2.1 Introduction to Information Retrieval

The goal of information retrieval (IR) is to satisfy an information need from within a
large collection of material [4]. There are many IR models which has been developed,
and some of the most common ones include the boolean model, vector space model and
language model. An information retrieval system is an implementation of an IR model.
The following section will be general and is not dependent on which model is used.

Most people are probably more familiar with database systems when it comes to storing

2.1. INTRODUCTION TO IR CHAPTER 2. BACKGROUND

and finding information in computer science. To get started with IR it may be good to
use database systems as a reference to some of the main concepts of IR systems. Some
of the most common terms in database systems and their corresponding IR terms are
listed in 2.1.

Even though most IR terms can be likened to database terms there are some major
differences between the two concepts. A database consists of structured data. Queries
to a database are also structured and the results from a query are data which are exact
matches to the query.

In IR systems both the data and the queries are unstructured, usually consisting of
natural language text. The retrieval method in IR systems is probabilistic meaning that
data returned from a query are not exact matches. IR systems are said to be searching
for their data and thus they are often referred to as search engines and this name will
be used throughout this report.

Row, Tuple | Document
Column Field
Table Index
Database Collection

Table 2.1: Common database terms and their corresponding IR terms

2.1.1 Data representation for efficient searching

all |Id:1,tf:5 ||Id:3,tf:2 |
art ||d:2,tf:2 ||Id:10,tf:2|

begin
book |Id:1,tf:6 ||Iu::l:2,tf:1l]I |
terms postings

Figure 2.1: An inverted index with terms pointing to a list of positing containing document
IDs and term-frequencies

In the basic boolean IR model a document is considered to be relevant to a query if
they share at least one term. A naive approach to finding relevant documents for a
query would then be to scan all documents to see if they contain at least one of the

2.1. INTRODUCTION TO IR CHAPTER 2. BACKGROUND

query-terms. This approach is obviously not scalable and would result in a very bad
performance even when the collection of documents is relatively small.

Documents in a search engine are usually only scanned during the indexing phase [4].
When a document is added to the search engine for storage it is processed by a document
pipeline, a series of steps which transforms the text of documents into indexable terms.
The steps in the pipelines differ greatly depending on the structure and contents of the
documents, but some variant of the following four steps are usually included:

1. Assign a unique ID to the document.

2. Split the text of the document into tokens by some rule, for example "produce
a new token each time a white space occurs in the text”. If this simple rules is
applied on a document with the text | My name is Per‘ it will produce the tokens

3. Normalize the tokens into indexing terms. Normalization often includes applying
a lower-case function on the letters in the tokens ((my|, [name], , per|).

4. Remove stop words from the resulting terms. There is no formal definition of stop
words but examples include "this”, "and”, "or”. ((my|, [name], [per]).

Each term will be added as a key to a multi-value map which is called an inverted index
and can be seen in Figure 2.1. Each value (or posting) for a term in the index is the
ID of a document which contains the term, together with statistics like the frequency of
the term in that document. The inverted index has become the de-facto standard for
representing documents in a search engine [4].

When a query is given to the search engine it is tokenized and normalized just like the
documents. The terms in the query are then used as lookup-values in the inverted index.
The posting-lists received from the look-ups are then used to sort the relevant documents
depending on the scoring-function of the search engine.

A document structure is often more complex than the basic structure assumed here.
A document is often split into fields with different attributes and data-types. Most
documents include a "text” field, but it’s also common to add fields for meta-data like an
“author” field and a ”date” field. A query may be applied to one or many of the fields.
There are different approaches how to represent this extended inverted-index but one
simple approach is to have a separate index for each document-field.

2.1.2 Document scoring

In the previous section a boolean relevance model was assumed, where a document
is relevant if it contains one or more of the terms in a query. Reality is often more
complicated than this. As an example, a document titled "shard selection algorithm”

2.1. INTRODUCTION TO IR CHAPTER 2. BACKGROUND

contains the term “algorithm”; but is it really relevant to the query ”Algorithm for path-
finding”?

Determining if a document is relevant to a query is a fundamentally hard problem. The
only way to really determine if a document is relevant to a query or not is for a user
to judge it as relevant or not [4]. Most IR models assign a score to documents given a
query, where a higher score is more likely to be judged as relevant by a user compared
to a document with a lower score. Some of the most common scoring models will be
described below.

The Tf-Idf scoring model assumes that a document/document-field with a high
frequency of the query-terms is more relevant to the query [4]. Using only this criterion
would however disproportionally discriminate against less common terms in a query. For
example, in the query "Computer Science Chalmers” the terms "computer” and "science”
probably have a high term-frequency in many documents, but the term ”"Chalmers” is
probably the most important term since it is the most specific.

As a result, the tf-weights are combined with the inverse document frequency (idf)
weights [4]. Df is calculated by counting the number of postings for a term in the
inverted index, and the idf is calculated by dividing the total number of documents by
this number as in equation 2.1.

N
Idfy = —_— 2.1
dfy = log x D, (2.1)

The combination of tf-weight and idf-weights determines the score for a document given
a query of terms [4] as is displayed in equation 2.2.

score(d,q) = ZTft,d x Idfy (2.2)

teq

The vector-space model In the vector-space model documents and queries are rep-
resented as vectors of weighted terms [4]. The weights can be calculated in different
manners, but a common approach is to use the Tf-idf weights described in the previous
paragraph. Relevance between a document d and a query ¢ is determined by the cosine
of the angle between the vectors, often called cosine similarity and is calculated as in
equation 2.3.

_ 7d) 711
score(d,q) = V<1V (2.3)

2.1. INTRODUCTION TO IR CHAPTER 2. BACKGROUND

2.1.3 Evaluating IR systems

Recall and Precision are two of the most common metrics used when evaluating IR
systems [4]. Recall measures how many of all relevant documents in the collection that
are returned from a query. More formally, let A be the set of documents that are relevant
to a query and B be the set of documents that are retrieved. Then recall is calculated
as in equation 2.4.

|AN B
Al

recall = (2.4)

Precision on the other hand measures how many of the returned documents from a query
that are relevant. Precision is calculated as in equation 2.5.

|AN B|
|Bi

precision = (2.5)

Note that achieving a high recall value is very easy; the system could return all documents
in the collection for each query and it would result in a perfect score. However, this would
result in a very low precision.

As mentioned in section 2.1.2 the only way to know if a document is relevant or not is
to use relevance judgments from users. Both of these metrics require the data-sets used
in evaluation to have such judgments.

2.1.4 Sharding of indices

When the number of indexed documents grows the posting lists for some terms might
become quite extensive. Lookup-time for terms is a constant operation, but the time it
takes to traverse the posting lists increases linearly, which eventually results in a lower
throughput of the system. Performing various optimizations like defragmentation might
help to maintain the performance in the short run. In the long run the best solution is
to split the index into smaller parts. This process is called sharding. The shards may
be distributed to different nodes which enables multiple computers to collaborate in the
search-process.

In the context of databases, sharding refers to a horizontal partitioning of a table. In
this scheme the rows of a table are split up rather than the columns. In this way each
shard can stand on its own. One advantage of using this scheme is that the rows can
be partitioned by one or more attributes, which mean that some of the shards can be
filtered out in some queries.

2.1. INTRODUCTION TO IR CHAPTER 2. BACKGROUND

Shard 1, Docs: 1,7,10

[1d: 10, tF:2]
bogin_|

Shard 2, Docs: 2,3

[al }——[1d:3,t:2]
art
[1d: 2, tf: 10 |

Figure 2.2: Illustration of the inverted index in Figure 2.1 split into two shards

When a search engine index is sharded the documents are partitioned rather than the
terms (remember that documents may be likened to rows in a database). Since the
scoring-function of some search engines depends on document-frequency of a term the
results of a query may be affected.

2.1.5 Case study: ElasticSearch

EasticSearch [3] is an open-source distributed search engine under the Apache 2.0 license.
It was built with big data in mind which has given it an emphasis on scalability and
reliability. A running instance of ElasticSearch is called a node and together they form
a cluster [5]. As the name implies it is very elastic” in that it automatically handles
rebalancing of indices and shards when new nodes are added or removed from the clus-
ter. As a result developers may add or remove nodes as a means to increase or reduce
resources allocated for the cluster by demand.

Just like the popular search engine Solr ! ElasticSearch uses Lucene ? as a core library for

indexing and scoring documents. Lucene supports several IR model but is shipped with
an implementation of the vector-space model with tf-idf weights as discussed in earlier
sections. Since Lucene has been used in and maintained by many different applications

!Solr: Ultra-fast Lucene-based Search Server, http://lucene.apache.org/solr/
*Lucene Core: Proven search capabilities, http://lucene.apache.org/core/

10

2.2. SHARD SELECTION CHAPTER 2. BACKGROUND

there is an implicit trust in the basic search capabilities of ElasticSearch. As a result
the developers of ElasticSearch have been able to focus on usability, scalability and
performance of the search engine.

Multiple indices ElasticSearch supports sharding of indices, but the number of shards
of an index has to be set when the index is created and can thus not increase or decrease
on demand [5]. To compensate for this ElasticSearch has support with multiple indices,
a feature which distinguishes it from most other search engines.

Instead of increasing the number of shards when the number of documents grows it’s
recommended to construct a new index with the same type. A query may be forwarded
to one or many indices which can be specified in the query. Thus, an index may also
be referred to as a shard in ElasticSearch, if there are many indices with the same

type.

From now on a shard in this report will refer to an index in ElasticSearch.

Query routing To enhance its scalability further ElasticSearch comes with a sophisti-
cated system for routing queries to nodes. The simplest example is when ElasticSearch is
used as a database, where the ID of documents to fetch is specified in a query. In this case
only the nodes where the documents reside will process the query. Since ElasticSearch
is mainly used for searching this feature only has a limited value.

There are other features which may be used for query-routing [5]. An index in Elastic-
Search support different types. Each type may be assigned a specific routing-value. If a
routing-value is assigned to a type the default policy is to cluster the documents of that
type together in the same shard. If a type is specified in a query it will only be routed
to the nodes which contain documents of that type.

In many cases the type of the documents requested are not known. As an example,
assume we have an index containing documents representing tweets (twitter posts). Each
user is assigned its own type with a unique routing-value and each tweet will be stores as
the type of the user who posted it. As long as we are able to specify which user we want
to search from in a query we can use ElasticSearch’ built-in query-routing functionality.
But in many cases we want to make a global search across all users, perhaps for a
specific topic. As of the time this thesis is written all nodes containing at least one shard
of the twitter-index will have to process the query for a global search. This is where
shard-selection might come in handy for ElasticSearch.

2.2 Shard selection

Despite all the advantages of having a sharded index there are some drawbacks which
have to be addressed. In a distributed search engine the bottleneck is often the slowest

11

2.2. SHARD SELECTION CHAPTER 2. BACKGROUND

node, and this will determine the speed of delivering query-results to the users. Many
factors could impact the performance of a node, like its hardware specification or location
relative to the other nodes in the cluster. Even if the nodes are placed at the same
location and are given the same hardware there might be network congestion when they
receive many simultaneous requests. Especially in low-resource environment there is a
need to limit the number of nodes which participate in each search query [6].

Node A Node B Node C
Jo BES 2
No Yes No (?)
Broker
Query

Figure 2.3: Illustration of the shard-selection problem: a query is sent to a broke node
which routes it all data nodes, even nodes which do not contain any relevant documents.

In some cases only a few nodes contributes to the top-results for a query. An example is
given in figure 2.3. A common approach is to have one shard on each data-node. A query
is sent to a broker-node which will re-route the query to data-nodes. The data-nodes
process the query and return documents which are determined as relevant to the query.
The broker-node will combine the results and give it back to the user which sent the

query.

In this example there are several relevant documents in node B but no relevant documents
in node A. The broker-node could have ignored routing the query to node A to save
resources without having any impact on search result. Since node C only holds a few
relevant documents it could probably also be ignored but there is always a possibility
that these documents would get a higher score than all documents in node B.

Predicting the impact a node will have on the result for a query is part of a problem
called shard selection® [6]. A decision also has to be made if the predicted relevance

30ther common names for this problem are collection-selection, resource-selection and server-
selection. In this report shard selection will be used since it makes most sense in a collaborative dis-
tributed search engine. .

12

2.3. LEXICON ALGORITHMS CHAPTER 2. BACKGROUND

is high enough for a query to be processed by the node. The goal is to save resources
without having a big impact on the quality of the search-result.

The basic idea of all algorithms for shard-selection is that they collect information from
the different nodes by investigating the information contained in the shards they hold. In
an offline phase and use this information to make online relevance-judgments for shards
given a query. Only one or some of the nodes collect this information (broker-nodes)
and all queries from the user should handle to these nodes which will forward the query
to the selected shards [7].

2.3 Lexicon algorithms for shard-selection

2.3.1 CORI

The Collection Retrieval Inference Network (CORI) was one of the first shard selec-
tion algorithms, and was part of the InQuery information-retrieval algorithm [8]. In-
Query uses a probabilistic model for information retrieval, namely a Bayesian network.
Although the algorithm has proven to be effective the field of Bayesian networks has
evolved a lot since and the model used a lot of assumptions to estimate parameter val-
ues [4]. CORI can be seen as an extension of the InQuery algorithm but determines
the similarity between a user query and shards, instead of individual documents. CORI
calculates the similarity between a query ¢ and a shard s as in equation 2.6.

. ZtEQ&s(db + (1 - db) X Ts,t X Is,t)

CORI(q,s) = 4 (2.6)

log(fs:+0.5)

Tsy=d 1—d
e =dit o t) X log(mazs + 1.0)

1, log(N +0.5)/£,) (28)
’ log(N +1.0)

The value T ; represents the weight of term ¢ in shard s and I, is the inverse frequency
of the term. The variables d, and d; are both set to 0.4 in many implementations, with
the first value representing the minimum belief component and the latter represents the
minimum term frequency component. The value maxs represents the number of docu-
ments in shard s which contain the most frequent term in the shard. Other parameters
can be found in table 2.2.

CORI was long used as a benchmark for shard selection [9] [10] [11] but has since been
demonstrated by D’Souza et al [12] to be problematic. CORI suffers from a lot of

13

2.4. SURROGATE ALGORITHMS CHAPTER 2. BACKGROUND

assumptions and hard coded values, just like InQuery. The variables dj, and d; appears
to be highly sensitive to variations in the data-sets [12] the optimal values of these
variables are not easily obtained.

2.3.2 HighSim

D’Souza et al [9] investigated a range of lexicon algorithms for shard selection, out of
which HighSim showed the best performance. The algorithm is based on an optimistic
assumption that all terms from a query found in a shard can be found in a single
document in that shard. The lexicon which is produced by the algorithm includes all
indexed terms in all shards. For each term ¢, the total term frequency over all shard f;
and the frequency of the term in each shard F,; is stored as statistics. The formula for
scoring shard ¢ given query ¢ is as follows:

D teqie Wat X Weyt

We
where w; is the weight of term ¢ across all shard, wg; is the weight of term ¢ in query
q, wey is the weight of term ¢ in shard ¢ and W, is the average number of terms in each
document in shard c. A list of all the parameters can be found in Table 2.2.

HighSim(q,c) =

N Total number of shards

N | Nr of documents in shard s

It Nr of occurrences of term ¢ across all shards
fq.t | Nr of occurrences of term ¢ in query ¢

F,; | Nr of occurrences of term ¢ in shard s

we | log(N/fi + 1)

wqt | we X log(fgr+1)

wsy | wy X log(Fsy+ 1)

W \/(EtES Fs:t)/Ns)

Table 2.2: Parameters used in lexicon algorithms.

2.4 Surrogate algorithms for shard selection

Surrogate algorithms were originally developed to work in un-cooperative distributed
search engines [9] [10]. The algorithms collects documents surrogates from all collections
(uncooperative) or shards (cooperative). The surrogate documents can either be partial
documents or sample documents. In the first case all documents are collected from all
shards but only a subset of the terms are retained. In the latter case the documents are

14

2.4. SURROGATE ALGORITHMS CHAPTER 2. BACKGROUND

complete but only a subset of all documents is collected from each shard. The surrogate
documents are then indexed together with the ID of the shard they were collected from
in a central index at each broker node. When a user sends a query to a broker node it
is first processed against this central index. The resulting documents scores are used to
infer shard ranking [9] [10] [6].

2.4.1 Best-N algorithm

D’Souza et al [9] proposed a method called the Best-N algorithm. For each document in
each shard, the goodness for each term is calculated as in equation 2.9. The n terms with
the highest goodness in each document is stored together with the ID of the document
and the ID of the shard the document is stored in. Global statistics should be used in
the goodness formula for accuracy.

ZSES Ny

goodness(t) = log(1 + fi) X log(f
t

) (2.9)

The partial documents fetched from each shard are indexed at a centralized index at
each broker node. When a query is sent from a user to the broker nodes the query is
first processed on the centralized index. The result of the querying the centralized index
is the top document scores together with the ID of the shard they belong to. D’Souza et
al investigated several methods for converting the document scores into scores for shards.
The most successful was the InvRank scoring method displayed in equation 2.10.

1
rqg + K

InvRank(q,c) = Z
deSs

(2.10)

As for the value n the authors found that a value between 20 and 40 produced good
results in which case the size of the centralized index is roughly the same size as the data
structures used for lexicon methods, for example HighSim [9]. The value k in equation
2.10 is arbitrarily set to 10, and there appears to be no further research evaluating these
values.

Although the best-n algorithms showed promising results in a variety of data-sets, there
should be a problem if the data-sets contain many but small documents, for example
twitter posts. In this case, the algorithm don not scale very well, since many twitter
posts might do not contain more than 20 terms. If n is set to 40 we might end up
with a centralized index which has roughly the same size as the combination of all the
shards.

15

2.4. SURROGATE ALGORITHMS CHAPTER 2. BACKGROUND

2.4.2 ReDDe

The Relevant Document Distribution Estimation Method for Resource Selection (ReDDE)
[10] was developed for un-cooperative environments and has been used as a benchmark-
algorithm in a wide range of studies [13] [14]. The algorithm uses a centralized index
at the broker containing sampled documents from all of the available shards. The al-
gorithms rank shards according to how many documents they are estimated to contain
that are relevant to a query.

In case the centralized index is complete (containing all documents from all shards), the
number of documents relevant to query ¢ in a shards document-collection .S; is estimated
as in equation 2.11. P(Rel|d) is the estimated probability of relevance for document d
to query ¢ and P(d|S;) is the prior probability of document d in shard S; [14].

Rel(Si,q) = > P(Rel|d) x P(d|S;) x | Sj| (2.11)
dec;

Since using a complete centralized index is unfeasible, even in a cooperative environment,
ReDDE regards sampled documents as representative [10]. The above equation can
therefore be approximated using equation 2.12. The value S;_sampl is the set of sample
documents from a shard S;. The assumption is that for every relevant document in
tie Zample from a shard, there are about % relevant documents in the complete
shard.

|Si]

Rel(S;,q) = Z P(Relld) x |Si_sampl|

deS;_sampl

(2.12)

In ReDDE the probability of relevance for a document P(Rel|d) is defined as the proba-
bility of relevance given the rank of document d in the centralized complete index (CCI).
Since this CCI is not available, the central rank for a document has to be approximated
using the rank of the document in the sampled index as in equation 2.13.

|55

rank_central(d;) = Z m
) T

rank_samp(d;)<rank_samp(d;

(2.13)

After the centralized sample index has been queried and the centralized complete index
rank has been approximated, the probability of relevance for document d is estimated by
equation 2.14. Finally, the estimated relevance of shard S to the query ¢ can be found
with equation 2.15. After ranking shards by their goodness-score, ReDDE selects the
top k shards, where k is a pre-defined value.

16

2.4. SURROGATE ALGORITHMS CHAPTER 2. BACKGROUND

P(Rel|d) = a if rank_central(d) < g x Y |Si| (2.14)
0 otherwise
Rel(Sl7q)
goodness(S;,q) = —=————— 2.15
500 = 5 RS0 219

2.4.3 Sushi

The Scoring Scaled Samples for Server Selection (Sushi) [13] algorithm is one of the
most recent contribution to the surrogate family of algorithms. Just like ReDDe [10] it
uses a centralized sample index to rank shards, but the ranking formula is a bit more
complicated. Most shard selection algorithms try to achieve a high recall-value, but Sushi
is mainly concerned with achieving a high precision-value. By focusing on precision the
algorithm is able to automatically determine how many shards to select for each query,
in contrast to most other algorithms.

The first step of the algorithm is to process the query on the centralized sample index.
Only the top 50 documents returned from the index are retained for further evaluation.
These documents are sorted into distinct sets according to their shard membership. The
next two steps, rank adjustment and curve fitting are performed on each of these sets of
documents.

Rank adjustment The ranks of all documents are adjusted according to the ratio
between the size of the shard they belong to |S| and the size of the sample from that
shard |Ssampl| as in equation 2.16. The goal is to estimate the rank each document
would have in the non-existing centralized complete index [13]. As an example, assume
we have a document d with rank 2 from the centralized sample index which is sampled
from shard S, and that the size of the sample is one tenth of the complete shard. Then
the adjusted rank for document will be 20 since each sampled document represents 10
documents in the complete shard. If a very small number of documents get a score above
zero from a shard (less than 5 in [13]) the ranks are not adjusted.

]

rank_adjusted(d) = (rank_sample(d) + 0.5) x A

(2.16)

Curve-fitting To predict the scores for documents not present in the centralized sam-
ple index Sushi performs curve-fitting over the adjusted sample rankings using linear

17

2.4. SURROGATE ALGORITHMS CHAPTER 2. BACKGROUND

0 20 a0 a0
Rank

| B Samples — f(x)=x — flx)=1/x f(x)=|n(x)|

Figure 2.4: Curves produced by the three mapping functions in Sushi. In this example the
exponential mapping function has produced the best fit.

regression as in equation 2.17. The mapping function f() changes the distribution of the
ranks of the samples [15].

Score(d) =k + f(rank(d)) x m (2.17)
The linear, logarithmic and exponential mapping function in table 2.3 are tried which

produces three different curves as in figure 2.4. Sushi picks the curve with the best fit,
which is measured by the highest coefficient of determination (R?).

Curve Mapping function
Linear flx)==z
Logarithmic | f(x) = log(x)
Exp flx) =1/

Table 2.3: Mapping functions for curve-fitting in Sushi

By using the selected curve the score for unseen documents in a shard can be predicted.
The score for the top m documents from each shard are interpolated from the curve and
are added to a sorted list. The top m documents from this merged list is then selected,
and the query is only forwarded to shards which holds at least one of those documents.
The value m was set to 10 in the original paper since users are rarely interested in
documents with a lower rank [13].

2.4.4 Sampling-Based Hierarchical Relevance Estimation (SHiRE)

In a recent article Kulkarni et al [6] published three new algorithms which also utilizes
a centralized sample index (CSI). Like SUSHI [13] the algorithms use a dynamic cutoff-

18

2.4. SURROGATE ALGORITHMS CHAPTER 2. BACKGROUND

(S3) (S85) (S5) (S3) (S3) (S3) (S5) (S5) (S3) (S8) (S5) (S3)

Figure 2.5: Toy examples of the SHiRE hierarchies. From left to right; Ranked, Lexicon
and Connected. Figures taken from [6]

value and are able to automatically determine how many shards should be selected for
a query.

As described in the previous sections, a query is first given to the CSI which returns a
ranked list of the relevant documents together with references to the shards they belong
to. The authors conclude that since the CSI is typically very small compared to the
combined size of the original shards, more information besides this ranking might be
needed to make accurate decision about which collections are most relevant to a query.
By transforming the flat document-ranking received when querying the CSI into tree-
like hierarchies, relationships between the documents can be found which might result
in better shard-ranking [6].

The authors present three such hierarchies, displayed in figure 2.5. Shard ranking is
inferred by traversing a hierarchy bottom-up starting at the highest-ranking document.
When a document is found in a hierarchy, it may cast a vote for the shard it was fetched
from.

Vote(d) = S x B7Y (2.18)

The value of a vote from a document to its shard is given in equation 2.18 where S is
the score of the document from the CSI ranking, B is an exponential base and U is the
level at which the document was found in the hierarchy. A range of values for B was
investigated, and stable results are seen when the value is set between 20 and 50.

The final score for a collection is the sum of all the votes it received while traversing the
tree-hierarchy. A collection is cut-off from the search if its final score converges to zero,
which interpreted as < 0.0001 by the authors [6].

Lexicon SHIiRE (lex-s) uses the lexical similarity between sample documents to con-
struct a hierarchy. The similarity between documents is determined by the manhattan
distance of the documents tf-idf vectors. Each document is placed in each own clus-
ter, and the clusters are bound together into a hierarchy by an agglomerative clustering
algorithm.

19

2.5. OTHER APPROACHES CHAPTER 2. BACKGROUND

Connected SHiRE (conn-s) uses the shard-membership of the documents to construct
the hierarchy. The documents are added to the hierarchy bottom-up, starting at the top-
ranked document. As long as documents are added with the same shard-membership as
the previous document, it is placed at the same level as the previous document. If the
new document and the previous document belong to different shards the new document
is added at a new level in the hierarchy.

Ranked SHiRE (rank-s) is perhaps the simplest hierarchy in the SHiRE family. The
hierarchy is a left-branching binary tree built bottom-up starting with the highest-ranked
document. Each document is added at its own level in the hierarchy. The voting system
on the other hand is a little bit more complicated compared to lex-s and conn-s. Since
the document with the highest rank votes first, and the value of a vote is exponentially
decaying, one of two criteria has to be met for the top document to cast its vote [6]. The
first criteria is that one of the first m documents have to vote for the same collection
as the top document. The second is that at least 10% of the documents at the 30 first
levels has to give their vote to the same collection as the top document. As a side note,
the value m is not determined in the paper.

Out of the three algorithms presented by Kalkurni et al, lex-s performed slightly better
than the other algorithms, but rank-s was more efficient (selecting fewer shards) while
still having a comparable performance to ReDDE [6].

2.5 Other approaches for shard selection

2.5.1 Shard and query clustering

Puppin et al [16] proposed a new design for web-based search engines which centers
around shard selection, instead of using it as a possible extension. The design uses a
shard-selection friendly document allocation policy by default, minimizing the need to
re-design the index structure if shard selection is used. The authors utilize the fact that
there are many query-logs publicly available for web-bases search engines. The authors
construct a matrix with rows representing queries and columns representing documents.
Each entry in the matrix is the score that documents received from sending a query to
a reference search engine. When all the queries have been sent to the reference search
engine they use a co-clustering algorithms on the matrix which re-orders the matrix so
that relevant documents are close together and relevant queries are close together. This
PCAP matrix [16] is used both when documents are allocated to shards and to perform
shard-selection when a query is sent to the search engine.

20

2.6. DOCUMENT ALLOCATION POLICIES CHAPTER 2. BACKGROUND

2.5.2 Highly discriminative keys

Booking & Heimstra [7] tested a method which is aimed for search engines with a high
level of collaboration. The main idea is that terms and phrases which are highly dis-
criminative are most suitable to use for shard selection. The first step in the algorithm
is called peer-indexing which is an iterative process performed on each shard. A highly
discriminative key (HDK) is either a term or a phrase which occurs less than n times in
the shard.

The HKD’s produced from each shard in the peer-indexing step are then sent to the
broker nodes in the cluster. The broker nodes will only store the HDKs which are
infrequent in at most m shards. When a query is sent to a broker it will be matched
against the stored HDKs, and query will be forwarded to the shards which reported the
matching HDKs. The results from using HDK’s for shard selection were comparable to
using the language based algorithm Indri [7].

2.6 Document allocation policies for shard-selection

There are many policies for distributing documents between shards. Allocation policies
has a big impact on the usefulness of the shard selection algorithms, since they all
depend on some shards being more relevant to a query than others. The clustering
hypothesis states that "documents with similar content are likely to be relevant to the
same information need”[17] [18] which implies that shards should contain documents
which are similar by some aspect.

2.6.1 Random allocation

The most common document-allocation policy is to randomly distribute the documents
to shards. It can be implemented by taking a hash on the documents IDs and use the
result as the ID of the shards they should be allocated to. This policy guarantees a
balanced size between shards and is used by many of the leading search providers like
Google [17].

If the random distribution policy is employed the usefulness of the shard selection algo-
rithms will be minimized. This has been observed in many articles [9][13][10][18].

2.6.2 Attribute-based allocation

A simple yet effective policy is to distribute the documents depending on some attribute
available in their meta-data. Callan & Kulkarni investigated a source-based allocation
policy in [18] where documents from a web-based data set were grouped and sorted based
on their URL. Each shard was allocated a group if N/M documents where N is the total

21

2.6. DOCUMENT ALLOCATION POLICIES CHAPTER 2. BACKGROUND

number of documents and M is the number of shards available which guarantees the
shards to be balanced in size. A similar policy was investigated in [7] but instead of
grouping by the documents URL the IP of the server the documents were fetched from
was used. Source-based allocation has proven to one of the most effective policies for
shard selection while still being relatively easy to implement [18].

2.6.3 Topic-based allocation

This policy states that documents which belong to the same topic should be allocated to
the same shard. Determining a topic for a document is a hard problem, especially when
a topic is not provided in the documents meta-data. When topics are not provided,
different methods may be used to group documents into topics. In [17] documents were
grouped by their lexical similarity.

Instead of relying on the provided topics in documents, documents are divided into topics
by a clustering-algorithm, for example the K-means algorithm. The lexical similarity
between documents is used as the clustering similarity-metric [17].

2.6.4 Time-based data flow

The previous policies discussed assume that much of the data that should be indexed are
available when the index is created. This is not always the case as many search engines
continually adds documents to their index, sometimes with very few documents to start
with.

This approach could be seen as both a data design-pattern and a policy. The data
design-pattern states that new documents are continually flowing in for indexing as they
are being created. The policy states that a new document should be added to the most
recently created shard (or index in the case of ElasticSearch). It’s assumed that new
shards may be created on demand. This could be after a fixed period of time or when
the size of the most recent shard has reached some threshold [19].

In many cases the content of documents are highly dependent on the date that they
were created. Twitter is a good example where interest in trending topics usually fades
within a couple of days or even hours. In such cases the shards will be naturally clustered
eliminating the need to re-allocate documents to enhance the clustering attribute of the
shards. At the time of writing this report, this design-pattern and policy has not been
tested for shard selection.

22

2.7. EVALUATING SHARD SELECTION CHAPTER 2. BACKGROUND

2.7 Evaluating shard selection

The Precision and Recall metrics mentioned in section 2.1.3 are also frequently used to
evaluate shard selection [20]. A variant of precision called PQN has almost become a
standard metric in recent articles [6] [13] [7]. In this variant only the first N documents
are considered when measuring precision. The justification of this metric is that users
are often mostly concerned with the top results from a query [4].

Rk(n) is a special recall-metric which has been used in some articles about shard selection
[13] [10]. Rk only measures the effectiveness of the shard selection algorithms without
being concerned about the effectiveness of the underlying IR system. Rk is defined
as

k
ey
Rk = 72221 !
Zi:l O;

where (); is the number of relevant documents in shard ¢ selected by the algorithm and O;
is the number of relevant document in shard ¢ selected from an optimal baseline.

A conjuncture of PQN and one of the recall measurements are often enough to indicate
the performance of the algorithms.

23

Shard Selection Algorithms
Extension for ElasticSearch

HIS CHAPTER presents SAFE, a shard selection plugin for ElasticSearch which
has been developed for this thesis. This chapter starts out with presenting the
plugin and the motivation behind its design. Four shard selection algorithms
were implemented to the plugin with some minor modifications to make them

compatible with ElasticSearch.

3.1 Work-flow

ElasticSearch [3] provides quite a good API-guide on its website, but since there are so
many different configurations and query-types available it can be hard to get a good
overview of the search engine. I took the learning by doing approach and started to ex-
periment with setting up clusters and examining the results from different queries.

When I had developed a good understanding of the problem and how the various algo-
rithms worked I had to figure out how to implement them in ElasticSearch. It should
be said that ElasticSearch is a huge piece of software and most of the classes and their
methods are undocumented. Luckily there are other plugins for the search-engine avail-
able online, some which require functionality at the same level as the shard-selection
plug-in. I investigated some of these plug-ins as a way to bootstrap my own work.

Along the way there have been many problems while implementing the plugin. I wanted
the plugin to be dynamic and work with the most common configurations of Elastic-
Search. I had to avoid imposing special requirements like storing the original documents

24

CHAPTER 3. SHARD SELECTION ALGORITHMS EXTENSION FOR
3.2. SAFE ELASTICSEARCH

on the nodes. As it turns out I was able to provide workarounds to most problems, in
some cases by investigating the source-code and discussing what modifications could be
acceptable with my supervisor at Findwise. I was also lucky that a new version of Elas-
ticSearch was released during the project which made accessing some of the statistics
needed by the algorithms multiple times faster.

3.2 SAFE

The Shard Selection Algorithms Extension for ElasticSearch (SAFE) was developed for
this thesis. SAFE is a plugin for ElasticSeach [3] which gives the search engine shard
selection functionality. ElasticSearch has been architecture with Google Guice!, a de-
pendency injection framework. The framework has allowed SAFE to override and extend
many core modules in ElasticSearch without having to modify the source code of the
search engine. The following sections will give an overview SAFE and how it operates.
A more technical reference manual which assumes a basic knowledge of ElasticSearch
has been included in appendix B.

3.2.1 SAFE Requirements

There were many decision which had to be made regarding the design of SAFE. The list
of core requirements below was used to guide the development. The list may be studied
to get a quick overview of the problems which faced the development of SAFE and how
it is supposed to be used.

1. SAFE shall support algorithms from the lexicon and surrogate paradigms.
2. SAFE shall support all current queries in ElasticSearch.

3. SAFE shall use the same scoring model for the centralized sample index as is used
for normal indices in ElasticSearch.

4. SAFE shall support query-requests from both http clients and java clients.

5. SAFE should require minimal modifications to work with future versions of Elas-
ticSearch.

6. The centralized sample index in SAFE shall use the same scoring model as normal
indices in ElasticSearch.

25

CHAPTER 3. SHARD SELECTION ALGORITHMS EXTENSION FOR

3.2. SAFE ELASTICSEARCH
[Data Node] [Data Node] Data Node
‘\ \\\‘ /ﬁ\\ /’, /'4
\\ \\\ / N ,/ //
N ./ N ,
AN N 37 d
\ / NPl ’
N / S ,

\ ’ e s \\ ’

Broker Broker

Node Node

» 4
N ’
\ /
\ /
\ /
\ /
\ /
\ ’
\ /
\ /
N
N/

Client
(User)

Figure 3.1: The suggested cluster design when SAFE used; A search request is sent to a
broker nodes which forwards the query to data nodes.

3.2.2 Cluster configuration

Nodes which have have least one index shard in ElasticSearch are called data nodes.
When there are a lot of data-nodes collaborating in a cluster a common design is to
have a couple of client nodes in front of the data nodes [5]. The purpose of the client
nodes is to alleviate the data nodes from handling computations except for indexing and
searching. Client nodes handle all the http traffic, query parsing, query routing and
merging of results.

Client nodes should make an excellent candidate for acting as broker nodes, a concept
suggested in many previous articles about shard selection [16][15][7]. By adding shard
selection functionality to the client nodes and transforming them into broker nodes the
broker nodes serves two purposes. This also enables SAFE can work with many present
configurations of ElasticSearch since there is no need to make a big re-design if there are
already client nodes in the cluster.

The plugin has to be installed on all nodes, no matter if they are configured to be broker
nodes or data nodes. This is because the broker nodes and data nodes collaborate in
constructing the data used for shard-selection. Installation and configuration of the
plugin has to be performed before the cluster is started.

The two main operations of the plugin are the refresh and select operations. The first is

!Google Guice: lightweight dependency injection framework for Java,
https://code.google.com/p/google-guice/.

26

CHAPTER 3. SHARD SELECTION ALGORITHMS EXTENSION FOR
3.2. SAFE ELASTICSEARCH

a collaboration between all the client nodes and the broker nodes, but the latter is only
handled by the broker nodes.

3.2.3 Implemented algorithms

Four algorithms was implemented in SAFE; HighSim, ReDDe, Rank-S and Sushi. Out
of these only HighSim belongs to the lexicon family.

Selecting which algorithms to implement proved to be a tough problem. As discussed
in the section 2.2 there are many different approaches for shard-selection and many
algorithms have proven to be effective in different studies. The decision came down to
the results the algorithms has shown in the most recent studies, and also how suitable
they would be for implementation in ElasticSearch. Some of the most promising results
have been shown by the lexicon-type algorithms, but there has been very little research
on this family of algorithms in the past decade. One reason is probably that most of
the recent papers assume an un-cooperative environment where surrogate algorithms are
clearly more suitable to use.

The most recent lexicon-type algorithms were the ones presented in [9] and out of these
HighSim proved to be the most effective which led to the decision to implement it. The
same paper also presented the only surrogate-algorithm which assumes a fully coopera-
tive environment to date, the N-best algorithm. It would be interesting to compare this
surrogate approach to the sample type algorithms like ReDDe. The main reason for not
implementing N-best was that it do not scale as well as the other surrogate algorithms,
especially with the data set used in the experiment which consists of tweets which are
usually very short documents. The centralized index for N-best would be almost as large
as if the index shards were merged into one big index.

The surrogate algorithms all share a common centralized sample index. The CSI is
implemented as a Lucene index to mimic the implementation of the shards in Elastic-
Search. By using a lucene-index the scoring of documents in the CSI will reflect how
they would’ve been scored by ElasticSearch. Though the fraction of documents to sam-
ple from each shard can be set dynamically in the plugin this value was set to 4% in the
experiments.

3.2.4 Refresh operation

A broker node cannot perform shard selection before the refresh operation has been
called. In fact, no data associated with shard selection will be allocated if this operation
is never called, meaning that the plugin can safely be installed on a cluster without
taking any resources if the operation is never called.

The refresh operation is visualized in Figure 3.2. The operation starts at a broker node,
which broadcasts the request to all the data-nodes. The data nodes collect the needed

27

CHAPTER 3. SHARD SELECTION ALGORITHMS EXTENSION FOR
3.2. SAFE ELASTICSEARCH

Automatic periodic
refresh

Send refresh o
operation Query shard statistics

Client Broker node Data nodes
Send ACK Send shard

statistics

Figure 3.2: Visualization of the refresh operation in SAFE.

data and return it to the broker node. The broker node will collect the data and construct
the needed data-structures for shard selection. Note that the refresh operation has to be
called on all broker nodes which are intended to utilize shard selection since the shard
selection data is stored locally and in-memory on a broker node.

The refresh operation is an offline operation since it only has to be called once in or-
der for shard selection to work. The operation may take some time depending on the
number of shards and the number of documents they contain. Since the operation is
asynchronous other operations like searching can be performed while the refresh opera-
tion is running.

The refresh operation gathers different kinds of data depending on which algorithms
are intended to use for shard selection. For the HighSim lexicon-algorithm terms and
terms-statistics are gathered from the data-nodes. For the surrogate-algorithms sample
documents are gathered. If all algorithms are to be used, the refresh operation has to
be called twice, once with ”lexicon” as the type-parameter and once with "surrogate” as
a type-parameter. A more detailed description can be found in appendix B.

There are two ways to trigger a refresh-operation. The first way is to manually send a
refresh request to a broker node, though this is mainly intended for testing. The other
way is to configure the broker nodes to automatically call the refresh operation. If a
broker node is configured to automatically trigger the refresh operation first call will
be when the node joins the cluster. When a new node enters or leaves the cluster the

28

CHAPTER 3. SHARD SELECTION ALGORITHMS EXTENSION FOR

3.2. SAFE ELASTICSEARCH

data will be refreshed again. After this initial refresh a new refresh operation will be
triggered when a configured time interval has passed, which is set to ten minutes by
default. This may be useful when new documents are continually being added to the
shards, as when the time-based data-flow document allocation policy is used as described
in section 2.6.4.

3.2.5 Shard selection operation

Client Broker nodes Data nodes
Shard selection module Search module
 E—
Send sea_rch Perform
request with
shard
shard
) selection
selection
—
Construct Route
search guery search guery Process
with to nodes query
selected containing against
shards as target shard
target shards
Merge Send back
results results
Send back
@)(merged
results

Figure 3.3: Activity diagram visualizing how a search operation is performed when SAFE
is used.

29

CHAPTER 3. SHARD SELECTION ALGORITHMS EXTENSION FOR
3.2. SAFE ELASTICSEARCH

When a broker node has performed the refresh operation it is ready to handle shard
selection operations. A search query with shard selection includes both information
needed to perform shard selection and the search query which will be performed on the
shards which were selected. A detailed example of how a shard selection search query
looks can be found in Appendix B.

An overview of how such an operation is handled can be seen in figure 3.3. When a shard
selection query is sent to a broker node (which has performed the refresh operation) it will
first be handled by the shard selection module implemented by SAFE. Here the actual
shard selection will be performed. A regular search query will then be constructed using
the information in the shard selection query. The selected shards will be set as the
target for the search query, which is then forwarded to the standard search module in
ElasticSearch. The search module keeps a routing-table for all shards in the system so
ElasticSearch will automatically only forward the query to the nodes which contain the
targeted shards. The data nodes which receive the query will then process it against
its shards and send back the relevant documents. The search module received these
documents, merges them and sends them back to the shard selection module which will
add shard selection information to the results (how many shards were selected, how long
time the shard selection operation took etc.).

In other words, SAFE can be seen as a "man in the middle” between the user which
sends the query and the search module which handles the search operation. There are
many benefits to this approach; when a new search query type is added to ElasticSearch
none or minimal modification has to be made to SAFE since the actual query will be
handled by ElasticSearch itself. Also SAFE does not have to bother with keeping its
own routing table to all shards and nodes, which would be prone to errors.

When the algorithms show low confidence in their results all shards will be selected. This
fallback option is probably more appreciated than sending a query to random shards
which could otherwise be the case. For the surrogate algorithms the fallback option will
be used when there are less than five hits in the centralized sample index. For HighSim
the fallback option will be used when no shards get a score above zero, but this should
happen very rarely since the complete lexical information from all shards is available to
it.

3.2.6 Handling of constraints presented by ElasticSearch and Lucene

Most algorithms for shard selections assume a very simple underlying IR system where
all queries are targeting one big field containing all the information in the document.
Most IR systems use a more sophisticated indexing structure with many fields. A query
may target one or multiple of these fields. Here I will explain how some of the constraints
presented by ElasticSearch and lucene have been handled for the algorithms to fit with
these constraints and the needs of the users.

30

CHAPTER 3. SHARD SELECTION ALGORITHMS EXTENSION FOR
3.2. SAFE ELASTICSEARCH

Lexicon algorithms The tricky statistic for the lexicon algorithms is terms, term-
frequencies and the number of documents which contain at least one occurrence of each
term. Since these statistics are also used by Lucene internally for its vector space model
they can easily be obtained from each shard in ElasticSearch. Most of the lexicon
algorithms (like HighSim) assumes that there is only one field which is searchable, but
in Lucene a document is represented as a set of separate fields which can be included
or excluded from a search operation. Another problem is that the fields can be indexed
using different analyzers, which also means that a query should use different analyzers
depending on which field a search is performed on. The terms which be retrieved from
the Lucene index are already analyzed.

With these constraints in mind, the following information has to be considered when
performing a refresh operation for the lexicon algorithms:

e The fields which the statistics should be gathered from has to be specified in the
request-request.

e These fields should use the same analyzer when indexing.

Surrogate algorithms For each field in a Lucene-index there is an option to store the
original content of the documents. This option defaults to false and most of the time
this is an appropriate option since the only data needed to be stored is the identifier of
the documents which can later be used to fetch the original document from a separate
database.

e The fields which should be used in shard selection has to be set to stored=true in
the ElasticSearch mapping.

e The fields which should be used in shard selection have to be included in the
request.

31

Experiment

HE THREE experiments conducted in this thesis will be presented in this chapter.
Two data sets were constructed using twitter data and both data sets were used
in all three experiments.

4.1 Data sets

Many previous articles on shard selection has used one or more of the TREC-databases
as data-sets for evaluation [13][10][6][12]. In order to get any significant results from
shard selection the data-sets have to be clustered into separate collections by different
factors so the collections are somewhat coherent. A range of factors has been used for
clustering like source [7], date of creation [13] and topic [6].

Today there is lots of public information available from many sources. Some of the big
player like Wikipedia!, Twitter? and Facebook® offers access to their data for free with
varying limitations. Twitter allows its users to gather newly posted tweets using their
public stream-API*. There are several limitations when the free version is used, but it
is still possible to gather millions of tweets each day. Twitter’s streaming API has an
option to use one or several filter-terms to filter out the content of the tweets that should
be gathered. If a tweet doesn’t contain at least one of the filter-terms it won’t be received
through the streaming API.

Lwww.wikipedia.org

2 www.twitter.com

3www.facebook.com
“https://dev.twitter.com/docs/streaming-apis

32

4.2. EXPERIMENTAL SETUP CHAPTER 4. EXPERIMENT

One of the requirements for shard selection to be successful is that the documents are
clustered as discussed in section 2.6. A topical clustering should be achievable by gather-
ing collections of tweets using different term-filters. To test this out ten different collec-
tions of tweets were gathered, each with its own term-filter. Each term-filter contained
common terms used in a specific topic, for example "health”, "business”, and "politics”.
The full list of topics and their corresponding term-list can be found in appendix A.

A common feature in Twitter is the ability to send copies of other tweets, so called
retweets. Turns out that a large portion of the tweets gather initially were retweets.
This could possibly distort the results for the surrogate algorithms since the samples
would be less descriptive. In the end, retweets were filtered out from the gathering
process.

Tweets from languages other than English were also filtered out though there are lim-
itations to twitter ability to perform this filtering. A twitter user might set English
as their default language but occasionally send tweets in other languages in which case
the language filtering fails. Inspections on the tweets indicate that tweets from another
language were quite rare in the final collections.

The collection of tweets was used to construct two data-sets. In the first data-set one
shard was constructed from each collection of tweets. This data-set will be referred to as
the topical data-set. The other data-set was constructed by indexing the tweets randomly
to one of ten shards. This data-set will be referred to as the random data-set.

A set of queries was also constructed for the experiments, three queries especially aimed
at each topic resulting in a total of 30 queries.

4.2 Experimental setup

The cluster used in the experiment consisted of ten data nodes and one broker node. Each
of the data nodes held one shard each. All communication between the test application
and the cluster was handled through the broker node which was also responsible for the
handling shard selection.

Each experiment was run five times so the results in section 5.1 are the average results.
The reason for running each experiment five times is that the centralized sample index
consists of random documents from each shards, and the results may vary depending on
which documents were used as samples.

Each run for an experiment consisted of nine iterations. All queries were sent to the
broker node on each iteration for all algorithms. On each iteration the number of nodes
the algorithms was allowed to select increased by one.

33

4.3. METRICS CHAPTER 4. EXPERIMENT

4.3 Metrics

As discussed in section 2.1.2 determining if a document is relevant or not to a query is
a hard problem. Most data-sets used in previous articles about shard selection provide
relevance judgments which have been collected from test involving humans judging the
relevance of the results for a query. The data-sets used in this thesis has no such relevance
judgments, which renders most of the standard metrics for shard selection mentioned in
section 2.7 unusable, like recall and P@n.

Remember that the aim of this thesis is not to evaluate how well the underlying search
engine performs; the aim is to aim evaluate what effect shard selection has on the search
results compared to not utilizing shard selection. Therefore the assumption that all
documents returned from the search engine (ElasticSearch) are relevant to a specific
query can been used. Using this assumption a new set of metrics can be used, which
perhaps could more relevant to search engine administrators than the standard metrics.
These metrics will show the negative effects of shard selection, which could be used
to evaluate if it is worth utilizing shard selection in a project or not (accuracy vs.
performance).

4.3.1 Modified recall

One standard metric which can be used with this assumption is the R(k) metric. Rk(K)
gives a good indication of how close the algorithms are to being optimal since it measures
the algorithms performance compared to a relevance based ranking (RBR) baseline. But
since it would also be interesting to see what effect the algorithms have even if they
are optimal, I've but the RBR baseline in comparison to the results from an exhaustive
search. This metric is called recall in the experiment chapter.

4.3.2 Pk@N

The recall metric will give a good indication how many documents are lost when shard
selection is used. But since users are mostly interested in the top results from a query
[8] a new metric has been constructed for this thesis, called Pk@N. Pk@QN measures the
fraction of the top N documents in an exhaustive search that is present in the top ten
results retrieved when shard selection is used

Z]K:1 [{top_N_docs(2)} € {top_t N_docs_exhaustive}|
10

PkQN(K) =

In other words Pk@N will indicate how many of the top-scored documents are lost
when shard selection is used. This metric is a bit tricky, since it is dependent on the
scoring model of the search engine. ElasticSearch uses the vector-space model with tf-idf

34

4.3. METRICS CHAPTER 4. EXPERIMENT

weights described in section 2.1.2. The idf-values may be calculated locally on each shard
or globally across all shards in ElasticSearch. If local idf values are used the document
ranking will be distorted, since shards with a lot of relevant documents will provide a
lower score to its documents compared to shards with few relevant documents. As a
result global idf-values were used for this metric.

4.3.3 Average number of shards selected
The last metric is the average shard-cutoff value for the algorithms with a dynamic

cutoff-value. HighSim and ReDDe were omitted in this metric since they always pick as
many shards as was specified in the query.

35

Results and discussion

Negative results are still results. Even
20 000 of them.

Big Bang Theory

HE results from the experiments are presented in this chapter. Three of the
algorithms have shown good performance compared to the baselines, but Sushi
fails to impress in all experiments. These findings are discussed in detail in the
last section including the impact the data distribution policy seems to have on

the usefulness of the plugin.

5.1 Experimental result

The follow sections will present the results from the experiments described in chapter 4.
The domain value K in the charts below represents the maximum number of shards the
algorithms and baselines are allowed to select (shard-cutoff value). Note that the cutoff
value is only an upper-bound for the algorithms and the algorithms may select fewer
shards if they judge it unnecessarily costly to query K shards.

5.1.1 Modified recall

The results from the recall experiment are displayed in Figure 5.1. On the random
data-set the algorithms are not able to produce any significant results for any shard-
cutoff values, since for example 10% of all relevant documents are returned when 10%
of all shards are selection. This is expected since relevant documents are uniformly

36

5.1. EXPERIMENTAL RESULT CHAPTER 5. RESULTS AND DISCUSSION

100

=
o
S

90

0
S

80

©
S

70

~
=]

60

@
S

50 o °

40//’/*)

30

3
Recall (topics)

Recall (random)
g

w
S

20

N
S

10

=
15}

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
K

[ReDDe @ SUSHI + Rank-s - HighSim = Baseline| [ReDDe @ SUSHI + Rank-s - Highsim = Baseline|

Figure 5.1: Results from recall experiment (random- and topics data sets). The X-axis
represents the maximum number of shards the algorithms are allowed to select. The Y-axis
represents percentage of all relevant documents returned (on average).

S

distributed among the shards. Further evidence for this is that the RBR baseline is
barely able to produce more significant results than the shard-selection algorithms. For
the random data-set SUSHI manages to perform worse than what would have been
achieved by randomly picking k shards, suggesting its shard cutoff-mechanism may be
too aggressive.

The results from the topics data-set are more encouraging. The RBR baseline is able to
select as many as 55% of all documents which means that the clustering attribute of the
data-set is good. The most interesting aspect to look for here is the gap between the
baseline and the algorithms. ReDDe performs very well on all variations of k since it
returns about 90% as many documents as the baseline. HighSim trails the performance
of ReDDe on low values of k but seems to catch up with higher cutoff values. Rank-
s has similar performance with ReDDe on lower cutoff-value but the gap between the
algorithms widens a bit with high cutoff-values. The performance of Sushi once again
gets worse compared to the other algorithms with increasing value of k, but it performs
significantly worse than the other algorithms even with low values of k. A more detailed
discussion about the low performance of Sushi can be found in section 5.2

5.1.2 PkQ@N

The results from the Pk@QN experiments can be seen in figure 5.2, 5.3 and 5.4. Using the
random data-set the algorithms are not able to perform better than picking a random
subset of shards as in the recall experiment. The baseline is able to produce a signif-
icant result even on this data-set. This is not very surprising, especially in the Pk@5
experiments since the top five results can always be found by querying five shards.

37

5.1. EXPERIMENTAL RESULT CHAPTER 5. RESULTS AND DISCUSSION

80 80
70 70
60 = 60
50 50
40 40
30 30

100

Pk@30 (random)
Pk@30 (topics)

20 20

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
K

[ReDDe @ SUSHI + Rank-s - HighSim = Baseline| [ReDDe o SUSHI + SHIRE +- Highsim = Baseline]

Figure 5.2: Results from the Pk@30 experiment (random- and topics data sets). The
X-axis represents the maximum number of shards the algorithms are allowed to select. The
Y-axis represents percentage of top 30 documents in an exhaustive search that are found in
the top 30 documents from using shard selection (on average).

100 100

90 %0

80 80

70 70

60 £ 60

50 50 ® ¢
40 40 //M

30 30

20 20

Pk@10 (random)
Pk@10 (topics)

10 10

0 0
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
K

[ReDDe - SUSHI ~+ Rank-5 - Highsim = Baseline| [ReDDe & SUSHI + Rank- - HighSim = Baseline]

Figure 5.3: Results from the Pk@10 experiment (random- and topics data sets). The
X-axis represents the maximum number of shards the algorithms are allowed to select. The
Y-axis represents percentage of top 10 documents in an exhaustive search that are found in
the top 10 documents from using shard selection (on average).

The results from the topics data-set are encouraging since three of the algorithms are
able to retain about 70% of the top results with a cutoff-value of 1. It’s somewhat
surprising that SUSHI has a low performance in this test, since the algorithm is mainly
concerned with picking shards which are likely to contain top-ranked documents. Overall
the results from the Pk@QN experiments are similar with N set to 5, 10 or 30.

38

5.1. EXPERIMENTAL RESULT CHAPTER 5. RESULTS AND DISCUSSION

100

90
80
70

! 60
50
40 /
30
20
10

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9
K

=
o
S

0
S

©
S

~
=]

@
S

Pk@5 (random)
5 8 3 8
Pk@5 (topics)

=
15}

[ReDDe @ SUSHI + Rank-s - HighSim = Baseline| [ReDDe @ SUSHI + Rank-s - Highsim = Baseline|

Figure 5.4: Results from the Pk@5 experiment (random- and topics data sets). The X-axis
represents the maximum number of shards the algorithms are allowed to select. The Y-axis
represents percentage of top 5 documents in an exhaustive search that are found in the top
5 documents from using shard selection (on average).

10 10

Selected shards (random)
»
Selected shards (topics)

- SUSHI Rank-S - SUSHI Rank-S

Figure 5.5: Results from the shard cutoff experiment (random- and topics data sets). The
X-axis represents the maximum number of shards the algorithms are allowed to select. The
Y-axis represents the actual number of shards that were selected by the algorithms (on
average).

5.1.3 Shard cutoff

To investigate the efficiency of the algorithms the average number of shards selected was
measured. ReDDe and HighSim were left out from this experiment since they always
select as many shards as they are allowed to. The results can be seen in Figure 5.5. On
the random data-set Rank-s almost consistently selects k shards, which indicates that
the algorithm is sound since all shards are just as likely to contain relevant documents.
Sushi on the other hand seems to be very aggressive and never selects more than four

39

5.2. DISCUSSION CHAPTER 5. RESULTS AND DISCUSSION

shards on average.

Using the topics data-set the shard-cutoff mechanism of Rank-S is much more evident.
On average Rank-S never selects more than 50% of all shards. Sushi is even more
aggressive on this data-set compared to the random data-set. and never selects more
than two shard on average.

5.2 Discussion

The results show that the usefulness of shard selection is highly dependent on the clus-
tering attribute of the shards. If documents are randomly distributed to shards, as one
of the most popular document distribution policies states, then there is no point in using
shard selection since a better method would be to query k shards in a round-robin fash-
ion. If documents are distributed to shards depending on their topic then shard selection
could be a viable option to use for saving resources since three of the algorithms in this
experiments appear to be sound and perform close to the optimal baselines.

Rank-s is able to perform almost as well as ReDDe and HighSim in both the recall
and the Pk@QN experiments, but at a much higher efficiency. For each query ReDDe
investigates the top 300 documents from the CSI while Rank-S only investigates the top
100 documents. Furthermore Rank-S selects on average 50% as many shards as ReDDE
and HighSim when the upper-bound cutoff-value K is high (> 80% of all shards). Proper
cutoff values for HighSim and ReDDe may be found by experiment on a particular data-
set, but since the results are highly dependent on the clustering attribute of the shards
this probably these experiment cannot give any general indications. Rank-S eliminated
this problem and promises a more out-of-the-box solution.

Sushi is consistently outperformed by the other algorithms. This is not coherent with
the findings of the original authors [15] although Kalkurni et. al [17] found it to be
outperformed by ReDDe and the SHiRE algorithms, but to a lesser extent than in
this experiment. Since there is no reference implementation of the algorithm there is
a possibility that there is a problem with the implementation in SAFE. Assuming the
implementation is correct, informal observations after the experiments indicates that the
curve-fitting approach results in the over-aggressive shard-cutoff behavior. Often Sushi
believes that the top 50-100 documents can be found in a single shard. Tuning how
many of the top documents that should be used to determine which shards to select
were tuned from 10 to 30 without any significant increase in the results.

The two data-sets used in this experiment were constructed specifically for this thesis.
The two potential problem with this approach was that at least one of the data-sets
should be clustered by topics and that there were no relevance judgments available.
The results show that the clustering attribute seems to be good in the topics data-set
and that using term-filters to fetch twitter posts is a viable method for constructing
such a data-set. Since the metrics used in the experiments were able to distinguish the

40

5.2. DISCUSSION CHAPTER 5. RESULTS AND DISCUSSION

performance between the algorithms and show what effect shard selection has on the
search results the relevance judgments problem has also been circumvented. However,
using a standard data-set like the TREC micro-blog data-set would probably have given
even more confidence in the results since it would make the experiments more replica-
ble, although a clustering algorithm like k-means would have to be used to achieve the
clustering attribute.

41

Conclusion

HIS CHAPTER starts out with presenting some suggested improvements to both
the algorithms in SAFE and the plugin itself based on the results presented
in the previous section and reflections from using and analyzing ElasticSearch.
Finally the conclusion to this report will be presented which states that a shard

selection plugin like SAFE could be useful in large scale searching if a suitable document
distribution policy is used and there is a tolerance for losing some relevant documents
in the search results.

6.1 Future work

There are many parameters in the algorithms which, to some extent, seem arbitrarily
pre-determined. ReDDe considers the first 300 documents from the centralized sample
index, while SUSHI considers 50 and the SHiRE algorithms considers 100 documents.
There seems to be no logical reasoning behind these values, other than perhaps that
SUSHI and SHiRE aims to be more efficient than ReDDe. In this thesis there has been no
formal investigation of these values and how they impact the results from the algorithms.
Without further research these parameters probably has to be tested and tweaked for
each project the plugin is used in, which hinders the usability of the plugin.

There has been very limited research on the resource-saving aspects of shard selection,
even though saving resources is arguably the main reason for using shard selection. Some
interesting measurements would be the impact shard selection has on query-to-result time
and network traffic. Arguably such an investigation could also look at the parameters
mentioned earlier, since the number of documents considered by the parameters may not
have much impact on the performance compared to other aspects in the plugin.

42

6.2. CONCLUSION CHAPTER 6. CONCLUSION

Some of the algorithms could be extended to consider more parameters than relevance
when shards are ranked. In ElasticSearch it is possible to construct zones within the
cluster [5]. One usage of this feature could be to put all high-end nodes in one zone and
the other nodes in another zone. If the time-flow data pattern is used (see section 2.6.4)
then newly created shards could be allocated to the high-end zone while older shards
could be migrated to the low-end zone. Shards which belong to the low-end zone should
perhaps have a higher burden of proving their relevance since they are more costly to

query.

Shard selection is often seen as a possible extension to distributed search engine to
increase the scalability of the system, as is the case in this thesis. But perhaps shard
selection should be one of the central aspects to consider when designing a search engine
when for extremely large-scale search purposes like web-searching. This is the approach
taken by Puppin et al [16] which is described briefly in section 2.5.1. The problem is
that this approach is not suitable when the scale of the search engine is expected to
be medium-sized, for example in enterprise search where the shards can be structured
by some logic which do not require shard selection to limit the number of nodes which
should be queried.

6.2 Conclusion

This thesis has evaluated methods for shard selection and their effect on the search results
in distributed collaborative search engines. One such search engine is ElasticSearch [5]
which was used a case study because of its widespread use, modern architecture and
open-source license. To answer the thesis question the shard selection plugin SAFE was
developed for ElasticSearch. Four algorithms were implemented to the plugin; ReDDE
[10], HighSim [9], Sushi [13] and the state-of-the-art algorithm Rank-S [6].

The first research question stated How is the quality of search-results affected by the
different shard selection algorithms?. The experimental results in section 5.1 showed
that even in a best-case scenario shard selection has a negative effect on the search
results but that the extent of this effect is highly dependent on how the data is allocated
to the shards. When documents are added to shards based on their topic as many as
50% of all relevant documents can be retrieved on average by just querying 10% of all
shards.

The second research question stated which shard selection algorithms are most suitable
in a collaborative distributed search engine?. The results showed that the performance
of Sushi is consistently lower compared to the other implemented algorithms due to its
very aggressive shard-cutoff mechanism. The performance of ReDDe is slightly higher
than HighSim and Rank-s, but Rank-s is more efficient since it selects fewer shards on
average. All three algorithms should be suitable to use in a distributed collaborative
search engine, but Rank-s and ReDDe should be more scalable than HighSim since the

43

6.2. CONCLUSION CHAPTER 6. CONCLUSION

sample size from each shard can be lowered when the number shards grow, whereas
the data needed for HighSim cannot be scaled down by such a simple modification.
More research is needed to give a definitive answer to this question in form of two other
measurements; throughput of search queries and the size of the data needed at the broker
nodes.

The conclusion is that there seems to be several algorithms for shard selection which
perform very well compared to the baselines used in this report, but even the baselines
has a low performance if the document distribution policy do not cluster the documents
by some attribute. To make shard selection usable in collaborative distributed search
engines both high-performing shard selection algorithms and a suitable document distri-
bution policy has to be used. If these requirements are met and there is a tolerance for
losing some relevant documents in the search results then a shard selection plugin like
SAFE should be useful in large scale searching.

44

1]

2]

Bibliography

T. Seymour, D. Frantsvog, S. Kumar, History of search engines, International Jour-
nal of Management & Information Systems (IJMIS) 15 (4) (2011) 47-58.

J. P. Callan, Z. Lu, W. B. Croft, Searching distributed collections with inference
networks, in: Proceedings of the 18th annual international ACM SIGIR conference
on Research and development in information retrieval, ACM, 1995, pp. 21-28.

S. Banon, Elasticsearch [software], Online, [Online; accessed 17-Jun-2013] (2010-).
URL http://www.elasticsearch.org

C. D. Manning, P. Raghavan, H. Schiitze, Introduction to information retrieval,
Vol. 1, Cambridge University Press Cambridge, 2008.

R. Kuc, M. Rogozinski, ElasticSearch Server, Vol. 1, Packt Publishing Ltd. Birm-
ingham, UK, 2013.

A. Kulkarni, A. S. Tigelaar, D. Hiemstra, J. Callan, Shard ranking and cutoff
estimation for topically partitioned collections, in: Proceedings of the 21st ACM
international conference on Information and knowledge management, ACM, 2012,
pp- 555-564.

S. Bockting, D. Hiemstra, Collection selection with highly discriminative keys.

M. Shokouhi, L. Si, Federated search, Foundations and Trends® in Information
Retrieval 7 (2011) 1-102.

D. D’Souza, J. A. Thom, J. Zobel, Collection selection for managed distributed
document databases, Information processing & management 40 (3) (2004) 527-546.

L. Si, J. Callan, Relevant document distribution estimation method for resource
selection, in: Proceedings of the 26th annual international ACM SIGIR conference
on Research and development in informaion retrieval, ACM, 2003, pp. 298-305.

45

http://www.elasticsearch.org

BIBLIOGRAPHY

[11]

[20]

J. Xu, W. B. Croft, Cluster-based language models for distributed retrieval, in:
Proceedings of the 22nd annual international ACM SIGIR conference on Research
and development in information retrieval, ACM, 1999, pp. 254-261.

D. D’Souza, J. Zobel, J. Thom, Is cori effective for collection selection? an explo-
ration of parameters, queries, and data, in: Proc. Australian Document Computing
Symposium, 2004, pp. 41-46.

P. Thomas, M. Shokouhi, Sushi: Scoring scaled samples for server selection, in:
Proceedings of the 32nd international ACM SIGIR conference on Research and
development in information retrieval, ACM, 2009, pp. 419-426.

P. Thomas, D. Hawking, Server selection methods in personal metasearch: a com-
parative empirical study, Information retrieval 12 (5) (2009) 581-604.

M. Shokouhi, J. Zobel, Robust result merging using sample-based score estimates,
ACM Transactions on Information Systems (TOIS) 27 (3) (2009) 14.

D. Puppin, F. Silvestri, R. Perego, R. Baeza-Yates, Load-balancing and caching for
collection selection architectures, in: Proceedings of the 2nd international conference
on Scalable information systems, ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2007, p. 2.

A. Kulkarni, Efficient and effective large-scale search, Ph.D. thesis, Carnegie Mellon
University (2013).

A. Kulkarni, J. Callan, Document allocation policies for selective searching of dis-
tributed indexes, in: Proceedings of the 19th ACM international conference on
Information and knowledge management, ACM, 2010, pp. 449-458.

S. Banon, Big data, search and analytics (video lecture), [Online; accessed 17-Jun-
2013] (Jun. 2012).

URL http://www.elasticsearch.org/videos/big-data-search-and-
analytics/

P. Thomas, M. Shokouhi, Evaluating server selection for federated search, Advances
in Information Retrieval (2010) 607-610.

46

http://www.elasticsearch.org/videos/big-data-search-and-analytics/
http://www.elasticsearch.org/videos/big-data-search-and-analytics/

Data set

A.1 Filters applied to Twitter API

The collection of tweets that was used for both the topics- and random data sets were
fetched using Twitter streaming API. The term-filters used to construct the ten collec-
tions of tweets can be seen in table A.1.

47

A.1. FILTERS APPLIED TO TWITTER API

APPENDIX A. DATA SET

Topic Date Filter

Funny 10/04/20 | funny, fun, hilarious, joke, aprils fool, laugh

Music 12/04/20 | music, song, band, Justin Bieber, album, concert

Politics 12/04/20 | politics, Obama, gun control, BarackObama, immigration,
gop, Democrats, democrat, republican, congress, sequester

Business 13/04/21 | job application, hiring, market, business, stock holders,
revnue, sales

Environment | 14/04/21 | climate, climatechange, environment, co2, global warming,
globalwarming, green technology, green tech, emission, emis-
sions, coal, oil, gas

College 15/04/21 | university, college, degree, exam, dorm, party, school, thesis,
grades, professor, course, courses, semester, study

Health 16/04/21 | doctor, sick, ill, pain, medicine, nurse, illness, depression,
depressed, medication, health, workout, healty

Family 17/04/21 | family, love you, tomyfuturepartner, girlfriend, boyfriend,
mom, dad

Sport 18/04/21 | Football, Soccer, Hockey, NBA, ESPN, Player, La liga, Bun-
dersliga, League, Cup, Sport,

MobileTech 18/04/21 | android, iphone, smartphone, tablet, iphonegames, an-
droidgames, android game, iphone game, ipad game, app

Table A.1: The ten topics used in the data set and their corresponding term-filters

48

Project reference manual

B.1 General information

At the publication date of this thesis the full source code of the shard selection plugin for
ElasticSearch is hosted at Github'. The plugin will most likely be updated in the future
to meet new requirements and fix potential bugs. If the plugin is still hosted on Github
at the time of reading I would recommend taking a look at the provided README file
instead of this reference manual.

The plugin is named ”"Index Selection Plugin for ElasticSearch” on GitHub. In the report
the plugin is referred to as "Shard Selection Extension for ElasticSearch” (SAFE). The
reason is simple; for users of ElasticSearch index selection makes more sense than shard
selection since shards referrers to an even smaller entity in ElasticSearch than what is
dealt with in the plugin. A more detailed explanation can be found in section 2.1.5

B.2 README.md from Github

!Github repository for Index Select Plugin: https://github.com/bergetp/es-index-selection.

49

5/28/13 es-index-selection/README.md at master - bergetp/es-index-selection - GitHub

Index Selection Plugin for ElasticSearch

This plugin estimates which indices are most likely to contain relevant documents for a search query.

THIS PLUGIN IN IS STILL IN EARLY BETA.

When is this plugin useful?

ElasticSearch' built-in routing functionality is very useful in many cases. If used correctly a query is only forwarded to one index / one
index shard. However, in some cases we cannot rely on the routing-functionality, either because of how the indices are mapped or
that we cannot determine what routing value to use in the query.

Let's say that we have indices containing "tweets". We may construct a new type with a unique routing value for each user. As
long as a query is targeting tweets from a specific user we can use the routing functionality. But if the query is supposed to be a
global search across all user we may have a problem if we have a lot of indices and nodes.

This plugin can estimate which indices are most likely to contain relevant documents for a query. Each query will only be routed to
the top k indices.

For the plugin to be useful, documents should be clustered by some attribute. Acommon way to make ElasticSearch more scalable
is the "time" data-flow pattern. In this pattern a new index is created on a regular interval, e.g every month. In case the documents
indexed are for example tweets, we should get a natural topical clustering of documents, since some topics are more common

December (Christmas, gifts) compared to for example February (super-bowl).

How does it work?

This problem is often called "resource-selection", "collection-selection" or "shard-selection". By collecting information from each
index their relevance to a query can be estimated. Note that the information fetched from the indexes is an offline operation, and only
has to be performed once for index selection to work since the same information can be reused for each query (although it's
common to update the information on a regular interval since new documents and indices are usually added to ES in real time).

Surrogate algorithms

Surrogate algorithms collects sample-documents and construct a centralized sample index at the broker-nodes (CSlI). The
algorithms then use the documents retrieved from querying the CSl to estimate how many relevant documents there are in each
index (or which indices contain the most highly relevant documents). There are three surrogate-algorithms implemented at the
moment (redde , sushi and s-rank).

Lexicon algorithms

Lexicon algorithms collects tf, df and other statistics from the different indices. There is only one lexicon-algorithm implemented at
the moment (highsim).

https://github.com/bergetp/es-index-selection/blob/master/README.md 1/4

5/28/13

es-index-selection/README.md at master - bergetp/es-index-selection - GitHub

Installation

Installing the plugin

The plugin has to be installed on every node in the cluster.
To build the plugin, type mvn package in the IndexSelect directory.
To install the plugin on a node, type

$ES_HOME/bin/plugin -url <url to target (zip)> -install index-selection

To remove the plugin on a node, type

$ES_HOME/bin/plugin -remove index-selection

Configuring the cluster

When the ES cluster consists of a lot of nodes it is common to place a couple of client nodes in front of the data nodes. The client
nodes don't hold any index data but will handle all the http-trafic, query-routing, gathering of results etc.

This plugin assumes that such a cluster configuration is used. The client nodes will perform the index selection locally before the

query is routed to the data nodes.

Configuring the indices

For all fields which should be used to perform index-selection the following should be configured:

® data.store should be setto true

® analyzer :should be the same for all fields

Configuring the client nodes

All client nodes have to have their own copy of the information used to perform index selection. Therefore the they all have to use the

same index select configuration.

Set
indexselect.refresh_enabled: true

to enable index selection on a client node.

The data used for index selection is not automatically updated when a new index is created or a new document is added. Instead it

will be refreshed according to a pre-defined time interval:

indexselect.refresh_interval: 1@m

In this case the data will be updated every 10 minutes. A refresh can also be triggered manually using the REST interface (example

in next section).

Since the data needed for “highsim' is different from the other algorithms there are two different flags which can be set to define

what data should be updated:

indexselect.refresh_surrogate: true

https://github.com/bergetp/es-index-selection/blob/master/README.md 2/4

5/28/13

es-index-selection/README.md at master - bergetp/es-index-selection - GitHub

indexselect.refresh_lexicon: true

In this case, data will be refreshed for all algorithms. This could be useful for testing, but otherwise it is recommended to only refresh

one type of data.

Its likely that not all fields will be used for index select. The algorithms currently only support fields with string values..

indexselect:

fields: [message, reply]
In this case data for index selection will only be fetched from the "message" and "reply" fields in the indices.
You may also want to specify which analyzer to use with index selection. If not set, the standard analyzer will be used

indexselect:

analyzer: snowball

Force refresh of index selection data

Data used for index selection is automatically refreshed in a specific time interval. In some cases it can be useful to force the broker

nodes to refresh their data instantly.

Curl -XPOST localhost:9200/_indexSelectRefresh -d

{
"method" : "surrogate",
"fields" : ["message, reply"],
"max_age" : "1m",
"analyzer" : "snowball"

3

In the example above, the data will only be refreshed if it was less than one minute since the data was last refreshed ("max_age"
option). Note that the refresh request has to be sent to all broker nodes for a full refresh to be performed.

Searching using index selection

The following fields are used in the index-select request:

e indsel_algorithm : Specified which index selection algorithm to use [redde | rank-s | highsim | sushi]
e indsel_max_indices : Maximum indices to select and perform query on (if results are confident)

e indsel fields : Fields which should be used for index selection

e indsel_query_string : The search query which will be performed on the selected indices

® search query : The actual search query which will be performed on the selected indices

Here is an example of a complete index select request:

Curl -XGET localhost:9200/_indexSelect-d

{
"indsel_algorithm" : "rank-s",
"indsel_max_indices" : 2,
"indsel_fields" : "twitter_message",
"indsel_query_string" : "Justin Bieber",
"search_query" : {

"term" : { "twitter_message" : "Bieber" }

}

3

The example will first perform index selection using the rank-s algorithm on the "twitter_message" field in the sample documents
with the query-string "Justin Bieber". The term query will be performed on the two highest ranked indices.

https://github.com/bergetp/es-index-selection/blob/master/README.md

3/4

5/28/13 es-index-selection/README.md at master - bergetp/es-index-selection - GitHub

Acknowledgements

This plugin is part of my master thesis in Computer Science at University of Goteborg / Chalmers University.
The project has been a collaboration with Findwise AB.

I would like to thank spinscale. Your suggest-plugin very helpful for figuring out how this could be implemented.

https://github.com/bergetp/es-index-selection/blob/master/README.md 4/4

	Introduction
	Historical background
	Research aim
	Problem description
	Main goals
	Scope and limitation

	Background
	Introduction to IR
	Data representation for efficient searching
	Document scoring
	Evaluating IR systems
	Sharding of indices
	Case study: ElasticSearch

	Shard selection
	Lexicon algorithms
	CORI
	HighSim

	Surrogate algorithms
	Best-N algorithm
	ReDDe
	Sushi
	Sampling-Based Hierarchical Relevance Estimation (SHiRE)

	Other approaches
	Shard and query clustering
	Highly discriminative keys

	Document allocation policies
	Random allocation
	Attribute-based allocation
	Topic-based allocation
	Time-based data flow

	Evaluating shard selection

	Shard Selection Algorithms Extension for ElasticSearch
	Work-flow
	SAFE
	SAFE Requirements
	Cluster configuration
	Implemented algorithms
	Refresh operation
	Shard selection operation
	Handling of constraints presented by ElasticSearch and Lucene

	Experiment
	Data sets
	Experimental setup
	Metrics
	Modified recall
	Pk@N
	Average number of shards selected

	Results and discussion
	Experimental result
	Modified recall
	Pk@N
	Shard cutoff

	Discussion

	Conclusion
	Future work
	Conclusion

	 Bibliography
	Data set
	Filters applied to Twitter API

	Project reference manual
	General information
	README.md from Github

