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Abstract

This Master of Science thesis investigates the performance of a Simple Regime

Switching Model compared to the GARCH(1,1) model and rolling window ap-

proach. We also investigate how these models estimate the Value at Risk and

the modified Value at Risk. The underlying distributions that we use are normal

distribution and Student’s t-distribution. The models are fitted to the Nasdaq

OMXS30 and the Nikkei 225 indices for 2013. This thesis shows that the Simple

Regime Switching Model with normal distribution performs superior to the other

models adjusting for skewness and kurtosis in the residuals. The best model for

estimating risk is the Simple Regime Switching Model with normal distribution

in combination with the classic Value at Risk. In addition, we show that financial

institutions using the Simple Regime Switching Model will possibly lower their

cost of risk, compared to using the GARCH(1,1) model.
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1 Introduction

During the last years there have been two major financial crises, the Global financial
crisis and the European sovereign crisis [25], both of which have once again raised the
awareness of the importance for financial institutions to manage risk. Many European
financial institutions are now implementing the Basel III framework to handle risk [22].
However, it is also of great importance for financial institutions to apply internal risk
models in order to managing risk on a daily basis [21].

In this thesis we compare the risk measure Value at Risk (VaR) and a version that ad-
justs for skewness and kurtosis, called modified VaR (mVaR). In order to estimate the
parameters needed to calculate VaR and mVaR, we use the classic rolling window ap-
proach, the GARCH(1,1) model, and additionally the Simple Regime Switching Model
(SRSM).

In portfolio management, it is essential to be aware of the risk in the portfolio. In 1996,
J.P. Morgan together with RiskMetricsTM developed the Value at Risk (VaR). This
risk measure provides the actual number of the maximum loss in the portfolio over a
predefined time horizon, given the chosen probability [19].

In 1989, James Hamilton published his first paper discussing the Simple Regime Switch-
ing Model (SRSM), which is used to estimate the parameters’ mean and variance of
financial time series [9]. The SRSM was further developed in two subsequent articles
by Hamilton.

The SRSM assumes two states, either one with a high return of an asset with low
volatility or one with a low return of an asset with high volatility. Today these states
are respectively known as "bull" and "bear" market among financial professionals and
in the academia. The bull market is a market with increasing asset prices, a typical
market where the investors are interested in a long position. A bear market is a market
where the prices of assets are declining, therefore, a short position is preferred [24].

The purpose of this thesis is to analyze the quality of the SRSM, and how well this
model adjusts for skewness and kurtosis in the residuals of the returns. We also test
the quality of VaR, estimated by the parameters from the SRSM. Furthermore, there
has been no research on the Swedish stock market using the SRSM and the quality of
the model is tested in more extreme environment using the volatile Nikkei 225 index
for 2013. This implies that this thesis can contribute to the existing work within the
field of risk management, as well as provide new findings for the Swedish stock market
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and the quality of the SRSM.

There are many interesting research questions that can be analyzed within the field of
regime switching models. The four major questions that are addressed in this thesis
are:

• Which of the models will best adjust for kurtosis and skewness in the residuals?

• Which of the models for parameter estimation in combination with the risk mea-
sure produces the best model for estimating risk?

• Is there a clear difference between the risk measures produced by the GARCH(1,1)
model compared to the SRSM?

• How good are the models at adjusting for violations arriving in clusters?

In order to define a framework for the thesis, we introduce some limitations. The
limitations and their motivations are as follows:

• We are limiting the data to the OMXS30 and Nikkei 225 indices. We could of
course consider more assets to improve the quality of the work, but some trade-off
has to be done since running backtesting is time consuming.

• The backtesting is done for 255 observations. A longer time period may improve
the results, but some trade off has to be made since running backtesting is time
consuming.

• A one-day forecast is chosen, since it is an established method among researchers
in the area and greatly simplifies the calculation of VaR for the SRSM.

The SRSM was introduced by James Hamilton in 1989 [9], in order to explain discrete
shifts among the parameters. Hamilton developed the Markov switching regression by
Goldfeld and Quandt [7], where Hamilton presented a nonlinear filter and smoother
used to estimate the probability of the states based on observations of the output. The
GARCH model was introduced by Bollerslev [3] and is one of the most used models in
volatility estimation.

VaR is covered in the majority of the books in risk management, and the topic is
probably one of the most discussed in articles covering the risk of financial assets. The
VaR model was first presented in the original paper by J.P. Morgan and Reuters called
RiskMetricsTM[19]. The modified VaR model was introduced by Favre and Galeano
[17] in 2002 and works as a complement when distribution of residuals are not normally
distributed.
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2 Theory

2.1 Returns

In this thesis we assume that the prices take either a lognormal distribution or a logged
Student’s t-distribution, hence we use logarithmic returns, which are defined as

rt = ln
(

Pt
Pt−1

)
= lnPt − lnPt−1, (1)

where Pt is the price of a security at time t.

2.2 Value at Risk (VaR)

When managing a portfolio of equity or other financial assets it is important to know
the risk. Important questions for financial institutions are what is the potential loss
tomorrow? and how does the portfolio react to the market movements?, in order to
be able to manage the portfolio and reallocate the weights of the assets efficiently.
The natural response to the question of what is the potential loss tomorrow?, would be
everything!, but this is quite a vague answer and probably not an acceptable answer
for the risk- or portfolio managers. The Value at Risk (VaR) model is a way for risk
managers to get stimulating answers to the aforementioned questions [18].

As mentioned earlier, the VaR model is a risk measure that provides the actual number
of what the maximum loss will be over a predefined time horizon given the chosen
probability [19].

The VaR can also be expressed as the probability for the return being less than VaRα(rt)

during the time period h is α, namely P[rt+h ≤ VaRα(rt) [14], in this thesis the one
day VaR is being used and, therefore, we assume that h = 1. In addition, rt+1 is the
return over the period ]t, t+1], from now on we will express this return as rt and replace
(α, h) as mentioned above. VaRα(rt) is thus given by the smallest number y, for which
rt exceeds y with probability 1− α at time t [12].

We start to define Frt(x) = P[rt ≤ x] for any x, we have that Frt(x) is the distribution
function for the return variable rt. Thus
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VaRα(rt) = inf{y ∈ R : P[rt ≤ y] ≤ 1− α}

= inf{y ∈ R : Frt(y) ≥ α}.
(2)

F (x)rt is a nondecreasing function on R, F (x)rt : R→ R. Then the generalized inverse
to Frt is F←rt , this is thus defined as

F←rt (y) = inf{x ∈ R : Frt(x) ≥ y}. (3)

If F (x)rt is a continuous and strictly increasing function then F←rt = F−1rt , so the gener-
alized inverse F←rt (y) will then be F−1rt , hence VaRα is

VaRα(rt) = F←rt (α) = F−1rt (α). (4)

Assuming rt is normally distributed random variable with mean µt and variance σ2
t , we

have rt ∼ N(µt, σ
2
t ), then Frt(x) is

Frt(x) = P[rt ≥ x] = P
[
rt−µt
σt
≥ x−µt

σt

]
= Φ

(
x−µt
σt

)
, (5)

where Φ(x) describes the cumulative distribution function.

The cumulative distribution function of a standard normal random variable with Φ(x),
is described as

Φ(x) =
1√
2π

∫ x

−∞
exp

{
−z

2

2

}
dz. (6)

In order to find F−1rt (y), we solve for x in the equation y = Frt(x), and get

Φ
(
x−µt
σt

)
= y ⇔ x− µt

σt
= Φ−1(y)⇔ x = µt + σtΦ

−1(y). (7)

Then we can see that F−1rt (y) is

F−1rt (y) = µt + σtΦ
−1(y). (8)

We know that VaRα(rt) = F−1rt (α) from equation 4, hence we can express VaRα(rt) as

VaRα(rt) = µt + σtΦ
−1(α), (9)
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where Φ−1 can not be explicitly expressed.

If f is the density function of the return series, then VaR can also be expressed as

1− α =

∫ V aRα(rt)

−∞
f(x)dx. (10)

2.3 Modified Value at Risk (mVaR)

VaR measures the risk in a portfolio with returns that are normally distributed. This
implies that if a time series is not normally distributed, VaR may give misleading
results. Therefore, we introduce a model that does not assume a normal distribution
among the returns; instead the model uses the skewness and kurtosis of the time series
to estimate VaR. This model is called modified VaR (mVaR) [17].

The mVaR measure is due to this more adaptable and dynamic. For instance, we will
overestimate risk if we try to estimate VaR at low confidence levels, using the normal
distribution when the distribution is in fact leptorkurtic. At high confidence levels, we
will instead underestimate the risk. The mVaR therefore adjusts for the non-normal
distribution and gives a more correct estimate of the risk, even if the returns are non-
normally distributed.

The mVaR is expressed as

mVaRα(rt) = µt +

(
Φ−1(α)− 1

6
(z2α − 1)St −

1

24
(z3α − zα)Kt +

1

36
(2z3α − 5zα)S2

t

)
σt,

(11)

where we have that

• Φ−1(α): standard normal quantile for α

• St: skewness

• Kt: excess kurtosis which is defined as kurtosis-3

• µt: mean

• σt: standard deviation

In equation 11, we can see that when skewness and excess kurtosis are zero, then mVaR
is equal to VaR. If excess kurtosis or skewness are deviating from zero, the mVaR will
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not be equal to VaR, and the risk will be adjusted for the different distribution of the
returns.

2.4 The Simple Regime Switching Model (SRSM)

The Simple Regime Switching Model (SRSM) (also known as the Markov state switch-
ing model) is a model that allows for the parameters to switch states. This implies that
if the mean and variance are Markov switching then they will change depending on the
state of the market. A classic example of this is the stock market where we can have
either a bull or a bear market. A bull market has a positive trend and low volatility
while a bear market has a negative trend and higher volatility. In the SRSM model,
we know, that in a bull market, we have positive mean and low variance compared to a
bear market were the mean is lower or even negative, and the variance is considerably
higher. The volatility is represented by the variance. The SRSM model gives us the
mean, the variance and the probability for the two different states [11].

We assume the returns for the SRSM to be

rt = µSt + σStεt, (12)

where rt is a time series of returns, St is a Markov chain with k possible states and the
innovation εt is an i.i.d process. We have that t = 1, . . . , T . From now on we define the
SRSM when we have k = 2, which means having two different states or regimes. St is
defined as

St =

{
1 with probability π,
2 with probability 1− π.

(13)

The Markov chain, St, transition matrix is

P∗ =

(
p11 p21

p12 p22

)
. (14)

In the diagonal we have p11 and p22 that represents the probability of staying in regime
1 and 2, respectively. Then p12 = 1 − p11 and p21 = 1 − p22, which represent the
probabilities of switching from regime 1 to 2 and from regime 2 to 1.
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We have the following model for rt

rt =

{
µ1 + σ1εt if St = 1,
µ2 + σ2εt if St = 2,

(15)

for our two states. Hence the innovations εt are i.i.d N(0, 1) and

εt ∼

{
N(µ1, σ

2
1) if St = 1,

N(µ2, σ
2
2) if St = 2.

(16)

In equation 15, there are two different equations for rt, depending on which state we
are in.

The unconditional probabilities for the states are given by the following vector,(
(1−p11)

(1−p11−p22)
(1−p22)

(1−p11−p22)

)
, (17)

these are used and explained in the Hamilton filter section. This is also the long run
equilibrium of the weights for our two states. When using the Hamilton filter we assume
the starting values to be {0.5, 0.5} since we do not know the unconditional probabilities
[11].

2.4.1 VaR for the SRSM

When we estimate VaR using the SRSM, we use the standard VaR for each state with
the given parameters and then weight our different VaR calculations depending on the
probability for each state. Hence, the one day VaR at time t for SRSM is the weighted
VaR for the states, as can be seen in

VaRα(rt) =
k∑

St+1=1

P(St|ψt)(µSt+1 + σ2
StΦ

−1(α)). (18)

Here we have that P(St+1|ψt) is the probability for the different states given all the
information up to time t [14].
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2.4.2 Hamilton Filter with Maximum Likelihood Estimation

When estimating the parameters of the SRSM using the Hamilton filter, we may use
either maximum likelihood estimation or Bayesian inference (Gibbs-Sampling) [20]. In
this thesis maximum likelihood estimation is used, since it is the method recommended
and used by Hamilton in his papers about regime switching models [10], the Hamilton
filter will be described in this section [11].

We start by considering a standard regime switching model

rt = µSt + σtεt, (19)

where the innovations, εt, are i.i.d N(0, 1) and the states are St = 1, 2.

The log likelihood of the aforementioned model is

lnL =
T∑
t=1

ln

 1√
2πσ2

St

exp
{
−(rt − µSt)2

2σ2
St

} =
T∑
t=1

(
−1

2
ln(2πσ2

St)−
(rt − µSt)2

2σ2
St

)
.

(20)

We want to maximize lnL (20), which is equivalent to maximizing

− 1

2

T∑
t=1

(
ln(σ2

St) +
(rt − µSt)2

σ2
St

)
. (21)

Using maximum likelihood for the above specified model, everything is relatively easy
if we know the states of the world, St. Then we only have to maximize equation (20)
with respect to the parameters µ1, µ2, σ1 and σ2.

However, in the Markov switching case the states of the world are not known. Therefore,
the log likelihood equation for the case when the states are unknown is calculated.

We have that pij = P[St+1 = j|St = i] i = 1, 2, j = 1, 2 which is our transition probabil-
ities from our transition matrix. Our six parameters are thus Θ = {µ1, µ2, σ1, σ2, p12, p21}.

The likelihood for our observations is defined as

L(Θ) = f(r1|Θ)f(r2|ψ1,Θ)f(r3|ψ2,Θ) . . . f(rt|ψt−1,Θ), (22)
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where ψt = {rt, rt−1, . . . , r1} is the information available at time t and f is the proba-
bility density function for rt.

We start the maximum likelihood estimation for the case when t = 1.

In order to start with the first recursion we need a value (given Θ) for P(S0) and we
want to find f(y1|Θ).

Then we start the recursion by calculating for the parameters Θ

f(S1 = 1, r1|Θ) = π1ϕ

(
r1 − µ1

σ1

)
, (23)

and
f(S1 = 2, r1|Θ) = π2ϕ

(
r1 − µ2

σ2

)
, (24)

where ϕ is the standard normal probability density function and the total is

f(r1|Θ) = f(S1 = 1, r1|Θ) + f(S1 = 2, r1|Θ). (25)

Calculate the probabilities for each state, that is S1 = 1, 2:

P(S1|r1,Θ) =
f(S1, r1|Θ)

f(r1|Θ)
. (26)

We now advance to when t = 2.

f(r2|r1,Θ) is the sum over St = 1, 2 and St−1 = 1, 2 for

f(S2, S1, r2|r1,Θ) = P(S1|r1,Θ)P(S2|S1,Θ)f(r2|S2,Θ), (27)

where the first factor of the right hand side is the probability function from the previous
recursion, in this case when t=1. The second factor on the right hand side is the
transition probabilities between the regimes (pij). The last factor is the probability
density function

f(r2|S2,Θ) = ϕ

(
r2 − µS2

σS2

)
. (28)

To find the P(S2|r2,Θ), which is the probabilities for the different states, we use the
following equation where S2 = 1, 2
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P(S2|r2,Θ) =
f(S2, S1 = 1, r2|r1,Θ) + f(S2, S1 = 2, r2|r1,Θ)

f(r2|r1,Θ)
. (29)

Now consider an arbitrary t, then the log-likelihood for t’th observation is

lnf(rt|ψt−1,Θ). (30)

We calculate this recursively by calculating for each t

f(St, St−1, rt|ψt−1,Θ) = P(St−1|ψt−1,Θ) P(St|St−1,Θ) f(rt|St,Θ), (31)

where P(St|St−1,Θ) is the transition probability for the regimes

f(rt|St,Θ) = ϕ

(
rt − µSt
σSt

)
. (32)

The probability function P(St−1|ψt−1,Θ) is found from the previous recursion (29), and
is

P(St−1|ψt−1,Θ) =
f(St−1, St−2 = 1, rt−1|ψt−2,Θ) + f(St−1, St−2 = 2, rt−1|ψt−2,Θ)

f(rt−1|ψt−2,Θ)
.

(33)

We can now calculate f(rt|ψt−1,Θ) as the sum over the possible values of St = 1, 2 and
St−1 = 1, 2 in formula 31.

This can now be recursively done for t = 1, 2, . . . , T by maximizing the likelihood func-
tion over our parameters Θ = {µ1, µ2, σ1, σ2, p12, p21} by using the function fminsearch
in Matlab.

2.5 Rolling window

A common approach when testing statistical models is to use a rolling window (moving
average, rolling analysis). It is a simple alternative to capture the changing mean and
variance over time. The approach is used in this thesis, and it works as follows; first we
divide the data into an estimation sample and a prediction sample. Then we estimate
the parameters from the estimation sample and compare how well they fit the prediction
sample. Once this is completed we roll one time period ahead, and the estimation
sample now becomes the old estimation sample, but with one observation added from
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the prediction sample and the oldest observation taken away in the estimation sample
[27]. The prediction sample is now one observation less than what was earlier the case.

In our analysis we are not using all data in our sample, we only use the recent m
observations, therefore we have the following mean

µt,m =
1

m

m−1∑
i=0

rt−i, (34)

and the variance is given by

σ2
t,m =

1

m− 1

m−1∑
i=0

(rt−i − µt,m)2. (35)

The mean and variance is updated in each time period by replacing the oldest obser-
vation with a new observation [27].

The m is chosen by testing for different lengths and observing the results, then choosing
the length of m that produces the best result of a skewness and kurtosis.

2.5.1 Value at Risk for rolling window

We plug in the mean and variance from the rolling window and then get the VaR by

VaRα(rt) = µt,m + σ2
t,mΦ−1(α). (36)

2.6 The GARCH(1,1) model

In the GARCH(1,1) model the returns are conditionally normally distributed with
conditional mean µt and conditional variance σ2

t , where ψt is information available at
time t [3],

rt|ψt−1 ∼ N(0, σt). (37)

Then the expected mean, µ̂t, can be expressed as

µ̂t = E[rt|ψt−1], (38)
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or alternatively as an AR(1) model

µ̂t = α0 + α1rt−1, (39)

or an ARMA(p, q) model.

σ2
t can be expressed as

σ2
t = V ar[rt|ψt−1] = E[(rt − µt)2|ψt−1]. (40)

In order to adjust for non zero mean, we subtract the estimated mean at time period t
from rt. We therefore introduce the variable at

at = rt − µ̂t, (41)

where µ̂t is the estimated mean at time t [26].

The general GARCH(p, q) model by Bollerslev[3] is defined as

σ̂2
t = α0 +

p∑
i=1

αia
2
t−i +

q∑
j=1

βjσ
2
t−j, (42)

where at is a weighted (with αi) random variable (in this paper the demeaned daily
return of the portfolio at time t), expressed as

at = σtεt, (43)

where the innovation εt ∼ i.i.d N(0, 1). We have that σ2
t−j is the weighted (with βj)

conditional variance at the time period t.

The GARCH(1,1) model for the conditional variance is

σ̂2
t+1 = α0 + α1a

2
t + β1σ

2
t . (44)

In addition we have the restriction

α0, α1, β1 > 0, (45)
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and
α1 + β1 < 1, (46)

in order for the GARCH(1,1) to be considered a stationary process.

A log-likelihood function or least squares regression can be used to estimate the pa-
rameters of the GARCH(1,1) model. The log likelihood function for a conditionally
normally distributed series {at} with parameters Θ = {0, σ2

t } is

lnL =
T∑
t=1

ln

(
1√

2πσ2
t

exp
{
− a2t

2σ2
t

})
= −1

2

T∑
t=1

(
ln(2πσ2

t ) +
a2t
σ2
t

)
, (47)

When the parameters are estimated, the conditional mean, µ̂t+1 and conditional vari-
ance σ̂2

t+1 can be forcasted. It is also possible to use a Student’s t-distribution instead
of assuming a normal distribution.

2.6.1 Value at Risk for GARCH(1,1)

From the results of the GARCH(1,1) model, we plug in the estimated conditional mean,
µ̂t+1, and estimated conditional variance, σ̂2

t+1, into the VaRα

VaRα(rt) = µ̂t+1 + σ̂2
t+1Φ

−1(α). (48)
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3 Methodology

3.1 Software

There are several softwares that can be used for this type of time series analysis. We
choose to work in MatLab from MathWorks since this is a software for which our knowl-
edge is good. In addition, MatLab is widely used among professionals and academics,
and it offers many toolboxes with relevant functions.

3.1.1 Toolboxes

The toolbox "MS Regress - The MATLAB Package for Markov Regime Switching Mod-
els" by Marcelo Perlin [20] is used to run the SRSM. The toolbox "MFE MATLAB
Function Reference Financial Econometrics" by Kevin Sheppard [23] is used for the
other econometrical calculations and estimations. For the BDS test, the toolbox by
Ludwig Kanzler [15] is used.

3.2 Value at Risk method

When calculating VaR and mVar the results will be a positive number since it is denoting
the value of the negative return.When the calculations are performed, a minus sign is
used in front in order to denote that the value of the VaR is negative and that we are
comparing the results with the actual negative returns from the time series.

3.3 Normality test for residuals

Here we describe three tests that controls for a normal distribution, skewness and
kurtosis in the residuals of the estimated parameters.

Introducing the variable et
et =

rt − µ̂t
σ̂2

. (49)

Then e is a vector with residuals gathered from backtesting, e = {et, et−1, ..., e1}.
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3.3.1 Anderson-Darling test (AD test)

For the Anderson-Darling test we have that H0 : data follows a normal distribution,
and the test statistic is [1]

A2 = −T − SAD, (50)

where

SAD =
T∑
t=1

2t− 1

T
[lnΦ(et) + ln(1− Φ(eT+1−t))]. (51)

the non-rejection region for 5% significance level is ±1.96.

3.3.2 Jarque-Bera test (JB test)

For the JB-test we have the H0 : skewness and excess kurtosis is zero, test statistic is

JB =
S(et)

6/T
+

(K(et)− 3)2

24/T
(52)

which is asymptotically χ2(2) under the assumption of normal distribution. Thus,
under the H0, of skewness and excess kurtosis being zero, will be rejected at the 5%
significance level when |JB| > 3.84.

If we want to test only for skewness the test statistic is

JBskewness =
S(et)

6/T
. (53)

If we want to test only for kurtosis the test statistic is

JBkurtosis =
(K(et)− 3)2

24/T
. (54)

For both skewness and kurtosis the non-rejection region for 5% significance level is
±1.96.

3.3.3 BDS test

The BDS test is a test by Brock, Dechert and Scheinkman. We will use the notations
from [27].
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The focus of the BDS test is the correlation dimension, in order to test for the distri-
bution of impermanent patterns in time series.

The time series of residuals is defined as et for t = 1, 2, ..., T , and itsm-history is defined
as emt = (et, et−1, ..., et−m+1).

Start of by estimating the correlation integral at the embedded dimension m

Cm,ε =
2

Tm(Tm − 1)

∑
m≤s

∑
<t≤T

I(emt , e
m
s ; ε), (55)

where Tm = T −m+ 1 and I(emt , e
m
s ; ε) is an indicator function that is taking the value

one if |et−i − es−i| < ε for i = 0, 1, ...,m− 1 and it is equal to zero otherwise.

The joint probability is estimating the probability of two m-dimensional points are
being located within a distance of ε from each other, which is the correlation integral,
by the following formula P(|et − es| < ε, |et−1 − es−1| < ε, ..., |et−m+1 − es−m+1| < ε)

If et is i.i.d, then the probability will be

Cm
1,ε = P(|et − es| < ε)m (56)

The DBS statistic is defined by

Vm,ε =
√
T
Cm,ε − Cm

1,ε

σm,ε
, (57)

where σm,ε represents the standard deviation for
√
T (Cm,ε − C1,ε).

Hence the BDS statistic will converge to standard normal distribution. Thus, under the
H0 of i.i.d residuals will be rejected at the 5% significance level when |Vm,ε| > 1.96.

3.4 Kupiec test - Probability of Failure

In order to evaluate if the number of violations is in line with the given confidence level,
we use one of the most widely known tests, the Kupiec test, also known as Probability
of Failure test(PoF) [16].

This is a Bernoulli trial, which is a sequence of observations that either succeeds or
fails, whom follow a binomial distribution. The probability of observing x observations
of return below our given level of VaRα out of a total of T observations, where x ∼
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Bin(T, α), the binomial probability mass function is

P(x|α, T ) =

(
T

x

)
(1− α)xαT−x. (58)

The null hypothesis is H0 : α̂ = 1− α where α̂ is

α̂ =
1

T
I(α) (59)

and I(α) is the number of violations and It(α) takes the value 0 if no violation at time
t and 1 if there is a violation at time t, which can be described by

I(α) =
T∑
t=1

It(α). (60)

The test statistic of the Kupiec test is

LRPOF = 2ln

((
1− α̂
α

)T−I(α)(
α̂

1− α

)I(α))
∼ χ2(1). (61)

In order to evaluate this we use a χ2(1) distribution, e.g. for the 95% percentile the
χ2(1) is 3.84.

VaR Non-rejection
Confidence Level T=255 days

99% x < 7
97.5% 2 < x < 12
95% 6 < x < 21
92.5% 11 < x < 28
90% 16 < x < 36

Table 1: Non-rejection region for Kupiec test for different confidence levels.

3.4.1 Criticism of Kupiec

Kupiec test has been criticized for the fact that it only takes into account the number
of failures [4] and not that failures may come in clusters.
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3.5 Christoffersen’s Independence test

As discussed in 3.4.1, it is important to be able to make sure that the violations do not
come in clusters, for this purpose we can use the Christoffersen’s Independence test.

In the test, we have an indicator variable taking the value 1 if the VaRα(rt) value is
larger than the actual return and taking the value 0 if the value of VaRα(rt) is lower
than the actual return [5].

It =

{
1 if violation occurs,
0 if no violation occurs.

(62)

nij illustrates the value at day i given j. The four different outcomes are displayed in
the matrix below.

It−1 = 0 It−1 = 1

It = 0 n00 n10 n00 + n10
It = 0 n01 n11 n01 + n11

n00 + n01 n10 + n11 n00 + n01 + n10 + n11

Table 2: Outcomes of violations clustering for Christoffersen’s Independence test.

In addition, the variable πi represents the probability of observing a violation condi-
tional on state i.

π0 =
n01

n00 + n01

, (63)

π1 =
n11

n10 + n11

, (64)

and
π =

n01 + n11

n00 + n01 + n10n11

. (65)

Our test statistic for independence is thus given by

LRind = −2ln
(

(1− π)n00+n10πn01+n11

(1− π0)n00πn01
0 (1− π1)n10πn11

1

)
, (66)

which is evaluated based on a χ2(1) distribution. With the Christoffersen’s Indepen-
dence test we test if the violations are arriving in clusters or not, the null hypothesis is
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thus
H0 : π01 = π11. (67)

3.6 Violation ratio

An additional way to compare the relative performance of VaR and mVaR is to use the
violation ratio. The violation ratio is simply the number of violations divided by the
expected number of violations [6].

We find the number of violations with

It =

{
1 if violation occurs,
0 if no violation occurs.

(68)

Then we divide It with the expected number of violations

∑T
t=1 It

(1− α)T
. (69)
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4 Data

4.1 Data background

In this thesis data is used from the Nasdaq OMX30 index and the Nikkei 225 index
from 2012 to 20131. In total, there are 255 observations over the years. The data has
been retrieved from Bloomberg terminals and are displayed in figure 1 and figure 2.

OMXS30 is the index of the Stockholm Stock Exchange’s 30 most actively traded stocks.
By limiting the index to the 30 most traded stocks, we know for sure that they have
good liquidity, which means that the market is effective, and investors can enter and
exit their positions when they feel that the asset has reached the target price, in this
way the prices are the actual market prices. Also with good liquidity in the underlying
assets the index is suitable for derivative products. The OMXS30 index is a weighted
basket on a market weighted price index [8].

The Nikkei 225 is the index for the First Section of the Tokyo Stock Exchange and
consists of the 225 most traded companies that are listed. The index is price-weighted
average of the companies [2].

1more specifically 2012-12-13 to 2013-12-30
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Figure 1: Value of OMXS30 from 2012-12-13 to 2013-12-30.

Figure 2: Value of Nikkei 225 from 2012-12-13 to 2013-12-30.
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The daily log returns for the indices is calculated, see chapter 2.1.

For all the indices, we estimate the risk models for 255 consecutive days, for each day
of estimation we are using a rolling sample of the 64 observations, that we estimate
our parameters based on. One day VaR forecasts for 95% and 99% confidence levels
are generated. Model parameters are re-estimated every trading day and all tests are
performed using the information for the last 64 days.

4.2 Descriptive statistics of the daily log returns

Nasdaq OMXS30 Nikkei 225
Mean 0.0727% 0.2016%
Median 0.0784% 0.1999%
Max 2.55% 4.83%
Min -3.13% -7.60%
Std 0.0082 0.0169
Skewness -0.3497 -0.7659
Kurtosis 4.1172 5.2634
Excess Kurtosis 1.1172 2.2634
Observations 255 255

Table 3: Descriptive statistics of the daily log returns.

For the Nikkei 225, we have excess kurtosis and fat tails which indicates a leptokurtic
distribution. For OMXS30, we have a lower kurtosis value, but still the excess kurtosis
is almost equal to one.

The mean and median are quite the same and very low, almost zero for OMXS30. For
Nikkei 225 the mean and median are not deviating a lot, but they are not close to
zero.

Leptokurtosis may affect the VaR analysis since at low levels of significance when es-
timating VaR, using the normal distribution instead of leptokurtic distribution, will
overestimate the risk. At high levels of significance, it will instead underestimate the
risk; this is since leptokurtic distribution has fatter tails than the normal distribution;
the risk comes from outliers and extreme observations will be more likely to occur [13].

By observing the sample autocorrelation plot for each iteration, there seem to be no
problem with first-order autocorrelation for any of the indices, therefore there is no
need to use the AR(1) model for estimating the residuals.
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Figure 3: Histogram of returns for OMXS30.

Figure 4: Histogram of returns for Nikkei 225.
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5 Analysis

5.1 Residuals

5.1.1 Distribution of residuals

As concluded in the data section, the log returns of OMXS30 and Nikkei 225 are
leptokurtically distributed. In this section, we further analyze the distribution of the
residuals for our three different models with OMXS30 and Nikkei 225.

Model Anderson-Darling Jarque–Bera BDS test
Distribution OMXS30 Nikkei 225 OMXS30 Nikkei 225 OMXS30 Nikkei 225
GARCH 0.1525* 0.4317* 0.1610* 0.0228 0.2617* 0.0407
Normal
GARCH 0.1487* 0.3063* 0.0993* 0.001 0.3384* 0.0361
Student’s t
SRSM 0.6736* 0.7368* 0.5000* 0.5000* 0.8133* 0.3206*
Normal
SRSM 0.6229* 0.9226* 0.5000* 0.5000* 0.5932* 0.5453*
Student’s t
Rolling 0.3542* 0.4040* 0.2420* 0.0926* 0.7632* 0.6053*
Window

Table 4: The test statistic for normal distribution of residuals, an asterisk (*) means
that we can not reject the null hypothesis at 5% significance level.

In table 4, we present the results of the three different tests that are performed in order
to test whether the residuals of our indices are normally distributed or not.

We first consider at the distribution among the residuals for OMXS30. The GARCH(1,1)
model with normal distribution gives normally distributed residuals, as expected. The
GARCH(1,1) model with Student’s t-distribution gives normally distributed residuals,
from table 7 we can note that it does not have high degrees of freedom, but it has high
enough for the residuals to be normally distributed.

The SRSM with normal distribution produces residuals that are normally distributed,
which is what we expected. When we using the SRSM with Student’s t-distribution
we also get normally distributed residuals. In table 7 we can see that the degrees of
freedom, for the number of observations are high, therefore we can assume the residuals
from the SRSM with Student’s t-distribution to follow a normal distribution.

According to our test, the rolling window approach produces normally distributed resid-
uals, as we want when performing the risk models, since those are based on normal
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distribution among the residuals. Hence all our models perform well with the OMXS30
index.

The outcome for the distribution of the residuals is slightly different for Nikkei 225
compared to OMXS30. The GARCH(1,1) model with normal distribution should have
normally distributed residuals to estimate our risk models good, but this is not the
case as shown by Jarque-Bera and the BDS test. However, even if we can not reject
the null hypothesis for the Anderson-Darling test, we can still assume the residuals
to be normally distributed. When breaking down the distribution of the residuals by
Jarque-Bera, the main problem lies within the skewness, as can be seen in table 5. Since
the GARCH model does not adjust for skewness, it is not a surprise that the skewness
has test statistic above 1.96. Further, the kurtosis is relatively high with a value of
3.5114, but we should take into account that it originally was 5.2634 for the log return
distribution of Nikkei 225, and hence this is an improvement.

Analyzing the GARCH(1,1) model with Student’s t-distribution, we can see that it is
normally distributed according to the Anderson-Darling test, but not according to the
Jarque-Bera or the BDS test. Considering the degrees of freedom, we can see that
they are high, therefore the residuals should be approaching the normal distribution.
Since 194 out of 255 observations have degrees of freedom higher than 100, we would
assume the residuals of the GARCH(1,1) model to be normally distributed, but still
the residuals have not taken a normal distribution.

When estimating the risk models we assume the residuals to be normally distributed,
therefore we want the residuals of the SRSM with normal distribution to be normally
distributed. The test results for all models imply that we can not reject the null
hypothesis at 5% significance level, we can therefore assume the residuals to be normally
distributed.

Applying the SRSM with Student’s t-distribution, the residuals seem to be normally
distributed, since when the degrees of freedom increase, the Student’s t-distribution
becomes normally distributed (in table 7 the degrees of freedom are presented).

Using the rolling window approach for Nikkei 225 the residuals becomes normally dis-
tributed, this is what we want when we estimate the risk models as they assume normal
distribution among the residuals.

We can clearly see that SRSM with both normal and Student’s t-distribution and
rolling window perform better than the GARCH(1,1) model with normal and Student’s
t-distribution.
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The result of the Anderson-Darling test implies normal distribution among the resid-
uals, but both the Jarque-Bera and the BDS test rejects the null hypothesis for the
GARCH(1,1) model with normal and Student’s t-distribution. We want to analyze fur-
ther what the problem with the residuals may be, due to the rejected null hypothesis
in the aforementioned test. We break down Jarque-Bera into one test for skewness
and one test for kurtosis. The skewness and kurtosis, for the indices and the volatility
models, can be seen in table 5 below.

Model Skewness Kurtosis
Distribution OMXS30 Nikkei 225 OMXS30 Nikkei 225
GARCH -0.2237 -0.3570 3.3203 3.5114
Normal
GARCH -0.1802 -0.5047 3.5101 4.2009
Student’s t
SRSM -0.0206 -0.0361 2.9924 2.8117
Normal
SRSM 0.0531 -0.0986 3.0613 2.8821
Student’s t
Rolling -0.1525 -0.3139 3.3767 3.0999
Window

Table 5: Skewness and kurtosis with Jarque-Bera for the models.

From table 5, we can note that the model that best adjusts for the skewness is the
SRSM, both with normal and Student’s t-distribution. From table 6 we see that these
models have lower test statistic than the other models. It is hard to tell which one of
the models that is better, but SRSM with normal distribution has a slightly lower test
statistic, see table 6. Further, the SRSM with normal distribution has a skewness closer
to zero as can be seen in table 5.

Model Jarque–Bera
Distribution Skewness Kurtosis

OMXS30 Nikkei 225 OMXS30 Nikkei 225
GARCH 2.1260 5.4154 1.0899* 2.7791
Normal
GARCH 1.3802* 10.8270 2.7651 15.3241
Student’s t
SRSM 0.0181* 0.0554* 0.0006* 0.3766*
Normal
SRSM 0.1197* 0.4133* 0.0399* 0.1477*
Student’s t
Rolling 0.9881* 4.1865 1.5078* 0.1060*
Window

Table 6: Test statistics for Jarque-Bera Skewness and Kurtosis test. Market with as-
terisk (*) means that we can not reject the null hypothesis at 5% significance level.
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Furthermore, all the models do better adjustments the skewness better for the OMXS30
index comparing with the Nikkei 225 index. Three of the models do not adjust the
skewness properly. The skewness for OMXS30 was originally -0.3497 and for Nikkei
225 it was -0.7659, all models improve the skewness, hence the skewness approaches
zero. The GARCH(1,1) does not adjust as much as the other models, since it is a
volatility model and should not adjust that much for skewness compared with the
other models.

We want to have a kurtosis close to 3 for our models with normal distribution. Consid-
ering the degrees of freedom for all our models, we can see that they are sufficiently high
for assuming normal distribution. The model that performs best is once again SRSM
with normal and Student’s t-distribution. Comparing the test statistics, the SRSM
with normal distribution performs better with the OMXS30 index, while the SRSM
Student’s t-distribution performs better with the Nikkei 225 index. Furthermore, we
can see that rolling window performs well for OMXS30 but for Nikkei 225 the residuals
are too skewed and we also reject the model at 95% confidence level as the test statistic
is 4.1865 and the critical value is 1.96.

In table 7 we can see the degrees of freedom for the models where we use the Stu-
dent’s t-distribution. The degrees of freedom have high values and when the degrees of
freedom approaches infinity, the Student’s t-distribution curve approaches the normal
distribution curve.

Model Median Observations larger than 100
Distribution OMXS30 Nikkei 225 OMXS30 Nikkei 225
GARCH 11.2594 3442.7 39 194
Student’s t
SRSM 342.2479 342.2480 177 239
Student’s t

Table 7: The degrees of freedom for our models with Student’s t-distribution.

5.1.2 Correlation of residuals for OMXS30

In order to detect if we have a problem with autocorrelation, we analyze the results of
the sample autocorrelation plot for our models.

The GARCH(1,1) model with normal distribution has one lag outside the boundary,
as can be expected at 95% confidence level. The GARCH(1,1) model with Student’s
t-distribution, SRSM with normal distribution and SRSM with Student’s t-distribution
all have two lags outside, which we can assume to not be any problem at 95% confidence
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level. Using rolling window we obtain three lags that are outside the boundary and two
of them are close to each other, which can be seen in the figure 5 below.

Figure 5: Autocorrelation plot for OMXS30 using rolling window.

Since we are unsure about the independence of the residuals, we decide to perform a
Ljung-Box test. Under the null hypothesis, the residuals are uncorrelated. We perform
the Ljung-Box test for the residuals of our models since we have between one and
three lags outside the boundary in our sample autocorrelation plot. Therefore want
to be sure that the residuals are uncorrelated. The test is performed for 20 lags, the
same properties as for the test of the autocorrelation. The result is that no p-value is
below 0.05, and we can therefore not reject the null hypothesis that the residuals are
uncorrelated for all our models.

5.1.3 Correlation of residuals for Nikkei 225

From the autocorrelation plot, the GARCH(1,1) model with normal and Student’s t-
distribution and rolling window have no lag outside the boundary. The SRSM with
normal distribution has two lags outside the boundary (figure 6), and SRSM with
Student’s t-distribution has one lag that is outside the boundary.
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Figure 6: Autocorrelation plot for Nikkei 225 using SRSM with normal distribution.

The Ljung-Box test is used for all models in order to be sure that the residuals are
uncorrelated, even though we can assume to not have any problems with autocorrelation
from the sample autocorrelation plot. The result is that no p-value is below 0.05, and
we can therefore not reject the null hypothesis that the residuals are uncorrelated for
all our models.

5.1.4 Summary residual analysis

From table 4 at 95% confidence level, the SRSM with normal and Student’s t-distribution
and rolling window does not reject the null hypothesis about normal distribution. How-
ever, the GARCH(1,1) model has some minor problems with the Nikkei 225 index.

We can conclude that the superior model for skewness is the SRSM with normal distri-
bution as it performs best for both the OMXS30 and Nikkei 225 index, this because the
test statistic is close to zero and significant and the 5% significance level. It is also the
SRSM with normal distribution that performs better for kurtosis as the test statistic
of the Jarque-Bera test is almost zero.

We can also see that for our models with Student’s t-distribution the degrees of freedom
are high and we can therefore assume the residuals to be normally distributed.
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Finally, we want to make sure that the residuals are uncorrelated and considering the
sample autocorrelation plots we can conclude that there is no problem with the majority
of the models. Some models have two lags outside the boundary and one model has
three lags outside the boundary, so in order to check if this is any problem we perform
a Ljung-Box test. For all models with both the indices, we have no p-value that is
lower than 0.05, therefore we can conclude that we have no problem with correlated
residuals.

As can be seen in the data section, the period for Nikkei 225 has been volatile, and
this is a property that of course makes it more difficult for our models to estimate the
parameters. Even though our models are challenged, the SRSM model performs good
and give us exactly the results that we would like to have, as can be seen above.
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5.2 Backtesting of risk models

5.2.1 Frequency test

Risk model Confidence Kupiec test Critical Value Test Outcome
Distribution level Test statistic χ2(1)

OMXS30 Nikkei 225 OMXS30 Nikkei 225
Garch
Normal distribution
Value at risk 95% 0.1252 2.1351 3.84 Not Rejected Not Rejected
Value at risk 99% 0.7100 0.0759 3.84 Not Rejected Not Rejected
mVaR 95% 0.0473 4.6411 3.84 Not Rejected Rejected
mVaR 99% 0.7100 1.2373 3.84 Not Rejected Not Rejected
Garch
Student’s t-distribution
Value at risk 95% 0.3965 2.1351 3.84 Not Rejected Not Rejected
Value at risk 99% 0.0759 0.0759 3.84 Not Rejected Not Rejected
mVaR 95% 0.0473 4.6411 3.84 Not Rejected Rejected
mVaR 99% 0.0759 0.1294 3.84 Not Rejected Not Rejected
SRSM
Normal distribution
Value at risk 95% 0.0473 0.6722 3.84 Not Rejected Not Rejected
Value at risk 99% 0.7100 0.7100 3.84 Not Rejected Not Rejected
mVaR 95% 0.1252 3.2407 3.84 Not Rejected Not Rejected
mVaR 99% 0.1294 0.1294 3.84 Not Rejected Not Rejected
SRSM
Student’s t-distribution
Value at risk 95% 0.0473 0.3965 3.84 Not Rejected Not Rejected
Value at risk 99% 0.7100 3.4154 3.84 Not Rejected Not Rejected
mVaR 95% 0.1252 0.6722 3.84 Not Rejected Not Rejected
mVaR 99% 0.0759 3.4154 3.84 Not Rejected Not Rejected
rolling window
Value at risk 95% 0.3965 1.2882 3.84 Not Rejected Not Rejected
Value at risk 99% 0.7100 0.0759 3.84 Not Rejected Not Rejected
mVaR 95% 0.3965 3.2407 3.84 Not Rejected Not Rejected
mVaR 99% 0.1294 1.2373 3.84 Not Rejected Not Rejected

Table 8: Kupiec test for OMXS30

With the OMXS30 index no model is rejected, and all models produce low test statistic
for the Kupiec test, as can be seen in table 8. No test statistic is higher than 0.7100 in
the Kupiec test for OMXS30, and the critical value is 3.84. The GARCH(1,1) model
in combination with mVaR produces the best result when searching for the lowest
test statistics, where the SRSM Student’s t-distribution with mVaR and SRSM normal
distribution with mVaR are the second best performing models.
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With the Nikkei 225, most of the models are not rejected, as can be seen in table 8. For
the SRSM with normal distribution, the SRSM with Student’s t-distribution and rolling
window no risk model is rejected. This is in line with the result about the distribution of
residuals. SRSM with normal and Student’s t-distribution are the models that have the
best results in the test statistics for distribution of residuals, while the GARCH(1,1)
model both with normal and Student’s t-distribution have some problems with the
residuals not being normally distributed. In table 8 we can see that the models have
considerably higher test statistics compared to the OMXS30 index and all models have
at least one test statistic larger than three. The GARCH(1,1) model with normal and
Student’s t-distribution produces test statistic above 3.84, which is higher than the
critical value.

When considering the test statistic of the Kupiec test, the model that performs best
for the Nikkei 225 is the SRSM with normal distribution and VaR as risk measure, as
this is the only model producing both of the test statistics below one.

In total, the model that produces the best result in the Kupiec test is the SRSM with
normal distribution and VaR. Only considering the OMXS30, it is hard to tell which
one is superior as all the models produce good results. Even though several models
produce slightly better results than the SRSM with normal distribution and VaR, it
produces results that are good enough. The results for the Nikkei 225 imply that this
model performs better and have lower test statistics than the other models, it is the
only model that has no test statistic above one.
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5.2.2 Violations ratio

Risk model Confidence Number of Violations ratio Standard deviation
Distribution level Violations Risk model

OMXS30 Nikkei 225 OMXS30 Nikkei 225 OMXS30 Nikkei 225
GARCH
Normal
VaR 95% 14 8 1.0980 0.6275 0.0026 0.0081
VaR 99% 4 3 1.5686 1.1765 0.0037 0.0114
mVaR 95% 12 6 0.9412 0.4706 0.0031 0.0116
mVaR 99% 4 1 1.5686 0.3922 0.0056 0.0183
GARCH
Student’s t
VaR 95% 15 8 1.1765 0.6275 0.0025 0.0082
VaR 99% 3 3 1.1765 1.1765 0.0037 0.0116
mVaR 95% 12 6 0.9412 0.4706 0.0030 0.0103
mVaR 99% 3 2 1.1765 0.7843 0.0051 0.0196
SRSM
Normal
VaR 95% 12 10 0.9412 0.7843 0.0025 0.0088
VaR 99% 4 4 1.5686 1.5686 0.0037 0.0116
mVaR 95% 14 7 1.0980 0.5490 0.0029 0.0101
mVaR 99% 2 2 0.7843 0.7843 0.0048 0.0181
SRSM
Student’s t
VaR 95% 12 15 0.9412 1.1765 0.0025 0.0088
VaR 99% 4 6 1.5686 2.3529 0.0037 0.0116
mVaR 95% 14 10 1.0980 0.7843 0.0029 0.0101
mVaR 99% 3 6 1.1765 2.3529 0.0048 0.0181
rolling window
VaR 95% 15 9 1.1765 0.7059 0.0029 0.0070
VaR 99% 4 3 1.5686 1.1765 0.0042 0.0103
mVaR 95% 15 7 1.1765 0.5490 0.0034 0.0090
mVaR 99% 2 1 0.7843 0.3922 0.0056 0.0187

Table 9: Violations and violation ratios for the risk models and confidence levels.

It is now clear that we can not reject the majority of the risk models from the Kupiec
test, but we further want to compare how good the estimates are compared to the
expected level. We do this by observing the violations ratio, as presented in table 9.

The violations ratio, for our four different risk measures, is as described in the theory
chapter 3.6, the number of violations divided by the expected violations. As we have
255 observations, the expected value for 95% confidence level is 12.75 and for 99%
confidence level 2.55. We want a violation ratio as close to one as possible, since this
indicates that the actual violations are the same as the expected violations.
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For OMXS30, we can see that all models give quite good results for the violations
ratio. The worst performing model seems to be the GARCH(1,1) model with normal
distribution, while any of the other models can be the performing good.

For Nikkei 225, it is harder to tell which one is superior and which one that performs
worse, SRSM with normal distribution seems to be the best performing, but is still
inferior when comparing the violations ratio that we obtain from OMSX30.

In total, we can conclude that the SRSM with normal distribution and VaR seems to
produce the best results, just as in the Kupiec test. We should also notice that, for the
99% confidence level, a very small change in the number of violations highly affect the
outcome and can, therefore, be misleading.

As can be expected; higher confidence levels generate more volatility in the risk measure,
this because larger changes need to be made in the risk measure in order to capture
the violations. We know from table 3 that the log returns of the Nikkei 225 are more
volatile than OMXS30, and we find in table 9 that the VaR and mVaR of Nikkei 225
are considerably more volatile than OMXS30.

One of the reasons to why OMXS30 gives better results than Nikkei 225 may be that
it is less volatile, as can be seen in table 3. In addition, we can in table 9 see that the
standard deviation of VaR and mVaR are considerably higher for Nikkei 225 compared
to OMXS30. In table 9, we can also observe that the mVaR is more volatile than the
classic VaR.

One conclusion from the results is that, as the standard deviation increases for the risk
models, the models becomes less reliable. Which is in accordance with the models,
since increased volatility in the underlying assets forces the VaR to adjust more and
thus it becomes harder to predict when movements are large from day to day.

5.2.3 Comparing risk measures

In appendix B, the output from the models is plotted for parameter estimation and the
risk models. From the plots it is clear that SRSM with both normal distribution and
Student’s t-distribution produces a VaR and mVaR value that is considerably closer
to zero than the equivalence of GARCH(1,1); hence they are underestimating the risk
more than the GARCH(1,1) models. In figure 7 the results for VaR 95% confidence level
with GARCH(1,1) and SRSM with normal distribution is plotted. From this it is clear
that SRSM is closer to zero than the GARCH(1,1), and this is also common for all our
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models, but still the SRSM only produces 12 violations while the GARCH(1,1) model
produces 14 violations. So considering the number of violations we can see that SRSM
produces fewer violations; hence SRSM must be better in adjusting for the actual risk
in this case.

Figure 7: VaR 95% for GARCH(1,1) and SRSM with normal distribution from 2012-
12-13 to 2013-12-30.

It is only mVaR at 99% confidence level for the GARCH(1,1) model and SRSM with
normal distribution for the OMXS30 index that has a longer time period, about 70
observations, where GARCH(1,1) has a risk measure that is closer to zero than the
SRSM, displayed in figure 8.
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Figure 8: OMXS30 mVaR 99% for GARCH(1,1) and SRSM with normal distribution
from 2012-12-13 to 2013-12-30.

This indicate that, since there is no major difference in the number of violations, a
financial institution using SRSM instead of GARCH(1,1) would be able to reduce the
amount of regulatory capital to hold, hence lower the costs of risk.

36



5.2.4 Independence test

Risk model Confidence Independence test
Distribution level Christoffersen

OMXS30 Nikkei 225
GARCH
Normal
VaR 95% Not rejected Not rejected
VaR 99% Not rejected Not rejected
mVaR 95% Not rejected Not rejected
mVaR 99% Not rejected Not rejected
GARCH
Student’s t
VaR 95% Not rejected Not rejected
VaR 99% Not rejected Not rejected
mVaR 95% Not rejected Not rejected
mVaR 99% Not rejected Not rejected
SRSM
Normal
VaR 95% Not rejected Not rejected
VaR 99% Not rejected Not rejected
mVaR 95% Not rejected Not rejected
mVaR 99% Not rejected Not rejected
SRSM
Student’s t
VaR 95% Rejected Not rejected
VaR 99% Not rejected Not rejected
mVaR 95% Rejected Not rejected
mVaR 99% Not rejected Not rejected
rolling window
VaR 95% Not rejected Not rejected
VaR 99% Rejected Not rejected
mVaR 95% Not rejected Not rejected
mVaR 99% Not rejected Not rejected

Table 10: Tests of independence among residuals for VaR and mVaR.

With Nikkei 225, there is no problem with independence among the violations, as can
be seen in table 10. Table 15 (appendix) confirms this as there is only one occasion,
using the rolling window with VaR, when violations are arriving consecutively. For all
other models and confidence levels there are no consecutive violations.

OMXS30 has no problem with violations arriving in clusters for the GARCH(1,1) mod-
els and for the SRSM with normal distribution. There is, however, problem with SRSM
Student’s t-distribution and rolling window, both for Var and mVaR at 95% confidence
level. For SRSM with Student’s t-distribution we reject that there is no independence in
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the violations for both VaR and mVaR at 95% confidence level. For the rolling window,
we reject the independence for VaR at 95% confidence level.

Table 13 (appendix) confirms the aforementioned, for all the rejected models there are
three times when violations are occurring consecutively. In addition, we find that, for all
models with OMXS30 at 95% confidence level, there is at least one time that violations
occur consecutively.

Analyzing how the violations occur and if they do so consecutively we can conclude
that the SRSM with normal distribution gives the best result, both for VaR and mVaR.
As aforementioned, we can not distinguish with Nikkei 225 which one that performs
best or worst as all produce enough satisfying results. With OMXS30, it is clear that
the SRSM with normal distribution definitely produces the best results and, therefore,
we can conclude that this is the model that in general gives the best results.
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6 Conclusion

In this thesis, we have shown that the Simple Regime Switching Model (SRSM) with
normal distribution generates superior results, both for the distribution of the residuals
and the estimation of risk models. This result is expected as SRSM is more adapted to
non-normally distributed time series than the GARCH(1,1) model. The result becomes
obvious when applying the models to the Japanese Nikkei 225 index as it is considerably
more volatile and have stronger kurtosis than the Swedish OMXS30 index.

The SRSM with normal distribution is the model that best adjusts for both skewness
and kurtosis, while the SRSM with Student’s t-distribution gives almost as good results.
Those results are considerably better than the results for the GARCH(1,1) model and
rolling window.

When backtesting Value at Risk (VaR) and modified Value at Risk (mVaR), the model
producing the best result is the SRSM with normal distribution and VaR. When only
considering the OMXS30 it is hard to tell which model that is superior, as all the models
produce good results. From the results for the Nikkei 225, we can see that the SRSM
with normal distribution and VaR performs better.

In addition, the SRSM produces VaR and mVaR results that are considerably closer
to zero compared to the GARCH(1,1) model, this result is the same for all confidence
levels and distributions.

Regarding consecutive occurrence of violations, we have showed that the SRSM with
normal distribution generates the best result, both for VaR and mVaR. For Nikkei 225,
we can not distinguish which model performs best, as all models produce satisfying
results. With OMXS30, it is clear that the SRSM with normal distribution performs
better; hence the model generates the best results in this thesis.

6.1 Further studies

In this field, it would be interesting to apply several other distributions and investigate
how these affect the result, as the returns are not normally distributed.

There are further extensions of the Simple Regime Switching Model available, and it
would be interesting to use a Regime Switching Market Model for the OMXS30 index
together with the Swedish industrial indices, alternatively several Swedish stocks, and
see how these estimate the residuals and the risk models.
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Appendix A Tables

A.1 Kupiec test

Model Risk measure Confidence Test statistic Critical Value Test Outcome
Distribution level Kupiec test χ2(1)

Garch
Normal distribution

Value at risk 95% 0.1252 3.84 Not Rejected
Value at risk 99% 0.7100 3.84 Not Rejected
Modified VaR 95% 0.0473 3.84 Not Rejected
Modified VaR 99% 0.7100 3.84 Not Rejected

Garch
Student’s t-distribution

Value at risk 95% 0.3965 3.84 Not Rejected
Value at risk 99% 0.0759 3.84 Not Rejected
Modified VaR 95% 0.0473 3.84 Not Rejected
Modified VaR 99% 0.0759 3.84 Not Rejected

SRSM
Normal distribution

Value at risk 95% 0.0473 3.84 Not Rejected
Value at risk 99% 0.7100 3.84 Not Rejected
Modified VaR 95% 0.1252 3.84 Not Rejected
Modified VaR 99% 0.1294 3.84 Not Rejected

SRSM
Student’s t-distribution

Value at risk 95% 0.0473 3.84 Not Rejected
Value at risk 99% 0.7100 3.84 Not Rejected
Modified VaR 95% 0.1252 3.84 Not Rejected
Modified VaR 99% 0.0759 3.84 Not Rejected

rolling window
Value at risk 95% 0.3965 3.84 Not Rejected
Value at risk 99% 0.7100 3.84 Not Rejected
Modified VaR 95% 0.3965 3.84 Not Rejected
Modified VaR 99% 0.1294 3.84 Not Rejected

Table 11: Kupiec test for OMXS30
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Model Risk measure Confidence Test statistic Critical Value Test Outcome
Distribution level Kupiec test χ2(1)

Garch
Normal distribution

Value at risk 95% 2.1351 3.84 Not Rejected
Value at risk 99% 0.0759 3.84 Not Rejected
Modified VaR 95% 4.6411 3.84 Rejected
Modified VaR 99% 1.2373 3.84 Not Rejected

Garch
Student’s t-distribution

Value at risk 95% 2.1351 3.84 Not Rejected
Value at risk 99% 0.0759 3.84 Not Rejected
Modified VaR 95% 4.6411 3.84 Rejected
Modified VaR 99% 0.1294 3.84 Not Rejected

SRSM
Normal distribution

Value at risk 95% 0.6722 3.84 Not Rejected
Value at risk 99% 0.7100 3.84 Not Rejected
Modified VaR 95% 3.2407 3.84 Not Rejected
Modified VaR 99% 0.1294 3.84 Not Rejected

SRSM
Student’s t-distribution

Value at risk 95% 0.3965 3.84 Not Rejected
Value at risk 99% 3.4154 3.84 Not Rejected
Modified VaR 95% 0.6722 3.84 Not Rejected
Modified VaR 99% 3.4154 3.84 Not Rejected

rolling window
Value at risk 95% 1.2882 3.84 Not Rejected
Value at risk 99% 0.0759 3.84 Not Rejected
Modified VaR 95% 3.2407 3.84 Not Rejected
Modified VaR 99% 1.2373 3.84 Not Rejected

Table 12: Kupiec test for Nikkei 225
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A.2 Christoffersen’s Independence test

Model Risk measure Confidence Violations n00 n01 n10 n11 π0 π1 π
Distribution level
Garch
Normal distribution

Value at risk 95% 15 229 12 12 2 0.0498 0.1429 0.0549
Value at risk 99% 4 247 4 4 0 0.0159 0 0.0157
Modified VaR 95% 12 232 11 11 1 0.0453 0.0833 0.0471
Modified VaR 99% 4 247 4 4 0 0.0159 0 0.0157

Garch
Student’s t-distribution

Value at risk 95% 15 227 13 13 2 0.0542 0.1333 0.0588
Value at risk 99% 3 249 3 3 0 0.0119 0 0.0118
Modified VaR 95% 12 232 11 11 1 0.0453 0.0833 0.0471
Modified VaR 99% 3 249 3 3 0 0.0119 0 0.0118

SRSM
Normal distribution

Value at risk 95% 12 232 11 11 1 0.0453 0.0833 0.0471
Value at risk 99% 4 247 4 4 0 0.0159 0 0.0157
Modified VaR 95% 14 228 13 13 1 0.0539 0.0714 0.0549
Modified VaR 99% 2 251 2 2 0 0.0079 0 0.0078

SRSM
Student’s t-distribution

Value at risk 95% 12 234 9 9 3 0.0370 0.2500 0.0471
Value at risk 99% 4 247 4 4 0 0.0159 0 0.0157
Modified VaR 95% 14 230 11 11 3 0.0456 0.2143 0.0549
Modified VaR 99% 3 249 3 3 0 0.0119 0 0.0118

rolling window
Value at risk 95% 15 228 12 12 3 0.0500 0.2000 0.0588
Value at risk 99% 4 248 3 3 1 0.0120 0.2500 0.0157
Modified VaR 95% 15 227 13 13 2 0.0542 0.1333 0.0588
Modified VaR 99% 2 251 2 2 0 0.0079 0 0.0078

Table 13: Christoffersen’s Independence test for OMXS30
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Model Risk measure Confidence Test statistic Critical Value Test Outcome
Distribution level Chris ind χ2(1)

Garch
Normal distribution

Value at risk 95% 1.6057 3.84 Not Rejected
Value at risk 99% 0.1275 3.84 Not Rejected
Modified VaR 95% 0.3067 3.84 Not Rejected
Modified VaR 99% 0.1275 3.84 Not Rejected

Garch
Student’s t-distribution

Value at risk 95% 1.2253 3.84 Not Rejected
Value at risk 99% 0.0714 3.84 Not Rejected
Modified VaR 95% 0.3067 3.84 Not Rejected
Modified VaR 99% 0.0714 3.84 Not Rejected

SRSM
Normal distribution

Value at risk 95% 0.3067 3.84 Not Rejected
Value at risk 99% 0.1275 3.84 Not Rejected
Modified VaR 95% 0.0719 3.84 Not Rejected
Modified VaR 99% 0.0316 3.84 Not Rejected

SRSM
Student’s t-distribution

Value at risk 95% 6.2952 3.84 Rejected
Value at risk 99% 0.1275 3.84 Not Rejected
Modified VaR 95% 4.5285 3.84 Rejected
Modified VaR 99% 0.0714 3.84 Not Rejected

rolling window
Value at risk 95% 3.7968 3.84 Not Rejected
Value at risk 99% 4.1530 3.84 Rejected
Modified VaR 95% 1.2253 3.84 Not Rejected
Modified VaR 99% 0.0316 3.84 Not Rejected

Table 14: Results for Christoffersen’s Independence test for OMXS30

45



Model Risk measure Confidence Violations n00 n01 n10 n11 π0 π1 π
Distribution level
Garch
Normal distribution

Value at risk 95% 8 239 8 8 0 0.0324 0 0.0314
Value at risk 99% 3 249 3 3 0 0.0119 0 0.0118
Modified VaR 95% 6 243 6 6 0 0.0241 0 0.0235
Modified VaR 99% 1 253 1 1 0 0.0039 0 0.0039

Garch
Student’s t-distribution

Value at risk 95% 8 239 8 8 0 0.0324 0 0.0314
Value at risk 99% 3 249 3 3 0 0.0119 0 0.0118
Modified VaR 95% 6 243 6 6 0 0.0241 0 0.0235
Modified VaR 99% 2 251 2 2 0 0.0079 0 0.0078

SRSM
Normal distribution

Value at risk 95% 10 235 10 10 0 0.0408 0 0.0392
Value at risk 99% 4 247 4 4 0 0.0159 0 0.0157
Modified VaR 95% 7 241 7 7 0 0.0282 0 0.0275
Modified VaR 99% 2 251 2 2 0 0.0079 0 0.0078

SRSM
Student’s t-distribution

Value at risk 95% 15 225 15 15 0 0.0625 0 0.0588
Value at risk 99% 6 243 6 6 0 0.0241 0 0.0235
Modified VaR 95% 10 235 10 10 0 0.0408 0 0.0392
Modified VaR 99% 6 243 6 6 0 0.0241 0 0.0235

rolling window
Value at risk 95% 9 238 8 8 1 0.0325 0.1111 0.0353
Value at risk 99% 3 249 3 3 0 0.0119 0 0.0118
Modified VaR 95% 7 241 7 7 0 0.0282 0 0.0275
Modified VaR 99% 1 253 1 1 0 0.0039 0 0.0039

Table 15: Christoffersen’s Independence test for Nikkei 225
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Model Risk measure Confidence Test statistic Critical Value Test Outcome
Distribution level Chris ind χ2(1)

Garch
Normal distribution

Value at risk 95% 0.5183 3.84 Not Rejected
Value at risk 99% 0.0714 3.84 Not Rejected
Modified VaR 95% 0.2892 3.84 Not Rejected
Modified VaR 99% 0.0079 3.84 Not Rejected

Garch
Student’s t-distribution

Value at risk 95% 0.5183 3.84 Not Rejected
Value at risk 99% 0.0714 3.84 Not Rejected
Modified VaR 95% 0.2892 3.84 Not Rejected
Modified VaR 99% 0.0316 3.84 Not Rejected

SRSM
Normal distribution

Value at risk 95% 0.8166 3.84 Not Rejected
Value at risk 99% 0.1275 3.84 Not Rejected
Modified VaR 95% 0.3952 3.84 Not Rejected
Modified VaR 99% 0.0316 3.84 Not Rejected

SRSM
Student’s t-distribution

Value at risk 95% 1.8762 3.84 Not Rejected
Value at risk 99% 0.2892 3.84 Not Rejected
Modified VaR 95% 0.8166 3.84 Not Rejected
Modified VaR 99% 0.2892 3.84 Not Rejected

rolling window
Value at risk 95% 1.0411 3.84 Not Rejected
Value at risk 99% 0.0714 3.84 Not Rejected
Modified VaR 95% 0.3952 3.84 Not Rejected
Modified VaR 99% 0.0079 3.84 Not Rejected

Table 16: Results for Christoffersen’s Independence test for Nikkei 225
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Appendix B Graphs

B.1 Comparing results OMXS30

Figure 9: VaR 95% for GARCH and SRSM with normal distribution from 2012-12-13
to 2013-12-30.

Figure 10: VaR 95% for GARCH and SRSM with Student’s t-distribution from 2012-
12-13 to 2013-12-30.
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Figure 11: VaR 95% for rolling window from 2012-12-13 to 2013-12-30.

Figure 12: VaR 99% for GARCH and SRSM with normal distribution from 2012-12-13
to 2013-12-30.
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Figure 13: VaR 99% for GARCH and SRSM with Student’s t-distribution from 2012-
12-13 to 2013-12-30.

Figure 14: VaR 99% for rolling window from 2012-12-13 to 2013-12-30.
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Figure 15: mVaR 95% for GARCH and SRSM with normal distribution from 2012-12-
13 to 2013-12-30.

Figure 16: mVaR 95% for GARCH and SRSM with Student’s t-distribution from 2012-
12-13 to 2013-12-30.
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Figure 17: mVaR 95% for rolling window from 2012-12-13 to 2013-12-30.

Figure 18: mVaR 99% for GARCH and SRSM with normal distribution from 2012-12-
13 to 2013-12-30.
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Figure 19: mVaR 99% for GARCH and SRSM with Student’s t-distribution from 2012-
12-13 to 2013-12-30.

Figure 20: mVaR 99% for rolling window from 2012-12-13 to 2013-12-30.
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B.2 Comparing results Nikkei 225

Figure 21: VaR 95% for GARCH and SRSM with normal distribution from 2012-12-13
to 2013-12-30.

Figure 22: VaR 95% for GARCH and SRSM with Student’s t-distribution from 2012-
12-13 to 2013-12-30.
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Figure 23: VaR 95% for rolling window from 2012-12-13 to 2013-12-30.

Figure 24: VaR 99% for GARCH and SRSM with normal distribution from 2012-12-13
to 2013-12-30.
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Figure 25: VaR 99% for GARCH and SRSM with Student’s t-distribution from 2012-
12-13 to 2013-12-30.

Figure 26: VaR 99% for rolling window from 2012-12-13 to 2013-12-30.
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Figure 27: mVaR 95% for GARCH and SRSM with normal distribution from 2012-12-
13 to 2013-12-30.

Figure 28: mVaR 95% for GARCH and SRSM with Student’s t-distribution from 2012-
12-13 to 2013-12-30.

57



Figure 29: mVaR 95% for rolling window from 2012-12-13 to 2013-12-30.

Figure 30: mVaR 99% for GARCH and SRSM with normal distribution from 2012-12-
13 to 2013-12-30.
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Figure 31: mVaR 99% for GARCH and SRSM with Student’s t-distribution from 2012-
12-13 to 2013-12-30.

Figure 32: mVaR 99% for rolling window from 2012-12-13 to 2013-12-30.
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