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Preface

The main task of the Nordic Expert Group for Criteria Documentation of Health
Risks from Chemicals (NEG) is to produce criteria documents to be used by the
regulatory authorities as the scientific basis for setting occupational exposure
limits for chemical substances. For each document, NEG appoints one or several
authors. An evaluation is made of all relevant published, peer-reviewed original
literature found. The document aims at establishing dose-response/dose-effect
relationships and defining a critical effect. No numerical values for occupational
exposure limits are proposed. Whereas NEG adopts the document by consensus
procedures, thereby granting the quality and conclusions, the authors are re-
sponsible for the factual content of the document.

The evaluation of the literature and the drafting of this document on Carbon
nanotubes were done by Dr Maria Hedmer, Dr Monica Karedal, Dr Per Gustavsson
and Dr Jenny Rissler at Lund University, Sweden.

The draft versions were discussed within NEG and the final version was accepted
by the present NEG experts on June 18, 2013. Editorial work and technical editing
were performed by the NEG secretariat. The following present and former experts
participated in the elaboration of the document:

NEG experts

Gunnar Johanson Institute of Environmental Medicine, Karolinska Institutet, Sweden
Merete Drevvatne Bugge National Institute of Occupational Health, Norway

Anne Thoustrup Saber National Research Centre for the Working Environment, Denmark
Tiina Santonen Finnish Institute of Occupational Health, Finland

Vidar Skaug National Institute of Occupational Health, Norway

Mattias Oberg Institute of Environmental Medicine, Karolinska Institutet, Sweden

Former NEG expert

Kristina Kjaerheim Cancer Registry of Norway

NEG secretariat

Anna-Karin Alexandrie Swedish Work Environment Authority, Sweden
and Jill Jarnberg

This work was financially supported by the Swedish Work Environment
Authority and the Norwegian Ministry of Labour.

All criteria documents produced by the Nordic Expert Group may be down-
loaded from www.nordicexpertgroup.org.

Gunnar Johanson, Chairman of NEG
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Abbreviations and acronyms

ALO;
AP-1
ApoE
ASAT
BAL
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CNT
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HzOz
ICP-AES
Ig

IL

i.p.

it.

V.
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OEL
8-0x0dG
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Brunauer-Emmett-Teller method

carbon nanotube

chemical vapour deposition

dipalmitoyl phosphatidylcholine
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double-walled carbon nanotube

elemental carbon

fluorescein isothiocyanate

high-aspect ratio nanomaterial

high-pressure carbon monoxide

hydrogen peroxide

inductively coupled plasma-atomic emission spectrometry
immunoglobulin

interleukin

intraperitoneal

intratracheal

intravenous

lethal dose for 50% of the exposed animals at single administration
lactate dehydrogenase

lowest observed adverse effect level

limit of detection

lipopolysaccharide

mitogen-activated protein

mixed cellulose ester

major histocompatibility complex

magnetic resonance imaging
3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide
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not detectable
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Organisation for Economic Co-operation and Development
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8-0x0-7,8-dihydro-2’-deoxyguanosine



PBS
PEG
PM,
PMN
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TEM
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phosphate buffered saline

polyethylene glycol

particulate matter with maximal aerodynamic diameter of x pm
polymorphonuclear leukocyte
recommended exposure limit

reactive oxygen species

sodium dodecyl sulphate

scanning electron microscopy

scanning transmission electron microscopy
single-walled carbon nanotube
transepithelial electrical resistance
transmission electron microscopy
transforming growth factor beta

titanium dioxide

tumour necrosis factor alpha
time-weighted average

Union Internationale Contre le Cancer
World Health Organization



Terms as used in this document

Agglomerate

Nanoparticles or aggregates associated with one another through weak van der
Waals forces. Agglomerates of carbon nanotubes (CNTs) are often larger in all
dimensions than the nominal cut-off point (100 nm) for nanoparticles. Agglo-
merates can potentially be dispersed by minor external forces, such binding to
proteins in the fluid lining the lungs.

Aggregate

Nanoparticles strongly bonded to one another e.g., by chemical bonding or partial
melting together (sintering). The individual particles in aggregates are more
difficult to separate.

BAL

Bronchoalveolar lavage (BAL), a medical procedure in which a bronchoscope is
passed through the mouth or nose into the lungs to inject fluid into a small portion
of the lung and then recollect this fluid for examination. The suspension thus
obtained is referred to as BAL fluid and can be examined for its content of cells
(e.g., macrophages and other immune cells) or proteins (e.g., cytokines).

Black carbon

Black carbon consists of carbon graphite structures formed in connection with the
incomplete combustion of fossil fuels, biofuel, and biomass. Black carbon may be
of either natural or anthropogenic origin.

Bulk density

Bulk density is defined as the mass of a sample of particles divided by the total
volume they occupy. This property of powders, granules and other “dispersed”
solids is most often applied in reference to soil samples. The bulk density is
strongly dependent on material properties and particle size and may be altered
by handling.

Bundle

A bundle is an aggregate of fibres formed when individual CNTs associate with
their nearest neighbours via van der Waals interactions. Bundles characteristically
contain many tens of CNTs and can be longer and wider than the original CNTs
from which they originated. The typical distance between the CNTs in a bundle

is comparable to the inter-planar distance of graphite, i.e., 3.1 A.

Ceo
Ceo is a spherical fullerene, with its 60 carbon atoms structured as a truncated
icosahedron, which resembles a football.


http://en.wikipedia.org/wiki/Medicine
http://en.wikipedia.org/wiki/Bronchoscopy
http://en.wikipedia.org/wiki/Mouth
http://en.wikipedia.org/wiki/Lung
http://en.wikipedia.org/wiki/Truncated_icosahedron
http://en.wikipedia.org/wiki/Truncated_icosahedron

Carbon black

In principle, carbon black is the same as black carbon, but often contains smaller
amounts of polycyclic aromatic hydrocarbon. This term is often applied for black
carbon-based powders used as a pigment and reinforcement in rubber and plastic
products. Carbon black is often a powder with low density.

Fibre
According to the World Health Organization (WHO) a particle must have a length
>5 pum and a length:width ratio >3:1 to be defined as a fibre (354).

Fullerenes
Fullerenes are molecules composed entirely of carbon with the form of a hollow
sphere, ellipsoid, or tube.

High-aspect ratio nanoparticles/nanomaterials (HARN)

HARNSs are nanomaterials with two external dimensions in the nanoscale with a
high length-to-diameter ratio. These include nanorods, nanowires and other nano-
fibres, including CNTs. No strict definition of the minimum length-to-diameter
ratio for HARN:Ss is described in the literature. Typically this ratio is >100 for CNTs
(240), but SWCNTs may have ratios as high as 107 (286). On the basis of their
structure and dimensions, CNTs are also classified as 2D nanoscale materials (67).

MTT

MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) is
employed in a colorimetric assay used to test cytotoxicity in vitro by determining
cellular metabolic activity and, thus, viability.

Nanofibre
A nanofibre is a nanomaterial with two external dimensions in the nanoscale with
a nanotube being defined as a hollow nanofibre and a nanorod as a solid nanofibre.

Nanomaterial

Nanomaterial has one or more external dimensions in the nanoscale or material
which is nanostructured. Nanomaterials can exhibit properties that differ from
those of the same material lacking nanoscale features.

Nanoparticle
A nanoparticle is a nanomaterial with all three external dimensions in the nanoscale.

Nanoscale
The nanoscale ranges between 1 and 100 nm (274).



Nanotube
The nanotube is a hollow nanofibre, i.e., a nanomaterial with two similar external
dimensions in the nanoscale and a significantly larger third dimension.

PEGylation

Polyethylene glycol 2000 (PEG2000) and PEG5400 are bound covalently to CNTs
in order to render them more hydrophilic. The number denotes the average mole-
cular weight of the PEG polymer. PEGylation (i.e., such covalent binding) causes
CNTs to remain in blood circulation for longer periods and this effect is more pro-
nounced with longer and more highly branched PEG chains.

Pluronic

Pluronic is the brand name of a collection of non-ionic surfactants derived from
poly(propylene oxide) and poly(ethylene oxide). Different types of Pluronics are
added to aqueous solutions to facilitate the dispersion of CNTs. Such reduces the
hydrophobicity of the CNTs surface and can thereby be regarded as a non-covalent
surface modification.

Pristine CNT
Pristine CNTs are the original products (raw materials) without any surface
modifications.

Quantum dot
A quantum dot is a particle of semiconductor crystal with typical dimensions of
nanometres to a few microns.

Rope

A nanorope consists of nanofibres in a twisted conformation. Ropes are single-
walled carbon nanotubes (SWCNTSs) closely packed together through attractive
van der Waals interactions. 100-500 SWCNTSs can self-organise in this manner,
maintaining a constant diameter over the entire length of the rope, which can be
longer than 100 um.

Tensile modulus
Also referred to as Young’s modulus, tensile modulus is a material-dependent para-
meter in solid mechanics that describes the ratio of mechanical stress to strain.

Young’s modulus
See tensile modulus.



1. Introduction

Since their initial discovery in 1991 (129), carbon nanotubes (CNTs) have

been proposed to be useful for numerous applications, ranging from composite
materials to electrical components and drug delivery. CNTs possess truly unique
and desirable properties including their mechanical strength, chemical inertness
and electrical conductivity that can lead to breakthroughs in many vital industries.
Although they are potentially valuable in connection with composite production,
energy storage, biomedicine, membrane technologies and electronics (16), even
today, 20 years after their discovery, there are very few areas in which CNTs have
replaced other materials, due to the problems involved in scaling-up their pro-
duction.

At present, CNTs are used primarily to make composites (e.g., plastics and
rubbers) lighter or stronger (174). Such products are found in cars and aircraft,
sports articles and wind power plants. The global production of CNTs is now
more than 2.5 tonnes/day and their use is predicted to increase even more rapidly
in the future. This rising production, handling, use and machining of CNTs and
related products will enhance exposure to CNTs in different occupational environ-
ments, with inhalation being the route of exposure that has been identified as
potentially most hazardous.

CNTs exhibit two dimensions in the nanoscale (1-100 nm) resulting in fibre-
shaped particles with high aspect ratios (i.e., high length-to-diameter ratios). Since
they physically resemble asbestos fibres, there are suspicions that exposure to
CNTs might be associated with hazards/biological effects similar to those caused
by asbestos. The low bulk density of CNTs results in considerable dusting while
handling and since they are so small, the number of tubes per unit mass is large.
As is the case for all nanoparticles, CNTs also exhibit a very high surface-to-mass
ratio. Together, these properties enhance the potential risk of being exposed to a
large number (and extensive surface area) of CNTs.

2. Substance identification

CNTs are included in the definition of nanomaterials as adopted by the European
Commission 2011: A natural, incidental or manufactured material containing
particles, in an unbound state, as an aggregate or as an agglomerate and where, for
50% or more of the particles in the number size distribution, one or more external
dimensions is in the size range 1 nm-100 nm. In specific cases and where warranted
by concerns for the environment, health, safety or competitiveness the number
size distribution threshold of 50% may be replaced by a threshold between 1 and
50%. By derogation from the above, fullerenes, graphene flakes and single wall
carbon nanotubes, with one or more external dimensions below 100 nm, should be
considered as nanomaterials (80).



CNTs consist of carbon structures resembling graphene sheet rolled into a seam-
less cylinder. In a graphene sheet, each carbon atom is bonded to three others in a
plane, giving rise to fused hexagonal rings, such as those in aromatic hydrocarbons.
CNTs can consist of a single cylinder (single-walled carbon nanotubes or SWCNTSs)
or of many SWCNTs stacked one inside one another in concentric layers held to-
gether by van der Waals forces (multi-walled carbon nanotubes or MWCNTs). The
larger MWCNTs can contain hundreds of concentric shells, separated typically by
a distance of approximately 0.34 nm (261). The C-C bond in the graphene sheet of
SWCNTs is 1.42 A (0.142 nm) in length (356). In the present document, studies
using double-walled carbon nanotubes (DWCNTs) (consisting of two graphene
cylinders) are combined with investigations involving other MWCNTs. To date,
only one CAS number, 308068-56-6, has been assigned to CNTs and therefore the
numbers of walls and other intrinsic properties of CNTs are not considered.

Although generally categorised into only two different types, the CNT pre-
parations can vary considerably with respect to diameter, length, atomic structure,
surface chemistry, defects, impurities (including catalysts, see Section 3.1), and
functionalisation (see Sections 3.1 and 4.2.3).

The diameter of a CNT depends mainly on the number of graphene layers it
contains and its chirality (see below). SWCNTs and MWCNTs usually have dia-
meters of approximately 1-3 nm (144) and 10-200 nm (119), respectively. The
variation in diameter reflects the synthetic procedure, where the diameter of the
catalytic metal particle employed plays a critical role, especially in the case of
SWCNTs (see Section 4.2.1).

The length of a typical CNT is a few micrometres, but this length often varies be-
tween a few hundred nm and as much as approximately 10 pm. Moreover, tubes
as long as 50 pm are common and most CNT preparations contain tubes that vary
widely in length. CNTs designed to be used for future biomedical applications (e.g.,
as drug carriers or contrast agents) are typically shorter (i.e., 100-300 nm) than
those used in production processes (373). The longest CNT reported to date was
18 cm (349) and the shortest is the organic compound cycloparaphenylene (139),
only one hexagonal ring long.

Scanning electron microscopic (SEM) images depicting typical MWCNTSs
following synthesis as well as the typical physical characteristics of MWCNTSs
(Baytubes) in various states of dispersion are shown in Figure 1.

The structure of carbon nanotubes (tube chirality)

The atomic structure of CNTs is described in terms of tube chirality. In principle,
the orientation of the graphene sheet when the tube is being formed determines
this chirality. Two common conformations are the so-called armchair and zigzag
conformations. The chiral angle (defined as the orientation of the axis of the carbon
hexagon relative to the axis of the CNT (333) also influences the diameter of the
nanotube, since the inter-atomic spacing of the carbon atoms is fixed (as previously
mentioned at 1.42 A) (356). In MWCNTSs adjacent layers have different chiralities.



Bulk Micronised and dispersed

Figure 1. Scanning electron micrographs of MWCNTs (Baytubes) in bulk form and after
micronisation and dispersion for inhalation studies. Reprinted from Pauluhn 2010 (255),
Toxicological Science 113:226-242 by permission of Oxford University Press.

Moreover, the chirality of a CNT also affects its optical and in particular, the
electrical properties. Although graphene in itself is a semi-metal, CNTs can be
either metallic or semiconducting, depending on the chiral angle. At the same
time, chirality has very little influence on the mechanical properties (333).

To date, the chirality of the CNTs has not been taken into consideration in any
toxicological investigation.

Defects in carbon nanotubes

During their synthesis, certain kinds of gross defects could occur in CNTs. One
example are collapsed nanotubes such as ‘‘bamboo-like’’ closures, that can easily
be identified by transmission electron microscopy (TEM) (286). Such geometrical
and topological defects are technologically important, since they can dramatically
alter for example the electrical properties of CNTs (136, 286). Defects such as
pentagon-heptagon pair (5-7 pair), the simplest and most elegant topological defect
(136), can be utilised to connect semi-conducting and metallic tubes, allowing the
formation of semiconductor-semiconductor, semiconductor-metal and metal-metal
junctions (25).

Consequently, nanoscale devices comprised entirely of carbon can be con-
structed. CNTs are generally unreactive, although defects in the structure (such as
missing carbon atoms and more highly strained curved-end caps) could elevate
their reactivity (66, 187). Exogenous impurities are discussed in Section 3.1.



3. Physical and chemical properties

Nanoscale materials possess unique physical and chemical properties, which
may differ from materials of similar composition at the macroscale. This section
describes the physical and chemical properties of CNTs and CNT preparations

— divided into mechanical, electrical, optical and thermal properties. Other im-
portant physical properties discussed are the agglomeration/aggregation state, bulk
density, impurities, and, finally, the specific surface area, a property thought to be
highly relevant with respect to toxicological responses to inhaled nanomaterials
such as CNTs.

SWCNTs do not normally exist as individual tubes (174), but rather, due to van
der Waals forces, form aggregates or agglomerates of microscopic bundles or ropes
(Figure 2) typically 5-50 nm in diameter (204). The bundles subsequently agglo-
merate loosely into small clumps. The MWCNTs, with several sheets of graphene
rolled into a cylinder, also tend to form bundles, but the van der Waals forces in-
volved here are in general weaker than in the case of the SWCNTSs. Therefore,
MWCNTs more often exist as individual tubes (174, 378).

To determine whether CNTs are present as individual tubes or agglomerates,
TEM is performed. Examples of such imaging of CNTs can be seen in Figure 2.
From a toxicological point of view, the aggregation/agglomeration state of in-
haled tubes is highly relevant since this determines, for example, the site of their
deposition in the lungs (discussed further in Section 7.1).

The bulk density of CNTs is quite low and varies with the production procedure
employed (see further Section 4.2.1). Comparison of the powder resulting from
Laser ablation to that produced by the high-pressure carbon monoxide (HiPCO)
process revealed that the latter yielded a bulk density as low as approximately
1 mg/cm® (17). Bayer Material Science specifies that the bulk density of their
Baytubes (MWCNTSs) is 120-170 mg/cm’, but measurement generally gives a
value of approximately 100 mg/cm’® (254). For comparison the bulk densities of

Figure 2. Transmission electron micrographs of ropes and a bundle of SWCNTSs (from
Thess et al 1996 (330), Science 273:483-487. Reprinted with permission from AAAS) and
a schematic illustration of ropes of SWCNTs (reprinted by permission from Macmillan
Publishers Ltd: Delaney et al 1998 (62), Nature 391:466-468, copyright 1998).



pure graphite and graphite powder are 2 200 and 200-600 mg/cm’, respectively
(49, 315).

3.1 Chemical composition

As described in the previous section, pure CNTs consist of only one or several
hexagonal graphite sheets of carbon atoms rolled into tubes. CNTs are relatively
non-reactive and SWCNTSs must be heated to 500 °C in order to be oxidised and
burned in air (383). However, due to manufacturing processes, CNT preparations
contain not only SWCNTs and MWCNTs, but also a variety of residual impurities
(66).

These impurities can be classified as metals, supporting material or organics (66).
In the production of CNTs, metal catalysts are often used, the most common being
iron, nickel, cobalt and molybdenum. In producing SWCNTs, the presence of cata-
lytic metals, most commonly molybdenum, is crucial and the finished product
demonstrates a higher content of trace metals (160) than in the case of MWCNTs.
Supporting material such as fine alumina, magnesium oxide or silica is often in-
cluded to support the catalyst or region of growth.

Residual organics can be divided into two groups, i.e., organic molecules and
various forms (amorphous or micro-structured) of bulk carbon, such as soot par-
ticles, fullerenes and/or graphene sheets (174). The levels and types of impurities
depend on the procedure used for production (see Section 4.2.1). In general, gas-
phase processes tend to produce CNTs with fewer impurities and are also more
amenable to large-scale processing. The purity of commercial CNT preparations
may vary considerably (60-99.9%, see further Chapter 11). The removal of re-
maining impurities and unwanted defects in the graphene layers involves harsh
conditions (e.g., mechanical handling, treatment with strong acids, etc.) and
therefore tends to shorten the CNTs (192).

Other chemicals may be encountered on the surface on the CNTs. The CNTs
can be intentionally chemically modified, for example, by coating them with
different functional groups to obtain desired chemical and physical properties.
Functionalisation is commonly designated to enhance the dispersion of CNTs in
aqueous solutions, since unfunctionalised CNTs have a pronounced tendency
to interact hydrophobically and form aggregates (166). Functionalisation is de-
scribed in more detail in Section 4.2.3.

3.2 Mechanical properties

One of the desirable properties of the CNTs is their physical strength. According
to Cheung and colleagues, in terms of tensile strength and elastic modulus, CNTs
are the strongest and stiffest materials, respectively, yet discovered, with an esti-
mated tensile strength of 200 GPa (44). SWCNTs can be as much 10-fold stronger
than steel (44, 341, 378). Closely packed nanotube ropes have a yield strength ex-
ceeding 45 GPa, which is more than 20 times that of typical high-strength steels



(2 GPa) (332, 341). With a Young’s modulus (also known as tensile modulus) of
more than 1 TPa, CNTs can also be 20% stiffer than diamond (44, 332).

This great strength is a result of the covalent bonds (sp? hybridisation) formed
between the individual carbon atoms. However, high strength is solely an axial
property of nanotubes. In the radial direction these tubes are rather soft and can be
deformed by van der Waals interactions with adjacent nanotubes (283). They are
highly flexible and can be bent repeatedly by as much as 110° without being
damaged (130).

CNTs in composite materials

Much effort has been put into exploiting stiffness and strength of CNTs to improve
the mechanical characteristics of polymers, mainly as CNT/polymer composite
material. Addition of CNTs can alter the mechanical properties of a polymer sig-
nificantly (105, 333). In addition, the unique properties of CNTs have also been
exploited in several other types of composites such as CNT/ceramic composites
and CNT/metal composites.

CNTs can also change the thermal properties and enhance the conductivity of
the composite material (170). As pointed out by Harris and co-workers, although
most interest has been focused on exploiting the mechanical properties of CNTs,
interest in their electrical and optical properties is growing (see separate subsections
below) (105). Utilisation of the unique properties of the CNTs fully could yield
strong, stiff and thermally and electrically conductive composites of low density.
However, to date CNTs are used in only a few commercial applications, and for
achievement of the full potential of this approach many problems remain to be
solved.

3.3 Electrical properties

Depending on their chirality, CNTs can act as either semiconductors or conductors
(25). The electrical properties are directly related to the chirality of the tubes and,
in case of small-diameter CNTs, the curvature (195). In theory, metallic nanotubes
could carry an electric current density of 4x10° A/cm?, which is more than 1 000-
fold greater than that of metals such as copper (44, 332).

The potential applications of CNTs as electric components are numerous. For
example, SWCNTs with different electrical properties could be joined to form a
diode (46). Moreover, since the electrical properties of CNTs can be altered by
deformation and stretching of the tubes, they might prove to be valuable in electro-
mechanical devices, especially sensors (200).

As one example, a semiconducting CNT with a diameter of 1 nm has a bandgap
of 1 eV, while a semi-metallic CNT of comparable diameter has a bandgap of only
40 meV. For semiconducting CNTs the bandgap is inversely related to the diameter.
Their semiconducting properties make them potentially useful as current-carrying
elements in nanoscale electronic devices (7).



3.4 Optical and thermal properties

SWCNTs strongly absorb near-infrared light (800-1 600 nm) (44), which spans
over wavelengths (800-1 400 nm) that passes through biological tissues without
significant scattering, absorption, heating or damaging. Consequently, the optical
properties of SWCNTs can be utilised for photothermal therapy (38, 149, 365)
and photoacoustic imaging (60).

As expected, CNTs exhibit pronounced thermal conductivity, e.g., SWCNTs
should have thermal conductivities as high as 6 000 W/m K (where the corre-
sponding value for diamond is 3 320 W/m K) (332). In addition, SWCNTs are
stable at temperatures as high as 2 800 °C in vacuum and 750 °C in air (332). In
the future, these thermal properties of CNTs may be utilised in highly conducting
components of integrated nanoscale circuits (e.g., in transistors or interconnects)
and in thermal management (e.g., in thermal interface materials) (260, 312).

3.5 Specific surface area measurement

Due to their small size and structure, each CNT demonstrates an exceedingly high
surface-to-mass ratio, referred to as the specific surface area. The specific surface
area depends on the diameter, number of concentric layers, and degree of bundling.
Single SWCNTSs exhibit a specific surface area of approximately 1 300 m?/g where-
as for single MWCNTSs the corresponding value is a few hundred m*/g (257). Due
to bundling, most preparations of SWCNTSs have in practise lower specific surface
areas than single tubes, often approximately 300 m*/g (375). Table 1 documents
size and surface area-to-mass ratios for some of the CNTs and other nanomaterials
used in the toxicological investigations described in Chapters 7-11.

All surface area values presented in this document were obtained with the BET
method, the most widely used procedure for determining the specific surface area
of powders. It was developed by Brunauer, Emmett, and Teller (33). In the BET
method, the surface area of a given amount of powder on a filter is estimated from
the adsorption of a gas (at the boiling temperature of the gas and under atmospheric
pressure), most often nitrogen, onto its surface. The amount of gas absorbed is con-
verted to the specific surface area by applying the multilayer adsorption theory
(33). Several commercial devices utilise this principle. It has been suggested that
the BET method underestimates specific surface area in general (162) and that of
airborne particles in particular (93). At present, there is no way to estimate the
specific surface area of nanomaterial in air directly and indirect methods have so
far not been adjusted for high-aspect ratio nanomaterials. Furthermore, the BET
method gives a single average for the whole sample, and no information about the
surface area size distribution. The BET method requires a large sample, therefore
the specific surface area of airborne fibres is often estimated from measurements
performed on bulk samples of produced CNTs. It is not certain that the specific sur-
face areas found of the bulk material are representative to what becomes airborne
and inhaled.



Table 1. Characteristic size and specific surface areas (surface area per mass) of CNTs,
certain other common nanoparticles and reference particles commonly employed in

toxicological studies.

Material Particle size, Specific ~ Manufacturer Reference
diameter (nm) x  surface
length (um)  area (m%/g)

SWCNT 1-2x0.5-2 343 Cheap Tubes Inc., Brattleborough, VT,  (20)
USA

SWCNT 1-2x5-30 510 Same as above (20)

SWCNT 0.8-1.2x0.1-1 508 Carbon Nanotechnologies, Houston, (305)
TX, USA

SWCNT 0.9-1.7x<1 731 Thomas Swan, Consett, UK (138)

SWCNT 1-4x0.5-2 1040 Carbon Nanotechnologies, Houston, (359)
TX, USA

SWCNT 200x0.7 1064 National Institute of Advanced Indu- (215)

(bundle in air) strial Science and Technology, Japan

SWCNT 1.3x3.5 1700 SES Research, Houston, TX, USA (102)

MWCNT 110-170%5-9 12.8 Sigma-Aldrich, St. Louis, MO, USA (249)

MWCNT 49x3.9 26 Mitsui & Co., Ltd, Tokyo, Japan (206, 265)

(Mitsui MWNT-7)

MWCNT 63x1.1 69 Nikkiso Co., Ltd, Tokyo, Japan (216)

(in air)

MWCNT 10-20%5-15 100 Shenzhen Nanotech, Port, Shenzhen, (212, 213)
China

MWCNT 11x1.1 130 SES Research, Houston, TX, USA (102)

MWCNT 5-15%0.1-10 250-300  Nanocyl S.A., Sambreville, Belgium (198)

(NC 7000)

MWCNT 10x0.2-0.3 259 Bayer Material Science, Leverkusen, (76, 255)

(Baytubes) Germany

MWCNT 50%10 280 Shenzhen Nanotech, Port, Shenzhen, (180, 181)
China

MWCNT 20-40%0.5-5 300 NanoLab, Inc., USA (292)

MWCNT 20-40x5-30 380 Nanotech Port, Shenzhen, China (374)

Ceo (99% pure) >20 nm 0.2 M.E.R. Co., Tuscon, AZ, USA (20)

Ce0(99.9% pure) 0.7 nm <20 Sigma-Aldrich, Brendby, Denmark (138)

Carbon black, >200 nm 7.7 Engineered Carbons Inc., Borger, TX, (20)

N990 USA

Carbon black, 15 nm 111 Cabot Corp., Billerica MA, USA (20)

N110

Carbon black, 14 nm 338 Degussa GmbH, Frankfurt, Germany (138)

Printex 90

Nano-Al,04 45 nm 28.3 Nanotek Instruments Inc., Dayton, OH,  (21)
USA

a-Quartz Not given 3.6 Quarzwerke GmbH, Frechen, Germany  (76)

Silica crystalline >0.1-5 pm 5.1 US Silica Company, Berkeley Springs,  (20)

(Min-U-Sil 5) WV, USA

Nano TiO,, 10 nm thick, 190 Sigma-Aldrich, St Louis, MO, USA (20)

rutile 40 nm laterally

Nano TiO,, 10 nm 274 Nanostructured & Amorphous (20)

anatase Materials, Houston, TX, USA

Al,O5: aluminium oxide, Cq: spherical fullerene, TiO,: titanium dioxide.



4. Occurrence, production and use

4.1 Occurrence

CNTs are generated in natural, incidental, and controlled flames (226-230).
Naturally occurring MWCNTs have, for example, been detected in 10 000 year-
old ice core melt water (227) and in smoke from wood combustion (229), as
well as in a mixture of coal and petroleum (353). Anthropogenic MWCNTSs are
products of the combustion of natural gas (methane and propane) (228) and are
present in smoke from paraffin wax candles (183).

MWCNTs generated by combustion of fuel gas occur as aggregates of individual
tubes with diameters ranging from approximately 3 to 30 nm (226). The average
aggregate diameter range from approximately 1 to 5 um (aerodynamic) diameter
and contain as many as 3 000 primary nanotubes (228). The MWCNTs formed
through combustion of paraffin wax candles are 15-20 nm in diameter and approxi-
mately 1-3 um in length (183). Murr and colleagues maintain that aggregates of
CNTs are ubiquitous in both indoor and outdoor air, with levels of MWCNT aggre-
gates estimated to be approximately 10™/cm® and 10*-10/cm®, respectively (228).

SWCNTs can also be generated locally in connection with major disasters e.g.,
as a result of the combustion of fuel in the presence of carbon and metals during
the World Trade Center disaster. Following this attack, tangled, long, hair-like
ropes and stacks of SWCNTSs were detected both in dust and in the lung tissues of
workers involved in rescue, relief and clean-up (364).

4.2 Production

Preparations of CNTs are not homogenous, but contain a diverse mixture of many
different types of tubes, with varying numbers of walls, diameters, lengths, chiral
angles, chemical functionalisations, purities and bulk densities. The global pro-
duction in 2005 was estimated to exceed 294 tonnes for MWCNTs and several
hundred kilograms in the case of SWCNTs (171). In the following year, the corre-
sponding values were approximately 300 and 7 tonnes, respectively (363). Today,
the global capacity for production of CNTs (primarily MWCNTSs) is more than 2.5
tonnes/day (78).

For both types of CNTs, Asian production capacity is 2-3-fold greater than the
estimated capacity for North America and Europe combined (363), with Japan
being the clear leader in the production of MWCNTs.

In the Nordic countries, only a few commercial companies produce MWCNTs
(154, 299). In Sweden, at least three companies conduct research concerning appli-
cations of CNTs in composites (299). In Finland, one laboratory has developed a
CNT-epoxy resin used to manufacture high-tech hockey sticks for professional
and amateur players (299). In Norway, one manufacturer is producing MWCNTs
by the arc discharge procedure.



4.2.1 Production techniques

A multitude of approaches for synthesis of CNTs have been reported (27). One of
the principal techniques involves the use of a transition metal catalyst in the pre-
sence of atomic carbon at high temperature and/or pressure (203). Both SWCNTs
and MWCNTs are usually produced by one of three different techniques, i.e.,
chemical vapour deposition (CVD), arc discharge and laser ablation.

Depending on the technique, impurities such as remaining catalyst particles,
amorphous carbon, soot, graphite and non-tubular fullerenes are also present in the
finished preparation (see also Section 3.1) (78, 171, 174). Removal of impurities
requires chemical purification processes such as acid reflux, filtration, centrifuga-
tion and repeated washing with solvents and water (78).

Chemical vapour deposition

Thermal CVD (also known as catalyst CVD) is the most widely employed pro-
cedure for the production of CNTs, because of its low initial costs, the high yield
and purity of the preparation obtained and ease of scale-up (169). This technique
provides both simple and economic synthesis of CNTs at low temperature and
ambient pressure. According to Karthikeyan and co-workers, low-temperature
CVD (600-900 °C) yields MWCNTs, whereas at higher temperatures (900-1 200
°C) SWCNTs are formed (152).

CVD is based on thermal decomposition of a hydrocarbon vapour in the pre-
sence of a metal catalyst. The precursor carbon containing gas (e.g., carbon mon-
oxide, methane or acetylene or even ethylene, benzene or xylene) is first heated
with a plasma or a coil and then allowed to react with a metal catalyst (such as
iron, cobalt or nickel and/or their alloys) which acts as a “seed” for growth (78,
310, 363). In addition to the temperature, the size of the catalyst particle deter-
mines whether SWCNTs or MWCNTSs are formed (314), with the quality of the
latter generally being higher (78). Although MWCNTSs can be produced without
catalysts, the presence of a small amount of metal catalyst helps to align the CNTs
(174).

A procedure for the manufacture of MWCNTs by thermal CVD is illustrated
schematically in Figure 3. The raw CNT preparation subsequently undergoes
several post-treatments, e.g., dispersion and functionalisation, involving several
steps of sonication. A variant of CVD, high-pressure carbon monoxide (HiPCO),
is employed for mass production of CNTs.

Arc discharge

Arc discharge, the first technique used to prepare CNTs (129), generally involves
an anode and a cathode composed of high-purity graphite. In principle, a voltage
is applied across these rods until a stable arc is achieved, with the anode being
consumed while CNTs grow on the cathode. The gap between the electrodes is
maintained constant by adjusting the position of the anode and the entire process
takes place under a helium atmosphere.
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Catalyst preparation

!

High temperature (~900 °C) in thermal CVD
Catalyser reduction
Synthesis of CNTSs by supplying hydrocarbon gas
Recovery of CNT powder

Blending for composites

Figure 3. Schematic illustration of a procedure for the manufacture of MWCNTs by
thermal CVD. Modified from Han er a/ 2008 (103).

To obtain SWCNTs, the electrodes are doped with a small amount of metallic
catalyst particles (146, 302, 333) and the diameter achieved is dependent on the
properties of this catalyst (261, 302). Size and shape of the graphite rods, level
and nature of doping, etc. can vary. This approach generally produces CNTs in
high yield and is a relatively cheap, but results in high levels of impurities (66).

Laser ablation

Laser ablation as a means of generating CNTs was initially discovered by Smalley
and co-workers (99). Like arc discharge, this initial method produced MWCNTs.
Subsequently, this approach has been refined by introducing catalyst particles (co-
balt and nickel mixture), which allows SWCNTs to be synthesised (100, 278, 333).
In principle, a graphite target is maintained at close to 1 200 °C while an inert gas
(often argon) is bled into the chamber. Thereafter, pulses of a high-intensity laser
beam are used to vaporise the graphite target and CNTs develop on the cooler sur-
faces of the reactor as the vaporised carbon condenses. The use of pure electrodes
results in MWCNTs, whereas for formation of SWCNTs, the targets are doped
with cobalt and nickel (58, 333). The diameter of these SWCNTs is determined by
the reaction temperature and the yield obtained with laser ablation is approximate-
ly 70%.

4.2.2 Purification and sorting procedures

A critical issue in connection with the mass production of CNTs for specific appli-
cations, as well as for toxicological testing, is the purification and isolation of more
homogenous preparations of CNTs. The lack of uniformity in the properties of
SWCNT preparations is a major reason why their commercial applications are still
quite limited (111).
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Although several purification procedures have been suggested, these still need
to be refined and scaled up (16, 192). For example, even after the catalyst metals
have been removed, significant amounts of residual metals remain in the CNT
preparation. Since purification also alters CNTs, removal of impurities must be
balanced against the introduction of defects into the tubes. For instance, purified
nanotubes are likely to contain additional carboxylic acid (-COOH) residues (66).

The purification methods are of two main types, namely, removal of residual
impurities and selective procedures that will result in CNTs with more homogenous
properties, such as diameter, length, electrical properties, etc. For removal of amor-
phous soot, metal catalyst particles and supporting material, washing or ultra-
sonication in combination with acids or bases is often used. Removal of supporting
materials such as silica and alumina requires stronger acids which might destroy
the CNTs, so that other types of supporting materials (e.g., magnesium oxide) that
dissolve in milder acids are employed more frequently. Other examples of purifica-
tion procedures include magnetic purification, functionalisation and microfiltration
and combinations are often utilised.

CNTs can be separated into fractions that are more homogeneous with respect
to length and diameter by chromatography. The most powerful resolution presently
available yields preparations that vary in length by <10% (121). CNTs of different
diameters can be separated by density-gradient ultracentrifugation (111).

However, to obtain even more homogeneous preparations of CNTs, more spe-
cific processes are required. For example, many electronic applications require
semiconducting or metallic CNTs (117) and for use in electronic devices conven-
tional synthesis of CNTs of mixed chiralities is inadequate, since specific individual
chiralities are required.

Several methods for separating semiconducting and metallic CNTs are available,
but not yet for mass production. One promising approach employs density-gradient
ultracentrifugation to separate CNTs coated with a surfactant on the basis of their
densities (9), since CNTs with different diameters and chirality exhibit slight
differences in density. SWCNTs embedded in an agarose gel can be separated by
freezing, thawing and compression (325) as well as by column chromatography
(326). Purification of CNTs with individual chiralities has been achieved by Tu
and colleagues (338).

4.2.3 Functionalisation
Prototype preparations of CNTs in all forms, known as pristine CNTs, are ex-
tremely resistant to wetting. They are difficult to disperse and dissolve in aqueous
solutions or organic media, because of their strong tendency for hydrophobic ag-
gregation (166). This property also makes it difficult to use CNTs in composites.
Through functionalisation of the CNT, i.e., attachment of functional groups,
their chemical, electrical, magnetic, and/or mechanical properties can be altered
(117, 166, 313). The water solubility of CNTs can be dramatically improved by
coating with different functional groups (166) and the mechanical and electrical
properties can be fine-tuned.
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The three main types of functionalisation are covalent or non-covalent exohedral
functionalisation and endohedral functionalisation. The exohedral functionalisation
involves covalent or non-covalent linkage (e.g., through van der Waals forces and
n-stacking) while the third type is based on filling the CNTs with atoms or small
molecules. With non-covalent linkage of functional entities, the stable and attractive
surface structure of the CNT is preserved. This approach can be applied in search
of non-destructive methods of purification as well as in transferring CNTs to an
aqueous phase.

Since the surface of the CNTs interacts with biological systems, functionalisa-
tion may alter their toxicokinetics and toxicity. The large surface area and internal
volume of CNTs allows drugs (e.g., antineoplastic drugs) and various small mole-
cules (e.g., contrast agents) to be loaded on- or into the nanotube. The surfaces of
CNTs used in medicine are modified to control the degree of aggregation in the in-
tended biological environment (blood, intraperitoneal, interstitial fluids, etc.), which
plays an important role in pharmacological performance (44, 166). CNTs coated
with amphiphilic macromolecules (e.g., lipid-polyethylene glycol conjugates), co-
polymers, surfactants and/or single-stranded DNA have found a number of biomedi-
cal applications (166), as have covalently functionalised CNTs (e.g., cycloaddition
of ammonium groups or acid oxidation to generate carboxylic acid groups).

4.3 Use

CNTs have a wide variety of applications, including incorporation into fabrics,
plastics, rubbers, reinforced structures, composite materials and household com-
modities to render them lighter and/or more wear-resistant (174). Although more
extensive applications are expected in the future (Table 2) (2, 27, 77, 166, 171,
299), research and development remains for the most part at the prototype stage.
At present, CNTs are found in products made of nanocomposites (polymers con-
taining 1-10% CNTSs by mass) such as sports articles (e.g., super-strong tennis
rackets, hockey sticks, racing bikes/cycles, cycling shoes, golf clubs, skis, dart
arrows and baseball bats), car parts and aircraft and wind power plants (125, 171,
291, 331).

Lithium ion batteries used in e.g., mobile phones and laptops also contain CNTs
(171, 381). Moreover, CNTs are utilised in anti-fouling paints designed for marine
environments (277). Other promising areas includes textiles made of fibres of
CNT/polymer with electrical, antistatic, thermal conductive, flame retardant and
tear-proof properties (26, 171, 299) and concrete reinforced with CNTs (171, 299,
361). Table 2 presents a list of different possible applications of CNTs, including
medical applications.
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Table 2. Future potential applications of CNTs. Taken from Kohler ef a/ (171).

Area Application

Materials and chemistry Ceramic and metallic CNT composites
Polymer CNT composites (heat-conducting polymers)
Coatings (e.g., conductive surfaces)
Membranes and catalysis
Tips of scanning probe microscopes (SPM)
Building materials

Medicine and life science Medical diagnosis (e.g., analyses on a chip, imaging)
Medical applications (e.g., drug delivery)
Cosmetics (anti-ageing creams)
Chemical sensing
Filters for treatment of water and food

Electronics and ICT (Information Lighting elements, CNT-based field emission displays
and Communication Technology) Microelectronics (single-electron transistors)
Molecular computing and data storage
Ultra-sensitive electromechanical sensors
Microelectrical-mechanical systems (MEMS)

Energy Hydrogen storage, energy storage (super capacitors)
Solar cells
Fuel cells
Superconductive materials

5. Measurements and analysis of workplace exposure

5.1 Air exposure

Traditional occupational hygiene measurements of airborne particles are based on
whether the particles/dust is fibrous or not. Fibrous particles are usually quantified
as number per unit volume (fibre/cm®), while the non-fibrous particles are measured
in terms of mass per unit volume (mg/m?). Furthermore, most occupational exposure
limits (OELs) for particles/dust are based on 8-hour time-weighted average (TWA)
levels.

Airborne exposure to CNTs can be measured over time with filter-based methods
or monitored by real-time aerosol instruments. Filter-based sampling is suitable
both for personal sampling in the breathing zone and for stationary sampling near
(or distant from) the source of emission. The period of sampling can range from a
specific work task to an entire shift.

Real-time instrumental monitoring reveals levels continuously (e.g., every
second) during a specific task or entire shift, as well as information about peak
exposure, which is not available from filter-based procedures. However, the real-
time instruments presently available are not suitable for personal sampling in the
breathing zone of the worker i.e., they are simply too big. Consequently, real-time
sampling is stationary, typically in the close vicinity of the source of emission
(emission measurement) or in the general work area (background measurement).

14



Occupational exposure to CNTs has been measured in terms of the mass con-
centration of total dust, mass concentration of respirable dust, mass concentration
of elemental carbon (EC), fibre concentration and numbers of individual tubes or
CNT structures (i.e., CNT containing structures) per unit volume of air. Moreover,
the size distributions and surface areas of airborne CNTs present in workplaces
have been characterised.

Total dust samples

The total dust has been monitored both in the breathing zone of the worker and
with stationary sampling, in most cases using open-face sampling cassettes with
mixed cellulose ester (MCE) filters (103, 177, 209) or, in case of metals, methyl-
cellulose ester filters (203). The mass concentration of CNTs (together with all
other particulate air pollutants) was then determined by gravimetric analysis of
the filter samples, but no lower limits of detection (LODs) were indicated in these
studies. With gravimetric analysis, no distinction between CNT structures and
other types of particles e.g., impurities, background particles etc. is possible.

In one study, the filter samples were analysed by inductively coupled plasma-
atomic emission spectrometry (ICP-AES) employing the levels of iron and nickel
as surrogates for total CNT mass (the CNT bulk material consisted of 30% cata-
lyst material) (203). The LODs observed for iron and nickel were 0.064 and 0.018
ng, respectively.

Respirable dust samples

In one investigation the MWCNTSs in respirable dust were monitored with a per-

sonal sampler for particulate matter with maximal aerodynamic diameter of 4 pm
(PM,) (323). No distinction was made between CNT structures and other types of
particles e.g., impurities, background particles and the like.

Elemental carbon samples

In one study, respirable EC was collected using cassettes with quartz fibre filters
37 mm in diameter and a cyclone (GK 2.69 BGI) and inhalable EC collected on
quartz fibre filters with diameters of 25 mm in open-face plastic cassettes (57).
Subsequently, the mass concentration of EC was analysed thermal-optically with
a flame ionisation detector (FID) in accordance with the Manual of Analytical
Methods (NMAM No. 5040) of the US National Institute for Occupational Safety
and Health (NIOSH) (238). No distinction between CNTs and other types of
graphite-like impurities was made.

Fibre samples

Sampling of fibres has been performed by sucking air through an MCE filter in
asbestos sampling cassettes equipped with an electrically conductive 50-mm ex-
tension cowls (19, 21, 22), with subsequent analysis by phase contrast microscopy
in accordance with the NMAM No. 7400 (236). The LOD of this procedure with
respect to fibre diameter was approximately 250 nm (301).
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Samples of individual tubes or CNT structures

The number concentrations of individual tubes or CNT structures have been deter-
mined by drawing air through MCE filters in asbestos sampling cassettes equipped
with an electrically conductive 50-mm extension cowls, followed by analysis with
SEM or TEM in accordance with NMAM No. 7402 for asbestos fibres (57, 103,
177,237, 321). In two of these cases, the filters were coated with carbon and
mounted onto carbon-coated nickel or copper grids (57, 103, 177, 337), and in

the other, the filters were coated with nanogold (21) or platinum-palladium (244).
The numbers of individual tubes or CNT structures were counted and their morpho-
logy and size characterised. Note that the World Health Organization (WHO)
rules concerning fibre counting (354) cannot be followed strictly due to tube
length shorter than 5 pum and CNTs often not have the typical fibre dimensions
(see Section 6.2.3).

Chemical composition

There are several available techniques to determine the chemical composition of
a CNT sample e.g., ICP-AES for tracing metals (203), and electron microscopy
with energy-dispersive x-ray analyser (EDX) for elemental analysis (19, 21, 22,
103, 177). In one study a photoelectrical aerosol sensor (PAS) was used as indi-
cator for carbonaceous particle composition (376). For additional information on
methods employed for determining chemical composition see (51).

Size-related dose metrics

Occupational exposure to airborne CNTs in workplaces has also been characterised
by measuring other metrics such as particle number concentration, particle size
distribution, particle surface area, particle morphology and size, and chemical com-
position (19, 21, 22, 56, 143, 177, 203, 209, 244, 321, 337, 376). The various
types of real-time aerosol instrumentation and off-line techniques employed are
summarised in Table 3, which also includes real-time mass concentration measure-
ments.

As discussed above CNTs can vary, e.g., in wall number, length, shape, particle
dimensions and degree of agglomeration (11), the levels and nature of impurities
(such as metal (cobalt, iron, nickel and molybdenum) from catalysts, amorphous
carbon, soot or graphite from production technique), and surface structure (which
may also be intentionally altered through functionalisation or coating with metals,
protein or polymers). The physical and chemical properties of CNTs and, thereby,
their dosimetry can be influenced by all these factors. Thus, conversions, for
example, of number size distributions to other dose metrics such as mass involve
assumptions concerning particle shape and effective density and are therefore asso-
ciated with a great deal of uncertainty. Measurements of exposure to airborne
CNTs must be complemented with characterisation of the bulk material, e.g., sur-
face area by the BET method (see Section 3.5).
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Table 3. Techniques employed for characterising CNT aerosol exposure in workplaces.

Metric/Technique Range of mea- Detection limit Reference
surement (nm)
Particle number concentration
Fast mobility particle sizer (FMPS) 5.6-560 Lower: ~100 (19,21, 22)
particles/cm’ at
10 nm to ~10
particles/cm’ at
100 nm. Upper:
~1 000 000
particles/cm®
Aerodynamic particle sizer (APS) 500-20 000 Upper: ~10 000 (21,22)
particles/cm’
Condensation particle counter (CPC) 10-1 000 1-100 000 (19, 21, 22, 56,
particles/cm’ 143, 177, 203,
209, 244, 321)
Ultrafine condensation particle counter >3 0-100 000 (177)
(UCPC) particles/cm’
Aerosol photometer (dust monitor) 250-32 000 - (177)
Optical particle counter (OPC) 300-10 000 Upper: 70 000 (143, 203, 209,
particles/cm’ 244,321)
Size distribution
Scanning mobility particle sizer (SMPS) - (209)
and differential mobility analyzer (DMA)
4-160 (376)
4-673
14-630 (103)
14-500 177)
14-740 - (244)
SMPS (321)
FMPS and APS 5.6-20 000 - (21, 22, 244, 337)
APS (103)
UCPC 14-630 - (103)
Electrical low pressure impactor (ELPI) - - (209)
Aerosol photometer (dust monitor) 250-32 000 - (177)
Surface area
Diffusion charger (DC) (56, 209)
Mass concentration (real-time measurements)
OPC 300-10 000 - (203)
Aerosol photometer (Dust Trak) <2500 (376)
100-10 000 - (21,22, 56)
ELPI - - (209)
Dust monitor - - (321)
Aethalometer (black carbon particles) - - (103, 177)
Particle morphology, size and number concentration (off-line)
Thermophoretic precipitator (TP) 1->100 - (19,21, 22)
Electrostatic precipitator (ESP) 1->100 - (19, 21, 22, 209)

Transmission electron microscopy (TEM)
Scanning electron microscopy (SEM)
Scanning transmission electron micro-
scopy (STEM)

Chemical composition

Photoionisation potential with photo-
electric aerosol sensor (PAS)
Energy-dispersive x-ray analyser (EDX)

Lower: 1 nm

Upper: 1 000
ng/m’

(19,21, 22, 143)
(19, 21, 22, 203, 321)
(103, 177)

(376)

- (19, 21, 22, 103, 177, 209)
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Table 4. Comparisons of estimated fibre number and mass concentrations for various
sizes of CNT structures “°. Adapted from Schulte et a 2012 (300).

Fibre dimension Fibre number concentration Fibre mass concentration
Diameter x length (nm) (fibre/cm®) that is equivalent (ug/m’) that is equivalent to
to 7 pg/m’ 0.1 fibre/cm®
2 x 500 2200 000 0.0000003
25 x 1000 7 100 0.00098
5 x 188 000 950 0.00074
100 x 50 000 8.9 0.078
29 x 773 000 6.9 0.10
2110 x 10 000 0.10 7.0

*Based on assumption of individual structure volume and density (~2 mg/cm®).
® Note that airborne CNTs in workplaces rather are agglomerated than individual structures.

Typically in connection with exposure to CNTs, a small mass concentration
could contain a large number of CNT structures (both individual structures and
agglomerates) due to low density. Schulte and co-workers have made comparisons
of the mass and particle number concentrations for CNT structures of various sizes
(Table 4) based on the assumption that the fibre number concentrations were equi-
valent to one given specific mass concentration (7 pg/m?) and the fibre mass con-
centration was equivalent to one given fibre number concentration (0.1 fibre/cm®)
(300).

Most measurements of exposure to CNTs in different workplaces have deter-
mined mass and particle number concentrations. No direct measurement of the
specific surface area of airborne particles is available (see the earlier discussion
in Section 3.5).

One problem by measuring mass concentration for CNTs can be that a non-
detectable mass does not mean a non-detectable number concentration, and the
number concentration can instead be significant (143). Another problem asso-
ciated with quantification of airborne CNTs is that dust sampling (both total and
respirable) also includes all other airborne particles including EC particles from
e.g., diesel emissions and seasonal burning of biomass (300). The degree of speci-
ficity can be addressed by examining the sample with TEM, SEM or scanning
transmission electron microscopy (STEM). By the determination with electron
microscopy methods the nature of the particles collected can be identified. In the
future, continuous, parallel dust sampling with filter cassettes equipped with MCE
filters for TEM analysis or polycarbonate membrane filters for SEM analysis will
be necessary to evaluate specificity (210, 244, 321). Some attempts have been
made to quantify airborne CNTs at the workplace (39). However, microscopy-
based methods have not yet been developed for counting CNT structures and it is
not clear how to count CNT fibre-like structures in heterogeneous structures e.g.,
individual CNT structures within an agglomerate (300). In workplaces the CNT
structures are often agglomerated rather than individual structures (196, 300).

Total EC is another metric employed to assess exposure to CNTs and carbon
nanofibres, but again parallel characterisation with TEM, SEM or STEM might be
necessary to validate EC as a marker for CNT exposure.
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The concentration of fibres has also been used to assess the exposure to CNTs
(NMAM No. 7400 (236)) but this procedure only analyses fibres in micron size
(>0.25 pm) and therefore could no individual or agglomerated CNTs be quantified
(21, 22).

The number concentration of individual tubes or CNT structures has also been
measured with TEM/SEM/STEM, together with, for example NMAM No. 7402
(237).

Although particle surface area might be a relevant dose metric concerning expo-
sure to CNTs, it is not presently possible to perform personal sampling of surface
area due to lack of portable/personal sampling instruments. However, personal
monitors for determination of surface areas are under development. Today, the
surface area of airborne particle cannot be measured directly, and the indirect
methods employed often involve assumptions that are far from being valid for
fibres.

Conclusion on air exposure measurements

Although there are a variety of methods and instruments, it is at present not clear
which metric for air sampling is most closely correlated with the toxicological
effects of CNTs. The different metrics used so far to describe occupational expo-
sure to CNTs are difficult to compare. Until the most relevant metric has been
identified (294) exposure to CNTs should be assessed with multiple dose metrics
(e.g., EC, number of CNT structures/cm’, respirable dust). Personal full-shift and
time-integrated measurements of above suggested exposure markers can be used
to quantify exposures of CNTs.

5.2 Dermal exposure

To date, potential dermal exposure to SWCNTSs has been evaluated using cotton
gloves placed over the rubber gloves normally worn by the worker, as a surrogate
for the skin on the hands. The cotton gloves are removed immediately after
handling the SWCNT material; placed in separate, sealed plastic bags; and later
analysed for iron and nickel as surrogates for total nanotube mass by ICP-AES.
SWCNT mass was estimated assuming that a combination of nickel and iron cata-
lyst particles constituted 30% of the mass of this material. The ratio of iron to
nickel was derived from the glove samples. The LODs for iron and nickel were
0.161 and 0.046, respectively (203).

Potential dermal exposure to MWCNTSs has been measured using wipe samples
collected on different surfaces in the vicinity of a loom in a textile-producing
factory weaving with MWCNT-coated yarn (321). Areas of 100 cm” were wiped
with 1x1.5 cm quartz fibre filters and the EC content of these filters then analysed
with a carbon aerosol monitor. The amounts of EC on the shelf plate near the reels
and on the top of the loom were 0.05 and 0.03 pg/cm?, respectively. Thus, large
numbers of fragments from the MWCNT-coated yarn were deposited close to
where a strong mechanical force was applied to the yarn.
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6. Occupational exposure data

6.1 General

Occupational exposure to CNTs can occur during the whole life-cycle of CNTs;
from research in laboratories, production (primary manufacturing), research and
development for incorporation of CNTs in products (secondary manufacturing),
and down-stream applications e.g. manipulating and machining of products con-
taining CNTs as well as via disposal and recycling. Workers are generally exposed
to higher levels than the general population (21, 239, 361).

Even though during the research and developmental phases, the material is
produced in very small quantities under controlled conditions (11), airborne ex-
posure to CNTs does occur in research laboratories (57, 103, 143, 177). The
closed systems generally utilised in the production of CNTs make the likelihood
of exposure during this phase small (11). Maynard and co-workers reported that
production of SWCNTs by the HiPCO process appears to lead to higher air
concentrations and higher levels of glove contamination than other production
methods. This may reflect the fact that HIPCO preparations have a lower bulk
density and therefore become more easily airborne, than the more compact
SWCNTs produced by laser ablation (203).

Emissions and thereby occupational exposure can occur directly in connection
with the following sorts of activities in workplaces: primary manufacturing/syn-
thesis, extraction/recovery/determination of yield (collection and manual transfer
of product), handling/processing (weighing, mixing, drying, spraying, sonication,
deliberate agitation), packaging/bottling, cleaning operations, cutting and sawing,
and waste treatment (11, 57, 78, 110, 209). Handling of dry CNT powder is
suggested to result in the highest level of exposure (11, 57). Kohler and colleagues
found that CNTs are released into the air as agglomerated bulk powder rather than
as individual nanotubes (171) (see Figure 1).

Aschberger and colleagues point out that future use of CNTs in drug delivery
systems and for imaging may lead to occupational exposure of workers who manu-
facture and administer these preparations (11).

6.2 Airborne exposure

The limited data on occupational exposure to airborne CNTs currently available
are summarised in Table 5. Both stationary measurements and measurements in
the breathing zone of workers have been performed. In some cases, air samples
were taken during specific procedures (e.g., during CVD growth of CNTs or
during removal of the CNT powder produced) and in these cases the sampling
time was often short (19, 203). The mass concentrations of airborne CNTs were
measured at manufacturing facilities, packing facilities and research laboratories
and the number concentrations of individual tubes or CNT structures were deter-
mined at primary manufacturers, research laboratories and in connection with
down-stream applications. The mass concentrations of airborne EC in primary
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manufacturers, secondary manufacturers and associated with one down-stream
application have also been reported.

The characteristics of CNTs from workplaces producing and handling different
types of CNT material are shown in Table 6. In this case all of the measurements
were stationary, with the exception of one conducted in the breathing zone of the
operator (21). Phase contrast microscopy cannot reveal whether CNTs are present
as agglomerates or not. In eight of these investigations analysis by SEM or TEM
revealed particles related to CNTs (103, 143, 177, 203, 209, 244, 321, 337), pri-
marily agglomerated CNT structures or CNT tubes attached to clusters of nano-
particles.

6.2.1 Mass concentration

Primary manufacturers

Only a single study on airborne exposure in workplaces producing SWCNTSs has
been performed (203). Personal sampling was performed at four different facilities
in the US that make SWCNTs either by the HiPCO procedure or laser ablation.
The production vessels were placed into enclosures with clean air prior to removal
of the powder. Airborne levels of SWCNTs were measured during the period
(approximately 30 minutes) the worker spent in this enclosure removing the crude
SWCNT material from the production vessel and handling it prior to processing.
The mass concentration of unrefined SWCNTs in personal air was estimated to be
0.7-53 pg/m’, with the peak value recorded by the real-time instruments of 1 600
ng/m’ being associated with the use of a vacuum cleaner inside the enclosure
(Tables 5-6).

To date, exposure has been assessed primarily in workplaces where MWCNTs
are used or handled and most of the levels of total dust, both in personal and
stationary measurements, have been approximately 100 pg/m’ or less (Table 5).
The first evaluation of occupational exposure to MWCNTSs involved a research
facility with monitoring both before and after implementation of protective mea-
sures. Personal exposure to airborne MWCNTs (total dust) ranged between not
detectable (ND) and 332 pg/m’ prior to the installation of protective equipment
and between ND and 31 pg/m’ afterwards. The corresponding ranges for sta-
tionary exposure were ND-435 pg/m’® and ND-39 pg/m’. No LOD was reported.
The stationary concentration of black carbon rose to as high as 200 pg/m® when
the blending equipment was opened, which may indicate release of MWCNTs
(103).

Lee and colleagues assessed exposure in seven workplaces where MWCNTSs
are handled. The combined mean mass concentrations for all personal and
stationary samples were 106 and 81 pg/m’, respectively. Some of the personal
measurements were performed for 3.1 and 6.0 hours and some of the stationary
ones for 3.2 and 6.8 hours, but the range of sampling time was not reported. Nano-
particles and fine particles were most frequently released after opening the CVD
cover. Other work processes associated with particle emissions were catalyst pre-

21



paration, spraying, CNT preparation, ultrasonic dispersion, wafer heating, and
opening of the cover to the water bath (177).

When personal measurements of airborne MWCNTSs were performed in two
packing facilities, one with manual operations and the other automated, the back-
ground level was virtually the same (240 pg/m®) in both cases. However, the
workers in the automated packing facility were exposed to almost 10-fold lower
concentrations (290 versus 2 390 pg/m’, respectively) (322).

Down-stream applications

In one investigation, PM (equivalent to thoracic dust) was measured with an aero-
sol photometer (Dust Trak) both in the personal breathing zone of the operator and
at the source (saw) during both wet cutting (diamond saw) and dry cutting (band
saw) of two CNT composite laminate material (CNT-alumina and CNT-carbon)
(Table 6). Samples without CNTs were also fabricated for comparison (base-alu-
mina and base-carbon). The mean dust concentrations in the breathing zone of the
operator during dry cutting in CNT-alumina and CNT-carbon were 800 and 2 400
ng/m’ (corrected for background), respectively, with corresponding values at the
source of 2 110 and 8 380 pg/m’. Wet cutting in all, but one test (broken guard)
reduced exposures to background levels (21).

The data documented in Table 5 allow the personal exposure associated with a
certain work process or situation to be assessed. Manual packing and blending
with open equipment result in the highest exposures. The mean and median levels
of personal exposure during synthesis of CNT material were estimated to be 365
and 53 pug/m’, respectively. It is important to note that occupational exposure to
CNTs was higher in those facilities lacking process control and with lower indu-
strial hygiene (103, 177).

6.2.2 Mass concentration of elemental carbon

Primary manufacturers

The average EC concentrations from personal and stationary measurements per-
formed at three primary facilities for manufacture of CNTs were 2.42 ;.Lg/m3 (range
0.68-5.25 pg/m’, n=7) and ND-4.62 pg/m’ (n=10), respectively. In five outdoor
background samples the mass concentration of EC ranged from ND-0.89 pg/m’
(57).

Secondary manufacturers

The same study as above also included three secondary manufacturers of CNTs and
of the nine personal measurements, two showed no amounts of EC, while in the
other the EC concentration ranged between 0.8 and 7.86 pg/m’. The two highest
values were observed in connection with extrusion, weighing, and mixing (7.86
ng/m®) and weighing, mixing and sonication (7.54 pg/m®). In the stationary sam-
ples (n=13) the mass concentration of EC ranged between ND and 2.76 ug/m3.
The one outdoor background sample collected contained no detectable EC (57).
This study demonstrated that extensive exposure to CNTs also occurs in secon-
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dary manufacturing (i.e. development of composite and polymer material) during
handling of dry powder (including mixing and weighing) even when protective
measures are in place (e.g., chemical fume hoods and glove boxes).

Down-stream applications

During weaving with MWCNT-coated yarn in a textile factory both personal and
stationary air samples were taken and the respirable dust (<6.6 pm) collected with
Sioutas cascade impactors. Two personal samples contained 3.5-4.8 ug EC/m’ and
the four stationary values ranged from 1.1-5.3 pg/m’. The background concentration
of EC was lower than 5.3 ug/rn3 (321).

6.2.3 Fibre and number concentration of individual tubes or CNT structures

To date a standardised protocol for counting CNTs is missing and it is not clear
how CNT fibre-like structures should be counted when the CNT structures are very
heterogeneous and often do not have the typical fibre dimensions. Therefore, fibres
of CNT are counted on different criteria’s. In some of the studies described below,
fibres were counted (based on the definition by WHO (354), which requires a mini-
mum length of 5 um and a length:width ratio of >3:1), while others quantified
CNT-containing structures (57, 196, 300). In studies counting CNTs according to
NMAM No. 7400 (236), CNT structures <0.25 um cannot be observed (21, 22).

Primary manufacturers

During CVD growth and subsequent handling of CNTs in a research laboratory,
assessment of the concentration of respirable tubes in a worker’s breathing zone
revealed no nanoscale fibres or fibrous bundles (19).

In other CNT production and laboratory facilities, personal and stationary
measurements of respirable tubes were carried out prior to and after implementa-
tion of protective control measures. Personal exposure was up to 194 tubes/cm®
before and 0.02 tubes/cm’ after protective measures, with corresponding stationary
values up to 173 and 2.0 tubes/cm’® (103).

Assessment of personal breathing zone samples (n=7) collected at three primary
manufacturers of CNTs by TEM revealed 0.003-0.399 CNT structures/cm’, while
the stationary samples (n=9) exhibited ND-0.134 CNT structures/cm’ (57).

CNT cluster particles were detected in one out of six stationary samples collected
during manufacturing and handling of CNTs. The number concentration in the air
at the hood opening was 0.002 cluster particles/cm’ for particles larger than 3 pm
(244).

Assessment of personal breathing zone samples from a worker involved in the
production MWCNTs (arc discharge) revealed 0.57 CNT structures/cm’ after
nearly 6 hours of work, while stationary air samples collected during cleaving
of deposits containing as produced MWCNTs and sieving had concentrations of
3.4 and 11.1 CNT structures/cm’, respectively. The full day personal exposure
measurement also showed clear signs of exposure to free CNT fibres and CNT
containing particles with 0.32 CNT fibres/cm” as respirable fraction sampled air
in the breathing zone (196).
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Secondary manufacturers

Assessment of personal breathing zone samples and stationary samples (n=6)
collected at three secondary manufacturers of CNTs by TEM revealed ND-1.613
CNT structures/cm® and ND-0.295 CNT structures/cm’, respectively (57).

Down-stream applications

Dry cutting and drilling in CNT-containing composites resulted in extensive expo-
sure to nanoscale and fine particles, as well as to respirable fibres (21, 22). Fibre
concentration was assessed according to the WHO definition (354) and NMAM
No. 7400 for asbestos (236), see previous page. Dry cutting resulted in an expo-
sure level of 1.6 fibre/cm’®, while the corresponding value during drilling was 0.7-
1.0 fibre/cm® (22). Although no individual CNT structures or bundles could be
identified among the fibres and particle agglomerates that resulted from cutting
(21), drilling did produce airborne aggregates of CNTs (22), clearly indicating
the occupational exposure to CNTs during machining of composite materials con-
taining CNTs.

Another report has described MWCNTs sticking out of larger particles resulting
from mechanical sanding of a composite containing 1% MWCNTSs (101).

During textile production involving weaving with MWCNT-coated yarn, with
the exception of a single sample, no individual nanosized fibrous MWCNT par-
ticles could be observed with SEM (321). However, many particles of micron size,
apperently fragments of the yarn were present.

Furthermore, by doping with different levels of CNTs (e.g., 0.2-2 wt%), the
mechanical strength of concrete can be enhanced (8, 299, 361). Accordingly,
occupational exposure to particles containing CNT or individual CNTs in con-
nection with drilling or cutting and during demolition and recycling of such re-
inforced concrete may occur (299).

6.2.4 Particle number concentration and size distribution
Primary manufacturers
Opening the CVD cover in one primary manufacturing facility resulted in the re-
lease of nanoparticles with a mode diameter of approximately 20 or 50 nm and a
geometric mean number concentration that rose to 11 000 par‘cicles/cm3 (177). For
more information about the used aerosol instruments see Table 3. In another in-
stance, opening the growth chamber with or without proper ventilation led to 300
and 42 400 particles/cm” air, respectively (209). Furthermore, cleaning the inside
of the enclosure to remove powder caused very high particle number concentrations
(as high as approximately 760 000 particles/cm’) (203). However, in another re-
search laboratory, no elevation in the total number concentration or size range of
airborne particles was observed during CVD growth and handling of CNTs (19).
Tsai and co-workers reported that particle concentrations measured at the source
of CVD production of SWCNTSs peaked at a dimension of 50 nm and were as high
as 10 000 000 particles/cm® (337).

24



During weaving with MWCNT-coated yarn in a textile factory the number con-
centration of airborne particles <50 nm (mobility diameter) rose to 17 100 particles/
cm’, whereas during weaving with polyester that did not contain MWCNTS this
value was approximately 1 500 particles/cm’. The particle size distribution for par-
ticles emitted during weaving with MWCNT-coated yarn had a maxima around
100 nm; and the particle number concentration for the peak of the size distribution
was 27 000 particles/cm® (321).

Dahm and colleagues reported extensive emission data from three primary manu-
facturers including particle number concentrations as high as 97 000 particles/cm’.
Measurements of respirable mass and active surface area concentrations were pre-
sented as well (see further Table 6) (56).

Secondary manufacturers

Monitoring of airborne particles during blending of MWCNTs in a research
laboratory in real time revealed that the number concentration rose to over 12 000
particles/cm’, with a size range of 14-630 nm (103). Physical handling of and
other production activities involving nanomaterials (CNTs and other fullerenes)
in a commercial nanotechnology facility resulted in short-term increases the
number concentrations of airborne particles (376). Moreover weighing raw and
functionalised MWCNTs and sonication of CNT-spiked water resulted in values
as high as 2 780 particles/cm’ (143), while weighing without exhaust and soni-
cation of raw MWCNTSs resulted in as many as 1 580 and 2 800 particles/cm’,
respectively (209).

Machining of composite material containing CNTs generated very high numbers
of particles (21, 22). The stationary (determined approximately 10 cm from the
source) and personal (breathing zone) values during dry cutting were 294 000 and
153 000 particles/cm’ air, respectively (21). Stationary sampling (again 10 cm from
the source) during high- and low- speed drilling of CNT-containing composites re-
sulted maximally in 11 000 000 and 3 900 000 particles/cm’ air, respectively, with
corresponding personal values of 1 300 000 and 2 900 000 particles/cm’. The size
range of the particles produced by dry cutting was of 5.6 nm-20 um and the size
distribution was polydisperse, exhibiting maxima at 12, 20, 230+20 nm and 140.1
pm (21).

In another study, extensive emission data from three secondary manufacturers
were reported. The highest particle number concentration (156 000 particles/cm’)
were observed in connection with extrusion. In addition, data on mass and surface
area concentrations were reported (Table 6) (56).
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6.2.5 Particle morphology
Examination of stationary filter samples collected at SWCNT production facilities
by SEM indicated that the particles were agglomerated (203).

STEM analysis of filter samples from a research laboratory where both produc-
tion and subsequent handling occurred revealed exposure to airborne MWCNTSs
with an average tube diameter and length of approximately 54 nm and 1.5 pm,
respectively, and various shapes, including individual tubes, multiple tubes and
clumped tube structures (agglomerates) (103). These MWCNTs demonstrated a
strong tendency to form ropes due to van der Waals forces.

In another study, a multitude of CNT filaments a few nm in diameter and a few
nm to several um in length were seen to be attached to clusters of nanoparticles
upon analysis by TEM (337). In contrast, filter samples from another CNT produc-
tion facility evaluated in the same manner did not reveal the presence of CNTs,
but larger carbonaceous particles, up to 1 um, were seen, especially during the
opening of the furnace (19). In addition, TEM evaluation of samples collected
during processing (such as weighing and sonication) of raw MWCNTs in a lab-
oratory detected no typical tubular structures (143). In connection with dry cutting
of CNT-containing composites, no clearly distinguishable contours of individual
CNTs, bundles of CNTs or CNTs attached to larger particles could be observed
(21). On the other hand, drilling of CNT composites generated airborne clusters
of CNT aggregates of respirable size (a few pm) (22). In the study by Dahm and
colleagues, the CNT structures ranged from single CNTs to large agglomerates
(57).

6.2.6 Chemical composition

Depending on the method used for producing CNTs, impurities in the form of cata-
lyst particles, amorphous carbon and non-tubular fullerenes are also produced (78).
In one study, analysis of personal air samples revealed that SWCNTs produced by
the HIPCO method contained 30% catalyst metals (iron and nickel) (203). Aerosol
particles collected during production of MWCNTs by the CVD method contained
iron catalyst (337). In contrast, no iron or nickel were detected in another study ana-
lysing chemical composition of airborne MWCNTs produced by the CVD method,
even though these metals were employed as catalysts during the synthesis (103).
Airborne particles and fibres produced during machining of different CNT con-
taining composites typically contained the elements carbon, oxygen, iron, cobalt,
nickel, aluminium and silicon. Aluminium and silicon were found only on TEM
grids from cutting CNT-alumina composites. Silicon was found in the alumina
fibre itself (21).

The MWCNTSs used for generation of MWCNT-aerosol in animal inhalations
studies showed presence of metal oxide impurities e.g., 9.6 wt% aluminium and
traces of iron and cobalt (total 0.4 wt%) (198), 0.38 wt% cobalt (255), and 0.53
wt% nickel, 0.08 wt% sulphur, 0.02 wt% magnesium, <0.01 wt% sodium and
vanadium and <0.005 wt% for all other tested metals (75). For more details of
metal impurities in individual studies, see Chapter 11.
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Conclusion on airborne exposure

The number of exposure and emission measurements performed at workplaces is
few and the occupational exposure data is limited. Both stationary and personal
measurements have been performed, but often under a specific exposure situation
and during a short sampling period. Most studies used real-time aerosol instruments
for monitoring exposure, but also filter-based methods have been used. When
filter-based samples collected during manufacturing/handling of MWCNTSs were
analysed, the mass concentrations of total dust and inhalable/respirable EC were
typically up to 100 pg/m® (range ND-2 390 pg/m®) and 5 ug/m® (range ND-7.86
ng/m?), respectively, and the number concentrations reported were commonly

up to 0.01 CNT structures/cm?® (range ND-194 CNT structures/cm’). The corre-
sponding ranges extracted from the few studies concerning SWCNTs were 0.7-53
ug/m3, 0.68-3.28 ug/m’® and ND-0.013 CNT structures/cm’ (Table 5). Real-time
aerosol monitoring during production/handling of MWCNTs revealed mass con-
centrations up to 3 468 pg/m’, particle number concentrations as high as 3x10°
particles/cm® and surface areas up to 2 501 pm?*cm?®. For SWCNTs these values
were 1 600 pg/m®, 107 particles/cm® and 72 pm*/cm® (Table 6). Extensive exposure
were reported in connection with transfer, weighing, mixing, milling, blending,
spraying and packing, but also when preparing CNT-composites.

The exposure concentrations reported so far vary widely. The level of exposure
is dependent primarily on 1) the properties of CNTs, 2) the specific work task, and
3) the exposure control. It is difficult to assess representative exposure levels at
different work conditions. With the available sampling techniques it is possible to
evaluate the effectiveness of engineering controls to airborne exposure to CNTs.
Based on the knowledge so far real-time aerosol instruments are non-specific and
erroneous conclusions regarding workplace exposures can potentially be drawn
according to Dahm and co-workers (56). To be able to confirm and quantify expo-
sures of CNTs selective, time-integrated, laboratory-based methods must be used.

6.3 Dermal exposure

In connection with the manufacturing and handling of CNTs, particulate matter
might be deposited on the unprotected skin of workers (174). The one report on
potential dermal exposure to unpurified SWCNTSs published to date documents
deposition of an estimated 0.2-6 mg on the glove on each hand (203). In most
cases, glove contamination was clearly visible at the end of the sampling period,
chiefly on the inner surfaces of the fingers and on the palms. The maximal daily
dermal exposure was calculated to be 14.3 pg/cm?/day (78) or 1.2 mg/person (11),
and could be reduced by 90% by wearing gloves (78).

The HiPCO process for production of SWCNTs appeared to lead to a higher
level of glove contamination than production by laser ablation (203). Moreover,
with HiPCO synthesis there is a propensity for large clumps (agglomerates) of
SWCNTs to become airborne during handling of the material (203).
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Another investigation designed to assess potential dermal exposure to MWCNTs,
involved wipe sampling of surfaces during weaving with MWCNT-coated yarn
(321). It was demonstrated that dust containing fragments from the MWCNT-
coated yarn was deposited on surfaces near the loom.

6.4 Oral exposure

No reports concerning oral exposure to CNTs could be found.

7. Toxicokinetics

Of the three major potential routes by which CNTs could be taken up by humans
-- namely, inhalation, dermal absorption and ingestion -- in the workplace the
first two routes, and in particular inhalation, are most important. However, in ex-
perimental situations, CNTs can also be administered by intraperitoneal (i.p.),
intrapleural, intravenous (i.v.) and intrascrotal injection, as well as by intratracheal
(i.t.) instillation and pharyngeal aspiration.

Our current knowledge on the toxicokinetics of CNTs is based on a small number
of animal studies involving various kinds of CNTs and routes of administration and
designed to elucidate the potential hazardous effects of commercial CNTs or the
influence of functionalisation on drug delivery. The physical dimensions, chemical
modifications, number of animals employed, and other aspects of the investigations
described in this chapter are summarised in Table 8.

The mechanism of cellular uptake of CNTs is not fully understood. Published
data suggest that CNTs can be taken up by cells via phagocytosis, pinocytosis,
caveolae- and clathrin-mediated endocytosis, diffusion or by piercing the cell
membrane. Phagocytosis and pinocytosis are the main pathways for macrophages
whereas clathrin- and caveolae-mediated endocytosis are used by most cells in-
cluding endothelial cells. The different mechanisms of cell uptake may be due to
the different surface characteristics of CNTs, but may also be size dependent (15,
96, 106, 218).

7.1 Pulmonary deposition

In general, the site of deposition of particles in the respiratory tract is determined
by several physical processes, i.e., impaction, diffusion, sedimentation, interception
and electrostatic precipitation. Spherical particles larger than approximately 500 nm
and smaller than approximately 10 nm in diameter will be deposited in the head
airways and bronchial region by impaction and diffusion, respectively. Particles
of intermediate sizes can penetrate deep into the lung, where some of them will be
deposited, mainly by diffusion (114). In the size range of 200-500 nm deposition
is minimal, with only approximately 20% of the particles being deposited (based
on the International Commission on Radiological Protection (ICRP) model) (127)
and the rest exhaled.
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In the case of non-spherical nanomaterials, such as nanofibres, the pulmonary
deposition is more complex and not as well understood. The “apparent diameter”
that determines the deposited fraction and site of deposition requires further
definition and, moreover, is dependent on the mechanism of deposition under
consideration. For example, in the size range where diffusion is the dominant
mechanism, the particle mobility diameter has proven to be directly proportional to
the particle diffusion, and thereby the major determinant of deposition (114, 279).

The critical determinant of how deep in the lungs long fibres will travel before
being deposited is the acrodynamic diameter (127, 324). This parameter is defined
as the diameter of a spherical particle of unit density that has the corresponding
gravitational settling velocity and provides a measure of the extent to which the
particle/fibre follows the flow of air (114). A large aerodynamic diameter favours
impaction in the upper airways, where the air velocity is high. Typically, the aero-
dynamic diameter of a fibre is three times the diameter of the fibre (68, 189). The
aerodynamic diameter is not strongly dependent on fibre length as fibres tend to
align parallel to the flow axis in the airways (327).Thus, fibres of several tens of
pum may reach into the deep lung.

Due to their large size, ceramic fibres are not deposited to any great extent by
diffusion, although diffusion does affect the alignment of such fibres in the airflow
and, thereby, the probability of interception. CNTs are generally shorter and thinner
than ceramic fibres and thus the Brownian motion affect the alignment in the air
flow considerably. Furthermore, due to the Brownian motion, for fibres shorter
than a few hundreds of nanometers, deposition by diffusion increases considerable
(126) and thus the mobility diameter might be more important than the acrodynamic
diameter determining the fibre lung deposition.

Dealing with the much larger, micron sized mineral fibres, Morgan and collea-
gues demonstrated that for glass fibres 5-60 um in length (1.5 pm in diameter)
deposition in the lower respiratory tract decreases with increasing length, a pheno-
menon they explained as reflecting elevated deposition in the upper respiratory
tract instead. Fibres longer than 30 um exhibited virtually no alveolar deposition,
whereas fibres approximately 10 um in length were recovered to a significant
extent at this location (214). In general, CNTs have smaller diameters and lower
densities and may therefore penetrate deeper into the lungs compared to glass
fibres (214). In a semi-empirical model study by Hogberg and colleagues, deposi-
tion in the pulmonary region was most extensive for fibres 10-100 nm in diameter
and with lengths of several micrometres, two properties shared by many MWCNTs
(126).

Fibres deposited in upper the airways, where mucociliar movement acts as a
clearing mechanism, will be moved up to the larynx and swallowed, resulting in
secondary oral exposure. For the fibre paradigm (see Section 9.2) to become signi-
ficant, fibres must follow the airstream down to and be deposited in pulmonary
regions where the major defence and clearing mechanism involves macrophages.

Critical determinants of the fate of inhaled CNTs are their shape and state of
aggregation/agglomeration. Bundles or larger aggregates have much larger aero-
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dynamic diameters than individual CNTs and are consequently deposited higher up
in the respiratory tract. As discussed further in Chapter 10, the state of aggregation
is relevant not only to deposition, but also to the translocation, uptake and toxico-
logical response.

7.2 Uptake

7.2.1 Uptake via lungs

Several studies have shown that substantial amounts of CNTs remain in the lungs
up to several months after pulmonary exposure (1, 63, 75, 222, 255, 265), indicating
that these CNTs are biopersistent in the lungs (see further Sections 7.5 and 9.2).

In one recent study, uptake of CNTs from the lungs to the systemic circulation
has been demonstrated following administration of SWCNTs (diameter 0.8-2.4
nm) to mice by inhalation. The SWCNTs were detected by Raman spectroscopy
in the alveolar region of the lungs and in the blood 24 hours after a single expo-
sure, but no quantitation of the uptake was performed (132). Furthermore, inhaled
MWCNTs (length 0.3-50 um) appear to reach the subpleural tissue, being recovered
in the subpleural wall and within macrophages (284), and MWCNTs (median length
3.9 um, dose 20-80 pg) administered by pharyngeal aspiration rapidly reach the
visceral pleura (207, 265). Microscopic examination of mice exposed to a single
dose of MWCNTs at concentrations of 80 ug by pharyngeal aspiration showed
that MWCNTs had migrated to the pleura 56 days after exposure (265).

Macrophage phagocytosis of dispersed SWCNTs was rarely observed when ad-
ministered by pharyngeal aspiration to mice (208), but SWCNTSs were detected in
alveolar macrophages in rats following inhalation as well as i.t. instillation (164,
215) and in macrophages of the interstitial tissues following i.t. instillation (164).

L.t. instillation of MWCNTSs to mice resulted in deposition in the lung, but no de-
tectable levels in the blood (63). Similar observations were made when MWCNTs
were instilled i.t. into rats. The MWCNTs were detected in alveolar macrophages,
alveolar wall and bronchus-associated lymphoid tissue for up to 91 days post-ex-
posure (1). MWCNTs were detected in lungs by nickel impurity tracing and the
majority of CNTs were recovered in parenchyma and alveolar cells. After 1 month
the CNTs could be detected in lymph nodes. The CNTs were observed within
macrophages in the lung and lymph nodes. The CNTs were not found to cross the
alveolar barrier into the vascular system as no CNTs were detected in organs other
than the lung. However, it cannot be ruled out that a very limited translocation of
CNTs occurs that correspond to levels of CNTs below the detection limit of the
Ni dosage method (75). Following instillation of either raw or highly purified
SWCNTs into the lungs of rats, the nanotubes could be detected by magnetic re-
sonance imaging (MRI) in the lungs themselves, but not in any other organ (4).
One month after i.t. delivery of MWCNTs histopathological examinations using
light microscopy of internal organs such as the liver and kidney revealed tissue
damage, which was supported by increased levels of biomarkers indicative of
organ toxicity (275). The authors suggested that the effects were a consequence
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of translocation of the CNTs into these organs. However, this conclusion was
based solely on assessment of toxic effects and a description or discussion of
attempts to detect any presence of CNTs in the damaged tissue was omitted. There
is thus a possibility that the effects were induced by inflammatory mediators re-
leased into the systemic circulation and not a consequence of translocated CNTs.

An alternative route by which exposure and uptake could take place is via the
olfactory nerve. Uptake and transport of ultrafine manganese oxide particles (72)
and nanosized titanium dioxide (TiO,) particles (344) via the olfactory nerve of
experimental animals have been observed, but no information concerning possible
uptake of CNTs by this route is yet available.

There is no information about uptake in the conducting airways.

7.2.2 Uptake via gastrointestinal tract

Gastrointestinal exposure may be relevant not only in connection with direct in-
gestion, but also when CNTs are cleared from the lungs by mucociliary movement
(see further Section 7.1).

Non-functionalised SWCNTSs (diameter 0.8-1.2 nm, length 0.05-0.3 pm) were
detected both in the intestinal tissues and in several other organs including the
liver, brain and heart with TEM following administration via gastrogavage to mice
(373). Wang and co-workers delivered '*’I-labelled hydroxylated SWCNTs (dia-
meter 1.4 nm, mean length 0.34 um) to mice by gavage and found distribution to
the internal organs, with the highest '*’I-activity in the stomach, kidney, lungs and
bone, within 3 hours after exposure (342). Finally, no '*C-activity was detected in
blood or organs other than the stomach and intestines following administration of
MWCNTs functionalised with '*C-taurine via oral gavage to mice (63).

7.2.3 Dermal and subcutaneous uptake

Literature searches revealed no reports concerning dermal absorption of CNTs.
However, subcutaneous injection of hydroxylated SWCNTs into mice has been
reported to lead to uptake and prominent distribution to stomach, kidney and bone
within 3 hours (342).

7.3 Distribution

Few studies have addressed tissue distribution of CNTs following inhalation ex-
posure and the studies described below concern distribution following i.v., i.p.,
subcutaneous and oral gavage administration. Chemically modified CNTs were
employed in the majority of these studies.

SWCNTs

Twenty-four hours after dispersion of pristine SWCNTs in the detergent Pluronic
F108 and i.v. administration to rabbits, the SWCNTs were found almost entirely
in the liver, with none of the other organs examined exhibiting significant amounts
of nanotubes (43). These SWCNTSs were detected on the basis of their intrinsic near-
infrared fluorescence, but no quantification was performed.
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In contrast, Yang and collaborators reported that when pristine '*C-enriched
SWCNTs were dispersed in Tween-80, administered i.v. to mice and analysed by
isotope ratio mass spectroscopy uptake from the circulation was rapid and the
nanotubes were localised primarily in the liver, spleen and lungs after 1 day, with
detectable levels in these same organs even 7 and 28 days after exposure. A low,
but detectable level of nanotubes was also present in the brain, indicating that
SWCNTs may cross the blood-brain barrier (370). A similar study involving
doses ranging from 40-1 000 pg per animal revealed large amounts of nanotubes
in the lungs, but much lower levels in the liver and spleen 90 days post-exposure
(372).

When SWCNTs functionalised with hydroxyl groups and labelled with "'
were administered i.v. and i.p. to mice, radioactivity was detected in all major
organs, with the exception of the brain, within as little as 2 minutes. These nano-
tubes did not accumulate in the heart, lungs, muscle or skin, but were retained
in the liver, spleen, stomach, kidneys and intestine (343).

In another investigation involving i.p. injection of 1.5 pg hydroxylated and
labelled SWCNTs to mice, the biodistribution was monitored for up to 18 days.
The SWCNTSs were taken up and distributed preferentially to the stomach, kidneys,
bone, blood and skin within 3 hours and after 18 days they were still detectable in
bone. Administration by oral gavage, i.v., i.p. or subcutaneous injection resulted
in similar patterns of distribution with the stomach, kidney and bone exhibiting
highest levels 3 hours after exposure (342).

SWCNTs covalently modified with polyethylene glycol (PEGylated SWCNTS)
and administered i.v. to mice were detected within 1 hour in all major organs, ex-
cept the brain, intestines and muscles. After 7 days, significant levels of SWCNTs
were only detected in the liver and spleen, with these levels being higher than at
1 hour following exposure (369).

In another report PEGylated SWCNTSs were found to localise to the liver and
spleen 24 hours after i.v. administration and to still be present in these same organs
30, 60 and 90 days after exposure. In principle, the shorter the PEG molecule, the
higher the level of persistent retention in these organs. Lower, although detectable
levels of SWCNTSs were present in the kidneys, intestines and bladder after 24
hours (194).

SWCNTs functionalised in two different ways with the chelating agent di-
ethylenetriamine pentaacetic (DTPA) dianhydride and also labelled radioactively
with '"'In have been injected i.v. into mice and monitored by scintillation counting.
After 30 minutes, both types were detected both in the major organs (with highest
levels in the kidneys) and in the circulation, but were cleared from all organs with-
in 3 hours (311).

Positron emission tomography (PET) has been employed to follow SWCNTSs
rendered water-soluble by covalent functionalisation with the chelator 1,4,7,10-
tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), mixed with Y and
administered i.v. or i.p. to mice. The control group received a mixture of free
nanotubes, free chelating agent and **Y. Three hours after exposure, nanotubes
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had accumulated in the kidney (primarily in the cortex), spleen, liver and bone.
Lv. injection led to higher levels in the spleen and liver in comparison to i.p.
injection. After 24 hours, these levels were similar to those after 3 hours, but the
levels in the kidneys had declined, suggesting clearance of the nanotubes. The
control group demonstrated no organ-specific uptake of radioactivity and rapid
clearance of the mixture from the blood (205).

SWCNTs non-covalently linked to chitosan (a biocompatible polymer composed
of glucosamine units) were delivered i.v. to mice and subsequently detected by
Raman spectroscopy. After 24 hours, most of the nanotubes (50% of the injected
dose/g bw (50% ID/g)), were localised in the liver, which was also the case for
nanotubes further functionalised with a fluorescent probe (40% ID/g). Significant
uptake into the spleen and kidneys also occurred (150).

In another investigation involving detection by Raman spectroscopy, mice were
injected i.v. with SWCNTSs (the vehicle, dispersant and/or functionalisation not
indicated) and selective monitoring of the liver revealed accumulation starting 10
minutes after exposure and increasing for the next 90 minutes. Moreover, nano-
tubes remained present in the liver until the end of the experiment 12 days after
administration (155).

Two forms of SWCNTs -- functionalised with PEG molecules (diameter 1-5 nm,
length 0.1-0.3 um, molecular weight of either 2 000 or 5 400 Da) and SWCNTs
further functionalised with arginine-glycine-aspartic acid (RGD)-peptides --
were labelled radioactively with ®*Cu and injected i.v. into mice. Both SWCNT-
PEG2000 and -PEG5400 were taken up by organs within 24 hours, mostly by the
liver and spleen, with less uptake of SWCNT-PEG5400 than of SWCNTs func-
tionalised with the shorter PEG2000 molecule. Further functionalisation with the
RGD peptide resulted in a similar pattern of uptake, but with somewhat higher
levels in the lungs and kidney. When the mice were pre-injected with US7MG
tumour cells, RGD-bearing SWCNTs were taken up to a larger extent by these
tumour cells than were SWCNTSs bearing only PEG molecules. These observations
based on radioactive detection were confirmed by Raman spectra (193). It should
be noted that these SWCNTs were much shorter (0.1-0.3 pm) than the CNTs
employed in most other studies.

MWCNTs

Translocation of MWCNTs to lung associated lymph nodes was detected in mice,
but only at the end of a 13-week inhalation exposure (255). The biodistribution of
MWCNTs functionalised with '*C-labelled-taurine (which results in good solubility
in aqueous solutions) and delivered to mice by i.v. or i.t. injection or by gavage
(10 pg/animal) was examined. Shortly after i.v. administration, MWCNTSs were
detected in the heart, liver, lung and spleen, but not in the brain, stomach, muscle,
bone or intestines. After 28 and 90 days, 80% and 20% of the MWCNTSs injected,
respectively, remained in the liver. After being delivered i.t., 78% of the dose was
detected in the lungs 1 day later and 20% remained in this organ after 28 days.
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Following oral gavage MWCNTs were present in the stomach, small and large in-
testine, but not in the systemic circulation (63).

Followingi.p. injection of MWCNTs functionalised with *™Tc and glucosamine
into mice, the nanotubes were distributed within 1 hour to major organs, including
the blood, heart, lungs, liver, spleen, kidneys, stomach, intestines, fur, muscles and
enterogastric region. Twenty-four hours later, radioactivity was still present in these
animals, especially in the stomach (97).

The distribution of oxidised MWCNTs labelled for detection with the fluorescent
molecule porphyrin was characterised 1, 7 and 130 days following subcutaneous
injection into mice. Fluorescence was observed in the heart, liver, spleen, lungs,
kidneys and submucosa. The intensity of the fluorescence seen in the liver, spleen
and kidneys increased initially, but was lower after 130 days than after 7 days in
the case of the spleen and kidneys. Fluorescence was still present at the site of in-
jection after 130 days (141).

Following labelling with '*C in another investigation, MWCNTSs were sonicated
with serum, and given i.v. to rats, after which their distribution was monitored by
radioimaging. The nanotubes were rapidly cleared from the blood and taken up
into organ, in particular the liver, but also the lungs, spleen and kidneys. No other
organs exhibited any detectable uptake. The levels of nanotubes in all organs ex-
amined decreased from 1-14 days after exposure. Nanotubes were also detected in
the urine and faeces (91).

7.4 Biotransformation

Available information concerning the biotransformation of CNTs is highly limited.
These structures are generally considered to be metabolically inert, but some con-
flicting evidence does exist.

SWCNTs
SWCNTs injected i.v. and subsequently recovered from the liver and lungs ex-
hibited no biotransformation and had retained their shape and size (372).

After injection of SWCNTs dispersed in Pluronic F108, their Pluronic coating
was displaced by blood proteins, apparently within seconds after administration
(43).

Functionalised SWCNTs administered i.v. have been found to have their func-
tional moieties removed in the liver. For instance, with SWCNTs functionalised
with PEG, Raman spectrometry revealed that the covalently attached PEG mole-
cules were removed in the liver and spleen over a period of 8 weeks (371). Such
modification could well have consequences for the biological behaviour of CNTs.

Moreover, Kagan and collaborators reported that short antibodies bound to
SWCNTs can be degraded by myeloperoxidase in neutrophils and macrophages in
vitro and that these digested SWCNTs caused less pulmonary inflammation after
instillation by aspiration into mice (147). Eventhough this was an in vitro study, it
does indicate that under the right circumstances protein bound to SWCNTSs can be
degraded.
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MWCNTs

Observation of MWCNTs of unaltered length and diameter in the lungs, liver and
faeces of mice 1, 7 and 14 days after administration suggests a lack of any physical
transformation (63).

On the other hand, 15 days after instillation of MWCNTs into the airways of
male Sprague Dawley rats (n=3) these nanotubes were found to contain alcohol,
carbonyl and nitrogen groups not originally present, suggesting that biotransforma-
tion had occurred. In addition, the nanotubes in the lungs had been shortened (75).

7.5 Excretion, elimination and biopersistence

Following airway exposure, CNTs are slowly eliminated via airway clearance
mechanisms. Most studies of biopersistence and elimination have been carried out
using non-inhalation exposure routes, these are less relevant for occupational ex-
posure. The half-times and circulation times for pristine and functionalised CNTs
in blood following i.v. administration are summarised in Table 7.

SWCNTs
Pristine SWCNTs injected i.v. into mice were found to be excreted only to a very
limited extent and appeared to be retained in the body, even after 28 days (370).

In contrast, the half-time of DTPA-functionalised SWCNTs in the blood of
mice following i.v. delivery was 3-3.5 hours, with observation of intact CNTs in
the urine indicating that renal clearance was the major route of excretion (311).
At the same time in another report, pristine SWCNTs dispersed in Pluronic F108
and delivered i.v. to rabbits demonstrated a half-time of 1 hour in blood and these
investigators’ argued that Singh and collaborators (311) had measured at too few
time-points to allow accurate calculation of the half-time (43).

SWCNTs functionalised with chitosan and/or a fluorescent probe have been re-
ported to exhibit a half-time of 3-4 hours in the blood of mice after i.v. injection.
In the case of the liver disappearance of the nanotubes was much slower; the
levels were highest after 3 hours and remained virtually the same 24 hours after
exposure. Fifty per cent of the nanotubes were recovered in the urine within the
24-hour period following injection (150).

The half-time of PEGylated SWCNTs in the blood of mice following i.v. inject-
tion was as long as 15.3 hours. The PEG prevents protein adhesion to the nanotubes,
which may explain this long retention time. These nanotubes were also found to be
slowly excreted in the urine (369).

Hydroxyl-functionalised SWCNTs were injected (i.v. and i.p.) into mice and the
pharmacokinetic data obtained fitted to a two-compartment model. The half-time
of the first-phase was approximately 4 minutes and the elimination half-time was
approximately 50 minutes (343), suggesting rapid clearance.

In yet another investigation, 80% hydroxyl-functionalised SWCNTs injected i.p.
into mice had been excreted into the urine (94% of the total) or faeces (6%) 11 days
post-injection (342).



Table 7. Examples of half-times and circulation times of various CNTs in the blood of
rodents following intravenous administration.

Nanotube preparation/ Species Methods of detection Half- Ref.

Functionalisation time (h)

SWCNT

Pristine, dispersed in Pluronic F108 Rabbit Near-IR fluorescence 1 (43)
spectroscopy

Hydroxyl groups, "*'I-labelled Mouse y-detection 0.83 (343)

Chitosan, fluorescent probe Mouse Raman spectroscopy, 3-4 (150)
fluorescence

DTPA, '"In-labelled Mouse y-detection 3-3.5 (311)

PEG7000 (branched) Mouse Raman spectroscopy 150 (194)

PEG1500 Mouse Mass spectrometry 15.3 (369)
(/M C-isotopic ratio)

MWCNT

Glucosamine, **"Tc-labelled Mouse Nal(Tl)scintillation 5.5° 97)

*blood circulation time.
® intraperitoneal injection.
DTPA: diethylenetriamine pentaacetic acid, IR: infrared, PEG: polyethylene glycol.

Following an i.p. dose of 300 or 500 mg/kg bw, non-functionalised SWCNTs
have been detected in the urine and faeces of Swiss mice, but no concentrations
were reported in this case (165).

Modification of SWCNTs with PEG molecules enhances the blood circulation
time, in a manner dependent on the length and branching of these PEG molecules.
The longest circulation time (15 hours) was exhibited by CNTs modified with one
of the longest and most highly branched PEG molecules (PEG7000). These CNTs
appeared to be excreted via the biliary pathway into the faeces, as well as to some
extent in the urine. The investigators proposed that smaller particles are excreted
via the urine (194).

When mice (n=4/group) were injected i.p. with amine-functionalised SWCNTs
(diameter 0.8-1.2 nm, length 0.3 pum, molecular weight 350-500 kDa), these
CNTs were rapidly cleared by glomerular filtration in the kidneys. Mathematical
modelling suggested that the nanotubes could align perpendicular to the filtration
slits and thus pass readily through the glomerulus (282).

In the blood of mice, the half-times of SWCNTs (ultrashort, with length of
about 0.1-0.3 um) bearing PEG2000 or PEG5400 molecules were approximately
0.5 and 2 hours, respectively (193).

Following both i.v. and i.p. injection, **Y-labelled SWCNTs were found to be
excreted by the kidneys in mice. Clearance from the liver, spleen and bone was
not significant during the 24-hour period of study, but, only 20% and 11% of the
radioactivity administered by i.v. and i.p. injection, respectively, remained in the
body 24 hours later. The lack of any radioactivity in the blood 3 hours after ex-
posure suggested rapid clearance. The same investigators also reported that ''In-
labelled CNTs are cleared within hours, with no radioactivity remaining 15 days
after exposure. This labelled form of CNTs was also cleared more rapidly from
the kidneys than from the liver or spleen (205).
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MWCNTs

Several investigations have revealed that MWCNTSs may be retained in the lungs,
suggesting biopersistence. Pauluhn calculated based on kinetics analysis of the
lung burden of cobalt, an elimination half-time of MWCNTs (Baytubes with 0.5%
residual cobalt) of 350 days at 0.4 mg/m’, the highest concentration studied with-
out overload effects (255). Most CNTs are probably eliminated from the lungs by
macrophages (207).

MWCNTs instilled into rat trachea were eliminated to the extent of 63% and
84% 3 and 6 months after exposure, respectively. The lack of any MWCNTSs in
systemic organs suggested that these CNTs were, indeed, eliminated, rather than
translocated (75). In another case 80% of the MWCNTs instilled i.t. into rats
remained in the lungs 60 days later (222). Taurine-functionalised MWCNTs in-
stilled i.t. into mice were gradually eliminated from the lungs, with 20% of the
dose still being detected in this organ 28 days after exposure (63). f MWCNTs
are administered via the gastrointestinal route, they are eliminated in the faeces,
as illustrated by the recovery of 74% of '*C-taurine MWCNTs in the faeces of
mice within 12 hours after delivery by gavage (63).

In another report, 300 pg MWCNTs functionalised with the chelating agent
DTPA and reacted with ! ]InC13 to obtain a radioactive tracer were injected into
the tail vein of 6-week-old male nude rats and the animals subsequently subjected
to micro single photon emission tomography/computed tomography (micro
SPECT/CT) scanning up to 24 hours (or placed in metabolic cages when not
scanned). During the period 60 seconds-30 minutes after exposure, radioactivity
rapidly accumulated in the kidneys, followed by relocalisation to the bladder, as
later confirmed by post-mortem analysis of organs and urine (n=3). After 24
hours, little radioactivity was present in the kidneys. In this same study for pur-
poses of comparison, Wistar rats received a single tail vein injection of 600 ug
MWCNTs either conjugated with DTPA (n=4) or pre-incubated with serum (n=4),
followed by sacrifice 24 hours later. Whereas histological analysis revealed no
accumulation of the DTPA-MWCNTs in any of the examined organ, pristine
MWCNTs were detected in the lungs and liver. Neither type of MWCNTs could
be seen in the kidneys, nor were any morphological changes observed. These
findings suggest that functionalised MWCNTs are excreted primarily in the urine
(173).

Another investigation indicates that the conformation and diameter of CNTs are
important determinants of renal excretion. In this case, 6-week-old female mice
were injected through the tail vein with 400 pg pure or functionalised MWCNTSs
(outer diameter 20-30 nm, length 0.5-2 pm), sacrificed 5 and 30 minutes later, and
kidney biopsies examined with TEM. MWCNTs were seen in the glomeruli at both
time-points and well dispersed MWCNTSs could be seen crossing the capillary
lumen, with their length aligned vertically to the fenestrations in the endothelium
(172).

When MWCNTs functionalised with glucosamine and labelled with **™Tc were
administered i.p. to mice, more than 70% of the radioactivity was detected in the
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urine and faeces within 24 hours and the half-time in blood of 5.5 hours, is among
the longest reported to date (97).

Finally, following i.v. injection of '*C-radioactively labelled MWCNTs into
rats, the nanotubes were cleared from the blood and detected in both the urine and
faeces. However, only two animals were monitored at each time-point in this
case (91).

Conclusions

Following pulmonary exposure MWCNTSs have been shown to translocate into the
subpleura and to the visceral pleura. MWCNTs have also been detected in the inter-
stitial tissue and inside macrophages in the alveolar space as well as in lymph nodes.
In one recent study, translocation of CNTs from the lungs to the circulatory system
was reported subsequent to inhalation exposure of mice. The SWCNTSs were de-
tected in blood by Raman spectroscopy. In another study, effects on the internal
organ were reported following i.t. instillation of MWCNTs into rats. However,
these effects were not necessarily indications of translocation, but may instead be
evoked by mediators released from the lungs into the systemic circulation. No
data confirming presence of CNTs in these organs was presented. Although the
majority of published studies reported no detection of CNTs in blood or internal
organs, minor degree of systemic translocation, i.e., below the employed methods’
detection limits cannot be excluded.

In contrast, there are two reports of absorption of both non- and functionalised
SWCNTSs (fibre length 0.050-0.450 um) in the gastrointestinal tract. Following
1.v. or i.p. administration, CNTs are detected in all major organs (including the
brain, indicating passage across the blood-brain barrier), in most cases primarily
in the liver, but also in the spleen and lungs. The presence of CNTs in the liver for
a long time suggests that excretion from the liver is very slow as compared to the
kidneys and is likely related to the population of macrophages. There are no data
to support a common pathway and mechanisms involved in degradation, trans-
formation and excretion. CNTs functionalised with water-soluble moieties have
been reported to be excreted mainly via the kidneys, but also in the faeces. The
excretion of non-functionalised CNTs has been little examined and no conclusions
can be drawn. In general, chemical modification exerts a substantial influence on
the toxicokinetics of CNTs. Most studies concerning biodistribution have focused
on CNTs functionalised for drug delivery or bioimaging and only a few have ex-
amined the distribution of pristine CNTs.

Reported differences in rates and extents of excretion could, of course, also be
due to methodological differences. Raman spectrometry detects intrinsic properties
of the CNTs, whereas fluorescence or radioactive detection require the coupling of
appropriate probes to the CNTs. There is always a risk that such tracer molecules
may detach from the CNTs and result in false-positive detection of nanotubes. In
addition, tracer molecules might themselves alter the pharmacokinetics of CNTs,
in a manner analogous to modification with PEG.
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8. Biological monitoring

At present, no techniques for biological monitoring of CNTs are in practical use.
Nor have we been able to locate any literature reports that explicitly address the
question of biological monitoring of or biomarkers for CNT exposure. However,
some possibilities have been explored in experimental animals, e.g., determination
of gene and protein expression in the blood (79).

9. Mechanisms of toxicity

Even though recent findings have deepened our understanding of the mechanisms
underlying the toxicity of CNTs, much still remains unclear. In summary, in con-
nection with inhalation CNTs are deposited in the lungs, where they may cause not
only local toxic effects, but also lead to effects on other organs.

Furthermore, CNTs may migrate to the pleura and the local lymph nodes and
there is also a potential risk of their being translocated across the alveolar barrier
into the systemic circulation, as indicated in the study by Ingle and co-workers
(132). As mentioned in Section 7.2.2, CNTs deposited in regions of the lungs
where the mucociliary escalator is active will end up in the gastrointestinal tract.

CNTs administered to the lungs have been shown to induce oxidative stress,
inflammatory responses (including an acute increase in the number pulmonary
polymorphonuclear leukocytes (PMNs) and formation of granulomas) and fibrosis.
Certain investigations also indicate direct genotoxic effects and mesothelioma.

An important parameter in this context is the fibrous structure of CNTs, which
has led to parallels being drawn to the observed health effects of asbestos fibres.
Several decades of research have given rise to the “fibre paradigm”, or “the classical
fibre pathogenicity structure/activity paradigm”, explaining the basis for the harm-
ful effects of resistant fibres on the lungs (68, 316). This paradigm also addresses
the issues of biopersistence and bioaccumulation of inhaled fibres.

Some evidence indicate that the mechanism triggering pulmonary inflammation
is dependent on the volumetric overload of alveolar macrophages and that the health
effects of CNTs are linked to the accumulated lung burden rather than the recent
dose (254, 255).

Likely, several different mechanisms of toxicity work in parallel depending on
fibre dimensions and morphology but also depending on parameters such as content
of metal and other impurities (113, 267), degree of agglomeration (208) and surface
chemistry (35, 295). A general description of potentially important mechanisms
underlying the toxic effects of CNTs is given below.

9.1 Oxidative stress and inflammation

One mechanism contributing to the toxicity of CNTs is oxidative stress caused
by the generation of free radicals including reactive oxygen species (ROS) that
may activate signalling pathways controlling inflammatory responses. ROS may
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be generated by the particles themselves and/or by endogenous processes. Oxi-
dative damage of cellular components such as proteins, DNA and lipids as well

as activation of transcription factors that ultimately enhance the synthesis of pro-
inflammatory proteins may occur. Oxidative stress has been observed in a variety
of cell types exposed to CNTs, including pulmonary epithelial, mononuclear, meso-
thelial and keratinocyte cells (30, 202, 246, 268, 273), as well as in mice that have
inhaled SWCNTs (305).

This generation of ROS could be due to metal impurities present in the CNTs
(267). Bello and co-workers demonstrated that as much as 93% of the biological
oxidative damage caused by various nanomaterials (including several different
CNTs) could be explained on the basis of their specific surface area and content
of transition metals, including iron, cobalt and molybdenum, which are common
contaminants of CNTs produced on an industrial scale (20).

Contradictory findings were reported by Fenoglio and colleagues who observed
that not only did CNTs not generate oxygen free radicals in an aqueous solution
containing e.g., hydrogen peroxide (H,0,), but that MWCNTs actually acted
as scavengers of free radicals (82). Such conflicting results may well be due to
differences in assay conditions and in the CNTs examined.

Endogenous ROS (i.e., superoxide anion) can be formed by nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase present on the surface of
phagocyting cells. A potential role of this endogenous ROS in the fibrotic re-
sponse to CNTs was proposed by Shvedova and co-workers. These investigators
reported that SWCNTSs administered by pharyngeal aspiration led to more ex-
tensive accumulation of PMNs, more pronounced cytotoxicity, lower expression
of the cytokine transforming growth factor beta (TGFf) and less deposition of
collagen in the lungs of NADPH-oxidase-deficient than of control mice (308).

When mononuclear cells are exposed to long and straight CNTs in vitro, they
produce elevated levels of pro-inflammatory tumour necrosis factor alpha (TNFa)
(30). Furthermore, both SWCNTs and MWCNTSs can activate the transcription
factor NFkB (nuclear factor kappa B) in cell cultures (107, 202, 374) and elevated
NF«B activated production of pro-inflammatory cytokines have also been detected
in response to in vitro exposure to CNTs (115). In addition, when epidermal cells
were exposed to SWCNTs containing 30% or 0.23% iron, the former but not the
latter activated the activator protein 1 (AP-1), a transcription factor involved in oxi-
dative stress (246). Both of these preparations activated NFxB (231).

Inflammation following exposure to CNTs has been observed in several in vivo
studies as well. A link between oxidative stress and inflammation is indicated by
the report that SWCNTs induce more pronounced inflammation in mice with re-
duced levels of the anti-oxidant vitamin E (307). Acute pulmonary inflammation
declined with time, but was still present 90 days after rats were exposed to
MWCNTs via inhalation (76).

Furthermore, the levels of pro-inflammatory cytokines in bronchoalveolar
lavage (BAL) fluid collected from mice rose rapidly 1 day after inhalation of
SWCNTs (305). Inflammatory changes in the lungs of rats were also observed
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following long-term exposure to MWCNTs (255), as well as in the peritoneum
of mice after i.p. injection of MWCNTs (259). Systemic inflammation in mice
following pulmonary exposure is also indicated by the elevated serum levels of
cytokines detected following i.t. instillation of MWCNTs (249) and the enhanced
levels of inflammatory cells in the blood after administration of SWCNTs via
pharyngeal aspiration (79).

9.2 The fibre paradigm and frustrated phagocytosis

The fibre paradigm, originally proposed based on effects of asbestos and other
inorganic fibres, describes three fibre characteristics as major toxicological
determinants (67, 68):

« thin enough to penetrate deep into the lungs.

. long enough to cause frustrated phagocytosis and not be cleared effectively.
. biopersistent so that the fibrous shape is retained and accumulation occurs.

When inhaled, long fibres will align parallel to the airflow and may be trans-
ported deep into the lungs, where due to their length or Brownian motion, they
eventually hit the wet surface of the lung and are deposited (see also Section 7.1).
Deep in the lungs, the primary mechanism for the removal of non-soluble parti-
culate matter involves phagocytosis by the macrophages, which are usually 10-20
pm in diameter. If the fibres are longer than this and are also stiff and cannot be
bent (i.e., straight and not entangled), the phagocytic capacity of the macrophages,
as well as mucociliary clearance of fibres in incapacitated macrophages may be
impaired, leading to prolonged biopersistency and resulting dose accumulation
(Figure 4) (68).

This reasoning has given rise to the high-aspect ratio nanoparticle (HARN) hypo-
thesis of toxicity, which predicts that pathogenic events similar to those caused

Figure 4. Illustration of the frustrated phagocytosis of long stiff fibres. Reprinted from
Donaldson et al 2010, Particle and Fibre Toxicology 7:5 (68).
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by asbestos will occur if the HARNS fulfill the criteria of the fibre paradigm (68).
Accordingly, the thickness, length and biopersistence of CNTs would be important
determinants of their toxicity.

Such frustrated phagocytosis (i.e., uncompleted uptake) has been reported to
occur when monocytes are exposed in vitro to CNTs (30). In addition, frustrated
phagocytosis has been detected in macrophages obtained from the peritoneal
cavity by lavage following i.p. injection of long CNTs (259). These observations
support the HARN hypothesis, as do the reports that long, straight and well-
dispersed CNTs lead to higher levels of ROS and TNFa than do tangled CNTs,
indicating higher inflammatory potential.

Paloméki and collaborators also concluded that the toxic response to CNTs in-
volves ROS and inflammation and is dependent on their morphology and length.
These investigators demonstrated that, long needle-like MWCNTSs, but not short
or tangled MWCNTs activate the NLRP3 (nucleotide-binding domain and leucine-
rich repeat pyrin 3 domain) inflammasome in lipopolysaccharide (LPS)-primed
macrophages via cathepsin B, the P2X; receptor, Src and Syk tyrosine kinases and
ROS to produce interleukin (IL)-15 (248). Furthermore, MWCNTs with a high-
aspect ratio induced more toxicity in lung cells in vitro than those with a low ratio
(157).

The role of release of mediators during frustrated phagocytosis was investigated
by Murphy and collaborators. They showed that mesothelial cells exposed in vitro
to short and long MWCNTs induced no significant release of pro-inflammatory
cytokines. On the contrary, when the mesothelial cells were treated with condi-
tioned media from long MWCNT-exposed macrophages the release of cytokines
was strongly amplified. The result indicates that mediators released during phago-
cytosis stimulated the pro-inflammatory response in the mesothelial cells (225).

9.3 Production of collagen and fibrosis

Fibrous material that cannot be cleared from the lungs by phagocyting cells may
provoke excessive formation of connective tissue. Subpleural fibrosis (284), as
well as lung fibrosis (characterised by elevated deposition of collagen or thickening
of alveolar walls) (208, 255) and focal lung fibrosis (76) have all been observed
after administration of CNTs to rodents via inhalation, i.t. instillation or pharyngeal
aspiration. Progressive lung fibrosis was present 28 days post-inhalation of
SWCNTs (305). Intrapleural injection of long MWCNTSs (84% >15 pm) into mice
promoted acute inflammation and progressive fibrosis of the parietal pleura (223).
Several in vitro studies support the findings that CNTs initiate fibrogenic events
either via direct contact or through pro-fibrogenic signals. Enhanced collagen pro-
duction by human lung fibroblasts irn vitro following exposure to CNTs (dispersed
in a natural lung surfactant) has also been seen (346). Furthermore, profibrinogenic
growth factors TGFB1 and platelet-derived growth factor (PDGF) were shown to
be released from macrophages exposed to MWCNTS in vitro. When fibroblasts
were cultured in conditioned medium from MWCNT-treated macrophages an
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increased production of a-smooth muscle actin was measured, and it was indi-
cated that the fibroblasts transformed into myofibroblasts, the cell type producing
collagen I (107). In vitro SWCNT exposure of murine macrophages also resulted
in stimulation of TGFB1 production (306).

Foreign matter may evoke the formation of granulomas, i.e., collections of
macrophages (which may fuse to become giant cells), as well as other types of
cells including neutrophils and fibroblasts. Formation of such granulomas has
been observed following administration of CNTs to animals via inhalation (198,
255, 305), i.t. instillation (1, 3) and pharyngeal aspiration (206-208, 265). These
lesions only occurred after exposure to non- or poorly dispersed SWCNTs (208).
Lp. injection of MWCNTs into mice also gave rise to granulomatous lesions com-
prised of giant cells, aggregates of cells containing fibres and collagen deposits,
with longer and thicker CNTs evoking larger numbers of granuloma and more
thickening of the mesothelial lining (259).

9.4 Genotoxicity

MWCNTs injected i.p. into p53 heterozygous mice have caused mesotheliomas
(319, 320). Mesothelioma, mesothelial cell hyperplasia and hypertrophy have been
caused also by MWCNTs injected intrascrotally into rats (288). Genotoxicity is
generally considered to be one important mechanism involved in the pathogenesis
of cancer. MWCNTs have caused increased number of micronuclei in type II pneu-
mocytes after i.t. instillation in rats (219) and DNA strand breaks and elevated
numbers of chromosomal aberrations after i.p. injection in mice (252). SWCNTs
have caused mutations in the K-ras gene in lungs of mice following inhalation ex-
posure (305) and DNA strand breaks in BAL cells of apolipoprotein E (ApoE) -/-
mice following i.t. instillation (137). Genotoxic effects have been observed also in
several in vitro studies (see Section 11.4).

Primary as well as secondary genotoxicity pathways may be induced. Primary
genotoxicity includes direct interactions of CNTs with DNA. Secondary geno-
toxicity is driven by reactive species generated from inflammatory cells (297). In
the studies by Takagi and colleagues, mononuclear cells of which some contained
MWCNTSs were accumulated right next to mesothelial hyperplastic lesions sug-
gesting that the inflammatory response is linked to the pathogenesis of cancer
(319, 320).

Several investigations focused on the generation of ROS in response to CNTs
in relationship to genotoxic effects. For example, Jacobsen and colleagues found
that exposure of mouse lung epithelial cells to SWCNTs led to ROS production
and effects on DNA, including oxidation of purines (138). Similarly, Folkmann
and co-workers observed increased production of ROS and elevated levels of oxi-
dised nucleotides (8-0x0-7,8-dihydro-2’-deoxyguanosine (8-0xodG)) in the liver
and lungs following oral exposure of rats to SWCNTs (85).

Direct genotoxicity events have also been suggested. SWCNTSs have been sug-
gested to interfere with the division of epithelial cells in vitro through disruption of
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the mitotic spindle, leading to an aneuploidy of a number of chromosomes after
24 hours (290). Signs of interference with the mitotic spindle during the anaphase
of macrophage cell division were also observed in mice following inhalation of
SWCNTs (5 mg/m’, 5 hours/day for 4 days) (305). Yi and co-workers reported
that SWCNTs (diameter <2 nm) and MWCNTs (diameter 10-20 nm) can interact
with DNA polymerase and restriction endonucleases in a cell-free system. In this
respect carboxylated SWCNTSs were more effective than pristine SWCNTSs, which
were in turn more effective than MWCNTSs (377).

Genotoxic activity may be due to the fibrous nature of CNTs with a possible
contribution by catalyst metals of unpurified CNTs (188). Longer and thicker
MWCNTSs caused more DNA strand breaks in cultured cells and more extensive
inflammation in mice than did shorter and thinner SWCNTs (368).

9.5 Lung particle overload

Chronic inhalation of poorly soluble particles including talc, carbon black, coal
dust and titanium dioxide have been shown to result in pulmonary inflammation,
fibrosis, epithelial hyperplasia and, eventually, adenomas and carcinomas in the
peripheral lungs of rats. These effects are considered to be caused by the so-called
lung overload phenomenon, which is caused by exposures that result in a retained
lung burden of particles that is greater than the steady-state burden predicted from
the deposition rates and clearance kinetics of particles inhaled during exposure
(131). The hallmark of particle overload is impaired alveolar clearance, which has
been suggested to occur at a volumetric loading of 60 pm® per alveolar macrophage
(representing approximately 6% of the alveolar macrophage’s displacement vol-
ume) with a total macrophage stasis occurring at a loading of 600 um® (31, 217).
Pauluhn exposed Wistar rats to MWCNTs (Baytubes) at the dose levels of 0, 0.1,
0.4, 1.5 and 6 mg/m® for 13 consecutive weeks (6 hours/day, 5 days/week) and
observed a marked inhibition of lung clearance of MWCNTs at 1.5 and 6 mg/m®
(255). The retention half-time of MWCNTs at 6 mg/m3 matched well with the
retention half-time of carbon black at 7 mg/m?, which has been calculated to corre-
spond to about six times the overload threshold (253). Because of the lower density
of MWCNTs, MWCNTSs may trigger pulmonary overload at lower mass-based
exposure levels than the above mentioned poorly soluble particles. Concentration-
dependent pulmonary toxicity was in this study observed beginning from 0.4 mg/m’
with granulomatous inflammation and bronchoalveolar hyperplasia seen at 6 mg/m”.
The appearance of pulmonary changes matched well with the inhibition of lung
clearance, which supported the role of lung overload-related phenomenon in lung
effects (255).

9.6 Interactions between carbon nanotubes and biomolecules

An important determinant of the biological effects of nanoparticles such as CNTs
is the adsorbance of biomolecules to their surface, which occurs upon entry into
any organism, fresh water or soil. CNTs that enter an organism are covered pre-
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dominantly by proteins to form what is referred to as protein corona, the consti-
tuents of which depend on binding constants and the shape of the CNT (see Lynch
and Dawson for a review) (197).

Dutta and colleagues found that the main protein in foetal bovine plasma or
human plasma that binds to SWCNTSs is albumin. When plasma from rats lacking
serum albumin was employed instead, a different profile of adsorbed proteins was
observed. Moreover, coating the SWCNTSs with Pluronic F127 led to less absorption
of albumin. The ability of these SWCNTSs to inhibit LPS-induced activation of
cyclooxygenase-2 was dependent on the binding of albumin molecules (71) (see
Section 11.2.2.4 for experimental details).

Another example of an interaction with proteins that might modulate the biologi-
cal effects of CNTs is the binding of complement factors described by Salvador-
Morales and collaborators (289). In a cell-free system, the protein Cql, which is
involved in inflammatory responses, bound directly to CNTs, as did fibrinogen
and various apolipoproteins. Likewise, Sund and collaborators found that when
MWCNTs where incubated with plasma, fibrinogen binding occurred and that
pulmonary surfactants could reduce this binding. No binding of plasma proteins to
SWCNTs was detected (317). SWCNTSs (diameter 2 nm, bundle length 5-30 pm)
were, however, shown to bind to serum proteins (i.e., bovine fibrinogen, gamma
globulin, transferrin, ferritin and bovine serum albumin) resulting in a change of
the secondary structure of bovine fibrinogen and gamma globulin (90).

CNTs have also been shown to interact with nutrients in cell medium leading to
medium depletion and thereby indirect cytotoxicity (37).

Another study suggested that the observed cytotoxicity of MWCNTSs towards
phagocytosing cells (murine macrophages) involves disruption of the cell mem-
brane as a result of association between these CNTs and the scavenger receptor
referred to as the macrophage receptor with collagenous structure (MARCO) (116).

Direct interactions between CNTs and enzymes, followed by enzyme inhibition
have been described (350, 351, 377). For example, both SWCNTs (diameter 2 nm,
length 5-15 um) and MWCNTs (diameter 10-20 nm, length 5-15 pm) can adsorb
to acetylcholinesterase (AChE) and in inhibit its enzymatic activity 50% at con-
centrations (ICs) of 96 mg/l and 156 mg/l, respectively (351). Moreover, both
SWCNTs and MWCNTs also adsorb to and inhibit butyrylcholinesterase (BChE)
with ICsg values of 49 and 97 mg/ml (350). It should be noted that the levels of
CNTs employed in both of these studies were very high compared to the levels
used in vitro by others, so that such adsorption or inhibition does not necessarily
occur in vivo.

9.7 Alterations in membrane permeability

CNTs can alter the permeability of lung cells in vitro, but this effect has not yet
been confirmed in vivo. This is an important question, since damage to cellular
walls might facilitate translocation of CNTs.
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When rat alveolar cells were exposed to SWCNTSs in vitro, the transmonolayer
resistance (which reflects passive ion transport) was transiently reduced, whereas
the active ion-transport was not affected (367). Similarly, MWCNTs can alter the
paracellular permeability of lung epithelial cells in vitro (281) and long SWCNTs
(0.5-100 pum) and MWCNTs (5-9 um), but not short CNTs can diminish the trans-
epithelial electrical resistance (TEER) of these same cells, with no alteration in the
expression of junction proteins (280).

10. Challenges facing toxicological studies

As pointed out in a European report (78), production of CNTs by many different
processes yields nominally the same material, but these CNTs can nonetheless
vary widely with respect to crystal structure, aspect ratio and residual impurities
and, consequently, might exert quite different toxic effects (388). Therefore, to
properly interpret and assess their observed toxic effects, the CNTs used in each
individual study should be characterised in detail with respect to all of the physi-
cal and chemical properties that might have biological relevance, including the
possible presence of impurities such as metals.

Dose metrics

At present, there is no consensus among researchers in the field of nanotoxicology
concerning how to express dose metrics of CNTs. Weight/volume and weight/body
weight are employed most commonly, but area/weight is also occasionally reported.
The number of particles present is seldom stated, due to difficulties in assessing
this number.

Reporting only the weight/volume of the CNTs administered may lead to diffi-
culties in comparing studies, since the number of particles present may differ
depending on their size. No preparations of particles with such exact sizes actually
exist, since there is always a size distribution (generally with Gaussian distribution)
and the pristine particles are usually agglomerated (242) (see also Section 5.1).

Aerosolisation and deposition

A critical question in connection with the effects of CNTs on the airways is
whether they are inhaled as individual tubes or in bundles or clues, which has re-
levance both for human exposure and toxicological testing by inhalation. For ex-
ample, aggregates often have a larger aerodynamic diameter than singlet CNTs
and may therefore be deposited higher up in the respiratory tract, where removal
mechanisms other than the macrophages are active. Clearly, aerosolisation of
CNTs in a controlled and reproducible manner is a problem for toxicological in-
halation studies. As a consequence, i.t. instillation and aspiration have been the
methods most commonly used for pulmonary studies. Among the few attempts
to develop appropriate procedures for inhalation studies, atomisation from liquid
(176) and agitation of powder appear promising (203).
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Functionalisation and dispersion

To evaluate the responses of cells to CNTs, which are inherently hydrophobic, it
is often necessary to first increase their solubility in aqueous solutions. This is
relevant for in vitro studies, but also when doing in vivo studies using aqueous
solutions of CNTs, such as instillation or aspiration studies. One way to do this is
by functionalising the surface of the CNTs, e.g., by introducing hydroxyl (~OH) or
carboxyl (<COOH) groups by acid treatment, or by the addition of amino (-NH>)
moieties.

In vitro, CNTs that have not been rendered more water-soluble by functionalisa-
tion are often dispersed in aqueous media utilising sonication or some type of de-
tergent. Addition of detergents is problematic, since some are in themselves toxic.
At the same time, sonication may shorten the carbon skeleton of the CNTs, so that
proper characterisation following sonication is required.

The dispersing ability of detergents and surfactants, as well as their potential
to mask or exacerbate the toxic effects of CNTs have been addressed in several
investigations. The biocompatible detergents, Tween-80 and different forms of
Pluronics have been used extensively in connection with exposures of cell cultures
or for instillation in vivo. Alternatively, serum or components thereof, such as al-
bumin, may be employed (discussed further in Section 9.6) (73).

Vippola and collaborators examined the capacity of bovine serum albumin and
dipalmitoyl phosphatidylcholine (DPPC) at physiologically relevant doses to di-
sperse SWCNTs and MWCNTs in two cell culture media, i.e., bronchial epithelial
growth medium (BEGM) and RPMI-1640 with 10% foetal calf serum. When
foetal calf serum was present, no additional dispersing agent was required and bo-
vine serum albumin alone improved dispersion (357).

Herzog and colleagues found that the degree of dispersion influences the level
of oxidative stress evoked by SWCNTs in human carcinoma epithelial and normal
bronchial epithelial cells. After sonication in culture medium alone (leading to poly-
dispersed agglomerates) or in medium containing DPPC (resulting in smaller agglo-
merates), SWCNTs (HiPCO or produced by arc discharge) caused different levels
of cellular oxidative stress, with higher ROS formation in presence of DPPC. This
formation was lower when foetal calf serum was present in medium, suggesting a
protective role (112).

SWCNTs successfully dispersed in Survanta, a natural lung surfactant without
cytotoxic effect of its own, promoted collagen production by human lung fibro-
blasts in vitro as well as lung fibrosis in mice exposed via pharyngeal aspiration
(346).

When Dong and colleagues exposed human astrocytoma (1321N1) cells to
SWCNTs dispersed with sodium dodecyl sulphate (SDS) or sodium dodecyl
benzene sulphonate (SDBS), the SDS and SDBS molecules on the surface of the
SWCNTs were found to be toxic. No effect on cell proliferation or cytotoxicity
was exhibited by SWCNTs alone (69).
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SWCNTs dispersed in Triton X-100 were toxic towards rat liver epithelial (WB-
F344) cells and E. coli whereas these SWCNTs had no effect when dispersed in
gum arabic, polyvinyl pyrrolidone, amylose or natural organic matter (6).

To emphasize the need for standardising assay conditions to allow comparison
of different toxicity assays, Geys and collaborators compared the influence of
serum and Tween-80 on the effects of CNTs and Min-U-Sil silica particles on
lung epithelial (A549) cells and macrophages (stimulated THP-1 cells). The pre-
sence of serum rendered Min-U-Sil particles much less toxic towards A549 cells,
but had considerably less effect on CNT toxicity (92).

It has been discussed to what extent traditional cell cultures submerged in media
reflect the exposure in real life. For these cells, the degree to which the particles/
fibres reach the cell surface, where they can interact, is determined by properties
such as sedimentation and diffusion in the liquid environment (328). Since such
parameters are strongly dependent on particle size, dispersion efficiency becomes
a critical issue and, consequently, the concentration of the nanoparticles in the cell
culture media (mg/ml) might not provide the most relevant measure of exposure
(256).

In order to resemble the genuine conditions of exposure more closely, deposition
of airborne particles directly onto cells has been tested (28, 89, 256, 293, 335). To
date, there are no reports concerning the application of this approach to CNTs.

Cytotoxicity testing

A number of reports have described how CNTs, as well as other nanomaterials
can interact with in vitro tests for cytotoxicity, for instance the colorimetric MTT
(3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) assay, to give
false results. In brief, MTT is taken up by cells and converted to a purple formazan
precipitate in the mitochondria of cells and the intensity of the colour considered
being proportional to the overall metabolic activity of viable cells, which is in turn
thought to reflect their number. Unfortunately, CNTs interfere with this assay, pre-
sumably by adhering to the MTT-formazan crystals to form complexes that cannot
be solubilised by using the protocol, thereby producing a falsely low value for via-
bility. Accordingly, the results obtained with this assay need to be interpreted with
care and validated by other procedures (23, 36, 362).

The clonogenic (colony formation) assay simply involves culturing cells in pre-
sence of CNTs and assessing numbers and size of the colonies formed, with colony
size being a much more sensitive end-point (113). However, CNTs may induce
cytotoxicity in this assay indirectly by depletion of the cell medium (37). Casey
and colleagues first incubated SWCNTSs (HiPCO or produced by arc discharge)
with medium alone and then removed these CNTs by filtration. Lung epithelial
(A549) cells cultured in such pre-treated medium exhibited reduced proliferation.
At the same time, the HIPCO SWCNTs exerted direct cytotoxicity that was both
time- and dose-dependent (37).

Adsorption of micronutrients from the cell culture medium by both purified
SWCNTs and SWCNTs functionalised with aryl sulphonate groups has been de-
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scribed by Guo and co-workers. Riboflavin, biotin, folic acid and thiamine adsorbed
to a lesser extent to functionalised, than to pristine SWCNTSs, and this pheno-
menon influenced the survival of human hepatoma (HepG2) cells negatively (98).
Although adsorption of micronutrients may or may not be relevant in vivo, this
possibility should be considered when employing in vitro system.

11. Effects in animals and in vitro studies

The animal studies described in this chapter are summarised in Tables 9-15 in
Chapter 13.

11.1 Irritation and sensitisation

11.1.1 Irritation

In an attempt to evaluate different systems for assaying dermal irritation, the eyes
and skin of rabbits (n=3), hen eggs and cultured skin were exposed to two types of
MWCNTs. One was 110-170 nm in diameter and 5-9 pm in length with a surface
area of 10-15 m%/g and a dimension of 901 nm in solution while the other was 10-
15 nm in diameter and 0.1-10 pm in length with a surface area of 30-45 m?*/g and
adimension of 554 nm in solution. When 0.5 mg of each MWCNT preparation was
applied to the skin for 4 hours and the effect examined after 60 minutes and 24 hours
later, no irritation was observed in either case. When 18 mg of nanotubes was
applied to the eyes and the results evaluated by the Draize procedure conjunctival
redness occurred, but had disappeared totally after 96 hours. Injection of 0.3 mg
of nanotubes into hen eggs gave rise to no irritation 5 minutes later. Exposure of
skin in vitro to 3.3 mg nanotubes/ml for 42 hours did not alter cell viability. These
results indicate that MWCNTs are not particularly irritating (158).

When fullerene soot with a high content of CNTs was applied to one eye of each
of four rabbits (the other eye being used as reference) for 72 hours in a modified
Draize test, no effects were observed after 24, 48 and 72 hours (122). The experi-
mental evidence presented in this report is, however, somewhat weak and no in-
formation concerning the concentration of CNTs in the soot was provided, making
it impossible to compare with others studies.

There was no evidence of skin irritation and only a very mild eye irritation in
rabbits when MWCNTs (Baytubes) were tested according to OECD guidelines
404 and 405 (254). No other details reported.

11.1.2 Sensitisation

Several observations of aggravated allergic inflammation of the airways in
response to CNTs have been published. When mice (n=12-13) were each
repeatedly exposed by i.t. instillation to 50 pg (corresponding to 1.61 mg/kg bw)
SWCNTs (diameter 0.8-1.2 nm, length 0.1-1 pm, <35% Fe) once a week for 6
weeks and allergen response was induced by repeated instillation of ovalbumin,
the SWCNTs aggravated the mucus hyperplasia and the production of cytokines
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and chemokines involved in the T-helper cell allergic response to ovalbumin. The
SWCNTs acted as adjuvants in connection with the production of immunoglobulin
(Ig)G and IgE directed against the allergen. Formation of markers against oxidative
stress and the maturation of dendritic cells in vitro were also strengthened by expo-
sure to the SWCNTSs. Thus, at this dose the SWCNTSs exacerbated allergic airway
inflammation. The authors stated that a similar response was observed with 25 pg
per animal, but no supporting data were presented. In addition, the effects of
different preparations of SWCNTSs (diameter 1.2-2 nm, length 1-15 pm, 75% CNTs,
the rest being amorphous carbon) were found to be similar. These investigators
concluded that SWCNTs cause such effects regardless of their characteristics
(135).

When mice (n=12-13) were administered 50 ng MWCNTs (diameter 67 nm,
length not provided, surface area 26 m*/g, 99.79% pure) once a week for 6 weeks
by i.t. instillation with or without co-exposure to ovalbumin every second week to
induce allergic airway inflammation, the animals receiving both MWCNTs and
allergen developed more severe inflammation than those receiving allergen alone.
Infiltration of eosinophils, neutrophils and mononuclear cells into the lungs was
observed, together with a larger number of goblet cells in the epithelium of the
bronchi. Increases in the levels of IgG, IgE, T-helper cell cytokines and chemo-
kines, as well as T-cell proliferation were detected. Administration of MWCNTSs
alone (i.e., to healthy mice) resulted in much less pronounce changes. These
findings also indicate that CNTs can worsen allergic airway inflammation. Ex-
posure to a different type of MWCNT (diameter 2-20 nm, several pm in length,
40-50% pure) led to similar results, which the authors suggest might be due to
similarities in fibrous structures of the two preparations examined (133).

When mice (n=8/group) were administered 4 mg/kg bw of either SWCNTs (dia-
meter 1.2-1.4 nm, length 2-5 pm) or MWCNTs (diameter 2-20 nm, length 0.1 pm
to several microns) (both 75% pure with the remainder being amorphous carbon
and other carbon nanoparticles) by i.t. instillation, both preparations elevated the
number of neutrophils recovered in the BAL fluid, but only SWCNTSs enhanced
the total number of cells and level of protein. When combined with an LPS-induced
disturbance in coagulation, both SWCNTs and MWCNTs increased these para-
meters even more. The levels of proinflammatory cytokines in the lungs were higher
after CNT exposure and even more so when combined with LPS. The SWCNTs
caused a rise in plasma levels of fibrinogen, both alone and more so in combination
with LPS, whereas the MWCNTSs only had a similar effect in combination with
LPS. Moreover, MWCNTs alone, but not together with LPS, increased the circula-
tory levels of macrophage chemoattractant protein (MCP-1) and keratinocyte-
derived chemoattractant (KC). Interestingly, the pattern with SWCNTs was the
opposite, i.e., no effects on cytokines except in combination with LPS. In con-
clusion, exposure to CNTs aggravated the disturbance in coagulation caused by
LPS, with SWCNTs being more potent, and enhanced systemic inflammation
(134).
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In another investigation, mice with experimentally induced allergy to ovalbumin
were exposed to SWCNTs (diameter 4 nm, length 0.5-100 um, 50% graphitic
material, 25% SWCNTSs and 25% MWCNTs) and MWCNTs (diameter 15 nm,
length 0.5-200 um, 90% pure, many defects) either by subcutaneous injection or
intranasal instillation. The CNTs were applied in low, medium and high doses, but
only the highest dose was actually stated (200 pg for subcutaneous injection and
400 pg for intranasal instillation). The combination of either CNT and ovalbumin
elevated the level of ovalbumin-specific IgE in the blood, as well as the number of
eosinophils in the BAL fluid and secretion of Th2-associated cytokines in media-
stinal lymph node cells. MWCNTs together with ovalbumin led to higher levels of
IgG2a, numbers of neutrophils and levels of inflammatory cytokines in the BAL
fluid, whereas the SWCNTs did not. These authors also concluded that CNTs
aggravated allergic inflammation in mice (241).

Mice (n=10-12) were exposed to MWCNTs (diameter 110-170 nm, length 5-9
um, 90% pure, surface area 12.83 m?/g, doses of 5, 20 or 50 mg/kg bw) via i.t.
instillation and examined during a 14-day period. The exposure induced an aller-
gic response, as indicated by elevated levels of cytokines and IgE antibodies in the
blood and BAL fluid, a larger number of cells in the BAL fluid as well as a larger
proportion of B-cells in the spleen and blood. In the BAL fluid the number of
macrophages fell, the number of lymphocytes and neutrophils rose, and the levels
of cytokines exhibited a dose-dependent increase. Pulmonary injury was detected
1 day after administration of all three doses and was still present after 14 days.
The number of B-lymphocytes in the blood and spleen were elevated at 50 mg/kg.
Levels of IgE were highly elevated in the blood after 7 and 14 days, with a less
extensive increase in the BAL fluid as well. The results indicate that MWCNTSs
are toxic to murine pulmonary tissue, causing inflammation and enhancing the
number of B-cells in the lungs and blood levels of IgE, which may cause allergic
responses (249).

MWCNTs (Baytubes) did not produce skin sensitisation in a modified maxi-
misation test in guinea pigs performed in accordance with OECD guideline 406
(254). No other details reported.

Conclusions concerning irritation and sensitisation

Present data suggest that CNTs are slightly irritating to the eyes, but not irritating
to the skin (158, 254) and do not produce skin sensitisation (254). Moreover, these
particles may act as adjuvants to allergens such as ovalbumin and thereby exacerbate
pre-existing allergic airway inflammation (133, 135, 241) and may also augment
LPS-induced lung inflammation (134). One study showed that MWCNTs elevated
the levels of IgE in the BAL fluid and serum in mice, suggesting respiratory sen-
sitisation (249), but additional investigations are required in order to draw firm
conclusions.
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11.2 Effects of single exposure

11.2.1 In vivo studies

11.2.1.1 Lethality

SWCNTs

L.t. instillation of a high dose of SWCNTs (0.5 mg/animal, CarboLex brand con-
taining large amounts of nickel) led to the death of 5 out of 9 mice within 4-7 days
after exposure. The animals showed signs of lethargy, inactivity and loss of body
weight prior to death. The investigators speculated that during the preparation of
these SWCNTs, which included sonication, nickel became bioavailable on the
surface of the SWCNTs and could have been responsible for the observed effects
(175).

When Swiss mice (n=10/group) were administered 1 000 mg/kg bw raw (dia-
meter 1 nm, length >1-2 pm, 25% Fe), purified (diameter 1 nm, length 1-2 pum,
<4% Fe) or ultra-short (diameter 1 nm, length 0.02-0.08 pm, <1.5% Fe) SWCNTs
orally, no death and no pathological effects were observed. The authors concluded
that the lowest lethal dose for Swiss mice is greater than the one employed (165).

MWCNTs

Acute oral (LDsg > 5 000 mg/kg bw) and dermal (LDs, > 2 000 mg/kg bw) toxi-
city studies of MWCNTs (Baytubes) in rats according to OECD guidelines 423
and 402, respectively, did not reveal any specific toxicity (254). No other details
presented.

Conclusion
Limited data suggest that CNTs are of low acute oral and dermal toxicity (165,
254).

11.2.1.2 Pulmonary toxicity
SWCNTs
Mice were subjected to pharyngeal aspiration of SWCNTSs (diameter 0.8-1.2 nm,
length 0.1-1 pm, containing 17.7% Fe, a single dose of 5-20 ng SWCNTs for dose-
response studies or 10 pug for time-course studies) and the effects were assessed
1, 7, or 28 days after the final exposure. The dose of 5, 10 and 20 pg led to signifi-
cant and dose-dependent elevations in the levels of PMNs, lactate dehydrogenase
(LDH), total protein, TNFo and IL-6 in BAL fluid after 1 day. Pharyngeal aspira-
tion of 10 pg of instilled SWCNTSs evoked less extensive production of inflamma-
tory markers and, in particular, less fibrosis than did 5 pg of inhaled SWCNTs (5
mg/m’, 5 hours/day for 4 days, see Section 11.3 for details). In short, exposure via
inhalation produced more severe inflammatory responses and fibrosis than aspira-
tion (305).

When female mice (n=12/group) received a single exposure to 0, 10, 20 or 40 pg
SWCNTSs (99.7% pure, 0.23% Fe) via pharyngeal aspiration and examined 1, 3, 7,
28 and 60 days later, their lungs exhibited granulomatous inflammation associated
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with aggregates of SWCNTs and thickening of the alveolar walls and diffuse
interstitial fibrosis. Depositions of collagen were found in all cases (306).

Mice (n=4-6/group) were exposed to 10 ug of dispersed or non-dispersed
HiPCO SWCNTs (labelled with gold nanoparticles or quantum dots to allow
visualisation) by pharyngeal aspiration and examined 1 hour, 1 and 7 days and 1
month later. Eighty per cent of the non-dispersed SWCNTSs were detected as large
agglomerates within granulomatous lesions that could be identified by light micro-
scopy in the vicinity of the proximal alveolar region, while the remaining 20%
entered the alveolar walls. In the case of dispersed SWCNTs electron microscopy
revealed a broad distribution localised to the interstitial region of the lungs. Little
or no phagocytosis by macrophages was detected. The BAL fluid contained ele-
vated numbers of PMNs after 1 day that returned to normal after 7 days, as well as
significant increases in the numbers of macrophages after both 1 and 7 days, with
a return to normal levels after 30 days. Examination of these macrophages by TEM
revealed a normal morphology and no indication of activation. In contrast to the
non-dispersed SWCNTs, the dispersed particles did not evoke granulomatous
lesions. However, the average thickness of connective tissue in alveolar regions
increased after exposure from 1 hour (0.1 pm) up to 1 month (0.88 um) post-
exposure indicating a gradual build-up of collagen (208).

When both vitamin E-adequate and -deficient C57BL/6 mice were exposed to
SWCNTs (HiPCO, diameter 1-4 nm, surface area 1 040 m?/g, 40 pg/animal) via
pharyngeal aspiration and then monitored for 28 days, their body weight was
reduced after this period, regardless of their vitamin E status. The vitamin E-
deficient mice had only 10% of the normal vitamin E level in their lungs. The
general oxidative stress caused by vitamin E depletion was further aggravated
by the SWCNTs. Extracellular superoxide dismutase, which is part of the anti-
oxidant system in the lungs, was cleaved at a higher rate in animals administered
SWCNTs, but vitamin E deficiency had no effect on this parameter. After 24
hours, the total numbers of inflammatory cells, and of PMNs, level of LDH and
total level of protein in the BAL fluid were elevated by the exposure to SWCNTSs,
even more so in the vitamin E-deficient mice. Granulomatous bronchointerstitial
pneumonia was also detected and after 28 days, fewer PMNs were seen and
histiocytic granulomatous lesions were formed. The SWCNTs also evoked more
collagen deposition and thickening of the alveolar septa and this fibrosis was
worse in the vitamin E-deficient animals. In conclusion, dietary vitamin E can
influence the inflammatory response following pulmonary exposure to SWCNTSs
and might provide protection against this response (307).

In another study by the same research group, SWCNTs (HiPCO, diameter 1-4
nm, surface area 1040 mz/g, >99% pure, 0.23% Fe, 40 pg/animal) were admini-
stered to male NADPH-oxidase-deficient and C57BL/6 mice by pharyngeal aspira-
tion and the animals were examined 1, 7 and 28 days later. NADPH-oxidase null
mice responded with a marked accumulation of PMNs and neutrophils, elevated
levels of apoptotic cells, production of pro-inflammatory cytokines, decreased
production of the anti-inflammatory and pro-fibrotic cytokine, TGFp, and signifi-
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cantly lower levels of collagen deposition in the lungs as compared to C57BL/6
mice (308).

In yet another investigation, pristine or acid-functionalised SWCNTs (40 pg of
either) were administered to female mice by oropharyngeal aspiration. The pristine
SWCNTs formed tight agglomerates, making characterisation impossible, while
the acid-functionalised SWCNTSs were well dispersed, forming particles less than
150 nm in size and with zeta-potentials of -40 to -60 mV. Mice exposed to acid-
functionalised CNTs exhibited many more cells in their alveolar fluid than did
control mice or mice exposed to pristine CNTs as well as higher levels of total
protein and cytokines. The more pronounced toxicity of the functionalised CNTs
was probably due to better dispersion and their negative surface charge (295).

When male C57BL/6J mice (n=3/group) were exposed to 10 pug non-dispersed
or dispersed SWCNTs (diameter 0.8-1.2 nm, length 0.1-1 pm, 99% pure, 0.23%
Fe, dispersant Survanta) via pharyngeal aspiration and examined 2 weeks later,
increased collagen production in the lungs was observed. According to the authors,
the similarity of the fibrogenic effect of non-dispersed and dispersed SWCNTs
indicates that Survanta did not mask the bioactivity of SWCNTs (346).

Lam and colleagues instilled 0.1 or 0.5 mg SWCNTs dispersed using inactivated
mouse serum (dimensions not stated) i.t. into mice (n=4-5) and examined them 7
or 90 days later, employing three different kinds of SWCNTSs (raw, purified and
CarboLex) and comparing these to carbon black (Printex-90) and quartz (Min-U-
Sil-5) at the same doses. SWCNTSs containing high levels of nickel and yttrium
(manufactured by CarboLex) caused extensive mortality, whereas the others did
not. At the 0.5-mg dose, the raw CNTs evoked mild signs of inactivity and hypo-
thermia which disappeared after 8-12 hours, while purified CNTs did not cause
such effects. At this same dose, CarboLex CNTs produced weight loss in the sur-
viving animals. The lungs of animals which died following exposure to 0.5 mg of
CarboLex CNTs demonstrated signs of congestion and after 90 days, the surviving
animals exhibited aggregated particles inside macrophages in the alveolar space,
as well as some aggregates in the interstitium, giving rise to granulomas. Interstitial
inflammation was also detected. The 0.1-mg dose did not cause granulomas. Expo-
sure to 0.5 mg raw or purified CNTs also produced granulomas, mainly located
beneath the bronchial epithelium and containing macrophages. These cells were
activated and had engulfed black particles that were rarely seen outside the granu-
lomas. The lesions observed 90 days after exposure to 0.5 mg of either kind of
CNTs were more severe than those after 7 days. Some of the mice showed necro-
sis, interstitial inflammation in the alveolar septa and peribronchial inflammation.
In contrast, carbon black did not cause any pathological effects, while quartz at
a dose of 0.5 mg increased the number of macrophages in BAL fluid and led to
mild-to-moderate interstitial inflammation (175).

When SWCNTs (bundles with a diameter of 12 nm, length 0.32 pm, metal con-
tent 0.05%, suspended in phosphate buffered saline (PBS) and 10 mg/ml Tween-80,
and doses of 0.04, 0.2, 1 and 2 mg/kg bw) were administered to rats (n=6/group)
by i.t. instillation and pulmonary and systemic responses assessed for as long as 6
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months, the exposure was found to produce a dose-dependent pulmonary in-
flammatory response. At the lowest dose a minimal increase in inflammatory
cells, including alveolus macrophages, was observed after 3 days and persisted
minimally for as long as 6 months, but the lung weights were unchanged. At 0.2
mg/kg bw the weight of the lungs was significantly elevated after 1 week and
more neutrophils were detected in the BAL fluid at all time-points. Also, at this
dose and the two higher increased levels of alveolar and interstitial macrophages
were seen throughout the observation period and at 2 mg/kg bw alveolar and in-
terstitial macrophage uptake of CNTs was seen by TEM at all time-points. No
individual CNTs were detected in the cells of the interstitium. At 1.0 and 2.0 mg/kg
bw lung weights were significantly increased throughout the observation period.
At 1 mg/kg bw histopathological examination showed formation of granulomas
and hypertrophy of the alveolar epithelium and foamy macrophages appeared at
3 and 6 months. Levels of inflammatory cells in BAL fluid were consistently ele-
vated up to 3 months at this dose. Histopathological examination did not reveal
fibrosis at doses up to 2.0 mg/kg bw although at 2.0 mg/kg bw the lung tissue
thickened progressively. No effects were seen in organs other than the lung (164).

Following i.t. installation of 0.5 mg SWCNTs into mice and subsequent moni-
toring after 3 and 14 days, the alveoli was found to be injured. Macrophages in the
alveoli were activated and pulmonary granulomas were present. Genomic analysis
suggested that this injury resulted from activation of transcription factors in the
macrophages following uptake of CNTs, leading to enhanced oxidative stress and
activation of other immune functions. Such activation of immune cells would,
according to the authors, explain the chronic inflammation and formation of granu-
loma observed (48). The dose was, however, very high and no information on
CNTs dimensions was provided.

Al Faraj and colleagues characterised the distribution and histopathology of
SWCNTs in rats for 1-90 days post-exposure. These SWCNTSs were suspended by
sonication and incubated with albumin and administered by i.t. instillation at
doses 0of 0.4, 2 and 4 mg/kg bw (n=9 or 13/group). The animals receiving 2 mg/kg
bw were followed for 90 days and the others for 30 days. MRI revealed SWCNTSs
in the lung at 1 day post-exposure, but level had decreased after 7 and 30 days. No
effects on ventilation were observed at any time-point or with any dose, and no
SWCNTs were detected in organs such as the liver, spleen and kidneys. After 30
days, small intense pixels thought to represent to inflammatory nodules could be
detected by MRI in the rats exposed to 2 and 4 mg/kg bw. At the same time, MRI
revealed no acute inflammation. Histopathology revealed aggregates of SWCNTSs
in the bronchioles and alveoli after 1 day, without any apparent epithelial damage
with any of the doses. After 7 days, the alveolar septa had increased in thickness,
and SWCNTs were seen to adhere to the bronchiolar wall. After 30 days, multi-
focal granulomas, accompanied by invading inflammatory cells and collagen de-
position with alveolar collapse, were observed. These effects were enhanced and
the fibrosis became more severe with increasing dose. Pneumonitis also occurred
as indicated by the presence of PMNs. The lowest dose of 0.4 mg/kg bw evoked
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an inflammatory response at the site of deposition in the airways, but no inflamma-
tory events in the pleura could be detected by histopathology or MRI. In conclusion,
i.t. instillation of SWCNTs led to progressive inflammation and fibrosis in a dose-
dependent manner (3). The SWCNTs employed were reported to contain 10%
iron, but no information concerning dimensions or dispersion state was provided.

When SWCNTSs (diameter 1.3 nm, length 3.5 um, specific surface area 1 700
m?*/g, 150 pg/animal) suspended in foetal bovine serum were administered to mice
(n=8) by intranasal instillation, airway hyper-responsiveness induced by metha-
choline was elevated 24 hours later. Moreover, a significant increase in number of
macrophages in airways was detected (102).

Jacobsen and colleagues examined the genotoxic and pulmonary effects of 5
different types of nanoparticles on female ApoE -/- mice. SWCNTs (diameter 0.9-
1.7 nm, length <1 pm, 2% Fe), carbon black, C¢, gold and quantum dots were
compared. When mice (n=7) received 54 pg SWCNTs by i.t. instillation and were
examined 3 and 24 hours later increased levels of mRNA encoding macrophage
inflammatory protein (MIP-2), macrophages/monocyte chemoattractant protein-1
(MCP-1) and IL-6, all associated with inflammation, were detected in the pulmo-
nary tissue at both time-points, being somewhat higher after 3 hours. After 3 hours
the BAL fluid contained more protein and the cells in this fluid exhibited elevated
levels of DNA damage (see further Section 11.4). After 24 hours the level of total
protein remained elevated, and moreover the proportion of neutrophils and macro-
phages in the BAL fluid was increased. Overall the toxicity of the SWCNTSs and
carbon black was less than that of quantum dots, but greater than that of gold and
Ceo (137).

C57BL/6 mice (n=4-8/group) were administered 40 pug (corresponding to 1.6
mg/kg bw) SWCNTs (diameter 1-2 nm, length 0.1-2 nm, either aggregated in PBS
or nanoscale dispersed in Pluronic) by i.t. instillation and monitored 30 days later.
Granuloma-like structures with mild fibrosis were observed after exposure to
aggregated, but not nanoscale dispersed, SWCNTs. The authors concluded that
the toxicity of SWCNTs is attributable to aggregation rather than the large aspect
ratio of the individual tubes (232).

MWCNTs

Wistar rats (n=6) were exposed to 11 or 241 mg/m’ MWCNTs (diameter 10-16
nm, specific surface area 253 m*/g, containing 0.53% Co, Baytubes), 11 mg/m’
acid-treated MWCNTs (containing 0.12% Co, Baytubes) or 248 mg/m® o-quartz
(DQ12, specific surface area 3.2 m?/g) in a single nose-only aerosol exposure for
6 hours and monitored for 3 months thereafter. The MWCNTSs were dispersed
with a Wright Dust-Feeder. Overall, the effects of both the pristine MWCNTSs and
those containing a reduced level of cobalt on the BAL fluid were similar, increasing
for 7 days and thereafter, persisting, but to a diminishing degree. These findings
suggest that the pulmonary response was not associated with the metal impurities
alone. The BAL fluid contained significantly higher numbers of inflammatory
cells after exposure to pristine MWCNTSs at either concentration, as well as more



LDH and collagen. Most of these effects declined with time, but still remained
after 90 days. In contrast, the more pronounced response to the quartz particles
increased with time. The levels of inflammatory markers y-glutamyl transferase,
B-N-acetyl glucosaminidase and alkaline phosphatase in the BAL fluid were also
elevated by doses of MWCNTSs, again, declining with time. The weight of the
lungs was elevated as well. Thus, the nanotubes induced dose-dependent toxicity
that diminished with time. Histopathological examination revealed significant
hypercellularity of the bronchoalveolar tissue and focal septal thickening in the
animals exposed to 241 mg/m*> MWCNTSs. Dark spots were present in macro-
phages following both concentrations, whereas focal increases in the septal level
of collagen occurred only with the higher concentration. Similar results were ob-
tained following exposure to quartz. Genomic analysis of the pulmonary tissue
revealed up-regulation of genes encoding chemo- and cytokines, complement
factors and surface markers of inflammatory cells. Moreover, stress-response
genes and genes whose products are involved in preserving vascular integrity
were also induced. In summary, when inhaled, MWCNTs induce an inflammatory
response (76).

Mice (n=10) were exposed 1 or 30 mg/m* MWCNTs (diameter 10-30 nm, length
0.5-40 pm) for 6 hours and controls exposed to 30 mg/m® carbon black or saline
vehicle. Assuming that 10% of the inhaled MWCNTs were deposited, these dosages
corresponded to 0.2 and 4 mg/kg bw, respectively. MWCNTSs were ingested by
macrophages and these migrated to the subpleura. The nanotubes were recovered
in the subpleural wall and within macrophages. Macrophages containing nanotubes
were observed in aggregates on the pleural surface. CNTs were still detected in
the subpleural wall at the end of the observation period. However, no quantification
was made to measure the clearance of the MWCNTs. Subpleural fibrosis, as
assessed by image analysis, was increased in the high-dose group 2 and 6 weeks,
but not 14 weeks, after exposure. Most of the subpleura appeared normal, the
fibrotic lesions being focal and regional. No increase in subpleural fibrosis was
seen in the low-dose group (284).

In another study, healthy mice and ovalbumin sensitised mice inhaled an aero-
sol containing 100 mg/m®* MWCNTS for 6 hours. According to the manufacturer,
these MWCNTs were 10-30 nm in diameter and 0.5-40 pum in length, had a surface
area of 40-300 m*/g and were 95% pure with 0.12% nickel. However, independent
measurements revealed a diameter of 30-50 nm, a length of 0.3-50 pum, a surface
area of 109.29 m*/g and a purity of 94% with a 5.53% nickel content. The authors
estimated that 4 and 12 mg/kg bw were deposited in the alveoli and the tracheo-
bronchial tract, respectively. Examination after 1 and 14 days revealed nanotubes
in the lungs (with no obstruction of the airways), in macrophages and epithelial cells.
Sensitised mice had developed airway fibrosis after 14 days, whereas the healthy
mice had not. In addition, the sensitised mice exhibited elevated levels of mRNA
coding for IL-5, a pro-inflammatory cytokine, which might had potentiated the
fibrosis. On the basis of their findings, these authors suggested that for MWCNTs
to induce fibrosis, inflammation must be present prior exposure and that individuals
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with pre-existing allergic airway inflammation such as asthma might therefore
be particularly sensitive to airway fibrosis evoked by nanotubes (285).

When mice were exposed to a single dose (10-80 pug) of MWCNTSs (mean dia-
meter 49 nm, median length 3.9 um containing 0.41% Na and 0.32% Fe, Mitsui
MWNT-7) by pharyngeal aspiration, the levels of inflammatory markers in the
BAL fluid were elevated in a dose-dependent manner. These levels were highest
after 7 days post-exposure and had returned to normal after 56 days, except with
the 40-ug dose, where they remained elevated. SEM revealed deposition of
MWCNTs on the alveolar epithelium, with rapid uptake by alveolar macrophages
and alveolar epithelial cells. The occurrence of pulmonary fibrosis after 7 days
was confirmed by histopathological examination and granulomatous inflammation
was still present after 56 days. Some of the MWCNTSs migrated to the pleura (265).

To examine effects of MWCNTSs (mean diameter 49 nm, median length 3.9 pm,
0.41% Na, 0.32% Fe, Mitsui MWNT-7) on the alveolar epithelium, subpleural
tissue and intrapleural space, mice (n=7-8, 7 weeks old) were exposed to 10, 20,
40 or 80 pg MWCNTs by pharyngeal aspiration and monitored for up to 56 days.
After 1 day 18% of the particles were in the airways (the majority in the airspace),
81% in the alveolar region (60% within macrophages) and only 0.6% in the sub-
pleural tissue. These MWCNTs were found to penetrate the pleura and reach both
the intra- and subpleural tissues in a dose- and time-dependent manner (although
no statistical analysis was indicated). At 80 pg, the frequency of these penetrations
was initially increased, but declined until day 7, rising again on day 28 and then
persisting until 56 days post-exposure. Penetration of the alveolar epithelial was
also dose-dependent (effective dose for 50% response (EDsg) 15.3 pg) and the
CNTs were engulfed by macrophages. Granulomatous lesions were reported at a
dose of 20 pg, but there was no statistical analysis or information on the frequency
of such lesions, nor were they reported with the higher doses (207).

Fibrotic response to MWCNTSs (mean diameter 49 nm, median length 3.9 um,
0.41% Na, 0.32% Fe, surface area 26 m%/ g, Mitsui MWNT-7) administered to male
C57BL/6J mice (n=8/group) via pharyngeal aspiration at doses of 10-80 pg was
monitored for 1-56 days by field emission SEM. MWCNTSs were deposited on the
epithelial surface and then rapidly taken up into the mucus layer and alveolar
epithelium. MWCNTSs were observed in the mucous lining layer at the early time-
points of 1 hour and 1 day post-aspiration, but were rapidly cleared as demonstrated
by their absence in the airways 7, 28 and 56 days after exposure. The majority of
the MWCNTs were within the alveolar macrophages at these later time-points.
With the 80-pg dose, penetration of MWCNTs through the endothelial walls into
a pulmonary venule occurred. Fifty-six days after exposure to this same dose, 68%
of the MWCNTs were located inside alveolar macrophages, 8% in the alveolar
tissue, 1.6% in the subpleural tissue and visceral pleura, and 20% in granulomas
inthe alveoli. At the same time-point, a dose-dependent increase (73% with 80 pg)
in the thickness of the alveolar wall (assessed by Sirius red staining of collagen
fibres) had occurred, although this increase was much less than that evoked by
SWCNTs (see reference (208) in previous Section on SWCNTs) (206).
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MWCNTs (total dose 25 pg/mouse) of different dimensions and morphology
(NTjhort: diameter 26 nm, length 1-2 pm; NTiangleq: diameter 15 nm, length 1-5 pm;
NTiong: diameter 165 nm, mean length 36 pm, 84% >15 pm) were administered
to mice by pharyngeal aspiration and pulmonary and pleural effects were assessed
1 and 6 weeks post-aspiration. A length-dependent inflammatory response was
indicated by increased levels of granulocytes in BAL fluid after 1 week in mice
exposed to long CNTs. Long CNTs also induced extensive interstitial thickening
after 6 weeks, whereas tangled CNTs caused small localised granulomas. Further-
more, the long, but not tangled or short CNTs induced increased levels of granulo-
cytes in lavage from the pleura after 1 week and after 6 weeks these levels were
highly increased. SEM examination of the parietal pleura facing the diaphragm, 6
weeks post-aspiration, revealed cellular aggregates on the mesothelial surface that
contained leukocytes and collagen deposition after exposure to long CNTs. The
short and tangled CNTs did not produce any significant change in the pleura (224).

After male C57BL/6 mice (n=6-8/group) were administered MWCNTs (dia-
meters 12.5 and 25 nm, length several pm, 5 wt% Fe) by oropharyngeal aspiration
at doses of 1, 2 and 4 mg/kg bw, histological examination revealed formation of
granulomas with collagen deposition, aggregates of MWCNTs and MWCNT
laden macrophages throughout the lung parenchyma and surrounding the bronchi.
With all three doses, the number of neutrophils and epithelial cells in the BAL
fluid were elevated, but only the highest dose increased macrophage number as
well (348).

When mice were injected directly into the pleura with MWCNTs (total dose 5
pg/mouse) of different dimensions (NTgpor: diameter 20-30 nm, length 0.5-2 pm;
NTianglea: diameter 15 nm, length 1-5 pm; NTjongi: diameter 40-50 nm, mean length
13 pm; NTjongo: diameter 20-100 nm, maximal length 56 um, 77% >20 pm) or
amosite asbestos (50% >15 pm) and subsequently monitored for 1 and 7 days
and 4, 12 and 24 weeks, the long, but not tangled or short CNTs caused acute in-
flammation and progressive parietal pleura fibrosis. After 1 day, the total number
of cells, as well as of granulocytes in lavage fluid from the pleura was elevated
only by exposure to NTiong) or 2 O asbestos. Not until 4 weeks after the injection
with NTjong did the number of granulocytes begin to decline, but still remained
higher than in control animals 24 weeks post-exposure. Histological examination
following exposure to NTiangled and NTjong revealed aggregates of inflammatory
cells in the pleural wall in both NTang1c4 and NTiong2 samples 1 day after exposure,
but only in NTjong samples after 7 days. At every time-point the pleura of NTjongo-
exposed mice exhibited a fibrotic layer, in contrast to the mesothelial monolayer
of unexposed mice, and this fibrosis was progressive. Furthermore short fibres
were cleared through the stomata, whereas long fibres were retained within the
pleura (223).

When Wistar rats (n=10/group) were exposed to MWCNTs (diameter 48 nm,
length 0.94 um (range 0.22-8.9 um), specific surface area 69 m?/g, doses of 0.2
and 1 mg/animal corresponding to 0.66 and 3.3 mg/kg bw) by i.t. instillation and
pulmonary toxicity assessed 3 days, 1 week and 1, 3 and 6 months later, the level
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of cytokine-induced neutrophil chemoattractant-1 (CINC-1) in lung tissue was
elevated at all time-points up to 3 months in the high-dose group. Both doses in-
creased the total number of cells and of neutrophils in the BAL fluid after 3 days.
Although no granulomatous lesions were observed with the low dose, the high-
dose exposure led to transient deposition of collagen as well as small granulomas.
Histopathological examination revealed infiltration of neutrophils, eosinophils and
alveolar macrophages throughout the entire period of observation. Uptake of
MWCNTs into the phagolysomes of macrophages was detected by TEM (216).

The pulmonary toxicity of MWCNTs (diameter 40-60 nm, length 0.5-500 um,
95% pure, dispersed in saline containing 1% Tween-80 by sonication for 1 hour,
single dose of 0, 1, 3, 5 and 7 mg/kg bw) administered to male rats by i.t. instilla-
tion has been monitored 1 day, 1 week, and 1 and 3 months post-exposure. A time-
and dose-dependent toxicity was observed, with inflammatory cells (including
macrophages, lymphocytes, neutrophils and eosinophils) present in the alveolus
interstitium after the doses of 3, 5 and 7 mg/kg bw. Thickening of the alveolar
septa and cracked alveolus were also seen at these doses. After 3 months, CNTs
were still present in the lungs, and localised to capillary vessels and intracellular
cytoplasmic vacuoles (190). The number of animal studied was not stated and this
investigation was qualitative rather than quantitative.

In another report, structural defects were found to be a major determinant of
toxicity. The following four different preparations of MWCNTSs were compared:
ground (MWCNT-g), in which structural defects in the carbon backbone has been
introduced mechanically; ground and then heated to 600 °C (MWCNT-g600),
which, in addition to structural defects, reduced the number of oxygenated carbons
and content of metal oxide; ground and then heated to 2 400 °C (MWCNT-g2400)
to remove all metals, while at the same time, annealing and reducing carbon
defects; or, finally, heated to 2 400 °C and then ground (MWCNT-2400g), which
also removed metals, but introduced structural defects. These preparations were
administered i.t. to rats at a dose of 2 mg/animal and the effects monitored for 3 or
60 days. The structural defects turned out to be the cause of the acute pulmonary
toxicity observed. MWCNT-g and MWCNT-g600 were more toxic than MWCNT-
g2400. After 60 days, exposure to MWCNT-g led to the formation of granulomas
containing collagen throughout the parenchyma, while exposure to MWCNT-g600
or -g2400 led to formation of smaller granulomas. In addition, MWCNT-g and -
2600 were genotoxic in vitro, whereas CNT-g2400 was not (for details see Section
11.4). The further observation that the animals exposed to MWCNT-2400g (with
structural defects, but containing no metal) demonstrated signs of acute pulmonary
and genotoxicity similar to those receiving MWCNT-g indicated that structural
defects in the carbon skeleton were the major cause of toxicity both in vivo and in
vitro in this investigation (221). A more thorough analysis of the physiochemical
properties of these structural defects was carried out in a companion paper (81).
The CNTs with the largest number of structural defects and most pronounced hydro-
philicity exhibited the highest toxicity, whereas those with the fewest defects and
no contamination of transition metals were almost inert in this respect (81).
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Following administration of MWCNTs (diameter 50 nm, length 10 um, surface
area 280 m*/g, 95% pure, dose 0.05 mg) to mice (n=5/group) by i.t. instillation,
agglomerates of CNTs were present in the bronchi 8 and 16 days later, but visible
inflammation appeared only after 24 days. The injury and destruction to alveoli
became more severe between 8 and 24 days post-instillation. In comparison to re-
peated inhalation (see further Section 11.3) performed by these same researchers,
more pronounced effects were detected after instillation (181). The CNTs were
not well dispersed in the solution instilled, which may have affected the outcome
of this study.

In another case, guinea pigs were instilled i.t. with 12.5 mg/animal of four types
of MWCNTSs and examined 3 months later. The dimensions of these nanotubes
were not provided, but they were reported to be free of iron, except for one prepara-
tion which contained <0.01 ppm iron. The MWCNTSs fabricated by Showa Denko
enhanced the level of IL-8 in the BAL fluid. After exposure to 95% pure NanoLab
MWCNTSs, the numbers of macrophages, lymphocytes and neutrophils in this fluid
were elevated. The less pure (80%) NanoLab MWCNTSs enhanced macrophage
numbers to a similar extent and also increased the number in eosinophils, but with
no effect on lymphocytes and neutrophils. Histopathological examination revealed
most severe pulmonary lesions following instillation of Showa Denko nanotubes,
while all of the preparations evoked infiltrating of inflammatory cells into the peri-
vascular, peribronchial and interstitial regions (95). Although these findings show
that with exposure by i.t. instillation, different types of MWCNTSs can produce
different responses, the preparations employed were not characterised sufficiently
to explain why.

When guinea pigs were exposed to 15 mg of 6 different kinds of MWCNTSs by
i.t. instillation and examined 90 days later, all of these animals exhibited signs of
pneumonitis with or without mild fibrosis. Exposure to MWCNTSs produced by
Carbon arc discharge increased pulmonary resistance, and in all animals except
those exposed to Pyrograf CNTs, inflammatory cells had infiltrated the lungs.
Histopathological examination revealed, however, infiltration by inflammatory
cells as well as atelectasis, emphysema and alveolar exudation in all cases. In some
cases, CNTs were observed inside macrophages and other phagocytic cells (123).
The experimental evidence presented here is somewhat weak, with too few figures
and very little statistical analysis.

Sprague Dawley rats (n=4-6) have also been instilled i.t. with either MWCNTSs
(diameter 9.7+2.1 nm, length 5.9 um, specific surface area 378 m*/g) or ground
MWCNTs (diameter 11.3+3.9 nm, length 0.7 pm, specific surface area 307 m*/g)
at concentrations of 0.5, 2 and 5 mg/animal and monitored thereafter for 1 hour-60
days. Asbestos of Rhodesian Chrysolite “A” (length 2.44+2.3 um, width 0.17£1.8
pm) and carbon black (specific surface area 66.8 m?/ g, density 174 kg/m3 , but no
physical dimensions given) were used for comparison. After 28 days, similar levels
of both types of CNTs (78.4%) remained in the lungs. Thereafter, intact CNTs were
eliminated more slowly (81.2% remaining after 60 days) than ground CNTs (36%
still present after 60 days). At the doses of 0.5 and 2 mg, ground CNTs enhanced
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the level of LDH activity in the BAL fluid, while only the higher dose of intact
CNTs gave such an effect. Moreover, 2 mg of ground CNTs resulted in elevated
protein levels in the BAL fluid that were comparable to or higher than those pro-
duced by the asbestos control. After 60 days pulmonary fibrosis at levels comparable
to the asbestos control was produced by both types of CNTs in a dose-dependent
manner. 2 and 5 mg of intact CNTs raised the pulmonary level of hydroxyproline,
whereas only the higher dose of ground CNTs had this effect. The level of collagen
was enhanced by 2 and 5 mg intact CNTs and 0.5-5 mg ground CNTs. The intact
CNTs evoked granuloma formation in the bronchi, while the more well-dispersed
ground CNTs caused granulomas in the alveolar spaces or interstitium. Asbestos
led to parenchymal thickening with fibrosis, whereas carbon black exerted very
little effect compared to the other particles. After 3 days the pulmonary levels of
TNFa was elevated by 0.5 or 2 mg ground CNTs, but only by 2 mg intact CNTs
(222).

Other investigators have exposed rats (170-200 g) with two different kinds of
MWCNTs (one intact and one ground in a mortar, both suspended in an artificial
lung surfactant, dose of 5 mg/animal) by i.t. instillation followed by observation
for 91 days. The intact CNTs were 100 nm in diameter and 27.5% were longer
than 5 pm, but the dimensions of the ground particles were not stated, although
these were observed to be shorter and less agglomerated than the intact nanotubes.
The ground MWCNTs increased the total number of cells in the BAL fluid after 8
days and the neutrophil ratio after 29 days. The levels of LDH and total protein
were elevated 8, 29 and 91 days after both exposures. Ground MWCNTs could be
observed in the alveolar region after 2 days, whereas intact MWCNTSs were loca-
lised in the bronchial region. After day 8, macrophages containing intact MWCNTSs
were detected in the interstitium, while those containing ground MWCNTSs were
located predominantly in the alveolus. Black macrophages were present in the
bronchiolar lymph nodes of rats exposed to either type of MWCNT. These authors
suggest that the degree of agglomerates influences the toxicity of MWCNTSs (339).

When male Fischer rats (n=8/group) were instilled i.t. with 40 or 160 pg corre-
sponding to 0.16 or 0.64 mg/kg bw MWCNTSs (mean diameter 88 nm, mean length
5 um (38.9% being longer), aspect ratio 57, Mitsui MWNT-7) or 160 pg a-quartz
as control and then monitored for 1, 7, 28 and 91 days, MWCNTs were observed
in the bronchiolar and alveolar spaces. Deposition in the alveolar wall was not de-
tected after 1 day, but was present after 28 days and had decreased again by day 91.
Free MWCNTs disappeared more rapidly from the bronchiolar and alveolar spaces
than did those that had been phagocytised. The bronchiolar associated lymph tissue
exhibited uptake of MWCNTSs, generally to a lesser extent with the lower than the
higher dose. Multifocal microgranulomas consisting of alveolar macrophages en-
gulfing MWCNTs were observed with the high dose and rose in number with time.
In some cases, these microgranulomas were associated with fibrosis. In the low-
dose group, slight fibrosis without associated microgranulomas was observed
after 91 days. a-Quartz exerted effects similar to those of the lower dose of CNTs.
The bronchi and bronchioles demonstrated no histological alterations, nor were
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any lesions detected in the pleura. The number of multinucleated macrophages,
the levels of total protein and albumin, and activities of LDH and alkaline phos-
phatase in the BAL fluid were elevated in a dose- and time-dependent manner.
The highest levels were reached after 1 day, declining thereafter, but were still
remaining elevated after 91 days. No pathological changes were observed in the
visceral pleura. These investigators argued that the presence of fibrosis and
microgranulomas in the alveoli might be due to the presence of MWCNTSs in
the alveolar wall and interstitium, which could cause long-term release of
proinflammatory and profibrogenic cytokines by macrophages (1). Signs of
frustrated phagocytosis were reported by Takaya and co-workers who assessed
dispersion of MWCNTs (length 5 um) in the lungs 1 day after the i.t. admini-
stration described by Aiso and co-workers (1, 323).

In another report mice (n=10/group) were exposed by i.t. instillation to undoped
MWCNTs (diameter 50 nm, length up to 450 pum, 2-2.5% Fe) or MWCNTs doped
with nitrogen (N) (diameter 20-40 nm, length 100-300 pm, 2-4% N, 2-2.5% Fe).
Both CNT preparations were subjected to acid treatment to achieve effective
dispersion and doses of 1, 2.5 or 5 mg/kg bw were employed. With 2.5 mg/kg N-
doped CNTs, a mononuclear cell granuloma was observed after 30 days in one
mouse only, with no other effects. At 5 mg/kg, aggregates of nanotubes were pre-
sent in the lumen of bronchioles, the bronchiolar wall was damaged and granulomas
containing immune cells and aggregates of CNTs were present in the interstitium
after 48-72 hours. Although free of CNTs, draining lymph nodes were hyperplasic.
After 7 and 30 days, fibrosis was observed in the peribronchiolar interstitium. In
addition, mononuclear infiltration, disruption of the bronchial epithelium and
papillomatous hyperplasia were seen after 7 days. In the case of undoped CNTs,
death due to asphyxiation occurred at all doses, e.g., at 5 mg/kg, 90% of the mice
died. Fifteen days after exposure to 1 mg/kg, multiple granulomas were detected
in the interstitium, goblet cell hyperplasia had occurred in small bronchioles, CNTs
were detected in the interstitium and granulomatous inflammation was seen in
the bronchial lumen. Higher doses produced similar effects after 24 and 48 hours.
Some of these differences were suggested to be due to the rougher surface of and
lower van der Waals forces between the N-doped MWCNTSs, resulting in less
agglomeration. More highly agglomerated tubes would then lead to asphyxiation
(35). In these same study CNTs administered to mice by nasal instillation caused
no mortality or pulmonary toxicity.

When rats were exposed by i.t. instillation to 0.04, 0.2 or 1 mg/kg bw MWCNTs
(diameter 60 nm, median length 1.5 pm) or to 5 mg/kg silica particles and then
followed for 6 months, only animals in the high-dose group exhibited transient
pulmonary inflammation. After 3 days, the total numbers of cells and of eosinophils
in the BAL fluid were elevated at 1 mg/kg, while the number of neutrophils in-
creased after exposure to 0.2 and 1 mg/kg. No significant alterations in BAL cells
were seen at other time-points. The levels of LDH and total protein were enhanced
at 1 mg/kg, but only transiently, returning to control levels after 1 month and 1
week, respectively. In contrast, in animals exposed to silica particles almost all of
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the parameters examined in the BAL fluid were elevated for the entire 6-months
period of observation. Histopathological examination showed dose-dependent re-
sponses, with no significant effects at 0.04 mg/kg. Slight accumulation of macro-
phages in the alveoli occurred at 0.2 mg/kg and 3 days to 1 month after exposure
to the highest dose, a partially granulomatous accumulation of macrophages was
observed in the alveoli and interstitium. Hypertrophy of the bronchial epithelium
and infiltration by inflammatory cells were also seen. Three to six months post-
exposure, similar, but less extensive changes persisted. Assessment by TEM re-
vealed MWCNTs inside macrophages in the alveoli and interstitium, but not in
other tissues. Little deposition of MWCNTSs was seen in the peribronchial lymph
nodes, even with the highest dose and 6 months after exposure. It was proposed
that macrophages can clear MWCNTs from the lungs under the experimental con-
ditions employed (163).

Reddy and collaborators instilled two different types of MWCNTs i.t. into
Wistar rats (n=6). One of these preparations was produced by arc discharge (dia-
meter 90-150 nm, surface area 197 m?/g) and the other by CVD (diameter 60-80
nm, surface area 252 m*/g) and both were dispersed in PBS containing Tween-80
and administered at doses of 0.2, 1 or 5 mg/kg bw. The control rats were exposed
to the same doses of quartz and all groups were monitored from 24 hours to 3
months post-exposure. The level of LDH in the BAL fluid exhibited a transient
dose-dependent increase with both variants of MWCNTs, although those produced
by CVD evoked a stronger response. This level was elevated as early as 24 hours
after exposure and gradually decreased during the ensuing 3 months. A transient
dose-dependent rise in the alkaline phosphatase activity in the BAL fluid also
occurred. Moreover, the level of malondialdehyde, a product of lipid peroxidation,
was higher in the BAL fluid of all groups and the level of protein in this fluid was
increased by exposure to 1 or 5 mg/kg MWCNTs. Dose-dependent development
of multifocal granulomas and focal peribronchiolar lymphoid aggregates occurred
24 hours to 1 week after exposure. After 1 month, multifocal granulomas con-
taining macrophages were also seen in the alveoli and after 3 months the number
of such lesions was reduced. Quartz particles produced effects similar to those
caused by the MWCNTs (276).

When the pulmonary effects of instilling MWCNTs (diameter 20-50 nm, length
0.5-2 um, dose 1, 10 or 100 pg) dispersed in a solution of albumin into the trachea
of rats (n=6/group) and assessed 1, 7, 30, 90 and 180 days later, no signs of fibrosis
or granuloma were observed. Pulmonary macrophages underwent apoptosis 30 and
90 days after exposure to 10 pg and 30, 90 and 180 days after administration of
100 pg. Caspase activity was induced by 10 ng after 90 days and by 100 pg after
30, 90 and 180 days. The lowest dose of 1 pg exerted no effects. The reason why
no inflammation or pulmonary injuries occurred could, according to the authors,
be the low doses of nanotubes used, their dimensions and/or the use of bovine
serum albumin as a dispersant. The apoptosis of macrophages was not necessarily
pathological, but could be a defensive step in the elimination of nanotubes from
the lungs (74).
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When DWCNTs (diameter 1.2-3.2 nm, length 1-10 um, dose 1.5 mg/kg bw)
were instilled intranasally into mice and followed by monitoring for 6-48 hours,
bundles of DWCNTs as long as 100 pm were observed. The reduction of free
radicals detected 24 and 48 hours after instillation were attributed to the scav-
enging capacity of the DWCNTs. Plasma levels of inflammatory cytokines were
elevated. Clusters of DWCNTSs were present in the lobar bronchus, the bronchioles
and alveoli and pulmonary macrophages were more numerous in the exposed
animals. Thickening of the alveolar wall was also observed (52). This attenuated
production of ROS is in disagreement with several reports on the production of
ROS as a major toxic mechanism, illustrating the many difficulties involved in
directly comparing different investigations on CNTs.

Intranasal instillation of MWCNTSs (diameter 11 nm, length 1.05 um, specific
surface area 130 m?/g, dose 150 pg) into mice (n=8) did not enhance metha-
choline-induced airway hyper-responsiveness 24 hours later, nor was the number
of airway macrophages elevated (102).

When agglomerated MWCNTSs functionalised with -COOH (diameter 40 nm
diameter, length 0.5-5 pm, dose 100 pg) dissolved in either PBS (MWCNTs-1)
or in PBS containing 1% Tween-80 (MWCNTs-2) were injected i.v. into mice
(n=10/group) with follow-up for 7-28 days, the less dispersed MWCNTs-1 were
taken up from the circulation by the lungs and phagocytised by pulmonary macro-
phages. These CNTs caused inflammation and were only partially cleared from
the lungs after 28 days. On the other hand, the more well-dispersed and less agglo-
merated MWCNTSs-2 were not taken up by the lungs under any circumstance. It
was proposed that agglomeration influence the toxicity of MWCNTSs (269). It
should be noted here that the effect on the lungs was observed after i.v. injection
of MWCNTs, and not after administration via the airways.

To examine whether CNTs exert effects similar to those of asbestos, Huczko
and collaborators instilled CNTs synthesised by arc discharge (25 mg of a soot
sample) into the lungs of 250-g guinea pigs and examined these animals 4 weeks
later. The tidal volume, frequency of breathing and pulmonary resistance were
not altered by exposure, nor were the number of cells in or the protein content of
the BAL fluid. These investigators concluded that exposure to CNTs in soot is
not likely to be associated with adverse health effects (124). However, the most
relevant end-points were not studied. CNTs employed were not characterised,
statistical analysis are not described, and the results are poorly presented and eva-
luated.

In another study, MWCNTs (diameter 50 nm, length 10 pm, 95% pure with
<3% amorphous carbon and <0.2% La and Ni, surface area 280 mz/g, doses of 0.1
and 2 mg per animal) were instilled into the trachea of 250-g rats (n=5-8/group)
and the pulmonary response evaluated using X-ray phase contrast imaging 5 days
later. Three other rats received 0.1 mg MWCNTs and were examined 140 days
post-exposure. The MWCNTSs were sonicated in saline solution containing 1%
Tween-80, so that most of them were individually dispersed, while a smaller pro-
portion formed aggregates. Imaging of the airways of the animals exposed to
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MWCNTs revealed that the structure of the lungs was more disordered than in
control rats and those treated only with 1% Tween-80 in saline. This finding was
confirmed by microscopic examination. In the animals followed for 140 days,
granulomas were observed, both by microscopic examination and X-ray phase
contrast imaging. In the latter imaging procedure, the granulomas appeared as
black speckles, probably due to a change in the refractive index of the lung tissue.
The lesions detected after the long-term follow-up were focal, while the low-dose
short-term lesions were more diffuse in appearance. It was suggested that X-ray
imaging might prove useful in detecting pulmonary lesions in workers exposed to
CNTs, although considerable additional research in this context is required. The
resolution of this procedure is not sufficiently good yet to allow observation of
single alveoli, for instance (179). Little detail was provided concerning the patho-
logical characterisation of exposed animals after 5 days.

Implantation of MWCNTs (5 or 20 mg) into the muscular fascia on the back
of rats (n=2) led to acute pulmonary oedema, and a pleural response, including
inflammatory liquid in the pleura of one animal, that died 180 minutes after ex-
posure. The other rat survived for 7 days and exhibited inflammation and fibrosis
only at the site of implantation. In addition, mice injected i.p. with 10 mg/kg
bw MWCNTs exhibited no antigenic reaction (45). This report did not provide
sufficient information concerning the dimensions of the CNTs and animal re-
sponses to allow the findings to be evaluated properly.

Combined exposure

To examine for possible synergistic effects, female C57BL mice were pre-exposed
to 20 pg MWCNTs (diameter 20-30 nm, length 50 pm, purified by acid treatment)
by pharyngeal aspiration 12 hours prior to a 3-hour exposure to ozone. When the
BAL fluid and lung tissue examined 5 and 24 hours after ozone exposure, generally,
ozone exposure alone generated only mild effects, whereas the CNTs caused
alterations in cell numbers and protein levels. TNFa was increased 5 hours after
ozone exposure, but not 24 hours after. On the other hand, exposure to the CNTs
resulted in elevated levels of both TNFa and IL-1p both 5 and 24 hours later. Ex-
posure to both CNTs and ozone gave rise to higher levels of TNFa and IL-1 after
5 hours, but after 24 hours only the level of IL-1f remained elevated. The level of
mucin in all exposed groups was elevated after 24 hours. Although this combined
exposure did not result in additive or synergistic effects, the exposure to CNTs
may have produced cross-tolerance to other pollutants and thereby compromised
the defences of the lung (104).

MWCNTs (diameter 40-60 nm, length 5-15 pm, surface area 40-300 m%/g, 95%
pure, 1.25% Ni, dispersed by sonication, bended and agglomerated, dose 6.67 mg/
kg bw), benzene (dose 2.67 mg/kg bw) or MWCNTs-benzene combination (9.34
mg/kg bw (containing 6.67 mg/kgbw MWCNTs and 2.67 mg/kg bw benzene) were
instilled into trachea of mice (n=9) and the result monitored for 3 and 7 days. As
benzene like many other organic molecules is adsorbed on CNTs most of it is re-
tained in the lung together with the CNTs. As a result, the benzene is concentrated
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in lung by MWCNTs. More extensive pathological alterations were seen following
co-exposure than after exposure to the MWCNTs alone. Benzene alone had little
or no effects. After 3 days, the total level of protein and LDH activity in the BAL
fluid were increased after exposure to MWCNTs with or without benzene, whereas
the levels of the markers alkaline phosphatase and acid phosphatase were only
elevated by co-exposure. After 7 days, all of these markers remained abnormally
high only in the animals co-exposed. Histopathological examination after 3 days
revealed aggregated MWCNTs in the inner wall of the bronchi and in the alveoli,
with inflammatory cells in the vicinity of the latter. No lesions were evident in the
benzene-exposed mice. Co-exposed animals demonstrated blockage of bronchi by
MWCNT aggregates and greater destruction of the alveolar structure than in mice
receiving MWCNTs alone. After 7 days the MWCNT-exposed animals exhibited
fewer aggregates in the bronchi and the alveoli appeared intact. Again benzene-
exposed animals exhibited no lesions. Co-exposure was associated with aggregates
adsorbed to the inner wall of bronchi, but no blockage. The netted structure of the
alveoli had recovered from the injury caused by aggregates of MWCNTSs, but not
entirely. In conclusion, the combined exposure to MWCNTSs and benzene aggra-
vates the pathological effects of the former on the airways of mice. The enhanced
pulmonary toxicity may be due to the change of MWCNTSs aggregation ability
after benzene is adsorbed on them (182).

11.2.1.3 Dermal toxicity

MWCNTs

When 0.1 mg of MWCNT clusters (MWCNTs-1: diameter 20-50 nm, length 0.22
pm, specific surface area 300 m*/g or MWCNTs-2: diameter 20-50 nm, length 0.825
um, specific surface area 320 m*/g) were implanted in the thoracic skin of mice
and left there for 1 or 4 weeks, the MWCNTs-1 had produced a less pronounced
inflammatory response in the subcutaneous tissue 1 week after implantation, than
the MWCNTs-2. This difference might reflect the fact that macrophages can ingest
0.220-um CNTs more easily than the longer 0.825-um CNTs. Nevertheless, no
necrosis, degeneration or neutrophil invasion was detected with either type of CNT
(292).

11.2.1.4 Cardiovascular toxicity

SWCNTs

When mice (n=4-10) were subjected to a single exposure to SWCNTSs (diameter
0.7-1.5 nm, length 1 pm, 10 or 40 pg/animal=0.4 or 1.4 mg/kg bw) via pharyngeal
aspiration and monitored for as long as 60 days, haeme oxygenase-1, an indicator
of oxidative insult, was activated in the lungs, aorta and cardiac tissue. Damage to
aortic mitochondrial DNA, along with alterations in the levels of glutathione and
protein carbonyl in the aorta also occurred. These findings suggest that pulmonary
exposure to SWCNTs affects the cardiovascular system. In addition, experiments
involving repeated exposure of ApoE -/- mice to SWCNTSs were performed (see
Section 11.3) (184).
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Evaluation of the cardiovascular effects of pristine (undetermined size due to
aggregation) and acid-functionalised SWCNTs (diameter 22-138 nm in solution)
24 hours after oropharyngeal aspiration of 10 or 40 pg (corresponding to 0.3 and
1.3 mg/kg bw) into mice (n=5-10) revealed no SWCNTs in heart tissue, with myo-
fibre degeneration only in the mice exposed to 40 pg acid-functionalised SWCNTs.
The myocytes in the papillary muscle and interventricular septum were shrunken,
rounded and had pyknotic nuclei. Both pristine and acid-functionalised SWCNTs
led to systemic effects, including increased plasma levels of creatine kinase and
aspartate aminotransferase (ASAT) with the 40 pug dose. In addition, the acid-
functionalised SWCNTs reduced the red blood cell count and enhanced coronary
flow rate at this higher dose. When experimental ischaemia was induced, in these
latter mice, they exhibited less functional recovery and larger areas of infarct.
Thus, acid-functionalised, but not pristine SWCNTSs can damage cardiovascular
parameters. The authors point out, that acid-functionalisation increases the solu-
bility and disperses the nanotubes more effectively in aqueous solution, which can
potentially affect their translocation (336).

MWCNTs and SWCNTs

Mice (n=5) were exposed to 1.5 mg/kg bw MWCNTs (diameter 80 nm, length 10-
20 um, 0.27% Fe) or SWCNTs (diameter 0.8-1.2 nm, length 0.1-1 um, 8.8% Fe)
by pharyngeal aspiration and analysis of BAL fluid, gene and protein profiling of
pulmonary tissue and blood, and enzyme-linked immunosorbant assay (ELISA) in
lung and plasma performed 4 hours later. The BAL fluid demonstrated significant
neutrophil influx and enhanced activity of LDH, the latter only significantly after
exposure to MWCNTs. Furthermore, CNT exposure resulted in expression of genes
in the lungs encoding mediators of inflammation, oxidative stress, remodelling and
thrombosis. The lung response resulted in alterations in the systemic circulation, in-
cluding elevated expression of several biomarkers of neutrophil response, increased
number of neutrophils and induction of cytokines (e.g., IL-6) and chemokines. In-
terestingly, the level of plasminogen activator inhibitor 1 (PAI-1), a protein involved
in inhibition of the fibrinolytic cascade, were elevated in both the blood and lungs.
However, no up-regulation of this gene was observed in blood, indicating that
the PAI-1 protein most likely had been released from the lungs into the systemic
circulation. In most cases, the effects reported were more pronounced following
MWCNT exposure, which may according to the authors be related to more rigid
and better dispersed MWCNTs. This report identified some possible biomarkers
for exposure to CNTs and, more importantly, revealed communication between the
lungs and circulation following such exposure (79).

When rats (n=5) with experimentally induced vascular thrombosis were injected
i.v. with 25 pg of either SWCNTs or MWCNTs, the rate of vascular thrombosis
accelerated. The effects were found to be more potent than those of standard urban
particulate matter (SRM1648), with SWCNTSs being more potent than MWCNTSs
(270). No physical or chemical characterisation of the CNTs employed was pre-
sented.
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11.2.1.5 Immunotoxicity

SWCNTs

When mice were exposed to a single dose of SWCNTs (diameter 1-4 nm, length
1-3 pm, dose 10 or 40 pg) by pharyngeal aspiration and/or Listeria monocytogenes
(10° bacteria) 3 days later and then monitored for 3-7 days, the animals exposed
to both SWCNTSs and bacteria demonstrated slower bacterial clearance, reduced
production of nitric oxide and an enhanced inflammatory response. The lowering
of bacterial clearance was partially due to less extensive phagocytic activity by
macrophages. The conclusion drawn was that SWCNTs may increase susceptibility
to pulmonary bacterial infections (304).

MWCNTs

The effects of contaminated and clean MWCNTs on peripheral T-cells in mice
have been examined utilising three types of MWCNTs (diameter 100-150 nm,
length 10-20 pm) - one raw preparation containing 1.2% Fe, one purified by
heating to 1 800 °C containing 0.008% Fe and one purified by heating to 2 800

°C containing less than 0.002% Fe. These CNTs were implanted subcutaneously
(n=5) at a dose of 1 mg/mouse and 4 weeks later the animals were killed and their
immune response characterised. The percentage of CD4+ cells was equal in all
groups, while the percentage of CD8+ cells was lower in the animals exposed to
the raw preparation and the ratio of CD4+/CD8+ cells higher in these same mice
as well as in animals exposed to the MWCNTSs containing 0.008% Fe. The plasma
levels of IL-4, IL-6, IL-10 and interferon gamma (IFNy) were elevated following
exposure to the raw preparation, but not to the purified nanotubes. It was suggested
that purified MWCNTSs are less immunotoxic, i.e., more biocompatible with the
immune system (167).

To examine the effects of CNTs on metabolism, immunological modification
and toxicity, Chiaretti and co-workers injected a single dose of 10, 20 or 40 mg/kg
bw MWCNTs i.p. into CD1 Swiss mice (n=3-5/group) and sacrificed them 7 days
later. During this post-exposure period the death of one animal, both at 20 and 40
mg/kg was registered. Autopsy revealed adhesive peritonitis following exposure
to 20 or 40 mg/kg bw, but nothing else except aggregates of CNTs. Ten mg/kg bw
caused mild peritoneal irritation, but no CNT aggregation was observed (45). These
responses have also been examined following repeated exposure (see Section 11.3).

SWCNTs and MWCNTs

Koyama and co-workers investigated the immunological response of mice to sub-
cutaneous implantation of four different types of CNTs. These CNTs included
SWCNTs (diameter 0.8-2.2 nm, no data on length, surface area 641 m*/g, 1-1.5
wt% Fe), two kinds of MWCNTs (MWCNTs-I: diameter 10-50 nm, length 10-20
pm, surface area 56 mz/g, 3-5% Fe; MWCNTs-1I: diameter 50-150 nm, length 10-
20 pm, surface area 18 m*/g, <0.03% Fe) and cup-stacked CNTs (diameter 50-
150 nm, length up to 100 um, surface area 50 m*/g, 1 wt% Fe). Each animal
(n=30/group) received 2 mg nanotubes and was monitored for up to 12 weeks.
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No differences in body weight were observed between the groups and no animals
died during the experiment. SWCNTSs activated the major histocompatibility com-
plex (MHC) class I pathway of the antigen-antibody response system (higher
CD4+/ CD8+ value) along with oedema formation in the vicinity of the implant
after 1 week. After 2 weeks, increased values in CD4+ and CD4+/CD8+ without
change in CD8+ signified an activated MHC class II for all four CNTs. At 3 weeks,
SWCNTs activated the MHC class 1 pathway, MWCNTs-I and cup-stacked
MWCNTs inhibited the MHC class II pathway and MWCNTs-II inhibited both
these pathways. Histopathological examination revealed cell infiltration and gra-
nulomatous tissue for all samples (168). It was proposed that characterisation of
T-cell levels in the peripheral blood of workers might be useful for assessing ex-
posure to CNT.

In addition, immunosuppression following repeated exposure to MWCNTS has
been documented (see Section 11.3).

11.2.1.6 Hepatotoxicity

SWCNTs

When chitosan-functionalised SWCNTs (diameter 1-3 nm, length 0.05-0.2 um, 20
pg) were administered to mice by i.v. injection, they were rapidly taken up and
accumulated in the liver, which exhibited pathological changes, including macro-
phage injury. Alterations in blood coagulation parameters also occurred (150).

MWCNTs

When rats were instilled i.t. with 0.2, 1 or 5 mg/kg bw of two kinds of well-di-
spersed MWCNTs (diameter either 60-80 or 90-150 nm) and monitored for up to
a month, histopathological examination of the liver revealed dose-dependent
foamy degeneration of hepatocytes, fatty accumulation, focal inflammation and
necrosis. In addition, serum levels of glutamate pyruvate transaminase (also called
alanine aminotransferase) and creatinine (markers for liver and kidney toxicity,
respectively) were elevated after exposure to 1 or 5 mg/kg bw of either kind of
nanotube (275). Although no MWCNTSs were seen in the liver, these authors
suggested that MWCNTs are able to translocate from the lungs into the liver and
other organs.

When acid-oxidised (O-MWCNTs: diameter 10-20 nm, length 0.1-1 um, 98%
pure, 0.86% Ni, 0.06% Fe) and Tween-80-dispersed MWCNTs (T-MWCNTs:
diameter 10-20 nm, length 0.1-1 um, 98% pure, 0.86% Ni, 0.06% Fe) were given
as one i.v. injection (10 or 60 mg/kg bw) to mice (n=20), with subsequent exami-
nation after 15 or 60 days, the T-MWCNTs proved to be more toxic to the liver.
The higher dose of T-MWCNTs resulted in less body weight gain than seen in
the other groups; a lower relative liver weight; infiltration of inflammatory cells
into the portal region; and cellular and focal necrosis both 15 and 60 days post-
injection. This same dose of O-MWCNTs evoked only a little infiltration. Ad-
ministration of 60 mg/kg T-MWCNTs also evoked mitochondrial swelling both
15 and 60 days later, as well as reductions in reduced glutathione and superoxide
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dismutase activity after 15 days. The blood level of ASAT was elevated by both
types of CNTs at both time-points, while level of total bilirubin was only increased
after 60 days. The levels of mRNA encoding proteins involved in drug metabolism
and liver injury were also altered by both types of CNTs. These changes with
respect to certain cytochrome P450s (CYP450s) were confirmed by quantitative-
PCR. In summary, these findings reveal that at high dosage MWCNTs dispersed
in Tween-80 induced liver damage, while oxidised MWCNTs exhibited less
toxicity. No analyses designed to determine whether CNTs were still present in
the liver were carried out. Visual inspection revealed that the liver was darker in
colour after exposure to the higher than the lower dose of CNTs, which led the
authors to conclude that CNTs were still present after 60 days (140).

Zhang and co-workers examined the effect of PEGylation on the hepatotoxicity
of MWCNTs (diameter 10-20 nm, length <1 pum) by i.v. injection of 10 and 60
mg/kg bw non-functionalised or PEGylated MWCNTSs into mice (n=10/group),
with sacrifice 15 or 60 days later. In no case was the relative liver weight altered.
The colour of the liver became darker as the dosage of CNTs was increased, indi-
cating accumulation of CNTs in this organ. Both types of CNTs caused hepatic
inflammatory response, spot necrosis and mitochondrial destruction at the high
dose, with the non-PEGylated ones being slightly more potent. Both types of
CNTs also altered gene expression in the liver, especially in the TNFa and NFxB
signalling pathway. No significant alterations in the hepatic levels of glutathione
or superoxide dismutase activity were observed. In summary, both types of CNTs
induce some degree of liver inflammation and functionalisation with PEG amelio-
rates this negative biological effect (380).

When mice (20-22 g, n=10/group) received 100 ug of MWCNTs functionalised
with —COOH moieties (diameter 40 nm, length 0.5-5 pum, MWCNT-1 dissolved in
PBS; MWCNT-2 dissolved in PBS containing 1% Tween-80) by i.v. injection and
were followed for 7-28 days, increasing amounts of MWCNTs-1 were taken up by
the liver, with some remaining even after 28 days. The less agglomerated and more
well-dispersed MWCNTs-2 were also taken up, but cleared after 28 days (269).

11.2.1.7 Splenic toxicity

SWCNTs

In a preliminary investigation, mice (n=3-4/group) received 1 uM SWCNTSs modi-
fied non-covalently with PEG (diameter 1-5 nm, length 0.1-0.3 pm, dose 151 mg/
animal) or oxidised and covalently modified with PEG (diameter 1-5 nm, length
0.05-0.2 pm, dose 47 mg/animal) by i.v. injection and the spleen examined by
haematoxylin and eosin staining, immunohistochemical analysis of macrophages
and micro-Raman mapping 4 months later. Weak Raman signalling was seen,
brownish pigment believed to be nanotubes was present in macrophages, but no
histological abnormalities were observed (298).

99



MWCNTs

When mice (20-22 g, n=10/group) received 100 pg of MWCNTs functionalised
with —COOH moieties (diameter 40 nm, length 0.5-5 pm, MWCNT-1 dissolved in
PBS; MWCNT-2 dissolved in PBS containing 1% Tween-80) by i.v. injection and
were monitored thereafter for 7-28 days, more megakaryocytes and multinucleated
giant cells were present in the spleen 1 and 7 days following injection of either
type of CNTs, but these cells had disappeared after 28 days (269).

When MWCNTs rendered water-soluble by functionalisation with taurine (dia-
meter 12.6 nm, length 0.269 um) were injected i.v. into mice (n=6/group) at doses
of 60 and 100 mg/kg bw and the animal studied for 1-60 days thereafter, the re-
lative spleen weight was initially elevated after receiving 60 mg/kg, but returned
to normal during the period of observation. The spleen phagocytic index, (i.e., the
level of phagocytosis) and removal of particles in this organ were unaltered. More-
over, the splenic levels of glutathione, superoxide dismutase and malondialdehyde,
another marker of oxidative stress, were unchanged. Histological and ultrastructural
examination revealed accumulation of MWCNTs in the spleen during the 60-day
period, phagocytised by macrophages or endothelial cells. No damage to tissue
integrity was detected (64). It should be noted that the MWCNTs used in this case
were very short.

11.2.1.8 Neurotoxicity

MWCNTs

After MWCNTSs (diameter 10-30 nm, length 2 pm, purity 97%, 2.94% metal con-
taminants and <1% carbon soot) coated with the surfactant Pluronic F127 were in-
jected into the cerebral cortex of mice (n=3) at a dose of 35 ng/animal, the volume
of the injury was the same as in control animals administered Pluronic F127 alone
3 days later, indicating that injection of such dispersed nanotubes in such a low
concentration poses no short-term threat to the nervous system. The number of
animals used in the experiment was, however, small. Interestingly, the reduction
in cellular respiration by Pluronic F127 in vitro was counteracted by the MWCNTs
coated with Pluronic F127 (experimental details described in Section 11.2.2.6).
These findings suggest that Pluronic F127-coated MWCNTs are not harmful to
cells of the nervous system (14).

11.2.1.9 Peritoneal toxicity

MWCNTs

In order to assess the response of MWCNTs having different morphologies with,
regard to fibre pathogenicity, 50 pg of four different types of MWCNTs (dimen-
sions according to the manufacturer: NTanglea1 (NanoLab): diameter 15 nm, length
1-5 pm; NTiangled2 (NanoLab): diameter 15 nm, length 5-20 pm; NTiong) (Mitsui):
diameter 40-50 nm, mean length 13 pm; NTone: diameter 20-100 nm, max length
56 um) were i.p. injected into C57BL/6 mice. The peritoneal cavities of the mice
were lavaged and histopathological examinations were made after 24 hours and 7
days. The long CNTs, but not the tangled ones caused an inflammatory response
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indicated by increased number of PMNs and levels of total protein in the lavage
24 hours post-exposure and granuloma formation with significantly increased
numbers of foreign body giant cells 7 days post-exposure. The long MWCNTs
caused frustrated phagocytosis (259).

Conclusions concerning effects of single exposure

Single exposure studies in animals are summarised in Tables 9, 10 and 12. In
general, single pulmonary exposure to CNTs evokes acute inflammation, with more
neutrophils and macrophages and higher levels of pro-inflammatory cytokines in
the lungs, as well as formation of multifocal granulomas (often containing CNTs-
engulfed macrophages) and fibrotic lesions.

It has been demonstrated that CNTs may migrate to the pleura. Following in-
halation of a high concentration (30 mg/m®) of MWCNTs as long as 50 pm by
mice, CNTs were detected in the subpleura and subpleural fibrosis developed after
2 weeks (284).

Intrapleural migration of MWCNTs (length approximately 4 um) was seen after
pharyngeal aspiration (207, 265) as well as progressive fibrosis of the pleura
following injection of MWCNTs directly into the pleural space (223). In this
study, only long (84% >15 um) and not short (0.5-2 um) fibres induced an in-
flammatory response and fibrosis, suggesting that fibre dimensions such as length
have an important influence on the pathogenesis of fibrosis once MWCNTSs have
reached the pleural space (223). Similarly long, but not short MWCNTs produced
pulmonary and pleural inflammation and fibrosis following pharyngeal aspiration
(224). In summary, some evidence from single exposure studies supports the
HARN hypothesis, but further studies are required in order to draw a firm con-
clusion.

Some systemic effects have been reported following exposure to CNTs via the
lungs including cardiovascular pathologies in mice exposed to SWCNTSs via the
airways (79, 184, 336). Furthermore, CNTs stimulated platelet aggregation and
accelerated the rate of vascular thrombosis in rat carotid arteries (270). Thus, there
are certain indications that exposure to CNTs via the airways can have adverse
effect on the cardiovascular system. Likewise, liver and kidney damage have been
reported after i.t. instillation of MWCNTs, although no identification of CNTs in
the organs was demonstrated (275). Such effects could either result from the re-
lease of inflammatory mediators from the lungs into the systemic circulation and/or
translocation of CNTs.

Immunotoxicity related to the impurities present in the preparations of CNTs
has been reported after subcutaneous administration, as has activation of peri-
pheral T-cells (167, 168).

One investigation revealed a low degree of toxicity following intracerebral
administration of MWCNTs, but no purely neurotoxicological study in vivo has
been found in the literature (14).

Liver and kidney toxicity is less likely considering occupational exposure via
inhalation and most studies showing effects on liver have assessed effects following
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1.v. injection (140, 269, 384). Effects of the liver were however also observed in

a study following single i.t. instillation of MWCNTs in rats (275). The few in-
vestigations on hepatotoxicity reported to date indicate that exposure to MWCNTs
via the circulation can cause molecular pathological changes in the liver. Some
effects have been observed after high i.v. doses.

11.2.2 In vitro studies
Methodological shortcomings in in vitro studies of CNTSs are described in Chapter
10.

11.2.2.1 Effects on cells from the pulmonary system

SWCNTs

Low acute toxicity (50% effective concentration (ECsp) >800 ng/ml) was observed
when lung epithelial A549 cells were exposed to SWCNTs (HiPCO, diameter 0.8-
1.2 nm, approximately 10% Fe) at concentrations of 1.56-800 pg/ml in the pre-
sence or absence of serum. The same concentrations of quartz particles were used
as positive controls. After 24 hours, a battery of assays and examination by TEM
revealed significant cytotoxicity in the concentration range of 200-800 pg/ml. The
calculated concentration that produced 50% of the maximal effect (ECsy) was in
general greater than the highest concentration employed, except in one instance
where this value was 744 pg/ml. No intracellular localisation of CNTs was de-
tected (59).

The toxic effect of SWCNTs (diameter 1.2-1.5 nm, length 2.5 um, purified by
acid, dose 0.5-500 pg/ml) on human lung epithelial A549 cells and three other
cancer cell lines after exposure for 72 hours was proposed to involve production
of ROS. This production was induced in a concentration-dependent manner, and
the effect was more potent than with particles of iron oxide or silica. Cytotoxicity
(as determined by the MTT-assay) was observed at all time-points and concentra-
tions examined. At levels of 250 and 500 pg/ml in the medium, the SWCNTs also
induced more apoptosis (60%) than did the other particles (47). Some drawbacks
associated with this study include lack of information concerning the number of
experiments performed, the failure to examine all particles in all of the assay pro-
cedure employed, which makes comparisons difficult. Moreover, as discussed in
Chapter 10, the reliability of the MTT assay in this context has frequently been
questioned.

The relationship between contamination of CNTs by metals and amorphous
carbon and the formation of ROS has been evaluated in a number of in vitro
studies. Pulskamp and colleagues concluded that CNTs do not induce oxidative
stress in lung epithelial A549 cells if amorphous carbon and metals have been
removed. These investigators cultured A549 cells in presence of three different
types of SWCNTSs: commercial SWCNTSs containing cobalt and molybdenum,
SWCNTs treated in-house with the solvent dimethylformamide and SWCNTSs
acid-treated in-house. No effect on expression of the anti-oxidative protein haeme
oxygenase 1 (after 24 hours incubation, 0-100 pg/ml, 0-62 pg/cm?) was observed
with any of these SWCNTSs. The extent of the biphasic burst in oxidative stress
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that occurred 10 minutes and 24 hours after exposure to 5-100 pg/ml of any of
these preparations was found to depend on their contents of amorphous carbon
and metal (268).

The findings by Herzog and collaborators that SWCNTSs with a higher metal
content are more toxic than those with little metal contamination were based on
the clonogenic assay. When human carcinoma alveolar epithelial (A549), normal
bronchial epithelial (BEAS-2B) and normal keratinocyte (HaCaT) cell lines were
incubated with two different types of SWCNTs (HiPCO: diameter 0.8-1.2 nm,
average length 0.8 pm, 10 wt% Fe; arc discharge produced: diameter 1.2-1.5 nm,
length 2-5 pm, 20-pm long bundles, <1 wt% Ni and Y) the 50 % effective con-
centration (ECsg) values for colony size and colony number differed, with the
former being much lower (between 15 pg/ml (HiPCO) and 28 pg/ml (arc dis-
charge)). With both preparations, the normal cell lines exhibited a dose-dependent
decrease in number of colonies formed and the response of the keratinocyte cell
line regarding colony size was also dose-dependent. The HIPCO SWCNTSs were
more toxic than those produced by arc discharge or than carbon black towards all
of the cell lines with all end-points (113).

The pronounced influence of the dispersion agent employed was demonstrated
by comparing the oxidative stress produced in lung epithelial (A549) cells and
normal human primary bronchial epithelial (NHBE) cells by two different kinds
of SWCNTSs (50 pg/ml). One variant was synthesised by the HiPCO procedure
(diameter 0.8-1.2 nm, length 0.8 pm (bundles), 10% Fe, surface area 487 m*/g)
and the other by arc discharge (diameter 1.2-1.5 nm, length 20 um (bundles), 50-
70% SWCNTs with contaminants of amorphous carbon, turbostratic graphite
and <1% Ni and Y, surface area 239 m%/g). The effects were compared to those
evoked by carbon black (Printex 90) and crocidolite asbestos (diameter 0.5 um,
length 5 pm). The low-to-moderate oxidative stress produced in NHBE cells by
CNTs or carbon black was higher when these particles were dispersed in DPPC
(smaller agglomerates) than in culture medium (non-dispersed). Asbestos (ob-
served to be single individual fibres, regardless of the method of dispersion) did
not induce ROS formation. This formation by A549 cells was lower when foetal
calf serum was present in medium, suggesting a protective role (112).

When murine lung epithelial cells were exposed to (10-50 pg/ml for 2-4 days)
pristine (tight agglomerates which could not be characterised) or acid-functionalised
SWCNTs (well dispersed, size <150 nm, zeta-potentials -40 to -60 mV), the sur-
vival rate was higher in presence of the pristine SWCNTs at all concentrations.
Only the acid-functionalised SWCNTs altered DNA synthesis, whereas both in-
duced apoptosis in epithelial cells at a concentrations of 40 pg/ml. Neutralisation
of the negative charges on the functionalised SWCNTs attenuated their toxic
effects (295).

Yacobi and collaborators exposed monolayers of rat alveolar epithelial cells to
SWCNTs (diameter 0.8-1.2 nm, length 0.1-1 um) for as long as 30 hours and
monitored barrier function in terms of the transmonolayer resistance (Rt) and the
potential difference, which were also utilised to calculate the equivalent short cir-
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cuit current (Ieq). In addition, LDH was measured as an indicator of cytotoxicity.
At concentrations of 22-88 pg/ml, the SWCNTSs lowered the Rt during the first
hour of exposure, but this value had returned to normal after 5 hours were it re-
mained until the end of the experiment after 25 hours. Ileq was not significantly
altered and cytotoxicity was not detected. The conclusion was that apical exposure
to SWCNTs can alter barrier function, an effect believed to reflect changes in
cellular transport and dependent the on composition, shape and/or surface charge
of the particles (367).

When SWCNTSs (diameter 1.3 nm, length 3.5 um, specific surface area 1 700
m?*/g) were added to cultures of mouse alveolar macrophages, morphological
changes (e.g., an irregular plasma membrane) along with activation of macrophages
occurred. SWCNTs also disrupted lipid rafts in the cell membrane, which could
potentially alter cell function. After 48 hours, 200 pg/ml SWCNTs induced apopto-
sis slightly (102).

Although the duration of exposure to CNTs exerts important impact on the cyto-
toxic response, this factor is not always taken into account. Bruinink and colleagues
demonstrated that the accumulation of raw and purified SWCNTSs in target com-
partments of cells in culture rose with time and the cytotoxic response was thus
influenced by the duration of exposure (32).

MWCNTs

MWCNTs (diameter 11 nm, length 1.05 um, specific surface area 130 m*/g) have
been reported not to alter the morphology of mouse alveolar macrophages in vitro.
After 48 hours, only the highest dose (200 pg/ml) was cytotoxic (20% reduction
in viability) (102).

When lung epithelial A549 cells were exposed to MWCNTs (0.1-0.2 pm in size,
but forming micrometre-sized agglomerates in solution), DNA damage was al-
ready detected at a concentration of 1 pg/cm” and was even more pronounced at
20 or 40 pg/cm?. The number of viable cells was reduced at 40 pg/cm?, although
no oxidative damage to DNA or increase in intracellular levels of ROS was ob-
served. Moreover, metal impurities were shown not to be the cause of the toxicity
(151).

Upon exposure to concentrations of 0.5-10 pg/ml for as long as 24 hours,
MWCNTSs (no physical dimensions or chemical impurities provided) caused dose-
dependent production of ROS that resulted in lipid peroxidation in rat lung epi-
thelial cells. Cell viability was also lowered in a dose-dependent manner (from
2.5-10 pg/ml) and the activities of apoptotic caspase-3 and -8 enhanced. These
results suggest that MWCNTSs cause cytotoxicity by inducing oxidative stress
(273).

When lung epithelial A549 cells were exposed to two kinds of MWCNTs
(MWCNT-R produced by arc evaporation and MWCNT-N formed by nickel
catalysis) at a concentration of 5 pg/ml, the MWCNTSs-N evoked a much higher
production of ROS. Asbestos and various carbon soots led to similar changes.
These authors suggested that ROS production could cause cell toxicity (88), but
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statistical evaluation of their data and physical and quantitative description of the
MWCNTs they employed were lacking.

The degree of functionalisation was shown to exert an impact on toxicity by
exposing astrocytes and lung epithelial A549 cells to various doses (1-100 pg/ml
and 400-800 pg/ml, respectively) of MWCNTSs functionalised with NH, or COOH
groups (diameter 20-30 nm, length 0.1-0.3 pm), pristine MWCNTs (diameter 20-
30 nm, length 0.5-2 pm) or MWCNTs highly functionalised with NH; groups
(diameter 20-30 nm, length 0.05-0.1 um). All of these MWCNT preparations
were contaminated by low levels of metal (0.3-1.5 wt% Ni, 0.0002-0.0009 wt%
Co and 0.003-0.25 wt% Fe). The highly functionalised MWCNTs reduced cell
viability in a manner similar to silicon dioxide (SiO,) particles (50% cell loss at
800 pg/ml, significant effect already at 100 pg/ml), while the other particles ex-
erted no such effect. Their findings with the MTT assay were deemed to be some-
what unreliable by these authors themselves. The enhancement of toxicity by
addition of NH; groups could be due to the better solubility in aqueous solution
(50).

When cultures of epithelial (A549) cells were incubated with 0.1-100 pg/ml
MWCNTs (diameter 12 nm, length 0.1-13 pm, 2.4% Al, 2% Fe, surface area
219.2 m?/g) for as long as 72 hours (using asbestos fibres for comparison) the
CNTs, which were not internalised, reduced cellular metabolism, but did not alter
cell permeability or the levels of oxidative stress or apoptosis. However, 100 pg/
ml did decrease the DNA content of the cell cultures (318).

The viability of A549 epithelial cells exposed to MWCNTSs (diameter 20-40 nm,
length 5-30 um, specific surface area 380 m?/g, 0.18% Fe) was reduced at con-
centrations of 150 and 200 pg/ml after 24 hours. Concentrations of 25-150 pg/ml
resulted in a dose-dependent rise in the level of IL-8, which involved NFkB and
the production of ROS (374).

The intracellular accumulation and toxicity of two variants of MWCNTs (short:
diameter 10-160 nm, length 0.1-3.5 pm; long: diameter 10-160 nm, length 0.1-12
um) (specific surface area 42 m?/g and 4.2% Fe in both cases), as well as purified
long MWCNTs, in cultures of A549 cells has been compared to aluminium oxide
(A1,03) and TiO,. Suspensions of these MWCNTSs were prepared by sonication in
water containing 0.25 wt% Arabic gum, which prevented the formation of agglo-
merates and concentrations of 1-100 pg/ml and an exposure period of 1-24 hours
were utilised. A dose- and time-dependent cytotoxic response was observed, with
no difference between longer or shorter MWCNTSs or with different levels of
contamination by iron. The short MWCNTs were internalised by the cells, as in-
dividual tubes, with no agglomeration, leading to morphological changes such as
the formation of multi-lamellar bodies. Al,O3 and TiO, nanoparticles were also
internalised and had similar effects, but were less toxic (309). In contrast to many
other reports, these findings indicate that the length of MWCNTs or the level of
contamination by iron has no influence on the cytotoxic response. However, no
statistical evaluation of the cytotoxicity was presented.
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Furthermore, MWCNTs with a high-aspect ratio have been found to cause more
pronounced cytotoxicity than those with a low ratio, regardless of the procedure
utilised to assess cytotoxicity. In this case, human embryonic lung WI-38 cells
were exposed to either MWCNTs with a high-aspect (diameter of 10-15 nm, two
peak length distributions at 0.545 and 10.45 pm, containing 5% non-specified
contaminants, surface area 177.6 m%/g) or low-aspect ratio (diameter of 10-15 nm,
peak length distribution at 0.192 um, containing 1.2% unspecified contaminants,
surface area 195 m?/g) both dispersed in medium containing DPPC for 24, 48 or
72 hours at concentrations of 12.5-200 pug/ml. The low-aspect ratio MWCNTs
were found to be more efficiently dispersed. Cytotoxicity was evaluated on the
basis of trypan blue exclusion, the WST-1 assay and release of LDH. The trypan
blue procedure revealed reduced cell survival at all concentrations and time-points
for both types of MWCNTs, with the high-aspect ratio nanotubes exerting a more
pronounced effect. The WST-1 assay demonstrated cytotoxic effects with 50-200
pg/ml of either type of MWCNTs after 24 hours, while all concentrations (12.5-
200 pg/ml) were cytotoxicity after 48 and 72 hours in both cases. With the low-
aspect ratio MWCNTs, release of LDH activity after 24 hours was enhanced by
all concentrations, and after 48 and 72 hours at 50 pg/ml and higher; while corre-
sponding values for the high-aspect ratio particles were 25 pg/ml and higher, 50
pg/ml and higher and all concentration except 25 pg/ml. Iron oxide was found not
to be cytotoxic. The investigators concluded that high-aspect ratio MWCNTs are
more cytotoxic (157).

Hirano and collaborators examined the cellular uptake and cytotoxicity of
MWCNTSs (mean diameter 67 nm, length not specified, purity 99.79%, 0.2% Fe,
surface area 26 m?/g) when added to cultures of human bronchial epithelial
(BEAS-2B) cells in comparison to crocidolite. Both were suspended in 10%
Pluronic F68, which resulted in well-dispersed MWCNTs present as individual
fibres or small bundles. At a concentration of 10 pg/ml, the BEAS-2B cells took
up MWCNTs in a time-dependent manner (up to 12 hours). In connection with
cytotoxicity during a 24-hour period the half maximal inhibitory concentration
(ICs) for the MWCNTSs was 12 pg/ml, while the corresponding value for croci-
dolite was 678 p/ml. High-density cultures of BEAS-2B cells were not as sen-
sitive to MWCNTs as low-density cultures, e.g., 10 pg/ml eliminated cell viability
totally in the latter, but caused only 10% reduction in high-density cultures. The
Chinese hamster ovary (CHO-K1) cells, which were more sensitive than BEAS-
2B cells at both high density and low density, exhibited lowered viability in the
presence of 1 pg/ml MWCNTs. MWCNT exposure also up-regulated the ex-
pression of cytokines, including IL-6 and IL-8, in a dose-dependent manner (2-10
pg/ml). Moreover, the levels of the phosphorylated (and thus activated) forms of
signal transduction elements such as extracellular-signal regulated kinase (ERK)
1/2, p38 mitogen-activated protein (MAP) kinase and heat shock protein (HSP) 27
and expression of NFxB were higher. In conclusion, MWCNTSs were found to
activate stress-related signal transduction in BEAS-2B cells and cause production
of pro-inflammatory cytokines (115). This is one of the few studies that have
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resulted in an ICsy for any CNT and compared this value to that of a reference
material, thus making it an important contribution.

When MWCNTs (diameter 20 nm, aspect ratio 80-90), carbon nanofibres
(mean diameter 150 nm, aspect ratio 30-40) or carbon black (aspect ratio 1) were
added to cultures of lung cancer cells, including the H596, H446 and Calu-1 cell
lines, MWCNTs reduced the cell survival of all three of these cell lines in a dose-
dependent manner (0.02 and 0.2 pg/ml) over a period of 5 days, with H596 cells
being most sensitive. At a concentration of 0.2 pg/ml, MWCNTs were less potent
in reducing the proliferation of H596 cells than carbon nanofibres and carbon
black, with the latter being slightly more potent than the former. Light revealed
that H596 cells, which normally associate with each other in clusters, lost their
connections to each other and had smaller nuclei when exposed to 0.02 pg/ml
MWCNTs for 1 day. MWCNTs and carbon nanofibres with carbonyl- (-C=0),
COOH- and OH-groups on their surfaces reduced cell viability somewhat more
than their unmodified counterparts. The conclusion drawn was that carbon nano-
particles reduce the proliferation of lung cancer cells, with MWCNTSs being less
toxic in this respect than carbon nanofibres and carbon black (199). The length of
these MWCNTs was not specified; nor was the size of the carbon black stated.

SWCNTs and MWCNTs
Pulskamp and collaborators concluded that metal contaminants play an important
role in connection with the biological effects of CNTs on cells in vitro. These in-
vestigator exposed rat alveolar (NR8383) macrophages and human alveolar epi-
thelial (A549) cells for 24-96 hours to three different CNT preparations (NT-1:
>50% SWCNTs, diameter 1-2 nm, length not described, 3% O, 2.8% Co, 4.2%
Mo; NT-2: 95% MWCNTs, diameter 10-20 nm, length not described; and NT-3:
95% pure MWCNTs, diameter 30-50 nm, 1.86% Ni, 0.55% Fe) together with an
additional SWCNT preparation (65.7% C, 25.3% O, around 1.2-1.5% Ni, Co and
N, diameter and length was not described) that was acid-treated to remove metal
impurities. All CNT preparations were used at concentrations of 5-100 pg/ml
(3.1-62.5 pg/em?) with carbon black (diameter 14 nm) and crystalline quartz (<5
um) serving as controls. Along with individual CNTs, large bundles or ropes were
formed in solution and these agglomerates were tightly packed, both in water and
culture medium, despite sonication. Light and electron microscopy demonstrated
that CNT agglomerates were taken up by rat alveolar macrophages. No acute
toxicity was detected employing the WST assay, the MTT assay revealed a dose-
dependent reduction in cell viability upon exposure to all these CNTs. Carbon
black also reduced viability in a dose-dependent fashion, a finding which was
supported by measurements of LDH released. The results of the WST test were
confirmed by propidium iodide staining, which showed no damage to cell mem-
brane integrity. After 24 hours of incubation, dose-dependent production of ROS
occurred with all of these CNTs except for the acid-treated preparation (267).
The negative impact of CNTs on airway epithelial barrier was exhibited by
exposing human lung epithelial Calu-3 cells to two kinds of SWCNTs and
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MWCNTSs. The SWCNTs were either long (L-SWCNTs: diameter 1.1 nm, length
0.5-100 pm, surface area 1 700 m?*/g) or short (S-SWCNTs: diameter 1-2 nm,
length 0.5-2 pum, surface area 480 m%/g), as were the MWCNTs (L-MWCNTs:
diameter 110-170 nm, length 5-9 pm long, surface area 130 m%/g; S-MWCNTs:
diameter 40-70 nm, length 0.5-2 pm, surface area not stated). Exposure at a con-
centration of 100 pg/ml for 7 days resulted in cytotoxicity only in the case of S-
SWCNTs. Exposure to 100 pg/ml carbon black had no such effect. The TEER,

an indicator of barrier function, was progressively reduced by L-SWCNTs and L-
MWCNTs, while the shorter CNTs and carbon black did not alter this parameter.
The levels of mRNA encoding occludin and zonula occludens-1, which are in-
volved in forming junctions between epithelial cells, were not changed under any
conditions. The conclusion was that the epithelial barrier is functionally comprised
by the longer CNTs, without changes in the expression of junctional proteins (280).

The paracellular permeability of airway epithelial cells has been monitored by
exposing human lung epithelial Calu-3 cells to SWCNTSs (diameter 0.7-1.2 nm,
length 2-20 pm, surface area 1 700 m*/g, 40% SWCNTs and the rest various other
types of CNTs), MWCNTs (diameter 110-170 nm, length 5-9 um, surface area
130 m%/g, at least 90% pure with less than 0.1% metal contaminants) or a mixture
designated AD-CNTs of 30% SWCNTs, 50% MWCNTs (diameter 10-40 nm,
length 1-5 pm) and 20% amorphous carbon/fullerenes (no other characteristics
of this preparation described). Carbon black served as control. The TEER was
lowered in a time-dependent fashion (1-6 days) following exposure to MWCNTs
or SWCNTs at concentrations of 100 pg/ml, the MWCNTSs being more potent in
this respect. More detailed experiments with the MWCNTSs revealed time- and
dose-dependent reductions in the TEER upon exposure to 5-100 pg/ml for 4 days.
Furthermore, the MWCNTs elevated the permeability of epithelial cell barrier to
mannitol during a period of 30-180 minutes. In addition, exposure of Calu-3 cells
with MWCNTs or, to alesser extent, SWCNTs or AD-CNTs at the time of seeding
prevented the formation of a functional TEER. Co-exposure to cytokine IL-4,
which lowers the TEER of Calu-3 cells, caused the TEER to continue to decrease
in the presence of MWCNTs even after the IL-4 had been removed, whereas with
the other CNTs the TEER returned to normal following the removal of IL-4. None
of these CNT preparations altered the viability of Calu-3 cells. The investigators
concluded that MWCNTs interfere with the formation and integrity of the airway
epithelial barrier, i.e., with tight junctional complexes between epithelial cells
(281).

Moreover, the effect of incubating SWCNTs (diameter 1-2 nm, length 5-30 um)
and MWCNTs (diameter 20-30 nm, length 10-30 pm) dispersed in 0.04% Tween-80
at concentrations of 2, 5 and 10 ppm with lung MSTO-211H cells for 60 minutes
has been evaluated on the basis of the uptake of fluorescein diacetate. Only 10 ppm
SWCNTSs and all concentrations of the MWCNTSs promoted such uptake. Lung
cells were less sensitive in this respect than lymphocytes, but slightly more sensitive
than keratinocytes. These authors conclude that toxicity is dependent on the nature
of the CNTs and on type of cell being examined (120).
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11.2.2.2 Effects on cells from dermal tissue

SWCNTs

SWCNTSs containing 30% iron or purified SWCNTSs containing 0.23% iron were
applied to engineered human skin, cultured epidermal cells or immune-competent
hairless SKH-1 mice (see also Section 11.3). A dose of 75 pgunpurified SWCNTs
in 150 pl of the medium of cultures of the engineered skin evoked parakeratosis,
hyperkeratosis and accumulation of fibroblasts and basal squamous cells in the
epidermis after 18 hours. Increased production of collagen, a 1.5-fold thickening
of the skin and production of proinflammatory cytokines was also observed.
Culturing epidermal cells with unpurified and purified SWCNTSs at concentrations
0f 0.06, 0.12 and 0.24 mg/ml promoted production of free radicals at the 0.12 mg/
ml concentration. The purified CNTs lowered cell viability by 6.6%, 11.9% and
27.7% at 0.06, 0.12 and 0.24 mg/ml, respectively, with corresponding values for
the unpurified CNTs being 10.2%, 22.1% and 53%. The transcription factors AP-
1 and NFxB were induced in a dose-dependent manner by unpurified SWCNTs,
whereas the purified SWCNTSs only activated NF«B (231). The physical charac-
teristics of the SWCNTSs were not determined in this investigation.

When keratinocytes and epithelial cells, along with two lung carcinoma cell lines
were exposed to SWCNTSs at concentrations ranging from 0.1-10 pg/ml for 12-72
hours, survival of all these types of cells was reduced in a dose-dependent fashion,
the lowest dose exerting an effect being 0.5 pg/ml. Moreover, NFkB was induced
dose-dependently in keratinocytes as a result of the activation of stress-related
MAP kinases. Oxidative stress was higher and cell proliferation slower in these
same cells as well. These findings suggest that the toxic mechanism with all four
cell types is similar, as well as that SWCNTs are toxic to keratinocytes, and, thus
maybe to exposed skin (202). The MTT assay, with its serious limitations (see
Chapter 10), was employed to evaluate cell survival. However, the authors did
complement this assay with microscopic examination of the cells. The dimensions
of the SWCNTSs were not reported.

When SWCNTSs functionalised with 6-aminohexanoic acid (AHA-SWCNTSs)
were administered to cultured human epidermal keratinocytes (HEK) at concen-
trations of 0.05 ng/ml1-0.05 mg/ml for 24 and 48 hours, cell viability assessed with
the MTT assay was reduced at the 0.05 pg/ml concentration. The levels of the pro-
inflammatory cytokines IL-6 (from 1-48 hours) and IL-8 (from 24-48 hours) were
elevated. The CNTs were located in cytoplasmatic vacuoles in the HEK cells. Di-
spersion with the surfactant Pluronic F127 attenuated the cytotoxicity. Thus, low
concentrations of AHA-SWCNTs are mildly toxic, while high concentrations may
irritate skin (382). The physical characteristics of the CNTs were not described.

Addition of unrefined SWCNTSs containing 30% iron to the medium of cultures
of human epidermal keratinocytes (HaCaT) at concentrations of 0.06, 0.12 and
0.24 mg/ml for a maximum of 18 hours (n=3 per concentration) led to formation
of free radicals. The cellular morphology was altered, with the nucleus, mitochon-
dria and tonofilaments being affected. The cells separated from the monolayers
and the level of F-actin was modified in a dose-dependent manner. In addition,
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there were indications of oxidative stress including reductions in the levels of vita-
min E and protein thiol-groups. Cell viability was also lowered and all of these
effects were dependent on concentration. The authors suggest that the effects ob-
served were due to the high content of iron in the SWCNT preparation (303), but,
no experiments with iron alone or purified SWCNTs were carried out. The physi-
cal characteristics of the SWCNTSs were not determined.

Sayes and collaborators investigated the influence of functionalisation of the
CNT surface on cytotoxicity towards human dermal fibroblasts, employing pri-
stine SWCNTs dispersed in 1% Pluronic F108 or more water-soluble SWCNTs
functionalised with phenyl-dicarboxyl or phenyl-SOs;H groups at various ratios
(18, 41 or 80), both containing <1% contamination of metals. With 0.2-2 000
pg/ml, cell death increased with the concentration of pristine SWCNTs (lowest
toxic dose=0.2 pg/ml) and SWCNTs-phenyl-dicarboxyl (lowest toxic dose=10
pg/ml) whereas SWCNTs-phenyl-SOsH did not induce such cytotoxicity at any
concentration tested. For the different SWCNTSs-phenyl-SOsH, the least func-
tionalised (ratio 80) were most toxic, and the most functionalised (ratio 18) least
toxic. When SWCNTSs-phenyl-SOsH and their precursors SWCNT-phenyl-SO3;Na
were compared the precursor form with a ratio of 80 was slightly more toxic; with
aratio of 41 the effects were more similar; and neither was toxic when the ratio
was 18. In addition, the SWCNTs precipitated from the cell growth medium
and were deposited on the plasma membrane of the cells. It was concluded that
the toxicity of water-soluble SWCNTs is dependent on the density of functional
groups on their surface (296).

SWCNTs and MWCNTs

Tian and collaborators tried to correlate various physicochemical properties of
CNTs to their cytotoxic effects on human dermal fibroblasts. Their test material
were SWCNTs (diameter 2 nm, length 0.5 pm, surface area 3.15 pm?), MWCNTSs
(diameter 50 nm, length 5 pm, surface area 789 pm?), active carbon (radius 25
nm, surface area 7.85 umz), carbon black (radius 200 nm, surface area 502 umz)
and carbon graphite (radius 500 nm, surface area 3.14 mm®), all refluxed in HCI
for 19 hours to remove metals and other contaminants. After 5-day exposure to
25 pg/ml of any of these nanomaterials cell survival was reduced, mostly with

the SWCNTs and least upon exposure to carbon graphite. More detailed examina-
tion with the SWCNTSs revealed that in this case cytotoxicity was dose- and time-
dependent at concentrations of 0.8-100 ug/ml for a period of 5 days. Cell adhesion
was reduced and more cell death was observed. Moreover, alteration in cell morpho-
logy (e.g., ruffled cell membranes), and rearrangement of cell adhesion proteins
occurred. Western blotting revealed attenuated expression of fibronectin, laminin
and collagen IV, proteins that promote cell adhesion. These investigators concluded
that surface area is the best predictor of cytotoxicity; refined SWCNTSs are more
toxic than unrefined SWCNTSs; and that dispersed nanomaterials can give rise
to morphological changes and cell detachment (334). These results stands in dis-
agreement with other reports showing that unrefined materials are more toxic than
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refined materials (with less contamination by metals). In addition, dispersed CNTs,
usually rendered water-soluble by acid treatment, are generally found to be less
toxic. The evidence concerning correlation between surface area and other physi-
cal parameters with toxic effects as well as the statistical analysis of cell survival
were not clearly presented.

In another report, the effects of agglomerated MWCNTs (diameters ~10 nm,
length not characterised), bundles of SWCNTSs (diameters 1 nm, length not charac-
terised), carbon fibres (diameter 10 um) and carbon nanofibres (diameter 100 nm
diameter) all at concentrations of 5-50 pg/ml on cultures of mouse keratinocytes
were characterised for 72 hours. Analysis of iron in the particles that was available
to the cells revealed significant levels in both MWCNTSs and SWCNTs, but not in
the other particles. Only MWCNTSs and SWCNTs reduced cell survival at all con-
centrations between 12 and 48 hours of exposure, but after 72 hours the cells had
recovered. Moreover, only the CNTs promoted the production of ROS, indeed
even more than the positive control (H,O;). These authors concluded that the size
and chemistry of the particles alone cannot explain their effects and that their
morphology and impurities must also be taken into consideration (94).

11.2.2.3 Effects on cells from the cardiovascular system

SWCNTs

When SWCNTs dispersed in Tween-80 at concentrations of 0.25, 2.5, 25 and 50
pg/ml were added to cultures of ventricular cardiomyocytes from neonatal rats,
the conduction velocity was slightly higher, but only at 2.5 pg/ml, the upstroke
velocity was slightly elevated with 0.25 and 2.5 ng/ml, and myofibrillary structure
and level of ROS were unchanged. In contrast, TiO,-particles altered all of these
parameters and diesel exhaust particles enhanced the production of ROS, but did
not affect the functioning of the heart. Thus, nanotubes dispersed in Tween-80 do
not appear to damage cardiomyocyte function (109).

In addition, when cardiac muscle cells from H9¢2 (2-1) rat were exposed to
highly purified SWCNTs at a concentration of 0.2 mg/ml for 3 days, the integrity
and survival of the cells were not altered. However, SWCNTs attached to the
surface of the cells and it was impossible to remove them by washing. Further-
more, when cells cultured with CNTs were harvested and reseeded, they exhibited
poorer survival (87). These results should be treated with some caution, since only
one concentration of CNTs was examined, the number of experiments performed
is not indicated, and no characterisation of the particles is presented.

SWCNTs and MWCNTs

Radomski and colleagues exposed isolated human platelets to 0.2-300 pg/ml
SWCNTSs or MWCNTs dispersed by sonication in Tyrode’s solution. The CNTs
stimulated platelet aggregation in vitro (n=6-10) via the glycoprotein IIb/Illa
pathway, as indicated by inhibition of this aggregation by prostacyclin as well as
by S-nitroso-glutathione (270).
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When human aortic endothelial cells were exposed for 3 and 24 hours to puri-
fied SWCNTs (8.8% Fe ) or MWCNTs (0.27% Fe ) at concentrations of 0.04-4.5
pg/ml (equivalent to 1-150 pg/10° cells) (n=3), no effects were observed at con-
centrations below 1.5 pg/ml or after 3 hours. At higher concentrations, especially
at 1.5 and 4.5 pg/ml, cytotoxicity, enhanced production of IL-8, disruption of VE-
cadherin and a reduced ability to form tubules were apparent. Taken together,
these findings suggest that when endothelial cells come into contact with CNTs,
they may lose their ability to form new blood vessels and their survival might be
compromised (340). The physical and chemical characteristics for the CNTs were
not clearly stated.

11.2.2.4 Effects on cells from the immune system

SWCNTs

When primary cultures of immune cells (B-cells, T-cells and macrophages) iso-
lated from the spleen, lymph nodes and peritoneal cavity of mice were exposed to
SWCNTSs functionalised by 1,3-dipolar cycloaddition to render them water-soluble
or by oxidation/amidation and derivatisation with PEG to obtain aqueous suspen-
sions, as well as further modified with fluorescein isothiocyanate (FITC) to allow
fluorescent detection, all of these cell types engulfed these SWCNTs with no
damage to their viability. Nor was the proliferation of B- and T-cells affected by
either of these SWCNT preparations and the water-soluble SWCNTs did not
activate macrophages. In contrast, the PEG-derivatised SWCNTs induced pro-
duction of pro-inflammatory cytokines by macrophages (70). Thus, functionalisa-
tion can affect both solubiltity of and biological responses to SWCNTs.

Kiura and collaborators examined the effect of SWCNTs (diameter 1.3-1.5 nm,
forming bundles micrometres long, surface area 405 m*/g) on human monocytes
and mouse splenocytes in vitro employing SWCNTs purified by acid treatment
and made more water-soluble with H,O,. Hat-stacked carbon nanofibres (H-CNFs)
were used for comparison. In addition, human acute monocytic leukaemia (THP-
1) cells were exposed to 50 or 500 ng/ml of these same particles and the resulting
effects compared to a positive control (10 ng/ml of a mycoplasmal diacylated lipo-
peptide (referred to as FSL-1) that activates monocytes). SWCNTSs caused much
more potent activation of the THP-1 cells (as indicated by TNFa production) than
did H-CNFs at both concentrations, although FSL-1 was even more potent. Simi-
larly, activation of splenocytes (by 0.1 or 10 pg/ml particles or 100 ng/ml LPS as
apositive control and analysed on the basis of the level of TNFa mRNA) was more
pronounced after exposure to SWCNTs than H-CNFs at all doses, while LPS was
even more potent. Interestingly, although significantly elevated at all concentra-
tions, the level of TNFo mRNA was lower at higher concentrations of SWCNTSs
and H-CNFs than at the lowest concentrations of these particles tested. Neither
SWCNTs nor H-CNFs had any effect on splenocyte survival. These investigators
speculated that the surface area and more flexible structure of the SWCNTSs explain
the differences observed and that hydrophobic region on the nanoparticles may
interact with hydrophobic domains on the cell surface (161).
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When macrophages derived from human monocyte (HMDM) were exposed to
0.1 mg/ml SWCNTSs (diameter 1-4 nm, length 0.5-2 pm, surface area 1 040 m%/g,
99.7 wt% carbon, 0.23 wt% Fe) for 6-24 hours, no alteration in cell viability (as
assessed by trypan blue exclusion) was apparent at either time-point (n=3). Chemo-
taxis and the phagocytosis of apoptotic cells were suppressed (n=3). These findings
suggest that SWCNTs may disrupt normal macrophage behaviour, but the under-
lying mechanism(s) remains unknown (359).

The viability and morphology of human macrophages were unaffected up on
exposure to pristine or acid-treated, water-soluble SWCNTSs at concentrations
from 0.31-10 pg/ml for 4 days. The diameter of most of the CNTs was within the
range of 0.9-12 nm and the acid-treated SWCNTSs contained more functional
groups and were less aggregated inside the cells. Ultrastructural examination re-
vealed bundles and free SWCNTs in lysosomes (262).

When murine and human macrophages were exposed to SWCNTs (diameter
1 nm, length 1-3 um) at concentrations of 15, 30 and 60 pg/ml, with and without
co-stimulation by LPS, these SWCNTs did not influence the production of nitric
oxide, in contrast to the positive graphite control. In addition, the SWCNTs as
well as fullerenes were engulfed to a lesser extent than graphite. Very little toxi-
city was evoked by SWCNTs (4% apoptotic, 2% necrotic cells), in contrast to the
25% dead cells resulting from exposure to graphite. The authors suggested that the
higher potency of graphite could be attributed to its surface structure and that the
absence of a toxic response to SWCNTSs was due to their high degree of purity
(84).

When CVD synthesised SWCNTSs (diameter 0.9-1.2 nm) at doses from 0.31-10
pg/ml were incubated with macrophages derived from human monocytes for 2-4
days dose-dependent cytotoxicity occurred. The MTT and Neutral red assays gave
conflicting results, with the former indicating cell death with 0.62 pg/ml and the
latter at 2.5 pg/ml and above. TEM and confocal microscopy revealed that after 4
days, the nanotubes were localised in the nucleus of the cells and had also fused
with their long axes parallel to the plasma membrane. Some were also present in
structures identified as early endosomes (263).

When Kagan and colleagues exposed RAW 264.7 macrophages with two kinds
of SWCNTs (unpurified with diameter 1-4 nm, surface area 950 m*/g, 26% Fe;
purified with diameter 1-4 nm, surface area 1 040 m*/g, 0.23% Fe), both dispersed
by sonication and added at concentrations of 0.12-0.5 mg/ml, they obtained no
effect on the production of intracellular superoxide radicals or nitric oxide after 1-
2 hours. However, when the macrophages were co-stimulated with zymosan, the
non-purified SWCNTs induced production of hydroxyl radicals, whereas the puri-
fied did not. The non-purified SWCNTs also influenced biomarkers of oxidative
stress, reducing the level of glutathione and enhancing lipid peroxidation. Thus,
iron might contribute to the toxic effects of SWCNTs on macrophages (148).

To evaluate how adsorbed proteins might influence the activity of nano-
materials, including cellular targeting, Dutta and co-workers exposed mouse
macrophages RAW 264.7 with SWCNTs (diameter and length not determined,
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ropes with lengths >150 nm, surface area 274.1 m%/g, 2.9% Y, 17.3% Ni) that
were resuspended in normal growth medium containing 10% foetal bovine serum
by sonication or resuspended by sonication in Pluronic F127 followed by incuba-
tion with 10% foetal bovine serum. Silica particles (10-nm sized) were employed
as the control. Less protein was adsorbed in the presence of Pluronic F127. In
the case of normal medium, SDS-PAGE (polyacrylamide gel electrophoresis)
revealed major bands of absorbed protein with molecular weights between 49
and 62 kDa, whereas with Pluronic F127 the major band seen was 18-28 kDa in
size. The smaller proteins were caseins, haemoglobins and lactoglobulins, glyco-
proteins, apoplipoprotein and keratins, while the major 49-62-kDa protein adsorbed
to SWCNTs was albumin. The SWCNTs resuspended in absence of Pluronic
F127 reduced macrophage proliferation at concentrations of 12.5-30 pg/ml and
also evoked anti-inflammatory changes, while those treated with Pluronic F127
lacked the latter property because they lacked adsorbed albumin. In addition, the
SWCNTs were taken up by macrophages via scavenger receptors. Similar find-
ings concerning the influence of protein adsorption on cytotoxicity were made
with amorphous silica. In conclusion, adsorbed proteins influence the biological
response of cells in culture to SWCNTs (71).

MWCNTs

Alterations in the functioning of dendritic cells of the immune system upon expo-
sure in vitro to carboxylated MWCNTs with four different ranges of diameter
(Mj: diameter 10-20 nm, mean length 0.54 pm; My: diameter 20-40 nm, mean
length 0.38 um; Myo: diameter 40-60 nm, mean length 0.66 pm; Mgo: diameter 60-
100 nm, mean length 0.69 um, all 95% pure) have also been explored. Dendritic
cells were obtained by isolating monocytes from human peripheral blood and
subsequent differentiation and maturation in the presence of granulocyte macro-
phage-colony stimulating factor (GM-CSF), IL-4 and LPS for 48 hours. No cyto-
toxicity was observed regardless of the type of MWCNTs or concentration (10,
50 or 100 pg/ml) employed. The dendritic cells phagocytosed Mo and My to
the same extent, Mg slightly more and My in highest amount in a concentration-
dependent manner. None of the exposures altered the expression of cell surface
markers associated with immunological functions. The conclusion drawn was that
the dendritic cells did not recognise the MWCNTs, possibly due to chemical mod-
ification of the particle surface (345). It should be noted that the MWCNTs used
here were much shorter than those used in most other investigations, with mean
lengths of less than 0.7 pm.

When T-cells isolated from rat thymus were exposed to MWCNTs (length 1-5
pum, some surface carboxyl groups, 12.5 and 25 pg/ml) or Cg (99.5% pure, 7.2
and 14.4 pg/ml) for as long as 24 hours, only the higher level of Cg reduced the
activity of Ca®"-stimulated ecto-ATPase which hydrolyses extracellular ATP and
participates in purinergic cell signalling. When the cells were co-exposed to H,O»,
the MWCNTs raised their viability after 2 and 24 hours, while Cqy had the same
effect only after 24 hours. When, instead, the cells were first treated with H,O,
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and then incubated with the carbon particles viability was enhanced after 2 or

24 hours in the presence of Ceo, but only after 24 hours with the MWCNTs. In
summary, both MWCNTSs and Cg protected thymocytes from H,0;-induced
injury, but only Cgo influenced the activity of Ca**-stimulated ecto-ATPase (266).
The physical and chemical properties of the CNTs were not described in detail.

The effect of two kinds of MWCNTs (diameter 20-40 nm, length 1-5 um, 95%
pure) -- one pristine and the other oxidised with nitric acid and thereby more
water-soluble, shorter (length not determined) and straighter -- on T-lymphocytes
were examining by treating cultures of Jurkat T-cells for 24-120 hours with 1 or
10 ng/cell (corresponding to 40 or 400 pg/ml). With the pristine MWCNTs, toxi-
city appeared after 96 and 120 hours at 10 ng/cell, and after 48-120 hours with the
same amount of oxidised MWCNTs, with the pristine MWCNTSs having a much
smaller effect. Both types of MWCNTs also induced dose-dependent apoptosis in
Jurkat T-cells and isolated human T-lymphocytes. In addition, 40 pg/ml oxidised
MWCNTs stimulated T-cell receptor activation and phosphorylation weakly.
These results indicate that 40 pg/ml (or 1 ng/cell) MWCNTs is not cytotoxicity
towards T-lymphocytes in vitro (29).

When mouse macrophages were exposed to MWCNTs (average diameter 67
nm, fibres mostly curled, but following filtration length 3-30 um, surface area 26
m?/g, 99.79 wt% pure) or fibres of crocidolite asbestos (50% >1 pm and 99% <20
pum) at concentrations of 10-1 000 pg/ml for 16-32 hours, the crocidolite resulted
in typical dose-dependent cytotoxicity (lethal concentration to 50% of the cells
(LCsp) 637 ng/ml), whereas with the MWCNTSs a concave dose-response curve
was obtained, with doses >100 pg/ml being less toxic. The LCsy value for the
MWCNTSs was 26 pg/ml after 24 hours and 22 pg/ml after 32 hours. Neither oxi-
dative stress, glutathione levels, MAP kinases nor caspase-3 (normally involved
in apoptosis) appeared to play a role in these cytotoxic effects. Ultrastructural
examination showed that the MWCNTs disrupted and infiltrated the plasma mem-
brane of the macrophages and these nanotubes were associated with a scavenger
receptor known as macrophage receptor with collagenous structure (MARCO).
The authors proposed that injury of the plasma membrane during membrane ex-
tension, led to cell death (116).

In another investigation, human mononuclear cells and human acute monocytic
leukaemia (THP-1) cells were exposed to 15.6-125 pg/ml of three different types
of MWCNTs: NT-1: diameter 20-100 nm, 5% Fe, surface area 180 m2/g, con-
taining both individual fibres and mats; NT-2: diameter 150 nm, 1.3% Fe, surface
area 25 m*/g, and nanofibres, mainly micron-sized aggregates; and NT-3: diameter
20 nm, 2.7% Fe, surface area 183 m*/g, mainly micron-sized aggregates. No en-
hanced release of LDH from the cells was seen at any concentration (n=3). NT-2
and, in particular, NT-1 were not entirely phagocytised and the cells showed signs
of frustrated phagocytosis, whereas the cells could phagocytise NT-3. NT-1 and
NT-2 also led to elevated release of TNFa by the mononuclear cells at 31.25 and
62.5 ng/ml, and the THP-1 cells exhibited a similar trend. Unstimulated human
mononuclear cells increased the production of superoxide with 31.25 pg/ml NT-2,
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but not with NT-1 or NT-3; while stimulated cells produced more after exposure
to NT-1 and NT-2 at both 15.62 and 31.25 pg/ml, while NT-3 did not enhance this
production at all. Following 4-hour exposure to 15.62-62.5 pg/ml, NT-1 attenuated
the phagocytosis of E. coli by THP-1 cells and a similar effect was obtained with
62.5 pg/ml NT-2. In summary, these MWCNT preparations prevented phagocytic
cells from performing their main task, i.e., phagocytosis (30).

Exposure of peripheral blood mononuclear leukocytes to 25 or 250 pg/ml
MWCNTs produced by arc discharge (diameter 10-50 nm, length up to 10 pm,
free of metal contaminants, well-dispersed in the culture media by sonication) led
to cell death after 24 hours. The frequencies of both apoptosis and necrosis rose
from 3-18 hours of exposure in a concentration-dependent fashion. In addition,
induction of apoptosis by chemoterapeutic agents was potentiated by increasing
concentrations of MWCNTs (61). It was not indicated at which concentration
these effects became statistically significant.

Fiorito and collaborators incubated macrophages derived from human mono-
cytes with catalyst-assisted CVD synthesised MWCNTs (diameter 10-20 nm, no
data on length) either used as-prepared (pristine) or after annealing at 2 400 °C (a-
MWCNTs) to obtain greater electroconductivity. Both preparations were free of
most metals, but pristine nanotubes contained 0.5% cobalt. Cells were exposed to
30 pg/ml of either type for 45 minutes-24 hours and the resulting effects compared
to those of graphite fibres. Both a-MWCNTSs and graphite fibres led to more cell
death, but much less so than the pristine MWCNTs. Moreover the former two pre-
parations promoted more efficient phagocytosis of fluorescent beads than did the
pristine MWCNTs. At the same time, the a-MWCNTs evoked a stronger in-
flammatory response (as assessed on the basis of cytokine levels) than did pristine
MWCNTs. The membrane potential of mitochondria was increased in cells ex-
posed to pristine MWCNTs, less in graphite-exposed cells and actually slightly
decreased by a-MWCNTs. Furthermore, the intracellular pH was elevated in cells
exposed to pristine MWCNTSs or graphite, but reduced by the a-MWCNTs. The a-
MWCNTs also enhanced membrane currents, in contrast to the other two particles
examined. To conclusion, there is an electro-chemical interaction between cells
and conductive MWCNTs (83).

When human macrophages were exposed to unpurified (diameter 68 nm, length
2-164 um, surface area 50 m*/g, 6.2% Fe) or purified MWCNTs (diameter 68 nm,
length 4-65 um, surface area 50 m*/g, 0.0005% Fe, shown by Raman spectroscopy
to be more crystalline than the unpurified MWCNTs) at concentrations ranging
from 0.31-20 pg/ml, 2.5-2 pg/ml unpurified MWCNTs exhibited cytotoxicity in
the MTT-assay, while with Neutral red and Live dead staining toxicity was only
present with a concentration of 20 pg/ ml. Interaction between these stains and the
MWCNTs was found to be minimal. TEM analysis revealed that the majority of
dead cells had undergone necrosis. The purified MWCNTs induced cytotoxicity at
concentrations of 1.125-20 pg/ml i.e., lower levels than that for the unpurified
MWCNTs. Iron oxide (Fe,O3) at concentrations of 0.016-1 pg/ml (similar to the
expected levels in unpurified MWCNTSs) did not resulted in any cytotoxicity.
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Microscopy revealed penetration of cells, including their nucleus by the unpurified
MWCNTs, which were taken up both actively and passively. The authors concluded
that MWCNTSs can prevent completion of phagocytosis and/or simply pierce the
plasma membrane, thus causing injury (40).

Wang and co-workers focused on how the diameter influences the effects of
95% pure MWCNTs on alveolar macrophages isolated from guinea pigs, using
nanotubes with diameters of 10-20 nm (MWCNT-10, surface area 133.7 m?/g,
0.85% Ni), 40-60 nm (MWCNT-40, surface area 45.75 m*/g, 1.89% Ni) or 60-100
nm (MWCNT-60, surface area 40.57 m*/g, 2.3% Ni). All three kinds of MWCNTSs
were 1-5 um in length following sonication, contained approximately 0.05% iron
or 0.02-0.08% cobalt, exhibited not bundling and were added in concentrations of
2.5-20 pg/ml and compared to quartz particles (diameter 5 pm, surface area 21.6
m?/g, 99% pure). After 3 hours of exposure, the MTT assay indicated concentration-
dependent cytotoxicity, with the MWCNT-60 being more toxic than MWCNT-40
and MWCNT-10. Fever phagocytosing cells were present following exposure to
the large-diameter MWCNT-60 than with other preparations and this effect on
phagocytosis was concentration-dependent for MWCNT-60 and MWCNT-40, but
not for the thinner MWCNT-10. The frequency of apoptosis was enhanced by all
three preparations, to the greatest extent with MWCNT-40. The authors concluded
that the diameter influences the cytotoxic effects of CNTs on macrophages, while
and the metal content does not contribute as much to the responses observed (347).

SWCNTs and MWCNTs

When SWCNTs (diameter 1.3 nm, length 3.5 um, specific surface area 1 700
m?*/g) and MWCNTs (diameter 11 nm, length 1.05 pm, specific surface area 130
m?/g) were added to cultures of mouse alveolar macrophages and their antigen
presentation assessed, both CNTs enhanced production of interferon gamma
(IFNy) and attenuated IL-13 levels. In addition, pattern of cytokine expression
upon exposure to antigen was altered, with reduction in the level of TNFa, an
increase in the level of IL-1p and, with the SWCNTs only an elevated level of IL-
12 (102).

In another series of experiments, the effects of SWCNTs (diameter <2 nm,
length 1-5 um, surface area 436 m?/g, traces of Co) and MWCNTs (diameter 10-
30 nm, length 1-2 pm, surface area undetermined, traces of Ni) on antigen-pre-
senting cells were compared to those of other nanomaterials, i.e., TiO; (30-40 nm
in size, 90% rutile-10% anatase, surface area 23 m*/g), TiO,-silica (10x40 nm in
size, all rutile, surface area 132 m*/g) and zinc oxide (ZnO, 20 nm in size, surface
area 50 m*/g). The particles were dispersed by sonication and were added at con-
centrations of 3-300 pg/ml for 24 hours to cultures of RAW 264.7 mouse macro-
phages and dendritic cells derived from murine bone marrow cells. All of these
particles demonstrated dose-dependent cytotoxicity towards both types of cells,
with TiO; (30-300 pg/ml) being more potent in this respect than SWCNTSs and
MWCNTSs in the case of macrophages. In contrast, with the dendritic cells, the
CNTs and ZnO were more potent than TiO, particles. Neither type of CNT in-
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duced cytokine production by macrophages, whereas TiO, and TiO;-silica both
enhanced the production of IL-6 and macrophage inflammatory protein 1a (MIP-
la). The CNTs did not alter cytokine production by the dendritic cells either nor
did they influence expression of cell surface markers such as CD11c, CD40 and
MHCII. The authors concluded that antigen-presenting cells may not be targeted
by CNTs (247).

Hu and co-workers evaluated the effects of SWCNTSs (diameter 1-2 nm, length
5-30 um) and MWCNTs (diameter 20-30 nm, length 10-30 um) both dispersed in
0.04% Tween-80 and present at concentrations of 2, 5 and 10 ppm for 60 minutes
on T4 lymphocyte A3 cells on the basis of their uptake of fluorescein diacetate.
All doses of CNTs promoted such uptake for 60 minutes, with the lymphocytes
being more sensitive in this respect than the lung cells and keratinocytes. TEM ana-
lysis revealed penetration of the cell membrane of lymphocytes by unmodified
SWCNTs, which was proposed to be the cause of cell damage (120).

Another comparison involved SWCNTs (diameter 1.4 nm, mean length 1 pm,
90% pure, concentrations 1.41-226 pg/cm?), MWCNTs (diameter 10-20 nm,
length 0.5-40 pm, 95% pure, 1.41-22.6 pg/cm?) and Cgo (99.9% pure, 8.36x10"
molecules/pg), all dispersed by sonication in the cell culture medium containing
10% foetal bovine serum. Tight aggregates consisting of 10-100 SWCNTSs and
thin bundles of 4-6 MWCNTs were found upon exposure of macrophages isolated
from guinea pigs to these CNTs and Cg for 6 hours, dose-dependent cytotoxicity
was obtained with the former, starting at the lowest concentration employed. The
SWCNTs were generally more potent than the MWCNTs in eliciting a cytotoxic
response in the MTT assay, whereas Cg caused no detectable toxicity at similar
concentrations (1.41-11.3 pg/cm?). In addition, the SWCNTs inhibited phago-
cytosis of latex beads already at a concentration of 0.38 pg/cm?, while for the
other nanoparticles 3.06 pg/cm* was required. Ultrastructural examination showed
that the SWCNTSs gave rise to morphological alterations, such as plywood body
formations, in macrophages at concentrations of 0.76 pg/cm?, with the higher dose
of 3.06 pg/cm’ leading to swelling of the endoplasmic reticulum and changes in
vacuoles and phagosomes. At 0.76 pg/cm> MWCNTSs led to the formation of large
phagosomes and at 3.06 pg/cm? nuclear degeneration occurred. Both CNTs caused
condensation of chromatin and organelles and surface protrusions at 3.06 pg/cm?
(142). This early publication on toxicity of CNTs provides ultra-structural studies
and particle characterisation that are unmatched in much more recent reports.

11.2.2.5 Effects on cells from the kidneys

SWCNTs

When SWCNTSs were present in concentrations of 0.78-200 pg/ml in culture
medium of human embryonal kidney (HEK293) cells, which also contained 10%
foetal calf serum, for 5 days, cell survival was lowered in a dose-dependent
fashion. At concentrations of 25-200 ug/ml during 6 days, a dose- and time-
dependent reduction in cell adhesion was detected, even at the lowest level.
Apoptosis (detected by flow cytometry) was present with 25 pg/ml for 24 hours.
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Expression of cell adhesion proteins (including laminin, fibronectin, focal ad-
hesion kinase and cadherins) was lowered by 5-day exposure to 25 pg/ml, as were
the levels of mMRNA encoding proteins related to apoptosis (e.g., pS3, TGF re-
ceptor), and proteins involved in the regulation and progression of the cell cycle.
The profile of gene expression confirmed that the HEK293 cells were arrested at
the G1/S phase transition, and thereby unable to proliferate (54). The SWCNTSs
employed were not characterised either physically or chemically.

MWCNTs

In an investigation on the effects of various nanoparticles on cells from the lungs,
kidneys and liver, both two forms of long MWCNTs (diameter 8-177 nm, length
0.1-20 pm, surface area 42 mz/g, containing 4.2 or 0.08% Fe) and short MWCNTSs
(diameter 7-180 nm, length 0.1-5 um, surface area 42 m?/g) were suspended by
sonication in the culture medium containing 10% foetal bovine serum. At 10-50
pg/ml, all three preparations reduced viability of kidney cells by 20-30%, with
longer MWCNTSs being more potent (although still less potent than TiO, particles
(12-140 nm) at similar concentrations (50 pg/ml), and unpurified long MWCNTs
more potent than purified long or short MWCNTs. In general, kidney cells were
less sensitive in this respect than liver and lung cells, which was suggested to have
something to do with the secretion of surfactants by lung cells and plasma proteins
by hepatocytes. However, with TiO, particles, the kidney cells were more sensitive
and the proposed explanation was that since kidney cells are specialised for uptake
and recycling of molecules, they might take up CNTs and TiO, by different mecha-
nisms. The isolated tubes seen in cytoplasmic vesicles in kidney and lung cells
were suggested to have been taken up by micropinocytosis or caveolae-mediated
endocytosis. The MWCNTSs promoted ROS formation by the kidney cells, with
the long MWCNTs with less iron doing so at all concentrations (10,20, 50 and

100 pg/ml), the long-Fe containing ones at 50 and 100 pg/ml, and the shorter nano-
tubes only at 100 pg/ml. DNA damage was induced in kidney cells by 100 pg/ml
of both kinds of long MWCNTs, but no formation of micronuclei was evoked
under any conditions (20-200 pg/ml) (15).

Single CNTs penetrate plasma membranes, while bundles of CNTs are taken up
by endocytosis. With this in mind, Mu and colleagues explored the penetration of
MWCNTs (diameter 20-30 nm, average length following functionalisation with
COOH or NH, groups and sonication 1 um, coated with FITC-bovine serum albu-
min to allow fluorescent detection) through plasma membrane and into the nucleus
of human embryonal kidney HEK293 cells. Flow cytometric analysis revealed
temperature-dependent uptake both of MWCNTSs with COOH or NH, functionali-
sation and TEM analysis showed that individual MWCNTs functionalised with
COOH entered the cell by penetrating the plasma membrane, while bundles of
these same MWCNTs entered through endocytosis. Individual MWCNTs either
escaped the endosomal system and were free in the cytoplasm or were released
from the bundles within the endosomes and then escaped to the cytoplasm. Similar
observations were made with the MWCNTs-NH,. No MWCNTSs were found in
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the endoplasmic reticulum or the Golgi apparatus, which was unexpected, since
endosomal trafficking between these compartments normally occurs. TEM ana-
lysis also verified the presence of MWCNTSs-NHj in the cell nucleus. Surface
charge (negative or positive) did not affect these processes, perhaps because the
charge was masked by adsorption of proteins to the surface of the CNTs. TEM
analysis revealed that the individual tubes inside cells were approximately 250 nm
in length in the case of MWCNTs-COOH and 175 nm for MWCNTs-NH,, indi-
cating that shorter tubes were more prone to directly penetrate the plasma mem-
brane. No cell death was observed. A model which of how CNTs are taken up by
cells and either located to endosomes/lysosomes or to the nucleus was presented
(218).

11.2.2.6 Effects on cells from the nervous system

SWCNTs

Belyanskaya and co-workers exposed primary cultures of neuronal cells derived
from chicken embryonic spinal cord and dorsal root ganglia to two particular
types of SWCNTSs, both dispersed with the detergent PS80 and at concentrations
of 7.5, 15 and 30 pg/ml. The SWCNTs-a formed rope-like aggregates 100 nm in
diameter and contained 2.4% Ni, 0.5% Y and 48% SWCNTSs. The SWCNT-b
consisted of bundles 20 nm in diameter and contained 5.5% Ni, 0.7% Y and 50%
SWCNTSs. Both aggregates and bundles reduced the total DNA content (which
reflects cell number) of the mixed neuronal-glia and glia-enriched cultures, with
aggregates being more potent in this respect, even at the lowest concentrations.
The SWCNTSs were cytotoxic towards glial cells in both types of cultures, but
towards neurons only in dorsal root ganglia derived cultures. Neurite outgrowth
was unaffected by nanotubes at a concentration of 30 pg/ml. With neurons from
dorsal root ganglias, the inward conductivity was lowered and resting membrane
potential made more positive by exposure. The agglomeration status of the
SWCNTSs appeared to influence their toxicity, i.e., the more well-dispersed
bundles were less cytotoxic than the aggregates (24).

Zhang and collaborators incubated pheochromocytoma PC12 cells, a model
neuronal cell line, with SWCNTs (diameter 0.8-1.2 nm, purity >98.5%) or gra-
phene layers (80% with 3-5 layers resulting in 3-5 nm thick sheets, 8% with 1-3
layers, 12% with 6-10 layers, >98.5% pure) either in medium with (SWCNTs;
5% foetal bovine serum and 10% horse serum) or without serum (graphene) at
concentrations of 0.01-100 pg/ml. The MTT assay revealed attenuated meta-
bolic activity with 0.1-100 pg/ml concentrations of either preparation, with the
SWCNTSs being slightly more potent. Release of LDH was enhanced by 1-100
pg/ml SWCNTs, but only with 100 pg/ml and to a much lower extent with gra-
phene. The SWCNTs were more potent than graphene, possibly due to the ability
of these needle-like structures to pierce the cell membrane (381).

The influence of 0.1, 0.5, 1 and 5 pg/ml PEGylated SWCNTSs on endocytosis
and exocytosis in cultures of rat hippocampal neurons has also been probed. In
this case, the SWCNTSs were also labelled with the fluorescent FM1-43 which is
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taken up by cells preferentially via endocytosis rather than passive diffusion, and
the period of exposure was 3 days. The exposure increased the length of neurites.
In addition, endocytosis was reduced at all concentrations in a dose-dependent
manner and this reduction was proposed to explain the longer neurites (201). No
physical or chemical properties of the SWCNTSs were described.

MWCNTs

When cultured neurons and glial cells were exposed either to Pluronic F127 alone
or to MWCNTs dispersed in Pluronic F127 a higher proportion of these cells were
present in cultures that contained the MWCNTSs and there was also a higher propor-
tion of apoptotic cells in cultures that contained only Pluronic F127. When pristine
MWCNTSs, MWCNTs coated with Pluronic F127, and Pluronic F127 were com-
pared, only Pluronic F127 reduced cellular respiration (MTT assay) and this effect
could be counteracted by addition of 3.5 ng/ml MWCNTs. Thus, Pluronic F127-
coated MWCNTs appear not to be harmful to cells of the nervous system (14).

Primary cultures of cortical neurons have been exposed for 24 and 48 hours
to 1 pg/ml MWCNTs (diameter 20-30 nm, length 0.5-2 um, 95% pure) with and
without functionalisation by conjugation with either GRGDSPC or IKVAVC, pep-
tide sequences present in fibronectin and laminin which are known to promote cell
adhesion. The oxidative treatment prior to peptide conjugation also made the
MWCNTSs shorter 0.050-0.5 um. Neither peptide functionalisations gave rise to
cytotoxic activity towards Jurkat cells and splenocytes. Nor did the GRGDSPC-
MWCNTs, the NH,-functionalised nanotube precursors or the peptide itself in-
fluence the synaptic activity of the cortical neurons. Apparently, NH,-functionali-
sation or peptide functionalisation renders MWCNTs tolerable by neuronal cells
(86).

When pheochromocytoma PC12 cells were incubated together with 5 ug/ml
carboxyl-terminated MWCNTs (diameter 40-50 nm, length 0.3-0.8 pm, dispersed
by sonication in cell medium containing 15% horse serum and 5% foetal bovine
serum) for 6, 12 and 24 hours, potassium channels were inhibited, with suppression
of the transient outward current (Iy,), delayed rectifier current (Ix) and the inward
rectifier current (Ix;) (n=4-5 for each incubation). This time-dependent and irrever-
sible suppression was most pronounced after 24 hours and was not due to elevated
production of ROS or alterations in the mitochondrial membrane potential, as asse-
ssed by flow cytometry (n=3). There was no effect on calcium channels, which
were suspected of influencing the potassium channels (n=3). In summary, CNTs
may interfere with electrical signalling by neurons, thus compromising neuronal
function (366). The authors did not examine possible contamination of the CNT
preparation by catalytic metal.

Zhang and collaborators exposed pheochromocytoma PC12 cells to MWCNTSs
before (original diameter 10-30 nm, length 5-15 pm, 95% pure) and after func-
tionalisation with phosphorylcholine (to improve water solubility) at concentra-
tions of 40, 200 and 1 000 pg/ml in medium containing 15% serum for 48 hours.
The MTT and the WST-1 assays revealed little cytotoxicity, although the pristine
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MWCNTs were more toxic than the phosphorylcholine-MWCNTs in the MTT
assay (385).

A battery of assays was employed to elucidate the effects of three types of
MWCNTs: one with diameter 20-40 nm, length 2 um, 97% pure and consisting of
20-42 layers of graphene; the second with diameter 35-40 nm, length 0.5 um, 99%
pure and consisting of at least 30 graphene layers; and the last with diameter 20-
40 nm, length 0.5 um, 97% pure and consisting of 20-40 graphene layers, and
acid-treated to oxidase 8% of its surface. All of these preparations were dispersed
with Pluronic F127 prior application to human neuroblastoma (SH-SYS5Y) cells
for 72 hours to 2 weeks. The WST-1 assay did not indicate any cytotoxicity,
whereas the MTT assay indicated moderate cytotoxicity with all three types after
72-hour exposure to 5 pg/ml. Exposure to this same concentration for a week
attenuated viability, except with the MWCNTs that were 99% pure. After 2 weeks
all three preparations reduced cell viability, with the 99% pure MWCNTs being
less potent. A dose-response study (5-500 pg/ml) and showed that the oxidised
97% pure MWCNTs had this effect at a concentration as low as 50 pg/ml, while
for the other two 500 pg/ml was required to achieve the same extent of reduction.
The level of ROS was not elevated under any condition. It was concluded that a
concentration of 5-10 ug/ml would be useful when conducting cellular testing for
drug development based on MWCNT technology (360).

11.2.2.7 Effects on other types of cells
SWCNTs
Albini and co-workers incubated cultures of human umbilical vein endothelial
cells with SWCNTs (diameter 1.33 nm, length 1-5 um) that were either pristine or
functionalised by oxidation and dispersed the culture in medium containing 10%
foetal bovine serum by sonication and found that with 5-10 pg/ml of either type
of SWCNTs for 24-72 hours, the number of cells was unaltered (n=3). Nor did
pristine or oxidised SWCNTSs at concentrations of 10, 25 or 50 pg/ml influence
cell migration (n=3) or morphogenesis (except for a slight alteration following
incubation with 50 pg/ml) (n=3). The MTT assay indicated reduced viability after
exposure to 50 pg/ml pristine or oxidised SWCNTs for 24-72 hours. Release of
LDH progressed with time and concentration in the case of the pristine prepara-
tion, while oxidised SWCNTSs caused more release after 24 hours with return to
control levels thereafter. Staining with Neutral red indicated maximal toxicity
with the pristine nanotubes after 48 hours, with slightly less staining after 72
hours, while oxidised SWCNTs led to uptake after 24 hours with return to the
control situation after 72 hours. Application of lysosomal tracking dyes revealed
that the endothelial cells took up the SWCNTSs in a transient manner and exami-
nation with TEM showed intracellular vesicles containing these structures. These
authors concluded that SWCNTs exert limited toxicity and may therefore be use-
ful for drug delivery (5).

When sonicated carboxylated SWCNTs (average diameter 1.4 nm, bundles 4-
5 nm in diameter and 0.5-1.5 pm in length, 5-10% Ni) were added to cultures of
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differentiated and non-differentiated human colon carcinoma Caco-2 cells that
contained 10% foetal calf serum in the medium except during the 24-hour period
of exposure at concentrations of 5-1 000 pg/ml, cytotoxicity towards the non-
differentiated cells was observed with 100-1 000 pg/ml or 400-1 000 pg/ml as
determined with the Neutral red assay or MTS (metabolism of tetrazolium salt)
procedure, respectively. The level of total protein was lowered by 1 000 pg/ml,
while significant release of LDH occurred with 200-1 000 pg/ml. In the case of
differentiated cells, staining with Neutral red indicated cytotoxicity with 100-

1 000 pg/ml with the corresponding value for the MTS procedure being 200-1 000
pg/ml. The level of total protein was lowered with 400-1 000 pg/ml and LDH was
released with 200-1 000 pg/ml. Trypan blue exclusion showed reduced viability
after incubation of non-differentiated cells with 500 or 1 000 pg/ml oxidised
SWCNTs. Light microscopy revealed only slight concentration-dependent morpho-
logical changes, with i.e., hydropic degeneration and vacuoles. At the higher con-
centrations, agglomerates of undispersed SWCNTs were seen. In summary, theses
SWCNTs were toxic towards Caco-2 cells at concentration of 100 pg/ml and
greater (145).

Raja and colleagues studied how exposure, dosage and aggregation influenced
the response of smooth muscle cells to SWCNTSs and activated carbon particles
(1-35 pum insize) in vitro. The size of the individual SWCNTSs was not determined,
but acid-treated bundled SWCNTs were 10-15 nm in size. The SWCNTs were
suspended in medium containing 9% foetal bovine serum by sonication and added
at concentrations of 0.01-0.1 mg/ml either as prepared or after filtration to remove
agglomerates. The activated carbon particles were only used at 0.1 mg/ml. The
exposure continued for up to 3.5 days (n=3). The unfiltered SWCNTs, reduced the
number of cells dose-dependently during the 3.5-day period, although by the end
of this period the number of cells was almost normal even with the highest dose
of 0.1 mg/ml. Activated carbon at the level of 0.1 mg/ml exerted similar effects in
this respect. Filtered SWCNTs did not reduce cell numbers as much, with 0.01 mg/
ml having no effect and 0.05 mg/ml attenuating growth only slightly. The cells
were not allowed to become confluent in these experiments, and exposure to 0.1
mg/ml of either filtered or unfiltered SWCNTSs reduced cell growth. Characteri-
sation of the filtrates revealed smaller spherical particles (20-60 nm) as well as
bundles of SWCNTSs smaller than 5 nm. Amorphous carbon was still present in
these SWCNTs, despite the acid treatment. It was concluded that the aggregates
are responsible for inhibiting growth (271).

Crouzier and collaborators focused on how the surface chemistry of SWCNTs
influenced their interactions with various types of cells. The SWCNTs were used
as purchased (contained 3.15% O, 0.73% Ni, 0.38% Y) or refined by sonication in
water and subsequent treatment with HCI (resulting in 17.7% O, 0.07% Ni, 0.04%
Y). The refined SWCNTSs were also treated either with plasma or with bovine
serum albumin and, in addition all 4 of these different SWCNTSs were coated with
collagen. Unrefined and refined SWCNTs sedimented in solution within hours,
whereas albumin- and in particular plasma-coated SWCNTs did not. The order of
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relative conductivity was unrefined SWCNTs > refined SWCNTSs > albumin-
coated = plasma coated SWCNTs. Moreover, refined SWCNTSs caused less red
blood cell lysis than the unrefined preparations and the albumin- and plasma-coated
particles caused no such lysis at all. Collagen-coated refined SWCNTSs resulted in
slower cell proliferation than exposure to collagen alone, while covering albumin-
and plasma-SWCNTs with collagen as well stimulated the proliferation of pheo-
chromocytoma PC12 cells and 3T3 fibroblasts, respectively. In conclusion, com-
position and hydrophobicity exert significant impact on interactions between
SWCNTs and cells in culture (53). The physical dimensions of the SWCNTSs em-
ployed in this study were not clearly stated.

Holt and co-workers examined the effects of SWCNTSs on the cytoskeleton of
HeLa cells and NIH-3T3 fibroblasts, with a main focus on actin. Purified and
fractionated SWCNTSs with a diameter of 0.7-1.3 nm and average length of 0.145
pm were suspended in Pluronic F127 and then centrifuged to remove any bundles,
leaving well-dispersed, individual nanotubes. When HeLa cells were exposed to
50 or 200 pg/ml of these SWCNTs both doses reduced cell proliferation, but only
the higher dose induced cell death. Pluronic F127 alone had no effect on either of
these parameters. Furthermore, exposure to these SWCNTs led to defects in the
cell proliferation, e.g., the formation of giant and multinucleated cells. Following
exposure, actin, which is normally located at periphery of the cell, was spread
throughout the interior of the cells. In addition, force generation by the cytoskeleton
of fibroblasts attenuated. Ex vivo experiments revealed that these SWCNTSs both
induced actin bundling and interacted with actin filaments, but not with individual
actin monomers. These investigators concluded that the SWCNTs were not acutely
toxic, but could cause reorganisation of the cell interior, which might have long-
term functional consequences (118).

Since the physical characteristics of CNTs in solution are considered to in-
fluence the toxicological response, Wick and colleagues asked how agglomeration
of SWCNTs affected their toxicity towards the human mesothelioma MSTO-211H
cell line. Four preparations produced by different procedures were employed: raw
SWCNTs (SWCNT-raw, containing 13.8% Ni, and 1.6% Y); SWCNTs agglo-
merated by heating, acid treatment and sonication (SWCNT-agglomerates, 2.4%
Ni, 0.5% Y); bundles of SWCNTs produced by sonication in Tween-80 (SWCNT-
bundles, 5.5% Ni, 0.7% Y); and a pellet produced by centrifugation of the solution
of SWCNT-bundles (SWCNT-pellet, 8.5% Ni, 1.1% Y). Physical characterisation
by TEM showed that the SWCNT-agglomerates consisted of rope-like aggregates
with a diameter of microns, while the SWCNT-bundles were well-dispersed with
a diameter of approximately 20 nm, and the SWCNT-pellet contained particulate
matter that was not in the shape of tubes. Cytotoxicity was compared to that pro-
duced by crocidolite asbestos. All of the SWCNT preparations reduced cell pro-
liferation and induced cytotoxicity ina dose-dependent fashion, as did asbestos,
with the SWCNT-agglomerates being most cytotoxic. In addition, all the prepara-
tion except the SWCNT-bundles formed aggregates in the cell culture and evoked
morphological changes of the cells. The authors conclude that the degree of agglo-
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meration and dispersion are important factors in connection with cytotoxicity and
that aggregates may be stiffer than more well-dispersed SWCNTSs (355).

MWCNTs
When pristine MWCNTs (diameter 10-30 nm, length 5-15 pm, 95% pure) or
MWCNTs functionalised with phosphorylcholine (which made them highly water-
soluble) were added to cultures of human colon carcinoma Caco-2 cells at con-
centrations of 40, 200 or 1 000 pg/ml in medium containing 15% serum for 48
hours, both the MTT and WST-1 assays indicated little cytotoxicity, although the
pristine MWCNTs appeared to be somewhat more toxic with the MTT assay (385).
Zhu and colleagues tested how adsorption of serum proteins influenced the
biological effects of purified, cut and functionalised MWCNTs (diameter 40-100
nm, length 600-800 nm, 95% pure) and three kinds of carbon black (CB PG: 51
nm; CB S160: 20 nm; CB P90: 14 nm) on HeLa cells. The levels of adsorption of
serum proteins to these particles during 2-hour incubation were 0.47, 0.28, 0.68
and 0.96 mg/mg, respectively. Binding to the MWCNTs reached equilibrium after
5 minutes, as did binding to CB P90. Atomic force microscope analysis revealed
proteins wrapped around the entire nanotubes and the authors speculated that
these protein-MWCNTSs would behave very differently in biological system than
pristine MWCNTs. Indeed, cellular uptake of all of these particles in media with-
out serum was almost 5-fold higher than in media containing serum, probably be-
cause aggregation of the carbon nanoparticles in serum-free media promoted up-
take. Moreover, in serum-free media, the carbon nanoparticles (concentrations of
0.1-100 pg/ml) induced higher levels of cytotoxicity. For instance the MWCNTSs
and CB P90 induced more lipid peroxidation and higher levels of superoxide
dismutase than in the presence of serum suggesting that serum proteins attenuated
the production of ROS. In summary, in the presence of serum MWCNTs exerted
less cytotoxicity on cells in culture (387).

SWCNTs and MWCNTs

When mesenchymal stem cells were incubated with carboxylated SWCNTs (dia-
meter <2 nm, length 5-15 pm) or carboxylated MWCNTs (diameter <5 nm, length
5-15 um) suspended in culture medium containing 10% foetal calf serum, both
preparations were cytotoxic after incubation for 48 or 72 hours with concentrations
of 3, 6 or 30 pg/ml. The activity of alkaline phosphatase (an ectoenzyme that
serves as marker for osteogenic differentiation) was attenuated by both CNTs in a
concentration-dependent manner, this reduction being, in general, more pronounced
after 14 than after 7 days. However, 30 pg/ml SWCNTSs led to equal decreases of
this activity after 7 and 14 days, decreases that were less than those obtained follo-
wing exposure for 14 days to 3 or 6 pg/ml. Mineralisation of the cells was reduced
in a dose-dependent manner by both types of CNTs and adipogenic differentiation
attenuated both in a time- and dose-dependent fashion, more so by the SWCNTs.
Gene expression profiling by quantitative PCR revealed lower expression of genes
whose products are involved in the osteogenic and adipogenic differentiation of
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mesenchymal cells. Neither preparation led to any elevation in production of ROS,
which is normally associated with CNT toxicity. In conclusion, carboxylated CNTs
impair adipogenic and osteogenic differentiation of mesenchymal stem cells with-
out evoking generation of ROS (191).

Heister and co-workers examined the influence of a wide variety of parameters
on the stability of dispersions of CNTs and the biological responses of cultured
colon cancer cells. The 5 types of CNTs employed included two oxidised SWCNTSs
(designated oxSWCNT(Nanolab) and oxSWCNT(CoMoCAT)), one oxidised
DWCNT (oxDWCNT) and two oxidised MWCNTs (oxMWCNTs(long and thin)
and oxMWCNT(short and thick)). In addition, oxidised SWCNTSs were also func-
tionalised with RNA or PEG. Following oxidation by acid treatment, the physical
appearance of oxSWCNTs(Nanolab) and oxMWCNTs(long and thin) as well as
of the oxDWCNTs remained largely unchanged, while 0oxSWCNTs(CoMoCAT)
and oxMWCNTs(short and thick) were altered slightly. The differences between
the 0XSWCNTs(CoMoCAT) and oxSWCNTs(Nanolab) was thought to be due to
the thinner diameter of the former (0.8 nm versus 1.5 nm). The oxMWCNTs(short
and thick) were completely solubilised by acid treatment and sonication, probably
because of their large diameter (110-170 nm). Washing the oxidised preparation
with an aqueous solution of NaOH effectively removed debris, that can influence
the bundling and debundling of nanotubes and changing particle size and thus
experiment results. For example, the unwashed oxSWCNTSs were covered with a
layer of oxidative debris, as determined by atomic force microscopy. In addition,
the zeta potential (a measure of surface charge difference that indicates the extent
of electrostatic repulsion between particles in solution) was much lower for washed
than unwashed oxMWCNTs. In addition, the pH and buffer strength in the solu-
tion and type and shape of CNTs present was also found to influence the stability
of suspensions. For all ofthe CNTs examined, this stability rose as the concentra-
tion of foetal calf serum increased, with pristine RNA-wrapped SWCNTSs being
least stable. Although more extensive PEGylation also increased stability in the
presence of foetal calf serum this property was higher and the level of PEGylation
made little difference. The size of oxXSWCNTSs was larger than that of these same
nanotubes functionalised with PEG (600 nm versus 500 nm). Cell viability was
little affected by the 5 different preparations, although there was a slight reduction
with increasing concentration (0.5-20 pg/ml) and oxidised PEGylated SWCNTSs
were less toxic in this respect than oxSWCNTs or RNA-wrapped SWCNTs. In
summary, the dimensions and functionalisation of CNTs play important roles in
their dispersion and effects in vitro. The aspect ratio, presence or absence of oxi-
dative debris and serum proteins, salt levels and pH all influence the stability of
dispersions (108). This article describes physical characterisation of the CNTs
employed very well, but its main objective was optimisation for purposes of drug
delivery. Comparison of a physiological setting to one where the stability of CNTs
has been radically improved may give a false impression of the toxicological im-
pact of exposure.
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11.3 Effects of short-term exposure (up to 90 days)

SWCNTs

The effects of SWCNTs (diameter 0.8-1.2 nm, length 0.1-1 pm, surface area 508
m?/g, 17.7% Fe) following whole-body inhalation (5 mg/m’, 5 hours/day for 4 days,
estimated deposition in the pulmonary region=5 pg) was examined in mice (n=5/
group) 1, 7 and 28 days after the final exposure. Analysis of BAL fluid revealed
more total cells and macrophages after 7 and 28 days, as well as more PMNs al-
ready after 1 day. The levels of LDH, total protein, TNFa, IL-6 and TGFf were
all also elevated at all time-points examined. The amount of collagen and the
thickness of alveolar connective tissue increased progressively from 1-28 days.
Breathing patterns were also changed with the respiratory times being shortened.
SWCNTs caused oxidative stress and mutations in the K-ras gene in the lungs.
After 1 day, all 5 animals exhibited inflammation and epithelial changes in the
bronchi and after 7 days, 4 of 5 animals had macrophages without nuclei. The
situation was similar after 28 days, when 4 of 5 animals showed changes in the
bronchiolar epithelium and all 5 animals had macrophages without nuclei. In com-
parison to an exposure to 10 pg SWCNTSs by pharyngeal aspiration, the inhaled
SWCNTs (accumulated dose 5 pg) resulted in higher production of inflammatory
markers and much more fibrosis. In short, inhalation evoked more severe inflamma-
tion and fibrosis than exposure via aspiration (see also Section 11.2.1.2) (305).

When mice (n=6/group) were exposed to SWCNTs (diameter 1-2 nm, length
0.5-2 um, purity >90%) via nose-only inhalation for 20 minutes daily for 7 days
(daily dose 100 pg/mouse), histopathology revealed homogenous distribution of
these nanotubes in the lungs, including distal portions of this organ. Pulmonary
inflammation occurred, as reflected by more total cells and PMNs and elevated
levels of total protein in the BAL fluid. Furthermore, fibrosis was indicated by
elevated levels of soluble collagen. Both SWCNTSs and MWCNTs (see further
next section on MWCNTs), induced oxidative stress, as shown by enhanced
myeloperoxidase activity and higher levels of ROS and lipid peroxidation, with
the responses to the SWCNTSs being consistently more pronounced (272).

In another report, Wistar rats (n=10/group) were exposed to SWCNTs (bundles
in air: diameter 200 nm and length 0.7 um (bundles in suspension: diameter 12
nm and length 0.32 um), surface area 1 064 m*/g, 0.05% metals) by whole-body
inhalation of 0.03 and 0.13 mg/m’, 6 hours/day, 5 days/week for 4 weeks and the
pulmonary status was assessed 3 days, and 1 and 3 months later. There were no
signs of histopathological alterations, i.e., no infiltration of neutrophils into the
alveolar space or formation of granulomas and no consistent changes in the levels
of cytokine-induced neutrophil chemoattractant-1 and -2 in lung tissue. Decreased
levels of haeme oxygenase-1 and alkaline phosphatase in BAL fluid were observed
3 days and 1 month post-exposure in both dose groups (215). These changes were
transient with no clear dose-effect relation and, although statistically significant,
are not considered as being indicative of pulmonary inflammation, as inflamma-
tory processes would be expected to cause increased rather than lowered levels of
these enzymes.
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Teeguarden and co-workers administered SWCNTs (diameter 0.4-1.2 nm, length
0.5-2 um, purity 99.7%, 0.23 wt% Fe) to female C57BL/6 mice by pharyngeal
aspiration (40 pg/mouse, twice a week for 3 weeks) and compared the responses
detected 24 hours after the final exposure to those evoked by ultrafine carbon black
particles and crocidolite asbestos. The SWCNTSs generated a strong inflammatory
response, as reflected in the higher total numbers of cells, alveolar macrophages
and PMNs in BAL fluid. Carbon black caused the same changes, but to a much
lesser extent, while asbestos increased the total numbers of cells and of PMNs. The
SWCNTs led to formation of fibrotic granulomas, with aggregates of these tubes
being detected in the vicinity of the bronchioles and alveoli. The asbestos did not
result in granulomas, but did enhance the presence of fibrous tissue and thicken the
septal wall. In addition, the SWCNTSs evoked strongest cytokine response, followed
by asbestos and carbon black, in that order. Proteomic analysis revealed that the
SWCNTs, asbestos and carbon black altered the expression of 376,231 and 184
proteins, respectively. Of the proteins whose expressions were altered by asbestos
and carbon black, 96% and 93%, respectively, were also affected by exposure to
the SWCNTs. The proteins affected fell into 13 functional categories associated
with inflammatory and immune responses, fibrosis and tissue remodelling. In
conclusion, the pathways by which asbestos and CNTs affect pulmonary tissue
may be similar (329).

Repeated exposure (once every second week for 8 weeks) of ApoE -/- mice to
20 pg SWCNTs (corresponding to 2.8 mg/kg bw) by pharyngeal aspiration led to
more rapid development of atherosclerotic plaques than did vehicle exposure. More-
over, the plaques in SWCNTs exposed mice were larger than in those exposed to
vehicle alone. The SWCNTs did not alter systemic levels of markers of inflamma-
tion, but did result in damage to aortic mitochondrial DNA. These findings indicate
that pulmonary exposure to SWCNTs might accelerate the development of athero-
sclerosis and thereby influence the cardiovascular system negatively (184).

In another study, 8 rats were exposed to 1 mg/kgbw SWCNTs (diameter 1.2-1.6
nm, length 2-5 um) by i.t. instillation once and then again 2 weeks later and the
baroreflex function (which stabilises arterial pressure by modulating heart rate),
atrial pressure and heart rate subsequently monitored during a 4-week observation
period. SWCNTs reduced the number of baroreflex sequences, progressively, with
the lowest value being observed after 4 weeks, indicating that these nanotubes
altered the autonomic regulation of arterial pressure and heart rate. The authors
noted that the CNTs employed contained metal contaminants such as nickel that
might have contributed to the reduction in baroreflex response (178).

When Swiss Webster mice were injected i.p. 5 times at 24-hour intervals with
carboxyl-functionalised SWCNTs (diameter 15-30 nm, length 15-20 pm) at doses
0f 0.25, 0.5 or 0.75 mg/kg bw and sacrificed 24 hours later, all of the doses were
found to induce oxidative stress in the liver in the form of ROS. The two higher
doses elevated the hepatic level of lipid hydroperoxides, while only the highest
led to enhanced alanine aminotransferase and alkaline phosphatase activity in the
blood. The histopathological findings included disruption and vacuolation of
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hepatocytes at doses of 0.25 mg/kg bw and higher. Condensed nuclei and partial
disruption of the central vein were observed with 0.5 mg/kg bw. At 0.75 mg/kg
bw degeneration of the liver occurred and the central vein was injured. However,
all of these changes were statistically significant only at 0.75 mg/kg bw. The
authors concluded that the effects observed were due to oxidative stress unrelated
to metal contaminants in the SWCNTs, which were thoroughly purified prior
application (250).

Hairless SKH-1 mice treated topically with 40, 80 or 160 pg of unpurified
SWCNTSs (30 wt% Fe) once daily for 5 days exhibited thickening of the skin with
the highest dose, as well as more epidermal cells at the two higher doses. SWCNT
exposure to 160 pg also enhanced infiltration by mast cells, myeloperoxidase
activity, accumulation of collagen and cytokine production. Moreover, oxidative
damage was observed with 80 and 160 pg. Thus, unpurified SWCNTSs containing
iron can cause dermal toxicity, including inflammation (231).

After mice received SWCNTs (diameter 0.8-1.2 nm, length 0.05-0.3 um) by
gastrogavage as a bolus dose of 5-500 mg/kg bw once daily for 10 days, SWCNTs
were detected by TEM in the ileum, liver, brain and heart. In the case of the brain,
CNTs were present only in neurons and neuritis, not in glial cells. Ultrastructural
examination revealed that the major target organelles were lysosomes and mito-
chondria, with uptake into lysosomes at doses of 50-500 mg/kg bw and accumula-
tion in mitochondria above 400 mg/kg bw. In addition, doses of 400 and 500 mg/kg
bw damaged the lysosomes and mitochondria. The lysosomes were dilated, had
disrupted membranes, had lost their contents and/or exhibited cavity formation,
while mitochondria containing SWCNTSs were swollen and had few or no cristae.
The level of ROS in mitochondria, but not in lysosomes was elevated (373). The
main purpose of this investigation was to evaluate ultra-short SWCNTSs as potential
therapeutic agents for treatment of Alzheimer’s. Thus, the CNTs utilised were very
short (50-300 nm) compared to those used in other applications. Moreover, the
doses resulting in adverse effects were relatively high, i.e., 400 and 500 mg/kg bw.
The lowest dose associated with SWCNT uptake into any organ is impossible to
determine from the information provided and no statistical analysis of the uptake
was performed.

MWCNTs

The effects of MWCNTSs (mass median aerodynamic diameter 1.5 pm, no data on
length, 1.06% Fe) following whole-body inhalation (10 mg/m?, 5 hours/day for 2,
4, 8 or 12 days, estimated lung burden 7, 13, 23 and 31 pg, respectively) was exa-
mined in male C57BL/6J mice. The MWCNTs induced dose-dependent pulmo-
nary inflammation and cytotoxicity as reflected by more PMNss, elevated levels
of LDH, albumin and chemokine KC (neutrophil chemoattractant) in whole lung
lavages. Minimal to mild lung fibrosis present at the site of inflammation was ob-
served after 8 and 12 days exposure. Fibrosis was also associated with an expanded
interstitium and the presence of interstitial MWCNTs. Furthermore, MWCNTs
translocated from the lung to the tracheobronchial lymph nodes where they were
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detected inside cells resembling macrophages and dendritic cells. In conclusion,
inhalation exposure evoked a dose-dependent pulmonary inflammation and rapid
development of fibrosis (264).

Repeated inhalation of MWCNTs (diameter 50 nm, length 10 um, surface area
280 m?/g, 95% pure, <0.2% La and Ni, <3% amorphous carbon) by mice (n=9/
group) has been carried out at a weighted average air concentration of 32.6 mg/m’
(range 13-80 mg/m®). The animals were exposed 6 hours/day (90 minutes 4 times)
every second day for 30 or 60 days. The aerosol administered was shown to contain
well-dispersed MWCNTs of respirable size. The levels of total protein and activi-
ties of alkaline phosphatase, acid phosphatase and LDH in the BAL fluid were
slightly elevated in the 30-day group and significantly higher in the 60-day group.
Histopathology of the former animals revealed aggregates of MWCNTSs on the
bronchial wall, as well as inside the alveolar wall, which occasionally led to thicke-
ning. In the 60-day group, the aggregates in the bronchi were larger, while those
in the alveolar region were smaller, but caused more wall thickening. The authors
concluded that MWCNTs exert severe pulmonary toxicity after a 60-day exposure,
but not after 30 days (180). The calculated total doses per unit body mass (7 and
14 mg/kg bw for the 30- and 60-days group, respectively) were rather high com-
pared to other inhalation studies and no examination of the cells in the BAL fluid
was carried out.

Repeated exposure (6 hours/day for 5, 10 or 15 days) of mice (n=6/group) to
MWCNTs (diameter 50 nm, length 10 pm, surface area 280 m*/g, 95% pure) by
inhalation of an aerosol (average 32.61 mg/m®) and monitoring of the responses
after 8, 16 and 24 days revealed aggregates of CNTs in the bronchi along with
smaller aggregates in the alveoli. No inflammation was present in the bronchi.

The only lesions observed in the alveoli were cell proliferation and thickening

of the alveolar wall, but the pulmonary structure remained intact. Comparison

to exposure by i.t. instillation, which resulted in injury to and destruction of the
alveoli, suggested that these two different routes of exposure, instillation and
inhalation, evoke highly different responses and pathologies (see also Section
11.2.1.2) (181). However, no quantification of the severity of lesions or inflamma-
tion was performed. Moreover, the choice of dosing regimens was not explained,
i.e., why was exposure by inhalation performed repeatedly and instillation only
once.

Ravichandran and collaborators exposed mice (n=6/group) to 100 ug MWCNTs
(diameter 20-50 nm, length 0.006-0.013 um, purity >99%) via nose-only inhalation
for 20 minutes daily for 7 days and found a homogenous distribution of MWCNTs
in the lungs, including distal regions. Pulmonary inflammatory was indicated by the
larger total numbers of cells and of PMNs and elevated total level of protein in the
BAL fluid. Furthermore, the increased level of soluble collagen was indicative of
fibrosis. These MWCNTs also induced oxidative stress, i.e., an elevation in myelo-
peroxidase activity and enhanced formation of ROS and lipid peroxidation (272).

When Wistar rats (n=10/group) were exposed to MWCNTs (in air: diameter
63 nm, length 1.1 um (in solution: diameter 48 nm, length 0.94 pm), surface area
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69 m*/g) by whole-body inhalation of 0.37 mg/m® 6 hours/day, 5 days/week for 4
weeks and pulmonary responses assessed after 3 days, 1 and 3 months, transient in-
creases in chemokines (cytokine-induced neutrophil chemoattractant-1, -2 and -3)
in the lung tissue and myeloperoxidase in BAL fluid occurred 3 days post-exposure.
There were no signs of histopathological alterations in the lungs such as neutrophil
infiltration, granulomatous lesions, or fibrosis during the observation period (216).

Systemic immunosuppression following repeated exposure to MWCNTS has
been documented in two sets of experiments performed Mitchell and co-workers.
In the first of these, mice were exposed to MWCNTs (diameter 10-20 nm, length
5-15 pm, surface area 100 m%/g) by whole-body inhalation of 0.3, 1, or 5 mg/m’, 6
hours/day for 7 or 14 days following which the number of increase of leukocytes
in the BAL fluid was unchanged at any dose. MWCNTs had been engulfed by
macrophage, some of which were enlarged, but there were no signs of fibrosis or
granuloma. Upon evaluating formation of T-cell dependent antibodies in spleen
cells, no alteration occurred after 7 days, whereas after 14 days, suppression was
noted at all doses. The levels of IL-6, IL-10 and NA(D)PH quinone oxidoreductase
1 (NQO1) mRNA in the lung tissue were normal, in contrast to the elevated levels
of mRNA encoding IL-10 and NQO1 (a marker of oxidative stress) in spleen homo-
genate (the latter increase demonstrating dose-dependency) (212).

In a later study by the same group, whole-body inhalation of 0.3 or 1 mg/m?
of MWCNTs (diameter 10-20 nm, length 5-15 pm, surface area 100 m*/g, 97%
pure, 0.5% Fe, 0.5% Ni, aerosolised by a jet mill coupled to a dry chemical screw
feeder) by mice (n=7) was carried out for 6 hours/day for 14 days. The deposited
doses were calculated to be 0.15 and 0.5 mg/kg bw, respectively. Ibuprofen was
administered to some of the animals to modulate the immune response. MWCNT
exposure reduced the T-cell dependent production of antibodies to sheep red blood
cells and T-cell proliferation was also attenuated. Gene expression of prostaglandin
synthase enzymes (PTGS2 and PTGES?2, the latter also called cyclooxygenase 2
(COX-2)) was upregulated in the spleen, a response that could be partially amelio-
rated with ibuprofen. No suppressed immune function was observed at the lower
concentration. In mice lacking the COX-2 gene, exposure to the MWCNTs did not
alter T-cell proliferation. When exposed in vitro to the proteins in the BAL fluid, the
splenocytes from wild-type mice exhibited less antibody production, whereas with
the corresponding cells from the COX-2 knockout mice, there was no immuno-
suppressant effect. The authors concluded that signals from the lung activate
signalling in the spleen, which in turn suppresses the immune response of animals
exposed to MWCNTs (213).

When mice (n=8 males and 8 females/group) were injected i.p. once daily for
28 days with 10, 50 or 250 mg/kg bw MWCNTs (diameter 10-40 nm, length 0.2-
2 um) functionalised with phosphorylcholine, the animals receiving the highest
doses appeared sluggish and lethargic and the body weight of male mice was
lowered. Many organs, including the liver, spleen and lungs (and in female mice
the kidney as well) exhibited elevated tissue-to-body weight ratios at the highest
dose. In case of the spleen, such elevations also occurred in both sexes with 50
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mg/kg bw and for the liver in males with 10 mg/kg bw. The blood level of urea
nitrogen was reduced in mice exposed to 50 or 250 mg/kg bw. Histopathology
revealed CNTs in the liver, lungs and spleen after administration of 250 mg/kg
bw, as well as some presence even with 50 mg/kg bw. The liver was infiltrated
with inflammatory cells after exposure to the highest dose. In the lungs, CNTs
were trapped in the interstitial space of the alveolar wall and in some cases,
thickening of the alveolar wall, expansion of capillary vessels and infiltration of
inflammatory cells were observed. The responses to 50 mg/kg bw, included mild
inflammation of the liver, spleen and lungs. The authors state that their data
suggest that MWCNTs are “relatively safe for human consumption” (185). No
quantification of changes in weight or serum levels of biochemical parameters
was presented.

To evaluate toxic effects of MWCNTSs on metabolism and immune system in
greater detail, 4 mice were injected i.p. with 5 mg/kg bw MWCNTs once daily
for 7 days. The body weight of the animals did not change. Autopsy revealed de-
position of MWCNTs in the intraperitoneal cavity and connections between the
surface of the liver and adjacent organs. The structure of the liver was found to
be heterogeneous (45).

Conclusions concerning effects of short-term exposure

Short-term exposure studies in animals are summarised in Tables 9, 11 and 13.
Only a few studies have addressed the effects of subacute repeated pulmonary ex-
posure to CNTs via inhalation. One of these showed that pulmonary toxicity, as
indicated by elevated levels of markers in the BAL fluid and thickening of the
alveolar wall, was aggravated at increasing accumulated doses of MWCNTSs and
was more pronounced after 60 than 30 days of exposure of mice to 32.6 mg/m’
(180). Moreover, repeated inhalation exposure to 10 mg/m® MWCNTs (264) and
5 mg/m® SWCNTs (305) induced pulmonary inflammation with rapid develop-
ment of fibrosis in mice. Similarly, pharyngeal aspiration of SWCNTs evoked
pulmonary inflammation and granulomas with associated fibrosis in mice (329).
At lower concentration, MWCNTs (0.37 mg/m®) caused transient inflammatory
responses, but no histopathological alterations in the lungs of rats (216). At 0.03
and 0.13 mg/m* SWCNTs no pulmonary effects were observed (215).

In two investigations, inhalation exposure to 0.3 and 1 mg/m® MWCNTs did
not cause damage to the lungs of mice, but caused a systemic effect on the immune
system, i.e., reduced formation of T-cell-dependent antibodies in the spleen (212,
213).

Some findings suggest that repeated exposure to SWCNTs can lead to cardio-
vascular effects. Thus, repeated exposure to SWCNTs by pharyngeal aspiration
promoted the formation of atherosclerotic plaques in ApoE -/- transgenic mice
and altered signals involved in the regulation arterial pressure and heart rate (184).
Effects on the arterial baroreflex function occurred following repeated i.t. instilla-
tion of SWCNTS to rats (178).
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SWCNTs caused inflammation and oxidative stress when administered topically
to mice. Infiltration of immune cells, accumulation of collagen and elevated levels
of cytokines were detected in the skin (231).

Furthermore, uptake of very short SWCNTs (0.05-0.3 pm) via the gastro-
intestinal tract and subsequent translocation to the liver, brain and heart has been
reported (373). Detection of CNTs in the brain implies that these nanotubes could
cross the blood-brain barrier.

11.4 Mutagenicity and genotoxicity

SWCNTs

An elevated frequency of mutations in the K-ras gene in lung tissue of mice ex-
posed to 5 mg/m® SWCNTs (diameter 0.8-1.2 nm, length 0.1-1 um, 17.7% Fe) via
inhalation was observed by Shvedova and collaborators. No such changes were
observed following pharyngeal aspiration of a single dose (5-20 pg) of the same
SWCNTs (305).

When 0.4 mg/kg bw SWCNTs (diameter 0.7-1.5 nm, length 1 um) were ad-
ministered to mice via pharyngeal aspiration aortic mitochondrial DNA was
damaged (184).

Jacobsen and colleagues examined the genotoxic and pulmonary effects (see
Section 11.2.1.2) of 5 different types of nanoparticles on female ApoE -/- mice.
SWCNTs (diameter 0.9-1.7 nm, length <1 um, 2% Fe), carbon black, Ceo, gold
and quantum dots were compared. When mice (n=7) received 54 pg SWCNTs by
i.t. instillation and were examined 3 and 24 hours later the cells in the BAL fluid
exhibited elevated levels of DNA damage (as determined by the comet assay).
The DNA damage of the SWCNTSs and carbon black was less than that of quantum
dots, but greater than that of gold and Cg (137).

In another investigation, pristine SWCNTSs (diameter 0.9-1.7 nm, length <1 pm)
were delivered to rats (n=8) as a single dose by gavage at concentrations of 0.064
and 0.64 mg/kg bw using physiological saline or corn oil as vehicle. In physio-
logical saline the peak sizes of these particles at the lower dose were determined
to be 195, 797 and 5 457 nm; while in corn oil these peak sizes were 34 and 178
nm at the lower dose and 1 015 nm with the higher dose. After 24 hours, both
concentrations of nanotubes in either of vehicle resulted in elevated levels of 8-
oxodG in the liver and lungs, but not in the mucosa of the colon. The SWCNTs
were also found to increase the production of ROS, but had no effects on DNA
repair (85).

Pacurari and collaborators found that SWCNTs (diameter 0.8-2.0 nm, 21% Ni,
6.2% Y) activate signalling pathways associated with oxidative stress in cultures
ofnormal and malignant human mesothelial cells. The SWCNTSs were dispersed by
sonication in 1% foetal bovine serum, which resulted in homogenous dispersions
of small agglomerates of nanoropes and mats. The concentrations used were gene-
rally 12.5-125 pg/cm” and exposure was for as long as 24 hours. Doses of 150 and
500 pg/ml of the SWCNTs resulted in production of ROS by both kinds of cells,
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while crocidolite asbestos was even more potent in this respect. Exposure to 25 or
50 pg/cm* SWCNTSs for 24 hours revealed dose-dependent DNA damage (deter-
mined by comet assay) in both cell types. Enhanced phosphorylation of the histone
protein y-H2AX, a marker of DNA damage, in both cell types after exposure to
crocidolite, but not with SWCNTSs suggested that these two different particles may
induce different types of DNA damage (246).

When two airway epithelial (BEAS-2B and SAEC) cell lines were subjected to
SWCNTs (diameter 1-4 nm, length 0.5-1 pm, surface area 1 040 m*/g, 99% purity,
0.23% Fe) at concentrations of 24, 48 and 96 pug/cm? with vanadium pentoxide as
a positive control, viability was reduced and interference with cell division through
formation of anaphase bridges resulted in an aneuploid number of chromosomes,
abnormal mitotic spindles (monopolar, tripolar and quadrapolar spindles) and frag-
mented centrosomes after 24 hours. These effects were dose-dependent, and stati-
stically significant at all concentrations of SWCNTSs employed (with the exception
of the reduction of viability, which was only significant with 48 and 96 pg/cm?).
Both cell lines exhibited similar responses. One possible explanation for these ob-
servations is that the nanotubes are similar in size and shape to the cytoskeleton,
which might allow detrimental interactions between CNTs and the mitotic appa-
ratus (290).

Lindberg and co-workers exposed human bronchial epithelial (BEAS-2B) cells
to SWCNTs (diameter 1.1 nm, length 0.5-100 um, containing 50% SWCNTSs and
40% other CNTs) and monitored effects after 24, 48 and 72 hours by trypan blue
exclusion and the comet and micronucleus assays. The concentrations in the cell
culture medium was 1-100 pg/cm?, corresponding to 3.8-380 pg/ml. Cell viability
was reduced by 50% with 10-40 pg/cm’ after 24 hours and with 40-60 pg/cm’
after 48-72 hours. DNA damage was observed with all concentrations after 48 and
72 hours (as well as after 24 hours with 1 pg/cm” and 60-100 pg/cm?) in a dose-
dependent manner. After 48 hours, 10, 60 and 100 pg/cm? CNTs induced micro-
nuclei, but this effect was not seen after 24 or 72 hours. These observations indi-
cate that SWCNTSs can cause DNA damage. This could be due to the fibrous
nature of this material and/or, possibly, the presence of metal catalysts such as
cobalt and molybdenum (188).

No DNA strand-breaks were detected using the comet assay, but oxidation of
purines was increased when mouse lung epithelial (FE1-MML) cells were in-
cubated with SWCNTs (diameter 0.9-1.7 nm, length <1 pm, surface area 731 m*/g,
95% pure, 2% Fe). The accompanying reduction in the number of cells was pro-
bably due to attenuated proliferation, rather than reduced survival. With 100 pg/ml
SWCNTs for 0, 24, 48 and 72 hours, a larger proportion of the cells were in the
G1 phase of the cell cycle. Thus, SWCNTSs can apparently affect the DNA of epi-
thelial cells (138).

Incubation of human peripheral blood lymphocytes with pristine SWCNTs (dia-
meter 1.1 nm, average length 50 pm, 90% pure, 2.9% Co) dispersed in the culture
medium by sonication and added at concentrations of 1, 5 and 10 png/ml was with-
out effect on the integrity of cellular DNA (evaluated with an alkaline comet assay)
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after 6 hours. On the other hand, cell growth was slower with 25 and 50 pg/ml,
which was attributed to reduced metabolic activity. According to the authors, their
dispersion of the SWCNTs in cell culture medium by sonication might explain the
discrepancies between their findings and those of others (379).

Upon exposure of lung fibroblast (V79) cells to 24, 48 and 96 pg/cm* SWCNTs
purified by acid treatment (diameter 0.4-1.2 nm, length 1-3 pm, surface area 1 040
m?/g, 0.23% Fe) for 3 or 24 hours, cell survival was compromised at both time-
points with the two higher concentrations. The comet assay revealed significant
DNA damage with 96 pg/cm? after 3 hours as well as with both 48 and 96 pg/cm®
after 24 hours. However, 12-96 png/cm® did not alter the frequency of micronuclei
and the results of the Salmonella gene mutation assay with 60-240 pg/plate were
negative (159).

To assess the genotoxic potential of modified CNTs with the cytokinesis-block
micronucleus assay rat lung epithelial cells were exposed to 25 pg of different
CNT preparations per ml. The following preparations were compared: ground
(MWCNT-g), in which structural defects in the carbon backbone has been intro-
duced mechanically; ground and then heated to 600 °C (MWCNT-g600), which,
in addition to structural defects, reduced the number of oxygenated carbons and
content of metal oxide; ground and then heated to 2 400 °C (MWCNT-g2400) to
remove all metals, while at the same time, annealing and reducing carbon defects;
or, finally, heated to 2 400 °C and then ground (MWCNT-2400g), which also re-
moved metals, but introduced of structural defects. MWCNT-g or MWCNT-g600
induced significant increases in the frequency of micronucleated binucleated cells
whereas MWCNT-g2400 did not. The investigators concluded that the reduction
in genotoxicity went better paired with the decrease of structural defects induced
by the thermal treatments than with the metal content. Pulmonary toxicity of these
MWCNTs is described in Section 11.2.1.2) (221).

MWCNTs
When Kato and co-workers instilled 0.05 or 0.2 mg MWCNTs (diameter 90 nm
and length 2 pm, Mitsui-MWNT-7) i.t. into male ICR mice (n=5/group) dose-
dependent damage to the DNA in lung cells from ICR mice was detected with the
comet assay 3 hours later. Furthermore, the levels of 8-oxodG and heptanone
ethenodeoxyribonucleosides in DNA extracted from the lungs of mice exposed to
0.2 mg MWCNTs were elevated for as long as 72 hours after exposure, indicating
oxidative damage. L.t. instillation of 0.2 mg of the same MWCNTs into guanine
phosphoribosyltransferase (gpt) delta transgenic mice (n=6-7/group) did not alter
the frequency of mutations in the gpt gene in the lungs. However, this frequency
was enhanced 2-fold 8-12 weeks after repeated administration of 0.2 mg once each
week for 4 weeks (153).

To examine the effect of aspect ratio on genotoxicity, two types of MWCNTSs
-- one with a high-aspect ratio (diameter 10-15 nm, length 10 um) and the other a
low-aspect ratio (diameter 10-15 nm, length 0.15 pum) -- were tested in the Ames
test (12-1 000 pg/plate), an in vitro chromosomal aberration test (3.12-200 pg/ml)
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and for the formation of micronuclei in mice (12.5, 25 and 50 mg/kg bw), all in
accordance with OECD guidelines. The mice (n=6) were injected i.p. with the
MWCNTs in DPPC solution, the femur later dissected out, the bone marrow pre-
pared and the resulting cells examined with fluorescence microscopy. In none of
these tests were any genotoxic effects observed. However, these MWCNTs were
cytotoxic towards cultures of Chinese hamster ovary cells (CHO), with the high-
aspect particles being more harmful in this respect. The authors concluded that
there were no direct genotoxic effects, but possibly indirect effects due to oxida-
tive stress or inflammation (156).

In contrast, MWCNTs were found to be genotoxic in several other studies. Swiss
Webster mice were injected i.p. once daily for 5 days with 0.25, 0.5 and 0.75 mg/kg
bw non-functionalised (diameters 15-30 nm, length 15-20 um) or carboxylic-
functionalised MWCNTs (2-7% w/w COOH-groups) and the bone marrow sub-
sequently dissected out to look for genotoxic and clastogenic effects. Both types
of MWCNTs elevated the number of chromosomal aberrations and the level of
ROS at all doses, with the non-functionalised being less potent in the latter re-
spect. Both also reduced the mitotic index, the functionalised particles causing a
more potent effect in this case. The number of micronuclei also increased in a
dose-dependent manner, more so with the functionalised nanotubes. The comet
assay revealed concentration-dependent DNA fragmentation at all concentrations
with both preparations, more pronounced with the functionalised CNTs. It was
suggested that MWCNTSs can give rise to genotoxic effects that are influenced by
the nature of their functionalisation (252).

In another case, the clastogenic and aneugenic effects of MWCNTs (diameter
11.3 nm, length 0.7 um, 98% pure, traces of Co and Fe, mostly aggregated with a
hydrodynamic diameter of 1 um) were tested in vivo, ex vivo and in vitro. Three
days after i.t. administration of 0.5, 2 or 5 mg/rat (n=6), the LDH activity and total
protein content in BAL fluid were elevated in a dose-dependent fashion. Only the
highest dose resulted in more macrophages and neutrophils in this fluid. In the ex
vivo experiments, type II pneumocytes (AT-II cells) isolated from rat lung after i.t.
administration of 0.5 or 2 mg of MWCNTSs contained more micronuclei at the
higher dose. The in vitro experiments involved incubation of rat lung epithelial
(RLE) and human epithelial (MCF-7) cells with MWCNTs (10, 25, 50, 100 or
150 pg/ml) for 6-24 hours (n=2). In the case of the RLE cells cytotoxicity was ob-
served after exposure to 100 and 150 pg/ml, while mitochondrial activity (and
thus apparent viability) was reduced at 50 pg/ml and higher. Apoptosis occurred
with concentrations >25 pg/ml and 10-50 pg/ml produced more micronuclei. In
the case of MCF-7 cells, one of the two experiments demonstrated micronuclei at
10-50 pg/ml, while the other yielded no micronuclei at all. In addition, these
MWCNTs induced centromere-positive and -negative micronuclei in MCF-7 cells
(219). Although this study is presented well, the number of in vitro experiments
performed was small.

When cultures of mouse embryonic stem cells were incubated with 5 or 100
pg/ml purified, catalyst-free MWCNTSs for 24 hours, the nanotubes accumulated
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inside the cells in a time-dependent manner, beginning already after 2 hours. The
tumour suppressor protein p53, was activated dose-dependently after 2 hours
(remaining activated after 4 hours), thereby leading to apoptosis. The expression
of the base-excision repair protein 8-oxoguanine-DNA glycosylase 1 (OGG1) and
double-strand break repair protein Rad 51 were enhanced by exposure, indicating
the occurrence of mutations and DNA damage. Another repair protein XRCC4
was also activated, as was H2AX (a marker for double-strand breaks in DNA).
When the mutation frequency was determined directly, the incidence with 5 pg/ml
nanotubes was twice as high as that in non-exposed cells. These observations in-
dicate that MWCNTs can be genotoxic and mutagenic (386). However, with ex-
ception for the mutagenesis study (n=10), the number of experiments was not
stated. The Western blots were not quantified, with only estimates based on ocular
inspection being presented, although the figures shown appear convincing. More-
over, no physical characterisation of the CNTs employed was performed.

Ochoa-Olmos and collaborators exposed cultures of human lymphocytes to 10,
20, 40 and 60 pg/ml pristine MWCNTs (diameter 10-20 nm, length 10-50 mm
(sic!)) and MWCNTs functionalised with nylon-6 (which according to a previous
report by the same authors renders the nanotubes more biocompatible). The pri-
stine nanotubes led to the formation of a larger number of micronuclei (although
this effect was only statistically significant at the highest concentration), whereas
the nylon-6 MWCNTs evoked no such response. The pristine CNTs did not in-
crease the frequency of chromatin buds significantly, although linear regression
analysis did reveal a significant correlation between dose and response. With the
second highest dose of pristine MWCNTSs, more nucleoplasmic bridges were also
observed. Except for enhanced apoptosis at 20 pg/ml, the nylon-6 MWCNTS pro-
duced no negative responses. This report suggests that pristine MWCNTSs can
cause genotoxic events in lymphocytes, while the toxicity of the corresponding
functionalised nanotubes was probably due to contaminants remaining from the
procedure employed to achieve functionalisation (243).

When the Ames test was carried out with MWCNTSs (diameter 110-170 nm,
length 5-9 um, surface area 130 m?/g) at doses of 0.01-9 pg/plate, no mutagenicity
or cytotoxicity was observed. These investigators speculated that limited uptake of
these relatively large MWCNTs into the Salmonella typhimurium bacterial cells
was responsible for this lack of mutagenicity (65).

Macro-sized agglomerates of MWCNTs (Baytubes) were found to be spherical
with diameters of 10-150 pm, but to unbundle into individual nanotubes (diameter
not stated, length 0.2-1 um) upon sonication. When Chinese hamster lung fibro-
blast V79 cells were incubated with such tubes at concentrations of 2.5, 5 and 10
pg/ml in the presence or absence of S9 liver homogenates (according to OECD
guidelines) for 4 hours and then harvested 18 hours later, no cytotoxic or clasto-
genic effects were seen. Moreover, Ames test with as much as 5 000 pg nanotubes
per plate was also negative, both in the absence and presence of S9. It was con-
cluded that Baytubes are neither mutagenic nor clastogenic under these conditions
(358).
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Patlolla and colleagues subjected cultures of human dermal fibroblasts to 40,
200 and 400 pg/ml purified, carboxylic-functionalised MWCNTs (diameter 15 nm,
length up to 12 pm, surface area 41-42 m?/g after sonication) and observed dose-
dependent cytotoxicity. The comet assay revealed DNA damage at all concentra-
tions, with a maximum after 48 hours with 400 pg/ml MWCNTs. This was con-
firmed by agarose gel electrophoresis which also showed dose-dependent DNA
fragmentation at all concentrations. Furthermore, these MWCNTs induced dose-
dependent apoptosis in the fibroblasts. Together, these results indicate that these
functionalised MWCNTSs were genotoxic in this system (251).

At levels of 0-400 pg/ml in the culture medium, MWCNTs (diameter 80 nm,
length 5+4.5 um, with 38.9% of the fibres >5 um) or chrysotile asbestos (15%
fibres, length 2-5 um), the former were cytotoxic towards Chinese hamster lung
(CHL/IU) cells in a dose-dependent manner and influenced by the solvent in
which they were dispersed and the duration of sonication. Under conditions where
less agglomeration occurred and thus hydrodynamic diameters were smaller, cyto-
toxicity was enhanced. On a weight basis, chrysotile was more cytotoxic than
these MWCNTs. MWCNTs increased the number of cells showing polyploidy in
a dose-dependent manner at and above 5 pg/ml after 24 hours and at and above
1.3 pg/ml after 48 hours. Also the numbers of bi- and multi-nucleated cells in-
creased dose-dependently at and above 0.31 and 3.1 pg/ml CNTs, respectively.
The MWCNTs were taken up into the cells. It was proposed that the effects ob-
served reflect interactions between the MWCNTs and the mitotic spindle (10).

Pacurari and co-workers showed that exposure to MWCNTs (diameter 81 nm,
length 8 um, surface area 26 m*/g, 99.5% pure) which formed long and loosely
associated particulates or agglomerated mat-like structures in solution led to
moderate increases in ROS production in both normal and malignant mesothelial
cells. In addition, release of LDH revealed cytotoxicity in these cells after exposure
to 50 or 100 pg/ cm®. In comparison, crocidolite asbestos induced cytotoxicity in
the normal cells at a concentration of 5 pg/cm” and in the malignant cells at 25 pg/
cm?. The cell viability of both kinds of cells was reduced by exposure to either
the MWCNTSs or crocidolite at 12.5-125 pg/cm? and apoptosis occurred with 25
and 50 pg/cm® MWCNTs. The MWCNTSs also caused DNA damage at these same
concentrations, with the malignant cells being more susceptible. The level of y-
H2AX, another marker of DNA damage, was elevated to similar extents in both
the normal and malignant cells by 12.5-50 pg/cm? of either MWCNTs or croci-
dolite (245).

SWCNTs and MWCNTs

The role of the shape of CNTs on the DNA damage and inflammation they evoke
has also been examined by exposing human alveolar carcinoma epithelial A549
cells and mice to three different types of MWCNTSs designated M1 (diameter 20-
60 nm, length 5-15 um), M2 (diameter 60-100 nm, length 1-2 pm) and M3 (dia-
meter <10 nm, length 1-2 um) and one type of SWCNTs (S4, diameter <2 nm,
length 5-15 pm). These CNTs were sonicated in 0.001% Triton X-100 and applied

138



in vitro at concentrations of 1-1 000 pg/ml. After exposure for 24 hours, none of
the four types of CNTs had altered viability of the A549 cells, as determined by
the methylene blue assay. DNA damage, as determined by the comet assay, was
most pronounced in the presence of M1, the longest CNTs employed. Lp. inject-
tion of mice with 50 pg M1 or M2 resulted in more inflammatory cells in the ab-
dominal lavage fluid, this response being twice as strong with M 1. The authors
proposed that longer and thicker CNTs cause more pronounced DNA damage and
inflammation (368).

When purified or amide-functionalised SWCNTSs (no data on dimensions) or
MWCNTs (diameter 20-40 nm, length 1-5 um, 99% pure) were applied to lympho-
cytes (at concentrations of 25-100 pl/ml or 150 pl/ml), the purified SWCNTSs in-
duced micronuclei and attenuated proliferation at the concentrations of 25 and 50
pl/ml, while the functionalised SWCNTSs evoked these same responses at all con-
centrations. The MWCNTs led to the appearance of micronuclei at 25 pl/ml and
also reduced cell growth. Similar exposure of fibroblasts produced similar results.
There was an inverse relationship between the incidence of micronuclei and pro-
liferative potential in all cases. The induction of y-H2AX revealed that the nano-
tubes caused double-strand breaks in DNA. The negative electric potential of the
nanotubes was put forth as one possible explanation for the phenomena observed
(55). The concentrations employed (given in pl/ml) are difficult to interpret, since
the concentration of nanotubes in the stock solution was not provided.

When an alveolar macrophage cell line, RAW 264.7, was exposed to SWCNTs
(diameter 0.7-1.2 nm, length 0.5-100 pm, surface area 400 m?*/g) or MWCNTSs
(diameter 110-170 nm, length 5-9 pm, surface area 22 m?/g) at concentrations of
0.01-100 pg/ml for 2-48 hours, the frequency of micronuclei was elevated at doses
above 0.1 pg/ml and 1 pg/ml, respectively. In addition, the comet assay revealed
DNA damage with 1-100 pg/ml SWCNTs or 1-10 pg/ml MWCNTSs and cytotoxic
effects were seen with both types of CNTs at concentrations of 10 and 100 pg/ml
(211).

Conclusions concerning mutagenicity and genotoxicity
Mutagenicity and genotoxicity studies in animals are summarised in Table 14.
Although some contradictory findings have been reported and the result of Ames
test in generally been negative, a number of studies indicates that SWCNT's and
MWCNTs are potentially mutagenic and genotoxic both in vivo and in vitro. The
Ames test may give false-negative results because the bacteria involved cannot
perform endocytosis (310) and are thereby apparently unable to take up CNTs.
Genotoxic effects observed with CNTs include chromosomal aberrations, micro-
nuclei, DNA strand-breaks and modification of bases in DNA. The genotoxicity
induced by CNTs may be mediated either by direct or indirect pathways (see
Section 9.4).

In one study longer and thicker CNTs caused more genotoxic damage than
thinner and shorter ones and in another study functionalised MWCNTSs were more
potent in this respect than pristine nanotubes. In a third study pure SWCNTS re-
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vealed no genotoxic effects, suggesting that such responses might be evoked by
impurities such as metals. However, based on available studies it is not possible to
make any conclusions how variables such as dimensions, functionalisation and
metal impurities modify the genotoxicity of CNTs.

11.5 Effects of long-term exposure and carcinogenicity

11.5.1 Pulmonary toxicity
The effects of long-term exposure to CNTs have been evaluated in two studies
performed according to OECD guidelines.

In the study by Ma-Hock and co-workers, male and female Wistar rats head-
nose inhaled MWCNTs (diameter 5-15 nm, length 0.1-10 pm, surface area 250-
300 m%/g, 9.6% Al,Os and traces of Fe and Co, Nanocyl NC 7000) at air levels
0f 0.1, 0.5 and 2.5 mg/m’ for 6 hours/day, 5 days/week for a total of 13 weeks.
In the respirable dust aerosol employed, which was generated in-house, the
median aerodynamic diameter of the MWCNTSs was 0.7-2 pm, with 66-90% of the
particle mass being smaller than 3 pm. Accordingly, a high proportion of these
MWCNTs should have been deposited in the alveolar region. Free MWCNTSs
were also present in the alveoli, but not quantified. Analysis by TEM revealed
clumps of MWCNTs micrometres in size, with individual MWCNTs as well. The
dustiness of these MWCNTs was considered low. Dose-dependent formation of
multifocal granulomatous inflammation, diffuse histiocytosis and intra-alveolar
lipoproteinosis was observed in the lungs and goblet cell hyperplasia in the nasal
cavity. Granulomatous inflammation was also present in the mediastinal lymph
nodes, suggesting long retention of the MWCNTSs. These effects were most
pronounced after exposures to 0.5 and 2.5 mg/m®, but minimal granulomatous
inflammation and minimal diffuse histiocytosis were also observed at 0.1 mg/m’.
Although intraseptal granulomas containing macrophages, fibroblasts and
connective tissue were seen, no thickening of the alveolar walls indicative of
fibrosis was observed. With the medium and high doses diffuse neutrophilic in-
flammation of the lungs also occurred, as well as an increase in the number of
circulating white blood cells at the highest dose. Moreover, the weights of the
lungs elevated dose-dependently, but no pathological changes were observed in
other organs. Based on the incidence of minimal granulomatous inflammation
0.1 mg/m’ was considered as the lowest observed adverse effect level (LOAEL)
(198).

Pauluhn examined the effects of MWCNTs (diameter 10 nm, length 0.2-0.3 um,
surface area 259 m”/g, Baytubes) administered to male and female Wistar rats by
nose-only inhalation at air levels of 0.1, 0.4, 1.5 and 6 mg/m’ for 5 hours/day, 5
days/week for 13 weeks with follow-up for additional 26 weeks. The MWCNTs
employed were inherently inclined to “form coiled, intertwined and tangled
structures”. Since harsh conditions were required to prepare individual CNTs for
analysis, the physical parameters reported may not reflect those of the CNTs as
actually administered. The material was reported to exhibit low dustiness and
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chemical analysis showed 98.6% purity in bulk form and 99.1% after micronisa-
tion. The major contaminant was cobalt, which was present at a level of 0.46% or
0.53% (depending on the method of determination). Upon aerosolisation, these
MWCNTSs were present as micron-sized agglomerates, rather than free nanotubes.
Most effects observed were dose-dependent. The total number of cells in the BAL
fluid was higher during study week 13 (post-exposure day 1) with the dose of 0.4
mg/m° and during study weeks 8-39 with 1.5 and 6 mg/m’. The number of lympho-
cytes in this fluid was elevated by 1.5 and 6 mg/m®, while the number of PMNs
increased at all levels of exposure except the lowest (0.1 mg/m®). The number of
alveolar macrophages was enhanced by the two highest concentrations, while
foamy macrophages were observed only after exposure to 6 mg/m’. Biochemical
markers of cytotoxicity and fibrosis (the activities of AP-1 and LDH, the levels of
collagen and total protein, etc.) in the BAL fluid were also increased by all con-
centrations except 0.1 mg/m’. The level of soluble collagen and the number of
PMNs were closely correlated. All of these responses were maximal at the end of
the 13-week exposure to CNTs. The weight of the lungs increased continuously
during the entire 39-week period, but significantly only at the two highest con-
centrations. The lung-associated lymph nodes also weighted more between study
weeks 8 and 17, after which they decreased in size again. Histopathology revealed
macrophages containing particles, dose-dependent thickening of the septal alveolus
indicative of interstitial fibrosis, infiltration by inflammatory cells, goblet cell
hyper-/metaplasia in the upper respiratory tract, again at all concentrations except
the lowest. Following exposure to 6 mg/m*> MWCNTs, pleural thickening was
observed from week 13 and thereafter. Moreover, more intense staining for collagen
was observed following exposure to 0.4-6 mg/m®> MWCNTs. The concentration
0.1 mg/m® was considered to be the no observed adverse effect level (NOAEL).
No systemic effects were observed under any condition. The retention half-time of
MWCNTs in the lungs following 13 weeks of exposure to 6 mg/m? was determined
to be 375 days, which was longer than the post-exposure follow-up. No dissolution
of MWCNT agglomerates into free nanoparticles was seen in the alveoli (255). The
investigators interpreted the responses seen at concentrations of 1.5 and 6 mg/m’
as due to particle overload by agglomerates with a high volume of displacement,
similar to the phenomena observed with carbon black.

11.5.2 Carcinogenicity

The abdominal cavity and the internal organs inside is lined with a membrane
called peritoneum which is composed of mesothelial cells, the same cell type that
forms the pleura. The use of i.p. injections, i.e., into the peritoneal cavity, is con-
sidered appropriate to screen for fibres that have the potential to induce formation
of mesotheliomas.

The effects of a single i.p. injection of 10° (3 mg) MWCNTs (mean diameter
100 nm, length 27.5% >5 pm, 3.55x10"" particles/g, Mitsui MWNT-7) into p53
heterozygous mice (n=19, which are particular sensitive to the toxic effects of
asbestos) during the subsequent 180 days have been compared to similar exposure
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to crocidolite (10'° particles, 3 mg/animal, obtained from the Union Internationale
Contre le Cancer (UICC)) or another type of fullerenes (3 mg/animal), with the
control animals receiving the vehicle alone. After 10 days, particles were present
on the surface of organs and the intestinal loops were oedematous. The MWCNTSs
caused highest mortality, followed by the crocidolite, whereas fullerenes and ve-
hicle alone resulted in no deaths. The formation of fibrous scars and a foreign body
reaction led to peritoneal adhesion and fibrous thickening in the animals receiving
MWCNTs. Mesothelial lesions of various grades, including large tumours were
observed. The mortality from mesothelioma was 87.5% (14/16 animals) for the
MWCNT-group and 77.8% (14/18 animals) with crocidolite (320).

In another study by the same research group, MWCNTs (median diameter 90
nm (range 70-170 nm), median length 2 pm (range 1-20 um), 0.35% Fe, Mitsui
MWNT-7) were administered by single i.p. injections into p53 heterozygous mice
(n=20/group) at doses of 3 ug (10° fibres), 30 pg (107 fibres) or 300 pg (10® fibres)
per mouse and the animal were followed-up for a year. A dose-dependent induc-
tion of mesothelioma was observed with an incidence of 5/20, 17/20 and 19/20 in
the low-, middle- and high-dose group, respectively. The time of tumour onset
was, however, independent of the dose. Histopathological examination revealed
that the mesotheliomas ranged from a differentiated epithelioid type to an un-
differentiated sarcomatous type. The mesotheliomas of the low-dose group were
devoid of foreign body granulomas or fibrotic tissue, as were the focal mesothelial
atypical hyperplasia present in all mice in this group that survived until terminal
kill. Instead, these latter lesions were backed up by an accumulation of mono-
nuclear inflammatory cells. As this atypical hyperplasia is considered as precursor
lesion of mesothelioma, these investigators suggested that mesothelioma originates
from these inflammatory lesions without granulomas and fibrous scars formed
against MWCNT agglomerates and that the mesothelial atypical hyperplasia can
be regarded as a lesion driven by the frustrated phagocytosis against MWCNTs.
Moreover, individual MWCNTSs were detected in several organs including the
liver, brain and lungs, likely delivered via the systemic circulation (319).

In another investigation, two kinds of MWCNTs (diameter 11.3 nm, length 0.7
um, with and without structural defects in the carbon skeleton) were implanted in
the peritoneal cavity of rats (n=50) at doses of 2 or 20 mg/animal (with defects) or
20 mg/animal (without defects) and the animal monitored for 2 years thereafter.
The effects were compared to those evoked by crocidolite (diameter 330 nm, length
2.5 um, UICC-grade, 2 mg/animal). Histopathological examination showed no
significant incidence of abdominal tumours in the animals exposed to either kind
of MWCNTs, whereas crocidolite asbestos induced mesotheliomas in 34.6% of
the rats. Body weight and survival were not affected by any of the exposures. The
absence of a carcinogenic response to MWCNT implantation could, according to
the authors, be explained by the absence of a sustained inflammatory response in
the peritoneal cavity. The discrepancy between these findings and those reported
by Takagi and co-workers (319, 320) might be due to their use of different ani-
mals. In addition, it was proposed that rats were not sensitive enough to the short
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CNTs used by Muller and collaborators (220), since this model for producing car-
cinogenesis by i.p. injection has been reported to be most sensitive to fibres longer
than 5 pm. Moreover, the MWCNTs employed here do not generate ROS, but act
rather as scavengers of free radicals, in contrast to crocidolite, which evokes forma-
tion of free radicals and oxidative stress (220).

In yet another study, rats received a single intrascrotal injection of 1 mg/kg bw
MWCNTs (diameter 70-110 nm, length 1-4 um, n=7), 2 mg/kg bw crocidolite
(diameter 30-400 nm (81.3%), length 0.1-5 pm (91.5%), n=10), or vehicle alone
(n=5), with follow-up for 52 weeks. During week 37-40, 6 of the animals injected
with MWCNTs died from mesothelioma, whereas with crocidolite and vehicle
alone, all of the animals survived for 52 weeks without pathological findings (288).

Following intrascrotal injection of 1 mg/kg bw MWCNTs (diameter 70-110 nm,
length 1-4 pm) identical to those employed by Sakamoto ef al and Takagi et al
(288, 319, 320) into male Fisher 344 rats (n=3, age 12 weeks) the serum levels of
a biomarker of human mesothelioma referred to as “expressed in renal carcinoma
(ERC)/mesothelin” were monitored for 52 weeks. The goal was to see whether
ERC/mesothelin could be used as a biomarker for mesothelioma in rats as well.
When serum was collected following sacrifice of the animals and the levels of the
N- and C-terminal fragments of ERC/mesothelin determined by enzyme-linked
immunosorbent assay (ELISA), the animals that had received MWCNTSs and
developed mesothelial hyperplasia were found to exhibit elevated levels of the N-
terminal region. The rats that became moribund after 40 weeks demonstrated even
higher levels of ERC/mesothelin. Thus, the authors suggest that ERC/mesothelin
can be used as a biomarker of mesothelial proliferative lesions in animals as well
(287). Moreover, it could be speculated that this could be a useful biomarker for
MWCNT-induced pathologies in humans as well.

Varga and Szend implanted hard gelatine capsules filled with 10 mg of either
SWCNTs (diameter <2 nm, length 4-15 pum) or MWCNTs (diameter 10-30 nm,
length 1-2 pm) in the peritoneal envelope of rats (n=6/experiment, 400 g, so that
this dose was equivalent to 25 mg/kg bw). Twelve months after implantation, none
of the animals had died and histopathological examination revealed dispersed bulks
of either nanotube in the abdominal cavity, as well as some expansion of the gastric
wall. Granulomatous reactions of the foreign-body type, including multinucleated
giant cells were seen with both types of nanotubes. It was concluded that meso-
theliomas did not arise under these condition and that other investigations claiming
the opposite have been too preliminary to allow a firm conclusion to be drawn
(352).

Conclusions concerning effects of long-term exposure and carcinogenicity
Long-term exposure and carcinogenicity studies in animals are summarised in
Tables 9 and 15, respectively. In two assessments of the effects of subchronic ex-
posure to MWCNTs, granulomatous inflammation in the lungs and lymphatic
tissue, including CNT-laden macrophages, was observed. Furthermore, the pulmo-
nary toxicity of longer (Nanocyl NC 7000 0.1-10 pm) MWCNTSs was manifested
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as intra-alveolar lipoproteinosis and granulomatous nodules of particle-laden
macrophages present in mediastinal lymph nodes (198); while shorter (Baytubes
0.2-0.3 um) MWCNTs resulted in sustained inflammation, diffuse interstitial
fibrosis and, at high doses, thickening of the pleural wall (255).

Neither of these 90-day inhalation studies reported lesions in organs other than
the lungs (except for slightly more blood neutrophils following exposure to longer
CNTs). This is in contrast to some studies reporting on effects of the immune
system after short-term inhalation exposure to CNTs (212, 213). It is noteworthy
that the dustiness of the MWCNTs used in both the 90-day inhalation studies was
stated to be low.

The results obtained with Baytubes by Pauluhn provide no direct support for the
fibre/HARN hypothesis of CNT toxicity, since no free MWCNTSs were observed
in the lung and the effects were considered to be due to overload (255). In the aero-
sol employed, the MWCNTSs were present primarily as agglomerates and similar
agglomerates were detected in exposed lungs. In addition, free MWCNTs were
difficult to generate from agglomerates during aerosolisation.

Mesothelioma has been observed in the peritoneal cavity of mice (319, 320) and
scrotum of rats (287) following injection of MWCNTs at these sites. On the other
hand, i.p. injection of shorter MWCNTSs caused no mesotheliomas in rats (220).
No cases of mesothelioma have been observed in inhalation studies, however it
should be noted that cancer is unlikely to develop within the short time frame of
these studies. Due to the limited number of such studies, no firm conclusion can
be drawn at present concerning carcinogenicity of CNTs and further experiments
in this area are clearly warranted. It has been shown that MWCNTs can reach the
subpleural tissues following inhalation exposure (284) and the intrapleural space
and visceral pleura following pharyngeal aspiration (207, 265).

The limited studies at hand suggest a carcinogenic potency of CNTs.

11.6 Reproductive and developmental effects

The concentrations of CNTs indicated in experiments with fish embryos below
refer to the concentration in the surrounding medium in which the embryos were
incubated.

SWCNTs

Pristine (diameter 2.8 nm, length 0.85 um), oxidised (diameter 1.6 nm, length
0.76 um) or ultraoxidised SWCNTs (diameter 1.8 nm, length 0.37 pm) were
administered to female mice (n=16-23/group) on day 5.5 of gestation by injection
in the retrobulbar plexus at doses of 0.01, 0.1, 0.3, 3 and 30 pg/animal, and the
effects evaluated 10 days later. At the highest dose all types of SWCNTSs caused
malformation of foetuses and swollen uteruses. These latter were classified as
early miscarriages, with the pristine SWCNTSs being least potent and the ultraoxi-
dised most. With 3 pg the number of animals that miscarried was reduced, while
the proportion bearing malformed foetuses was higher. At 0.3 pg none of the
SWCNTs resulted in miscarriages and at 0.01 pg no foetuses were malformed.
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Placentas associated with the malformed foetuses all appeared abnormal and
immunohistochemical analysis revealed reduced vessel density, reflecting the
presence of thrombotic vessels. No effects in other organs were observed by histo-
logical and immunohistochemical analysis. The level of ROS was elevated in
tissue homogenates of the placentas from mice exposed to ultraoxidised SWCNTs
that carried malformed foetuses, as well as in the malformed foetuses themselves
(258).

In addition, the effects of SWCNTSs (diameter 11 nm, length 0.5-100 pm) and
DWCNTs on zebrafish embryos have been assessed, employing carbon black as
a control. These embryos were exposed to 20-360 mg/ml for 4-96 hours post-
fertilisation, using fifteen groups of 20 animals each at each concentration. The
parameters monitored included the head-trunk angle, body length, cell death,
staining of blood vessels, expression of developmental genes and immunostaining
of various proteins. Although no change in embryonic development was detected
with as much as 360 mg/ml SWCNTs, a significant delay in hatching (from 52-72
hours post-fertilisation) was caused by exposure to 120-360 mg/ml. Examination
of the chorion, surrounding the developing embryo revealed pores and aggregates
of SWCNTSs that were unable to cross this structure. The delay in hatching was pro-
posed to be linked to metal impurities in the CNT preparation and/or to be a stress
response elicited by interaction between the chorion and the CNTs that could not
get through and attached instead to its surface (42).

MWCNTs

When female rats (n=12/group) were repeatedly exposed to MWCNTSs (diameter
10-15 nm, length ~20 pm, 95% pure, 5% Fe) via oral administration at daily doses
of 8-1 000 mg/kg bw on gestation days 6-19, no adverse effects on embryonic de-
velopment were observed (186).

Bai and co-workers injected 5 mg/kg bw MWCNTs either functionalised with
carboxyl-groups (diameter 20-30 nm, length 0.5-2 pm, 0.3% Fe, zeta-potential -57
mV in water, -48 mV in plasma) or with amino-groups (diameter 20-30 nm, length
0.5-2 um, 0.21% Fe, zeta-potential 26 mV in water, -35 mV in plasma) i.v. into
male mice (n=8) repeatedly (every 3 days 5 times) and monitored effects on fertili-
ty on days 15, 60 and 90. MWCNTs accumulated in the testes, where they caused
oxidative stress as indicated by elevated level of malondialdehyde on day 15 (signi-
ficant for the carboxyl-functionalised CNTs only). The malondialdehyde level had
returned to normal in mice examined on days 60 and 90. Histological examination
of testes revealed abnormal seminiferous tubules and reduced germinative layer
thickness on day 15. These alterations were observed only occasionally in mice
examined on days 60 and 90, indicating that they may have been repaired. Sperm
quality was not influenced under any condition and the rates of pregnancy and
delivery in female mice mated with the exposed animals were normal (13).

Asharani and colleagues examined the effects of MWCNTSs (diameter 30-40
nm, length not specified) on isolated zebrafish embryos in vitro for as long as 72
hours post-fertilisation in accordance with OECD guidelines and found a no ob-
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served effect concentration of 40 pg/ml. The lowest concentration at which the
CNTs caused embryonal defects was 60 pg/ml and at higher concentrations, a
slimy mucous formed around the embryos. There was a concentration-dependent
drop in embryonal heart rate after 48 and 72 hours (n=3), but development of the
heart remained normal. At high concentrations (>100 pg/ml), apoptosis, enhanced
mortality, delayed hatching, and abnormalities in the spinal cord occurred (n=60
per concentration), with the incidence of defects being dose-dependent. These
investigators thought that the apoptotic effect was due to oxidative stress (12).

When zebrafish embryos (n=50) were exposed to 2 ng MWCNTs purified with
HNO; and then functionalised with FITC-labelled bovine serum albumin (dia-
meter: average 19.9 nm, median 17.5 nm, length: average 0.8 um, median 0.7 pm,
98% purity) either by injection at the 1-cell stage or by introduction into the cardio-
vascular system 72 hours post-fertilisation, no adverse effects on embryonal de-
velopment were detected. The labelled nanotubes were seen in the nuclei of cells
whereas FITC-bovine serum albumin alone (i.e., the control) was not. Injection of
the labelled MWCNTs into the cardiovascular circulation was followed by rapid
distribution to all tissues, with an especially strong signal in the swim bladder, an
organ of detoxification in these animals, indicating that the embryos could clear
the nanotubes. After 96 hours, no fluorescent signal could be seen anywhere in the
embryos. Following delivery of either FITC-bovine serum albumin-MWCNT or
FITC-bovine serum albumin, but not of vehicle alone at the 1-cell stage lysosomal
vesicles were present in blastoderm cells. The innate immune system also appeared
to be activated, since MMP9 (an innate immune response marker) was expressed
in white blood cells. However, the reproductive system developed normally. The
survival rate of the zebrafish injected at the 1-cell stage was unaltered at 14, 28 and
56 days later; the larvae developed normally and spawning was successful after
maturity was reached. In contrast, the survival rate of the second generation off-
spring 14 days after birth was reduced by injection of MWCNTs through some un-
known mechanism (41).

Conclusions concerning reproduction and development
Information concerning the effects of CNTs on reproduction is scarce. However,
low doses of SWCNTSs administered by retrobulbar injection to pregnant mice
affected the development of embryos (Table 10) (258), whereas high doses of
MWCNTs administered orally to pregnant rats led to no such effect (Table 13)
(186). MWCNTs i.v. injected in male mice had no effect on sperm quality or
fertility, but accumulated in testes, generated oxidative stress and decreased the
thickness of the seminiferous epithelium in the testis temporarily (Table 13) (13).
Published results obtained on zebrafish are not consistent.

Due to limited data no conclusion concerning reproduction and development
toxicity of CNTs can be drawn from these studies.
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12. Observations in man

The one study on the effects of CNTs on humans that could be located in the
literature focused on irritation (122).
12.1 Irritation and sensitisation

When the skin of 40 volunteers was exposed to a filter paper saturated with a
mixture of CNT and fullerene soot suspended in water, no effects were detected
96 hours later (122). However, this investigation has certain weaknesses, i.e., no
presentation of data, no images of the skin, no positive controls, and no indication
of the concentration of CNTs present in the patches. Thus no firm conclusion con-
cerning irritation can be drawn from the study.

There are no data on sensitisation.
12.2 Effects of single and short-term exposure

No studies found.

12.3 Effects of long-term exposure

No studies found.

12.4 Genotoxic effects

No studies found.

12.5 Carcinogenic effects

No studies found.

12.6 Reproductive and developmental effects

No studies found.
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13. Dose-effect and dose-response relationships

No human toxicity data are presently available.

Dose-effect relationships observed in animal studies (mostly mouse and rat) are
compiled in Tables 9-15. In some cases dose conversions were performed by the
authors of this NEG criteria document in order to facilitate comparisons between
studies and in those cases assumptions in the calculations are noted in the tables.

Single exposure to SWCNTs

No inhalation studies have been located. Single exposure studies by other routes
are summarised in Table 10. When the low dose of 0.04 mg/kg bw SWCNTs was
administered to rats by i.t. instillation, only very mild histopathological signs of
inflammation were observed and no increases in the levels of inflammatory media-
tors or numbers of cells in BAL fluid occurred. At and above 0.2 mg/kg bw pul-
monary inflammation with an early increase in the number of inflammatory cells
in the BAL fluid (with number of neutrophils still being elevated 6 months post-
exposure) as well as accumulation of macrophages in the alveoli became evident.
At and above 1 mg/kg bw formation of granuloma followed by epithelial hyper-
trophy and foamy macrophages 3-6 months later were observed (164). Signs of
pulmonary fibrosis was seen at and above 1.6 mg/kg bw in mice (232) and at and
above 2.0 mg/kg bw in rats (3). Furthermore, at and above 2.0 mg/kg bw several
signs of alterations in the epithelium, including hypertrophic cells in the alveolar
and bronchial epithelium, alveolar proteinosis and foreign-body giant cells, were
present in rats (164). High doses (above 16 mg/kg bw) induced severe inflammation
with epithelioid granulomas in mice (175).

Administration of SWCNTSs to mice by pharyngeal aspiration led to signs of
acute transient inflammation at 0.25 mg/kg bw (305). Dispersed SWCNTs caused
increased collagen production and thickness of connective tissue in mice at 0.3
mg/kg bw and lung fibrosis at 0.36 mg/kg bw (208, 346). Damage to mitochondrial
DNA in aorta was detected in mice at a dose of 0.4 mg/kg bw (184). Formation of
granulomas along with oxidative stress began at 0.5 mg/kg bw in mice (306). At
1.5 mg/kg bw alterations in systemic inflammatory parameters were seen in mice
(79).

Effects on embryonic development in mice were reported to occur at and above
0.1 pg administered via retrobulbar injection (258).

Twenty pg of chitosan-functionalised SWCNTs administered to mice by 7.v.
injection were rapidly taken up and accumulated in the liver, which exhibited
pathological changes, including macrophage injury. Alterations in blood coagula-
tion parameters also occurred (150). Administration of a similar absolute dose to
rats accelerated the rate of vascular thrombosis (270).

Repeated exposure to SWCNTs

Only a few studies have involved repeated exposure to SWCNTs (Tables 9 and
11). Inhalation exposure to 0.03 and 0.13 mg/m® (approximately 0.006 and 0.03
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mg/kg bw) SWCNTs for 4 weeks evoked no adverse effects in the lung of rats,
(215). Based on this study 0.13 mg/m’® may be set as a NOAEL of SWCNTs for
rats. Exposure to 5 mg/m® (~0.25 mg/kg bw) for 4 days led to granulomatous in-
flammation and progressive fibrosis in mice (305).

Effects on the arterial baroreflex function (involved in regulation of the cardio-
vascular system) occurred following repeated i.z. instillation of 1 mg/kg bw
SWCNTs to rats (178). In addition, administration of 50 pg (~1.6 mg/kg bw once
a week for 6 weeks) was shown to aggravate allergic inflammatory processes in
mice (135).

Following pharyngeal aspiration of 40 pg SWCNTs 6 times during a period of
3 weeks to mice, pulmonary inflammation and granulomas with associated fibrosis
were present (329).

Dermal exposure to approximately 2.4 mg/kg bw (40 pg once daily for 5 days)
SWCNTs to mice generated no response, but increasing the dosage to 4.7 mg/kg
bw caused thickening of the skin and at 9 mg/kg bw thickening of the skin due to
accumulation of PMNs and mast cell was accompanied by oxidative stress and
enhanced production of cytokines (231).

When 5 mg/kg bw SWCNTs was administered to mice daily for 10 days via
gastrogavage, the CNTs were detected in the ileum and in neurons of the brain,
but there were no effects on blood parameters (373).

Repeated i.p. injection of 0.25 mg/kg bw SWCNTs resulted in hepatocyte dis-
ruption and elevated the production of ROS in the liver of mice (250).

Single exposure of MWCNTs

The effects of a single exposure of MWCNTSs via various routes have also been
examined (Tables 9 and 12). Seven days after a 6-hour nose-only irnhalation of
MWCNTs at an air concentration of 11 mg/m’® (approximately 0.2 mg/kg bw), rats
exhibited an inflammatory response, as indicated by elevated number of PMNs
and levels of markers of cytotoxicity in BAL fluid (76). Mice exposed to a similar
estimated dose (air level of 1 mg/m’ for 6 hours) via the same route showed no
significant pleural inflammation of mononuclear cell aggregates or quantifiable
levels of fibrosis up until the end of the observation period at 14 weeks post-
exposure (284). However, at an air concentration of 30 mg/m’ and an estimated
deposited dose of 4 mg/kg bw, mice exhibited fibrosis of the subpleura 2 and 6
weeks post-exposure. Rats exposed to a similar dose (air level of 241 mg/m’ for 6
hours) demonstrated a rapid inflammatory response that persisted after 3 months,
along with elevated level of septal collagen, increases in the weights of the hilus
lymph nodes and more foamy macrophages (76).

Responses to a single exposure to MWCNTSs administered via i.t. instillation to
rats were evident at 0.16 mg/kg bw and included acute transient inflammation of
the lungs that after 3 months was still present and accompanied at this later time-
point by fibrosis of the alveolar walls (1). Rats showed signs of oxidative stress at
0.2 mg/kg bw (276), evidence of microgranulomas at 0.6 mg/kg bw (1) and with 1
mg/kg bw granulomas formed (276). At this same dose hyperplasia of epithelial
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cells was initiated in mice (35). At and above 3 mg/kg bw rats exhibited severe
pulmonary inflammation (190) and at 5 mg/kg bw a systemic increase in cytokine
levels was observed in mice (249).

Single exposure to MWCNTs via pharyngeal aspiration evoked responses
similar to those observed following i.t. instillation. At approximately 0.5 mg/kg bw
(10 pg) acute pulmonary inflammation was seen, progressive pulmonary fibrosis
was detectable and one mouse also exhibited pleural inflammation. Doses of
approximately 0.9 mg/kg bw led to granulomatous inflammation in the alveolar
space and the interstitium, with detection of MWCNTs in the subpleura and pleural
spaces (265). At 1.5 mg/kg bw markers of systemic inflammation appeared in mice
(79) and in this same species hypertrophy and hyperplasia of the bronchoalveolar
epithelium occurred above 3 mg/kg bw (265).

Intrapleural injection of 5 ng long, but not short MWCNTSs into mice gave rise
to an acute inflammation of the pleura and progressive fibrosis of the parietal
pleura (223).

No effects were detected when rabbits were exposed dermally to 500 pg
MWCNTs (158). On the other hand, subcutaneous implantation of 0.6 mg/kg bw
(100 ng) MWCNTs produced local inflammation in rats (292), as did submuscular
implantation of 17 mg/kg bw (corresponding to 5 mg) in rats (45).

Lp. injection of 50 pg long MWCNTSs into mice gave rise to granulomatous
inflammation (259).

Lv. injection of approximately 5 mg/kg bw (100 pg) led to pulmonary inflamma-
tion in mice and macrophages that had engulfed MWCNTs were detected (269).

Repeated exposure of MWCNTs
Repeated exposure to MWCNTSs (Tables 9 and 13) has been accomplished pri-
marily via inhalation. Exposure of rats to 0.1 mg/m® MWCNTs for 13 weeks was
without effect, and thus identifying a NOAEL of 0.1 mg/m’ for this species (255).
However, in another 13-week inhalation study, 0.1 mg/m” led to minimal granulo-
matous inflammation with minimal diffuse histiocytosis (198). Exposure of rats
to 0.37 mg/m’ for 4 weeks transiently elevated the levels of chemokines in the
lungs and activity of myeloperoxidase in the BAL fluid, whereas no histopatho-
logical alterations in the lungs were observed (216). Exposure of rats for 13 weeks
to 0.4 mg/m’ caused sustained broncho-alveolar inflammation, thicker alveolus
septum indicative of interstitial fibrosis and goblet cell hyperplasia in the upper
respiratory tract (255). At 0.5 mg/m’ additional effects appeared, including intra-
alveolar lipoproteinosis and goblet cell hyperplasia in the nasal cavity (198).
On the basis of the study by Ma-Hock and co-workers (198), the LOAEL of
MWCNTs for rat is 0.1 mg/m’. Mice exposed to 0.3 mg/m* MWCNTs for 14
days demonstrated no signs of pulmonary inflammation, but were immune-
suppressed (212). Thus, 0.3 mg/m® may be considered to be an LOAEL of
MWCNTs for mice.

Lt. instillation of 50 pg (~1.6 mg/kg bw once a week for 6 weeks) MWCNTSs
aggravated allergic inflammatory processes in mice (133).
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Lv. injection of 5 mg/kgbw MWCNTs (every 3 days 5 times) did not alter sperm
quality or fertility in mice monitored up to 90 days. However, the MWCNTs accu-
mulated in the testes, generated oxidative stress and decreased the thickness of the
seminiferous epithelium in the testis temporarily (13). High doses of MWCNTSs
administered orally (up to 1 000 mg/kg bw) to rats once daily on gestation days 6-
19 had no effect on embryonic development 1 day post-exposure (186).

In conclusion, single- and repeated administrations of SWCNTs or MWCNTs to
the lungs via inhalation, i.t. instillation or pharyngeal aspiration resulted generally
inrapid pulmonary inflammatory response, characterised primarily by more PMNss,
but also mononuclear cells, as well as granulomas (containing CNTs) with or with-
out associated fibrosis. The variation in pulmonary effects observed may reflect
varying characteristics of the CNTs employed, as well as differences in the disper-
sion procedure and route of administration. There are no apparent differences in
the pulmonary responses of the species most commonly utilised in studies on CNTs,
namely, the rat and mouse although the rat shows a tendency to be more susceptible
to the pulmonary toxicity of nanotubes.

In each table (see below), the animal studies are ordered by route of administration
and in order of increasing dose given as mg/kg bw. Inhalation studies, studies on
genotoxicity and mutagenicity as well as on carcinogenicity are in separate tables.

Table 9. Effects after single and repeated inhalation exposures to SWCNTs or MWCNTs.
Table 10. Effects after a single dose of SWCNTs.

Table 11. Effects after repeated doses of SWCNTs.

Table 12. Effects after a single dose of MWCNTs.

Table 13. Effects after repeated doses of MWCNTs.

Table 14. Genotoxic and mutagenic effects of SWCNTs and MWCNTs.

Table 15. Carcinogenic effects after a single dose of SWCNTs and MWCNTs.
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14. Previous evaluations

No regulatory or legal binding OELs for CNTs exist to our knowledge to date.

US NIOSH systematically reviewed 54 animal studies, many of which indicated
that CNTs/carbon nanofibres could cause adverse pulmonary effects including
inflammation (44 of 54 studies), granulomas (27 studies), and pulmonary fibrosis
(25 studies). According to NIOSH the pulmonary responses were qualitatively
similar across the various types of CNTs and carbon nanofibres, purified or un-
purified with various metal content, and different dimensions. Previously, in the
2010 draft of this document for public comment NIOSH indicated that risks could
occur below 1 pg/m’, but proposed a recommended exposure limit (REL) for
CNTs of 7 pg/m’ elemental carbon (EC) equivalent with the analytical limit of
quantitation at time. However, based on improvement of sampling and analytical
methods, NIOSH has now lowered the REL to 1 pg/m® EC. Furthermore it was
stated that until results from research can fully explain the physical-chemical
properties of CNTs and carbon nanofibres that define their inhalation toxicity, all
types of CNTs and carbon nanofibres should be considered a respiratory hazard
and exposure should be controlled below the REL. The REL is based on a quanti-
tative risk assessment (benchmark modelling) using the two subchronic studies by
Ma-Hock and co-workers and by Pauluhn (198, 255) as well as short-term studies
(175, 206, 222, 305, 306) with sufficient dose-response data of early-stage fibrotic
and inflammatory responses. NIOSH estimated that the risk of developing early-
stage lung effects over a working life if exposed to CNTs at the analytical limit
quantitation (NMAM No. 5040 (238)) of 1 pg/m’ (8-hour TWA as respirable EC)
is approximately 0.5% to 16% (240).

An interim OEL of 30 pg/m’® for both SWCNTs and MWCNTs has been
proposed by the Japanese New Energy and Industrial Technology Department
Organization (NEDO). This organisation derived an OEL using data from the 4-
week rat inhalation studies by Morimoto and colleagues on SWCNTs (215) and
MWCNTs (216). The identified NOAELSs for pulmonary effects of 0.13 mg/m’
for SWCNTs and 0.37 mg/m® for MWCNTSs were calculated to be equivalent to
0.03 and 0.08 mg/m® in humans (uncertainty factor of 6). A relationship between
specific surface area and toxicity was observed and after taken this into considera-
tion a period-limit (15-years) OEL of 0.03 mg/m’ was recommended for both
SWCNTs and MWCNTs (233).

There are also some suggestions from non-national and non-international
bodies. To date, two manufacturers have proposed in-house limits of exposure to
their MWCNTs products (198, 254, 301). One of these limits, 50 ug/m3, is based
on the NOAEL obtained in the 13-week subchronic inhalation study on rats by
Pauluhn (18, 254, 255). The other in-house limit, estimated from the LOAEL of
100 pg/m’® obtained in the 90-day repeated inhalation study on rats by Ma-Hock
(198) and by application of an overall assessment factor of 40 to this value is 2.5

ng/m® (234).

205



Aschberger and collaborators calculated human indicative no-effect levels
(INELs) for acute and chronic exposures (11). The INEL for acute exposure
of 150 pg/m’ is based on the LOAEL of 11 mg/m?® for inflammatory effects of
MWCNTs in the study by Ellinger-Ziegelbauer and Pauluhn (76). The INEL of 1-
2 pg/m? for chronic exposure is based on the NOAEL of 100 pg/m?® for MWCNTSs
obtained in the 13-week inhalation study by Pauluhn (255).

The British Standards Institute (BSI) has proposed a benchmark exposure limit
(BEL) for fibrous nanomaterials e.g., CNT of 0.01 fibre/cm® or one-tenth of their
asbestos exposure limit (34). Based on this recommendation, the Institute for
Occupational Safety and Health of the German Social Accident Insurance (IFA)
also recommends a BEL for CNTs of 0.01 fibre/cm® (128).

Safe Work Australia commissioned National Industrial Chemicals Notification
and Assessment Scheme (NICNAS) to conduct a health hazard classification of
CNTs. Based on the two subchronic studies (by Ma-Hock et al and Pauluhn (198,
255)) MWCNTs were classified as Harmful: Danger of serious damage to health
by prolonged exposure through inhalation. Moreover, based on data available on
mesothelioma formation in animals and “difficulty in conclusively determining
whether a specific MWCNT can present as a fibre of pathogenic dimension”, all
MWCNTs were classified as Harmful: Limited evidence of carcinogenic effect. It
was also stated that “SWCNTs are not expected to behave differently and that it is
therefore prudent to consider the above classification for SWCNTSs” (235).

15. Evaluation of human health risks

15.1 Assessment of health risks

There are no human toxicological data, but studies on experimental animals indi-
cate that pulmonary exposure to CNTs does pose a health risk. CNTs are, however,
not a homogenous group. They can vary considerably in dimensions and morpho-
logy, chemical composition including metal impurities, non-CNT carbonaceous
material and functionalisation and therefore also in degree of agglomeration and
biopersistence. All these variations may modify the biological response to CNTs.
Occupational exposure to CNTs may occur during the manufacturing, but also
when CNTs are incorporated in other products as well as in down-stream applica-
tions. It is not clear which metric for air sampling that best correlates with the
health effects caused by CNTs. The most common metric used to assess occupa-
tional exposure to CNTs is mass concentrations in different fractions of dust.
These concentrations are typically 100 pg/m® or lower. Estimation of exposure
in this manner is uncertain, since airborne particles other than CNTs are also in-
cluded. Respirable EC levels have also been measured and were generally 5
pg/m® or less. Another approach used is to count the number of CNT structures
(concentrations typically 0.01 structures/cm®).
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The exposure route of highest concern is inhalation, and pulmonary toxicity has
been evaluated in numerous animal studies with exposure to CNTs via inhalation,
pharyngeal aspiration or i.t. instillation.

Pulmonary effects were observed in two 13-weeks inhalation studies of rats
exposed to MWCNTs via inhalation. In the first one (using Nanocyl NC 7000
MWCNTs) there were signs of minimal granulomatous inflammation and minimal
diffuse histiocytosis at 0.1 mg/m’. At the higher concentration of 0.5 mg/m’ the
effects also included intra-alveolar lipoproteinosis and goblet cell hyperplasia in
the nasal cavity (198). In the second study using shorter MWCNTs (Baytubes)
no pulmonary effects were observed at 0.1 mg/m’, whereas 0.4 mg/m’ caused
sustained broncho-alveolar inflammation, thickening of the alveolus septum in-
dicative of interstitial fibrosis, and goblet cell hyperplasia in the upper respiratory
tract (255). Exposure of rats for 4 weeks to a similar level (0.37 mg/m* MWCNTs)
evoked transiently increased levels of chemokines in the lungs and of myeloper-
oxidase in BAL fluid. Meanwhile, no histopathological alterations were seen in
the lungs (216). Exposure of rats to 0.13 mg/m* SWCNTs for 4 weeks evoked no
adverse effects in the lungs (215). At higher concentrations (5 mg/m* SWCNTs
for 4 days) granulomatous inflammation in the lungs along with progressive
fibrosis were observed in mice (305). Taken together inhalation studies and
studies using pharyngeal aspiration and i.t. instillation consistently demonstrate
that single and repeated exposures of rats and mice to various types of CNTs
induce pulmonary inflammation with subsequent formation of granuloma and
lung fibrosis.

Mesothelioma has been described following i.p. injection of MWCNTSs to
p53 heterozygous mice (319, 320) and intrascrotal injection of MWCNTSs to rats
(288). On the other hand, i.p. injections of shorter MWCNTs to rats caused no
mesotheliomas (220). Genotoxicity is generally considered to be an important
mechanism in the pathogenesis of cancer. Genotoxic effects including chromo-
somal aberrations (252), formation of micronuclei (219, 252) and DNA strand-
breaks (137, 153, 252), and modification of bases in DNA (153, 305) have been
observed. Thus, available data suggest a genotoxic and carcinogenic potency of
CNTs.

Present data suggest that CNTs have low acute oral and dermal toxicity (165,
254), are slightly irritating to the eyes, but not irritating to the skin (158, 254) and
do not produce skin sensitisation (254).

Limited data suggest that CNTs may affect the cardiovascular system (79, 178,
184, 270, 336), suppress systemic immune function (212, 213) and aggravate
allergic airway inflammation (133, 135, 241, 285).

Furthermore, at present it is not possible to conclude on the reproductive and
developmental toxicity of CNTs due to the scare data base.
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15.2 Groups at extra risk

There are no human data available to identify groups at extra risk. Data from
animal studies suggest that individuals with pre-existing allergic airway
inflammation including asthma may be at increased risk (133, 135, 241, 285).

15.3 Scientific basis for an occupational exposure limit

No human data are presently available. There are a limited number of animal
studies using the inhalation route, which is considered to be the most important
route of exposure for humans. Based on these studies, the critical effect is
inflammatory responses in the lungs.

Inhalation exposure to 0.1 mg/m®> MWCNTs for 13 weeks was without effect
in rats (255). However, in another 13-week inhalation study exposure of rats to
0.1 mg/m* MWCNTSs led to minimal granulomatous inflammation with minimal
diffuse histiocytosis (198). Thus, 0.1 mg/m® may be identified as a LOAEL for
MWCNTs in rats. Mice exposed to 0.3 mg/m* MWCNTs for 2 weeks demonstrated
no signs of pulmonary inflammation, but were immunosuppressed (212).

Inhalation exposure to 0.13 mg/m*> SWCNTs for 4 weeks evoked no adverse
effects in the lungs of rats (215). Therefore, a NOAEL for SWCNTSs in rats of
0.13 mg/m’ may be identified. Mice exposed to 5 mg/m® SWCNTs for 4 days
demonstrated granulomatous inflammation in the lungs along with progressive
fibrosis (305).

Based on the above studies, an overall LOAEL for CNTs of 0.1 mg/m’ can
be estimated. However, this LOAEL should be cautiously interpreted, as the
toxicity of CNTs is likely to vary widely depending on their physical and chemical
characteristics and choice of dose metrics as discussed in previous sections.

16. Research needs

To be able to evaluate the occupational exposure, safety and the health concerns
of workers handling CNTs and CNT-containing material, more information
concerning exposure is required. Moreover, the toxicological effects of CNTs,
especially after long-term exposure, are far from being fully understood and
require further investigations. Below, some specific needs in this context are
discussed.

Exposure measurements

More standardised and systematic measurements of occupational exposure during
primary and secondary manufacturing of CNTs, as well as during down-stream
applications are needed. Given the increasing production and use of CNTs new
exposure situations may arise that also need to be evaluated. The exposure should
be measured using filter-based sampling (in the breathing zone or work area
during e.g., an 8-hour work-shift or a specific work task) followed by gravimetric,
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chemical and microscopic analysis. Observation of profound alterations of air-
borne aerosol’s characteristics including size, morphology and aggregation state
from one work task to another emphasise the need for characterisation with real-
time aerosol instruments as well. Also more standardised criteria for electron
microscopy-based methods for counting CNT structures should be developed.

Toxicological studies

Further research is needed to determine which dose metric for air sampling that
correlates best with the toxicological effects caused by CNTs, but also other dose
metrics or properties of CNT that describe the toxicological responses needs to be
further investigated.

There is a need to perform long-term animal inhalation studies to further eva-
luate the risk of developing cancer and non-cancer pulmonary effects. In addition,
more data are needed on the possible cardiovascular and immunological effects of
CNTs.

The agglomeration state of the CNTs needs to be better characterised in animal
inhalation studies. The agglomeration state is critical for the site of deposition in
the airways and may thus influence the toxicological response.

It is also desirable to conduct studies on the correlations between the aspect
ratio and agglomeration state and the lung deposition, absorption and toxic effects
of different CNTs. More information is needed about the agglomeration state in
the lungs after deposition i.e., if the agglomeration state in air is preserved or if it
changes upon contact with surfactants and proteins in the lung lining fluid.

It is important to study the influence of the various dispersants used i vitro and
for instillation/aspiration and to develop test protocols that reduce the effects of
such dispersants.

Health effect following inhalation exposure to or dermal contact with composite
materials containing CNTs is another area that needs to be investigated.
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17. Summary

Hedmer M, Kéredal M, Gustavsson P, Rissler J. The Nordic Expert Group for
Criteria Documentation of Health Risks from Chemicals. 148. Carbon nanotubes.
Arbete och Hilsa 2013;47(5):1-238.

Carbon nanotubes (CNTs) can be seen as graphene sheets rolled to form cylinders.
CNTs may be categorised as single- (SWCNT) or multi-walled (MWCNT). Due
to the small size, the number of particles as well as the surface area per mass unit
is extremely high.

CNTs are highly diverse, differing with respect to e.g., diameter, length, chiral
angles, chemical functionalisation, purity, stiffness and bulk density. Today, CNTs
are utilised primarily for the reinforcement of composite polymers, but there is
considerable potential for other applications. The rapidly growing production and
use of CNTs increases the risk for occupational exposure. Since CNTs in bulk
form are of very low density and much dust is produced during their handling,
exposure by inhalation appears to represent the greatest potential risk in the work
place. However, most work place measurements involved sampling periods that
are too short, varying sampling techniques and non-specific analytical methods.

CNTs may be absorbed via inhalation and ingestion. Systemic uptake via the
skin has not been demonstrated.

Human toxicity data on CNTs are lacking and interpretation of animal studies
is often problematic since the physical properties and chemical composition are
diverse, impurities may be present and data are sometimes omitted. Because of the
physical similarities between asbestos and CNTs, it can be suspected that the latter
may also cause lung fibrosis, mesothelioma and lung cancer following inhalation.
Intraperitoneal and intrascrotal administration of CNTs causes mesothelioma in
animals, but no inhalation carcinogenicity studies have been conducted. Thus, it is
too early conclude whether CNTs cause mesothelioma and lung cancer in humans.

Both SWCNTs and MWCNTs cause inflammation and fibrosis in the lungs of
relevant animal types and for MWCNTs these effects are also seen in the pleura.
For instance, minimal histiocytosis and mild granulomatous inflammation in the
lungs and lung-draining lymph nodes have been observed in rats exposed for 13
weeks to 0.1 mg/m®* MWCNTSs (lowest observed adverse effect level, LOAEL),
with more pronounced inflammation in both mice and rats at higher doses. Thus,
inflammatory responses in the lungs may be considered as the critical effect. How-
ever, the LOAEL of CNTs should be interpreted cautiously, since their toxicity is
likely to vary widely, depending on the structure and physicochemical properties,
as well as the contribution from non-carbon components. It is also uncertain which
dose metric (e.g., mass, number or surface area per air volume unit) is most appro-
priate. Some studies indicate that longer straight CNTs evoke more pronounced
biological effects than shorter or tangled fibres.

Keywords: carbon nanotubes, CNTSs, fibrosis, inflammation, lung effects,
occupational exposure limit, review, risk assessment, toxicity.
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18. Summary in Swedish

Hedmer M, Kéredal M, Gustavsson P, Rissler J. The Nordic Expert Group for
Criteria Documentation of Health Risks from Chemicals. 148. Carbon nanotubes.
Arbete och Hélsa 2013;47(5):1-238.

Kolnanordr (CNTs) kan ses som grafenark som rullats ihop till cylindrar. De
kan kategoriseras som enkel- (SWCNTSs) eller flerviaggiga (MWCNTSs). De sma
dimensionerna medfor att antalet partiklar sdvil som ytarean &r extremt hog per
massenhet.

CNTs skiljer sig med avseende pa t.ex. diameter, langd, kirala vinklar, kemisk
funktionalisering, renhet, styvhet och bulkdensitet. I[dag anvinds CNTs framst
for armering av kompositpolymerer, men det finns betydande potential for andra
tillimpningar. Den snabbt 6kande produktionen och anvdndningen av CNTs okar
risken for yrkesmaéssig exponering. Eftersom CNTs i bulkform har mycket lag
densitet och dammar vid hanteringen forefaller exponering via inhalation vara
forenat med storst potentiell risk pa arbetsplatser. Resultat frdn métningar pa
arbetsplatser dr dock ofta svartolkade pa grund av for korta méttider, varierande
provtagningsteknik och ospecifika analysmetoder.

CNTs kan absorberas via luftvigarna och mag-tarmkanalen. Systemiskt upptag
via hud har inte pavisats.

Humandata for CNTs toxicitet saknas och djurstudier &r ofta svartolkade efter-
som CNTs fysikaliska egenskaper och kemiska sammanséttning varierar liksom
forekomsten av fororeningar, men ocksa for att data ibland uteldmnats. Pa grund
av likheterna mellan asbest och CNTs kan det misstdnkas att &ven de sistndmnda
kan orsaka lungfibros, mesoteliom och lungcancer efter inhalation. Intraperitoneal
och intrascrotal administrering av CNTs orsakar mesoteliom hos djur, men inga
karcinogenicitetsstudier med inhalation har utforts. Det dr darfor for tidigt att av-
gora om CNTs orsakar mesoteliom och lungcancer hos méanniskor.

Béde SWCNTs och MWCNTs orsakar inflammation och fibros i lungorna hos
relevanta djurslag och MWCNTSs éven i lungsidcken. Minimal histiocytos och mild
granulomatds inflammation i lungorna och drénerande lymfnoder har observerats
hos réttor som exponerats 13 veckor for 0,1 mg/m® MWCNTs (ligsta observerade
effektniva, LOAEL), med mer uttalad inflammation hos bade mdss och rattor vid
hogre doser. Inflammatorisk respons i lungorna bedéms vara den kritiska effekten.
Dock bor detta LOAEL tolkas med forsiktighet eftersom toxiciteten sannolikt
varierar kraftigt beroende pa kolnanordrens struktur och fysikalisk-kemiska egen-
skaper samt bidrag fran icke-kolforeningar. Det ar ocksé osdkert vilken dosmatt
(t.ex. massa, antal eller ytarea per volymsenhet luft) som bor anvindas. Vissa
studier tyder pa att ldnga, raka CNTs orsakar mer uttalade biologiska effekter &n
korta eller tilltrasslade fibrer.

Nyckelord: CNTs, fibros, hygieniskt gransvérde, inflammation, kolnanordr,
lungeffekter, riskbeddmning, toxicitet, oversikt.
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20. Data bases used in search of literature

In the search for literature the following data bases were used: NIOSHTIC-2,
Medline and Web of Science.

For studies included in Chapters 7-11, conference proceedings before 2009
were omitted as well as abstract-only reports.

The following terms were used in the literature search: carbon nanotube(s),
toxicity, toxicology, animals, cells, genotoxicity, toxicokinetics and bio-
distribution.

Last search was performed in December 2012.

Submitted for publication October 21, 2013.

234



Appendix 1. Previous NEG criteria documents

NEG documents published in the scientific serial Arbete och Hélsa (Work and Health).

Substance/Agent
Acetonitrile

Acid aerosols, inorganic
Acrylonitrile

Allyl alcohol

Aluminium and aluminium compounds
Ammonia

Antimony

Arsenic, inorganic

Arsine

Asbestos

Benomyl

Benzene
1,2,3-Benzotriazole

Boric acid, Borax
1,3-Butadiene

1-Butanol
v-Butyrolactone

Cadmium

7/8 Carbon chain aliphatic monoketones
Carbon monoxide
Ceramic Fibres, Refractory
Chlorine, Chlorine dioxide
Chloromequat chloride
4-Chloro-2-methylphenoxy acetic acid
Chlorophenols
Chlorotrimethylsilane
Chromium

Cobalt

Copper

Creosote

Cyanoacrylates

Cyclic acid anhydrides
Cyclohexanone, Cyclopentanone
n-Decane

Deodorized kerosene
Diacetone alcohol
Dichlorobenzenes

Diesel exhaust
Diethylamine
2-Diethylaminoethanol
Diethylenetriamine
Diisocyanates
Dimethylamine
Dimethyldithiocarbamates
Dimethylethylamine
Dimethylformamide
Dimethylsulfoxide
Dioxane

Endotoxins

Enzymes, industrial

Arbete och Hilsa issue
1989:22, 1989:37*
1992:33, 1993:1*
1985:4

1986:8

1992:45, 1993:1%*, 2011;45(7)*D
1986:31, 2005:13*
1998:11*

1981:22, 1991:9, 1991:50*
1986:41

1982:29

1984:28

1981:11

2000:24*D

1980:13

1994:36*, 1994:42
1980:20

2004:7*D

1981:29, 1992:26, 1993:1*
1990:2*D

1980:8, 2012;46(7)*
1996:30*, 1998:20
1980:6

1984:36

1981:14

1984:46

2002:2

1979:33

1982:16, 1994:39*, 1994:42
1980:21

1988:13, 1988:33*
1995:25%, 1995:27
2004:15*D

1985:42

1987:25, 1987:40*
1985:24

1989:4, 1989:37*
1998:4*, 1998:20
1993:34, 1993:35*
1994:23*, 1994:42
1994:25*N
1994:23*, 1994:42
1979:34, 1985:19
1994:23*, 1994:42
1990:26, 1991:2*
1991:26, 1991:50*
1983:28

1991:37, 1991:50*
1982:6
2011;45(4)*D
1994:28*, 1994:42
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NEG documents published in the scientific serial Arbete och Hélsa (Work and Health).

Substance/Agent Arbete och Hilsa issue
Epichlorohydrin 1981:10

Ethyl acetate 1990:35*
Ethylbenzene 1986:19
Ethylenediamine 1994:23*,1994:42

Ethylenebisdithiocarbamates and Ethylenethiourea
Ethylene glycol

Ethylene glycol monoalkyl ethers
Ethylene oxide

Ethyl ether

2-Ethylhexanoic acid

Flour dust

Formaldehyde

Fungal spores

Furfuryl alcohol

Gasoline

Glutaraldehyde

Glyoxal

Halothane

n-Hexane

Hydrazine, Hydrazine salts
Hydrogen fluoride

Hydrogen sulphide
Hydroquinone

Industrial enzymes

Isoflurane, sevoflurane and desflurane
Isophorone

Isopropanol

Lead, inorganic

Limonene

Lithium and lithium compounds
Manganese

Mercury, inorganic
Methacrylates

Methanol

Methyl bromide

Methyl chloride

Methyl chloroform
Methylcyclopentadienyl manganese tricarbonyl
Methylene chloride

Methyl ethyl ketone

Methyl formate

Methyl isobutyl ketone

Methyl methacrylate
N-Methyl-2-pyrrolidone
Methyl-tert-butyl ether

Microbial volatile organic compounds (MVOCs)
Microorganisms

Mineral fibers

Nickel

Nitrilotriacetic acid

Nitroalkanes

Nitrogen oxides

N-Nitroso compounds

1993:24, 1993:35*
1980:14

1985:34

1982:7

1992:30% N

1994:31%, 1994:42
1996:27*, 1998:20
1978:21, 1982:27, 2003:11*D
2006:21*

1984:24

1984:7

1997:20*D, 1998:20
1995:2%, 1995:27

1984:17

1980:19, 1986:20

1985:6

1983:7

1982:31, 2001:14*D
1989:15, 1989:37*
1994:28*

2009;43(9)*

1991:14, 1991:50*
1980:18

1979:24, 1992:43, 1993:1*
1993:14, 1993:35*
2002:16*

1982:10

1985:20

1983:21

1984:41

1987:18, 1987:40*
1992:27*D

1981:12

1982:10

1979:15, 1987:29, 1987:40%
1983:25

1989:29, 1989:37*
1988:20, 1988:33*
1991:36*D

1994:40%, 1994:42
1994:22%D

2006:13*

1991:44, 1991:50*
1981:26

1981:28, 1995:26*, 1995:27
1989:16, 1989:37*
1988:29, 1988:33*
1983:28

1990:33, 1991:2*
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NEG documents published in the scientific serial Arbete och Hélsa (Work and Health).

Substance/Agent

Arbete och Hélsa issue

Nitrous oxide

Occupational exposure to chemicals and hearing impairment

Oil mist

Organic acid anhydrides

Ozone

Paper dust

Penicillins

Permethrin

Petrol

Phenol

Phosphate triesters with flame retardant properties
Phthalate esters

Platinum

Polychlorinated biphenyls (PCBs)

Polyethylene,

Polypropylene, Thermal degradation products in the
processing of plastics

Polystyrene, Thermal degradation products in the
processing of plastics

Polyvinylchloride, Thermal degradation products in the

processing of plastics

Polytetrafluoroethylene, Thermal degradation products in

the processing of plastics
Propene

Propylene glycol

Propylene glycol ethers and their acetates
Propylene oxide

Refined petroleum solvents
Refractory Ceramic Fibres
Selenium

Silica, crystalline

Styrene

Sulphur dioxide

Sulphuric, hydrochloric, nitric and phosphoric acids
Synthetic pyretroids
Tetrachloroethane
Tetrachloroethylene

Thermal degradation products of plastics
Thiurams

Tin and inorganic tin compounds
Toluene

1,1,1-Trichloroethane
Trichloroethylene

Triglycidyl isocyanurate
n-Undecane

Vanadium

Vinyl acetate

Vinyl chloride

Welding gases and fumes

White spirit

Wood dust

Xylene

Zinc

1982:20
2010;44(4)*
1985:13

1990:48, 1991:2*
1986:28

1989:30, 1989:37*
2004:6*

1982:22

1984:7

1984:33
2010;44(6)*
1982:12

1997:14*D, 1998:20
2012;46(1)*
1998:12*

1998:12*

1998:12*
1998:12*
1998:12*

1995:7%, 1995:27
1983:27

1990:32*N

1985:23

1982:21

1996:30*

1992:35, 1993:1*

1993:2, 1993:35*

1979:14, 1990:49%, 1991:2
1984:18

2009;43(7)*

1982:22

1996:28*D

1979:25, 2003:14*D
1998:12*

1990:26, 1991:2%
2002:10%D

1979:5, 1989:3, 1989:37%*, 2000:19*

1981:12

1979:13, 1991:43, 1991:50*
2001:18*
1987:25, 1987:40*
1982:18

1988:26, 1988:33*
1986:17

1990:28, 1991:2*
1986:1

1987:36

1979:35

1981:13
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* in English, remaining documents are in a Scandinavian language.

D = collaboration with the Dutch Expert Committee on Occupational Safety (DECOS).

N = collaboration with the US National Institute for Occupational Safety and Health (NIOSH).
To order further copies in this series, please contact:

Arbets- och miljomedicin, G6teborgs universitet

Att: Cina Holmer, Box 414, SE-405 30 Goteborg, Sweden

E-mail: arbeteochhalsa@amm.gu.se

The NEG documents are also available on the web at:

www.nordicexpertgroup.org or www.amm.se/aoh
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