

MASTER’S THESIS

Department of Mathematical Sciences
Division of Mathematics
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2014

Modeling and solving vehicle routing
problems with many available vehicle
types

SANDRA ERIKSSON BARMAN

Thesis for the Degree of Master of Science

Department of Mathematical Sciences
Division of Mathematics

Chalmers University of Technology and University of Gothenburg
SE – 412 96 Gothenburg, Sweden

Gothenburg, May 2014

Modeling and solving vehicle routing problems with many
available vehicle types

Sandra Eriksson Barman

�

Matematiska vetenskaper
Göteborg 2014

Abstract

In this thesis, models have been formulated and mathematical optimiza-
tion methods developed for the heterogeneous vehicle routing problem
with a very large set of available vehicle types, called many-hVRP. This
is an extension of the standard heterogeneous vehicle routing problem
(hVRP), in which typically fairly small sets of vehicle types are consid-
ered.

Two mathematical models based on standard models for the hVRP
have been formulated for the many-hVRP. Column generation and dy-
namic programming have been applied to both these models, following a
successful algorithm for the hVRP. Benders' decomposition algorithm has
also been applied to one of the models. In addition to the standard cost
structure, where the cost of a pair of a vehicle and a route is determined
by the length of the route and the vehicle type, we have studied costs that
depend also on the load of the vehicle along the route. These load depen-
dent costs were easily incorporated into the models, and other extensions
could be similarly incorporated.

By using a standard set of test instances (with between three and
six vehicle types in each instance) we have been able to compare our
implementation with published results for hVRP. For many-hVRP, we
have extended these instances to include larger sets of vehicle types (with
between 91 and 381 vehicle types in each instance). The results show that
the algorithms implemented for the two models �nd optimal solutions in
a similar amount of time, but Benders' algorithm at times takes much
longer to verify optimality. However, some other properties of Benders'
algorithm suggests that it may constitute a good basis for a heuristic,
when instances with even larger sets of vehicle types are used.

2

Acknowledgements

First I would like to thank my supervisor Peter Lindroth at Volvo
Group Trucks Technology, for suggesting this interesting project and guid-
ing the work throughout the process. I also want to thank my supervisor
and examinor Ann-Brith Strömberg at the University of Gothenburg for
her help and guidance.

I would like to thank Oskar for his fantastic support. I also want
to thank Oskar and my friends for making the years studying here so
wonderful. Finally I want to thank my mother for always supporting me
and encouraging my interest in mathematics.

3

Contents

1 Introduction 6

2 Mathematical optimization techniques applicable to vehicle rout-

ing problems 8

2.1 Column generation . 8
2.2 Dynamic programming for shortest path problems with resource

constraints . 12
2.2.1 A dynamic programming algorithm for ESPPRC 12
2.2.2 Simplifying the problem 16
2.2.3 Heuristic methods for the ESPPRC 16

2.3 Benders' decomposition . 17

3 Vehicle routing problems 21

3.1 Heterogeneous vehicle routing problems 22
3.1.1 Standard models . 22
3.1.2 Previously developed solution strategies 25
3.1.3 Standard benchmarks . 27

3.2 Load dependent vehicle routing problems 29

4 Problem formulation and solution methods for themany-hVRP 31

4.1 The straightforward model with column generation 32
4.1.1 Subproblem . 34
4.1.2 Upper and lower bounds 38

4.2 The restricted model with Benders' decomposition and column
generation . 39
4.2.1 Outline of Benders' decomposition applied to the restricted

model . 40
4.2.2 Optimal extreme point to Benders subproblem 42
4.2.3 Benders' algorithm . 44
4.2.4 Additions to Benders' algorithm 46
4.2.5 Suggestions for further improvements of Benders' algorithm 48

4.3 Load dependent costs . 49

5 Tests and results 51

5.1 The original test instances, CT12 51
5.1.1 Comparison of solution methods 51
5.1.2 Column generation: heuristic to �nd initial columns . . . 55
5.1.3 Column generation: algorithms applied to the subproblem 56

5.2 The extended test instances, CT12EXT 61
5.2.1 Straightforward model with column generation 61
5.2.2 The restricted model with Benders' algorithm�non-restrictive

vehicle type limit C . 63
5.2.3 Improved Benders' algorithm using projection of routes . 68
5.2.4 Convergence of Benders' algorithm 69

4

5.2.5 The restricted model with Benders' algorithm�restrictive
vehicle type limit C . 70

5.2.6 Load dependent costs . 72

6 Discussion 75

6.1 Future research and development 76

Appendices 78

A Notation 78

B Column generation 78

B.1 Linear program . 78
B.2 Binary program . 82

C Algorithmic issues 84

C.1 Proofs of claims about su�cient conditions for an optimal ex-
treme point . 85

C.2 Reducing the number of subproblems that need to be solved in
each Benders iteration . 87

C.3 Reducing the set of vehicles . 90

References 92

5

1 Introduction

In this thesis we have developed mathematical optimization models and algo-
rithms for vehicle transport missions, called vehicle routing problems, in the
special case where vehicle types can be chosen from a very large set. The thesis
work has been performed in a collaboration between University of Gothenburg
and Volvo Group Trucks Technology.

Vehicle routing problems have been studied for many years. The �rst model
and algorithm were proposed by Dantzig and Ramser ([1]) in 1959, and since
then hundreds of models and algorithms have been studied (see [2]). The general
vehicle routing problem consists of determining an optimal set of vehicles, using
an optimal set of routes, for distributing goods over a customer network. Figure
11 shows an example of what a network could look like�in Rennes, France.

Figure 1: A network of roads and customers in a transport mission, where
goods are to be distributed to 37 customers, marked by circles�via the white
roads�from a central depot, marked by a square.

When modeling this type of problem, decisions have to be made about what
aspects should be included in the model. From Volvo's perspective, including a
very large set of vehicle types is of great interest. Since there is an immense set of
possible vehicle con�gurations, the ability to �nd optimal vehicle con�gurations
for speci�c transport missions would be useful. This may help customers to
make more quali�ed decisions when purchasing vehicles, which in turn can lead

1The image shown in Figure 1 has been adapted from an image created by
c©openstreetmap.org contributors, where data is available under the Open Database Li-
cense, and cartography is licensed as CC BY-SA; see opendatacommons.org and creativecom-
mons.org. The altered image in Figure 1 is thus available under the same license.

6

to more satis�ed customers. This type of optimization tool can also help Volvo
to better understand their customers' needs, which may then in�uence strategic
vehicle development decisions and make Volvo even more competitive on the
tough global vehicle market.

Research on vehicle routing problems has been successful, and has proved to
be relevant in industrial applications. There is a growing industry of software for
transportation planning based on methods developed by the scienti�c commu-
nity for vehicle routing problems, and increasingly complex models and larger
sized problems are solved ([3]). In this thesis, the focus is on �nding models
and algorithms appropriate for vehicle routing problems with a very large set of
vehicle types. We have taken as a starting point so called heterogeneous vehicle
routing problems, hVRP, in which it is assumed that more than one vehicle type
is available. In previous hVRP models, to the best of our knowledge only a few
vehicle types have been included. We have adapted these models and algorithms
to accomodate a much larger set of vehicle types, here denoted many-hVRP. In
addition, some new models and algorithms are proposed. Load dependent costs,
which are not included in the standard hVRP, have also been implemented to
illustrate how the solution framework developed can be expanded to include
more aspects of real transportation problems.

To solve the many-hVRP, exact algorithms and heuristics based on column
generation, dynamic programming and Benders' decomposition will be used.
These three mathematical optimization techniques are presented in Section 2.
A literature review of modeling and solution approaches for relevant vehicle
routing problems is found in Section 3, problem formulations for many-hVRP
are presented in Section 4 together with the implemented algorithms, after which
tests and results are presented in Section 5. Finally, a discussion of the results
and some suggestions for further research are presented in Section 6.

7

2 Mathematical optimization techniques applica-

ble to vehicle routing problems

In optimization, problems are classi�ed into di�erent types that share certain
characteristics and that can be solved using similar algorithms. Problems that
can be stated as to

minimize
x

c>x, (1a)

subject to Dx = d, (1b)

x ≥ 0n, (1c)

for c, x ∈ Rn, d ∈ Rm and D ∈ Rm×n�see Appendix A for an explanation
of the notation is used in this thesis�are called linear optimization problems
or linear programs2. A vector x ∈ Rn that satis�es the constraints (1b)�(1c)
is called a feasible solution. The aim is thus to minimize the linear objective
function c>x over the set of feasible solutions. The problem is said to be feasible
if there exists at least one feasible solution. The matrix D is called the constraint
matrix.

If the variables in the model (1) are required to be integer or binary, i.e. if
x ∈ Zn or x ∈ {0, 1}n, then we have an integer optimization problem/integer
program [4].

Vehicle routing problems are often formulated as integer programs; see for-
mulations (12) and (15) in Section 3.1.1. Integer programs can be computation-
ally very hard to solve�much harder than linear programs. We present three
algorithms that can be used to solve integer programs, all of which have been
applied to the many-hVRP in this thesis, as reported in Section 4. Column
generation, which is presented in Section 2.1, is a method that solves linear
programs, and which is not guaranteed to �nd an optimal solution to an integer
program unless it is combined with, for instance, a branch-and-bound algo-
rithm. Column generation has previously and with great success been applied
to vehicle routing problems ([5]). In Section 2.2 dynamic programming is pre-
sented, which is a technique that is especially suited to solve the subproblems
that occur in column generation for vehicle routing problems. Benders' decom-
position algorithm, which can solve integer programs to optimality, is presented
in Section 2.3. To the best of our knowledge, Benders' decomposition has not
previously been applied to the hVRP; it has, however, been applied to other
related problems, such as the simultaneous aircraft routing and crew scheduling
problem ([6]) and network optimization problems (see [7]).

2.1 Column generation

The following outline of column generation is based on [8] and [9, Chapter 3.3],
in addition to the textbook [4]. A more detailed account is found in Appendix

2The problem (1) can be formulated in di�erent ways. For instance, the constraints (1c)
can be excluded since they can be incorporated into the constraints (1b), and the equality in
(1b) can be replaced by two inequalities.

8

B.
A property of linear programs such as (1), that is used in the construction

of solution algorithms, is that if the problem is feasible and has a �nite optimal
solution, then there exists an extreme point to the set of feasible solutions that is
optimal [4, p. 219, Theorem 8.10]. This is illustrated by the following example.
Let −1 −1

−1 −2
1 1

(x1

x2

)
≥

−2
−3
0.5

 , (2a)

x1, x2 ≥ 0, (2b)

be the constraints of a linear program (here de�ned by inequality constraints).
The feasible set de�ned by the constraints of a linear program is always a polyhe-
dron. The polyhedron that comprises the feasible set de�ned by the constraints
(2) is shown in Figure 2. This polyhedron has �ve extreme points�the �ve
corners of the polyhedron. The feasible set de�ned by the constraints (2) would
be very simple to optimize over, since the optimum will be attained in at least
one of those extreme points for any linear objective function. All that needs
to be done is to check the objective function value in each of the �ve extreme
points.

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

x
1
 + x

2
 = 0.5 →

← x
1
 + x

2
 = 2

← x
1
 + 2x

2
 = 3

Figure 2: The feasible set de�ned by the constraints (2). Each of the dotted
lines indicate where the corresponding constraint is satis�ed with equality.

9

For bigger linear programs, however, the feasible set can have a huge number
of extreme points. One solution technique that is used to solve such problems, is
called the simplex method. To use the simplex method, the linear program must
be expressed on the form (1), where n ≥ m. The idea is to start in one extreme
point and in each step of the algorithm go to the neighbouring extreme point
that is most promising with respect to the change of the objective function value.
Determining the most promising extreme point can be done without having to
explicitly enumerate all of the extreme points, by utilizing the so called reduced
costs3, denoted ĉi, i = 1, . . . , n. While standing at one extreme point, the
reduced cost ĉi measure how much the value of the objective function changes
if the value of the variable xi is increased by one�for variables xi that has
the value zero4�while moving in the direction of one particular neighbouring
extreme point. If mini∈{1,...,n} ĉi ≥ 0, then the current extreme point is an
optimal solution.

If the constraint matrix D in problem (1) has many columns, thousands or
perhaps even millions, by using column generation it is possible to solve the
problem to optimality while only considering a small subset of the columns. Let
I ⊂ {1, . . . , n} be such that |I| ≥ m represent a subset of the columns in the
problem (1). The constraint matrix restricted to the columns in I is denoted
DI := (di)i∈I , where di, i = 1, . . . , n denote the columns of D. De�ning
analogously, cI := (ci)i∈I and xI := (xi)i∈I , we have the following model,
having much fewer columns/variables than the model (1):

min
xI

c>I xI , (3a)

s.t. DIxI = d, (3b)

xI ≥ 0|I|. (3c)

The model (3) is called the restricted master problem, in contrast to the com-
plete problem (1) which is called the master problem. Here, the number of
columns/variables can be much smaller than in the master problem, i.e., |I| � n.
The restricted master problem is feasible if the original problem (1) is feasible
and rank(DI) = m.

The column generation algorithm iteratively solves the restricted master
problem, and uses information about its optimal solution to extend the set I,
after which the restricted master problem is solved again. This is repeated
until the optimal solution to the restricted master problem is veri�ed to be
optimal also in the master problem. The column generation subproblem uses the
reduced costs to extend I and verify optimality, similarly to the simplex method,
as described above. Given an optimal extreme point to the restricted master
problem, using the corresponding optimal solution π∗ to its linear programming

3The reduced costs are de�ned in Appendix B.1.
4For a linear program on the form (1) with n ≥ m, it holds that every extreme point

corresponds to at most m non-zero variable values xi, i = 1, . . . , n.

10

dual5, which is given by

max
π

d>π,

s.t. D>I π ≤ cI ,

where π ∈ Rm, the reduced costs of the master problem variables xi, i =
1, . . . , n, are given by

ĉi := ci − d>i π
∗, i = 1, . . . , n.

Since the reduced costs measure how much the objective function value decreases
if the corresponding variable is increased by one, by adding a variable i ∈
{1, . . . , n} \ I with strictly negative reduced cost ĉi to the restricted master
problem (3), the optimal solution to (3) would be improved (unless the current
optimal extreme point is degenerate, in which case it may not be possible to
take a non-zero step in the direction de�ned by the new variable). Thus, to
determine which column to add to the restricted master problem, the problem,

ĉ∗ := min
i∈{1,...,n}

{ĉi} = min
i∈{1,...,n}

{
ci − d>i π

∗} , (4)

called the subproblem is solved, and the set I is extended by adding an index
i ∈ argmini∈{1,...,n} {ĉi}. If all the reduced costs are non-negative, i.e., if ĉ∗ ≥ 0,
then the current solution to the restricted master problem is also optimal in the
complete master problem. This holds even if not all columns di, i = 1, . . . , n,
have been generated, i.e., even if I 6= {1, . . . , n}. This means that the linear
program can be solved while only generating a fraction of all its columns.

For integer programs, it is possible to apply column generation by relaxing
the integrality requirement. Solving the relaxed problem using column genera-
tion not only gives a lower bound on the optimal value of the original integer
program, but can also give a feasible (but not necessarily optimal) solution to
the integer program. The latter is achieved by, as a last step, solving the in-
teger program using only the columns generated during the column generation
process�this restricted master problem with integer requirements on the vari-
ables can be much easier to solve than the original integer program if the number
|I| of columns is large. See Appendix B.2 for details.

For problems that can be formulated as a set partitioning problem with
binary variables, column generation has been shown to be a good solution
strategy�for vehicle routing and crew pairing assignment problems, among oth-
ers. It is often implemented in combination with a branch-and-bound algorithm,
called branch-and-price, in which an optimal integer solution is found using the
lower bounds from column generation in each node ([5]). The most successful
exact algorithms for vehicle routing problems are based on branch-and-price
with additional cut generation, so called branch-and-cut-and-price (see [10]).

5The dual of a linear program is the Lagrangian dual problem of the linear program (called
the primal), see the textbook [4], and many useful relationships between the primal problem
and the dual problem exists.

11

In this master thesis branch-and-price has not been implemented, but the col-
umn generation algorithm can be improved by adding such a branch-and-bound
framework.

2.2 Dynamic programming for shortest path problems with

resource constraints

The column generation subproblem (4) for vehicle routing problems are ele-
mentary shortest path problems with resource constraints (denoted ESPPRC in
[11]). These problems are NP-hard in the strong sense ([11, 12]), which makes
it important to �nd e�cient solution strategies. Dynamic programming is the
most commonly used method for solving subproblems when column generation
is used in connection with vehicle routing problems ([12, p. 155]), although due
to the complexity of the problem often only a relaxed non-elementary shortest
path problem with resource constraints (denoted SPPRC in [11]) is solved, in
which case it has a pseudo-polynomial complexity ([13]).

In the following subsections the dynamic programming algorithm for ESP-
PRC is presented, along with some methods that can be implemented to make
the solution process more e�cient. Some of these methods for improving the
algorithm have been tested in this project (as detailed in Section 4.1.1) while
other methods are left as suggestions for further research (see Section 6.1).

2.2.1 A dynamic programming algorithm for ESPPRC

The following presentation is based on [11, 13].
A general shortest path problem with resource constraints is de�ned on a

network of nodes N := {1, . . . , N}, arcs A ⊆ N × N , and a set of resources
{1, . . . , R}. A path is a sequence of nodes, denoted Pi0iH := (i0, . . . , iH), where
ih ∈ N , h = 0, . . . ,H, and (ih−1, ih) ∈ A, h = 1, . . . ,H. For i ∈ N , the notation
(i) will be used to denote a single-node path. The set VPi0iH

:= {i0, . . . , iH} is
called the set of visited nodes. A path Pi0iH can be extended by adding a node
iH+1 ∈ N . The extended path is denoted (Pi0iH , iH+1). A similar notation is
used for two paths that are concatenated.

Each path Pi0iH has an associated cost, denoted CPi0iH
. The resource con-

sumption vector
(
T 1
ih
, . . . , TRih

)
Pi0iH

∈ RR, for a given path Pi0iH at node ih,

represents the amount of each resource r ∈ {1, . . . , R} that has been consumed
at node ih. The individual elements of the resource consumption vectors asso-
ciated with path Pi0iH , are written as T rih(Pi0iH), h = 1, . . . ,H, r = 1, . . . , R.
The resource consumption vector

(
T 1
i0
, . . . , TRi0

)
Pi0iH

is given for the inital node

i0. Resource functions fr : RR ×A 7→ R are given, so that for h ∈ {1, . . . ,H},
r ∈ {1, . . . , R},

T rih(Pi0iH) := fr
(

(T 1
ih−1

, . . . , TRih−1
)Pi0iH

, (ih−1, ih)
)
.

12

For each node i ∈ N , a set of feasible resource consumption vectors

Ti :=
{

(T 1
i , . . . , T

R
i)
∣∣ T ri ∈ [ari , b

r
i], r ∈ {1, . . . , R}

}
,

is given. A path Pi0iH is said to be feasible with respect to the resource con-
straints, or resource feasible, if for each node ih, h = 1, . . . ,H, it holds that(
T 1
ih
, . . . , TRih

)
Pi0iH

∈ Tih .
The objective of the shortest path problem with resource constraints is to

minimize the cost CPst
, over the set Pst of paths from node s ∈ N to node

t ∈ N , that are resource feasible.
Dynamic programming is based either on the Ford-Bellman algorithm, or on

Djikstra's algorithm, depending on how paths are extended (see e.g. [13]). For a
general shortest path problem with resource constraints, dynamic programming
can work as follows ([11, 13]):

Paths starting at node s and ending in node i 6= t are maintained in a family
of non-processed paths, denoted PNPP, which at the beginning of the algorithm
contains only the single-node path (s). A path Psi ∈ PNPP is processed by
extending it to all nodes j ∈ {j ∈ N , such that (Psi, j) is resource feasible.
Each resulting path that does not end in node t is added to PNPP, while paths
ending in t are added to a set of processed paths, denoted PPP. After path Psi
has been processed, it is added to PPP. Extending paths in this way ensures
that all paths, in PNPP as well as in PPP, are resource feasible.

From here on, Ui0iH , Qi0iH and Q∗i0iH are de�ned analogously to Pi0iH . Let
EPsi

:= {(Psi, Ujt) | (Psi, Ujt) is resource feasible}, so that EPsi
is the set of all

feasible extensions of the path Psi, ending in node t. For the paths Qsi and Q
∗
si,

both ending at the node i 6= t, Q∗si is said to be dominated by Qsi if

min
Pst∈EQsi

CPst
≤ min
Pst∈EQ∗

si

CPst
.

This means that no path in EQ∗si
can have a lower cost than the best extension

(Qsi, Ujt) of Qsi. A path in PNPP ∪ PPP that is dominated by another path in
the same set can be removed.

When the set of non-processed paths PNPP is empty, an optimal path from
s to t is found among the paths in PPP.

A simple example of a shortest path problem with resource constraints is
shown in Figure 3. It contains �ve nodes and one resource. In the context of
vehicle routing problems, this resource may correspond to the available time for
traveling to the nodes of the network. Next to each arc (i, j), the arc cost cij
and the resource consumption tij along that arc are shown in red. The resource
consumption vectors are given by (T 1

1)(1) := 0,
(
T 1
j

)
(P1i,j)

:=
(
T 1
i

)
P1i

+ tij ,

i, j ∈ {2, . . . , 5}, (i, j) ∈ A. The set of feasible resource consumption vectors
are de�ned by [a1

i , b
1
i] := [0, 20], i = 1, . . . , 5. The costs are given by C(1) := 0,

C(P1i,j) := CP1i
+ cij , i, j ∈ {2, . . . , 5}, (i, j) ∈ A.

13

The cheapest path from node 1 to node 5, disregarding resource consump-
tion, is (1, 2, 3, 5), with the associated cost C(1,2,3,5) = 0.43. However, the path
(1, 2, 3, 5) is not resource feasible, since

(
T 1

5

)
(1,2,3,5)

= 22 > 20. The cheapest

(shortest) path from node 1 to node 5, that is also resource feasible, is (1, 3, 5),
with the cost C(1,3,5) = 0.88. For this example, dynamic programming is not
very useful since the optimal path can be found easily by inspection. For more
complicated networks, the e�ciency of the dynamic programming algorithm de-
pends strongly on the ability to �identify and discard paths which are not useful�
[11, p. 46]. In the extreme case where no paths can be discarded (i.e. removed
due to domination), then dynamic programming is simply an enumeration of
feasible paths, which is not a very e�cient algorithm.

1

2

3

4

5

(1.5,9)

(0.55,4)

(−1.4,6)

(1.8,3)

(0.33,7)

(0.24,3)

Figure 3: A network consisting of �ve nodes and six arcs, with one resource T 1.
Each arc (i, j) has an associacted consumption tij of resource T 1, and a cost
cij , shown next to the arcs as (tij , cij). The resource T 1 is accumulated along
each path, and the resource constraints state that T 1

i ∈ [0, 20], i ∈ {1, ..., 5}.

For an ESPPRC, paths must be elementary, meaning that no node i ∈
N may be visited more than once. For (non-elementary) SPPRC with non-
decreasing resource functions and with cost given by C(s) := c0, C(Psi,j) :=
CPsi

+ cij , i, j ∈ N , (i, j) ∈ A, for paths Qsi and Q∗si which end in the same
node i, if the inequality6(

T 1
i , . . . , T

R
i

)
Qsi
≤
(
T 1
i , . . . , T

R
i

)
Q∗si

holds, then Q∗si is dominated by Qsi and can be discarded. For ESPPRC with
non-decreasing resource fucntions, the set of visited nodes VQsi of Qsi must also
be a subset of the visited nodes VQ∗si

of Q∗si, for Q
∗
si to be dominated by Qsi

(see [11, p. 50]). This is formalized in Claim 1, the proof of which is essentially
the same proof as that of [13, Claim 1]. Claim 1 is the basis for the criteria for

6The notation
`
T 1

i , . . . , T
R
i

´
Qsi

≤
`
T 1

i , . . . , T
R
i

´
Q∗si

means T r
i (Qsi) ≤ T r

i (Q∗
si), ∀r ∈

{1, . . . , R}.

14

dominating paths in the dynamic programming algorithm used in this master
thesis. The speci�c details of this implementation are given in Section 4.1.1.

Claim 1. For an elementary shortest path problem with resource constraints,
starting in node s ∈ N and ending in node t ∈ N , assume that the resource
consumption is given by

T rj ((Psi, j)) := max
{
ari , T

r
i (Psi) + hrij

}
,

where hrij ≥ 0, i, j ∈ N , (i, j) ∈ A, r ∈ {1, . . . , R}, and that the cost is given by

C(Psi,j) := CPsi
+ cij , i, j ∈ N , (i, j) ∈ A

where C(s) := c0. For two elementary and resource feasible paths Qsi and Q
∗
si

ending in node i 6= t, Q∗si is dominated by Qsi if the relations(
T 1
i , . . . , T

R
i

)
Qsi
≤
(
T 1
i , . . . , T

R
i

)
Q∗si

,

CQsi ≤ CQ∗si
,

and
VQsi

⊆ VQ∗si

hold.

Proof. Since i 6= t, it holds that VQ∗si
(N . If

(
T 1
j , . . . , T

R
j

)
(Q∗si,j)

/∈ Tj for all j ∈
N \VQ∗si

, then Q∗si can not be extended further. Otherwise, pick any j ∈ N \VQ∗si

for which
(
T 1
j , . . . , T

R
j

)
(Q∗si,j)

∈ Tj . The inclusion VQsi ⊆ VQ∗si
implies that the

extension (Qsi, j) is an elementary path. It holds that
(
T 1
j , . . . , T

R
j

)
(Qsi,j)

∈ Tj ,
since for r ∈ {1, . . . , R},

T rj ((Qsi, j)) := max
{
ari , T

r
i (Qsi) + hrij

}
≤ max

{
ari , T

r
i (Q∗si) + hrij

}
= T rj ((Q∗si, j)) ≤ bri .

It also holds that

C(Qsi,j) = CQsi + cij ≤ CQ∗si
+ cij = C(Q∗si,j)

.

Hence, both (Qsi, j) and (Q∗si, j) are resource feasible elementary paths, and the
relations (

T 1
i , . . . , T

R
i

)
(Qsi,j)

≤
(
T 1
i , . . . , T

R
i

)
(Q∗si,j)

,

C(Qsi,j) ≤ C(Q∗si,j)
,

and
V(Qsi,j) ⊆ V(Q∗si,j)

hold. By induction with respect to extension of paths, any feasible extension
(Q∗si, U

∗
ij) of Q∗si also provides a feasible extension (Qsi, U∗ij) of Qsi, for which

C(Qsi,U∗ij)
≤ C(Q∗si,U

∗
ij)
. This shows that Q∗si is dominated by Qsi.

15

It is clear that the dominance rule of SPPRC is more e�cient than that
of ESPPRC, since more paths can be dominated if the restriction on visited
nodes is left out. To increase the number of paths that can be eliminated for
ESPPRC�if it is possible to determine nodes that are unreachable from a given
path using time-windows, for instance�unreachable nodes can be added to the
set of visited nodes, which makes the dominance rule in Claim 1 a bit more
e�cient ([11, pp. 50�51]).

2.2.2 Simplifying the problem

Relaxing the ESPPRC to the SPPRC by allowing paths containing cycles, i.e.,
non-elementary paths, will result in problems having a larger state space but
also more e�cient dominance rules. When column generation is used as part of
the solution procedure for vehicle routing problems, by using branch-and-price
for instance, the lower bounds of the original problem provided by column gen-
eration are weaker when the ESPPRC subproblems are relaxed to the SPPRC.
This may be compensated by the reduction of the complexity of the subproblem,
which can be great. A compromise between SPPRC and ESPPRC that is often
implemented for vehicle routing problems is to allow non-elementary paths, but
forbid cycles of length two. This only duplicates the number of labels compared
to SPPRC and is quite easy to implement.

A compromise between the ESPPRC and the SPPRC has been proposed, in
which, after solving the SPPRC, a restriction is imposed on the nodes that are
visited more than once. This new problem is solved, and analogous restrictions
are added to every node that is visited several times in the new solution. This
procedure is repeated until an elementary path is returned. In the worst case
scenario, restrictions have to be added to all nodes.

Yet another way to simplify the ESPPRC is to use a so-called state-space
relaxation. Instead of keeping track of the visited nodes, the number of visited
nodes are used in the dominance criterion. This is di�erent relaxation of the
ESPPRC, and also in this case an elimination of cycles of length two can be
implemented (see [14, pp. 417�418] and [12, pp. 160�161,165]).

2.2.3 Heuristic methods for the ESPPRC

A heuristic for improving the speed of column generation, when using dynamic
programming to solve the ESPPRC subproblems, can be implemented in several
ways.

The dynamic programming algorithm can be terminated before an optimal
path has been veri�ed, and return a path with a negative reduced cost which
is not necessarily optimal. Since adding any path with a negative reduced cost
may improve the solution in the next iteration of the column generation, it is
only necessary to solve the ESPPRC subproblem to optimality when trying to
prove that the current solution to the restricted master problem is optimal in the
complete problem. This does not need to be done at all when using a heuristic
column generation procedure.

16

Another heuristic approach is to temporarily relax the requirement that
paths be elementary, and allow non-elementary paths in the beginning of the
dynamic programming process. When paths get longer than a certain threshold
value, the elementarity requirement is added in the hope that an elementary
path with negative reduced cost is returned. If no such paths are found, the
process is restarted and the elementarity requirement is added earlier than be-
fore. This is repeated until an elementary path with negative reduced cost is
found (see [11, pp. 58�59]).

Betinelli et al. ([15]) take a di�erent approach, solving the ESPPRC column
generation subproblems in three steps. The �rst step is a simple heuristic. In
the second step, the domination requirement (see Claim 1) that the inclusion
VQsi ⊆ VQ∗si

holds is relaxed, and replaced by another requirement. This results
in a problem that is easier to solve but in which a path that is optimal in
the original, non-relaxed, problem may be dominated by a non-optimal path.
Hence, optimality in the original problem, is not guaranteed in the solution
to the relaxed problem. In a �nal step, the relaxed criterion VQsi

⊆ VQ∗si
is

reinstated, and the column generation subproblems are solved to optimality.

2.3 Benders' decomposition

To handle the large set of vehicle types inmany-hVRP, decomposing the problem
in several levels can be a good idea. Using Benders' decomposition, problems
can be decomposed in such a way that in each iteration one set of variables�
which we call complicating variables�are �xed, and the problem with respect
to the remaining variables is solved to optimality. This procedure is iterated,
so that information about solutions from previous iterations is used to �x the
complicating variables in each iteration, until the optimal solution to the re-
stricted problem (with �xed variables) is veri�ed to be an optimal solution to
the original problem.

In the context of many-hVRP, the complicating variables can be chosen to
be the vehicle types, so that in each iteration a subset of the vehicle types�of
a size that can be e�ciently handled�is chosen among the whole set of vehicle
types. The details of our implementation of Benders' algorithm for many-hVRP
is presented in Section 4.2.

For routing and scheduling problems arising in areas such as airline planning,
Benders' decomposition together with column generation has successfully been
applied by Cordeau et al. in [6] to simultaneously consider both the aircraft
routing problem and the crew pairing problem�something that traditionally
have been done sequentially due to the large complexity of the problem. Their
implementation �rst uses a linear programming (LP) relaxation of both Benders
master problem and Benders subproblem, and later reintroduces the integer re-
quirements and performs a heuristic branching on the integer variables. Branch-
ing on variables has not been performed in this thesis, however it would be an
interesting extention of the implemented algorithm. The review [16] of airline
scheduling planning, by Dunbar et al., describes how the method by Cordeau et
al. ([6]) has been expanded and improved by several authors. The expansions

17

include time windows, reversing the order of Benders master- and subproblems
which improved the convergence rate, and applying a heuristic algorithm to
parts of the problem to avoid the tailing o�-e�ect of column generation.

Here, a version of Benders' decomposition that in this thesis is used on
many-hVRP is presented. The theory is based on [9, Chapter 7.3]. The goal is
to solve an optimization problem of the form

min
x,y

c>x, (5a)

s.t. Dx + Fy = b, (5b)

x ≥ 0n1 , (5c)

y ∈ {0, 1}n2 , (5d)

for c, x ∈ Rn1 , y ∈ Rn2 , b ∈ Rm and D ∈ Rm×n1 , F ∈ Rm×n2 . The set of
feasible solutions to (5) is assumed to be non-empty and bounded. Here, the
complicating variables are the binary variables y. If variables y are �xed, the
remaining problem is a linear program, which is assumed to be much easier to
solve than the integer program (5). De�ning the set R := {y ∈ {0, 1}n2 | ∃x ≥
0n1 ,Dx = b − Fy}, a formulation that is equivalent to the model (5) is given
by

min
y∈R

{
min
x

c>x
∣∣∣ Dx = b− Fy,x ≥ 0n1

}
. (6)

The inner problem, given by

min
x

c>x, (7a)

s.t. Dx = b− Fy, (7b)

x ≥ 0n1 , (7c)

is called Benders subproblem. The feasible set of (7) is non-empty and bounded
for y ∈ R. Due to strong duality for linear programs, which says that the
optimal objective value of (7) for �xed y ∈ R is equal to the optimal objective
value of its dual [4, p. 248], (7) can be replaced by its dual

max
u

(b− Fy)>u, (8a)

s.t. D>u ≤ c, (8b)

u ∈ Rm. (8c)

This problem is also feasible and bounded for y ∈ R, so there exists an optimal
solution in at least one of the extreme points of its feasible set. It can thus be
reformulated as

max
i∈P

{
(b− Fy)> ui

}
, (9)

18

where the set {ui, i ∈ P} denotes the extreme points of the set {u | D>u ≤ c}.
The model (6) can now be written as

min
y∈R

{
max
i∈P

{
(b− Fy)> ui

}}
,

which in turn can be reformulated as

v∗BMP := min
y,v

v, (10a)

s.t. v ≥ (b− Fy)> ui, i ∈ P, (10b)

y ∈ R. (10c)

The problem (10) is called Benders master problem. As with column genera-
tion7, a restricted version of this problem is introduced where in this case only
a subset of the constraints are included, resulting in Benders restricted master
problem

v∗BRMP := min
y,v

v, (11a)

s.t. v ≥ (b− Fy)> ui, i ∈ P̃, (11b)

y ∈ R, (11c)

where P̃ ⊆ P. For (v∗BMP,y
∗) optimal in Benders master problem it holds that

v∗BMP equals the optimal objective value of the original problem (5), and solving
Benders subproblem (7) with y := y∗ will yield x∗, for which (y∗,x∗) is optimal
in the original problem.

Since not all constraints are included in Benders master problem, the in-
equality v∗BRMP ≤ v∗BMP holds if (v∗BRMP, ỹ

∗) is optimal in (11). Such an optimal

solution (v∗BRMP, ỹ
∗) exists and is bounded if P̃ 6= ∅, since R is closed, bounded,

and non-empty. Solving Benders subproblem (7) with y := ỹ∗ provides a feasi-
ble solution (ỹ∗, x̃∗) to the original problem, and c>x̃∗ is consequently an upper
bound on its optimal value v∗BMP. Solving the dual (9) of Benders subproblem,
again with y := ỹ∗, provides an extreme point ui∗ , i∗ ∈ P, for which the equiv-
alence (b− Fỹ∗)> ui∗ = c>x̃∗ holds. This is an upper bound on the optimal
value v∗BMP, and for which v∗BRMP is a lower bound. Thus, if it holds that

(b− Fỹ∗)> ui∗ = v∗BRMP,

then (ỹ∗, x̃∗) is an optimal solution to the original problem (5). Otherwise, the
inqualities

(b− Fỹ∗)> ui∗ ≥ v∗BMP ≥ v∗BRMP,

hold and i∗ is added to P̃ de�ning a new constraint to Benders restricted master
problem. Since ui∗ is optimal in (9), the new constraint is the constraint in Ben-
ders master problem which is the most unsatis�ed by the solution (v∗BRMP, ỹ

∗).
7If the problem (5) were linear, i.e., if the constraint (5d) was replaced by y ≥ 0n2 , then

Benders' algorithm would be equivalent to applying Dantzig-Wolfe decomposition and column
generation to the dual of (5). See [9, Chapter 7.3.2] for details.

19

Solving Benders restricted master problem with the updated set of constraints
will yield a solution that is di�erent from (v∗BRMP, ỹ

∗), which is no longer feasi-
ble, and the new optimal objective value of Benders restricted master problem
will be greater than or equal to v∗BRMP. Since the number of constraints in
Benders master problem is �nite, Benders' algorithm is guaranteed to converge
in a �nite number of iterations.

20

3 Vehicle routing problems

Vehicle routing problems are di�cult optimization problems, which have appli-
cations in many �elds, including transportation, logistics, communication and
manufacturing, and they belong to the most studied combinatorial optimization
problems. The classic problem called the capacitated vehicle routing problem,
cVRP, consists of �nding a solution to a simpli�ed transport mission in which
customers are serviced by a set of indentical vehicles delivering goods from a
central depot, where the number of customers that each vehicle can service is
limited by a vehicle capacity restriction. The cVRP is an extension of the trav-
eling salesman problem, and is NP-hard in the strong sense (see e.g. [3, 17, 18]).

A wide range of extensions of the classic cVRP are available and several
thousands of articles have been dedicated to the subject. These extensions can
be classi�ed into the three main groups

1. Assignment of customers and routes to resources, including multiple de-
pots, a heterogeneous �eet of vehicles, multiple periods, in which customers
are serviced more than once, and split deliveries, in which customers can
be serviced by more than one vehicle.

2. Sequence choices, including backhauls and pickup-and-delivery where de-
liveries are made to one set of customers and goods are picked up from a set
of vendors/customers, and orders can be recieved dynamically, precedence
constraints such that some customers should be serviced before others,
and multiple trips, in which vehicles can depart from and return to the
depot more than once.

3. Evaluation of �xed sequences, including time windows where each cus-
tomer needs to be serviced within a given time-frame, networks with time-
dependent features such as time-dependent travel times or time-dependent
service costs, and 2D and 3D loading constraints. [3]

Many di�erent solution methods, both exact and heuristic, have been developed
for di�erent types of vehicle routing problems, and even though the methods
need to be tailored to the speci�c problem, several methods can be applied to
di�erent extensions of cVRP. Consistently, exact methods for vehicle routing
problems can only solve problems with up to 200 customers (see [3, 10, 18]).

Successful heuristic methods for vehicle routing problems almost always use
a combination of di�erent classical heuristics. Recently, combinations of ex-
act methods�based on mathematical programming techniques�and heuristic
methods, have been proposed. These are sometimes called matheuristics (see
[10]). According to [10], p. 61 �an exact solution of real-world problems with
many additional side constraints will remain impossible in the short and medium
term. However, close-to-optimal solutions of more and more complex and inte-
grated problems, increasingly based on incomplete optimization approaches and
mathematical-programming-based heuristics, are possible, and this is su�cient
to provide useful decision support in practice�.

21

In this thesis we are interested in vehicle routing problems with a very large
set of vehicle types, which we call many-hVRP, in constrast to the standard
vehicle routing problem with a heterogeneous �eet, hVRP, in which usually only
a few vehicle types are considered. The sets of vehicle types for many-hVRP
could be so large that it would not be practical to consider the whole set, making
the algorithms that have previously been used for hVRP impractical. Parts of
the models and algorithms for many-hVRP have been based on mathematical
programming algorithms developed for hVRP, which are presented in Section
3.1. In Section 3.2 a model including load dependent costs which has been
incorporated into the many-hVRP model, is presented. Other extensions such
as time-windows can easily be implemented. Algorithms for many-hVRP are
presented in Section 4.

3.1 Heterogeneous vehicle routing problems

The vehicle routing problem with a set of non-identical vehicle types was �rst
formulated by Golden et al. ([19]) in 1984. The problem is known as the het-
erogeneous VRP, or the �eet size and mix VRP (see [17]).

When modeling real-life problems, there is often a trade-o� between the num-
ber of practical considerations that can be included and the maximum problem
size that can be solved within a reasonable amount of time. A heterogenous
�eet of vehicles is one such aspect of real-life problems that may be important
to consider. Ho� et al. state in [7, p. 2043] that �there is generally a strong de-
pendency between �eet composition and routing aspects�, and decisions about
�eet composition and routing need to be integrated. Given a transport mission,
the optimal routing depends strongly on the characteristics of the available �eet
of vehicles. Ho� et al. directs critisism against the operation research commu-
nity, saying that it has been too focused on idealized models and that there has
not been enough e�ort directed towards the �eet composition problem [7].

Nevertheless, there has been a number of contributions relating to hVRP
from the operation research community. In the following sections standard
models, solution methods and test instances for hVRP are presented.

3.1.1 Standard models

In hVRP a heterogeneous set of vehicles is considered, in constrast to cVRP
where all vehicles are of the same type. Vehicle types di�er by their capacity
and cost structure. A limited or unlimited number of vehicles of each type is
available. One part of the cost of each route can be �xed (denoted �xed cost),
and one part of the cost can depend the route length (denoted variable cost)�
sometimes only a �xed cost or only a variable cost is used. Sometimes, the
variable cost does not depend on the vehicle type used for the route ([17]). In
this thesis, no restriction has been put on the numbers of vehicles of each type
that are available, and a combination of �xed and variable costs is used�both
of which depend on vehicle type.

22

There exist three main types of mathematical models for vehicle routing
problems in general. In the �rst type, integer vehicle �ow variables are used
to model both the vehicle routes and the commodity �ow. In the second type,
additional continuous variables are used to model the commodity �ow. The third
type of model uses a set-partitioning formulation. The �rst type of models has
mostly been used for basic versions of vehicle routing problems, and is according
to Toth et al. [18], not suited for heterogeneous vehicle problems. Therefore,
the second and third types of models of the hVRP is presented below. The
formulation using commodity �ow variables is from [7], and the set-partitioning
formulation can be found in [20].

Both models are de�ned on a directed graph (N ,A), whereN :={0, 1, . . . , N}
denotes the set of nodes representing the customers and the depot, and A de-
notes the set of directed arcs between the nodes in N representing the network.
The depot is denoted by 0, making N \ {0} =: N0 the set of nodes representing
the customers. Each customer i ∈ N0 has a demand di. There are K di�erent
vehicle types, represented by the set K := {1, . . . ,K}. Each vehicle k has a
limited capacity, denoted Dk. It is assumed that every customer may be served
by at least one vehicle type, i.e., the constraint maxk∈KDk ≥ maxi∈N di must
hold.

Associated with each vehicle type k ∈ K are routing (or variable) costs ckij ,
(i, j) ∈ A, and a �xed cost fk. In the model (12) feasible routes are de�ned
by the constraints in the model, while in the model (15) feasible routes are
implicitly de�ned by the sets Rk, k ∈ K, containing all feasible routes r with
respect to vehicle type k. A route is a sequence of nodes (i0, i1, . . . , iH−1, iH),
where ih ∈ N , h = 0, . . . ,H, and (ih−1, ih) ∈ A, h = 1, . . . ,H. A route
r := (i0, i1, . . . , iH−1, iH) is feasible if it starts and ends at the depot, i.e. if
i0 = iH = 0. A route-vehicle pair (r, k), such that r := (i0, i1, . . . , iH−1, iH),
and k ∈ K, is feasible if the route is feasible and if the capacity constraints
of the vehicle type are satis�ed by the route, i.e., if the total demand�given
by
∑H−1

1 dh�of the customers along the route is less than or equal to the
vehicle's capacity Dk. The cost for a feasible route-vehicle pair (r, k) equals

ckr := fk +
∑H
h=1 c

k
ih−1ih

.

Formulation using commodity �ow variables:

De�ne the variables

xkij :=

{
1, if arc (i, j) is used by a vehicle of type k,

0, otherwise,
(i, j) ∈ A, k ∈ K,

and eij := �ow of goods from node i to j, (i, j) ∈ A. The commodity �ow
formulation is given by:

23

min
x,e

∑
k∈K

∑
j∈N :(0,j)∈A

fkx
k
0j +

∑
k∈K

∑
(i,j)∈A

ckijx
k
ij

 , (12a)

s.t.
∑
k∈K

∑
i∈N :(i,j)∈A

xkij = 1, j ∈ N0, (12b)

∑
i∈N :(i,j)∈A

xkij −
∑

i∈N :(j,i)∈A

xkji = 0, j ∈ N0, k ∈ K, (12c)

∑
i∈N :(i,j)∈A

eij −
∑

i∈N :(j,i)∈A

eji = dj , j ∈ N0, (12d)

e0j ≤
∑
k∈K

Dkx
k
0j , (0, j) ∈ A, (12e)

eij ≤
∑
k∈K

Mijkx
k
ij , (i, j) ∈ A, (12f)

eij ≥ 0, (i, j) ∈ A, (12g)

xkij ∈ {0, 1}, (i, j) ∈ A, k ∈ K. (12h)

The objective (12a) is to minimize the sum of the �xed costs and the route
costs of each vehicle used. The constraints (12b) ensure that each customer
is visited exactly once, and the constraints (12c) that any vehicle that visits
a customer departs from that customer. The constraints (12d) ensure that a
vehicle that visits a customer delivers exactly the amount of goods that the
customer demands. The constraints (12e)�(12f) impose the vehicle capacity
restrictions, where the parameter Mijk is chosen to be su�ciently large.

A slightly di�erent formulation is found in [17], in which constraints limit
the number of vehicles of each type, and the constraints (12e)�(12f) have been
replaced by

djx
k
ij ≤ eij ≤ (Dk − di)xkij , (i, j) ∈ A, k ∈ K. (13)

This formulation is not consistent, since xkij is always zero for some k ∈ K if
|K| > 1. We suggest that the constraints (12e)�(12f) be replaced by

djx
k
ij ≤ eij ≤ (Dk − di)xkij +Mijk(1− xkij), (i, j) ∈ A, k ∈ K. (14)

Set-partitioning formulation:

De�ne the parameters

δkir :=

{
1, if route (r, k) visits customer i,

0, otherwise,
i ∈ N0, r ∈ Rk, k ∈ K,

24

and the variables

xkr :=

{
1, if route (r, k) is used,
0, otherwise,

r ∈ Rk, k ∈ K.

The set-partitioning formulation is then given by:

min
x

∑
k∈K

∑
r∈Rk

ckrx
k
r , (15a)

s.t.
∑
k∈K

∑
r∈Rk

δkirx
k
r = 1, i ∈ N0, (15b)

xkr ∈ {0, 1}, r ∈ Rk, k ∈ K. (15c)

The objective (15a) is to minimize the sum of the costs over the routes that
are used. The constraints (15b) ensure that each customer is visited by exactly
one vehicle.

This type of set-partitioning formulation was originally proposed for the ve-
hicle routing problem by Balinski and Quandt in 1964 ([21]). The model is
general, and has the advantage that many restrictions can easily be incorpo-
rated, since the feasibility of routes is implicitly de�ned by the sets Rk, k ∈ K.
The LP relaxation of this type of model for VRP is often very tight. Also, the
number of feasible routes,

∑
k∈K |Rk|, will for most problems be extremely big,

which makes column generation an appropriate solution method�for problems
with tens of customers, there may be billions of feasible routes ([18]). The set-
partitioning formulation is then seen as a column generation master problem,
where the column generation subproblems generate routes xkr to be added to
the the restricted master problem (in which not all routes in the sets Rk, k ∈ K
are included).

3.1.2 Previously developed solution strategies

Up until recently, no exact algorithm had been implemented for the hVRP �due
to the intrinsic di�culty of this family of routing problems� ([17, p. 13]). Exact
solution methods have now been developed based on branch-and-cut-and-price
by Pessoa et al. in 2007 ([22]) and on a set-partitioning formulation using
additional constraints by Baldacci et al. in 2009 ([23]). The exact method in
[23] can solve instances with up to 75 customers and some instances with 100
customers; it works well for other types of vehicle routing problems as well ([3]).

Baldacci et al. review in [17] the many di�erent heuristic solution methods
that have been applied to hVRP, as do Ho� et al. in [7]. Of the methods
reviewed, the set-partitioning based heuristic proposed by Taillard in [20] and
the column generation based heuristic of Choi and Tcha in [24] are of particular
relevance for this project; both methods are mentioned in both review articles
[7, 17].

Taillard [20] implemented a set-partitioning based heuristic algorithm, that
solves one homogeneous VRP (where only one vehicle type is allowed) for each

25

vehicle type using an adaptive memory procedure. From each homogeneous
VRP a set of routes are stored. These routes are added as columns to a set-
partitioning formulation of hVRP, but here each route r de�nes one column for
each vehicle type k for which r ∈ Rk�not just for the vehicle type(s) that the
route was associated with in the homogenous problem. Unfortunately, according
to [20, p. 6], the method does not perform well on very small instances when
the number of vehicles allowed of each vehicle type was restricted, in which case
�there was a higher probability that a run would not produce a good or even
feasible solution� compared to the larger instances.

Inspired by the approach in [20], in [24] Choi and Tcha presented a column
generation based heuristic using the following set-partitioning formulation:

min
x

∑
k∈K

∑
r∈Rk

ckrx
k
r , (16a)

s.t.
∑
k∈K

∑
r∈Rk

δkirx
k
r ≥ 1, i ∈ N0, (16b)

∑
r∈Rk

xkr = αk, r ∈ Rk, k ∈ K, (16c)

xkr ∈ {0, 1}, r ∈ Rk, k ∈ K, (16d)

αk ≥ 0, integer, r ∈ Rk, k ∈ K. (16e)

Compared to the formulation (15), the constraints (16c) and (16e) have been
added to the set-partitioning problem, relating to the number αk of vehicles of
type k that is used. The new constraints do not impose any restriction on the
number of vehicles that are allowed but are used to accelerate a branch-and-
bound implementation. In addition, the problem is formulated as a set-covering
rather than a set-partitioning problem. Since arc costs correspond to Euclidean
distances the two models are equivalent in the sense that the optimal solution
to (15) is optimal also in (16). The subproblems that generate new columns for
the restricted master problem corresponding to (16) are de�ned as

min
r∈Rk,k∈K

(
ckr −

∑
i∈N0

π∗i δ
k
ir − π∗k

)
, (17)

where π∗i and π∗k are the optimal dual variable values corresponding to the
constraints (16b) and (16c), respectively. In [24] this subproblem is divided into
one subproblem for each vehicle type which are relaxed, both by a state-space
relaxation and by relaxing the elementary constraint, while introducing a 2-
cycle elimination procedure. The relaxed subproblems are solved using dynamic
programming. It was found in [24] that only very small problem instances with
up to 20 customers could be solved to optimality using this approach.

Therefore the column generation procedure is employed in a heuristic branch-
and-bound algorithm. In a preprocessing step, some vehicle types are discarded
by calculating a lower bound on the optimal value of (16) by requiring that at
least one vehicle of a particular type is used, taking only the �xed costs into

26

account. This lower bound is compared with an upper bound provided by a
heuristic, enabling the rejection of the vehicle types for which the corresponding
lower bound is higher than the upper bound of the original formulation (16) (see
[24]).

This column generation algorithm by Choi and Tcha has been reported to
provide good results compared with other heuristic solution methods in the two
review articles [17, 7]. In [7, p. 2048], it is stated that �results con�rm the
dominance of this algorithm, both in terms of quality and computation time�.
According to Pessoa et al. ([22]), who developed an exact branch-and-cut-and-
price algorithm, the lower bounds computed by Choi and Tcha [24] were not
e�ective enough for an exact branching algorithm, but the columns generated
in the root node yielded a heuristic solution that outperformed other heuristics
on several test instances.

The approach to solve hVRP heuristically implemented by Choi and Tcha
in [24] has been used as a starting point for the algorithms developed in this
thesis�both the splitting of the column generation subproblem into one problem
per vehicle type and the solution of subproblems using dynamic programming�
which will be explained in Section 4.1. The results obtained by the column
generation algorithm implemented in this thesis are compared with the results
in [24], and presented in Section 5.1.1.

3.1.3 Standard benchmarks

In 1984 Golden et al. ([19]) introduced test instances for the hVRP based on
customer node data from instances found in [25, 26], which include twenty sets
of test instances, twelve of which possessing Euclidean distances (denoted G12
in [17]). The test instances in G12 are commonly used for hVRP with only
�xed costs. Taillard ([20]), whose set-partitioning based heuristic is described
in Section 3.1.2, adapted eight of the twelve sets in G12 by de�ning variable
costs (denoted T8 in [17]). These are typically used as benchmarks to test
algorithm performance for hVRP with variable costs. None of the test instances
in G12 and T8 possesses a combination of �xed and variable costs of which both
depend on the vehicle type ([17, 3]). Another set of test instances that should be
mentioned are those proposed by Li et al. in [27], containing 200�360 customers
located on concentric circles around the depot, with four to six vehicle types in
each instance. These test instances are also frequently used as benchmarks for
hVRP ([3]).

The algorithm presented in [24], also described in Section 3.1.2, was tested
on extensions of the test instances T8 and G12. The eight instances that are
common to the sets T8 and G12 were combined, so that both the �xed and
variable costs that depend on the vehicle type�from the respective sets T8 and
G12�were applied simultaneously. The set T8 was also extended to include all
of the instances in G12, by adding variable costs which depend on the vehicle
types to the four instances in G12 that were not included in T8. The four new
instances are the smallest in the set, with only 20 customers each (a reason why
they were not included in T8 may be that the algorithm implemented in [20]

27

did not perform well on small instances). The twelve new instances are here
denoted CT12. In [24], the algorithm was also tested on T8 and G12, to be
able to compare with other published results. In [17], the best solution values
obtained using di�erent heuristics are compared with the best known solutions
at the time (2008). The best known solutions was found by Choi and Tcha for
all instances in T8 (see [17, Table 6]), and the average relative gap with respect
to the best known solution values for instances in G12 was 0.004% (see [17,
Table 4]). The best solutions known today (2014) for CT12 are presented in
Section 5.1.1�better solutions than those obtained in [24] have only been found
for two of the twelve instances in CT12.

The test instances CT12 have been used to test the performance of our
algorithms, both in their original form and their extensions to include more
vehicle types (presented below). Problem speci�cations for CT12 are listed in
Table 18. The four test instances to which Choi and Tcha added vehicle speci�c
variable costs to are named Choi3�Choi6, and the instances from T8 are named
T13�T20, following the numbering of the original instances in [19]. The ranges
of the capacities, the �xed costs, and the variable costs, for the vehicles in each
instance are given in Table 1. For r ∈ Rk, k ∈ K, the cost ckr of the route-
vehicle pair (r, k) is given by ckr := fk + vkαk, where fk denotes the �xed cost,
vk denotes the variable cost, and αk denotes the length of the route r. A smaller
vehicle is always less expensive than a larger vehicle, i.e., for k1, k2 ∈ K, the
inequality Dk1 < Dk2 implies the inequalities fk1 < fk2 and vk1 < vk2 . For
each test instance in CT12, vehicles are denoted by letters, so that, e.g., the �ve
vehicles of test instance Choi3 are denoted A�E, where A (E) corresponds to
the vehicle with the smallest (largest) capacity.

Each of the twelve test instances in CT12 contains three to six di�erent
vehicle types and 20�100 customers. The instances Choi3�Choi6 share customer
nodes N0 and customer demands. The di�erence between the instances Choi3�
Choi4 and Choi5�Choi6 is that the depot has been moved. The instances T13�
T14 also have the same node speci�cations, as do the instances T15�T16, T17�
T18, and T19�T20, respectively.

To test the many-hVRP problem formulation, the instance set CT12 has
been extended to include vehicles with capacities in the ranges of the corre-
sponding original instances Choi3�Choi6 and T13�T20. All integer values in this
capacity interval have been included, since the demands of the customers are all
integer. The �xed and variable costs have been extended accordingly using the
spline function in Matlab. The new set of test instances is denoted CT12EXT,
and the individual test instances are denoted Choi3EXT�Choi6EXT, T13EXT�
T20EXT. Consequently, the test instances in CT12EXT comprise 91�381 dif-
ferent vehicle capacities. Accordingly, e.g., does Choi3EXT includes 101 vehicle
types with capacities ranging from 20 to 120, �xed cost ranging from 20 to 225,

8The instances CT12 can be constructed as follows; the instances in G12, are constructed
using the instances which were introduced by Christo�des et al. ([25])�these are downloaded
from [28]. The networks of customer nodes of CT12 are constructed according to the instruc-
tions given by Golden et al. [19] for G12, while the vehicle speci�cations for CT12 are set
according to [24, Table 1] (which are also found in [23, Table 2]).

28

and variable cost ranging from 1.0 to 2.5. For each instance in CT12EXT, ve-
hicles are denoted by numbers, with the lowest (highest) number corresponding
to the vehicle with the smallest (largest) capacity.

For each test instance in CT12EXT, all unnecessary vehicle capacities were
excluded from the set of vehicles according to the following procedure: A vehicle
capacity value is excluded from the test instance if no route in the set ∪k∈KRk
has a total customer demand equal to this value (except for the smallest value).
This since any route driven by the �excluded vehicle� (capacity) can be driven
by a smaller vehicle�at a lower cost. No vehicle capacity could, however, be
excluded from any of the twelve instances.

Instance Customers Vehicles

customers # vehicles Capacity Fixed cost Variable cost

Choi3 20 5 20 � 120 20 � 225 1.0 � 2.5
Choi4 20 3 60 � 150 1000 � 3000 1.0 � 4.0
Choi5 20 5 20 � 120 20 � 225 1.0 � 2.5
Choi6 20 3 60 � 150 1000 � 3000 1.0 � 4.0
T13 50 6 20 � 200 20 � 400 1.0 � 3.2
T14 50 3 120 � 300 1000 � 3500 1.0 � 1.4
T15 50 3 50 � 160 50 � 160 1.0 � 2.0
T16 50 3 40 � 140 100 � 400 1.0 � 2.1
T17 75 4 50 � 120 25 � 320 1.0 � 1.8
T18 75 6 20 � 400 10 � 800 1.0 � 3.2
T19 100 3 100 � 300 500 � 1200 1.0 � 1.7
T20 100 3 60 � 200 100 � 500 1.0 � 2.0

Table 1: The individual test instances, Choi3�Choi6 and T13�T20, of the set
CT12. �# customers� refers to the number or customer nodes, and �# vehicles�
refers to the number of vehicle types in each instance. The capacity, �xed cost,
and variable cost ranges are given for each set of vehicle types.

3.2 Load dependent vehicle routing problems

Most vehicle routing problem settings restrict variable traveling costs to depend
only on the distance traveled. Since traveling costs depend on many factors, this
may be too limiting. According to Xiao et al. ([29]), factors determining real
life traveling costs can be divided into two groups, of which the �rst includes
distance, but also speed, load, fuel consumtion, and road conditions. The factors
in the second group are less related to the route traveled and include vehicle
depreciation and maintenance costs, wages, and taxes. Most factors in the
�rst group are related to fuel consumption, which is highly dependent on the
distance traveled and the vehicle load. They argue, using statistical data, that
fuel consumption for a homogeneous vehicle routing problem can be modeled

29

by the following objective function

min
x,e

∑
j∈N

fx0j +
∑

(i,j)∈A

(cijxij + bijeij)

 (18)

and constraints corresponding to (12b)�(12h), but considering only one vehicle
type. Analogously to the �ow formulation (12) for hVRP, the variables are
de�ned as

xij :=

{
1, if arc (i, j) is used
0, otherwise

(i, j) ∈ A,

and eij := �ow of goods from node i to j, (i, j) ∈ A. Also, the parameters cij ,
(i, j) ∈ A, are routing (variable) costs and the parameter f is a �xed cost. In
addition, there are parameters bij , (i, j) ∈ A, which determines the contribution
of the load across each arc to the total cost. Here cij and bij are parameters not
only depending on distance but also on fuel consumption rates and fuel prices,
and the load variable eij is measured in weight units. The authors of [29] use a
simulated annealing based heuristic algorithm to solve this homogeneous vehicle
routing problem.

The objective function (18) can easily be adjusted for the column generation
subproblems of hVRP or many-hVRP by letting f , cij , and bij depend on the
vehicle type, since each vehicle type can be treated separately in the subprob-
lems. This has been done in this thesis; see Section 4.3. It would be more
di�cult to use this type of load dependent cost function for a formulation such
as the �ow formulation (12) of hVRP. Making the parameters bij depend on the
vehicle type would require the variables ekij , representing the load on the vehicle
of type k on link (i, j), (i, j) ∈ A, k ∈ K.

30

4 Problem formulation and solution methods for

the many-hVRP

The many-hVRP problem, for which we wish to �nd a suitable model and
solution method, is the version of the standard hVRP where the number of
di�erent vehicle types is very large. If some of the parameters that determine
the con�gurations of the vehicles can be chosen from a continuous interval, there
may even be an in�nite number of possible vehicle types.

The standard test instances for hVRP, some of which were presented in
Section 3.1.3, contain relatively few vehicle types. To the best of our knowledge,
hVRP with a very large set of vehicle types�here denoted many-hVRP�have
not been studied before. To e�ciently handle many-hVRP, solution techniques
tailored for the large set of vehicles are necessary. Starting from the solution
technique for hVRP from [24], as presented in Section 3.1.2, a column generation
algorithm has been implemented for many-hVRP; it is presented in Section
4.1. This implementation uses a straightforward adaptation of the hVRP model
(15), and is therefore denoted the straightforward model. A slightly di�erent
model, in which the number of vehicle types that can be used in a feasible
solution is restricted, is presented in Section 4.2. There are two main reasons
for formulating many-hVRP using this model, denoted the restricted model.
The �rst reason is simply that a restriction on the number of vehicle types in a
solution may be a desirable feature in a solution, when the set of vehicle types
is very large. A �eet with fewer vehicle types may for instance be more �exible.
The second reason is due to algorithmic considerations. The restriction of the
number of vehicle types used in a solution enables a Benders' decomposition
of an LP relaxation of the model, which then results in a subproblem having
the same form as the master problem in a column generation approach to the
straightforwad model. Benders subproblem can thus be solved using the column
generation algorithm presented in Section 4.1 for the straightforward model,
but with a smaller set of vehicle types. The number of vehicle types allowed
in a feasible solution to the restricted model determines the size of the set of
vehicle types considered in Benders subproblem, in�uencing its computational
complexity.

To illustrate how these models adapt to more complex problem settings, the
straightforward and the restricted model, as well as the corresponding solution
algorithms have been adapted to consider load dependent costs, following the
model presented in Section 3.2. The details are presented in Section 4.3.

To the best of our knowledge, the restriction on the number of vehicle types
used in a solution to the restricted model has not been used in previous models
for hVRP, probably because the number of vehicle types considered is usually
small. Neither have we encountered the application of Benders' algorithm to
hVRP in the literature. We envision that the algorithms developed in this
thesis�with some modi�cations of the implementation of the sets of vehicle
types which showed to �t well within our current solution framework; see Sec-
tion 6�can be successfully applied to real life instances of larger size than the

31

benchmarks CT12 and CT12EXT here used to test the algorithms.

4.1 The straightforward model with column generation

The heterogeneous vehicle routing problem can, as shown in Section 3.1.1, be
formulated as the set-partitioning model (15). Hence, it can also be used to
model the many-hVRP. Using the model (15) has the advantage that standard
solution methods that have been proven successful for hVRP can be applied
also to many-hVRP. We denote the model (15), when used for many-hVRP,
as the straightforward model. A version of the column generation approach
implemented in [24]�which has proved successful for hVRP; see Sections 3.1.2
and 3.1.3�has been implemented for many-hVRP, and is presented here, along
with some adaptations to the case of many di�erent vehicle types.

To be able to use column generation, as detailed in Appendix B.2, the binary
restrictions on the variables xkr in (15) are relaxed, resulting in the following
column generation master problem:

z∗LP := min
x

∑
k∈K

∑
r∈Rk

ckrx
k
r , (19a)

s.t.
∑
k∈K

∑
r∈Rk

δkirx
k
r = 1, i ∈ N0, (19b)

xkr ≥ 0, r ∈ Rk, k ∈ K. (19c)

The corresponding restricted master problem, with R̃k ⊆ Rk, k ∈ K, is formu-
lated as

(RMP) z∗RMP := min
x

∑
k∈K

∑
r∈ eRk

ckrx
k
r , (20a)

s.t.
∑
k∈K

∑
r∈ eRk

δkirx
k
r = 1, i ∈ N0, (20b)

xkr ≥ 0, r ∈ R̃k, k ∈ K, (20c)

and its linear programming dual is formulated as

(RMPDual) max
π

∑
i∈N0

πi,

s.t.
∑
i∈N0

πiδ
k
ir ≤ ckr , r ∈ R̃k, k ∈ K.

In each iteration of the column generation algorithm, the sets R̃k are expanded
by routes r ∈ Rk \ R̃k, having low reduced costs. For r ∈ Rk, k ∈ K, the
reduced cost for the variable xkr , denoted ĉ

k
r , is given by

ĉkr = ckr −
∑
i∈N0

π∗i δ
k
ir, (21)

32

where π∗ denotes an optimal solution to (RMPDual). As de�ned in Section

3.1.1, ckr := fk +
∑H
h=1 c

k
ih−1ih

, where r = (i0, i1, . . . , iH−1, iH). Let

ĉkij := ckij − π∗j , (i, j) ∈ A, j ∈ N0,

ĉki0 := cki0, (i, 0) ∈ A.

The reduced cost ĉkr can then be expressed as

ĉkr := fk +
H∑
h=1

ckih−1ih
−
H−1∑
h=1

π∗ih = fk +
H∑
h=1

ĉkih−1ih
.

The subproblem that must be solved in order to �nd the route-vehicle pair (r, k)
corresponding to the variable xkr , r ∈ Rk, k ∈ K, having the lowest reduced cost
ĉkr , can be divided into one subproblem for each vehicle type, as done in [24]. In
the last column generation iteration binary restrictions on the variables xkr are
added to (RMP), to obtain a feasible solution to (15) as explained in Appendix
B.2. The column generation algorithm is detailed in Algorithm 1.

1. Initialization: Choose the subsets R̃k ⊆ Rk, k ∈ K, such that the re-
stricted master problem (RMP) is feasible, and such that

∑
k∈K |R̃k| ≥

|N0|.

2. Solve (RMP).

3. Solve, for each k ∈ K, the subproblem (where r = (i0, i1, . . . , iH))

(ĉk)∗ := min
r∈Rk

{
ĉkr
}

= fk + min
r∈Rk

{
H∑
h=1

ckih−1ih
−
H−1∑
h=1

π∗ih

}
,

where π∗ is an optimal solution to (RMPDual).

4. If K− := {k ∈ K | (ĉk)∗ < 0} = ∅, go to Step 5. Otherwise, for each
k ∈ K−, include the index

r̃ ∈ arg min
r∈Rk

{ĉkr},

in the set R̃k. Then go to Step 2.

5. No variables in (19) have negative reduced costs, so the current solution
to (RMP) is optimal in (19), i.e., z∗LP = z∗RMP. Solve the current (RMP)

with binary restrictions on xkr , r ∈ R̃k, k ∈ K. The solution is a feasible
in the original problem (15), and z∗RMP ≥ z∗.

Algorithm 1: Column generation algorithm.

33

We have implemented some modi�cations of Algorithm 1 in order to speed
up the convergence to the optimal value of (19). It is not necessary to solve the
column generation subproblem(s) to optimality, except for in the last iteration,
when verifying that the solution to (RMP) is optimal in the complete master

problem (19); (see [8, 30]). Therefore, a route r ∈ Rk\R̃k, such that the variable
xkr has a negative but not necessarily minimal reduced cost ĉkr = ckr−

∑
i∈N0

π∗i δ
k
ir

can be added to R̃k in Step 4. In addition, since the original subproblem to �nd
a variable xkr with minimal reduced cost has been divided into one subproblem
for each vehicle type k, it is not necessary to solve the subproblem for every
vehicle type every iteration. Instead a so called partial column generation can
be employed, such that only a subset of the subproblems are considered each
iteration. However, at least one variable xkr with a negative reduced cost must
be added to (RMP), provided that such a variable exists ([8]). Since there are
as many subproblems as there are vehicle types, and the set of vehicle types
is assumed to be very large, using partial column generation can be bene�cial.
Details on the solution of the subproblems are presented in Section 4.1.1.

In Section 4.1.2, upper and lower bounds, z̄ and z, on z∗LP are derived.
Since z∗LP is a lower bound on z∗, z is also a lower bound on z∗. The upper
and lower bounds can be used to terminate the column generation prior to has
convergence, i.e., when z̄−z ≤ ε, for some pre-determined value ε > 0. When
the column generation algorithm has converged, i.e., when the optimal solution
to the restricted master problem (RMP) has been veri�ed as an optimal solution
to the complete master problem (19), then it holds that z̄ = z∗LP = z.

4.1.1 Subproblem

For a �xed value of k ∈ K, the column generation subproblem to �nd

(ĉk)∗ := min
r∈Rk

{
ĉkr
}

= min
r∈Rk

{
ckr −

∑
i∈N0

π∗i δ
k
ir

}
= fk + min

r∈Rk

{
H∑
h=1

ĉkih−1ih

}
(22)

is an elementary shortest path problem with resource constraints, since for k ∈ K
the set Rk consist of elementary routes r = (i0, i1, . . . , iH−1, iH), starting and

ending at the depot, and that must satisfy
∑H−1
h=1 dih ≤ Dk (i.e., the total

demand of the customer nodes visited by route r can not be greater than the
capacity of vehicle k).

Two di�erent approaches have been used to solve (22) in this thesis, one us-
ing AMPL and CPLEX, and one using dynamic programming in Matlab. Both
approaches have been implemented in such a way that the solution algorithm
can be interrupted before an optimal solution to the subproblem has been found,
either when a prede�ned time limit has been exceeded, or after a certain number
of routes with negative reduced cost has been found. It was noted that often
when no route with negative reduced cost had been found for a given subproblem
in the later iterations, then no route with negative reduced cost was found in the
next couple of iterations. Therefore, a kind of tabu-strategy of partial column

34

generation was also implemented for the subproblems (see [31] for an introduc-
tion to tabu search), according to the following. If, for one speci�c subproblem,
no routes with negative reduced cost have been found during a pre-determined
number of consecutive column generation iterations, that speci�c subproblem is
not solved for a pre-determined number of iterations. When the extended test
instances CT12EXT were used, it was also noted that subproblems correspond-
ing to vehicles with similar capacities sometimes yielded the same routes�both
when solved to optimality and when not. The tabu-strategy was then updated,
so that only the route-vehicle pair with the lowest reduced cost was added to the
restricted master problem, and the other subproblems which yielded the same
route were recorded as not providing a route with negative reduced cost�thus
potentially leading to them not being solved for a number of iterations.

Mathematical formulations implemented in AMPL and CPLEX:

Below, two mathematical formulations of the problem (22) are presented; these
can be directly implemented in AMPL and CPLEX. The model (23) has been
adapted to the column generation subproblem (22), using the �ow formulation
(12) of hVRP. The constraints (23c)�(23e) have been added, and the constraints
(12d)�(12g) have been replaced with the constraints (23f)�(23h). The variables
eij , (i, j) ∈ A, now represent an arti�cial �ow, where each node that is visited
by a route (in terms of the variables xij) has a demand of one unit of goods.
The variables eij are needed to make sure that the feasible set in (23) consists
of connected paths, and can assume values in the range [0, N], where N is the
number of customers. The resulting formulation is given by

min
x,e

∑
(i,j)∈A

ĉkijxij , (23a)

s.t.
∑

i∈N :(i,j)∈A

xij −
∑

i∈N :(j,i)∈A

xji = 0, j ∈ N0, (23b)

∑
i∈N :(i,j)∈A

xij ≤ 1, j ∈ N0, (23c)

∑
i∈N :(0,i)∈A

x0i = 1, (23d)

∑
i∈N :(i,0)∈A

xi0 = 1, (23e)

∑
i∈N :(i,j)∈A

eij −
∑

i∈N :(j,i)∈A

eji =
∑

i∈N :(i,j)∈A

xij , j ∈ N0, (23f)

xij ≤ eij ≤ Nxij , (i, j) ∈ A, (23g)∑
i∈N0

∑
j∈N

dixij ≤ Dk, (23h)

xij ∈ {0, 1}, (i, j) ∈ A. (23i)

35

The objective (23a) is to minimize the reduced route costs ĉij only, since the
�xed cost fk will be present in any route. The constraints (23b) ensure that
the vehicle departs from each customer that it arrives at. The constraints (23c)
states that a customer may be visited at most once, while the constraints (23d)�
(23e) ensure that at least one customer is visited. The constraints (23f)�(23g)
are arti�cial constraints that are needed to make sure that the route is con-
nected. Since the constraints (23f) should hold for all the customer nodes (i.e.
N0), only cycles (with respect to the variables xij) that include the depot are
feasible, and the highest value taken by any variable eij , (i, j) ∈ A, will be e0j ,
for the unique arc (0, j) ∈ A for which x0j = 1. The constraints (23h) impose
the vehicle capacity restrictions. For x∗ being an optimal solution to the model
(23), we have that (ĉk)∗ = fk +

∑
(i,j)∈A ĉ

k
ijx
∗
ij .

We have adapted the formulation of the VRP with wime windows [32, p.
58]�which employs variables representing time instead of �ow variables�for the
column generation subproblem (22). Here the variables eij and the constraints
(23f)�(23g) are replaced by the variables si, i ∈ N , (representing order with
respect to time) and

si + 1 ≤ sj +N(1− xij), i ∈ N , j ∈ N0 : (i, j) ∈ A, (24a)

0 ≤ si ≤ N, i ∈ N , (24b)

resulting in the formulation (23a)�(23e), (23h)�(23i), (24). These constraints
are analogous to modelling very large time-windows, which are not restrictive
in the sense that they do not cut away any solution that is feasible (the time-
windows are [0, N] for each customer node, where N is the number of customers,
and it takes 1 time-unit to cross each arc in the networkA). The constraints (24)
ensure that the resulting feasible set consists of connected elementary routes.
The time variables si are fewer than the �ow variables eij ; their use may there-
fore lead to a better formulation. Further, the alternative constraints make the
constraints (23c) redundant; they are not included in the formulation in [32, p.
58]. However, they strengthen the formulation (in terms of a tighter represen-
tation of the convex hull of the set of feasible solutions) and�according to the
following paragraph� yield great improvements in solution time when applied
to the subproblem (22).

The formulations (23) and (23a)�(23e), (23h)�(23i), (24) have been solved by
AMPL and CPLEX. Our preliminary tests indicated that the two formulations
are rather similar with respect to solution time, although the latter formulation
with constraints (23c) removed is a lot more time-consuming�see Section 5.1.3.

Dynamic programming:

Instead of formulating integer linear programming models that can be solved
by AMPL and CPLEX, more e�cient solution methods, speci�cally tailored for
shortest path problems with resource constraints, can be applied. Dynamic pro-
gramming algorithms are especially suited for column generation subproblems
arising from vehicle routing problems, as discussed in Section 2.2. Solving the

36

subproblem (22), for a speci�c vehicle k using dynamic programming methods
can be done as in Algorithm 2.

1. Initialization: Let PNPP := {(1)}, PPP := ∅, PFP := ∅.

2. Pick one path P1i from the set PNPP of non-processed paths and extend it
to all nodes j ∈ N0 for which (P1i, j) is a feasible path (a path is feasible
if the total demand of all nodes visited is not greater than the capacity of
the vehicle (i.e., resource feasible) and no customer node has been visited
more than once (i.e., the path is elementary)).

3. Find paths in PNPP ∪ PPP that are dominated by, or that dominates the
extended paths from Step 2. Remove the dominated paths from their
respective sets. Include the extended paths that were not dominated by
any path in PNPP∪PPP in PNPP, and include the path P1i in the set PPP

of processed paths.

4. Extend the path P1i to include the depot, and include it in the set PFP

of full paths, if it has a lower objective value than all paths in PFP.

5. If PNPP = ∅, an optimal route is found in PFP, and the algorithm termi-
nates. Otherwise, go to Step 2. Alternatively: Terminate the algorithm
when a time limit has been exceeded, or when a pre-determined number
of paths have been processed.

Algorithm 2: Dynamic programming algorithm for the column generation sub-
problem.

Since the subproblems (22) do not have to be solved to optimality in every
iteration of the column generation algorithm, Algorithm 2 may be terminated
before PNPP is empty. The dynamic programming algorithm is allowed to ter-
minate when a full path with a negative reduced cost that is lower than some
given threshold is found, and/or when a time limit has been exceeded. It is
often the case that an optimal route is found, but not veri�ed, early in the so-
lution course. Terminating the algorithm before optimality is veri�ed may then
substantially lower the solution time for the column generation.

The path P1i ∈ PNPP to be extended in Step 2 can be chosen according
to di�erent criteria. Our implementation chooses the path having the lowest
objective value. Also, paths that can not be extended to any customer nodes,
i.e., paths for which the sum of the demand of its visited customers exceeds the
value (Dk − mini∈N0 di), are processed in Step 4 instead of being included in
PNPP.

In Step 3, the domination criterion in Claim 1 (Section 2.2.1) is used. Hence,
path P1i dominates path P ∗1i if (i) the sum of the customer demands of the nodes
visited by path P1i is less than or equal to that of P ∗1i, (ii) the cost of P1i is less

37

than or equal to that of P ∗1i, and (iii) the nodes visited by the path P1i form a
subset of the nodes visited by the path P ∗1i. With this domination criterion, the
dynamic programming algorithm is guaranteed to �nd the optimal route. The
criterion has been strengthened by including in the set of nodes visited by a path
also the nodes that are not reachable due to the capacity limitation of the vehicle.
A relaxation of the domination criterion that has been tested is to disregard the
criterion (iii), concerning the sets of visited nodes. In this case the algorithm
is not guaranteed to provide an optimal route, but it may �nd good routes
faster. Preliminary tests, comparing the domination criterion of Claim 1 with
the strengthened domination criterion and the relaxed domination criterion did
not show any great di�erence in solution time. The exact domination criterion
of Claim 1 has been used in the standard implementation.

There are many other ways to make the dynamic programming algorithm
more e�cient; see Sections 2.2.2 and 2.2.3. In addition to the improvements
listed in those sections, information from the solution course of one subproblem
should be used to warm-start the dynamic programming for other subproblems
with similar vehicle types�using the fact that there are many subproblems with
similar parameter values. In our current implementation, solving the subprob-
lems by AMPL and CPLEX has the advantage that the solutions of subprob-
lems is warm-started. The dynamic programming implementation is made in
Matlab. Great savings in solution time would probably be achieved if it were
instead implemented in, e.g., C. Even so, our Matlab implementation does not
perform much worse than the AMPL implementation of (23) and (23a)�(23e),
(23h)�(23i), (24); see Section 5.1.1 for details.

Among these implementations, however, AMPL is sometimes much more
e�cient in solving subproblems to optimality. Even though the dynamic pro-
gramming algorithm manages to �nd an optimal route early in the solution
course, preliminary tests indicated that it may take much more time to verify
optimality compared to AMPL. Therefore, dynamic programming is always sub-
stituted by AMPL in the latter part of the column generation solution course,
when optimality has to be veri�ed.

4.1.2 Upper and lower bounds

We next derive upper and lower bounds on the optimal value z∗LP of the master
problem (19). These can be used to terminate the column generation algorithm
prior to convergence, in which case a measure of the quality of the best feasible
solution to the problem (19) found so far is given by the lower bound.

An upper bound z̄ on the optimal value z∗LP of (19) is given by the solution to
the (RMP) in each iteration of the column generation, since the optimal solution
to (RMP) is feasible in (19). For such an optimal solution

(
(x̄kr)∗

)
r∈ eRk,k∈K

, it

holds that
z∗LP ≤ z̄ := z∗RMP =

∑
k∈K

∑
r∈ eRk

ckr (x̄kr)∗.

By strong duality (e.g., [4, p. 248]), it holds that z̄ =
∑
i∈N0

π∗i where π∗ is

38

optimal in (RMPDual) ([8]).
The following reasoning provides a lower bound on z∗LP. Given an optimal

solution
(
(xkr)∗

)
r∈Rk,k∈K

to (19), it holds that

z∗LP − z̄ =
∑
k∈K

∑
r∈Rk

ckr (xkr)∗ −
∑
i∈N0

π∗i .

Since it holds that
∑
k∈K

∑
r∈Rk

δkir(x
k
r)∗ = 1, i ∈ N0, we have that

z∗LP − z̄ =
∑
k∈K

∑
r∈Rk

ckr (xkr)∗ −
∑
i∈N0

(∑
k∈K

∑
r∈Rk

δkir(x
k
r)∗
)
π∗i

=
∑
k∈K

∑
r∈Rk

(
ckr −

∑
i∈N0

δkirπ
∗
i

)
(xkr)∗

≥

(∑
k∈K

∑
r∈Rk

(xkr)∗
)
ĉ,

where ĉ := minr∈Rk,k∈K
{
ckr −

∑
i∈N0

δkirπ
∗
i

}
is the lowest reduced cost over all

indices r ∈ Rk and k ∈ K, which is found by solving subproblem (22) for all
k ∈ K. Since it holds that

∑
k∈K

∑
r∈Rk

(xkr)∗ ≤ |N0|, and ĉ ≤ 0 it follows that

z∗LP − z̄ ≥ ĉ |N0|.

Hence a lower bound on z∗LP is given by z := ĉ |N0| + z̄. This implies that the
column generation can be terminated when ĉ is small enough, since ĉ |N0| ≤ ε
and ε > 0 implies that z̄−z ≤ ε.

The result that z∗LP ≥ κ ĉ+ z̄, where κ ≥
∑
k∈K

∑
r∈Rk

(xkr)∗ is given without
proof in [8]. A derivation of the lower bound z, similar to the one above, is found
in [9, Chapter 3.7] for κ = 1.

4.2 The restricted model with Benders' decomposition and

column generation

We next present a model for the many-hVRP, which is an alternative to the
straightforward model (cf. (15)) presented in Section 4.1. We have formulated
this model for the many-hVRP; to the best of our knowledge it has not pre-
viously been used for hVRP. In this new formulation, a constraint is added to
(15) limiting the number of vehicle types that can be used. This is intended to
make the model more �exible, since in some applications a �eet with a limited
number of vehicle types is to prefer. The constraint is also intended to allow for
a Benders' decomposition of the problem. The new model is called the restricted
model.

De�ne the parameters M = the allowed number of vehicles of each type,
and C = the allowed number of di�erent vehicle types, denoted the vehicle type

39

limit, and the variables

yk :=

{
1, if vehicle type k is allowed,

0, otherwise,
k ∈ K

The restricted model is then given by

min
x,y

∑
k∈K

∑
r∈Rk

ckrx
k
r , (25a)

s.t.
∑
k∈K

∑
r∈Rk

δkirx
k
r = 1, i ∈ N0, (25b)

∑
r∈Rk

xkr ≤Myk, k ∈ K, (25c)

∑
k∈K

yk ≤ C, (25d)

xkr ∈ {0, 1}, r ∈ Rk, k ∈ K, (25e)

yk ∈ {0, 1}, k ∈ K. (25f)

The di�erence between the formulation (25) and (15), is that the constraints
(25c)�(25d) and the binary variables yk, k ∈ K, have been added; the constraints
(25c) limit the number of vehicles of each type, and the constraint (25d) sets
a limit on the number of di�erent vehicle types that may be used. If the for-
mulation (25) and the formulation (15) share an optimal solution, for a speci�c
problem instance, then the vehicle type limit C is said to be non-restrictive.

4.2.1 Outline of Benders' decomposition applied to the restricted

model

To use Benders' decomposition, the binary requirements on the variables xkr are
relaxed, resulting in the following formulation9

v∗ := min
x,y

∑
k∈K

∑
r∈Rk

ckrx
k
r , (26a)

s.t.
∑
k∈K

∑
r∈Rk

δkirx
k
r = 1, i ∈ N0, (26b)

∑
r∈Rk

xkr ≤Myk, k ∈ K, (26c)

∑
k∈K

yk ≤ C, (26d)

xkr ≥ 0, r ∈ Rk, k ∈ K, (26e)

yk ∈ {0, 1}, k ∈ K. (26f)

9If the formulation (26) and the formulation (19) share an optimal solution for a speci�c
problem instance, then the vehicle type limit C is also said to be non-restrictive.

40

In model (26), the variables yk, k ∈ K are considered complicating. De�ne the
set

R :=

 (yk)Kk=1 ∈ {0, 1}K
∣∣∣∣∣∣
∑
k∈K

yk ≤ C,
∑

k∈Kcapacity

yk ≥ 1

 ,

for Kcapacity := {k ∈ K | Dk ≥ maxi∈N0{di}}. The set Kcapacity consists of
those vehicle types k that can service all customers, thus the set R consists of
those variable values of the complicating variables y for which the remaining
problem (26), in the variables x, has at least one feasible solution.

When applying Benders' decomposition to (26) (see Section 2.3) the Benders
subproblem for �xed values of the variables y := (ỹk)k∈K appears as

(BendersSP(ỹ)) w∗(ỹ) := min
x,y

∑
k∈K

∑
r∈Rk

ckrx
k
r ,

s.t.
∑
k∈K

∑
r∈Rk

δkirx
k
r = 1, i ∈ N0,∑

r∈Rk

xkr ≤Mỹk, k ∈ K,

xkr ≥ 0, r ∈ Rk, k ∈ K,

and the corresponding dual problem is given by

(BendersSPDual(ỹ)) max
π,γ

(∑
i∈N0

πi +
∑
k∈K

Mỹkγk

)
, (27a)

s.t.
∑
i∈N0

πiδ
k
ir + γk ≤ ckr , r ∈ Rk, k ∈ K, (27b)

γk ≤ 0, k ∈ K. (27c)

We denote the feasible set (corresponding to the feasible set de�ned by the
constraints (8b)�(8c) in Section 2.3)

FBendersSPDual :=
{

(π,γ) ∈ R|N0|+|K|
∣∣∣ (π,γ) satis�es (27b)�(27c)

}
.

De�ning the constrained set of vehicles as K̃(ỹ) := {k ∈ K | ỹk = 1}, an
equivalent formulation to (BendersSP(ỹ)) is

min
x

∑
k∈eK(ey)

∑
r∈Rk

ckrx
k
r , (28a)

s.t.
∑

k∈K(ey)

∑
r∈Rk

δkirx
k
r = 1, i ∈ N0, (28b)

∑
r∈Rk

xkr ≤M, k ∈ K̃(ỹ), (28c)

xkr ≥ 0, r ∈ Rk, k ∈ K̃(ỹ). (28d)

41

If M is chosen large enough (e.g., M = |N0|), then the constraints (28c) are
not restrictive and can be removed from this formulation. We assume from now
on that M has been chosen so that it is not restrictive. The models (28) and
(19) are thus equivalent, except that the set of allowed vehicle types is smaller
in the former, and Algorithm 1 can be applied to �nd an optimal solution to
(28a)�(28b), (28d) (which will give an optimal solution to (BendersSP(ỹ)) by
setting xkr := 0, r ∈ Rk, k ∈ K \ K̃(ỹ)).

Each time the subproblem (BendersSP(ỹ)) is solved, we seek an optimal
extreme point (π∗,γ∗) to (BendersSPDual(ỹ)). How to �nd such an optimal
extreme point is detailed in Section 4.2.2. Let L denote the current Benders
iteration, and let L := {1, . . . , L−1} be the set of previous iterations. The dual
solution (πL,γL) := (π∗,γ∗) de�nes a new constraint

v ≥
∑
i∈N0

πLi +
∑
k∈K

MykγLk , (29)

to be added to Benders restricted master problem, which is given by

(BendersRMP) ṽ∗ := min
v,y

v,

s.t. v ≥
∑
i∈N0

πli +
∑
k∈K

Mykγlk, l ∈ L,

y ∈ R.

After adding the new constraint (29) to (BendersRMP) it is solved for op-
timal values (ṽL, ỹL). This de�nes the new problems (BendersSP(ỹL)) and
(BendersSPDual(ỹL)), which are solved to generate a new constraint (29) to
(BendersRMP). This process is iterated�adding one constraint (29) in each
Benders iteration�until an optimal solution to (26) is found and veri�ed. How
to determine that such an optimal solution has been found, and the resulting
Benders' algorithm, is described in Section 4.2.3. Note that (BendersRMP),
(BendersSP(ỹ)), and (BendersSPDual(ỹ)), correspond to the general problems,
(10), (7), and (8), respectively, in Section 2.3.

4.2.2 Optimal extreme point to Benders subproblem

Since it is the compact formulation (28a)�(28b), (28d) that is solved each Ben-
ders iteration, and not the equivalent problem (BendersSP(ỹ)), some extra e�ort
has to be put into �nding an extreme point of the feasible set FBendersSPDual
that is optimal in the dual (27) of (BendersSP(ỹ)). To this end, Claims 2 and
3 have been formulated and proven.

The �nal column generation iteration in the solution course for the model
(28a)�(28b), (28d), results in optimal dual variable values π̄ which are optimal

42

for the dual of (28a)�(28b), (28d), which is expressed as

max
π

∑
i∈N0

πi, (30a)

s.t.
∑
i∈N0

πiδ
k
ir ≤ ckr , r ∈ Rk, k ∈ K̃(ỹ). (30b)

The problems (28) and (28a)�(28b), (28d) possesses the same optimal objec-
tive value, and by strong duality the optimal objective values of (30) and
(28a)-(28b), (28d) are equal ([4, p. 248]). Since the formulations (28) and
(BendersSPDual(ỹ)) are equivalent, the optimal objective value of (30) is there-
fore equal to the optimal value w∗(ỹ) of (BendersSP(ỹ)) ((BendersSPDual(ỹ))
and (BendersSPDual(ỹ)) has the same optimal objective value, by strong dual-
ity). This relationship will be used in the proof of Claim 2.

For k ∈ K and π̄ ∈ R|N0|, we de�ne the problem

(Gamma(k, π̄)) γ∗k := max
γk

γk, (31a)

s.t. γk ≤ ckr −
∑
i∈N0

π̄iδ
k
ir, r ∈ Rk, (31b)

γk ≤ 0. (31c)

Problem (Gamma(k, π̄)) is closely related to (BendersSPDual(ỹ)). The optimal
value γ∗k of (Gamma(k, π̄)) equals the maximum value that can be taken by γk
in (BendersSPDual(ỹ)), when the variables π are �xed to π̄.

We have the following results, the proofs of which are found in Appendix
C.1.

Claim 2. Any vector (π̄, γ̄) that satis�es the conditions

1. π̄ is optimal in (30),

2. γ̄k = 0, k ∈ K̃(ỹ), and

3. γ̄k = γ∗k where γ∗k is optimal in (Gamma(k, π̄)), for k ∈ K \ K̃(ỹ),

is optimal in (BendersSPDual(ỹ)).

Claim 3. Any vector (π̄, γ̄) that satis�es the conditions

1. π̄ is an extreme point to the set
{
π ∈ R|N0|

∣∣ π satis�es (30b)
}
,

2. γ̄k = 0, k ∈ K̃(ỹ), and

3. γ̄k = γ∗k where γ∗k is optimal in (Gamma(k, π̄)), for k ∈ K \ K̃(ỹ),

is an extreme point to the set FBendersSPDual.

43

After solving (28a)�(28b), (28d)�the solution of which is optimal in Ben-
ders subproblem (BendersSP(ỹ)), where the excluded variables are set to zero

(xkr := 0, r ∈ Rk, k ∈ K \ K̃(ỹ))�using column generation, a value of π̄ sat-
isfying condition 1 of Claim 2 results from the last iteration. The important
consequences of Claims 2 and 3 are the following: if γ̄ satis�es conditions 2 and
3 of Claim 2, then (π̄, γ̄) is optimal in (BendersSPDual(ỹ)). If π̄ also satis�es
condition 1 of Claim 3�making π̄ an optimal extreme point to (30)�and γ̄
satis�es conditions 2 and 3 of Claim 2 (and consequently also of Claim 3) for
the chosen value of π̄, then (π̄, γ̄) is an extreme point to FBendersSPDual that is
optimal in (BendersSPDual(ỹ)).

Notice that the variable values γ̄ = (γ̄k)k∈K, that satisfy conditions 2 and

3 of Claim 2, are given by γ̄k = min
{

0,minr∈Rk

{
ĉkr
}}

(where γ̄k is the opti-
mal solution value of (Gamma(k, π̄))). In the context of the linear relaxation
(19) of the straightforward model, ĉkr is the reduced cost of variable xkr (com-
pare (31) with the reduced cost (21)). Hence, γ̄k has the interpretation of the
change in objective value relative to the optimal solution to Benders subprob-
lem (BendersSP(ỹ)) that would be achieved, if the route-vehicle pair corre-
sponding to the variable xkr�with minimal reduced cost among the variables
xkr , r ∈ Rk�was allowed in a solution to Benders subproblem (and the value
of xkr is increased by one, moving in the direction of a particular neighbouring
extreme point)10. Interestingly, the right-hand side of each constraint (29) that
is added to (BendersRMP) according to Claim 2, is the sum of

∑
i∈N0

πLi (which
equals the optimal objective value of Benders subproblem in Benders iteration
L) and

∑
k∈KMykγLk (being the sum of scaled �minimal reduced costs�, γLk , from

Benders iteration L, for all vehicle types in the set {k ∈ K | yk = 1} =: K̃(y)).

4.2.3 Benders' algorithm

With (ṽ∗, ỹ∗) optimal in (BendersRMP), x̃∗ optimal in (BendersSP(ỹ∗)), and
(π∗,γ∗) optimal in (BendersSPDual(ỹ∗)), we have that (x̃∗, ỹ∗) must be an
optimal solution to (26) if it holds that

ṽ∗ =
∑
i∈N0

π∗i +
∑
k∈K

M(ỹk)∗γ∗k . (32)

This, since ṽ∗ is a lower bound on the optimal value v∗ of (26), and
∑
i∈N0

π∗i +∑
k∈KM(ỹk)∗γ∗k =

∑
k∈K

∑
r∈Rk

ckr (x̃kr)∗ = w∗(ỹ∗) is an upper bound on v∗.
If the equation (32) does not hold,the following inequality

ṽ∗ <
∑
i∈N0

π∗i +
∑
k∈K

M(ỹk)∗γ∗k , (33)

10Similarly to how the reduced cost in the context of the column generation algorithm
measures the change in objective value relative to the current optimal solution value of the
column generation RMP, if the corresonding variable is allowed; see Section 2.1 and Appendix
B.1.

44

must hold. Thus, adding to (BendersRMP) the constraint v ≥
∑
i∈N0

π∗i +∑
k∈KMykγ∗k , would make the current solution (ṽ∗, ỹ∗) infeasible.
Following the procedure described in Section 2.3, Benders' algorithm itera-

tively solves (BendersRMP) for (ṽ∗, ỹ∗) and (BendersSPDual(ỹ∗)) for (π∗,γ∗)�
each iteration adding a constraint to (BendersRMP)�until an optimal solution
to (26) is found and veri�ed, i.e., until the equation (32) holds. Benders' algo-
rithm for the restricted model (25) is outlined in Algorithm 3.

1. Initialization: Choose ỹ1 ∈ R and solve (BendersSP(ỹ1)) for (π1,γ1),
de�ning the �rst constraint,

v ≥
∑
i∈N0

π1
i +

∑
k∈K

Mykγ1
k,

of (BendersRMP).

2. Solve (BendersRMP) for (ṽL, ỹL).

3. For x̃L, solve (BendersSP(ỹL)) by solving (28a)�(28b), (28d) using column
generation. In the last column generation, add binary restrictions on
the variables xrk, r ∈ R̃k, k ∈ K, and �nd a solution x̃Lbinary, such that

(ỹL, x̃Lbinary) is feasible in (25).

4. If w∗(ỹL) > ṽL, �nd an extreme point (πL,γL) that is optimal in
(BendersSPDual(ỹL)), by using an optimal extreme point π̄ to (30)�
the dual of (28a)�(28b), (28d)�as prescribed in Claims 2 and 3. Add the
new constraint

v ≥
∑
i∈N0

πLi +
∑
k∈K

MykγLk ,

to (BendersRMP) and go to Step 2. Otherwise w∗(ỹL) = ṽL = v∗; hence
(ỹL, x̃L) is optimal in (26). Terminate the algorithm.

Algorithm 3: Benders' decomposition algorithm.

A lower bound on the optimal value v∗ of the problem (26) is given in each
Benders iteration by ṽL. This lower bound is non-decreasing. An upper bound
on v∗ is given in each Benders iteration by the optimal objective value w∗(ỹL)
of Benders subproblem (BendersSP(ỹL)). This upper bound is, however, not
non-increasing. A better upper bound, which is non-increasing, is given by
minl∈{1,...,L}

{
w∗(ỹl)

}
([33]). Since the optimality condition (32) (which is the

termination criterion that has been implemented) is equivalent to ṽL = w∗(ỹL),
this implies that a stronger optimality condition would be given by

ṽL = min
l∈{1,...,L}

{
w∗(ỹl)

}
. (34)

45

Benders' algorithm could be set to terminate when minl∈{1,...,L}
{
w∗(ỹl)

}
−

ṽL ≤ ε, for some ε > 0, since then the di�erence between the best feasible solu-
tion that has been found so far�with the objective value minl∈{1,...,L}

{
w∗(ỹl)

}
�

and an optimal solution to (26)�with the objective value v∗�is not greater than
ε.

Since Benders' algorithm is applied to the relaxation (26) of the restricted
model (25), v∗ (and thus also ṽL) is only a lower bound on the optimal value of
(25). An upper bound is given in Benders iteration L by the smallest objective
value in (25) of the feasible solutions (ỹl, x̃lbinary), l = 1, . . . , L.

It may not necessarily be the case that Benders' algorithm terminates when
(x̃L, ỹL) optimal in (26) are found. This has not been proven, but an intuitive
argument for why optimality would not be veri�ed is the following: if all con-
straints (29) that are binding in the optimal solution have not been generated
in Benders iteration L, it may happen that ṽL < v∗, even if ỹL is an optimal
choice of variable values in (26), i.e., even if w∗(ỹL) = v∗.

However, Algorithm 3 will converge after a �nite number of iterations, if, in
each Benders iteration L, the optimal solution (πL,γL) is chosen as an extreme
point to the feasible set FBendersSPDual of (BendersSPDual(ỹL)). The set R
de�ning the set of feasible values for y in (BendersRMP) is �nite, thus there is
only a �nite number of possible problems (BendersSPDual(y)), for each of which
an optimal extreme point can be found for each (BendersSPDual(y)). If for two
distinct Benders iterations, l1 and l2, it holds that yl1 = yl2 , then the optimality
criterion (32) is ful�lled, and since the set R is �nite, �nite convergence follows.
The same result should hold, also if a solution (πL,γL) that is optimal but not
necessarily an extreme point in (BendersSPDual(ỹL)) is chosen. This is just an
intuitive argument, however.

An argument for the �nite convergence of Algorithm 3 can be based on the
proof of �nite convergence for a generalized Benders' decomposition found in
[34, Theorem 6.3.4, p 125]. The argument for the general Benders' algorithm, as
presented in Section 2.3, is that the algorithm is guaranteed to converge �nitely
since there is only a �nite number of extreme points to the feasible set of the
dual of Benders subproblem [9].

With the proposed procedure for �nding (πL,γL) in Algorithm 3, it may be
the case that only one of possibly several optimal extreme points to the dual
(BendersSPDual(ỹL)) can be found. Thus, we can not be sure that all extreme
points to FBendersSPDual can be found in the solution course of the proposed
Benders' algorithm.

4.2.4 Additions to Benders' algorithm

To improve the speed of convergence of Algorithm 3, another step has been
implemented, in which optimal solutions x̃l to (BendersSP(ỹl)), from previous
iterations l = 1, . . . , L− 1 of Benders' algorithm, are tested to see if the corre-
sponding routes would yield a better objective value when used in combination
with other vehicles. This procedure is called projection of routes.

46

De�ne the set of all routes �used� in iteration l by

Rl := ∪k∈K{r ∈ Rk |
(
x̃kr
)l

= 1}.

For r ∈ ∪k∈KRk, denote by Kr := argmink∈K:r∈Rk

{
ckr
}
the set of optimal

vehicle types for route r. Only vehicles in K̃(ỹl) are allowed to be used in a
solution to (BendersSP(ỹl)) in iteration l, in Benders' algorithm. Hence, routes
r ∈ Rl are not necessarily matched with vehicle types in Kr. For ỹ ∈ R such
that Rl ⊆ ∪k∈eK(ey)Rk, we denote by x̃l(K̃(ỹ)) the solution to (BendersSP(ỹ))
that uses all the routes in Rl, matched with their respective optimal vehicle
types in K̃(ỹ) (i.e., r ∈ Rl is matched with k ∈ argmink∈eK(ey)

{
ckr
}
). There may

exist some set of variable values ỹ ∈ R, for which the objective value in (26) of

(ỹ, x̃l(K̃(ỹ))) is lower than the value w∗(ỹl) of (ỹl, x̃l).
In the projection of routes procedure, variable values ỹ, for which the fol-

lowing holds, are sought; the objective value of (ỹ, x̃l(K̃(ỹ))) in (26) is lower
than the value minl∈{1,...,L}

{
w∗(ỹl)

}
of the best feasible solution found so far.

If such variable values ỹ are found, then yL+1 := ỹ. Thus, the projection of
routes is used in place of Benders RMP in iteration L+1 to de�ne the next sub-
problem (BendersSP(ỹL+1)). This subproblem has an optimal objective value

w∗(ỹL+1) that is lower than or equal to the objective value of x̃l(K̃(ỹ)); hence,
w∗(ỹL+1) < minl∈{1,...,L}

{
w∗(ỹl)

}
.

The projection of routes procedure has been implemented in a rather rudi-
mentary fashion. For each solution x̃l, l = 1, . . . , L, routes r ∈ Rl are matched
with vehicles types from Kr. Denote the resulting solution x(Rl), and let
y(Rl) = (yk(Rl))k∈K, where

yk(Rl) :=

{
1, if vehicle k is used in the solution x(Rl),
0, otherwise.

If the best solution (x(Rl̂)),y(Rl̂)), l̂ ∈ {1, . . . , L} has an objective value in

(26) that is lower than minl∈{1,...,L}
{
w∗(ỹl)

}
, and if |K̃(y(Rl̂))| ≤ C, then

yL+1 := y(Rl̂). However, if |K̃(y(Rl̂))| > C, so that y(Rl̂) /∈ R, then a

restricted set K̃restricted ⊂ K̃(y(Rl̂)) for which K̃restricted ≤ C, is de�ned using
the constraints of (BendersRMP). This restricted set is used analogously to

Kr to �nd (x̂(Rl̂)), ŷ(Rl̂)). If (x̂(Rl̂)), ŷ(Rl̂)) still has a lower objective value

than minl∈{1,...,L}
{
w∗(ỹl)

}
, then ỹL+1 := ŷ(Rl̂). Otherwise (BendersRMP) is

solved as usual. If ỹL+1 is de�ned without solving (BendersRMP), then Step 3
of Algorithm 3 is performed to �nd a new constraint to add to (BendersRMP),
but the optimality criterion is not checked since ỹL was found without solving
(BendersRMP), thus no value ṽL is provided.

The projection of routes can be set to be performed every irepeat:th Benders
iteration, starting from iteration istart, and the number of solutions from previ-
ous Benders subproblems that are tested may be restricted to solutions from the
last irestrict iterations, for irepeat, istart, irestrict ∈ N. This procedure has been

47

shown to greatly reduce the time before an optimal solution to (26) is found;
see Section 5.2.3. Even greater improvements in solution time would proba-
bly be achieved by improving this procedure of projecting routes, especially by
improving the handling of restrictive values of the vehicle type limit C.

To improve the solution speed of Benders subproblems, a so called warm start
can be utilized, according to the following. The routes ∪Ll=1Rl that are part of
the previous optimal solutions to Benders subproblems, i.e., x̃l, l = 1, . . . , L, and
which can be taken by some vehicle in the current Benders iteration�i.e., the

routes in the set
(
∪Ll=1Rl

)
∩
(
∪k∈∪ eK(eyL+1)Rk

)
�are included in the set of routes

used to start the column generation algorithm for solving Benders subproblem
in iteration L+ 1. This has been shown to reduce the time spent in the column
generation algorithm. It is even the case that in most iterations of Benders'
algorithm, an optimal solution to Benders subproblem can be found among the
routes provided by the warm start. See Section 5.2.2 for details.

The projection of routes procedure and the warm start, described in this
section, use some ideas from the set-partitioning based heuristic for hVRP by
Taillard ([20]), described in Section 3.1.2. In [20] each route r generated in
a homogeneous VRP determines route-vehicle pairs (r, k) in a set-partitioning
formulation for hVRP, for each vehicle type in the set {k ∈ K | r ∈ Rk}.

4.2.5 Suggestions for further improvements of Benders' algorithm

To get an optimal extreme point to FBendersSPDual, by Claims 2 and 3, Benders
subproblem should be solved to optimality using column generation to �nd an
optimal extreme point π̄ to the problem (30). However, at the later iterations
of the column generation often very small improvements are made, known as
the tailing o� e�ect (see [8]). It is possible that good quality constraints of
(BendersRMP) can be provided by using points in the set FBendersSPDual that
are not necessarily extreme points, or even non-optimal in the current Benders
subproblem. This, since for any (π,γ) ∈ FBendersSPDual, the inequality

v ≥
∑
i∈N0

πi +
∑
k∈K

Mykγk (35)

is a valid constraint in (BendersRMP) (see [35, p. 308]). Thus, the column gen-
eration algorithm for Benders subproblem can be terminated before an optimal
extreme point to (30) is found, and the variable values π that are optimal in
the dual of the current column generation RMP, can be used to de�ne a new
constraint�for any π ∈ R|N0| it holds that (π,γ) ∈ FBendersSPDual whenever it
holds that γ := (γk)k∈K, γk ≤ γ∗k , and γ∗k is optimal in (Gamma(k,π)).

It follows that, instead of solving the problem (Gamma(k,π)), k ∈ K, in
each Benders iteration11 (as prescribed in Claim 2), lower bounds on the op-
timal values of problems the (Gamma(k,π)), k ∈ K, can be used to de�ne a

11We investigated if it would be possible to �nd a set of conditions under which γ̃ ∈
argmin (Gamma(k1,π)) implies the inclusion γ̃ ∈ argmin (Gamma(k2,π)), for k1 6= k2. We
did not, however, �nd any such conditions; see Appendix C.2.

48

new constraint to (BendersRMP). This could greatly reduce the computational
e�ort, since the problem (Gamma(k,π)) is essentially the column generation
subproblems of the straightforward model, and these are computationally hard
problems�see Section 2.2. Dynamic programming for SPPRC with 2-cycle
elimination, described in Section 2.2.2, is an e�cient algorithm for calculat-
ing a lower bound of good quality to (Gamma(k,π)), and is a commonly used
method for solving relaxed column generation subproblems in connection with
VRP (see [12]). This method is used by, among others, Choi and Tcha ([24]) in
their column generation solution approach for hVRP, as mentioned in Section
3.1.2. This usage of lower bounds has not been implemented in this thesis, but
it is suggested as a way of improving the algorithm.

4.3 Load dependent costs

Load dependent costs can be used for both the straightforward model and the
restricted model, developed in Sections 4.1 and 4.2 respectively, by rede�ning the
parameters ckr , and thus altering the column generation subproblems. For the
restricted model, this has implications for Benders subproblems. The property
of the set-partitioning model (15)�on which both models are based�that only
the subproblems need to be altered is quite useful. Other extensions made
to the models, e.g., imposing time-windows, would also require changes of the
column generation subproblems only, and not of other parts of the algorithms
(although the set R of Benders RMP of the restricted model would also need to
be altered).

We use the load dependent objective function introduced by Xiao et al. in
[29], as presented in Section 3.2. De�ne the parameters Qdist > 0 and Qload > 0.
Parameter Qdist is used to weight the part of the objective function that does not
depend on the vehicle load on the arcs, and parameter Qload is used to weight the
part of the objective function that depends on the vehicle load. Thus, the load
dependent cost of the route-vehicle pair (r, k), where r = (i0, i1, . . . , iH−1, iH)
and i0 = iH = 0�and the sum

∑H−1

ĥ=h
dĥ represents the load of the vehicle after

the route has visited customer h− 1�is de�ned as

(cload)kr :=

fk +
H−1∑
h=1

ckih−1ih

Qdist +Qload

H−1∑
ĥ=h

dĥ

+ ckH−1,HQdist.

Hence, the cost of the route-vehicle pair (r, k) is given by the sum of the �xed
cost fk and a weighted sum of the arc costs ckih−1ih

, h = 1, . . . ,H, where the
weights increase with the vehicle load on the arcs. Xiao et al. ([29]) model
the parameter values Qdist and Qload based on fuel consumption rates and fuel
prices, as described in Section 3.2. Since we have used arti�cial test instances
and not real data to test our algorithms in this thesis, the values of Qdist and
Qload are chosen by trial and error.

Algorithm 1 is adapted accordingly, resulting in the following subproblem

49

for k ∈ K:

min
r∈Rk

(ĉload)kr = min
r∈Rk

{
(cload)kr −

∑
i∈N0

π∗i δ
k
ir

}
(36)

The same dynamic programming algorithm, i.e., Algorithm 2, that is used for
the standard column generation subproblems (22) can also be used for the sub-
problems (36) by altering the caluclation of the cost for each path. The condition
in Claim 1 pertaining to the cost of each path can be modi�ed, with correspond-
ing modi�cations of the proof, so that the claim holds also for the subproblems
(36).

Of the two formulations (23) and (23a)�(23e), (23h)�(23i), (24) used for the
standard column generation subproblems (22), only the former can be used in
the case of load dependent costs (36) (with some alterations). Now the vari-
ables eij , (i, j) ∈ A, instead of representing an arti�cial �ow�as in formulation
(23)�represents the actual �ow of goods�as in formulation (12). The resulting
subproblem formulation used in this thesis, is given by

min
x,e

∑
(i,j)∈A

(
ckij(Qdistxij +Qload eij)− π∗i xij

)
, (37a)

s.t.
∑

i∈N :(i,j)∈A

xij −
∑

i∈N :(j,i)∈A

xji = 0, j ∈ N0, (37b)

∑
i∈N :(i,j)∈A

xij ≤ 1, j ∈ N0, (37c)

∑
i∈N :(0,i)∈A

x0i = 1, (37d)

∑
i∈N :(i,0)∈A

xi0 = 1, (37e)

∑
i∈N :(i,j)∈A

eij −
∑

i∈N :(j,i)∈A

eji = dj

 ∑
i∈N :(i,j)∈A

xij

 , j ∈ N0, (37f)

djxij ≤ eij ≤ (Dk − di)xij , (i, j) ∈ A, (37g)

xij ∈ {0, 1}, (i, j) ∈ A. (37h)

The objective (37a) is to minimize the reduced cost. The constraints (37b)�(37e)
are equivalent to the constraints (23b)�(23e). The constraints (37f) have been
adapted from the constraints (12d), and the constraints (37g) are equivalent to
the constraints (13), reformulated for a homogeneous problem.

50

5 Tests and results

Both the straightforward and the restricted model has been tested on the original
(CT12) and the extended (CT12EXT) test instances; the results are presented
in Sections 5.1 and 5.2, respectively. The latter of the instance sets�including
more vehicle types than the former�are described in Section 3.1.3.

The test were performed on Linux computers with a Pentium Dual-Core
CPU 2.5 GHz with 2048 KB cache. The mathematical models and algorithms
have been implemented using the modelling software AMPL 12.1.0 ([36]), and
the optimization solver CPLEX 12 ([37]). Dynamic programming for the col-
umn generation subproblems and some other calculations (e.g., �nding initial
solutions to the column generation RMP, and for warm start and projection
of routes in Benders' algorithm) have been implemented in Matlab 2012b [38].
The communication between AMPL and Matlab is done via text �les. The bash
command screen is used to enable a single Matlab session being opened and
called several times from AMPL. Matlab has also been used for the visualization
of solutions and algorithm performance data.

5.1 The original test instances, CT12

The test instances CT12 have been used to test the column generation algorithm,
implemented as described in Section 4.1. Since these instances contain only three
to six vehicle types, the corresponding tests of the column generation algorithm
concern the hVRP, not the many-hVRP.

In Section 5.1.1, the results from these tests are compared with the best
published results for hVRP on CT12, as well as with an implementation of
the �ow formulation (12) solved directly by AMPL and CPLEX. In Sections
5.1.2 and 5.1.3, tests of di�erent ways initializations of the column generation
algorithm and di�erent implementations of the algorithms (described in Section
4.1.1) for the column generation subproblems, are presented.

5.1.1 Comparison of solution methods

In this section, the column generation applied to the model (15) (the straightfor-
ward model of Section 4.1) is compared with a straightforward implementation
of the �ow formulation (12), as well as with the results of Choi and Tcha in [24]
and with the best known results for CT12. The column generation applied to
(15), described in Section 4.1, has been implemented in AMPL and CPLEX,
using Matlab with dynamic programming and/or AMPL and CPLEX for the
column generation subproblems (22). The �ow formulation (12) has been im-
plemented in AMPL and CPLEX.

In Table 2 results for the �ow formulation (12) are presented. Table 5 shows
the results from the column generation algorithm by Choi and Tcha ([24]) (these
results were obtained using a Pentium IV 2.6 GHz processor). Table 3 and 4 lists
the results from our standard implementation of column generation on CT12.
The results in Table 3 were obtained using dynamic programming for the column

51

generation subproblems in the former part and AMPL and CPLEX in the latter
part of the solution course, whereas the results in Table 4 were obtained using
only AMPL and CPLEX for the column generation subproblems. Both the
solve time�i.e. the CPU time spent in the column generation algorithm in
AMPL and CPLEX, and the clock time spent in the dynamic programming
in Matlab for the column generation subproblems�and the total time�i.e.,
the clock time from the algorithm is starts until it �nishes�are presented in
the tables. In addition to time spent in the column generation algorithm, the
total time also includes the time spent calculating the heuristic solution used
to start the column generation, and the time spent in communications between
AMPL/CPLEX and Matlab. The calculations were interrupted after 10000
CPU seconds12. The lower bound z, was calculated after the column generation
algorithm was terminated (for some of the larger instances, these calculations
were aborted with an out-of-memory error). More details about the column
generation implementation are presented in Sections 5.1.2 and 5.1.3.

In Tables 2�5, �Obj. value� refers to the objective value of the best feasible
solution to (15) found, and �Opt. gap� = (�Obj. value� - zbestknown)/zbestknown,
where zbestknown is the objective value of the best feasible solutions known for
the instances in CT12, (see [23, Table 7]).

Instance Obj. value LB Opt. gap [%]

Choi3 1154.8 986.1 0.89
Choi4 6437.3 6281.7 0
Choi5 1357.2 1027.8 2.64
Choi6 7021.3 6310.8 7.75
T13 3238.0 2401.6 9.22
T14 9672.1 1034.8 5.97
T15 2760.6 424.8 4.77
T16 3524.1 843.5 11.21
T17 2846.9 1190.8 42.03
T18 4744.8 2449.5 50.72
T19 10274.1 2110.6 18.61
T20 4778.8 116.1 15.03

Table 2: Results from a straightforward implementation of the model (12) in
AMPL. The computations were interrupted after 10000 CPU seconds. �LB�
refers to the current lower bound provided by AMPL and CPLEX when the
computations were interrupted.

12The column generation algorithm is set to terminate when the solve time exceeds 10000
CPU seconds. The solve time is, however measured only at the start of each column generation
iteration. This explains why the total solve time for T16 in Table 4 is 22810 CPU seconds�the
subproblems are solved to optimality after approximately 5000 CPU seconds, which leads to
the last column generation iteration (before the algorithm is terminated) taking approximately
17000 CPU seconds.

52

Comparing the results from the column generation algorithm implementa-
tions presented in Tables 3 and 4, using dynamic programming for the sub-
problems in the �rst part of the column generation algorithm (Table 3) yields
better objective values than when not using dynamic programming (Table 4).
Comparing the best feasible solutions to (25) found, the column generation with
dynamic programming found solutions with lower or equal objective values for
all instances except Choi3. Comparing the upper bounds z̄ on the optimal ob-
jective value of (26) for the instances T14�T20 (for which the column generation
did not converge in 10000 CPU seconds), the column generation with dynamic
programming provided upper bounds that were strictly lower for all instances ex-
cept T14. For these reasons, the column generation with dynamic programming
for the subproblems is set as the standard, even though the column generation
where dynamic programming is not used converges faster.

Instance Obj. value z̄ z TOPT TTOT Opt. gap
[CPU s] [s] [%]

Choi3 1150.9 1139.8 1139.8 299 348 0.55
Choi4 6484.9 6370.8 6370.8 691 747 0.74
Choi5 1322.3 1308.4 1308.4 556 516 0
Choi6 6524.4 6451.6 6451.6 765 779 0.12
T13 2969.7 2959.8 2959.8 8107 5657 0.17
T14∗ 12771.5 9311.0 < 0 10519 10743 39.93
T15 2692.5 2608.8 2153.4 10139 8243 2.18
T16 3210.1 3139.0 2286.3 10089 7989 1.30
T17∗ 2556.8 2159.3 � 10134 10347 27.55
T18 3249.1 3188.0 � 10282 10507 3.21
T19∗ 12957.5 9743.4 � 10029 10348 49.59
T20∗ 5659.2 4517.6 � 10145 10484 36.22

Table 3: Results from the column generation, implemented in AMPL and Mat-
lab and using dynamic programming. ∗ indicates that no improvement of the
initial, heuristic solution was made, in the objective value �Obj. value� of the
best feasible solution to (15) found. z̄ and z denote the upper and lower bound,
respectively, de�ned in Section 4.1.2, of the optimal value, z∗LP, of the LP relax-
ation (19). �TOPT� refers to the total solve time in AMPL/CPLEX and Matlab.
�TTOT� refers to the total time of the whole algorithm.

Solving the �ow formulation directly in AMPL and CPLEX requires a very
long computing time. The calculations were interrupted after a pre-de�ned time
limit of 10000 CPU seconds, and for none of the test instances was an optimal
solution veri�ed. Comparing the results presented in Tables 2 and 3, column
generation with dynamic programming performs better than the implementation
of the �ow formulation on the instances Choi3�Choi6, T13, T15�T16 and T18
(for which an improvement of the initial heuristic solution was made during
the column generation), except for Choi4. For the instances Choi3�Choi6 and

53

T13 (for which the column generation converged before 10000 CPU seconds),
the lower bound z provided by the column generation was higher than that
resulting from the �ow formulation.

Instance Obj. value z̄ z TOPT TTOT Opt. gap
[CPU s] [s] [%]

Choi3 1145.6 1139.8 1139.8 66 66 0.09
Choi4 6961.1 6370.8 6370.8 128 104 8.14
Choi5 1322.3 1308.4 1308.4 547 335 0
Choi6 6563.2 6451.6 6451.6 194 144 0.72
T13 2975.6 2959.8 2959.8 6675 4129 0.37
T14∗ 12771.5 8873.2 6558.4 10035 6341 39.93
T15 2787.6 2624.6 2094.1 11240 7047 5.79
T16 3219.2 3152.4 2165.4 22810 13855 1.59
T17∗ 2556.8 2469.1 � 10042 6424 27.55
T18 3677.9 3471.4 � 10119 6600 16.83
T19∗ 12957.5 9883.5 � 10050 6703 49.59
T20∗ 5659.2 5292.0 � 10079 6738 36.22

Table 4: Results from the column generation, implemented in AMPL and Mat-
lab, without using dynamic programming. ∗ indicates that no improvement of
the initial, heuristic solution was made, in the objective value �Obj. value� of
the best feasible solution to (15) found. z̄ and z denote the upper and lower
bound, respectively, de�ned in Section 4.1.2, of the optimal value, z∗LP, of the
LP relaxation (19). �TOPT� refers to the total solve time in AMPL/CPLEX and
Matlab. �TTOT� refers to the total time of the whole algorithm.

Comparing the column generation results presented in Tables 3 and 4 with
those resulting from the column generation heuristic of Choi and Tcha ([24])
(these are presented in Table 5), the implementation of Choi and Tcha�described
in Section 3.1.2�manages to �nd better solutions in a fraction of the solution
time TOPT. Using the relaxed column generation subproblems, a set-covering
formulation instead of the set-partitioning formulation (15), and, in addition,
an implementation in C, the method of Choi and Tcha de�nitely out-performs
our column generation implementation. This suggests that great improvements
can be made to our implementation. The reason why we did not improve our
column generation implementation, is that the focus of our work was to extend
the hVRP to the many-hVRP.

The best solutions for CT12 obtained by the method of Baldacci et al. ([23]),
which is the best exact method for hVRP according to Vidal et al. ([3]), di�ered
from those reported in Table 5 only for the instances T17 and T19. The com-
putations of Baldacci et al. were interrupted after 7200 CPU s. Optimality was
proven for all instances, except T20. The optimal objective values for T17 and
T19 was found to be 2004.5 and 8661.8, respectively ([23, Table 7]).

54

Instance Obj. value LB Time [CPU s] Opt. gap [%]

Choi3 1144.6 1138.6 0.25 0
Choi4 6437.3 6369.2 0.45 0
Choi5 1322.3 1307.7 0.19 0
Choi6 6516.5 6451.6 0.41 0
T13 2964.7 2959.6 3.95 0
T14 9126.9 8748.6 51.70 0
T15 2635.0 2597.2 4.36 0
T16 3168.9 3114.0 5.98 0
T17 2023.6 1979.9 68.11 0.95
T18 3148.0 2959.8 18.78 0
T19 8664.3 8431.9 905.20 0.03
T20 4154.5 4082.3 53.02 0

Table 5: Results from the column generation algorithm of Choi and Tcha [24].
�LB� refers to the optimal objective value of the LP relaxation of the problem
(16), with some additional relaxations.

5.1.2 Column generation: heuristic to �nd initial columns

A few di�erent heuristics to initialize the sets R̃k, k ∈ K, in the restricted master
problem (20) has been tried.

The �rst heuristic starts with �nding a route for the vehicle type with small-
est capacity, by adding the unvisited node i ∈ N0 that is closest to the depot,
and subsequently adding the unvisited node that is closest to the previously
added node, until the capacity limit is reached. This is repeated for another
vehicle type, in order of capacity (after a route has been added for the largest
vehicle type, the smallest vehicle type is considered again), until all nodes have
been visited.

The second heuristic treats each vehicle type separately, and constructs
routes that visits all customer nodes in N0 that the vehicle type k can ser-
vice, i.e., all nodes i ∈ N0 such that di ≤ Dk. The routes are constructed in
the same fashion as in the �rst heuristic, i.e., they are extended to the closest
unvisited node until the capacity limit is reached.

The routes provided by the �rst heuristic generally de�nes a restricted mas-
ter problem (20) with a higher optimal objective value z∗RMP than the second
heuristic does, since often many more routes are constructed with the second
heuristic. Using the second heuristic, the column generation also tends to con-
verge faster to the optimal value z∗LP of the master problem (19) as compared
with the �rst heuristic. However, in the �nal step of the column generation
when binary restrictions on the variables are added to �nd a feasible solution
to the model (15), the �rst heuristic results in feasible solutions that are clearly
better on the four test instances Choi3�Choi6 that were compared; see Table 6.

For this reason, the �rst heuristic has been chosen for our �nal tests. To
initialize the sets R̃k, k ∈ K, so that a basis matrix exists, the total number of

55

columns in the initial restricted master problem (20) should be greater than or

equal to the number of constraints, i.e.,
∑
k∈K |R̃k| ≥ |N0| (see Appendix B.1).

This has been achieved by adding, for each customer node, one route that visits
only that customer, using the vehicle with the largest capacity. However, by
adding these routes to the routes generated by the heuristic, the best feasible
solution to the formulation (15) found in the last column generation iteration,
appears to be of lower quality (compare the objective values obtained when the
algorithm is initiated using the �First heuristic� with those obtained using the
�First heuristic, extra routes� in Table 6). For this reason extra routes have
not been added in our standard version of the column generation algorithm.
Instead, the problem of determining a basis matrix (adding arti�cial columns)
is left to AMPL.

Instance Objective value

First heuristic Second heuristic First heuristic, extra routes

Choi3 1150.9 1157.8 1155.2
Choi4 6484.8 6512.9 6987.1
Choi5 1322.3 1333.6 1323.2
Choi6 6524.4 6537.6 6537.6

Table 6: Results from column generation started using two di�erent heuristics,
on the four smallest test instances in CT12. �Objective value� refers to the ob-
jective value of the best feasible solution to the formulation (15) found, i.e., the
value obtained in the last column generation iteration when binary requirements
are added.

5.1.3 Column generation: algorithms applied to the subproblem

The subproblems have been implemented such that they can either be solved
using the mathematical formulations (23) and (23a)�(23e), (23h)�(23i), (24) in
Section 4.1.1 (implemented in AMPL and CPLEX), or by using the dynamic
programming algorithm described in Section 4.1.1 (implemented in Matlab).

Preliminary tests on the smallest test instances, i.e., Choi3�Choi6, solving
all subproblems to optimality, indicated that none of the two mathematical for-
mulations (23) and (23a)�(23e), (23h)�(23i), (24) is signi�cantly better than the
other; each formulation outperforms the other on some test instance. However,
the latter formulation with the constraints (23c) removed (which is a valid for-
mualtion) does not perform well on the small test instances; after only a few
column generation iterations for the instance Choi3, the computations were ter-
minated by AMPL with termination code 9, which is �an error code from the
operating system level which has generally been associated with out-of-memory
errors� ([39]). Contrast this to the formulation (23), for which the column gen-
eration algorithm for the instance Choi3 converges after 110 CPU seconds, and
the formulation (23a)�(23e), (23h)�(23i), (24), for which the column generation
algorithm for the instance Choi3 converges after 75 CPU seconds.

56

In our standard implementation, subproblems are �rst solved using the dy-
namic programming algorithm, which is terminated after a time limit is exceeded
or after a certain number of partial paths in PNPP has been processed (it has
been set so that the limit on the number of paths is not restrictive). The time
limit is increased if, in a certain iteration, no routes with negative reduced cost
are found for any of the subproblems. When the time limit has been increased a
prede�ned number of times and no more routes with negative reduced cost are
found, the subproblem is solved by AMPL and CPLEX, using the formulation
(23a)�(23e), (23h)�(23i), (24). Here, each subproblem is also terminated either
when a time limit is reached or when a certain number of routes with negative
reduced cost have been found. This time limit can also be increased when no
more routes with negative reduced cost are found for any subproblem. In a �nal
step�if the column generation has not converged in the previous steps�all sub-
problems are solved to optimality. Subproblems that are solved by AMPL and
CPLEX use the CPLEX-option uppercutoff=0�meaning that nodes in the
branch-and-bound tree with an optimal value higher than zero are fathomed
([40, p. 71])�since only routes with negative reduced costs are interesting.

Many con�gurations for solving the subproblems are possible. The con-
�gurations for the time limit used in the standard implementation are shown
in Table 7. The great di�erence in size between the test instances makes it
necessary to use di�erent time limit con�gurations for di�erent instances. Con-
�gurations CONF1 and CONF4 are used for the small instances Choi3�Choi6,
con�gurations CONF2 and CONF5 are used for the medium-sized instances
T13, T15�T16, and CONF3 and CONF6 are used for instances T14, T17�T20
in the standard implementation. Since T14 is much more computationally de-
manding than the other medium sized instances T13, T15�T16 (see the results
in Section 5.1.1) it is therefore included in the latter group.

In addition to the time limit, a kind of tabu-strategy of partial column
generation�described in Section 4.1.1�has also been implemented for the sub-
problems. When the tabu-strategy is used, subproblems that do not yield any
route with negative reduced cost for a pre-determined number of consecutive
column generation iterations, are not considered for a pre-determined number
of iterations. This strategy reduces the number of subproblems that need to
be solved each iteration. It is often the case that a subproblem that has not
provided a route with negative reduced cost for a number of iterations will not
provide one for many more iterations, so the negative impact of this procedure
on the number of iterations needed for the column generation to converge should
not be great. In the standard implementation, a subproblem is not considered
again for seven or four consecutive iterations (the number depending on the
current phase of the column generation solutiouree), if that subproblem has not
provided a route with negative reduced cost for two consequtive iterations (when
dynamic programming is used) or for four consecutive iterations (when AMPL
and CPLEX are used). Note that when a time limit is set for the subproblems,
there may exist a route with negative reduced cost for a speci�c subproblem,
even if no route is found during the solution course for that subproblem.

57

Con�g Dynamic programming AMPL

TSTART [CPU s] SMULT SNUMINC T1 [CPU s] T2 [CPU s]

CONF1 2 2 1 15 500
CONF2 5 3 1 50 500
CONF3 5 5 3 250 500
CONF4 - - - 2 10
CONF5 - - - 5 30
CONF6 - - - 25 300

Table 7: Di�erent con�gurations of the time limit for the subproblems. TSTART

denotes the time limit for the dynamic programming in the �rst part of the col-
umn generation algorithm. If no route with negative reduced cost is found for
any of the subproblems in a speci�c column generation iteration, and optimality
has not been veri�ed, then the time limit is multiplied by SMULT. This is done
SNUMINC times, after which the subproblem is solved by AMPL and CPLEX.
The �rst time limit in AMPL and CPLEX is T1. If no route with negative
reduced cost is found for any of the subproblems in a speci�c iteration, and op-
timality has not been veri�ed, then the time limit is increased to T2. If no route
with negative reduced cost is found and optimality is still not been veri�ed, then
all subproblems are solved to optimality until the column generation algorithm
has converged. No values given for TSTART, SMULT, and SNUMINC means that
dynamic programming is not used. The computations can be interrupted after
a pre-de�ned time limit for the complete column generation algorithm has been
exceeded, for any of the con�gurations.

The gain from the CPLEX option uppercutoff=0 is in itself quite substan-
tial, and together with the time limit and tabu-strategy for the subproblems,
these extensions of the column generation algorithm led to greatly reduced solu-
tion times. So for example did the solution time for test instance T13 decrease
from 2.3 · 106 to 7.3 · 103 CPU seconds, when uppercutoff=0, time limit, and
the tabu-strategy were used instead of solving all subproblems to optimality in
AMPL and CPLEX.

The improvements in solution time when using uppercutoff=0 and time
limits are illustrated for the instance T13 in Figures 4 and 5. The tabu-strategy
for subproblems was not used here, to illustrate why it is useful (it is often the
case that when a subproblem has not provided a route with negative reduced
cost for a few iterations, it often will not do so for many more iterations, as can
be seen in both Figures 4 and 5).

In Figures 4 and 5, solution times for column generation subproblems for
all vehicles A�F in the instance T13 are shown; for each speci�c vehicle, the
subproblems for which no route with negative reduced cost were found are in-
dicated by circles. Figure 4 shows the subproblem solution times when all the
subproblems are solved to optimality in AMPL�for the larger vehicles the sub-
problem solution times are very long (up to 50, 000 CPU s) in the second half

58

of the column generation algorithm. This amount of time is more time than
what is used by the whole column generation algorithm when using dynamic
programming with time limits and uppercutoff=0, as shown in Figure 5.

0 10 20 30 40 50
0

10

20

30

40

50
Time spent on the column generation subproblem, smallest vehicles

C
P

U
 s

iteration

A
B
C

0 10 20 30 40 50
0

0.5

1

1.5

2
x 10

5 Time spent on the column generation subproblem, largest vehicles

C
P

U
 s

iteration

D
E
F

Figure 4: Time spent on solving the column generation subproblems for each
of the vehicles A�F in the instance T13. In each iteration the subproblems are
solved to optimality in AMPL. The vehicles D�F�having larger capacities�
give rise to longer computing times than the vehicles A�C�with a smaller
capacities. A circle indicates that the optimal value (the minimum reduced
cost) of the corresponding subproblem is non-negative.

A few more iterations are needed when the subproblems are not solved to
optimality in each iteration in this way (see Figure 5) but the gain in total solu-
tion time is great. After 58 column generation iterations, dynamic programming
with the given time limit can no longer �nd any route with negative reduced
cost for any of the vehicles. The subproblems are then solved to optimality in
AMPL. This takes a lot more time than the time limit that was set for the
dynamic programming, but nothing is actually gained in terms of the optimal
objective value of the restricted master problem. Even though AMPL manages
to �nd a route with negative reduced cost in each of the iterations 59 and 60,
no improvement is made in the objective value of the restricted master problem
after adding those routes. However, adding these routes makes it possible to

59

verify that the solution to the restricted master problem in iteration 58 (the last
iteration employing dynamic programming) is optimal in the complete master
problem.

0 10 20 30 40 50 60
0

5

10

15
Time spent on the column generation subproblem (Dynamic programming)

C
P

U
 s

iteration

A
B
C
D
E
F

58 58.5 59 59.5 60 60.5 61
0

10

20

30

40

50
Time spent on the column generation subproblem (AMPL)

C
P

U
 s

iteration

A
B
C
F

58 58.5 59 59.5 60 60.5 61
0

1000

2000

3000

4000

5000
Time spent on the column generation subproblem (AMPL)

C
P

U
 s

iteration

D
E

Figure 5: Time spent on the column generation subproblems for each vehicle
A�F in the instance T13. Subproblems are solved by dynamic programming
in Matlab with a time limit the �rst 58 iterations, whereas in iterations 59�61
subproblems are solved to optimality using CPLEX. The rings indicate that the
minimum objective value (the minimum reduced cost) found for a subproblem
is non-negative.

The impact of using uppercutoff=0 is demonstrated by the fact that the
solution time of the the subproblem for the largest vehicle (F) actually is less
than that of C, D, and E (Figure 5). Compare with Figure 4, in which the
solution time of the subproblem for vehicle F is much greater than for the other
vehicles. AMPL sends previously found solutions to CPLEX as a warm-start
when solving the next subproblem [40, pp. 60�61]. Since only the parameters
ĉkij , (i, j) ∈ A, and Dk di�er between the subproblems ((23a)�(23e), (23h)�(23i),

60

(24)), when using uppercutoff=0 it is probably the case that the solution to the
previously solved subproblem for vehicle E is utilized to start the subproblem
solution for vehicle F. Hence AMPL can quickly conclude that the optimal value
is greater than zero, without having to �nd this value.

5.2 The extended test instances, CT12EXT

To test the performance of the proposed algorithms in Section 4 formany-hVRP,
the extended test instances, CT12EXT, were used. In CT12EXT, the vehicle
sets are extended to include vehicles with all (integer) capacities between the
lowest and highest capacity of the original instances; see Section 3.1.3. The
resulting instances thus contain between 91 and 381 di�erent vehicle types.

In Section 5.2.1, the straightforward model (15) of many-hVRP is assessed.
The column generation applied to CT12 in Section 5.1.1 is here tested on the
extended test instances of CT12EXT and the results are compared.

The extended instances CT12EXT have also been used to test the algo-
rithms proposed for the restricted model (25). This model, when the vehicle
type limit C is not restrictive, is equivalent to the straightforward model in
that share optimal solutions and thus also optimal values�although di�erent
solution methods are applied to the two models. Benders' algorithm applied to
the restricted model, with a non-restrictive vehicle type limit C, is assessed in
Section 5.2.2, in which the results are also compared with the results obtained
for the straightforward model presented in Section 5.2.1. A modi�ed Benders'
algorithm, using projection of routes, which yielded great improvements in the
performance of the algorithm, is presented in Section 5.2.3. The convergence of
Benders' algorithm is discussed in Section 5.2.4, and Benders' algorithm with a
restrictive limit C is evaluated in Section 5.2.5.

Results of tests of the straightforward restricted models using load dependent
costs are presented in Section 5.2.6.

The notation in Sections 5.2.2�5.2.4 follows that in Section 4.2.

5.2.1 Straightforward model with column generation

When the column generation algorithm for the straightforward model (15) was
tested on the extended test instances CT12EXT, it was found that subproblems
for vehicles with similar capacities often provide the same routes in the current
column generation iteration�although with di�erent objective values/reduced
costs, because of the slightly di�erent cost structures. For the instances CT12,
having more dissimilar vehicle cost structures, the subproblems mostly provide
di�erent routes. The column generation algorithm was therefore adjusted so
that routes were added only from the subproblem that provided the lowest
objective value/reduced cost for the same route. Subproblems that did not
provide any route�either because no route with a negative reduced cost was
found, or because the route found with a negative reduced cost was also found
in another subproblem, and with a lower reduced cost�for a pre-determined
number of consecutive column generation iterations were as before not solved

61

again for a number of iterations (the tabu-strategy of partial column generation).
A 25 % (10 %) decrease in total solve time was found for the instance T13EXT
(T15EXT), when the tabu strategy was included in the algorithm.

The extended instances CT12EXT represent relaxations of the original in-
stances, since all solutions that are feasible in an original instance are also
feasible in the corresponding extended instance. Comparing the results of the
straightforward model on the smaller instances of CT12EXT (8) to those of
the instances CT12 (Table 3) the lower bounds for the instances in CT12EXT
are lower than those for CT12 as can be expected. The objective value of
the best feasible solution to the binary program (15) is also lower for the in-
stances Choi3EXT, Choi5EXT, and T13EXT. However, the for the instances
Choi4EXT and Choi6EXT are higher than those for the instances Choi4 and
Choi6, respectively. This is somewhat counterintuitive. Somehow the routes
generated during the column generation solution course for problem (19), with
test instances Choi4EXT and Choi6EXT, are not as suited for the binary pro-
gram (15) as those routes generated for Choi4 and Choi6. Solving the problem
again, allowing only the vehicle types that appear in the optimal solution to the
problem (19) might yield better objective values, as indicated by the fact that
the objective values of the best feasible solutions found using Benders' algorithm
for the restricted model, with a non-restrictive vehicle type limit C (Table 9)
for the instances Choi4EXT and Choi6EXT are lower than the corresponding
values reported in Table 8.

Instance Obj. value LB TOPT [CPU s] TTOT [s] Opt. gap [%]

Choi3EXT 1010.0 1010.0 2335 2364 0.00
Choi4EXT 6544.2 6366.0 3913 3902 2.80
Choi5EXT 1187.0 1180.6 2717 2601 0.54
Choi6EXT 6691.7 6436.6 3885 3817 3.96
T13EXT 2756.5 2748.9 55533 38522 0.28

Table 8: Results for the straightforward model with column generation. �Obj.
value� refers to the objective value of the best feasible solution to (15) found,
i.e. the value obtained in the last column generation iteration when binary
requirements are added. �LB� refers to the optimal value of the LP relaxation
(19) of the problem (15). �TOPT� and �TTOT� are de�ned as in Table 3. �Opt.
gap� is given by (�Obj. value� - �LB�)/�LB�.

Comparing the solution times listed in Tables 8 and 3, it seems that the
solution times scale quite well, considering that there are between 20 and 30
times more vehicles in the extended problems than in the original ones. The
larger instances T14EXT-T20EXT have not been tested, because the original
test instances T14-T20 were more di�cult to solve than the instances Choi3-
Choi6 and T13, and the test instance T13EXT took a substantial amount of
time to solve as can be seen in Table 8.

62

5.2.2 The restricted model with Benders' algorithm�non-restrictive

vehicle type limit C

Knowing an optimal solution to the LP relaxation (19) of the straightforward
model, for an instance in CT12EXT, the vehicle type limit C in the restricted
model can be set higher than the number of vehicle types used in the known
optimal solution. This makes the optimal solution to the relaxation (26) of the
straightforward model, an optimal solution to (19). This enables a comparison
of the di�erent solutions strategies for the straightforward model (column gener-
ation of Algorithm 1 and the restricted model (Benders' algorithm of Algorithm
3). As described in Section 4.2, when Benders' algorithm is implemented for
the restricted model, Benders subproblems equal (19), but with a smaller set
of vehicle types (including at most C types). Also, in each Benders iteration a
feasible solution to the restricted model (26) is given�in contrast to the column
generation applied to the straightforward model and which guarantees a feasible
solution only in the last column generation iteration (when binary requirements
are added in the restricted master problem).

The results for the restricted model with a non-restrictive limit C, for the
smallest instances of CT12EXT, are given in Table 9. These results are com-
pared with those obtained by using column generation for the straightforward
model, listed in Table 8. Results for T13EXT are not included here, because
calculating the values of the Benders dual variables γ is too time-consuming
for this instance; especially for γk for the larger vehicle types k. Only vehicles
among the 32 smallest vehicle types are used in an optimal solution, so using
the lower bound suggested in Appendix C.3 to reduce the set of vehicle types
would probably result in big improvements�as would using the lower bound on
γk suggested in Section 4.2.5.

Benders' algorithm performs better than the the column generation for the
straightforward model for some of the small instances, and quite a lot worse
for some. For the instances Choi4EXT and Choi6EXT, Benders' algorithm
converges to the optimal solution to (26) (being an optimal solution also to (19))
in just two and three iterations, respectively, taking less computing time than the
column generation approach for the straightforward model. The best objective
values of (25) found for these instances, when applying Benders' algorithm to the
restricted model, are also better than those found applying column generation
to the straightforward model. On the contrary, for the instances Choi3EXT
and Choi5EXT, Benders' algorithm does not pick the vehicles that are used
in the optimal solution to (26) even after 100 Benders iterations, even though
this takes a lot more time than solving the straightforward model; see Table
8. The biggest di�erence between the original and extended sets of instances is
that for Choi4EXT and Choi6EXT, the cost structure is such that only vehicle
types among the �ve smallest are used in the optimal solutions to (26); this
might explain why Benders' algorithm converges before 100 Benders iterations
for these instances but not for Choi3EXT and Choi5EXT.

63

Instance C Obj1 Obj2 LB TOPT TTOT It Opt. gap
[CPU s] [s] [%]

Choi3EXT 10 1010.5 1010.5 893.3 10124 31573 100 0.05
Choi4EXT 4 6366.0 6484.7 6366.0 1101 1119 3 1.86
Choi5EXT 13 1181.4 1188.7 1067.6 59302 52205 100 0.69
Choi6EXT 6 6436.6 6580.8 6436.6 1304 1298 4 2.24

Table 9: Results for Benders' algorithm. �C� is the parameter value of the ve-
hicle type limit that restricts the number of vehicle types used in any solution
to the problems (26) and (25). It is set to two units larger than the number of
vehicle types used in the optimal solution to (19), which is thus not restrictive.
�Obj1� refers to the objective value of the best optimal solution to Benders sub-
problem, which is an upper bound on the optimal objective value of (26). �Obj2�
refers to the objective value of the best solution found when adding binary re-
strictions in the last iteration of the column generation algorithm performed to
solve the Benders subproblem in each Benders iteration; it is an upper bound
on the optimal objective value of (25). �LB� refers to the optimal objective
value of Benders restricted master problem in the last Benders iteration, which
is a lower bound on the optimal objective value of (26), and therefore also a
lower bound on the optimal objective value of (25). �TOPT� and �TTOT� are
de�ned as in Table 3. �It� refers to the number of Benders iterations performed.
Maximally 100 Benders iterations have been performed. �Opt. gap� is given by
(�Obj. value� - v∗)/v∗, where v∗ is the optimal value of (26). Since the limit C
is not restrictive, v∗ equals the lower bound presented in Table 8.

Next, more detailed results are provided for the instance Choi3EXT. The
optimal objective values of Benders subproblem and Benders restricted master
problem with vehicle type limit C = 10, i.e., the restricted model with at most
ten di�erent vehicle types used in any solution, are shown for each Benders
iteration in Figures 6 and 7. The best objective value of Benders subproblem
found, 1010.5, is not found until iteration 81. It is close to the optimal value,
1010.0; see Table 8. The optimal objective value of Benders restricted master
problem increases in each iteration, but after 20 iterations the increase is very
small, although it is still far from the optimal objective value of Benders master
problem.

Even though the optimal solution to (26) is not found during the 100 iter-
ations for Choi3EXT, the vehicle types that are used in the optimal solution13

are chosen quite frequently, which is illustrated in Figure 8. A similar pattern
was found for the other instances tested as well. Figure 8 also shows that of the
101 vehicle types, only vehicles among the 39 smallest types are chosen in any
Benders iteration.

13The optimal solution to the relaxed problem (26) is integer for Choi3EXT, and is therefore
also an optimal solution to (25). This is, however, not a general property.

64

0 10 20 30 40 50 60 70 80 90 100
1000

1020

1040

1060

1080

1100

1120

1140

ob
je

ct
iv

e
va

lu
e

Optimal objective values of Benders subproblems

Benders iteration

Optimal value of Benders subproblem
Optimal value of Benders master problem

Figure 6: Optimal objective values of Benders subproblems over 100 iterations,
for Choi3EXT with vehicle type limit C = 10; the best value, 1010.5, is attained
at iteration 81. The optimal objective value of Benders master problem is 1010.

0 10 20 30 40 50 60 70 80 90 100
−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

1000

Optimal objective values of Benders restricted master problems

ob
je

ct
iv

e
va

lu
e

Benders iteration

Optimal value of Benders restricted master problem
Optimal value of Benders master problem

Figure 7: Optimal objective values of Benders restricted master problems over
100 iterations, for Choi3EXT with vehicle type limit C = 10. The mean increase
in objective value between two successive Benders iterations is 4.1 (0.3) for
iterations 10�50 (50�100); the best value attained is 893 (at iteration 100) as
compared to the optimal value, 1010.0, of Benders master problem.

65

0 5 10 15 20 25 30 35 39
0

10

20

30

40

50

60

70

80

90

100

pe
rc

en
ta

ge
 o

f i
te

ra
tio

ns

vehicle type

Percentage of 100 iterations in which each vehicle type is chosen

Figure 8: The percentage of 100 Benders iterations in which each of the vehicles
(of type/size 1�101) is chosen, for Choi3EXT with vehicle type limit C = 10.
The known optimal solution uses the vehicle set {1, 2, 10, 17, 18, 22, 23, 25},
which is marked by lighter bars.

An interesting fact is that after a few Benders iterations, the di�erence be-
tween the objective values of the �rst and last iterations (before adding binary
restrictions on the variables) of the column generation applied to Benders sub-
problem is often very small when the column generation is warm-started with
routes from solutions x̃l to previous Benders iterations; see Section 4.2.4. The
usefulness of re-using routes in this way is demonstrated in Figure 9 for the
instance Choi3EXT with vehicle type limit C = 10. In only thirteen of the 100
Benders iterations was the di�erence non-zero, and the greatest di�erence was
found during the �rst iterations. It is also in those �rst Benders iterations that
the objective value of Benders restricted master problem increases the most, see
Figure 7.

This e�ect is also apparent in the computation time required for the column
generation of Benders subproblems, as shown in Figure 10. The column gener-
ation for Benders subproblem in the �rst two Benders iterations requires more
than twice the time that is required for the following iterations; this is consistent
with the pattern apparent in Figure 9, in which the column generation in the
three �rst Benders iterations results in a much larger di�erence than do the later
iterations. The time spent on calculating the dual variable value γL from the
dual variable value πL�found in the last iteration of the column generation�is
less than the time spent on the column generation in all the Benders iterations.
It takes less than one second to solve Benders restricted master problem, which
is only a fraction of the time spent on Benders subproblems, hence the time
spent on solving Benders restricted master problem is not included in Figure
10.

66

1 2 3 4 5 6 11 17 20 24 36 44 59
0

100

200

300

400

500

600

700

800

di
ffe

re
nc

e
in

 o
bj

ec
tiv

e
va

lu
e

Benders iteration

Difference in objective value in Benders subproblem
between first and last iteration of the column generation

Figure 9: Di�erence in objective value between the �rst and last iterations of
the column generation in Benders subproblem over 100 Benders iterations, for
Choi3EXT with vehicle type limit C = 10. Only the thirteen iterations with a
non-zero di�erence is shown. In the iterations 11, 17, 24, and 36 the di�erence
was in the interval [0.2, 2], which is not clearly visible in the plot.

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

C
P

U
 s

Computing time spent on the different phases of each Benders iteration

Benders iteration

Column generation for Benders subproblem
Calculate Benders dual variables

Figure 10: Time spent on the column generation algorithm applied to Benders
subproblem and on calculating the dual variable values γL that de�ne the new
constraint in Benders restricted master problem, for Choi3EXT, with C = 10,
over 100 Benders iterations.

67

5.2.3 Improved Benders' algorithm using projection of routes

Studying the optimal routes that are part of the solutions x̃l to (BendersSP(ỹl)),
for Benders iterations l = 1, . . . , L, i.e., studying the sets Rl, de�ned in Section
4.2.4, it becomes clear that in some iterations the routes used in the optimal
solution to (BendersSP(ỹl)) actually form an optimal solution to (26), however,
they are not paired with the correct vehicle types.

In Section 4.2 we describe the procedure �projection of routes�, in which
routes being solutions to Benders subproblems in earlier iterations are com-
bined with other vehicle types (that were not allowed in those subproblems but
which provide lower objective values). This procedure has been implemented
in order to improve the performance of Benders' algorithm. If such vehicle
types are found and de�ne a feasible Benders subproblem, then they are used in
the next Benders iteration. This procedure seems to yield great improvements
to Benders' algorithm for the instances Choi3EXT and Choi5EXT (for which
Benders' algorithm was found too perform poorly in Section 5.2.2).

0 5 10 15 20 25
1000

1020

1040

1060

1080

1100

1120

1140

ob
je

ct
iv

e
va

lu
e

Optimal objective values of Benders subproblems

Benders iteration

Optimal value of Benders subproblem
Optimal value of Benders master problem

Figure 11: Optimal objective values of Benders subproblems over 24 iterations
when the projection of routes is used, for Choi3EXT with the vehicle type limit
C = 10. The best objective value 1010.0, which equals the optimal value of
Benders master problem, was found in iteration 15 by projecting routes from
iteration 14.

These improvements are illustrated in Figure 11 for the instance Choi3EXT,
with the vehicle type limit C = 10. Projection of routes is tried out in every
iteration from iteration 4; it is successful in iterations 5, 6, and 15. We compare
this with the results shown in Figure 6 (Section 5.2.2), for the same instance
solved without the projection of routes procedure. Without the projection of

68

routes, the best objective value (1010.5) of Benders subproblem over 100 Ben-
ders iterations is found at iteration 81. When using projection of routes, this
solution is found already at iteration six. Also, the best objective value (1010.0),
found at iteration 15 when using the projection of routes, is optimal in (26).

Similar results were obtained for Choi5EXT, when projection of routes was
used. The optimal objective value of (26) for Choi5EXT, 1180.6, was found in
Benders subproblem in Benders iteration 16, while the best objective value of
Benders subproblem over 100 iterations withouth using the projection of routes
was 1181.4.

5.2.4 Convergence of Benders' algorithm

Unfortunately, as discussed in Section 4.2.3, Benders' algorithm does not always
terminate when the optimal solution to (26) has been found, if not all necessary
constraints to Benders master problem have been generated. This happens
for the instance Choi3EXT with the vehicle type limit C = 10 (which is not
restrictive), both when the projection of routes is used and when it is not (see
Sections 5.2.2 and 5.2.3). Using the projection of routes, the optimal value of
Benders master problem is found at Benders iteration 15, but the optimality
is not veri�ed until iteration 2342 (in order to speed up the convergence only
the 30 smallest vehicle types of Choi3EXT were considered). A similar late
veri�cation of the optimality was observed for the instance Choi5EXT.

The optimality for Choi3EXT, with C = 10, could actually have been ver-
i�ed in iteration 16 if other values of Benders dual variables γ15 would have
been found in Benders iteration 15. The values π15 found in Benders iteration
15 yields that γ15 ≤ 0 and γ15 6= 0 (here, π15 is the dual variable value to the
problem (30) found in the last iteration of the column generation for Benders
subproblem at Benders iteration 15, and γ15 is calculated according to Claim
2). The optimality criterion (32) of Benders' algorithm is not satis�ed in Ben-
ders iteration 15. However, if the column generation for Benders subproblem is
continued a couple of iterations, allowing for all vehicle types in K, no improve-
ment is made to the objective value of the column generation restricted master
problem, and optimality of x̃15 in the model (19) is veri�ed by the optimality
criterion for column generation (implying that (x̃15, ỹ15) is optimal in (26)).
A new dual solution π̂ to the column generation restricted master problem is
found, for which γ̂ = 0 (where γ̂ is calculated using π̂ according to Claim 2).
It holds that π̂ is feasible and optimal in the dual of Benders subproblem in
Benders iteration 15. If (π̂, γ̂) were used to de�ne the new constraint to Ben-
ders restricted master problem in Benders iteration 15, instead of (π15,γ15),
optimality of (x̃15, ỹ15) in (26) could have been veri�ed in Benders iteration 16
using the criterion (34), since then the inequality ṽ16 ≥

∑
i∈N0

π0
i holds, and

we have that the inequalities ṽ16 ≤ v∗ and
∑
i∈N0

π0
i ≥ v∗ hold. This is a

general result, i.e., if the values of the Benders dual variables γ equal zero in
some Benders iteration, then optimality would be veri�ed in the next Benders
iteration if the criterion (34) was used.

Assume that the vehicle type limit C is not restrictive. According to (31),

69

the inequality in γl = (γlk)k∈K ≤ 0|K| holds, where γlk equals the minimum
reduced cost over the variables xkr , r ∈ Rk, if it is negative14. Therefore, there
should exist a vector (πl0 ,γl0) such that γl0 = 0|K|, which is optimal in the
dual of Benders subproblem in Benders iteration l0, if (x̃l0 , ỹl0) is an optimal
solution to (26). This happens for the instances Choi4EXT and Choi6EXT with
a non-restrictive limit C and for which Benders' algorithm converges quickly.
As can be seen in Table 9, optimality was veri�ed in iterations three and four,
respectively. The optimal solutions were found in iterations two and three,
respectively, and the values of Benders dual variables γ were in both cases
found to be 0|K|.

5.2.5 The restricted model with Benders' algorithm�restrictive ve-

hicle type limit C

If the goal is to choose a limited number of vehicle types from a larger set of
vehicle types, then the straightforward model can not be used. That such a lim-

T13EXT, no vehicle type limit

1

7

10

11

14

15

18

20

21

22

23

25

26

27

31

32

Figure 12: An illustration of the best solution to (15) found for the instance
T13EXT with objective value 2753.6, when no vehicle type limit C is used
(C = ∞). The depot is centrally located among the customer nodes, whose
areas are proportional to their respective demand. The routes are marked with
a dashed line for the �rst arc (leaving the depot), solid lines for following arcs,
and a dotted line for the last arc (returning to the depot). Routes taken by
di�erent vehicle types have di�erent colors. In this solution, only vehicles among
the 32 smallest (out of 181) types are used.

14The reduced cost is de�ned with respect to the optimal solution exl to Benders subproblem
in Benders iteration l, where Benders subproblem is seen as a column generation restricted
master problem to (19) (since only a subset of all route-vehicle pairs is allowed); see Section
4.2.2.

70

itation can be imposed constitutes a valuable feature of the restrictive model,
which could result in a greater �exibility of the resulting �eet.

Figure 12 illustrates a feasible solution for the instance T13EXT in which
the allowed number of vehicle types used is unlimited, and Figure 13 shows a
feasible solution in which the number of vehicle types is limited to four. The
solution illustrated in Figure 13 was obtained using Benders' algorithm, by
restricting the vehicle set to the 50 smallest vehicle types (only vehicles from
the 32 smallest vehicle types were used in the optimal solution to T13EXT,
when no vehicle type limit was set).

For the instance T13EXT with C = 4 (Figure 13), four vehicle types in
the range [22, 31] were used, whereas for the case with a non-restrictive vehicle
type limit (Figure 12), 16 vehicle types in the range [1, 32] were used. Hence,
for this instance, out of the totally 181 vehicle types only vehicles among the
32 smallest types were used. Even though the objective value (2838.2) of the
solution for the case with C = 4 is greater than that (2753.6) for the case with
non-restrictive vehicle type limit, it is still lower than the optimal objective value
(2964.7) of the original test instance T13 (see Section 5.2.1), which includes six
vehicle types.

T13EXT, vehicle type limit C=4

22

26

29

31

Figure 13: An illustration of the best solution to (25) found for the instance
T13EXT with objective value 2838.2, with vehicle type limit C = 4. In this
solution, only vehicle types in the range [22, 32] are used, out of 181 vehicle
types. Information about how to interpret the plot is found in Figure 12.

Choosing only a limited number of vehicle types, by using Benders' algorithm
with projection of routes for the restricted model (25), with a restrictive vehicle
type limit C, seems to work quite well. The biggest disadvantage is that it
may take a long time to verify optimality using Benders' algorithm. When

71

terminating after a large number of Benders iterations it is often revealed that
the best solution was found early in the solution course.

For the instance Choi3EXT with C = 6 a feasible solution with objective
value 1012.4 is found after eight Benders iterations when applying the projection
of routes, and this value is not improved during the following 142 Benders
iterations (since with C =∞ the optimal solution, with objective value 1010.0,
contains eight di�erent vehicle types, the limit C = 6 is restrictive). This
suggests that Benders' algorithm can be successfully used as a heuristic, thus
terminated after a pre-speci�ed time limit or no improvement of the objective
value of Benders subproblem has been observed during a pre-speci�ed number
of iterations.

5.2.6 Load dependent costs

Both the straightforward model (15) and the restricted model (25) has been
tested using load dependent costs, as described in Section 4.3. The parame-
ters Qdist and Qload were set to 1.4 and 0.05, respectively, by testing di�erent
combinations for T13EXT using the straightforward model, and choosing those
values that resulted in reasonable solutions.

Load dependent cost Obj. value LB TOPT [CPU s] TTOT [s]

Yes 2775.6 2801.9 34113 27243
No 2753.6 2748.9 35032 17658

Table 10: Results for the straightforward model using the column generation
for the instance T13EXT, with and without load dependent costs. �Obj. value�
refers to the objective value of the best feasible solution to (15) found, i.e. the
value obtained in the last column generation iteration when binary requirements
are added�given in the original cost of T13EXT. �LB� refers to the optimal
value of the LP relaxation (19) of the problem (15). �TOPT� refers to the total
solve time in AMPL/CPLEX and Matlab. �TTOT� refers to the total time of
the whole algorithm.

Since some changes were made to the mathematical formulation of the col-
umn generation subproblem to enable the inclusion of load dependent costs
(compare formulations (23a)�(23e), (23h)�(23i), (24) and (37)), the results us-
ing load dependent costs are compared to results obtained by setting Qdist = 1
and Qload = 0, which is equivalent to not having load dependent costs. This
makes the comparison of solution times more relevant. In Table 10, results
for the straightforward model using column generation, with and without load
dependent costs, are presented for the instance T13EXT. The load dependent
objective values have been converted to the original cost (by calculating the cost
of the solution using (15a)), for ease of comparison. The total solve time TOPT

when using load dependent costs is less than when load dependent costs are not
used, while the opposite is true for the total time TTOT.

72

The di�erence between the objective value of the best feasible solution to (15)
obtained using the load dependent cost model but with parameters Qdist = 1
and Qload = 0�presented in Table 10�and the objective value of the best
feasible solution to (15) obtained using the straightforward model�presented
in Table 8�can probably be explained by the fact that di�erent formulations
of the subproblem have been used in AMPL and CPLEX ((23a)�(23e), (23h)�
(23i), (24) for the straightforward model and (37) for the load dependent cost
model).

T13EXT, no vehicle type limit, load dependent costs

1

3

7

8

10

11

12

14

15

18

19

20

21

22

23

24

25

26

27

30

31

Figure 14: An illustration of the best solution to (15) (no vehicle type limit
C) found for the instance T13EXT with load dependent costs. Objective value
2775.6 (given in the original cost of T13EXT). In this solution, only vehicles
among the 32 smallest (out of 181) types are used. Information about how to
interpret the plot is found in Figure 12.

The best feasible solution (with objective value 2775.6) obtained for T13EXT
with load dependent costs is shown in Figure 14; compare this solution with the
best feasible solution obtained for the case of load independent costs (Figure 12).
A feasible solution to T13EXT with vehicle type limit C = 4 and load dependent
costs is shown in Figure 15; this solution is quite di�erent from the solution to
T13EXT with load dependent cost, but no vehicle type limit (shown in Figure
14). Also, compare the solution in Figure 15 with the corresponding solution
shown in Figure 13, which was obtained using the original, load independent,
costs.

Smaller vehicle types are used to a larger extent when the costs are load
dependent (Figures 14 and 15) than when they are load independent (Figures
12 and 13).

73

T13EXT, vehicle type limit C=4, load dependent costs

12

22

28

31

Figure 15: An illustration of the best solution to (25) found for the instance
T13EXT with load dependent costs and with vehicle type limit C = 4, for test
instance T13EXT with load dependent costs. Objective value 2882.6 (given in
the original costs of T13EXT). In this solution, only vehicle types in the range
[12, 31] are used, out of 181 vehicle types. Information about how to interpret
the plot is found in Figure 12.

74

6 Discussion

We have extended the standard heterogeneous vehicle routing problem (hVRP)
to include a large set of vehicle types, then called many-hVRP. Further, we have
developed and tested models and algorithms for many-hVRP.

The results of the tests performed on the original test instances CT12 (see
Section 3.1.3) show that great improvements in the solution times were achieved�
as demonstrated for the instance T13�using the time limit, the CPLEX-option
uppercutoff=0, and the tabu-strategy of partial column generation (see Section
5.1.3). The tabu-strategy takes advantage of the fact that many subproblems
are similar for extended test instances CT12EXT. The time limit also a�ects the
tabu-strategy, since subproblems which do not yield a route with negative re-
duced cost within the given time limit for a few consecutive column generation
iterations�so that those subproblems are skipped the following iterations�
could have yielded routes with negative reduced cost given a more generous
time limit. For the larger test instances, this has a great positive e�ect on the
solution time of the column generation algorithm.

The results of the test performed on the extended test instances, CT12EXT,
indicate that the straightforward model with column generation performs bet-
ter than the restricted model with Benders' algorithm, when a non-restrictive
vehicle type limit is set (which then has the same optimal solutions). Benders'
algorithm converges very slowly for some test instances. With the implemented
projection of routes procedure, the performance of Benders' algorithm can be
improved�as demonstrated for the instance Choi3EXT�so that an optimal so-
lution is found much sooner; however, the optimality of the solution still takes
a very long time to verify.

Advantages of using Benders' algorithm are indicated by the following: a
clear pattern emerges in which some vehicles types, which are part of an opti-
mal set of vehicle types, are chosen more often than other vehicle types. Each
constraint that is added to Benders restricted master problem has a nice inter-
pretation as the objective value of the optimal solution to Benders subproblem
plus a weighted sum of �reduced costs� (see Section 4.2.2), thus the collected in-
formation gained from the �reduced costs� of previous solutions to Benders sub-
problem is used when new vehicle types are chosen in each Benders iteration�
this seems to provide a good guide for choosing new vehicle types. But, even
though Benders' algorithm succeeds in choosing optimal vehicle types more of-
ten than non-optimal vehicle types, the speci�c con�guration of the optimal set
of vehicle types is sometimes hard to �nd. After a few iterations, the vehicles
that are chosen do not seem to yield any improvements to previous solutions, in
the sense that there is no di�erence between the �rst and last iteration of the
column generation algorithm used to solve Benders subproblem (when the col-
umn generation is warm-started with routes from optimal solutions to Benders
subproblems from previous iterations).

These properties of Benders' algorithm suggest that it may constitue a good
basis for a heuristic, when the set of vehicle types is even larger than in the
test instances CT12EXT. Since an optimal con�guration of vehicle types can

75

often be found among the vehicle types that are frequently chosen by Benders'
algorithm, and those vehicle types that are frequently chosen typically form a
much smaller set than the whole set of vehicle types, the set of vehicle types can
after a few Benders iterations be reduced to the types that have been frequently
chosen�resulting in a problem instance that is easier to solve.

The set of optimal routes for a given problem depends to a great extent
on the vehicle types that are available. The improvements gained by using
the projection of routes procedure suggest that Benders' algorithm succeeds in
choosing vehicle type con�gurations which yield Benders subproblems whose
optimal solutions are composed by high quality routes. Using only those routes
that were part of previous optimal solutions to Benders subproblems, projection
of routes has been found to determine the optimal con�guration of vehicles
and routes. Thus, for problems instances where the set of vehicle types are
much larger than those in the set of extended test instances CT12EXT, a good
approach may be to temporarily restrict the set of vehicle types, and use some
procedure similar to the projection of routes�where vehicle types that are not
part of the restricted set are allowed to be matched with routes from solutions
to Benders subproblems�to �nd better solutions after a number of Benders
iterations have been performed, and extend the restricted set accordingly.

The restricted model, with a restrictive vehicle type limit C, was shown to
yield solutions with di�erent characteristics than with an non-restrictive limit.
Extending the straightforward and the restricted model, to include load depen-
dent cost, also worked well; the solution times were not greatly impacted, and
solutions with slightly di�erent characteristics were found when load dependent
costs were considered�vehicle types with smaller capacities were used more
often than when load independent costs were considered. Other extensions,
mentioned in Section 3, can be similarly incorporated into the models.

6.1 Future research and development

To improve the performance of the proposed algorithms, several important ad-
justments can be made. For the straightforward model, using column genera-
tion, the dynamic programming algorithm should be implemented in C rather
than in Matlab. Also, the column generation subproblems should be relaxed,
as is done in many implementations of column generation for vehicle routing
problems (see Section 2.2) by Choi and Tcha [24], among others. The set-
partitioning problem should be turned into a set-covering problem, solved using
(possibly heuristic) branch-and-price. The lower bound, described in Appendix
C.3, should be used to reduce the set of vehicle types. The results in Section
5.1.1 suggest these changes would result in shorter computation times and that
solutions with better objective values would be found.

For the restricted model, using Benders' algorithm, the relaxation suggested
for the column generation subproblems should be applied to the problems (31)
that are solved in each Benders iteration, as is suggested in Section 4.2.5. This
is an important change, since in each Benders iteration, the model (31) needs
to be solved for each vehicle type.

76

The models should also be changed to include more features of real life prob-
lems. Even bigger sets of vehicles could be handled as suggested in Section 6.
The load dependent costs could be made more realistic by letting the parameters
Qdist and Qload be arc-dependent; only minor adjustments to the code would be
necessary to allow for this. Other extensions, such as time windows can easily
be incorporated into the models. With tight time-windows, the problem may
actually be easier to solve ([15]). An extended model could be based on the
techniques used by Ceselli et al. in [41], who consider a hVRP with multiple
depots, as well as

time windows associated with depots and customers; incompatibility
constraints between goods, depots, vehicles, and customers; max-
imum route length and duration; upper limits on the number of
consecutive driving hours and compulsory drivers' rest periods; the
possibility of skipping some customers and using express courier ser-
vices instead of the given �eet to ful�ll some orders; the option of
splitting up the orders; and the possibility of open routes that do
not terminate at depots [41, abstract],

using a column generation algorithm with dynamic programming for the sub-
problems. In Betinelli et al. ([15]), a similar hVRP with multiple depots and
time windows is solved, using a branch-and-cut-and-price heuristic. The au-
thors state that it is probably the heterogeneous �eet that �really complicates
the problem� [15, p. 735], but that their implementation often performs bet-
ter than other heuristics from the literature. Heuristics such as these�based
on mathematical programming techniques�are becoming more popular, as was
mentioned in Section 3. The �ndings in [15] indicate that the models developed
in this thesis could be competitive as heuristics for the many-hVRP.

We think that the solution methods developed in this thesis, in which the
di�cult problem of handling a large set of vehicle types is dealt with, form a
promising foundation on which to build more complex models. As indicated
in the beginning of Section 3, there are many possible extensions of the stan-
dard vehicle routing problem. To further develop the models and algorithms
developed in this thesis in order to construct a framework that is relevant to
real-life problems, extensions of the many-hVRP models should be considered,
more complex data sets should be used, and the solution algorithms should be
further developed according to the suggestions above.

77

Appendices

A Notation

A vector x ∈ Rn is understood to be a column-vector, and the scalar product
of two vectors x,y ∈ Rn is written x>y. The two vectors x ∈ Rn1 ,y ∈ Rn2

are concatenated as z := (x,y), where z ∈ Rn1+n2 is assumed to be a column
vector. Furthermore, when given variables (xi)i∈I , where I denotes a set of
indices, the vector x ∈ R|I| is implicitly assumed to equal (xi)i∈I . If no order
is imposed on the index sets I and J , given a matrix A := (a>i)i∈I ∈ R|I|×|J |,
where ai, i ∈ I are vectors in R|J | that de�ne the rows of A, and given a vector
x := (xj)j∈J , the matrix-vector product Ax is de�ned by the assumed ordering,
so that for each i0 ∈ I, (Ax)i0 := a>i0x :=

∑
j∈J (ai0)jxj . Similar notation

is used when variables are indexed using several sets of indices I1, . . . , In, as
(xi1,...,in)i1∈I1,...,in∈In .

B Column generation

Here a thorough description of column generation is given. In Appendix B.1,
a Dantzig-Wolfe decomposition of a linear program is presented together with
the mathematical theory that column generation of the decomposed problem is
based. In Appendix B.2 a Dantzig-Wolfe decomposition and column generation
algorithm for an integer program is presented. It is shown to provide a better
lower bound than the linear programming relaxation of the original problem
(i.e., when the integrality requirements are relaxed).

B.1 Linear program

This presentation, unless otherwise indicated, is based on [9, Chapters 2.6, 3.3�
3.4], and on linear programming theory from the textbook [4].

Here, column generation in connection with a Dantzig-Wolfe decomposition
is presented in more detail, but the same theory can be applied to column
generation as it is presented in Section 2.1. Using Dantzig-Wolfe decomposition
has the advantage that special structures in the problem can be utilized [8].
Consider the linear program

(LP) min
x

c>x, (38a)

s.t. Dx = d, (38b)

Ax = b, (38c)

x ≥ 0n, (38d)

where c, x ∈ Rn, d ∈ Rm1 , b ∈ Rm2 , D ∈ Rm1×n and A ∈ Rm2×n. The set of
feasible solutions to (LP) is assumed to be non-empty and bounded.

78

When decomposing the problem, the constraints (38b) are regarded as com-
plicating. This could be desirable if the problem has a speci�c structure, so
that the constraints (38b) and (38c) are easier to deal with separately, or
if (38b) represents linking constraints [42]. Then, de�ning the polyhedron
XLP := {x ≥ 0n | Ax = b}, any x ∈ XLP can be expressed as a convex
combination of its extreme points xp, p ∈ P, i.e., x :=

∑
p∈P αpx

p such that∑
p∈P αp = 1, αp ≥ 0, p ∈ P hold. The model (LP) can thus be rewritten as the

complete master problem

(DW) min
α

∑
p∈P

αpc>xp,

s.t.
∑
p∈P

αpDxp = d,

∑
p∈P

αp = 1,

αp ≥ 0, p ∈ P.

(DW) is called the Dantzig-Wolfe formulation of (LP). Whereas (LP) has n
columns, the decomposed problem (DW) contains one column for each extreme
point of the polyhedron XLP; hence, there are |P| columns in (DW). If |P| is a
very large number, column generation can be a good approach to solving (DW).

De�ning a subset P̃ ⊂ P, the column generation restricted master problem is
given by

min
α

∑
p∈ eP

αpc>xp, (39a)

s.t.
∑
p∈ eP

αpDxp = d, (39b)

∑
p∈ eP

αp = 1, (39c)

αp ≥ 0, p ∈ P̃. (39d)

The linear programming dual problem of the restricted master problem is given
by

max
π,q

(
d>π + q

)
, (40a)

s.t. (Dxp)>π + q ≤ c>xp, p ∈ P̃, (40b)

where π ∈ Rn, q ∈ R. The column generation subproblem is given by

z∗SubP := min
p∈P

(
c>xp − (Dxp)>π∗ − q∗

)
, (41)

where (π∗, q∗) is an optimal solution to (40). As is described in Section 2.1,
in each column generation iteration the restricted master problem�in this case

79

(39)�is solved, after which the solution to the subproblem�in this case (41)�
either yields a column/extreme point to be added to the restricted master prob-
lem (i.e., if z∗SubP < 0) or establishes that an optimal solution to the complete
master problem has been found (i.e., if z∗SubP = 0). The problem (LP) has
been decomposed, so that constraints (38b) and (38c) are dealt with separately,
with (38b) taken care of in the restricted master problem and (38c) in the sub-
problem. In the remainder of this section, the theory behind this algorithm is
presented.

For ease of notation, let ωp := c>xp, d̄p := (Dxp, 1), and d̄ := (d, 1), so
that (39a) can be written as minα

∑
p∈P αpωp and (39b)�(39c) as∑

p∈P
αpd̄p = d̄.

As mentioned in Section 2.1, an optimal solution to the restricted master prob-
lem (39) can be found in an extreme point to the feasible set of solutions de�ned
by the constraints (39b)�(39d). It holds that any such extreme point can have
at most m1 + 1 non-zero coe�cients, since d̄ ∈ Rm1+1. Let α∗RMP(B∗) :=
(α∗p)p∈ eP be such an optimal solution to the restricted master problem, where

B∗ :=
(
d̄p
)
p∈B∗ is a corresponding optimal basis matrix, i.e. {p ∈ P̃ | α∗p > 0} ⊆

B∗ ⊆ P̃, such that |B∗| = m1 + 1, B∗ is non-singular and (α∗p)p∈B∗ := (B∗)−1d̄.
Such a basis matrix B∗ always exists, assuming the rank of

(
d̄p
)
p∈P = m1 + 1

and |P̃| ≥ m1 + 1.
Let αB := (αp)p∈P be a basic feasible solution to the complete master

problem (DW), which is also an extreme point to its feasible set, given by

(αp)p∈B := B−1d̄, (αp)p∈P\B := 0,

where B :=
(
d̄p
)
p∈B, B ⊆ P, is a (non-singular) basis matrix, and de�ne ωB :=

(ωp)p∈B. The reduced cost ω̂p of the variable αp, p ∈ P, can be written as

ω̂p = ωp − ω>BB−1d̄p;

see [4, p. 227]. If αB is not optimal in (DW), at least one reduced cost ω̂p, p ∈
P \B, must be negative. The basis matrix B can then be changed by removing
one column d̄pout , pout ∈ B, and adding a column d̄pin , pin ∈ {p ∈ P\B : ω̂p < 0}
(so that the new basis matrix is de�ned by the set B \ pout ∪ pin) such that the
the objective value of (DW) corresponding to αB is improved (assuming that
αB is non-degenerate, i.e., that B−1d̄ > 0m1+1). This holds since the reduced
cost ω̂p represents the change in objective value of (DW) when the variable αp
is increased by one, moving in the direction of a speci�c neighbouring extreme
point. If all the reduced costs ω̂p, p ∈ P \ B, are non-negative, then αB is
optimal in (DW).

With B∗ being an optimal basis matrix in the restricted master problem
(39), (α∗RMP(B∗))p = (αB∗)p, for p ∈ P̃, and (αB∗)p = 0, p ∈ P \ P̃ since

B∗ ⊆ P̃. Thus, if αB∗ is not optimal in the complete master problem (DW),

80

the inclusion of any of the indices
{
p ∈ P \ P̃

∣∣∣ ω̂p < 0
}
(where we have that

ω̂p = ωp−ω>B∗(B∗)−1d̄p), to P̃ would improve the value of the optimal solution
to (39) (again, assuming non-degeneracy of αB∗). On the other hand, if all
reduced costs ω̂p, p ∈ P, are non-negative, then αB∗ is optimal in the complete
problem (DW). As shown next, the reduced costs ω̂p, p ∈ P, given an extreme
point αB∗ of the feasible set of (DW) with basis representation B∗, can be
rewritten using a set of optimal dual variables to the restricted master problem�
this will determine the column generation subproblem (41).

Since α∗p = 0 for all p ∈ P̃ \ B∗, it holds that∑
p∈ eP

α∗pc
>xp = ω>B∗(α

∗
p)p∈B∗ = ω>B∗(B

∗)−1d̄ = ω>B∗(B
∗)−1(d, 1). (42)

Also, for any optimal solution to a linear program there exists a basis such that
all reduced costs are non-negative, although if the solution is degenerate some
bases may yield negative reduced costs [4, p. 228]. Assuming that the basis

matrix B∗ above has been chosen properly, the reduced costs ω̂p, p ∈ P̃, must
therefore be non-negative since α∗RMP(B∗) := (α∗p)p∈ eP is an optimal solution to

the restricted master problem (39). Consequently, ω>B∗(B
∗)−1 satis�es (40b),

and is thus feasible in the restricted master problem dual (40). For any (π, q)
feasible in (40), by (39b)�(39c) and (40b), it holds that∑
p∈ eP

α∗pc
>xp ≥

∑
p∈ eP

α∗p
(
(Dxp)>π + q

)
= (π, q)>

∑
p∈ eP

α∗p(Dxp, 1) = (π, q)>(d, 1).

Together with (42), this implies that

ω>B∗(B
∗)−1(d, 1) =

∑
p∈ eP

α∗pc
>xp ≥ (π, q)>(d, 1),

which shows that ω>B∗(B
∗)−1 is an optimal solution to (40). De�ne

(π∗, q∗) := ω>B∗(B
∗)−1. (43)

The reduced costs, corresponding to the extreme point αB∗ with basis repre-
sentation B∗, can now be written as

ω̂p = c>xp − (Dxp)>π∗ − q∗, p ∈ P,

with the particular choice of optimal solution (π∗, q∗) to (40) given by (43).

Thus, �nding the variable αp, p ∈ P \ P̃, with minimal reduced cost amounts to
solving the column generation subproblem (41). If z∗SubP < 0, then there exists
some variables with negative reduced cost, and adding such a variable to the
restricted master problem (39) improves the value of its optimal solution, pro-
vided that it is non-degenerate. If z∗SubP = 0, then there are no variables with

81

negative reduced cost, and the current solution α∗RMP(B∗) to the restricted mas-
ter problem (39) de�nes an optimal solution αB∗ the complete master problem
(DW).

If (DW) has an optimal solution which is degenerate, then it may be the
case that z∗SubP < 0 even when the optimal solution to the restricted master
problem de�nes an optimal solution to (DW). This holds, since some basis
representations of an optimal solution to (DW) may cause some reduced costs
to be strictly negative [4, p. 228]. Thus, B∗ in (43) may need to be replaced by
some other basis, using some variables that are not included in the restricted
master problem, for optimality to be veri�ed.

B.2 Binary program

A binary linear programming problem of the type

(BLP) min
x

c>x,

s.t. Dx = d,

Ax = b,

x ∈ {0, 1}n,

where c,x ∈ Rn, d ∈ Rm1 , b ∈ Rm2 , D ∈ Rm1×n and A ∈ Rm2×n, might
be very di�cult to solve due to the binary requirements on the variables. We
assume that the feasible set of (BLP) is non-empty. Solving a convexi�ed linear
program

(BLPConv) min
x

c>x,

s.t. Dx = d,

x ∈ conv(XBLP),

where XBLP := {x ∈ {0, 1}n | Ax = b}, using column generation may be a good
approach to �nding a near-optimal solution to (BLP) (see [42]). The solution
of (BLPConv) can also yield a good quality lower bound that can be utilized
in a branch-and-bound algorithm to �nd an optimal solution to (BLP). This
combination of column generation and branch-and-bound is called branch-and-
price [8].

Even though the optimal solution to (BLPConv) only provides a lower bound
of the optimal value on the original problem (BLP), it is at least as good as
that of the LP relaxation of (BLP) given by

min
x

c>x, (44a)

s.t. Dx = d, (44b)

Ax = b, (44c)

x ∈ [0, 1]n, (44d)

82

since the set

conv(XBLP) := conv ({ x ∈ {0, 1}n | Ax = b }) ⊆ { x ∈ [0, 1]n : Ax = b } .

The set conv(XBLP) is a bounded polyhedron since XBLP is a �nite set, so
(BLPConv) can be reformulated using the Dantzig-Wolfe decomposition as

(DWConv) min
α

∑
p∈P

αpc>xp,

s.t.
∑
p∈P

αpDxp = d,

∑
p∈P

αp = 1,

αp ≥ 0, p ∈ P,

where xp, p ∈ P, denote the extreme points of conv(XBLP). Since the variables
of the original problem (BLP) are binary, these extreme points are simply the
elements in the set XBLP. An optimal solution to this problem is found us-
ing column generation by iteratively solving the restricted master problem of
(DWConv), as described in Appendix (see also B.1 [8, 30]) 15.

There are many di�erent ways to obtain a feasible solution to the original
problem (BLP), given a solution to (BLPConv)/(DWConv). In this thesis, using

the set P̃ ⊆ P generated during the column generation algorithm, αp, p ∈ P̃,
in (DWConv) are restricted to take binary values and the following problem is
solved

min
α

∑
p∈ eP

αpc>xp, (45a)

s.t.
∑
p∈ eP

αpDxp = d, (45b)

∑
p∈ eP

αp = 1, (45c)

αp ∈ {0, 1}, p ∈ P̃. (45d)

For the case when P̃ = P, (45) is equivalent to the original problem (BLP), but

when P̃ (P the value of the optimal solution to (45) is only an upper bound on

that of the optimal solution to the original problem. The set conv{xp | p ∈ P̃}
contains an optimal solution to (BLPConv), but the set {xp | p ∈ P̃}, which is
used in (45), does not necessarily contain an optimal solution to (BLP) [42].

15In the standard decomposition of integer programs in the literature, integrality conditions
are kept in the formulation, i.e., αp ∈ {0, 1}, p ∈ P, in (DWConv). This formulation is
equivalent to (BLP) ([30]). However, the LP relaxation of that decomposition, which is solved
by column generation in the literature, and (DWConv) are equivalent.

83

In order to obtain an optimal solution to (BLP) after solving (BLPConv)
((DWConv)) using column generation, the branch-and-bound algorithm can be
employed, or the branch-and-bound tree can be heuristically explored, which is
another way to obtain a feasible, possibly non-optimal, solution to (BLP) (see
[30]).

If the binary program (BLP) is instead formulated as

min
x

c>x,

s.t. Dx = d,

x ∈ S,
x ∈ {0, 1}n,

for some bounded set S, the results gained from the Dantzig-Wolfe reformulation
still hold. I.e., the problem can be reformulated as (DWConv) with xp, p ∈ P,
being the extreme points of the set S ∩ {{0, 1}n ([30]), which is the type of
problem present in the �ow formulation (12) of hVRP, where the constraints
relating to the variables yij , (i, j) ∈ A, can be incorporated in S.

Sometimes, column generation is applied directly on the LP relaxation (44).
This is the case with the set partitioning formulation (15) for hVRP, which is
already a tight formulation; see Sections 4.1 and 3.1.1. Set partitioning formula-
tions can be related to more compact formulations, such as the �ow formulation
(12), using Dantzig-Wolfe decompositions. A decomposition for a more complex
problem�including time windows, multiple depots, split deliveries, and pickups
and deliveries�of which hVRP is a special case, is found in [43]. Another decom-
position is found in [44]�for the vehicle routing problem with time windows and
a �xed number of vehicles, resulting in one subproblem for each vehicle. This
could be adapted to hVRP, but a di�erent �ow formulation than (12) would then
have to be used. In [45] the authors state that being aware of the connection
between the �ow formulation and the set partitioning formulation is important
to help construct �e�cient branching and cutting strategies compatible with the
column generation approach in order to obtain integer solutions� [45, p. 169].

C Algorithmic issues

In Appendix C.1, proofs of two claims that have been formulated speci�cally
for Benders' algorithm as it is used in this thesis is presented. Since it is not
the original Benders subproblem that is solved, but the equivalent formulation
(28a)�(28b), (28d), the standard results on how to obtain an optimal extreme
point to the feasible set of Benders subproblem can not be directly applied.
Therefore, Claims 2 and 3 have been formulated and proven, showing that such
an optimal extreme point can be obtained using the (dual) solution to (28a)�
(28b), (28d). In Appendix C.2, results are shown demonstrating that there is
no simple way of reducing the number of subproblems that need to be solved
in the course of Benders' algorithm and the column generation algorithm. In

84

Appendix C.3, suggestions for how to reduce the vehicle set are presented, based
on similar procedures presented in [24].

C.1 Proofs of claims about su�cient conditions for an op-

timal extreme point

Proof of Claim 2. Assume that (π̄, γ̄) satis�es conditions 1�3. Then, it holds
that

0 ≤ ckr −
∑
i∈N0

π̄iδ
k
ir, r ∈ Rk, k ∈ K̃(ỹ),

since π̄ satis�es (30b), which implies that (π̄, γ̄) satisi�es (27b)�(27c). Also,

since γ̄k = 0, k ∈ K̃(ỹ), and ỹk = 0, k ∈ K \ K̃(ỹ), the equivalences∑
i∈N0

π̄i +
∑
k∈K

Mỹkγ̄k =
∑
i∈N0

π̄i = w∗(ỹ),

hold by the optimality of π̄ in (30). The result follows.

Proof of Claim 3. Assume that (π̄, γ̄) satis�es conditions 1�3. Then, the in-
clusion (π̄, γ̄) ∈ FBendersSPDual follows analogously to Claim 2, since π̄ satis�es
(30b). De�ne the vector ∆(r,k) by

(∆(r,k))i := δkir, i ∈ N0,

and let {ek}k∈K denote the standard basis, i.e., ek ∈ R|K| and ekk = 1, and
ekj = 0, j 6= k. The feasible set FBendersSPDual of (27) can then be expressed as

FBendersSPDual=
{

(π,γ) ∈ R|N0|+|K|
∣∣∣∣ (∆(r,k), ek)>(π,γ) ≤ ckr , r ∈ Rk, k ∈ K

(0|N0|, ek)>(π,γ) ≤ 0, k ∈ K

}
.

Let mR :=
∑
k∈K |Rk| and

c = (ckr)r∈Rk,k∈K,∆ = (∆>(r,k))r∈Rk,k∈K,E = (E(r,k))r∈Rk,k∈K,

where E(r,k) := e>k de�nes one row of E. Thus, c ∈ RmR , ∆ ∈ RmR×|N0|, and

E ∈ RmR×|K|. De�ning

A :=
(

∆ E
0|K|×|N0| I|K|

)
,

we also have that

FBendersSPDual =
{

(π,γ) ∈ R|N0|+|K|
∣∣∣ A(π,γ) ≤ (c,0|K|)

}
.

Since there is at least one vehicle that can service each customer i ∈ N0, the
identity matrix I|N0| is a submatrix of ∆. Hence, rank(∆)= |N0| and rank(A)=
|N0|+ |K|. De�ne

I1 ((π,γ)) :=
{

(r, k)
∣∣ r ∈ Rk, k ∈ K, (∆(r,k), ek)>(π,γ) = ckr

}
,

85

and

I2 ((π,γ)) :=
{
k ∈ K

∣∣∣∣ (0|N0|, ek
)>

(π,γ) = 0
}
.

Then (π̄, γ̄) is an extreme point to the set FBendersSPDual if and only if there are
|N0|+ |K| linearly independent constraint rows

(∆(r,k), ek)>, (r, k) ∈ I1 ((π̄, γ̄)) ,

and
(0|N0|, ek)>, k ∈ I2 ((π̄, γ̄)) ,

by the algebraic characterization of extreme points in [4, Theorem 3.17].

De�ne Γ0 :=
{
k ∈ K\ K̃(ỹ)

∣∣∣ γ̄k = 0
}
, and Γ− :=

{
k ∈ K \ K̃(ỹ)

∣∣∣ γ̄k < 0
}
.

For k ∈ Γ− it holds that the set Rk(I1) := { r ∈ Rk | (r, k) ∈ I1 ((π̄, γ̄)) } 6= ∅,
since otherwise γ̄k would not be optimal in the problem (Gamma(k, π̄)). For
k ∈ Γ−, let r(k) be any element in Rk(I1). Then, the inclusions

Γ0 ⊆ I2 ((π̄, γ̄)) ,

and
{ (r(k), k) | k ∈ Γ− } ⊆ I1 ((π̄, γ̄)) ,

hold. Also, the inequalities γ̄k = 0, k ∈ K̃(ỹ), imply that the inclusion

K̃(ỹ) ⊆ I2 ((π̄, γ̄))

holds. Thus, each k ∈ K de�nes a row among

(∆(r,k), ek)>, (r, k) ∈ { (r(k), k) | k ∈ Γ− } , (46a)

(0|N0|, ek)>, k ∈ Γ0 ∪ K̃(ỹ). (46b)

The system (46) constists of |K| linearly independent rows, since the vectors ek,
k ∈ K, form the identity matrix I|K|, Γ0 ∪ Γ− = K \ K̃(ỹ), and Γ0 ∩ Γ− = ∅.

Let I3(π) :=
{

(r, k)
∣∣∣ r ∈ Rk, k ∈ K̃(ỹ),∆>(r,k)π = ckr

}
. Since π̄ is an ex-

treme point to
{
π ∈ R|N0|

∣∣ π satis�es (30b)
}
, by the algebraic characteriza-

tion of extreme points in [4, Theorem 3.17], there exists |N0| linearly indepen-
dent constraint rows in the problem (30) whose corresponding indices (r, k) are
included in the set I3(π̄). Let Γ := {(r, k)} ⊆ I3(π̄) denote the set of those
indices, so that the |N0| linearly independent constraint rows are given by

∆>(r,k), (r, k) ∈ Γ.

The |N0| constraint rows of BendersSPDual(ỹ),

(∆(r,k), ek)>, (r, k) ∈ Γ, (47)

86

must then also be linearly independent. The inclusion Γ ⊆ I1 ((π̄, γ̄)) follows
from the inclusion Γ ⊆ I3(π̄).

De�ne

Vk :=
{

v ∈ R|N0|
∣∣∣ (v, ek)> is a constraint row in (46)�(47)

}
.

For k ∈ K \ K̃(ỹ), then |Vk| = 1 holds. Therefore, the corresponding constraint
row can not be written as a linear combination of other constraint rows in (46)�

(47). For k ∈ K̃(ỹ), because of the linear independence of (47), the row vector
(0|N0|, ek)> occurs as a constraint row only once, and Vk \ {0|N0|} is a linearly
independent set. Therefore, no constraint row (v, ek)>, where v ∈ Vk, can be
written as a linear combination of other constraint rows. Hence, the system
(46)�(47) forms |N0| + |K| linearly independent constraint rows and the result
follows.

C.2 Reducing the number of subproblems that need to be

solved in each Benders iteration

Assume that column generation subproblems (22), k ∈ K, given by

(CGSubproblem(k)) (ĉk)∗ := min
r∈Rk

{
ĉkr
}

= min
r∈Rk

{
ckr −

∑
i∈N0

π∗i δ
k
ir

}
,

are solved to optimality. The question is whether or not it can be determined
that an optimal route r∗ in the subproblem CGSubproblem(k1) is optimal also
in CGSubproblem(k2), where k1 6= k2, by only solving CGSubproblem(k1).
This would be very helpful both since CGSubproblem(k), k ∈ K̃(ỹ), are the
subproblems of the column generation algorithm in Benders subproblem, and
since the problem

min
{

0, min
r∈Rk

ĉkr

}
needs to be solved once for each k ∈ K \ K̃(ỹ) at the end of each Benders
iteration.

For the sets of the instances CT12 and CT12EXT, the cost of route (r, k),
where r ∈ Rk and k ∈ K, is de�ned as ckr := fk +

∑H
h=1 c

k
ih−1ih

, if the route
r visits the nodes (i0, i1, . . . , iH−1, iH) in that order. The cost structure of the
instances is such that ckij := dist(i, j) · ck, where dist(i, j) denotes the distance
between nodes i and j, and the constant ck > 0 depends on the vehicle type
k. I.e., ckr := fk + αr · ck where αr :=

∑H
h=1 dist(ih−1, ih). Also for k1, k2 ∈ K

such that k1 6= k2, either Rk1 ⊂ Rk2 or Rk2 ⊂ Rk1 hold; further the inclusion
Rk1 ⊂ Rk2 implies the inequalities fk1 < fk2 and ck1 < ck2 .

We de�ne R∗k := arg minr∈Rk
ĉkr . Claim 4 shows that, for k1, k2 ∈ K such

that Rk1 ⊂ Rk2 , a route which is optimal in CGSubproblem(k2) as well as
feasible in CGSubproblem(k1) does need not be optimal in CGSubproblem(k1),
i.e., r∗2 ∈ R∗k2 ∩Rk1 6⇒ r∗2 ∈ R∗k1 .

87

Claim 4. Given the cost structure of the instances CT12 and CT12EXT, for
k1, k2 ∈ K such that Rk1 ⊂ Rk2 and R∗k2 ∩Rk1 6= ∅, pick

r∗2 ∈ R∗k2 ∩Rk1 .

If there exists an r0 ∈ Rk1 such that αr0 > αr∗2 and such that the inequalities

(αr0 − αr∗2)ck1 <
∑
i∈N0

π∗i δ
k1
ir0 −

∑
i∈N0

π∗i δ
k1
ir∗2
≤ (αr0 − αr∗2)ck2 , (48)

hold, then
r∗2 /∈ R∗k1 .

Proof. If possible pick r∗2 ∈ R∗k2 ∩ Rk1 and r0 ∈ Rk1 such that αr0 > αr∗2 .

Since ck1 < ck2 holds, we have that (αr0 − αr∗2)ck1 < (αr0 − αr∗2)ck2 holds, so
the system (48) of inequalities is consistent. The former of these inequalities
implies that

ck1r0 −
∑
i∈N0

π∗i δ
k1
ir0 = fk1 + αr0 · ck1 −

∑
i∈N0

π∗i δ
k1
ir0

< fk1 + αr∗2 · c
k1 −

∑
i∈N0

π∗i δ
k1
ir∗2

= ck1r∗2
−
∑
i∈N0

π∗i δ
k1
ir∗2
.

The latter inequality implies that

ck2r0 −
∑
i∈N0

π∗i δ
k2
ir0 = fk2 + αr0 · ck2 −

∑
i∈N0

π∗i δ
k2
ir0

= fk2 + αr0 · ck2 −
∑
i∈N0

π∗i δ
k1
ir0

≥ fk1 + αr∗2 · c
k2 −

∑
i∈N0

π∗i δ
k1
ir∗2

= fk1 + αr∗2 · c
k2 −

∑
i∈N0

π∗i δ
k2
ir∗2

= ck2r∗2
−
∑
i∈N0

π∗i δ
k2
ir∗2
.

Thus, the relations ĉk2r0 ≥ ĉk2r∗2
= (ĉk2)∗ hold. Since it holds that (ĉk1)∗ ≤ ĉk1r0 <

ĉk1r∗2
, it follows that r∗2 /∈ R∗k1 . The result follows.

It is, however, not apparent after solving CGSubproblem(k2) whether there
exists an r0 as in Claim 4 or not.

Conversely, if r∗1 ∈ R∗k1 , where k1, k2 ∈ K are such that Rk1 ⊂ Rk2 , even
though this implies that r∗1 ∈ Rk2 , it can not be established that r∗1 ∈ R∗k2 ,
since CGSubproblem(k2) has a larger feasible set than CGSubproblem(k1).

88

Thus there is no way, with the cost structure of the test instances CT12
and CT12EXT, to determine that an optimal route to one subproblem is also
an optimal route to another subproblem by solving only one of the problems
CGSubproblem(k1), CGSubproblem(k2), k1, k2 ∈ K, k1 6= k2.

The relationship that is indicated in Claim 4 can, however, be used to
strengthen CGSubproblem(k1), given an optimal solution to CGSubproblem(k2)
which is also feasible in CGSubproblem(k1). This, since it follows from Claim 5
that if k1 and k2 satis�es the given conditions, then the inequalities (49), below,
de�ne valid inequalities in CGSubproblem(k1).

Claim 5. Given the cost structure of the instances CT12 and CT12EXT, for
k1, k2 ∈ K such that Rk1 ⊂ Rk2 and R∗k2 ∩Rk1 6= ∅, the inclusions

r∗1 ∈ R∗k1 , r
∗
2 ∈ R∗k2 ∩Rk1

imply the inequalities

αr∗1 ≥ αr∗2 (49a)

and

(αr∗1 − αr∗2)ck1 ≤
∑
i∈N0

π∗i δ
k1
ir∗1
−
∑
i∈N0

π∗i δ
k1
ir∗2
≤ (αr∗1 − αr∗2)ck2 . (49b)

Proof. Since the inequalities ĉk1r∗1
≤ ĉk1r∗2 and ĉk2r∗1

≥ ĉk2r∗2 hold, it follows that

αr∗1 · c
k1 −

∑
i∈N0

π∗i δ
k1
ir∗1
≤ αr∗2 · c

k1 −
∑
i∈N0

π∗i δ
k1
ir∗2
,

αr∗1 · c
k2 −

∑
i∈N0

π∗i δ
k1
ir∗1
≥ αr∗2 · c

k2 −
∑
i∈N0

π∗i δ
k1
ir∗2
.

This implies that the inequalities

(αr∗1 − αr∗2)ck1 ≤
∑
i∈N0

π∗i δ
k1
ir∗1
−
∑
i∈N0

π∗i δ
k1
ir∗2

(50a)

and

(αr∗1 − αr∗2)ck2 ≥
∑
i∈N0

π∗i δ
k1
ir∗1
−
∑
i∈N0

π∗i δ
k1
ir∗2

(50b)

hold. For the system (50) to be consistent, the inequality αr∗1 ≥ αr∗2 must hold,

since the cost structure assumed implies that ck1 < ck2 . The result follows.

Thus, for k1 and k2 satisfying the conditions in Claim 5, we have the fol-
lowing. From (49a) it follows that the length of a route r∗1 which is optimal
in CGSubproblem(k1), must be greater than or equal to the length of a route
r∗2 , which is optimal in CGSubproblem(k2) and feasible in CGSubproblem(k1).
From (49b) it follows that the the sum of the dual variables along route r∗1 must
be greater than or equal to the sum of the dual variables along route r∗2 , and
the di�erence must lie in the interval [ck1r∗1 − c

k1
r∗2
, ck2r∗1
− ck2r∗2].

89

C.3 Reducing the set of vehicles

For all of the test instances in the original set CT12 as well as in the extended
set CT12EXT (that have been tested), as the column generation algorithm
progresses a pattern emerges, in which, for large vehicles, fewer and fewer sub-
problems provide routes with negative reduced costs. This since the optimal
solution to the column generation problem seldom contains any vehicle from
the larger half of the capacity range.

1−10 11−20 21−30 31−40 41−50 51−60 61−70 71−80 81−90 91−100 101−111
0

20

40

60

80

100

120
subproblems providing routes with negative reduced cost

vehicle sets

nu
m

be
r

of
 s

ub
pr

ob
le

m
s

Iterations 1−26
Iterations 27−52
Iterations 53−78
Iterations 79−104

Figure 16: The number of subproblems�for each group of column generation
iterations and each set of vehicle types�in which a route with a negative reduced
cost is found, for the straightforward model of the instance T15EXT. For each
vehicle set of 10 (11) vehicle types and each group of 26 iterations at most 260
(286) subproblems can yield routes with negative reduced costs.

The 111 vehicle types in T15EXT were divided�by increasing capacity�
into the eleven vehicle types sets: 1�10, 11�20, . . . , 91�100, 101�111. The col-
umn generation iterations were divided into four groups, each of 26 iterations.
Figure 16 shows the number of subproblems�for each group of 26 column gen-
eration iterations and each set of 10 (11) vehicle types�in which a route with
a negative reduced cost was found, for the straightforward model (15) of the in-
stance T15EXT. The reason why a speci�c subproblem provides no route with
a negative reduced cost is either that no such route exists, or that no such route
was found within the time limit, or that the subproblem was skipped due to the
tabu-strategy of partial column generation (see Section 4.1.1). For each vehicle
set and group of iterations the number of subproblems that provided a route

90

with negative reduced cost was at most 116. No subproblems corresponding
to vehicles in the sets 51-60, . . . , 101�111, provide any route with a negative
reduced cost in the latter half of the column generation iterations. This �ts
well with the fact that the optimal solution to the problem (19) for the instance
T15EXT includes vehicles only from the vehicle set 1-10, and the solution to
(15) given in the last column generation iteration includes vehicles only from
the sets 1-10 and 11-20.

In addition to not providing any route with a negative reduced cost, sub-
problems for vehicles with larger capacities often require much longer solution
times. Therefore, a lot may be gained by reducing the number of vehicle types.
Choi and Tcha [24] reduce the number of vehicle types by using an upper bound
on the optimal solution of the original problem, and a lower bound on the op-
timal solution value of the original problem with the extra requirement that at
least one vehicle of a particular type is used. Requiring that at least one vehicle
of type k̂ ∈ K is used; a lower bound on the optimal value of the restricted
model model (25) (see Section 4.2) is given by

z(k̂) := min
s

∑
k∈K

fksk, (51a)

s.t.
∑
k∈K

Dksk ≥
∑
i∈N0

di, (51b)

sk̂ ≥ 1, (51c)

sk ∈ N, k ∈ K, (51d)

where the variable sk denotes the number of vehicles of type k that is used. The
objective (51a) is to minimize the sum of the �xed costs fk over all vehicles used.
The constraint (51b) makes sure that the total capacity of the used vehicles is
not less than the total demand of the customers, and the constraint (51c) ensures

that at least one vehicle of type k̂ is used.
Provided an upper bound z̄ on the optimal objective value of (25), vehicles

k̂ for which z(k̂) ≥ z̄ can not be part of an optimal solution to (25) and can thus
be eliminated from the set of vehicles. When Benders' algorithm is used to �nd
a solution to (26), an upper bound z̄ to (25) is provided in each iteration. So
hopefully, even though the lower bound is probably quite weak since it does not
include variable costs, this procedure might eliminate some of the vehicle types
with large capacities: this may result in great reductions of the solution time.

The same procedure can be applied to the straightforward model (15) with
column generation from Section 4.1.

91

References

[1] Dantzig GB, Ramser JH. The truck dispatching problem. Management
Science. 1959;6(1):80�91.

[2] Toth P, Vigo D. Preface. In: Toth P, Vigo D, editors. The Vehicle Routing
Problem. SIAM Monographs on Discrete Mathematics and Applications.
Philadelphia, PA: SIAM Publishing; 2002. pp. xvii�xviii.

[3] Vidal T, Crainic TG, Gendreau M, Prins C. Heuristics for multi-attribute
vehicle routing problems: a survey and synthesis. European Journal of
Operational Research. 2013;231(1):1�21.

[4] Andréasson N, Evgrafov A, Patriksson M. An Introduction to Continuous
Optimization. Lund: Studentlitteratur; 2005.

[5] Vanderbeck F. On Dantzig-Wolfe decomposition in integer programming
and ways to perform branching in a branch-and-price algorithm. Operations
Research. 2000;48(1):111�128.

[6] Cordeau J, Stojkovi¢ G, Soumis F, Desrosiers J. Benders decomposition for
simultaneous aircraft routing and crew scheduling. Transportation Science.
2001;35(4):375�388.

[7] Ho� A, Andersson H, Christiansen M, Hasle G, Løkketangen A. Industrial
aspects and literature survey: �eet composition and routing. Computers &
Operations Research. 2010;37(12):2041�2061.

[8] Lübbecke ME, Desrosiers J. Selected topics in column generation. Opera-
tions Research. 2005;53(6):1007�1023.

[9] Lasdon LS. Optimization Theory for Large Systems. London, UK: Macmil-
lan; 1970.

[10] Drexl M. Rich vehicle routing in theory and practice. Logistics Research.
2012;5(1�2):47�63.

[11] Irnich S, Desaulniers G. Shortest path problems with resource constraints.
In: Desaulniers G, Desrosiers J, Solomon MM, editors. Column Generation.
New York: Springer; 2005. pp. 33�65.

[12] Righini G, Salani M. New dynamic programming algorithms for the re-
source constrained shortest path problem. Networks. 2008;51(3):155�170.

[13] Feillet D, Dejax P, Gendreau M, Gueguen C. An exact algorithm for the
elementary shortest path problem with resource constraints: application to
some vehicle routing problems. Networks. 2004;44(3):216�229.

[14] Feillet D. A tutorial on column generation and branch-and-price for vehicle
routing problems. 4OR. 2010;8(4):407�424.

92

[15] Bettinelli A, Ceselli A, Righini G. A branch-and-cut-and-price algorithm for
the multi-depot heterogeneous vehicle routing problem with time windows.
Transportation Research Part C. 2011;19(5):723�740.

[16] Dunbar M, Froyland G, Wu C-L. Robust airline schedule planning: Mini-
mizing propagated delay in an integrated routing and crewing framework.
Transportation Science. 2012;46(2):204�216.

[17] Baldacci R, Battarra M, Vigo D. Routing a heterogeneous �eet of vehi-
cles. In: Golden BL, Raghavan S, Wasil EA, editors. The Vehicle Routing
Problem: Latest Advances and New Challenges. vol. 43 of Operations Re-
search/Computer Science Interfaces. New York: Springer; 2008. pp. 3�27.

[18] Toth P, Vigo D. An overview of vehicle routing problems. In: Toth P, Vigo
D, editors. The Vehicle Routing Problem. SIAM Monographs on Discrete
Mathematics and Applications. Philadelphia, PA: SIAM Publishing; 2002.
pp. 1�26.

[19] Golden BL, Assad A, Levy L, Gheysens F. The �eet size and mix vehicle
routing problem. Computers & Operations Research. 1984;11(1):49�66.

[20] Taillard ED. A heuristic column generation method for the heterogeneous
�eet VRP. RAIRO: Operations Research. 1999;33(1):1�14.

[21] Balinski LM, Quandt RE. On an integer program for a delivery problem.
Operations Research. 1964;12(2):300�304.

[22] Pessoa A, de Aragão MP, Uchoa E. A robust branch-cut-and-price algo-
rithm for the heterogeneous �eet vehicle routing problem. In: Demetrescu
Camil, editor. Experimental Algorithms. vol. 4525 of Lecture Notes in Com-
puter Science. Germany: Springer; 2007. pp. 150�160.

[23] Baldacci R, Mingozzi A. A uni�ed exact method for solving di�erent classes
of vehicle routing problems. Mathematical Programming. 2009;120(2):347�
380.

[24] Choi E, Tcha D-W. A column generation approach to the heterogeneous
�eet vehicle routing problem. Operations Research. 2007;34(7):2080�2095.

[25] Christo�des N, Eilon S. An algorithm for the vehicle-dispatching problem.
OR. 1969;20(3):309�318.

[26] Clarke GU, Wright JW. Scheduling of vehicles from a central depot to a
number of delivery points. Operations Research. 1964;12(4):568�581.

[27] Li F, Golden B, Wasil E. A record-to-record travel algorithm for solving
the heterogeneous �eet vehicle routing problem. Computers & Operations
Research. 2007;34(9):2734�2742.

93

[28] Díaz BD. VRP web: VRP Instances; 2006 [cited March 2014]. Available
from: http://www.bernabe.dorronsoro.es/vrp/Problem_Instances/

instances.html.

[29] Xiao Y, Zhao Q, Kaku I, Xu Y. Development of a fuel consumption opti-
mization model for the capacitated vehicle routing problem. Computers &
Operations Research. 2012;39(7):1419�1431.

[30] Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MW, Vance PH.
Branch-and-price: Column generation for solving huge integer programs.
Operations Research. 1998;46(3):316�329.

[31] Glover F, Laguna M. Tabu search. In: Pardalos PM, Du D, Graham
RL, editors. Handbook of Cobinatorial Optimization. Springer. New York:
SIAM Publishing; 2013. pp. 3261�3362.

[32] Larsen J. Parallelization of the vehicle routing problem with time windows
[PhD thesis]. Department of Mathematical Modelling, Technical University
of Denmark; 1999. IMM-PHD-1999-62.

[33] McDaniel D, Devine M. A modi�ed Benders' partitioning algorithm for
mixed integer programming. Management Science. 1977;24(3):312�319.

[34] Floudas CA. Nonlinear and Mixed-Integer Optimization: Fundamentals
and Applications. Cary, NC, USA: Oxford University Press; 1995.

[35] Boschetti M, Maniezzo V. Benders decomposition, Lagrangean relaxation
and metaheuristic design. Journal of Heuristics. 2009;15(3):283�312.

[36] AMPL, a modeling language for mathematical programming: AMPL
Downloads; 2013 [cited March 2014]. Available from: http://www.ampl.

com/DOWNLOADS/index.html.

[37] IBM ILOG CPLEX optimization studio; [cited March 2014].
Available from: http://www-03.ibm.com/software/products/en/

ibmilogcpleoptistud/.

[38] The MathWorks Inc. Matlab: the language of technical computing; 2014.
Available from: http://www.mathworks.se/products/matlab/.

[39] Fourer B. Google groups, AMPL modeling language, Error running cplex-
amp: termination code 9; 2011 [cited March 2014]. Available from:
https://groups.google.com/d/msg/ampl/6W4qI0ssLio/_iQX6IkxcWcJ.

[40] ILOG AMPL CPLEX System Version 10.0 User's Guide; 2006. Available
from: http://www.ampl.com/BOOKLETS/amplcplex100userguide.pdf.

[41] Ceselli A, Righini G, Salani M. A column generation algorithm for a rich
vehicle routing problem. Transportation Science. 2009;43(1):56�69.

94

http://www.bernabe.dorronsoro.es/vrp/Problem_Instances/instances.html
http://www.bernabe.dorronsoro.es/vrp/Problem_Instances/instances.html
http://www.ampl.com/DOWNLOADS/index.html
http://www.ampl.com/DOWNLOADS/index.html
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud/
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud/
http://www.mathworks.se/products/matlab/
https://groups.google.com/d/msg/ampl/6W4qI0ssLio/_iQX6IkxcWcJ
http://www.ampl.com/BOOKLETS/amplcplex100userguide.pdf

[42] Vanderbeck F. Implementing mixed integer column generation. In: De-
saulniers G, Desrosiers J, Solomon MM, editors. Column Generation. New
York: Springer; 2005. pp. 331�358.

[43] Desaulniers G, Desrosiers J, Ioachim I, Solomon MM, Soumis F, Villeneuve
D. A uni�ed framework for deterministic time constrained vehicle routing
and crew scheduling problems. In: Crainic TG, Laporte G, editors. Fleet
Management and Logistics. New York: Springer; 1998. pp. 57�93.

[44] Chabrier A. Vehicle routing problem with elementary shortest path based
column generation. Computers & Operations Research. 2006;33(10):2972�
2990.

[45] Cordeau J-F, Desaulniers G, Desrosiers J, Solomon MM, Soumis F. VRP
with time windows. In: Toth P, Vigo D, editors. The Vehicle Routing
Problem. SIAM Monographs on Discrete Mathematics and Applications.
Philadelphia, PA: SIAM Publishing; 2002. pp. 157�193.

95

