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Abstract 

Background
Persistent pain that remains long after the physiological trigger has been resolved is  
a disabling condition. A possible mechanism for the transition from acute physiological  
pain to persistent pain involves low-grade inflammation in the central nervous system,  
in which inflammatory-activated astrocytes play a significant role. 

Aims
The aims of this thesis were to explore novel means for the restoration of  
inflammatory-activated astrocytes and to investigate whether such experimentally  
obtained findings, when translated into a clinical setting, are associated with  
improved pain relief in patients with persistent pain.

Methods
For the experimental studies in cell cultures, Ca2+ imaging, Western blot analysis,  
immunocytochemistry, and enzyme-linked immunosorbent assay (ELISA) were  
performed. In the clinical study, patients were treated with continuous intrathecal  
infusions of morphine in combination with naloxone or a placebo.

Results
Inflammatory-activated astrocytes were restored to their normal state and function  
using a combination of the µ-opioid agonist endomorphin-1, ultralow doses of naloxone, 
and the antiepileptic drug levetiracetam. For patients with persistent pain who were  
treated with an ongoing intrathecal morphine infusion, the addition of an ultralow  
dose of naloxone significantly improved their perceived quality of sleep. 

Conclusion
We demonstrated that astrocyte dysfunction, which occurs as a component of  
low-grade neuroinflammation during prolonged pain states, is experimentally  
restorable by the combined actions of morphine, naloxone, and levetiracetam.  
To achieve this response, the choice of an ultralow dose of naloxone seems to be  
particularly crucial. Additionally, our findings in patients with difficult-to-treat pain  
show that intrathecal administration of an ultralow dose of naloxone in combination  
with morphine significantly improves perceived quality of sleep, although concurrent  
alterations in pain relief were not statistically significant. The concept of targeting  
inflammatory-activated astrocytes to reduce the development of persistent pain is  
a promising path that merits further evaluation in clinical settings.

Keywords
Persistent pain, neuroinflammation, astrocytes, 
morphine, naloxone, intrathecal administration
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Analgesia

ANOVA
ATP
ATPase
BBB
BDNF
Ca2+

Central 
sensitisation

Chronic pain
CNS
Disinhibition
ELISA
EM-1
GFAP
GDNF
Hyperalgesia
Hyperesthesia
Hypoesthesia
IASP
IL
IL-1β
IL-8
IL-10
IP3

IT

absence of pain in response to stimulation 
that would normally be painful
analysis of variance
adenosine triphosphate
adenosine triphosphatase
blood-brain barrier
brain-derived neurotrophic factor
calcium ion
increased responsiveness of nociceptive neurons 
in the central nervous system to their normal or 
sub-threshold afferent input
same as long-term pain
central nervous system
down-regulation of pain-inhibiting descending neurons
enzyme-linked immunosorbent assay
endomorphin-1
glial fibrillary acidic protein
glial-derived neurotrophic factor
increased pain from a stimulus that normally provokes pain
increased sensitivity to stimulation
decreased sensitivity to stimulation
international association for the study of pain
interleukin
interleukin 1-beta
interleukin 8
interleukin 10
inositol (1,4,5) triphosphate
intrathecal

Abbrevations 
and explanations
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Long-term pain

Long-term 
potentiation
LPS
Moderate pain
Neuronal 
plasticity

Neuropathic pain

NO
Nociception
NRS
Pain

Persistent pain

PNS
Severe pain
SF-36
TLR
TNF-α
VAS
Wind up

pain without an apparent biological purpose that has 
persisted beyond the normal tissue healing period
a wind-up phenomenon, that is maintained for 
extended time (pain memory) 
lipopolysaccharide
4–6 on the NRS
neuronal capacity to change neural pain transmission
in response to a strong sensory stimulus, may 
induce a prolonged duration of pain
pain caused by a lesion or disease of 
the somatosensory nervous system
nitric oxide
the neural process of encoding noxious stimuli
numeric rating scale
an unpleasant sensory and emotional experience 
associated with actual or potential tissue damage, 
or described in terms of such damage
similar to long-term pain, usually describes pain 
that remains for 3 months or more after an injury
peripheral nervous system
7–10 on the NRS
short form-36
Toll-like receptor
tumour necrosis factor alpha
visual analogue scale
a repeated, constant, peripheral, painful stimulus that induces an 
increased nociceptive response in the secondary neurons
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Populärvetenskaplig  
sammanfattning på svenska
Summary in Swedish 

Akut smärta som svar på skada eller potentiell skada är en fysiologisk reaktion, vars 
syfte är att få oss att undvika skadliga stimuli. Smärta som övergår från akut smärta 
vid skadetillfället, till en långvarig smärta som kvarstår långt efter att skadan har 
läkt ut, är ett betydande folkhälsoproblem. Långvarig smärta medför förutom indiv-
iduellt lidande, även sociala och ekonomiska negativa konsekvenser, för såväl indivi-
den som samhället (Breivik et al., 2006, SBU 2006). Långvarig smärta är sådan som 
kvarstår i 3 månader eller mer efter skadetillfället. Långvarig svår eller medelsvår 
smärta förekommer hos cirka 20 % av patienter som genomgått planerad kirurgi 
av blandad karaktär (Johansen et al., 2012). Förekomsten av långvarig smärta efter 
kirurgi varierar med ingreppets art, och har visats förekomma hos 50 % av de som 
genomgått en amputation, 30 % av de som genomgått en bröstoperation och hos 10 % 
av de som genomgått en ljumskbråcksoperation (Aasvang och Kehlet, 2005; Kehlet 
et al., 2006).
  Möjliga bakomliggande mekanismer för övergången från akut till långvarig smär-
ta har i modern litteratur framhållits inkludera persisterande låggradig inflamma-
tion i centrala nervsystemet (Vallejo et al., 2010; Tenorio et al., 2013). Vid kirur-
gi eller trauma aktiveras kroppens inflammatoriska kaskad och då aktiveras även 
mikroglia och astrocyter som är celler som reglerar och modifierar nervcellernas 
signalering. Astrocyter och mikroglia underhåller och driver på inflammationen i 
centrala nervsystemet. Aktiverade astrocyter exciterar smärtsignalerande nervceller. 
Hos vissa patienter kvarstår astrocyternas aktivering, och därmed en överkänslighet 
i nervcellerna, under lång tid. 
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Vår hypotes går ut på att återställa de överaktiva, inflammatoriskt reaktiva astro-
cyterna och därmed minska den låggradiga inflammationen i nervsystemet. Då 
bör även de överkänsliga, smärtsignalerande nervcellerna återgå i riktning mot ett  
normalläge.
  De experimentella fynden i arbete i, ii och iii pekar på att flera olika exogena sub-
stanser har en normaliserande effekt på inflammatoriskt aktiverade astrocyter. Av 
de substanser vi har utvärderat fann vi att astrocyterna kan återställas bäst med en 
kombination av morfin, ultralåg dos av naloxone och levetiracetam. En kombination 
av dessa läkemedel i lämpliga doser kan potentiellt vara värdefull för att förebygga 
kvarstående låggradig inflammation i centrala nervsystemet.
  I den kliniska studien (arbete iv) har patienter med långvarig smärta och mor-
fininfusion direkt in i centrala nervsystemet fått en tilläggsbehandling med naloxone 
i två olika koncentrationer. Studien omfattade 11 patienter och pågick sammanlagt 
9 veckor. Tilläggsbehandling med ultralåg dos naloxone var associerad med sig-
nifikant förbättrad upplevd sömnkvalitet, dock sågs ingen statistiskt signifikant för-
bättring av smärtlindring.
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Introduction

The clinical problem
Acute pain in response to injury is an important mechanism that serves to protect 
living beings from harm. Signals conveyed from the site of injury to the brain in 
states of acute pain promote avoidance of harmful, noxious stimuli. However, per-
sistent pain that is sustained for a long time after an injury has healed serves no use-
ful purpose and is a disabling condition (Merskey and Bogduk, 1994; Macrae, 2001). 
Persistent pain predominantly starts with acute pain, for example, postoperative pain 
or trauma (Kehlet et al., 2006). Recent studies concerning persistent postoperative 
pain confirm that it is a significant clinical problem (Lavand’homme, 2011; Ravin-
dran, 2014; Reddi and Curran, 2014). A study in 2043 patients (Johansen et al., 2012) 
demonstrated that approximately 20 % of patients who underwent an elective, mixed 
type of surgery suffered from moderate to severe persistent post-surgical pain, which 
is defined as pain that remains for 3 months or more after surgery. Moderate to 
severe pain is represented by a 4–10 on the Numeric Rating Scale (NRS), an elev-
en-step scale in which 0 represents no pain and 10 represents worst imaginable pain. 
Severe persistent pain is devastating for individuals suffering from it, and it causes 
substantial health impairment and significant difficulties -socially, financially, and in 
work-life (Breivik et al., 2006). Few patients with this condition manage to obtain or 
keep a job (Patel et al., 2012; Leadley et al., 2012). For society, this is a large burden 
and results in the use of extensive resources for sick leave, disability retirement, and 
rehabilitation. The estimated cost for persistent pain, in general, is 80 billion SEK 
annually in Sweden (SBU, 2006).
  Among the different types of long-term pain, neuropathic pain stands out as an 
especially difficult type of pain to treat (Wallace 2005; Hurley et al., 2013). Neuro-
pathic pain is characterised by damage or dysfunction in the sensory nervous system 
(Treede et al., 2008, Doth et al., 2010). It is recognised by pain distributed and local-
ised along the affected nerve, and it is always accompanied by a sensory disturbance, 
such as hyperesthesia or hypoesthesia, in the affected area. The International Asso-
ciation of Pain describes neuropathic pain as “pain caused by a lesion or disease of 
the somatosensory nervous system’’ (www.iasp-pain.org).
  The prevalence of persistent postsurgical pain, varies with the type of surgery, 
ranging from 50 % for limb amputation, 30 % for breast surgery, and 10 % for hernia 
repair (Aasvang and Kehlet, 2005, Kehlet at al., 2006). Persistent postsurgical pain is 
strongly associated with neuropathic pain (Martinez et al., 2012; Dualé et al., 2014). 
Depending on the type of surgery, neuropathic pain is experienced by 3 % (laparo-
scopic surgery) to 68 % (breast surgery) of patients with persistent postsurgical pain 
(Haroutianen et al., 2013).
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Underlying mechanisms of persistent pain
Possible mechanisms of the transition from acute physiological pain to persistent 
pain that remains after the acute injury has healed include inflammation in the pe-
ripheral (PNS) and central nervous system (CNS) (Hansson, 2010; Calvo et al., 2012; 
Ellis and Bennett, 2013). Other possible mechanisms for persistent pain include 
long-term potentiation, central sensitisation, neuronal plasticity, and disinhibition 
(Woolf and Salter, 2000; Katz and Seltzer, 2009; Basbaum et al., 2009; Woolf, 2011; 
Taves et al., 2013). These entities, which all concur with our theory, are not the main 
focus of this thesis and therefore, will not be further discussed.
  It is well known that glial cells are non-excitable neural cells that are active in 
the development of neuroinflammation (De Leo et al., 2004; Milligan and Watkins, 
2009; Skaper et al., 2014). In the last few years, it has become clear that glial cells 
have important metabolic and immune functions (Scholz and Wolf, 2007; Vallejo 
et al., 2010; Lyman et al., 2014) and may play an important role in the modulation 
of synaptic pain transmission (Watkins and Maier, 2003; Suter et al., 2007; Gos-
selin et al., 2010; Grace et al., 2014). Astrocytes and microglia are glial cells that 
surround, support, and interact with neurons in the CNS. They respond to inflam-
matory stimuli and may play an important role in modulating the inflammatory ac-
tivity in the CNS, observed after a peripheral injury (Hansson and Rönnbäck, 2003; 
Ren and Dubner, 2010; Skaper et al., 2012). Astrocytes are coupled in networks and 
communicate with each other and with neurons (Blomstrand et al., 1999; Haydon 
and Carmignoto, 2006), thereby modulating neuronal activity (Araque et al., 1999). 
Inflammation causes dysfunction in glial-neuron communication due to inflamma-
tory-induced alterations in astrocyte function that disturb the two-way interaction 
between astrocytes and neurons. This disturbance results in increased excitability 
in neurons, and synaptic pain transmission is enhanced and prolonged (Guo et al., 
2007; Gao and Ji, 2010, 2010; Chiang, 2012).

Pain and neuroinflammation 
Inflammation is a physiological response to injury that is designed to remove dan-
gerous stimuli, kill bacteria, remove cell debris, and initiate healing. However, when 
the inflammatory reaction persists or is exaggerated, it causes undesired negative 
effects. When an injury occurs in peripheral tissue, pro-inflammatory mediators, 
such as nitric oxide (NO), bradykinin, tissue factors, and prostaglandins, are released 
into the bloodstream, and white blood cells are attracted to the injury site (Mölne 
and Wold, 2007). The endothelium that lines the blood vessels becomes permeable, 
and leucocytes can migrate from the blood vessels to the injury site (Medzithov, 
2008). A peripheral inflammatory process can also induce inflammation in the CNS, 
known as neuroinflammation (de Vries et al., 1996; Beggs et al., 2010; Echever-
ry et al., 2011). When an inflammatory response is activated throughout the body, 
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pro-inflammatory cytokines, such as interleukin-1 beta (IL-1β) and tumour necro-
sis factor alpha (TNF-α), are released from the inflammatory-activated leucocytes. 
These cytokines cause the blood-brain barrier (BBB) to become permeable, allow-
ing leucocytes to migrate through and transform into microglia in the CNS (Huber 
et al., 2001; Moalem et al., 2004; Abbott et al., 2006; Sharma and Johansen, 2007; 
Terrando et al., 2011). The activated microglia produce more pro-inflammatory cyto-
kines, such as IL-1β and TNF-α. IL-1β in turn activates astrocytes which also release 
the pro-inflammatory cytokine IL-1 β. This combined response causes a change in 
the astrocyte network signalling, potentiating neuronal pain transmission (Shao and 
McCarthy, 1994; Bruce-Keller, 1999; Schäfers and Sorkin, 2008). Furthermore, this 
reaction is associated with the development of new synapses and dysfunction of ex-
isting synapses (De Leo et al., 2006; Chiang et al., 2012; Lyman et al., 2014.) 
  Neuroinflammation can also be initiated when a local peripheral injury gives rise 
to inflammatory activation in the CNS, which is conveyed by neurogenic sites of 
action (Vasudeva et al., 2014). Immediately after an injury to a nerve ending in the 
periphery, the inflammatory cascade is activated and immunocompetent cells mi-
grate to the site of injury. Macrophages infiltrate the injured nerve and cause an in-
flammatory reaction in the nerve cell (Scholz and Wolf, 2007). This reaction leads to 
microglia activation in the CNS and the release of pro-inflammatory cytokines that 
activate and alter astrocyte function (Vallejo et al., 2010; Calvo and Bennett, 2012; Ji 
et al., 2013). It has been demonstrated in a rodent model of pain that after a peripher-
al nerve injury, macrophages invade the end of the injured axon and cause low-grade 
inflammation (Saade and Jabbur, 2008), along the pain pathway from the periphery 
to the spinal cord, extending up to the thalamus and further on to the parietal cortex. 
Once the astrocytes and microglia have become activated, they participate in the 
development, spread, and potentiation of neuroinflammation (DeLeo et al., 2004; 
Milligan and Watkins, 2009). 
  Immune cells are closely associated with the sensory neural system, and neuroin-
flammation causes pain (Marchand et al., 2005; Scholz and Woolf 2007; Calvo et 
al., 2012). Neuroinflammation can give rise to neuropathic pain, which is the chronic 
pain state caused by significant pathological changes in the nervous system (Moalem 
and Tracey, 2006; Myers et al., 2006; McMahon and Malcangio, 2009; Vallejo et al., 
2010; Tenorio et al., 2013).  
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Astrocytes and their role in inflammation modulation
The CNS consists of neurons and glial cells, which constitute 70 % of the cells in the 
CNS (Vallejo et al., 2010). The two types of glial cells of interest that are involved 
in the development of persistent pain are microglia and astrocytes (Grace et al., 
2014; Franke and Illes 2014). Additionally, dorsal root ganglion satellite cells, astro-
cyte-like cells in the PNS, may play a role in the development of neuropathic pain 
(Ji et al., 2013). However, they will not be further discussed in this thesis. Astrocytes 
(astro; star, cyte; cell) are the most abundant cell type in the CNS. They are star-
shaped cells with long slender processes. Astrocytes are coupled by gap junctions in 
syncytial networks and occupy a strategic position between the vasculature and the 
neurons, where they monitor and modify neuronal activity and transmitter release 
(Giaume and McCarthy, 1996; Araque et al 1999; Abbott et al., 2006; Hansson, 
2010). Astrocytes can release a rich variety of neuroactive substances, and they also 
express receptors for these substances. They surround neural synapses with their 
end-feet and monitor and modulate synaptic activity (figure 1). One astrocyte can 
make contact with approximately 100,000 synapses (Bushong et al., 2002; Oberhe-
im et al., 2012), making their impact on synaptic transmission substantial. 
  Astrocytes communicate within their network by utilising Ca2+ waves (Cor-
nell-Bell et al., 1990). Normally, Ca2+ waves travel from one cell to the next via gap 
junctions (Blomstrand et al., 1999). Gap junctions are channels consisting of the 

Figure 1. Astrocytes are star-shaped cells coupled by gap junctions in syncytial networks. 
They are prevalent throughout the CNS, and their end- feet are in contact with other glial 
cells, neuronal axons, synapses, and cell bodies, as well as the blood-brain barrier, ventri-
cles, and the blood vessels. The drawing was created by Eva Kraft, Gothenburg, Sweden 
(Hansson, 2006). 
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protein connexin 43 (Chen et al., 2012). Ca2+ waves propagate at a speed of 0.1 mm/s 
(Hassinger et al., 1996). The Ca2+ signalling provides an opportunity for astrocytes 
to influence synaptic transmission (Chiang, 2012). 
  One role of astrocytes is to clear the synaptic cleft of glutamate released from 
neurons, thereby preventing neurotoxicity derived from excessive amounts of gluta-
mate (Danbolt 2001; Kreft et al., 2012). Neuronal activity releases glutamate into the 
neural synapse. Glutamate is taken up by astrocytes and converted to glutamine by 
the enzyme glutamine synthetase. Glutamine is released back into the synaptic cleft 
and is taken up by neurons and metabolised to glutamate, which is again released 
into the synaptic cleft. This process comprises the glutamate-glutamine cycle (Berl 
et al., 1961; McKenna 2007, 2013). 
  Inflammatory-activated astrocytes cannot sufficiently clear the synaptic cleft of glu-
tamate. Glutamate is an excitatory neurotransmitter, and the increased glutamate level 
in the synaptic cleft renders the neurons more excitable (Hertz and Zielke, 2004).

Microglia 
Microglia are resident macrophages in the CNS, and they respond rapidly to injury 
by proliferating, changing shape, and producing pro-inflammatory cytokines, such 
as TNF-α, IL-1β, and brain-derived neurotropic factor (BDNF) (Taves et al., 2013). 
It is well-known that peripheral nerve injury caused by surgery or trauma causes 
significant activation of microglia in the spinal cord. Within 2 days of an injury there 
is a marked proliferation of microglia in the spinal cord (Hains and Waxman, 2006; 
Hains et al., 2010). Thus, microglia are most likely the cells that initiate inflamma-
tion in the CNS, leading to further activation and spread of inflammation by the 
astrocytes (Calvo and Bennett, 2012).

	
Cellular changes during inflammation
The cellular changes that occur during experimental neuroinflammation render the 
astrocyte network unable to interact appropriately with neurons, which alter synaptic 
transmission. When experimental neuroinflammation was induced, lipopolysaccha-
ride (LPS), a potent inflammatory activator composed of endotoxin from gram-neg-
ative bacterial cell walls, was utilised. 
  The inflammatory-induced cellular changes that we focus on in this thesis are 
listed and explained below and in figure 2. 

1. Changes in the receptor expression of Toll-like receptor 4 (TLR4)

TLR4 is an inflammatory receptor that responds to LPS. The expression of TLR4 is 
increased in astrocytes under neuroinflammatory conditions. Activation of TLR4 not 
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only leads to Ca2+ release, but also to an increase in the release of the pro-inflamma-
tory cytokines TNF-α and IL-1β (Hutchinsson et al., 2011). The activation of TLR4 
can be inhibited by ultralow doses of naloxone (Lewis et al., 2012), and interestingly, 
it can be increased by prolonged morphine administration (Watkins et al., 2009). 

2. Changes in Ca2+ wave signalling

Astrocytes respond to a variety of substances by releasing intracellular Ca2+. These 
Ca2+ waves can be stimulated by substances released from both neurons and glial 
cells (Santello et al., 2012; Zorec et al., 2012). Receptors on the surface of astro-
cytes are coupled to G proteins, and release Ca2+ from the endoplasmic reticulum via 
phospholipase C and inositol-tri-phosphate (IP3) (Lencesova et al., 2004). These Ca2+ 
waves can propagate from one cell to another via gap junctions. An increase in cy-
tosolic Ca2+ leads to the release of gliotransmitters, i.e substances that can influence 
and modulate synaptic transmission (Blomstrand et al., 1999; Scemes and Giaume, 
2006). Prolonged neuroinflammation causes dysfunction of this signalling system 
(Hansson and Rönnbäck, 2003; Hansson, 2006; 2010; Delbro et al., 2009). 

3. Changes in the expression of Na+/K+-ATPase 

Na+/K+-ATPase is fundamental in maintaining cytosolic homeostasis in astrocytes, 
as well as all other cell types. In astrocytes, this pump indirectly modulates Ca2+ 
signalling; therefore, the activity of this pump is critical for cell function (Liu et 
al., 2008). Ultralow doses of ouabain and naloxone (10-12 M) have the potential to 
increase the activity of Na+/K+-ATPase (Zhang et al., 2008). 

4. Changes in cytoskeleton structure 

An intact cytoskeleton is required for the propagation of Ca2+ waves in astrocytes, 
and disruption of the cytoskeleton abolishes Ca2+ waves by changing the balance 
between the Ca2+-regulating processes (Cotrina et al., 1998). Neuroinflammation dis-
rupts the cytoskeleton. 

5. Amounts of released pro-inflammatory cytokine IL-1β 

IL-1β is a pro-inflammatory cytokine that initiates and maintains neuroinflamma-
tion. In the CNS, IL-1β is mainly produced by microglia that are active in initiating 
the inflammatory process, while astrocytes, which also produce significant amounts 
of IL-1β, are dominant in maintaining neuroinflammation (Watkins et al., 1999, Ki-
guchi et al., 2012). The increase in IL-1β closes the gap junction, thereby inhibiting 
the normal propagation of Ca2+ waves through the astrocytic network.
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Figure 2a. The astrocyte network functions studied in this thesis are : 1) Expression of the 
inflammatory receptor TLR4 (green); 2) calcium signalling; 3) expression of Na+/K+-ATPase; 
4) the actin filament structure; and 5) the release of IL-1β.
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Astrocyte network functions 
during inflammation

Figure 2b. During experimental neuroinflammation the following changes occur: 
1) Expression of the inflammatory receptor TLR4 is increased (green); 2) calcium signalling 
is disturbed; 3) Na+/K+-ATPase is down-regulated; 4) the actin filament structure is altered; 
and 5) the release of IL-1β is increased, causing gap junction to close.
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Pharmacological substances
To restore the cellular changes caused by the experimental neuroinflammation de-
scribed above, we searched the literature for substances with possible anti-inflamma-
tory properties that are usually used for other purposes in medicine.

Ouabain 

Ouabain is a digitalis-derived glycoside, and it is known to inhibit Na+/K+-ATPase 
at higher concentrations and to stimulate it at lower concentrations (Zhang et al., 
2008). We used this substance to restore the inflammation-induced decrease in Na+/
K+-ATPase expression. Ouabain is a toxic substance that has a narrow therapeutic 
window; therefore, its use in clinical experiments is limited (Valente et al., 2003). 

Naloxone

Naloxone is an effective µ-opioid receptor antagonist when used at higher doses 
(milligrams), and it is widely used in clinical practice to reverse opioid overdoses 
(Boyer, 2012). 
  It has also successfully been used intravenously at lower doses (micrograms) to 
prevent the side effects of morphine treatment in postoperative settings in adults and 
children (Maxwell et al., 2005). Naloxone in microgram doses also partially blocks 
the µ-opioid receptor.
  At ultralow doses (picograms) the mechanism of naloxone is different. Usually, 
morphine activates the µ-opioid receptor, which in turn activates the Gi/o protein. 
The complex of µ-opioid receptor and Gi/o works by multiple mechanisms to inhibit 
neural pain impulses, thereby decreasing pain sensations in the brain (Connor and 
Christie, 1999; Taylor et al., 2013). In states of low-grade neuroinflammation, such as 
chronic pain states (Huber et al., 2001; Sharma and Johanson, 2007; Hansson, 2010), 
and even after long-term morphine treatment (Raghavendra et al., 2002; Watkins et 
al., 2005), the µ-opioid receptor shifts its coupling from the inhibitory Gi/o protein 
to the excitatory Gs protein (Wang et al., 2005; Tsai et al., 2009). This switch caus-
es diminished pain relief and increased morphine tolerance. Naloxone at ultralow 
concentrations has the ability to block µ-opioid receptor-coupling to the excitatory 
Gs protein and causes the µ-opioid receptor to couple to the inhibitory Gi/o protein 
(Crain and Shen, 1995; 2000; Block et al., 2012), thereby improving pain relief. Nal-
oxone has been shown to be virtually atoxic; however, it can cause severe withdrawal 
symptoms when administered to patients with a history of long-term opioid use.
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Endomorphin-1

Endomorphin-1 (EM-1) is a peptide and an endogenous µ-opioid receptor agonist 
(Mizoguchi et al., 2002; Horvath et al., 2003; Fincha et al., 2007). EM-1 is released 
from nerve endings into the general circulation (Jessop et al., 2000). It has also been 
found in inflammatory tissue (Masocha et al., 2003), implying that it may inter-
act with immune cells. Astrocytes possess µ-opioid receptors, and endomorphins 
may play a role in the control of neuroinflammatory activity (Hansson et al., 2008; 
Lazarus and Okada, 2012). In inflammatory conditions, an up-regulation of endo-
morphins occurs, and this response has been demonstrated to have functional signif-
icance in pain control by producing potent analgesia in states of inflammatory and 
neuropathic pain in rodents (Horvath and Kekesi, 2006). 

Morphine

Morphine (from Morpheus, Roman god of sleep and dreams) has been used for thou-
sands of years due to its analgesic properties (Norn et al., 2005). Morphine is a 
naturally occurring alkaloid, originally derived from the poppy plant. The main me-
tabolites from morphine are morphine 3-glucuronide and morphine 6-glucuronide. 
Morphine metabolism occurs primarily in the liver and kidney (Christrup, 1997). 
Like most opioids, morphine exerts its analgesic effects on the µ-opioid receptors 
that are prevalent in the periphery, as well as in the spinal cord and brain (Pasternak 
and Pan, 2013). Opioid receptors are also prevalent on immunocompetent cells, and 
it is believed that morphine inhibits the inflammatory response, although the exact 
mechanism for this modulation is unclear (Al-Hashimi et al., 2013). The analgesic 
effects of morphine are complex and achieved by inhibition of pain-enhancing neu-
rons and the reinforcement of pain-inhibiting neurons (McQuay, 1999; Twycross, 
1999; Hojsted and Sjogren, 2007). Common side effects of morphine are nausea and 
sedation. Some of the side effects of morphine are potentially fatal; the most serious 
side effect is respiratory depression (Andersen et al., 2003). 

Levetiracetam 

Levetiracetam is an effective anti-epileptic drug. It has a mechanism of action that 
is slightly different from that of other antiepileptics which work by blocking Na+ 
and Ca2+ channels, thereby decreasing neuronal excitability (Sills, 2006; Dooley et 
al., 2007). Instead, levetiracetam inhibits the neural release of transmitters into the 
synaptic cleft by binding to a protein that regulates exocytosis (Crowder et al., 1999; 
Lynch et al., 2004). There are several reports suggesting that levetiracetam has ben-
eficial effects on neuropathic pain (Rowbotham et al., 2003; Frediani, 2004; Price, 
2004). In our experimental work, levetiracetam was used for its anti-inflammato-
ry properties. Levetiracetam has been shown, in inflammation-reactive astrocyte  
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models, to restore functional gap junction coupling (Stienen et al., 2011) by increas-
ing the expression of connexin 43, the predominant gap junction protein, and de-
creasing the enhanced IL-1β level (Haghikia et al., 2008). Levetiracetam is widely 
used and generally well tolerated. However, it has some significantly undesirable 
side-effects, such as psychosis and suicidal behaviour (www.fass.se).

Cytokines as pain markers
Cytokines are produced by immunocompetent cells, such as monocytes, macro-
phages and endothelial cells. They are locally produced signalling molecules that 
maintain and regulate inflammatory processes (Mölne and Wold, 2007; Hutchinson 
et al., 2008). The interleukins IL-1β, and TNF-α stimulate cyclooxygenase, resulting 
in the release of painful endogenous substances such as prostaglandins, substance P, 
and bradykinin (Schäfers and Sorkin, 2008; Sommer, 2009). IL-10 has anti-inflam-
matory properties and reduces activity in C fibres (Lin et al., 2010). BDNF is asso-
ciated with neuropathic pain and increases in states of neuroinflammation (Ferrini 
and Konick, 2013; Tsuda et al., 2013). Glial cell line-derived factor (GDNF), induces 
hyperalgesia when administered peripheral (Malin et al., 2006; Ferrari et al., 2010) 
but has also been shown to inhibit and reverse neuropathic pain in rats (Boucher et 
al., 2000).

The project
Patients with persistent pain after surgery or trauma often have a neuropathic pain 
component. When established, this pain is very difficult to treat, and in many cases, 
conventional analgesics provide insufficient pain relief. To better treat these patients, 
new or novel uses of existing therapeutics must be considered. Neuroinflammation 
is one of the underlying mechanisms of persistent neuropathic pain. Microglia and 
astrocytes are known to initiate, maintain, and spread neuroinflammation. The in-
flammatory-activated microglia produce pro-inflammatory cytokines, consisting 
predominantly of IL-1β. Astrocytes are activated by the pro-inflammatory cytokines 
released from microglia, and because astrocytes are coupled in networks, they are 
well suited to spread and maintain this inflammation. In an effort to determine the 
cellular changes that are associated with neuroinflammation, astrocyte cultures, and 
more specifically, their communication in networks in normal and inflammatory 
states, were studied experimentally. Our aim in these experimental studies was to 
identify substances that had the ability to restore astrocyte network Ca2+ signalling, 
which had been disturbed by neuroinflammation, to its normal state. The results 
from our experimental studies showed that three substances used in combination had 
this potential effect. Hoping to improve pain relief, we then investigated the effect of 
these substances on patients with long-term pain. In a pilot study in eleven patients 
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suffering from persistent pain, we used two of the substances to investigate whether 
they could improve pain relief in these patients. The rationale for not using all three 
agents at once is that we wanted the option to investigate the effect of each agent per 
se in patients with persistent pain.
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Specific background of 
papers i, ii, iii and iv

i. Astrocyte Ca2+ waves can be evoked by transmitters released from neurons and 
glial cells (Scemes and Giaume, 2006). The influx of Ca2+ across the plasma mem-
brane is driven by the Na+ electrochemical gradient across the plasma membrane and 
the Na+ pump, Na+/K+-ATPase, which indirectly modulates Ca2+ signalling (Liu et 
al., 2008). Inflammatory stimuli disturb the Ca2+ homeostasis in astrocyte networks, 
possibly by interfering with the activity of Na+/K+-ATPase (Hansson, 2006; 2010). 
Ouabain is known for its ability to modulate Na+/K+-ATPase; specifically at high 
concentrations, it inhibits Na+/K+-ATPase increasing intracellular Ca2+. Interestingly, 
at low concentrations (nanomolar and picomolar), ouabain stimulates Na+/K+-ATP
ase activity (Zhang et al., 2008).

ii. It has been reported that µ-opioid receptors in healthy cells exert their effect 
by coupling to the inhibitory second messenger Gi/o protein (Connor and Christie, 
1999). A switch in G protein coupling from Gi/o to the excitatory Gs protein has 
been observed during inflammation and following chronic administration of opioids 
in rats (Wang et al., 2005). An increased coupling to the Gs protein by the opioid 
receptor is associated with tolerance to and a diminished anti-nociceptive effect of 
morphine (Crain and Shen, 1995). Naloxone at ultra-low doses restores the Gi/o pro-
tein coupling by blocking the Gs protein, thereby also restoring the anti-nociceptive 
effect of morphine (Tsai et al., 2009).
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iii. Under conditions that lead to neuroinflammation, several receptors are influ-
enced and their expression is changed. These changes in the glial cells can lead to 
pathogenic chronic neuroinflammation. Subsequently, the neurons change their ex-
citability and signalling properties. Levetiracetam, an effective anti-epileptic drug, 
has been shown, in inflammation-reactive astrocyte models, to restore functional 
gap junction coupling (Stienen et al., 2010) by increasing the expression of connexin 
43, the predominant gap junction protein, and decreasing the enhanced IL-1β level 
(Haghikia et al., 2008), thereby restoring cellular functions altered by inflammation.

iv. Most pain conditions can be treated to a satisfactory degree using conventional 
therapies. However, in certain cases, pain remains that is so severe that alternative 
options have to be considered. Pain treatment with indwelling spinal catheters and 
implantable pumps for non-malignant pain syndromes has been shown to yield ef-
fective results (Nitescu et al., 1991;1998) and to be safe (Dahm et al., 1998; Willis 
and Doleys, 1999; Lundborg et al., 1999). Even with this invasive method, accept-
able pain relief is still not achieved in some patients; therefore the identification and 
development of additional therapies to improve pain relief are essential. This study 
focused on the potential beneficial effects of supplementing intrathecal opioids with 
concurrent and similarly administered naloxone.
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Aims

General aims
The goals of this study were to explore the nature of astrocyte signalling in nor-
mal and inflammatory states, investigate cellular changes induced by inflammation, 
identify a drug combination that can restore these changes in vitro, and evaluate the 
effects of such a drug combination when administered to patients with long-term 
pain. 

Specific aims 
i. To experimentally evaluate how inflammatory stimuli alter cellular function with 
respect to expression of the inflammatory receptor TLR4, intercellular communica-
tion through Ca2+ signalling in astrocyte networks, expression of Na+/K+-ATPase, 
organisation of actin filaments, and release of the pro-inflammatory cytokine IL-
1β. Furthermore, we aimed to evaluate whether the postulated inflammatory chang-
es can be attenuated by the proposed anti-inflammatory substances naloxone and 
ouabain.

ii. To experimentally evaluate the responses in astrocytes to the endogenous µ-opioid 
agonist EM-1 with respect to intercellular communication through Ca2+ signalling. 
Additionally, we aimed to study possible changes in intercellular communication 
caused by inflammatory stimuli, to determine whether postulated changes in com-
munication can be restored with ultralow concentrations of the assessed anti-inflam-
matory substance naloxone, and to evaluate possible mechanisms of this process.

iii. To experimentally evaluate whether the combination of EM-1, naloxone, and le-
vetiracetam can counteract the inflammatory induced disturbances in 1) astrocyte 
Ca2+ signalling, 2) expression of Na+/K+-ATPase activity, 3) organisation of actin 
filaments, and 4) astrocyte release of IL-1β. 

iv. To clinically investigate whether pain relief can be achieved in patients with 
severe persistent pain by delivering continuous intrathecal morphine and adjuvant 
nanogram doses of naloxone, administered by the same route. 
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Experimental methods  
and materials

Cell cultures (Papers i, ii and iii)
To obtain the cell cultures used in papers i, ii and iii, astrocytes from the cerebral 
cortices of newborn rats were co-cultured with microvascular endothelial cells from 
adult rat brains (Hansson et al., 2008; Delbro et al., 2009). The astrocytes were first 
cultured for 6 days and then co-cultured with endothelial cells for 9–11 days. As en-
dothelial cells are not in direct physical contact with the astrocytes in vitro, the inter-
action between them was induced by the shared medium. Co-cultured astrocytes are 
affected by substances that are released from endothelial cells (Huber et al., 2001; 
Abbott et al., 2006; Willis and Davis, 2008) and are morphologically differentiated 
by long, slender processes. Co-cultured astrocytes exhibit greater Ca2+ responses and 
cytokine release than mono-cultured astrocytes. The µ-opioid receptor, as well as 
TLR4 (Forshammar et al., 2011; Stokes et al., 2013), are better expressed in co-cul-
tured astrocytes (Hansson et al., 2008; Byrne et al., 2012) compared to mono-cul-
tured astrocytes. Cell cultures are studied in vitro, and the results achieved in this 
setting are difficult to translate to an in vivo setting. The results obtained using this 
in vitro model should therefore be interpreted with particular caution. It must also 
be noted that the cells used for the experiments discussed in this thesis were derived 
from living animals, and the condition of an animal, such as stress or disease state 
may also influence the results.
  The inflammatory reaction in cell cultures was produced using LPS, an endotoxin 
from the cell wall of gram-negative bacteria. LPS is widely used to initiate a fast 
and powerful inflammatory reaction (Zielasek and Hartung 1996; Nakamura, 2002; 
Tarassishin et al., 2014). 

Calcium imaging (Papers i, ii and iii)
Calcium imaging consists of incubating astrocytes with the fluorophore probe Fura-
2/AM for 30 minutes prior to the experiments. The probe, which is an ester, is cleaved 
by an intracellular esterase, becomes negatively charged, and binds to the positively 
charged Ca2+ ions when they are released from the endoplasmic reticulum. The 
probe is a Ca2+ dye that has an excitation spectrum that shifts from 380 nm in its 
unbound state to 340 nm when it becomes bound to Ca2+ (Grynkiewicz et al., 1985). 
This method can be used to determine alterations in intracellular Ca2+ concentra-
tion (Cornell-Bell et al., 1990). The cells are then stimulated with an agent, such 
as LPS (paper i), EM-1 (paper ii), or glutamate (paper iii) (Forshammar et al., 2011;  
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Block et al., 2012; Block et al., 2013), for 30 s and viewed with an inverted epifluo-
rescence microscope with excitatory light that alternates between 340 and 380 nm. 
The emitted light was captured by a camera and analysed according to intensity, 
reflecting the intracellular Ca2+ levels (figure 3). The amplitude was calculated as 
the maximum increase in the ratio of light emitted at 340/380 nm. The amplitude, 
number of peaks, and the total area under the curve were analysed to provide mea-
sures of the intensity of the Ca2+ response. Ca2+ releases were measured before 
and after the cells were induced to be inflammatory-reactive by incubation with 
LPS. The incubation-time was between 30 minutes and 24 hours. To counteract 
the inflammatory reaction caused by LPS, cells were pre-treated for 3.5 minutes 
with naloxone, ouabain, EM-1 and levetiracetam, separately and in combination, as 
described in papers i, ii and iii. This method allows for the measurement of released 
Ca2+ from astrocyte intracellular stores as a response to a variety of agents (Paredes 
et al., 2008; Li et al., 2014). The experiments can be repeated, but the result may 
vary between different sets of cultivated cells. It is a time-consuming method that 
demands highly technological and computerised equipment.

Figure 3. Astrocytes are incubated with Fura-2/AM, which is cleaved by esterases inside 
the cell and becomes negatively charged. The positive Ca2+ ions bind to the Fura-2 and are 
exposed to light with alternating wavelength and the Ca2+ release can be visualised and 
measured.
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Protein determination and Western blot analysis (Papers i and iii)
Protein determination was performed in accordance with the manufacturer’s instruc-
tions, based on the method by Lowry et al. (Lowry et al., 1951), with some modification 
by Persson et al. (Persson et al., 2005). Astrocytes were lysed, and an equal amount 
of protein was delivered to each lane of the electrophoresis gel. After electrophoresis, 
the proteins were transferred to a nitrocellulose membrane for Western blotting. The 
membrane was probed with primary antibodies, and unspecific binding was inhibited. 
The antibodies were detected by adding conjugated secondary antibodies and visu-
alised by chemiluminescence. The resulting bands were quantified by densitometry. 

Immunocytochemistry and fluorescent probes (Papers i and iii)
Immunocytochemistry was used in paper I to visualise the expression of TLR4 and 
in paper iii to visualise microglia in the astrocyte cultures. Briefly, cells were incu-
bated with a primary antibody directed against the target. Thereafter, cells were 
incubated with a secondary colour-conjugated antibody that targets the primary an-
tibody. Finally, the cells were mounted on a microscope slide in fluorescent medium 
and viewed under a microscope.

Figure 4. Immunocytochemistry was performed on cultured astrocytes.  
Alexa 488 targets glial fibrillary acidic protein (GFAP); therefore cell bodies are  
seen as green. Hoechst 33258 targets DNA; therefore cell nuclei are seen as blue. 
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Actin visualisation 
Actin visualisation is a form of immunohistochemistry, and the techniques are basi-
cally the same as those described in the immunocytochemistry section. The organ-
isation of the astrocyte cytoskeleton was evaluated by staining actin filaments with 
an Alexa 488-conjugated phalloidin probe in papers i and iii, followed by observation 
with a fluorescence microscope (Wulf et al., 1979). 

Viability assay
Cell viability assays were conducted to verify that increased Ca2+ release from astro-
cytes during LPS stimulation was not caused by cell death. This is a semiquantitative 
method that detects rather explicit changes in cell viability. Details can be found in 
Paper i.

Enzyme-linked immunosorbent assay (ELISA) 
ELISAs were used in experimental studies to detect the levels of IL-1β in papers i, 
ii and iii, and to detect IL-1β, TNF-α, IL-8, IL-10, GDNF, and BDNF in paper iv. 
Cytokines were quantified using commercial high-sensitivity ELISA kits according 
to the manufacturer’s instructions. 
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Clinical methods and patients,  
paper iv

Intrathecal pain treatment
Pain treatment using indwelling spinal catheters and implantable pumps for non-ma-
lignant pain syndromes has been shown to produce effective results and to be safe 
(Nitescu et al., 1991, 1998; Dahm et al., 1998; Willis and Doleys, 1999; Lundborg et 
al., 1999, 2009; Atli et al., 2010; Raphael et al., 2013). A recent study which used the 
short form-36 (SF-36) to measure health status, also showed that this type of treat-
ment improved all quality of life parameters, with the exception of working capacity 
(Lara et al. 2011). A catheter with its tip placed at a high lumbar level is inserted into 
the intrathecal space. The catheter is then tunnelled subcutaneously to the anterior 
side of the body and connected to a subcutaneous pump (Synchro Med or Iso Med, 
Medtronic Corp. Minneapolis, USA). The pump is placed in the right or left fossa. 
The pump, coupled to the intrathecal catheter, continuously delivers a fixed rate of 
morphine (Smith et al., 2002), and the patient cannot change the set infused rate.
  There are some differences between the pumps used; for example the Synchro 
Med pump is battery-driven and has to be changed every 5 years. In this pump, the 
rate of drug delivery can be changed via telemetry with a wireless remote control. 
All the Synchro Med pumps are filled with morphine 10 mg/ml. The other pump 
used in the study; the Iso Med pump, is gas-driven and does not need to be replaced 
as long as it is working properly. The Iso Med pump delivers a fixed rate of mor-
phine. To change the amount of drug administered to a patient, the concentration of 
the drug needs to be altered.
  This method offers long-term pain reduction to 2/3 of patients with refractory 
non-malignant pain (Nitescu et al., 1998). It can be used for many years; however 
it has some limitations. First, the installation of the catheter and the pump carry a 
risk of infection, the most severe of which is meningitis (Dahm et al., 1998). Fur-
thermore, it is an invasive procedure and, for the Synchro Med pump system, the 
procedure of installing the pump has to be repeated every 5 years when the pump 
battery expires. Long-term treatment with an intrathecal opioid is associated with 
somewhat different side effects than those associated with classical systemic opioid 
therapy. Respiratory depression or sedation is rarely observed in long-term intrathe-
cal opioid treatment. Nausea, urinary retention and oedema are known side effects 
of the intrathecal opioid route, affecting 5–8 % of treated patients (Atli et al., 2010). 
More common side effects include endocrine disturbances, such as hypogonadism 
(90 %), cortisol deficiency (15 %), growth hormone deficiency (15 %), and disturbed 
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lipid metabolism (Chaney, 1995; Abs et al., 2000). Intrathecal morphine infusion can 
cause granulomas and has the potential to cause neurological damage at the tip of the 
catheter (De Andres et al., 2010; Ver Donck et al., 2013).

Patients and study design in paper iv
Study iv included male and female outpatients ≥ 18 years of age who had been re-
ceiving long-term (≥ 2 years) continuous intrathecal morphine for severe pain and 
were still being treated. Twelve patients provided informed written consent to parti
cipate in the study. 
  The 12 patients, consisting of 8 women and 4 men aged 39–70 years (median 52 
years), used intrathecal systems that had been installed for 2–13 years (median 7 
years). Pain intensity scores during daily activities, such as walking or doing light 
housework ranged from 3–10 (median 5) on the NRS at the beginning of the study. 
Nine patients claimed that their pain was due to failed back surgery. Two patients 
reported multiple abdominal surgeries, and one patient reported trauma as the cause 
of their chronic pain. All of the study patients had undergone multiple surgeries, and 
they all had some neurological deficits, such as hyperesthesia, numbness, tingling 
sensations, and buzzing. The type of pain experienced was a combination of neuro-
pathic and nociceptive pain. One patient worked full time, and one worked part time. 
Two patients were retired, and 8 patients had disability retirement. No opioids, be-
sides the intrathecal morphine, were allowed. Opioid doses were not changed during 
the course of the study. Exclusion criteria included diseases that complicated assess-
ments of pain status and functional capacity, inability to provide informed consent 
for the study, and pain <3 on the NRS during daily activities at the time of screening. 
The patients used morphine intrathecally at dosage ranging from of 0.6–4 mg/24 h. 
  The study consisted of three consecutive 3-weeks study periods during which 
patients in randomised order, in addition to their respective steady-state morphine 
medication, received additional intrathecal medications including placebo, low dose 
of naloxone (400 ng/24 h) and ultralow dose of naloxone (40 ng/24 h). According to 
the study design, patients experiencing severe self-reported worsening pain would 
receive oral oxycodone as needed.
  At the start of the initial 3-week study period, patients were randomised in a 
non-stratified manner into three parallel groups that received treatment in different 
orders. Blinding was maintained throughout all treatment periods by strict protocols 
at the pain clinic. Patients stated the pain intensity in interviews before the study and 
after each treatment. We specifically asked about pain during activity. Following 
study completion, patients returned to their pre-study intrathecal morphine regimen. 
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Assessment of pain and quality of life
A self-reported NRS was used to assess pain in activity after each treatment. Ac-
cording to Cepeda et al. (Cepeda et al., 2003) a 1.3 scale-step change in the NRS in 
acute pain is experienced as a meaningful change to the patient. For long-term pain, 
a reduction of 30 % is considered moderate pain relief according to (Dworkin et al., 
2008). Similarly, in the present study, a 2-step change in the NRS scale in either 
direction was considered to indicate pain improvement or worsening.
  The NRS is a well-validated scale that has been used in several human trials 
concerning pain during recent years. It has a demonstrated statistically significant 
correlation with the Visual Analogue Scale (VAS) (Paice and Cohen, 1997; Breivik 
et al., 2000). It is also recommended by the Change Pain Advisory Board for use in 
clinical trials (Müller-Schwefe et al., 2011). 
  To assess changes in quality of life, the Swedish standard version of the SF-36 was 
used. (Sullivan et al., 1995; Sullivan and Karlsson, 1998; Persson et al., 1998). The 
version used in this study was altered such that instead of evaluating the previous 4 
weeks, the previous 3 weeks were evaluated, which corresponds better to the study 
protocol. This tool has the advantage of being well recognised, widely used, and 
validated. 
  The assessment of pain status and quality of life is challenging, as both entities are 
subjective experiences unique to each patient. Long-term pain is even more complex 
to measure, as it is influenced more by other emotional and psychological factors. 
Several instruments for the measurement of pain and quality of life exist; however 
none are optimal (Breivik et al., 2008). The rationale for choosing the NRS and 
SF-36 is that patients in this study were well acquainted with both of these methods 
from previous trials and clinical investigations.

Statistics
Papers i, ii and iii: Differences between the different treatments were identified 
using one-way analysis of variance (ANOVA) followed by Dunnett’s multiple com-
parisons test. 

Paper iv: To compare NRS scores, we used a non-parametric, paired Wilcoxon 
signed rank test. Treatment with different dosages of naloxone (40 ng/24 h and  
400 ng/24 h) were compared with placebo treatment. Comparisons between the two 
naloxone treatments were also performed. Scores after the placebo treatment were 
compared with scores before the study. Scores from the SF-36 were also assessed us-
ing the Wilcoxon signed rank test. To analyse the perceived quality of sleep, Fischer’s 
exact test was used to compare the number of patients who reported improved sleep 
with the number of patients who reported same or worsening sleep. A Mann-Whit-
ney U test was used to assess differences in the levels of cytokines. 
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Main results

Paper i
In paper i, using a co-cultured astrocyte model, we showed that after a long incuba-
tion (24 h) with LPS, the inflammatory receptor TLR4 is up-regulated, LPS-evoked 
Ca2+ signalling is disturbed, Na+/K+-ATPase is down-regulated, and the actin fila-
ments are disorganised. In the low-dose range, naloxone demonstrates the ability 
to limit some of these these LPS-induced alterations. Ultralow concentrations of 
naloxone restore the actin filaments and prevent LPS-induced down-regulation of 
Na+/K+-ATPase (figures 5 and 6). Ultralow concentrations of naloxone gave more 
consistent results than higher concentrations. Ouabain, but not naloxone at ultralow 
concentrations attenuated the release of IL-1β from astrocytes.

Figure 5. Naloxone at an ultralow concentration (10 -12 M) 
restores inflammatory-disturbed actin filaments in astrocytes.
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Figure 6a. Incubation with LPS 
down-regulates the Na+/K+-ATPase. 
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Paper ii
The main finding of this study was that the endogenous opioid agonist EM-1 induces 
intracellular Ca2+ release in co-cultured astrocytes at doses ranging from 10-15 M 
to 10-4 M. Ca2+ release was attenuated when the cells were exposed to the inflam-
matory inducer LPS for a short time (4 h), but it increased after a longer incubation 
period (24 h). The intracellular Ca2+ release, attenuated by LPS (4 h), was restored 
by treatment with an ultralow concentration of naloxone (10-12 M) (figure 7). This is 
most likely a result of switching the target of µ-opioid receptor stimulation from the 
inhibitory Gi/o protein to the stimulating Gs protein. Picomolar concentrations of nal-
oxone block the Gs protein, and the stimulatory effect then switches the target of the 
µ-opioid receptor back to the Gi/o protein. Naloxone appears to have a homeostatic 
effect, resulting in restoration of the EM-1–evoked astrocyte Ca2+ signalling. 

Figure 7. The intensity of Ca2+ release (in arbitrary units (a.u)) when EM-1 is used as a 
stimulating agent is reduced after incubation with LPS for 4 h, but is restored when nalox-
one (10 -12 M) is added.
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Paper iii
In paper iii, the antiepileptic drug levetiracetam was added to the naloxone and EM-1 
treatment regimen, to determine whether the cellular changes induced by LPS could 
be completely restored. In this paper, the expression of Na+/K+-ATPase, Ca2+ signal-
ling, actin filament organisation, and the release of IL-1β were studied. The inflam-
matory-induced cellular changes were fully restored. The combination of ultralow 
concentrations of naloxone, EM-1, and levetiracetam stimulated Na+/K+-ATPase ac-
tivity and restored the actin filaments and intercellular Ca2+ signalling. IL-1β release 
was also attenuated (figure 8). 

Figure 8. Release of IL-1β from inflammatory 
activated astrocytes is reduced by treatment with a 
combination of naloxone, EM-1, and levetiracetam.
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Paper iv
This study addressed the novel hypothesis that a combination of intrathecally ad-
ministered morphine and naloxone at low doses will improve pain relief in patients 
with persistent and difficult-to-treat pain. The two dosages of naloxone used were  
40 ng/24 h and 400 ng/24 h. Neither of these interventions was associated with sta-
tistically significant changes in pain status, as assessed by the NRS (figure 9). 

Figure 9. Effects of interventions on pain (percent 
of subjects), expressed as either “Improved”, “Un-
changed”or “Worse”. NAL= naloxone. N=11.
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A change of 2 steps or more in either direction on the NRS was considered as a 
change in pain intensity. However, adjuvant naloxone 40 ng/24 h significantly im-
proved the perceived quality of sleep compared with placebo (figure 10), which was 
an unexpected finding. 

Figure 10. Effects of interventions on perceived quality of 
sleep (percent of subjects), expressed as either “Improved”, 
“Unchanged”, or “Worse”. NAL= naloxone. p indicates a 
comparison between placebo and NAL 40 ng/24 h. N=11.
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Discussion

Normal state
In a healthy normal state, astrocytes respond to neural activity by increasing the cy-
tosolic Ca2+ level. In response to this increase in Ca2+, astrocytes release neurotrans-
mitters, such as glutamate and ATP, that modulate synaptic transmission (Santello 
and Volterra, 2009). Proper function of this bidirectional communication is essential 
for normal pain transmission (De Leo et al., 2006; Ren and Dubner, 2008; Gao and 
Ji, 2010); therefore, the control of cytoplasmic Ca2+ levels is important. In the normal 
state, the release of Ca2+ is initiated by a variety of stimuli, such as the endogenous 
neural release of EM-1. EM-1 stimulates the µ-opioid receptor, which activates the 
second messenger protein Gi/o. Ca2+ is released from the endoplasmic reticulum, via 
IP3, into the cytoplasm (Di Castro et al., 2011). The Ca2+ wave propagates from one 
cell to another via diffusion of Ca2+ or IP3 through gap junctions (Hassinger et al., 
1996; Berridge, 2007).
  Na+/K+-ATPase is a protein pump that maintains the electrochemical gradient 
across the plasma membrane, thereby regulating the flow of ions across the plasma 
membrane. These actions indirectly affects intracellular Ca2+ signalling, as it regu-
lates the flow of Ca2+ ions across the plasma membrane (Liu et al., 2008). EM-1 and 
morphine have been shown to stimulate Na+/K+-ATPase activity in vitro and in vivo 
(Masocha et al., 2003). Interestingly, when Na+/K+-ATPase is inhibited, the antinoci-
ceptive effect of morphine is antagonised (Horvath et al., 2003). 
  There is an association between Na+/K+-ATPase, the actin filaments that consti-
tute the cytoskeleton, and the endoplasmic reticulum by the adaptor protein ankyrin 
B (Liu et al., 2008). The Na+/K+-ATPase is connected to the actin filaments by the 
protein ankyrin B, and, the actin filaments are connected to the endoplasmic retic-
ulum by the same protein. If the actin filaments are disrupted, Ca2+ release is dis-
turbed. An intact actin filament is essential for normal Ca2+ signalling (Cotrina et al., 
1998; Sergeeva et al., 2000).
  The inflammatory receptor TLR4 is minimally activated in the normal state; 
therefore, release of the pro-inflammatory cytokine IL-1β is minimal (figure 11 a).
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Figure 11a. In the normal state; 1) TLR4 is down-regulated; 2) Ca2+ waves are controlled; 
3) Na+/K+-ATPase is working optimally; 4) actin filaments are well-organised; 5) IL-1β 
release is minimal, and gap junctions are open.
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Inflammation
In the inflammatory state, TLR4 receptor activity is increased, which leads to an 
increased production of the pro-inflammatory cytokine IL-1β. This increase in pro-
duction is induced via an up-regulation of gene expression that regulates immune 
responses (Hutchinsson et al., 2008). IL-1β affects the gap junction channel protein 
connexin 43 and closes the gap junctions. In the inflammatory state, Na+/K+-ATPase 
is down-regulated, and the actin filaments are disorganised (Namekata et al 2008; 
Forshammar et al., 2011). The increase in pro-inflammatory cytokines leads to an 
increased production of adenosine-tri-phosphate (ATP). These changes disturb the 
normal Ca2+ signalling (Guthrie et al., 1999), which can result in Ca2+ oscillations. 
Gap junctions have a lower capacity for intercellular Ca2+ waves and the propaga-
tion from cell to cell is attenuated (Meme et al., 2004). The increased extracellular 
release of ATP acts on purinergic receptors (P2X7) on adjacent astrocytes, which 
stimulates the release of intracellular Ca2+ in adjacent cells (Cotrina et al., 1998 and 
2000; Haydon and Carmignoto, 2006). This stimulation leads to a poorly controlled 
extracellular propagation of the Ca2+ waves, and the increased intracellular Ca2+ re-
lease behaves in an oscillatory manner (Chen et al., 2012). 
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Figure 11b. During the inflammatory state 1) TLR4 is up-regulated; 2) Ca2+ waves are 
oscillating; 3) Na+/K+-ATPase is down-regulated; 4) actin filaments are disrupted; 5) IL-1β 
release is increased, and gap junctions close. Furthermore, there is an increased extracellu-
lar release of ATP which causes Ca2+ release in adjacent astrocytes via the P2X7 receptor.
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Restoration
To restore the inflammation-induced changes, we first used a combination of EM-1 
and naloxone. EM-1 and naloxone stimulate Na+/K+-ATPase, as well as the µ-opioid 
receptor. During inflammation, the µ-opioid receptor switches its normal activation 
target from the Gi/o protein to the Gs protein. Naloxone at ultralow doses blocks Gs 
and forces Gi/o activation, which promotes normal EM-1-induced Ca2+ release. Sec-
ond, the addition of levetiracetam in combination with EM-1 and ultralow doses of 
naloxone restores the actin filaments, as well as attenuates the release of IL-1β and 
unblocks the gap junctions, allowing restoration of Ca2+ signalling. 
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Figure 11c. Treatment with the combination EM-1, naloxone and levetiracetam restore  
1) TLR4 expression, 2) Ca2+ release, 3) Na+/K+-ATPase expression, 4) actin filament organ-
isation, and 5) release of IL-1β. Furthermore the combination unblocks gap junctions and 
promotes the intercellular Ca2+ waves to propagate through the gap junctions.
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The experimental findings in this study demonstrate that a combination of EM-1 
and ultralow doses of naloxone can attenuate inflammatory-induced cellular chang-
es, and restore intercellular Ca2+ signalling. With the addition of levetiracetam, the 
beneficial results were even more pronounced. It is likely that this type of action in-
fluences the intercellular communication between astrocytes and also exerts effects 
on synaptic pain transmission in neurons. Still, there is a large difference between 
results produced in a laboratory from cellular cultures and outcomes in a clinical 
setting; the results from the experimental studies should therefore be interpreted 
with particular caution. Notwithstanding, in this thesis, specific findings from the 
clinical study (paper iv) relate well to the experimental and more conceptual findings 
(papers i and ii). 

Clinical applications
There are a few research reports showing that analgesia can be improved with an 
ultralow dose of naloxone in addition to morphine in patients (Hamann and Sloan, 
2007; Hamann et al., 2008), and several reports a reduction in the need for opioids 
with an additional low dose of naloxone (Cepeda et al., 2004; Maxwell et al., 2005; 
Movafegh et al., 2012). 
  In study iv, we exclusively recruited study patients who had experienced severe 
pain for a long period of time while undergoing continuous intrathecal morphine ad-
ministration. This protocol yielded a relatively homogenous study group and allowed 
unique assessments of pain and pain-associated symptoms during the interventions. 
Another noteworthy feature of the study subjects is that, despite the quite complex 
treatment, they were still highly affected by pain, which impaired their quality of 
life (figure 12). 



48 Linda Block

Additionally, one of the benefits of the design of this study was that compliance was 
nominally 100 %, as patients themselves could not alter the rate of intrathecal drug 
administration. 
  The findings of this study do not statistically support the concept that intrathecal 
naloxone administered as an adjuvant to intrathecal morphine, improves pain relief. 
Notwithstanding, three study patients, who did not improve with placebo experi-
enced marked pain relief with either dose of adjuvant intrathecal naloxone. 
  Placebo treatment has significant effects in patients with severe chronic pain, as has 
been demonstrated in several studies (Turner et al., 1994; Kahn et al., 2003, Finniss 
et al., 2010). Placebo effects were also prominent in the present study, with 27 % of 
patients reporting improved pain relief when intervention with placebo was performed.

Figure 12. Composite illustrations of SF-36 scores derived from an age-matched healthy 
control population (blue), an age-matched population with chronic disease/handicap (red), 
and the present study cohort of patients during treatment with either placebo (green), 
naloxone 400 ng/24 h (purple) or naloxone 40 ng/24 h (turquoise).
  Note the comparatively low quality of life in the study group irrespective of the inter-
vention. The SF-36 domains (x-axis) refer to Physical Function (PF), Role-Physical (RP), 
Body Pain (BP), General Health (GH), Vitality (VT), Social Function (SF), Role-Emotional 
(RE) and Mental Health (MH). Adapted with permission from the Institute of Health and 
Care Sciences (Sullivan et al., 2002).
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One unexpected finding was that seven patients experienced an improved perceived 
quality of sleep with adjuvant naloxone 40 ng/24 h. This result was significantly 
better than that achieved with placebo. The possibility of such a significant improve-
ment in perceived quality of sleep with this treatment was not specifically considered 
when we designed the study, but this appeared to be an important finding. Addition-
ally, levels of activity were increased with naloxone treatment, but not significantly. 
All study subjects who reported an increased level of activity also reported an im-
proved perceived quality of sleep. This observation is novel and requires confirma-
tion and further exploration.
  The underlying mechanisms of the clinical findings in this study are complex. The 
µ-opioid receptor responsible for the action of morphine normally stimulates the in-
hibitory Gi/o protein, but in states of low-grade inflammation, such as chronic pain 
states, this coupling decreases and the coupling of the µ-opioid receptor to the excit-
atory Gs protein increases (Crain and Shen, 1998; 2000; Wang et al., 2008; Wang and 
Burns 2009). It has been shown in cellular cultures that ultralow doses of naloxone 
can inhibit the Gs protein, and the µ-opioid receptor coupling to the Gi/o protein subse-
quently increases (Shen and Crain, 1997; Wang et al., 2005; Tsai et al., 2009). 
  The SF-36 data revealed that the study patients generally had a low quality of life. 
It has previously been shown that patients with chronic non-malignant pain have an 
even lower quality of life than patients with malignant pain (Fredheim et al., 2008). 
In our study, there were no significant differences between placebo and adjuvant 
naloxone 40 ng/24 h treatments regarding quality of life, which was not surprising, 
as the intervention was administered over a relatively short time period.
  There are some limitations in this study. One limitation that was particularly rel-
evant, was that, as a result of the inclusion criteria, the patients’ pain histories were 
generally long-standing while the duration of the study was relatively short. We ac-
knowledge that this characteristic has implications for the generality of our findings. 
However, we argue that the inclusion criteria served to focus the study on patients 
with well documented and severe pain. Additionally, we suggest that a longer study 
protocol could, through spontaneous individual variations of pain status, have en-
dangered the interpretation of study findings. We also acknowledge that assessments 
of the different dimensions of sleep are complex. In the interest of simplicity, we 
chose a robust technique when gauging alterations in perceived sleep quality, i.e., a 
three-choice ordinal query. Additionally, to maintain blinding throughout the study, 
we had to accept a non-stratified randomisation format. Finally, more females than 
males were recruited into the study; women also expressed more intense pain and 
larger changes in pain with both active treatment and with placebo. However, this 
is in accordance with a finding that was described previously (Rosseland and Stub-
haug, 2004).
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Final conclusions

i. The findings in paper I show that experimentally induced inflammation causes 
the following changes in astrocyte function: 1) the expression of the inflammatory 
receptor TLR4 is increased; 2) Ca2+ wave signalling is disturbed; 3) the expression 
of Na+/K+-ATPase is decreased; 4) the actin filaments are disorganised; and 5) the 
release of IL-1β is increased. Naloxone and ouabain at ultralow doses can partially 
attenuate some of these changes.

ii. The endogenous µ-opioid agonist EM-1 can induce Ca2+ release in astrocytes. Ex-
perimentally induced inflammation alters Ca2+ signalling. The disturbed signalling 
can be restored by pre-treating the astrocytes with ultralow doses of naloxone. The 
underlying mechanism involves the blocking of excitatory second messenger protein 
Gs by ultralow concentrations of naloxone. Subsequently, the action of the inhibitory 
second messenger protein Gi/o is enhanced.

iii. The combination of EM-1, naloxone, and levetiracetam successfully counteracted 
the inflammatory-induced cellular changes caused by LPS related to 1) Ca2+ signal-
ling, 2) Na+/K+-ATPase, 3) actin filament organisation and 4) IL-1β release. This 
restoration is essential for intercellular astrocyte communication and for the modu-
lation of synaptic pain transmission.

iv. In the clinical study in this thesis, two intrathecally administered agents were 
combined, i.e., morphine and naloxone, and the latter was administered at two dif-
ferent dosages (40 ng/24 h and 400 ng/24 h). With this regimen, the addition of 
naloxone at the ultralow dosage of 40 ng/24 h was associated with a significantly 
improved perceived quality of sleep, although concurrent alterations of pain levels 
were not statistically significant.
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Translational research
This thesis encompasses research fields that are both experimental and clinical in an 
effort to bring experimental and clinical research closer together, working from both 
ends to achieve a greater common knowledge base. To identify and define a clinical 
problem, work to assess this problem in the laboratory and then apply the experi-
mentally achieved results in a clinical setting is a logical and productive method of 
solving medical questions. Translational research enables the possibility of under-
standing the mechanisms associated with different issues. Additionally, preclinical 
research needs to be closely coordinated with daily medical clinical challenges to 
more accurately target the issues that need to be addressed. This type of research 
also has limitations, as it is difficult to validate experimentally achieved results in 
a clinical setting. In vitro results may not be applicable to in vivo situations and ex-
perimentally achieved results must be confirmed in vivo to gain significant meaning.
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Future perspectives

Surgery and trauma causes inflammation at the site of injury. Nerve injury causes 
low-grade inflammation in the central and peripheral nervous systems. Neuroin-
flammation that persists when the injury heals may be an important component of 
establishing persistent postsurgical neuropathic pain. Restoring inflammatory-acti-
vated astrocytes, thereby inhibiting enhanced pain transmission in neurons, is a very 
interesting method of preventing persistent postsurgical neuropathic pain. By target-
ing astrocytes instead of neurons, a new arena for development of pharmacological 
agents is opened, and larger studies in this area are needed. One may also consider 
the possibility that adding an anti-epileptic drug to the type of regimen described in 
study iv of this thesis may represent a potential future application to pain therapy.
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It is complicated. The main cells of the brain: astrocytes-orange; neurons-light yellow/
greenish; oligodendrocytes-grey; and microglia-white. Also pictured is a blood vessel-red. 
Picture used with permission from Shutterstock.com, Juan Gartner.


