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ABSTRACT 

The prevalence of autoimmune diseases is higher in women than men, while for 
cardiovascular disease, there is a male predominance. The sexual dimorphism of 
autoimmune and cardiovascular diseases probably relates to a number of factors, e.g. 
difference in exposure to risk factors and response to therapy, together with the 
effects of sex steroid hormones on disease pathophysiology. The sex difference and 
the effect of sex steroid hormones sometimes coincide while sometimes not: male 
sex and testosterone protect from autoimmune disease while male sex is considered a 
risk factor for CVD although testosterone is atheroprotective. Owing to this, it is 
important to in detail understand the targets and mechanisms for the effects of sex 
steroid hormones in vascular pathology and adaptive immunity. This thesis aimed to 
1) determine the role of catechol-O-methyltransferase (COMT) for the vasculo-
protective actions of estradiol, 2) determine the role of the androgen receptor (AR) in 
the atheroprotection actions of testosterone, 3) investigate the role of the AR in 
neointimal hyperplasia, 4) determine the mechanisms and target cells for AR-
mediated regulation of B cell homeostasis, and 5) determine the mechanisms and 
target cells for AR-mediated regulation of T cell homeostasis in mice. Concluding 
the results in this thesis, we found that testosterone exerts its inhibitory effect on B 
lymphopoiesis in males by targeting the AR in osteoblasts while the thymic epithelial 
cells are a target for AR-mediated inhibition of T lymphopoiesis. A distinct 
regulation of peripheral B and T cell homeostasis may involve non-hematopoietic 
spleen cells and inhibition of B cell activating factor (BAFF) production. Moreover, 
testosterone exerts atheroprotection through AR-dependent as well as AR-
independent pathways. The AR also mediates protection from neointimal hyperplasia 
as a response to vascular injury, possibly through regulation of endothelial nitric 
oxide production leading to reduced proliferatory capacity of vascular smooth muscle 
cells. Lastly, the COMT enzyme is dispensable for vascular protection by estradiol in 
vivo.  Although the conclusions in this thesis increase our understanding of the role 
of sex steroid hormones in adaptive immunity and vascular pathology, they also raise 
new questions that warrant further investigation. 

Keywords: COMT, androgen receptor, testosterone ISBN: 978-91-628-8825-1 
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SAMMANFATTNING PÅ SVENSKA 

Prevalensen, dvs. hur stor andel av en befolkning som är drabbade av sjukdom, för 
autoimmun sjukdom (t.ex. reumatiska sjukdomar) är högre hos kvinnor än hos män 
medan för kardiovaskulär sjukdom (t.ex. åderförkalkning och hjärtinfarkt) gäller 
mottsatsen, prevalensen är högre hos män. Skillnaden i utveckling och förlopp för 
autoimmun och kardiovaskulär sjukdom mellan män och kvinnor beror troligtvis inte 
enbart på effekten av könshormoner, utan en rad faktorer kan påverka 
sjukdomsuppkomst och förlopp, så som exponering för riskfaktorer och terapisvar, 
som också kan skilja mellan könen. Könsskillnaden i prevalens och effekten av 
könshormoner sammanfaller ibland men inte alltid; manligt kön och testosteron 
skyddar mot autoimmun sjukdom men för kardiovaskulär sjukdom anses manligt kön 
vara en riskfaktor till skillnad från testosteron som visats vara skyddande.  

I denna avhandling har effekterna av testosteron och estradiol, det viktigaste 
”manliga” respektive ”kvinnliga” könshormonet, undersökts för att öka förståelsen 
för hur dessa hormon påverkar uppkomsten av ateroskleros, dvs. åderförkalkning, 
och neointima bildning, dvs. den process där cellnybildning efter kärlskada ökar 
tjockleken på kärlet. Vi har också undersökt hur testosteron kan reglera det adaptiva 
(specifika) immunförsvarets celler, dvs. antalet B- och T-lymfocyter.  

Först undersöktes om ett enzym kallat katekol-O-metyltransferas (COMT) påverkar 
effektiviteten av den kärlskyddande effekten av östrogen. COMT bidrar till 
nedbrytningen av estradiol i kroppen och bildar 2-metoxyestradiol, en estradiol-
metabolit (nedbrytningsprodukt), som har visats ha kärlskyddande effekter i 
experimentella modeller för åderförkalkning och kärlskada. Vi kunde med hjälp av 
möss som saknar genen för COMT, och alltså inte kan bilda 2-metoxyestradiol, visa 
att denna metabolit inte är nödvändig för den skyddande effekten av estradiol på 
blodkärlen.  

Sedan undersöktes hur androgenreceptorn (dvs. mottagarmolekylen för testosteron) 
påverkar utvecklingen av åderförkalkning och kärlskada. Vi kunde visa i möss som 
saknar genen för androgenreceptorn att den kärlskyddande effekten av testosteron 
delvis går via androgenreceptorn men också via andra vägar. Androgenreceptorn är 
också viktig för att skydda mot den cellnybildning som sker i kärlet efter kärlskada. 
Testosteron påverkar produktionen av ett enzym som är viktigt för att producera 
kväveoxid i endotelet, det innersta lagret i kärlväggen. Kväveoxid kan i sin tur 
minska delningskapaciteten i glatta muskelceller, de celler som utgör cell-
nybildningen i kärlet.  

Till sist så undersöktes hur testosteron, via androgenreceptorn, påverkar B- och T-
cellantal. Med hjälp av möss som saknar androgenreceptorn enbart i en viss cell 
kunde vi visa att androgenreceptorn i osteoblaster (de celler som bildar ben) reglerar 
B-lymfopoes, dvs. bildningen av nya B-celler. Androgenreceptorn i tymus-
epitelceller, celler som bygger upp tymus som är det organ där T-lymfopoes sker, 
reglerar nybildningen av T-celler. Trots stora effekter på antalet nybildade B- 
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respektive T-celler i dessa möss så påverkades inte de perifera B- och T-cellantalen, 
dvs. antalet B- och T-celler i resten av kroppen. Det perifera cellantalet tros i stället 
vara beroende av produktion av en överlevnadsfaktor, BAFF, i mjälten. BAFF ökar 
vid testosteronbrist samt om androgenreceptorn saknas. Framtida studier behövs för 
att visa att testosteron hämmar B- och T-cellantal via sänkt produktion av BAFF.  

Forskning på underliggande mekanismer och målceller för effekten av könshormoner 
är viktig ur många aspekter. Det ökar vår förståelse för könshormonsbiologi ur ett 
grundforskningsperspektiv men det har också viktig klinisk betydelse:  

1) Testosteronbehandling till äldre män har fått mycket uppmärksamhet de senaste 
åren och ökar stadigt. Behandlingsmöjligheter som minskar risken för biverkningar 
är mycket efterfrågade och SARMs, selektiva androgenreceptormodulerare, öppnar 
upp för en cellspecifik behandling, dvs. att åstadkomma de goda effekterna av 
androgener i t.ex. skelett medan man undviker de dåliga effekterna i t.ex. prostata. 
Att hitta målcellen som är viktig för effekten av testosteron i kärl och för adaptivt 
immunförsvar är ett viktigt steg i att utveckla SARMs som har en kärlskyddande 
respektive bromsande effekt på autoimmunitet. Vidare så visar vi med denna 
forskning att androgenreceptorn utgör en ny terapeutisk möjlighet att hämma 
restenos efter kranskärlsinterventioner.  

2) Läkemedel som hämmar BAFF (Belimumab®) är en ny behandlingsmöjlighet för 
autoimmun sjukdom. Eftersom testosteronbrist kan öka risken för autoimmun 
sjukdom och BAFF-hämmare minskar autoimmunitet, öppnar vårt fynd att BAFF är 
reglerat av testosteron upp för att även behandla autoimmun sjukdom med en SARM 
riktad mot den cell i mjälten som producerar BAFF. Vidare så kan våra data tyda på 
att män med autoimmun sjukdom och låga testosteronnivåer skulle kunna ha särskild 
nytta av BAFF-hämmare.  
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1 INTRODUCTION 
This thesis discusses the androgen receptor (AR)-mediated effects of 
androgens in adaptive immunity and vascular pathology as well as the 
catechol-O-methyltransferase (COMT)-mediated effects of estrogens in 
vascular pathology. Here is an introduction to the topics sex steroids, 
adaptive immunity, and cardiovascular disease, followed by a brief 
presentation of the gaps in knowledge which this thesis attempts to address. 

1.1 Sex steroid hormones 
Sex steroid hormones are produced in the gonads: the testes in men and the 
ovaries in women. In humans, as opposed to rodents (e.g. mice and rats), sex 
steroid hormones are also produced from sex steroid precursors which origin 
from the adrenal cortex1. Sex steroid hormones include androgens, estrogens, 
and progesterone. In this thesis the focus lies on the effects of androgens and 
estrogens. 

1.1.1 Androgens and the androgen receptor  
In males, testosterone, the main androgen, is mainly synthetized in the 
Leydig cells in testes. In the circulation, testosterone is to a large extent 
bound (≈98%) to albumin or sex hormone binding globulin (SHBG) with 
only a small fraction being free (≈2%). Testosterone levels in males are high 
during three phases of life; during fetal development, shortly after birth, and 
from puberty throughout adulthood. Testosterone is necessary to promote 
development of male reproductive organs and for reproduction. Testosterone 
levels in men peak at around twenty to thirty years of age and then begin to 
decline slowly with age2, a phenomenon popularly referred to as the 
“andropause”.  In females, androgens are produced mainly by the ovaries and 
testosterone is the most important androgen also in females, although the 
levels are ≈10% of those in men3.     

Androgens mediate their effect mainly through the androgen receptor (AR). 
The AR can be stimulated either directly by testosterone or by the locally 
produced testosterone metabolite 5α-dihydrotestosterone via the enzyme 5α-
reductase4. 5α-dihydrotestosterone is not present in high levels in circulation, 
but is in many tissues the main source of androgenic stimulation since it is 
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the most potent androgen, with two- to threefold higher affinity than 
testosterone for the AR.  Testosterone can also be converted to estradiol (via 
the enzyme aromatase) that provides an alternative pathway for the effects of 
testosterone through activation of the estrogen receptors (ERs)5. Testosterone 
may also have effects independent of the classical sex steroid receptors6 
(Figure 1). 

 Pathways for the actions of testosterone. DHT=dihydrotestosterone, Figure 1.
E2=estradiol, AR=androgen receptor, ERs=estrogen receptors 

The AR is a 110 kDa nuclear protein consisting of a DNA-binding domain 
and a ligand-binding domain and belongs to the nuclear receptor super-family 
together with receptors for other steroid hormones. Androgen binding 
induces allosteric change, allowing the androgen/AR complex to enter into 
the nucleus and affect gene transcription.7 In addition to genomic effects, sex 
steroids can also induce rapid non-genomic effects involving activation of 
signal cascades. Non-genomic effects of androgens are suggested to affect 
membrane flexibility, changes in intracellular calcium, or activation of 
second messengers either by membrane-bound AR or yet unidentified 
receptor(s)8-10. 

The AR is ubiquitously expressed and androgens affect most organs/tissues 
in the body6,11. Androgens have many physiological effects such as regulation 
of reproduction, muscle and bone mass, and distribution of body fat. 
Androgen deficiency results in reduced muscle and bone mass and sexual 
dysfunction etc. Androgen deficiency can be congenital (e.g. Klinefelter 
syndrome 47XXY), acquired (e.g. brain injury), or idiopathic. Further, low 
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androgen levels in men are associated with obesity, the metabolic syndrome, 
and cardiovascular disease (CVD), among others12-15.   

There is a polymorphic region in the AR gene where trinucleotide repeats 
(i.e. CAG- and GGN-repeats) can be of different length, which influences the 
transactivation function of the AR and/or the AR expression and the 
testosterone levels16-23. Studies have shown conflicting data on whether 
increased length is associated with lower AR activity or not24, but an 
experimental mouse model with long CAG-repeat replicates the phenotype 
seen in humans and a very long sequence of CAG-repeats can lead to mild 
androgen insensitivity syndrome25.  Other AR mutations can lead to androgen 
insensitivity syndrome which results in a partial or complete inability of the 
cells/tissues to respond to androgens via the AR, leading to impairment or 
prevention of development of male genitalia, as well as the development of 
male secondary sexual characteristics at puberty.26,27  

Animal models of androgen insensitivity are useful tools for dissecting the 
role of AR in physiology and pathophysiology. The testicular feminization 
(Tfm) mouse28 have a single nucleotide deletion in exon 2 of the AR gene 
leading to a truncated, non-functional  AR protein29. The Tfm mice are 
infertile and their testes are small and located intra-abdominally. Besides the 
Tfm mouse, several AR knockout (ARKO) mouse models have been 
developed30. The phenotype of male ARKO mice is similar to the Tfm mice, 
with female-like external reproductive organs and small intra-abdominal 
testes. Further, these mice also have very low testosterone levels. The 
generation of ARKO mice uses Cre-loxP technology:  Cre transgenic mice, 
expressing Cre recombinase either ubiquitously (for general (G)-ARKO) or 
in certain cell types (for cell-specific ARKO) are bred with mice where the 
AR is flanked by LoxP sites (Arflox). In the mice that inherit both the Cre 
construct and ARflox, the Cre recombinase cuts out the sequence surrounded 
by LoxP sites, in our case exon 2 of the AR gene, generating a knockout of 
AR as a stop codon is introduced.31 This technique enables the generation of 
not only G-ARKO mice but also cell-specific ARKO mice that can increase 
our understanding of the target cells for androgen/AR actions. This approach 
has also created the possibility to generate ARKO females (otherwise not 
possible due to male infertility in Tfm mice and G-ARKO mice).  
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1.1.2 Estrogens and estrogen metabolism 
In women, estrogen levels vary greatly over the menstrual cycle until 
menopause when serum estrogen levels fall below those found in men32 . 
Estrogens affect reproduction and many physiological/pathophysiological 
processes.  Estrogens mainly exert their effects through the ERs α and β. 

Estradiol, the most important circulating estrogen3, is metabolized into 
compounds that are eliminated by the kidneys or the liver. Metabolism of 
estradiol includes glucuronidation, sulfation, esterification, or O-methylation 
of estradiol or its hydroxylated metabolites. The hydroxylation of estradiol is 
mediated by several of the CYP450 enzymes, mainly in the liver but also 
locally in the tissues. Through the enzymes CYP1A1 and CYP1B1, estradiol 
is metabolized to catechol-estradiols (i.e. 2-hydroxyestradiol (2-HE2) and 4-
HE2). The catechol-estradiols can be further metabolized by the enzyme 
catechol-O-methyltransferase (COMT) to 2-methoxyestradiol (2-ME2) and 
4-ME2, respectively (Figure 2). 33 Estradiol metabolites can act through ER-
dependent and ER-independent mechanisms, exerting estrogen-like or other 
biological effects, however 2-ME2 has been suggested to have low or no 
binding affinity for the ERs.34-36  

              

 Metabolism of estradiol and binding affinity of estradiol and its metabolites Figure 2.
to the estrogen receptors. CYPs=cytochrome P450 enzymes, COMT=catechol-O-
methyltransferase, HE2=hydroxyestradiol, ME2=methoxyestradiol, E2=estradiol, 2-
HE2=2-hydroxyestradiol, 2-ME2=2-methoxyestradiol 
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1.1.3 The mouse as an experimental model for 
human sex steroid biology  

The mouse differs from a human with regard to sex steroid biology; firstly 
the mouse lacks the protein SHBG and sex hormones are bound only to 
albumin in plasma. This results in lower hormone levels but also a greater 
intra-individual variation compared to humans since SHBG prolongs the 
half-life of bound hormones. Secondly, the testosterone levels in males also 
depend on the rank in the hierarchy, where the dominant male has higher 
levels than the other males in a co-housed group37. Thirdly, the adult mouse 
does not produce the sex hormone precursor dehydroepiandrosterone 
(DHEA) from the adrenals. Consequently, removal of the gonads (i.e. testes 
in males and ovaries in females) renders the mouse completely androgen- and 
estrogen-deficient, and gonadectomy provides a simple tool for studies of the 
roles of endogenous sex steroids.1 

1.2 The immune system  
The immune system is the body’s defense system; the cells of the immune 
system recognize non-self (i.e. pathogens, cancer cells, and altered 
molecules) and protects against infections, tumor development, and 
accumulation of potentially harmful substances. The immune system can be 
divided into innate (i.e. naive) and adaptive (i.e. acquired) immunity, where 
the innate immunity is traditionally viewed as the first line (hours) of defense 
against invading pathogens whereas the adaptive immunity is the second line 
(days) of defense with an action directed against a specific pathogen.38 

The innate immune system includes phagocytes (e.g. dendritic cells and 
macrophages), the complement system, and natural killer cells which 
recognize structures that are shared by various classes of pathogens (i.e. 
pathogen-associated molecular patterns) for example lipopolysaccharide 
(LPS) or endotoxin present on bacteria and double-stranded RNA found in 
many viruses.38 

The adaptive immune system includes B lymphocytes that produce 
antibodies and T lymphocytes that can be activated into effector T cells or 
helper T cells. The adaptive immune cells have a certain specificity generated 
during the lymphopoiesis due to rearrangement of the membrane-bound B 
cell receptors (BCRs, i.e. antibodies) on B cells, and the T cell receptors 
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(TCRs) on T cells. The antibodies recognize proteins, polysaccharides, lipids, 
and nucleic acids and the TCRs recognize small peptides displayed by major 
histocompatibility complex (MHC) on antigen presenting cells (APCs).38  

1.2.1 T lymphopoiesis and T cells 
T cells develop from lymphoid progenitors traveling from the bone marrow 
to the thymus, where the progenitors receive signals from surrounding cells, 
thymic epithelial cells (TECs) and APCs, which govern T lymphocyte 
development and survival. T lymphocytes develop through different 
precursor stages, double negative (DN, CD4-CD8-) 1 through 4, double 
positive (DP; CD4+CD8+), and then single positive (SP; CD4+ or CD8+) 
(Figure 3). In the periphery, e.g. spleen, lymph nodes, and circulation, T cells 
exists as SP cells: CD4+ T cells, so called T helper cells, and CD8+ T cells, so 
called cytotoxic T cells (Figure 3). The CD4+ T helper cells can be further 
divided into Th1 cells that produce interferon-gamma (IFNγ) and thereby can 
activate macrophages, whereas Th2 cells secrete cytokines that stimulate B 
cells and their antibody production.39-42   

In the thymus, two selection steps exist to ensure functional T cells; first, T 
cells are subjected to positive selection where recognition of the MHC 
molecules on APCs is tested. Second, auto-reactive T cells are negatively 
selected where APCs and TECs present self-antigens, and CD4+ and CD8+ T 
cells that recognize self-peptides displayed on MHC class II and MHC class 
I, respectively, become apoptotic and are sorted out. Positive selection occurs 
at the DP-stage and negative selection occurs during the transition between 
the DP- and SP-stage (Figure 3). 

The thymus is largest and most active during the neonatal and pre-adolescent 
periods. At puberty the thymus begins to involute and the thymic stroma is 
replaced by adipose tissue. Nevertheless, residual T lymphopoiesis does 
continue throughout adult life. Thymic hyperplasia (due to low hormonal 
levels or tumor growth) is associated with autoimmune disease, e.g. 
myasthenia gravis43,44, whereas loss of the thymus at early age through 
genetic mutation (i.e. DiGeorge Syndrome) results in severe immune-
deficiency and high susceptibility to infections45. 
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1.2.2 B lymphopoiesis and B cells 
B cells develop from lymphoid progenitors in bone marrow where the 
progenitors receive regulatory signals from stromal cells, such as endothelial 
cells, reticular cells, and osteoblasts. Different stromal cells are known to 
affect different stages in the B lymphopoiesis, e.g. osteoblasts support pre-
pro- to pro-B cell transition in early B lymphocyte development46. The B 
cells develop through different precursor stages, first in bone marrow where 
the B lymphocytes develop through pre-pro B cells, pro-B, and pre-B into 
immature B cells that then leaves the bone marrow (Figure 3). The immature 
B cells home to the spleen where immature transitional T1 and T2 B cells 
develop into the mature B cell subsets divided into follicular (FO), marginal 
zone (MZ), and B1 B cells (Figure 3), and then further into plasma cells 
producing antibodies (IgG). A peritoneal subset of B cells exists; these B1 B 
cells produce so called natural antibodies (i.e. IgM). B1 cells are thought to 
originate from the fetal liver and not from the bone marrow47. B cells produce 
antigen-specific antibodies, but they are also APCs presenting antigen to T 
cells and can affect other inflammatory cells by producing cytokines. B cells 
can be divided into effector B cells producing pro-inflammatory cytokines 
and regulatory B cells producing anti-inflammatory cytokines.47,48 

As for T lymphocytes, checkpoints exist to select functional B cells; first in 
bone marrow, B cells that interact with self-antigens on bone marrow stromal 
cells and either change their specificity (i.e. receptor editing) or if this fails, 
go into apoptosis (i.e. negative selection). Positive selection of B cells occurs 
in the spleen where B cells with a functional B cell receptor (BCR) receive 
survival signals.49-53 

One such survival signal is B cell activation factor (BAFF), affecting 
survival/proliferation of B cells in spleen54. BAFF knockout mice have no 
peripheral B cells, showing the non-redundant action of BAFF54, while BAFF 
transgenic mice have increased B cell subsets in the spleen (T1, T2, MZ, FO, 
and B1)55,56. Thus, the peripheral B cell homeostasis is dependent on BAFF.   
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 Lymphopoiesis in bone marrow and thymus and mature B and T cells in Figure 3.
spleen. CLP=common lymphoid progenitor, ETP=early thymic progenitor 
DN=double negative, DP=double positive, T=transitional, MZ=marginal zone, 
FO=follicular 

1.2.3 Tolerance and Autoimmunity  
Autoimmune disease develops when the immune system starts to attack self-
antigens and mounting an immune reaction against certain tissues/cells, i.e. a 
break in immunological tolerance when auto-reactive T or B lymphocytes 
escape negative selection. Immunological tolerance is divided into central or 
peripheral tolerance.38 For T lymphocytes central tolerance is achieved in the 
thymus by negative selection (see section 1.2.1), but T cells are also 
subjected to peripheral tolerance; when the levels of co-stimulatory signals 
from other immune cells are low mature T cells that recognize antigens in 
peripheral tissues become anergic, leading to inactivation or apoptosis. 
Central tolerance for B cells is also achieved in the bone marrow (see section 
1.2.2), and B cells are subjected to peripheral tolerance, where B cells that 
recognize self-antigens without T cell help, become anergic. Anergic B cells 
are subsequently excluded from the spleen follicles, thereby lack necessary 
survival signals, i.e. BAFF, and become apoptotic.47,54,55,57-60  
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BAFF is implicated in the development of autoimmune disease; excessive 
BAFF production in both humans and animal models has been associated 
with increased autoimmunity. A BAFF inhibitor (Belumimab®) is a newly 
approved drug for systemic lupus erythematosus (SLE) and is being tested in 
clinical trials for other autoimmune diseases.55,59-62 High BAFF levels do not 
affect negative selection but can rescue anergic auto-reactive B cells and 
promote maturation into FO or MZ B cells. Conversely, BAFF inhibition 
preferentially depletes anergic auto-reactive compared to non-auto-reactive B 
cells.47,57,58  

Defects in either checkpoint can lead to development of autoimmunity 
through improper survival of auto-reactive lymphocytes. These auto-reactive 
lymphocytes start to elicit an immune response to cells/tissues/molecules that 
are endogenous, i.e. collagen in rheumatoid arthritis (RA), acetylcholine 
receptors in myasthenia gravis, exocrine glands in Sjögren’s syndrome, cell 
nuclei in scleroderma, and DNA in SLE, resulting in severe illness and 
disabilities.38    

1.3 Cardiovascular disease 
Cardiovascular disease (CVD) is an umbrella term for disorders of the heart 
and blood vessels including e.g. coronary heart disease, cerebrovascular 
disease, and peripheral arterial disease. CVD is the leading cause of death 
(≈30%) in the world and the main underlying cause of CVD is 
atherosclerosis63, causing occlusion and thromboembolism. Risk factors for 
CVD can be divided into non-modifiable (i.e. age and genetic factors) and 
modifiable (i.e. smoking, diabetes, obesity, high serum cholesterol and/or 
triglyceride levels, high blood pressure, sedentary lifestyle, stress, and 
depression). 

1.3.1 Atherosclerosis 
Atherosclerosis is a chronic inflammatory disease64-71, characterized by the 
formation of lesions/plaques in the arterial wall, which develop preferentially 
at sites with turbulent flow (i.e. branches, bifurcations, and curvatures)72.  
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The initiation of atherosclerotic lesion formation is thought to involve 
retention of low-density lipoproteins (LDL) in the intima73, the innermost 
layer of the vessel wall. The retained lipoproteins initiate an inflammatory 
response resulting in a vicious circle; in the inflamed intima, modification of 
LDL by oxidation74 induces the endothelium to express adhesion molecules, 
causing leukocyte (e.g. monocyte and lymphocyte) infiltration64,75. 
Infiltrating monocytes are turned into macrophages by cytokines and growth 
factors produced in the inflamed intima and start to engulf oxidized LDL. 
These macrophages transform into foam cells and are now trapped inside the 
vessel wall. The macrophages/foam cells can activate T cells, continuing the 
inflammatory process as both macrophages and T cells produce pro-
inflammatory cytokines such as IFNγ and tumor necrosis factor alpha (TNFα) 
leading to more inflammation and recruitment of more leukocytes. Together, 
the macrophages and T cells form fatty streaks, a precursor stage to more 
advanced lesions/plaques (Figure 4).66,72 

 Illustration of fatty streak vs. advanced lesion in the mouse aortic root. Figure 4.
Red=Sudan IV staining of lipids.  

As fatty streaks grow into more advanced lesions, more and more lipids and 
inflammatory cells enter the vessel wall. Advanced lesions have a more 
complex composition; the core of the plaque consists of foam cells and 
extracellular lipid droplets covered with a fibrous cap of vascular smooth 
muscle cells (VSMCs) and a collagen-rich matrix.76 Also other inflammatory 
cells, such as B cells, mast cells, and dendritic cells are present in the plaque. 
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Some plaques have a necrotic core and cholesterol may be deposited as 
cholesterol clefts.72 

The human atherosclerotic lesions can be divided into stable and unstable 
plaques. Stable plaques are characterized by a thick fibrous cap, while in 
unstable plaques the inflammatory process has led to collagen degradation, 
thus weakening the fibrous cap and making it prone to rupture. As a plaque 
ruptures, the pro-thrombotic interior is exposed to the blood stream causing 
coagulation and thrombus formation.72,77 

In the clinical setting, some atherosclerotic lesions cause stenosis of the 
vessels with ischemia as a result (i.e. angina pectoris), some plaques erode or 
rupture causing thrombus formation (i.e. myocardial infarction and stroke), 
whereas others remain non-symptomatic.  

1.3.2 Adaptive immunity in atherosclerosis  
Both T and B lymphocytes have been implicated in atherosclerosis 
development, with autoimmune-like responses playing a role in the 
progression of atherosclerotic lesions, independently of the serum lipid 
profile. The main auto-antigens that have been suggested as potential triggers 
of autoimmune responses in atherosclerosis are modified forms of LDL, heat 
shock proteins, and β2-glycoprotein I (ApoH)65,78,79. T cells have long been 
known to support the inflammatory process in the lesions and help drive the 
plaque progression, while recent studies have shed new light on the role of B 
cells in atherosclerosis.64-71,80 

T cells exist in plaques both in humans81,82 and in mice83 and depletion of T 
cells results in reduced lesion formation84-87. Published data strongly suggest 
that CD4+ T cells aggravate atherosclerosis88-90 while the role for CD8+ T 
cells is less evident91.  

The role for B cells in atherogenesis is more complex; total B lymphocyte 
deficiency seems to aggravate atherosclerosis92,93, while deletion of mature B 
cells94 or adoptive transfer of different B cell subsets suggests that B1 B cell 
inhibit, whereas B2 B cells accelerate, disease progression95. This advises a 
different effect of B1 B cells producing natural antibodies compared to B2 
(conventional B cells, i.e. mature B cells in spleen) B cells. Moreover, BAFF 
receptor deficiency, either general or B cell-specific, and BAFF depletion 
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both attenuate atherosclerosis96-98. The fact that BAFF supports survival of 
splenic but not peritoneal B1 cells47 further strengthen the notion that B2 B 
cells are pro-atherogenic.     

1.3.3 Mouse models of atherosclerosis  
To investigate the pathogenesis of atherosclerosis, animal models are a useful 
tool. The mouse is commonly used to study atherosclerosis, however, 
atherosclerosis do not develop spontaneously in mice. In order to generate 
atherogenesis in mice, the animals need to be manipulated either with an 
inflammatory diet containing cholate (Paigen diet99,100) or with genetic 
alterations, i.e. knockout of genes involved in lipid metabolism101. Two such 
knockout models have become widely used: the LDL receptor-deficient 
(LDLR-/-) and the apolipoprotein E-deficient (ApoE-/-) mice.  

LDLR-/- mice102 develop insufficient hypercholesterolemia to generate 
atherosclerosis unless fed high-fat diet. The lesions develop throughout the 
aorta, with large lesions in the aortic root and the coronaries, although 
features of advanced lesions only exist after prolonged high-fat feeding. The 
LDLR-/- mice have a human-like lipid profile with most plasma cholesterol 
carried in LDL.  

ApoE-/- mice103 spontaneously develop hypercholesterolemia and 
atherosclerosis, with lesions forming throughout the aorta, and the 
innominate and coronary arteries. Progression of the lesions can be greatly 
accelerated by high-fat diet and lesions become complex with foam cells, 
necrotic cores, and fibrous caps (Figure 4). In contrast to humans,  ApoE-/- 
mice have most cholesterol in plasma carried in very low density lipoprotein 
(VLDL)101.  

Of note, plaque rupture seldom occurs in the mouse models of 
atherosclerosis104. 

1.3.4 Neointimal hyperplasia  
In humans, in contrast to rodents, atherogenesis has been shown to be 
triggered by a process called intimal thickening or neointimal 
hyperplasia105,106, where  a thickening of the intima occurs before any lipid or 
macrophage infiltration. The neointima is composed of vascular smooth 
muscle cells (VSMCs) and extracellular matrix and can retain lipids on 
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proteoglycans on the VSMC surface. Neointimal hyperplasia can also form as 
a response to vascular injury where revascularization procedures (e.g. 
stenting and bypass surgeries) can induce the phenomenon leading to 
restenosis of the vessel.  

The biology of VSMCs plays an important role in the development of 
neointimal hyperplasia. The response of normally quiescent VSMCs to 
various stimuli results in proliferation and migration to the intima, leading to 
the formation of a VSMC-rich layer localized between the endothelium and 
the internal elastic lamina (i.e. the neointima). It is well recognized that the 
endothelium provides protective signals that maintain medial VSMCs in a 
quiescent state, and that nitric oxide (NO) is central in this context107. In the 
endothelium, NO production is regulated by endothelial nitric oxide synthase 
(eNOS), an enzyme producing NO from the amino acid L-arginine. NO is 
secreted from the endothelium and exerts effects on the VSMC layer (e.g. 
regulates vascular tone by inducing relaxation of the VSMC). NO is also 
important in keeping the VSMC in a quiescent, non-proliferatory state108, an 
effect which is dependent on induction of cell cycle inhibitors, such as p21, 
p27, and p57109-114 .  

1.3.5 Mouse models of neointimal hyperplasia 

 A. Illustration of carotid ligation. B. Time course for neointimal Figure 5.
hyperplasia in the model. 

Several mouse models have been described where either mechanical or 
electrical injury of a vessel, usually the carotid or femoral artery, is 
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conducted to induce an injury response in the vessel wall115-119. One such 
model that is commonly used is the carotid ligation model120, where one of 
the common carotid arteries is ligated and as a response a neointima is 
formed. The ligation first induces a rapid inflammatory response peaking at 
around 3 days post injury followed by proliferation of VSMCs (Figure 5).  

1.4 Sexual dimorphism in disease 
prevalence and actions of sex steroid 
hormones 

The prevalence of autoimmune diseases is higher in women than men121,122, 
with female sex being a risk factor for e.g. myasthenia gravis, RA, and 
SLE121,122. In RA for example, for every one man being affected, 2–3 women 
are disease-struck, while the numbers are 1:8–9 in SLE. On the other hand, 
for CVD there is a male predominance6,11 at younger ages and women 
develop CVD approximately 10 years later in life compared to men.123 

The discrepancy in the epidemiology, development, and outcomes of CVD 
and autoimmune disease between men and women suggests an intrinsic 
sexual dimorphism in susceptibility to the diseases. This dimorphism 
probably relates to a number of factors (e.g. differing exposure to risk factors 
and therapy etc.), together with the effects of sex steroid hormones. At a 
cellular level, there are fundamental differences between men and women 
that are a direct result of genetic differences due to the sexual genotype of 
each cell, either XX or XY.122,124,125 Thus, it is important to separate the sex 
difference in prevalence/incidence of disease from the actions of the different 
hormones. The sex difference and hormonal effect sometimes coincide while 
sometimes not; male gender and testosterone protect from autoimmune 
disease while male gender is considered a risk factor for CVD but, 
nevertheless testosterone is atheroprotective in males.   

1.4.1 Sex hormones and autoimmunity 
Testosterone, has been suggested to protect against autoimmune disease, and 
androgen deficiency in men is associated with increased risk of 
autoimmunity126,127. Also in animal models of autoimmune disease, 
testosterone has been shown to have protective effects; orchiectomy (i.e. 
removal of testes and thereby all endogenous testosterone production in 
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rodents) exacerbates while testosterone treatment ameliorates disease128,129. In 
contrast to testosterone, estradiol has been ascribed an important role in 
accelerating autoimmune disease130-132. However, the mechanisms for the 
diverging effects of testosterone and estradiol in development and severity of 
autoimmune disease are not known. A plausible explanation for the 
protective effects of androgens on autoimmunity is the ability of androgens to 
lower B and T cell number. However, this warrants further investigation.  

1.4.2 Sex hormones and CVD 
The potential beneficial effects of estrogen on atherogenesis and CVD are 
controversial. Animal models of atherosclerosis have consistently reported an 
unequivocal atheroprotective effect in both males and females (via ERs)133-

143. However, hormone replacement therapy (HRT) to women has shown both 
protective and adverse effects on CVD144-150. Revised studies show a 
protective effect in women with few menopausal years receiving HRT151, 
giving rise to the “timing hypothesis” where estrogen is believed to exert 
protective effects in early disease progression but having adverse effects in 
advanced disease152-154.    

The vasculoprotective effects of estradiol have been extensively studied in 
animal models and ERα signaling is essential for the protective effect of 
estradiol on atherosclerosis and neointimal formation. Specifically, there is an 
important role for ERα in the endothelial cell in mediating these 
effects140,141,143,152,155-160. Further, estrogen metabolites, such as 2-ME2, have 
been suggested to mediate some of the effects of estradiol on the 
vasculature161-163, e.g. through inhibition of VSMC proliferation, inhibition of 
angiogenesis, and inhibition of monocyte-adhesion36,163-173. These effects are 
thought to be mediated by the ability of 2-ME2 to inhibit hypoxia induced 
factor 1-alfa (HIF-1α)36,165,172,174-176. COMT-mediated production of 2-ME2 
has been demonstrated to mediate the antimitogenic effect of estradiol in 
vitro167,177. However, whether 2-ME2 mediates protective actions of estradiol 
on vasculature in vivo is not known.    

Despite a higher incidence of CVD in men compared to women, most 
evidence suggests that androgens protect from atherosclerotic disease in 
men6,11. Low serum testosterone generally associates with increased fat mass, 
an adverse metabolic risk profile, and increased atherosclerosis in men2,12,178-

180. Furthermore, several prospective studies report associations between low 
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testosterone levels and cardiovascular events13,14,181-183, a notion also 
supported by experimental data135,184-189. Hence, declining testosterone levels 
that accompany increasing age may adversely affect cardiovascular health2.  

Compared to estradiol, the role of testosterone in vasculoprotection has been 
less investigated. Two earlier studies addressed putative pathways for the 
atheroprotective effect of testosterone in male mice. One study found that an 
aromatase inhibitor blocked the effect of testosterone indirectly indicating 
that the AR pathway is of less importance187. A study of testosterone 
treatment to Tfm mice also indicated that the effects of testosterone on 
atherogenesis are independent of the AR190. However, since the latter study 
did not treat WT mice with testosterone, the relative importance of AR-
dependent vs. AR-independent pathways could not be determined. Hence, no 
previous studies adequately address the role of the AR pathway in the effect 
of testosterone on atherosclerosis in mice. Furthermore, the importance of the 
AR in neointimal hyperplasia has not previously been evaluated, nor has any 
mechanisms for this effect of testosterone191 been described.192  
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2 AIM 
The general aim of this thesis was to evaluate the roles of sex steroid 
hormones in adaptive immunity and vascular pathology. 

  
The specific aims of the five papers included in this thesis were: 

I: To determine the role of COMT for the vasculoprotective actions of 
estradiol in male and female mice. 

II: To determine the role of the AR in the atheroprotective actions of 
testosterone in male mice. 

III: To investigate the role of the AR in neointimal hyperplasia in male mice. 

IV: To determine the mechanisms and target cells for androgen/AR-mediated 
regulation of B cell homeostasis in male mice. 

V: To determine the mechanisms and target cells for androgen/AR-mediated 
regulation of T cell homeostasis in male mice. 
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3 METHODOLOGICAL 
CONSIDERATIONS  

The methods used in this thesis are described in detail in the Material and 
Methods sections of the individual papers, while a more general discussion of 
the methods included is presented here. 

Animal models 
Due to a resistance in wild-type (WT) mice to atherosclerosis development, 
mice were on ApoE-/- background (ApoE-M, C57/BL6, Taconic) for 
atherosclerosis evaluation (Papers I–III). Details about this model are 
presented in the introduction of this thesis (section 1.3.3). 

In Paper I, we used COMTKO mice193, in which the COMT gene is deleted. 
These mice lack the ability to perform O-methylation of catecholestrogens 
(and catecholamines) and therefore are 2-ME2-deficient. 

In papers II–V, we used different ARKO mice models. We have generated 
general as well as cell-specific ARKO mice. ARKO mice were generated by 
breeding AR+/flox females with Cre+ males31.  

 

 

 Illustration of the androgen receptor gene and the generation of AR Figure 6.
knockout alleles. WT=wild-type, AR=androgen receptor 
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Different promoter sequences in the Cre constructs determine in which 
tissues/cells the Cre protein is expressed. The Pgk-Cre construct is expressed 
early during fetal development and generates a ubiquitous knockout of AR31. 
For the cell-specific ARKO we used mice with Cre under the control of 
different promoters; Osx-1-Cre (Jackson laboratory, Bar Harbor, Maine, 
USA) expressed in osteoprogenitors generating osteoblast-specific  ARKO 
(O-ARKO), Mb1-Cre194 expressed in B cells from the pro-B cell stage and 
CD19-Cre (Jackson laboratory) expressed from pre-B cell stage were used to 
generate B cell-specific ARKO (B-ARKO), LCK-Cre (Jackson laboratory) 
expressed in DN2 thymocytes was used to create T cell-specific ARKO (T-
ARKO), and K5-Cre195  expressed in keratinocytes was used to create 
epithelial-specific ARKO (E-ARKO). The efficacy and tissue/cell specificity 
of the cell-specific ARKO mice were assessed by quantifying exon 2, the 
floxed exon, compared to exon 3 in genomic (g)DNA (see RNA and DNA 
quantification).  

To generate BM-derived cell-specific ARKO (BM-ARKO) in Papers IV and 
V, we used a transplantation approach where AR- or AR+ BM cells were 
transplanted into lethally irradiated WT mice. These mice were treated with 
broad-spectrum antibiotics to avoid infections, castrated and subsequently 
supplemented with testosterone (25 μg/day, see gonadectomy and hormonal 
treatment) to control for potential irradiation-induced androgen 
deficiency196,197. 

Diet 
In order to avoid the potential effect of plant sterols, e.g. phytoestrogens, 
affecting the hormonal responses in the mice, all mice were fed a soy-free 
regular chow diet (R70; Lantmännen, Stockholm, Sweden or 2016; Harlan 
Teklad, Oxfordshire, UK) up to 8 weeks of age or until sacrifice. Mice in 
Papers I–II were fed an atherogenic diet (containing 21% fat from lard: 
0.15% cholesterol - 821424; Special Diets Services, Essex, UK) from 8 
weeks of age.  The atherogenic diet increased serum total cholesterol, 
accelerating the atherosclerotic process and rendering the lesions more 
complex with necrotic cores, cholesterol clefts, and fibrous caps.  

Gonadectomy and hormonal treatment 
In all five papers gonadectomy, orchiectomy of males and ovariectomy of 
females, was used to eliminate endogenous sex steroid hormone production. 
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Gonadectomy renders the mice completely testosterone- and estrogen-
deficient. For supplementation with testosterone or estradiol, the sex 
hormones were administered through subcutaneous slow-release pellets 
(Innovative Research of America, Sarasota, FL, USA) to assure steady 
testosterone or estradiol levels. The dosage of estradiol was based on 
previous published studies140,162 to assure an atheroprotective level of the 
hormone; 6 μg/ day estradiol was used in Paper I. This dose is slightly supra-
physiological in females, resulting in estradiol-related adverse effects such as 
uterine growth. In a pilot study, the dose of testosterone was evaluated; wet 
weights of prostate, seminal vesicles, and salivary glands in testosterone-
treated orchiectomized males were assessed to evaluate a near-physiologic 
dose of testosterone where the weights were matched to sham-operated 
controls. A daily dose of 25 μg was chosen for the subsequent experiments.   

Atherosclerosis evaluation 
Atherosclerosis in mice is normally assessed ex vivo in aortas prepared en 
face or in sections of the aortic root. En face preparation of aortas includes 
fixation of the tissue in paraformaldehyde, dissection of adventitial fat and 
connective tissue, longitudinal incision from the aortic arch to the abdominal 
bifurcation, and pinning the vessel out flat. The lesion area is determined 
after Sudan IV staining of lipids and normalized to vessel size. This 
technique provides information about plaque burden and distribution 
throughout the aorta but does not allow determination of plaque composition. 
Cross-sections of the aortic root provide information on both lesion size and 
characteristics. Lipids can be quantified by Oil red O staining and plaque 
composition can be evaluated by chemical and immunohistochemical 
methods, e.g. Masson’s trichrome staining for collagen content and presence 
of necrotic core and cholesterol clefts and Mac-2 immunostaining for 
macrophage content. 

Neointimal hyperplasia evaluation 
Neointimal hyperplasia was induced by carotid ligation and the vascular 
response was determined in cross-sections of the common carotid artery 3 
days (Paper III),  2 weeks (Paper III), or 4 weeks (Paper I) after injury. 
ApoE-/- mice develop more severe neointimal hyperplasia after injury than 
WT mice198,199. Therefore, different time points were chosen for evaluating 
neointimal hyperplasia depending on ApoE-status (i.e. 2 weeks for ApoE-/- 
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and 4 weeks for ApoE+/+). Details about this model are presented in the 
introduction of this thesis (section 1.3.5).  

The neointimal area was determined using autofluorescence of the elastic 
laminas. The area was normalized to the vessel size, i.e. to the length of the 
internal elastic lamina (IEL), or the media area where the intima–media (I/M) 
ratio was calculated. The composition of the neointima was evaluated by 
chemical and immunohistochemical methods, e.g. Masson’s trichrome 
staining for collagen content as well as α-actin and Ki67 immunostaining, for 
VSMC content and for proliferating cells, respectively. 

Evaluation of re-endothelialization 
In paper III, the ability of the endothelium to regenerate was evaluated using 
an in vivo scraping injury model. In this model, the endothelial layer was 
removed in the common carotid artery using a thin wire, the blood flow was 
restored, and the endothelium was allowed to regenerate for 5 days. Unhealed 
vessel surface was stained using perfusion with Evan’s blue, a dye which 
does not stain vessel segments with an intact endothelium. 

Aortic explant culture 
Ex vivo VSMC outgrowth from aortic tissue explants was used to study the 
proliferatory and/or migratory capacity of VSMC. VSMCs surrounding the 
tissue explant were counted after 9 days in culture using images captured in a 
phase-contrast microscope. 

Phenotyping of the adaptive immune system 
Flow cytometry was used to phenotype immune cells in Paper IV and V. The 
cells were labeled with fluorophore-conjugated antibodies and analyzed in a 
flow cytometer (FacsCantoII or Accuri, BD Bioscience). Cells from spleen, 
thymus, and BM were analyzed for their different lymphocyte subsets. The 
relative proportion of the different cells was determined using FlowJo 
software and the total numbers of the lymphocyte subsets were calculated 
from the total cellularity of the tissues/organs. 

Serum measurements 
The concentration of cytokines and growth factors in serum was quantified 
using commercially available enzyme-linked immune-sorbent assays 
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(ELISA). These were run either as single-analysis (i.e. BAFF) or as 7-plex 
panels (i.e. cytokines).  

The serum concentrations of hormones were measured or assessed by 
different methods; testosterone and luteinizing hormone concentrations were 
determined using radioimmunoassays. Further, due to the low sensitivity of 
available mouse estradiol assays200, the wet weight of the uterus was used as 
a sensitive marker of estradiol levels in mice201. 

Cholesterol and triglyceride concentrations were measured using chemo-
luminescence and the distribution of lipids within the plasma lipoprotein 
fractions was assessed in pooled serum by fast-performance liquid 
chromatography gel filtration. 

Lymphocyte proliferation 
In Papers IV and V, proliferation of B and T cells was examined by ex vivo 
cultures of splenocytes stimulated with the lymphocyte mitogens LPS and 
concanavalin A, for B cell and T cell proliferation, respectively. Proliferation 
was measured by addition of 3H-thymidine that was quantified in a β-counter 
and normalized to number of seeded T and B cells, respectively. 

DNA and RNA quantification 
Gene expression was evaluated in Papers II–V by real-time PCR (RT-PCR), 
which measures mRNA levels of certain gene transcripts. The method is 
based on the detection of cDNA sequences, generated from total RNA 
preparations by reverse transcription, using primers complementary to the 
cDNA sequence of interest. Amplification of a certain mRNA can then be 
correlated to an internal standard, i.e. a reference gene, giving an estimate of 
the relative expression of the gene of interest.     

In this thesis we have developed a method to quantify the efficacy and 
specificity of the cell-specific knockouts. This was achieved by gDNA 
preparation from cells and tissues and quantification of exon 2 vs. exon 3 
using primers specific for DNA sequences within the exons. The relative 
quantification was done using SYBR green, a molecule that fluoresces when 
bound to double stranded DNA. 

Data generated using both methods were normalized to a reference gene/exon 
and were calculated using the 2-ΔΔct method202. 
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4 RESULTS AND CONCLUSIONS 
Below is a brief description of the main results and conclusions of the five 
papers included in the thesis. For more details, see the full papers at the end 
of the thesis. 

Paper I 
Catechol-O-methyltransferase is dispensable for vascular protection by 
estradiol in mouse models of atherosclerosis and neointima formation  

This study evaluated whether 2-ME2 mediates the vasculoprotective actions 
of estradiol in vivo. WT and COMTKO mice on an ApoE-deficient 
background were gonadectomized and treated with estradiol or placebo and 
atherosclerosis development was evaluated after 8 weeks of high-fat diet.  

Exogenous estradiol reduced atherosclerotic lesion formation in both females 
(WT, -78%; COMTKO, -82%) and males (WT, -48%; COMTKO, -53%) and 
was equally effective in both genotypes. We further evaluated how 
exogenous estradiol affected neointima formation after ligation of the carotid 
artery in OVX female mice; estradiol reduced intimal hyperplasia to a similar 
extent in both WT (-80%) and COMTKO (-77%) mice. In ovarian intact 
female COMTKO mice, atherosclerosis was decreased (-25%) compared to 
WT controls.  

We conclude that the COMT enzyme is dispensable for vascular protection 
by exogenous estradiol in experimental atherosclerosis and neointima 
formation in vivo. Instead, COMT deficiency in female mice with intact 
endogenous production of estradiol results in relative protection against 
atherosclerosis. 

Paper II 
Androgen receptor-dependent and independent atheroprotection by 
testosterone in male mice  

In this study, we used ARKO mice on ApoE-deficient background to study 
the role of the AR in testosterone atheroprotection in male mice. Because 
ARKO mice are testosterone deficient, we sham-operated or orchiectomized 
the mice before puberty and orchiectomized mice were supplemented with 
placebo or a physiological testosterone dose.  
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In the aortic root, ARKO mice showed increased atherosclerotic lesion area 
(80%). Compared to placebo, testosterone reduced lesion area both in 
orchiectomized WT mice (50%) and ARKO mice (24%). However, lesion 
area was larger in testosterone-supplemented ARKO compared to 
testosterone-supplemented WT mice (57%). In WT mice, testosterone 
reduced the presence of a necrotic core in the plaque (80% among placebo-
treated vs. 12% among testosterone-treated mice), whereas there was no 
significant effect in ARKO mice. 

In conclusion, male ARKO mice on ApoE-deficient background display 
accelerated atherosclerosis. Testosterone treatment reduced atherosclerosis in 
both WT and ARKO mice. However, the effect on lesion area and 
complexity was more pronounced in WT than in ARKO mice, and the lesion 
area was larger in ARKO mice even after testosterone-supplementation. 
These results are consistent with an AR-dependent as well as an AR-
independent component of testosterone atheroprotection in male mice. 

Paper III 
Increased neointimal hyperplasia following vascular injury in male 
androgen receptor knockout mice 
 
In this study we evaluated neointimal hyperplasia development in male 
ARKO mice using a vascular injury model.  
 
Two weeks after ligation of the carotid artery, ARKO mice showed increased 
neointimal area (+104%) and mean intimal thickness (intimal area 
normalized to vessel size; +56%) compared to WT controls. Following 
endothelial denudation by an in vivo scraping injury, there was no difference 
in the re-endothelialization in ARKO compared to WT mice. Ex vivo, we 
observed increased outgrowth of VSMCs from ARKO compared to WT 
aortic tissue explants; the number of outgrown cells was almost doubled 
(+96%) in ARKO. Analyzing central regulators of the cell cycle, we found 
that mRNA levels of the cell cycle inhibitor p27 were down-regulated in 
uninjured arteries from ARKO mice, while p21 and p57 levels were 
unchanged. Further, arterial eNOS mRNA expression was reduced in ARKO 
mice. In accordance, testosterone supplementation to orchiectomized male 
mice increased p27 and eNOS mRNA in uninjured artery in an AR-dependent 
manner.  
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In conclusion, male ARKO mice display increased neointimal hyperplasia as 
a response to vascular injury. The mechanism likely involves decreased 
endothelial nitric oxide production, leading to a down-regulation of p27 in 
VSMCs and thereby increased proliferative capacity of VSMCs.  

Paper IV 
Testosterone regulates B cell homeostasis by targeting osteoblasts in 
bone and the survival factor BAFF in spleen 

In this study we elucidated the mechanism and target cells for androgenic 
regulation of B cell homeostasis. We utilized the ARKO mouse model to 
investigate AR-mediated effects of androgens on BM B lymphopoiesis and 
the peripheral B cell pool in male mice. General (G-ARKO) as well as 
osteoblast- (O-ARKO), B cell- (B-ARKO), and BM derived cell-specific 
(BM-ARKO) knockout of the AR were studied.  

We show that G-ARKO leads to increased BM B lymphopoiesis from the 
pro-B cell stage and that O-ARKO mimics the increased B lymphopoiesis 
observed in G-ARKO mice. Further, the number of peripheral B cells in 
spleen was increased in G-ARKO mice, but not regulated in O-ARKO, B-
ARKO, or BM-ARKO. G-ARKO, but not BM-ARKO, displayed increased 
serum levels of BAFF, and androgens/AR regulated splenic expression of 
BAFF. 

We conclude that testosterone exerts its inhibitory effect on B lymphopoiesis 
in males by targeting the AR in osteoblasts. A distinct regulation of 
peripheral B cell homeostasis may involve non-hematopoietic spleen cells 
and inhibition of the production of BAFF. 

Paper V 
Increased T lymphopoiesis but unchanged peripheral T cell number 
following depletion of the androgen receptor in thymus epithelial cells 

In this study, we elucidated the mechanism and target cells for androgenic 
regulation of T cell homeostasis. We utilized the androgen receptor 
(AR)  knockout (ARKO) mouse model to investigate how the AR mediates 
the effects of androgens on T lymphopoiesis and the peripheral T cell pool in 
spleen, using general- (G-ARKO) as well as T cell- (T-ARKO), bone marrow 
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derived cell- (BM-ARKO), and epithelial cell- (E-ARKO) specific knockout 
of the AR.  

We found that G-ARKO mice had increased T lymphopoiesis in thymus and 
increased peripheral T cell number in spleen. These effects were neither T 
cell- nor hematopoietic cell-intrinsic, since T- and BM-ARKO mice had 
unaltered T lymphopoiesis and/or thymus weight and peripheral T cell 
number. Further, removal of endogenous androgens by orchiectomy 
increased thymic expression of Ccl25 and Dll4, important factors for T 
lymphopoiesis secreted by thymic epithelial cells (TECs). In line with an 
important role for TECs, E-ARKO mice had increased T lymphopoiesis in 
thymus. However, there was no change in the peripheral T cell number in the 
spleen of E-ARKO mice. 

In conclusion, the TECs are a target for androgen/AR-mediated inhibition of 
T lymphopoiesis, possibly by inhibition of Ccl25 and Dll4 expression. 
However, inactivation of the AR neither in TECs, nor in T or BM-derived 
cells, alters the splenic T cell pool, suggesting a different, non-hematopoietic, 
androgen/AR target cell for the regulation of peripheral T cell homeostasis. 
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5 DISCUSSION 

5.1 Estradiol, COMT, and vascular 
pathology 

Estrogens have consistently been shown to inhibit atherosclerosis progression 
in rodents134-137,139, chiefly through the ERs (mainly ERα)140,143,156,159. This is 
an effect that we clearly could replicate in Paper I, where exogenous 
estradiol-treatment reduced atherosclerotic lesion development by ≈80% in 
female and ≈50% in male mice. Estrogen has also been consistently reported 
to protect from vascular injury138,141,155,203-212. We were also able to replicate 
this effect in female mice where estradiol-treatment lowered the intimal area 
by ≈80% and the I/M ratio by ≈70%.  

2-ME2 has been suggested to mediate the atheroprotective effects of estradiol 
in VSMCs in vitro 164,167,177,213 and earlier studies have ascribed several 
cardiovascular protective actions to 2-ME2, including inhibition of VSMC 
proliferation and extracellular matrix deposition, improved endothelial 
function, and decreased cholesterol levels161,166,214. Further, previous studies 
have demonstrated that administration of 2-ME2 protects against 
atherosclerosis development162 as well as neointima formation and vascular 
remodeling168,215. However, the results in Paper I show that the 
vasculoprotective actions of estradiol in vivo occur independently of COMT-
mediated 2-ME2 production. This finding is in line with recent studies 
demonstrating that the vascular protective actions of exogenous estradiol on 
both atherosclerosis and neointima formation depend on the expression of 
ERα141,143,156,159. The latter findings support our conclusions given the low 
binding affinity of 2-ME2 for ERs35,36. Thus, while Zacharia et al.167 found a 
COMT-dependent effect of estradiol on VSMC proliferation in COMTKO 
cells in vitro, we see no such effects on atherosclerosis and neointimal 
hyperplasia in COMTKO mice in vivo. Notably, atherosclerosis and 
neointima formation are complex processes, involving many different cell 
types such as endothelial and immune cells, in addition to smooth muscle 
cells. Hence, if COMT-dependent inhibition of VSMC proliferation does 
neither account for the atherosclerosis nor neointimal phenotype in vivo, this 
supports other target cells for vasculoprotection of estradiol e.g. immune cells 
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or endothelial cells143,156,159, and/or other mechanisms, such as lowering of 
serum cholesterol and/or triglycerides (see Paper I).  

While COMT deficiency did not affect estradiol atheroprotection, we found 
that COMT deficiency reduced atherosclerotic lesion development in 
ovarian-intact female mice. Judging by their increased uterine weight201, 
COMTKO mice had slightly elevated estradiol levels which may result in a 
relative protection against atherosclerosis development. This finding is 
consistent with epidemiological data associating the low-activity COMT 
polymorphism with protection against CVD events216,217.  

5.2 Testosterone, AR, and atherosclerosis 
Androgens have been consistently reported to inhibit atherosclerosis 
progression in rodents135,184-186,189. However, whether the effect of 
testosterone is AR-dependent or AR-independent have been unclear and not 
thoroughly addressed187,188,190. In Paper II, we stringently investigated the role 
of AR in protection from atherosclerosis by testosterone. We could clearly 
demonstrate that testosterone exerts its effect on atherosclerosis through both 
AR-dependent and AR-independent actions, with the AR-mediated protection 
being the major pathway.   

Paper II is the first to specifically address the relative role of the AR in 
atheroprotection in mice. In a previous study published by Nettleship et al.190, 
the authors showed that exogenous testosterone normalized fatty streak 
formation in AR-mutant Tfm mice fed a cholate-containing diet. They 
suggested that this finding indicated that most of the effect of testosterone is 
AR-independent. However, they only treated Tfm and not WT controls with 
testosterone, and thus could not determine the relative importance of AR-
dependent vs. AR-independent pathways. Other studies have been published 
with results in line with ours; treatment with the AR blocker flutamide 
inhibited most of the protective effect of testosterone on atherosclerotic 
plaque area in cholesterol-fed rabbits188. Further, the non-aromatizable AR 
agonist dihydrotestosterone (DHT) reduced atherosclerotic plaque area in the 
brachiocephalic artery of male ApoE-deficient mice189.  

Although our results from Paper II indicate that a large part of the effect of 
testosterone is AR-dependent, testosterone reduced atherosclerotic lesion area 
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in ARKO mice, showing that atheroprotection by testosterone also has an 
AR-independent component. Aromatization of testosterone to estradiol may 
mediate an AR-independent action of testosterone. Nathan et al.187 found that 
an aromatase inhibitor completely blocked the effect of testosterone on 
atherosclerosis in LDLR-deficient mice, indicating that conversion to 
estradiol exerted the entire effect of testosterone. In comparison, Nettleship et 
al.190 found that an aromatase inhibitor blocked only 20% of the effect of 
testosterone on fatty streak formation in Tfm mice, consistent with a 
relatively low level of aromatase expression in extragonadal tissues of 
mice218. In addition, it is conceivable that the higher testosterone dose used 
by Nathan et al.187 (i.e. 5.6 times higher than ours) might have affected the 
relative importance of the aromatization pathway. In the study by Nettleship 
et al.190, administration of testosterone to Tfm mice was done by 
intramuscular injections every two weeks, and although the authors claimed a 
physiological testosterone treatment, serum testosterone measurements 
showed that the treatment was intermittently supraphysiological. Hence, this 
treatment regimen, combined with the absence of testosterone treated WT 
controls, may have contributed to an overestimation of the role of AR-
independent pathways. In addition to the estradiol/ER pathway there may be 
other AR-independent actions of testosterone219. 

5.2.1 Mechanisms for androgenic regulation of 
atherosclerosis? 

Our results from paper II show that part of the atheroprotective effects of 
testosterone is mediated by the actions of AR; however, the exact 
mechanisms remain to be determined.   

Increased atherosclerosis in mouse models might depend on traditional risk 
factors, such as high blood lipids, obesity, or insulin resistance. However, the 
male ARKO mice did not have any alterations of their blood lipid profile 
(paper II). While the ARKO mice have been shown by others to have late 
onset obesity220, we did not observe any effect on body weight gain during 
high-fat diet-feeding and ARKO mice had lower body weight compared to 
WT after 8 weeks on high-fat diet in paper II. In a separate experiment 
(unpublished data), we evaluated lean vs. fat mass in the ARKO mice using 
dual-energy x-ray absorptiometry and we saw changes in lean/fat mass ratio 
due to lower lean body mass and higher fat mass in ARKO mice already at 
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young ages. These changes in body composition could lead to increased 
insulin resistance, but surprisingly ARKO mice did not have an altered 
glucose or insulin tolerance despite the increased relative fat mass. Thus, 
although the AR deficiency influences body composition, the blood lipid 
levels and insulin sensitivity are not adversely altered, suggesting other 
mechanisms for the increased atherogenesis in ARKO mice.        

Besides metabolic parameters, vessel-intrinsic properties might affect 
atherogenesis. In Paper III, altered proliferatory/migratory capacity of ARKO 
VSMCs, is a possible mechanism for increased neointimal hyperplasia in 
ARKO mice. Given the association between intimal hyperplasia and 
atherogenesis (section 1.3.4), it is conceivable that these two endpoints share 
mechanisms such as an impact of androgens/AR on the endothelium221, in 
parallel with the actions of estradiol/ERs143,157,222. Further, differential AR-
mediated regulation of lesion area in different vessel segments, support that 
AR might regulate atherogenesis in a vessel-intrinsic manner; however this 
notion requires further investigation.   

The immunomodulating capacity of androgens/AR is another strong 
candidate for regulating atherogenesis in the male ARKO mice. Even though 
the early inflammatory response in neointimal hyperplasia was not altered, 
the regulatory effects of androgens/AR on both B and T cells constitute 
plausible mechanisms for atherogenesis. An elevated adaptive immune 
response to modified LDL or other epitopes in the lesions could increase the 
vicious circle in plaque progression. We have data showing that ARKO mice 
have decreased IgM/IgG ratio of antibodies against modified LDL (i.e. ox-
LDL and MDA-LDL; unpublished data), indicating that the ARKO mice 
have an increased immune responsiveness against modified LDL.     

5.3 Androgens/AR and neointimal 
hyperplasia 

In paper III, we evaluated the role of AR in neointimal formation, showing an 
important effect of AR in lowering neointimal hyperplasia to dimidiate 
levels. This result is consistent with previously published papers showing a 
protective effect of androgens on intimal hyperplasia191. However, we are the 
first to report increased neointimal hyperplasia in male ARKO mice. In 
accordance with our findings, Ikeda et al.223 noted greater medial thickness 
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following angiotensin II administration to male ARKO mice, showing that 
the androgen/AR system exerts protective effects against angiotensin II-
induced vascular remodeling. Tharp et al.224 found that castration preceding 
balloon injury in male swine increased neointimal hyperplasia, suggesting 
that endogenous testosterone attenuates neointima formation. Thus, our 
results support and extend the results of previous in vivo studies suggesting 
an important modulatory role of androgens/AR on neointimal hyperplasia. 

Furthermore, we evaluated the role of AR in re-endothelialization; we 
showed that AR does not affect the re-endothelialization in injured carotid 
arteries in male mice. Thus, in comparison with the increased re-
endothelialization by estradiol/ERs157,222,225,226, androgens/AR do not seem to 
affect the re-growth of the endothelium, but possibly affect the function of 
the endothelial cell. 

In paper III, we showed that testosterone regulates eNOS expression in an 
AR-dependent manner, in line with previously published in vitro results on 
testosterone and nitric oxide (NO) production in endothelial cells227. 
Consistent with results in our study, testosterone treatment has been shown to 
ameliorate endothelial function221, increase NO production and/or 
bioavailability partly through increased expression of NOS228-234, both in 
hypogonadal men and in experimental models of androgen deficiency. In this 
regard, estradiol and testosterone seem to exert similar actions with both 
genomic (i.e. increase eNOS transcription) and non-genomic rapid effects 
(i.e. on NO production)156,227,235.  

In paper III, we found a reduction in the expression of the cell cycle inhibitor 
p27 in uninjured arteries from ARKO mice, and testosterone increased 
vascular expression of p27 in an AR-dependent manner. This result is in line 
with previous studies showing that p27 regulation by testosterone in VSMCs 
is associated with reduced proliferation in vitro236 and p27 has been shown to 
reduce neointima formation in vivo224,237. p27 has a necessary and non-
redundant role for the proliferative response of VSMCs 109,238,239 and studies 
show that endothelial NO production directly regulates p27 expression in 
VSMCs107,240. Thus, an effect of testosterone on endothelial eNOS expression 
and thereby NO production would increase p27 expression in VSMCs. This 
is a plausible mechanism for the findings in Paper III.  
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5.4 Sex steroid hormones in adaptive 
immunity  

5.4.1 Androgen/AR targets for the regulation of 
B lymphopoiesis 

In paper IV, we show that G-ARKO mice have increased B lymphopoiesis. 
This is consistent with previously published data that androgen/AR-
deficiency increase BM B lymphopoiesis241-246. However, there has been 
conflicting data published regarding the target cell(s) for androgenic 
inhibition of B lymphopoiesis245,246. We could specify that AR in osteoblasts, 
i.e. in a non-hematopoietic cell, regulates B lymphopoiesis. The effect of O-
ARKO on the number of immature B cells in BM was equivalent to that of 
G-ARKO, and these data are in line with studies demonstrating that 
osteoblasts support B lymphopoiesis from the pro-B cell stage46,51-53,247,248. 
However, despite increased B lymphopoiesis, AR-deficiency in osteoblasts 
did not alter the total peripheral B cell number. Our results in paper IV are in 
accordance with a paper in which targeting the chemokine CXCL12 in 
osteoblasts led to severely altered B lymphopoiesis in BM but nevertheless; 
peripheral B cell number remained unaffected53. Thus, we suggest that 
additional target cells and/or mechanism support the increased number of 
peripheral B cells in androgen/AR-deficient states.  

5.4.2 Androgens/AR targets for the regulation of 
T lymphopoiesis 

In paper V, we show that in both G- and E-ARKO mice all thymic T 
lymphocyte stages from DN through SP were increased, albeit with a 
different effect size. The smaller effect in E-ARKO vs. G-ARKO may be a 
result of an incomplete knockout of AR in E-ARKO mice or that additional 
AR target cells are important. Our data regarding the target cell for AR 
actions on T lymphopoiesis are in line previously published papers249,250, 
showing a hematopoietic cell-extrinsic rather than cell-intrinsic AR-
dependent inhibition of T lymphopoiesis. Further, we identified Ccl25 and 
Dll4 as androgen-regulated factors in the thymus. Both Ccl25 and Dll4 have 
been shown to have important functions in supporting T 
lymphopoiesis39,42,251,252, indicating that an increase in these factors could 
increase T lymphopoiesis during androgen/AR-deficient states. Despite 
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increased thymic T lymphopoiesis in our E-ARKO mice, the peripheral T cell 
pool was unaltered. This suggests that other target cell(s) are important for 
androgenic regulation of the peripheral T cell pool size. 

5.4.3 Androgen/AR target cells for the regulation 
of peripheral B and T cell number 

In paper IV and V, we showed that G-ARKO mice have increased B and T 
cell number in spleen, consistent with previously published data244,246,249. 
Further, our results show that the inhibitory effect of testosterone on 
peripheral B and T cell number in male mice is AR-dependent.  

Neither the peripheral B nor T cell pools were proportionally affected by AR 
depletion in osteoblasts and TECs, respectively. Since a previous study246  
proposed a cell-intrinsic effect of AR in regulating lymphocyte number, the 
peripheral B and T cell number was evaluated in B- and T-ARKO, 
respectively. However, in our studies we did not observe any cell-intrinsic 
effect of ARKO. We used both two different B cell-specific Cre-construct 
(Mb1-Cre and CD19-Cre expressed in early pro-B cells194 and pre-B cells253, 
respectively) and a T cell-specific Cre-construct (LCK-Cre expressed in DN2 
T cell progenitors254) as well as BM-transplantation of AR-negative BM into 
WT recipients. All approaches lead to an efficient AR-knockout in B, T, and 
blood cells, respectively, but nevertheless we did not observe any change in 
peripheral lymphocyte number. Thus, androgens/AR regulate the mature B 
and T cell number by targeting a non-hematopoietic cell.  

BAFF is a vital survival factor for peripheral B cells54,56,255,256. In Paper IV,  
we show that the circulating BAFF levels were increased and Baff mRNA 
was regulated in spleen in G-ARKO. Serum BAFF was not increased in BM-
ARKO, in line with BAFF being regulated in non-hematopoietic, radiation-
resistant, cells255. G-ARKO mice had increased splenic B cell subsets while 
peritoneal B1 B cells were not elevated, consistent with BAFF increasing 
survival of B cells in spleen while not affecting B1 B cells in peritoneum47. 
Further, our data also concur with the splenic pattern of B cell subsets in 
BAFF-overexpressing mice47,54,56. Thus, a change in BAFF homeostasis is a 
plausible explanation for the elevated number of peripheral B cells in G-
ARKO. 
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BAFF also increases survival and/or proliferation of T cells55,61,256-258. 
Accordingly, BAFFKO mice have an altered peripheral T cell pool with 
lower numbers of T cells in spleen61,259,260. Further, BAFF transgenic55 and 
BAFF-treated258 mice have elevated CD4+ T cell number in spleen, leading to 
a skewed CD4/CD8 ratio. Thus, the increased CD4+ T cell number and 
skewed CD4/CD8 ratio of G-ARKO indicate that elevated BAFF levels 
might be a potential mechanism for both their increased peripheral T cell 
number, as well as B cell number.  

5.4.4 Testosterone, estradiol, and BAFF 
Estradiol suppresses B lymphopoiesis from early pre-B cell stage261, thus, 
estradiol and testosterone both inhibit B lymphopoiesis. By contrast, estradiol 
has been shown to have a pro-survival effect on mature B cells by up-
regulation of BAFF leading to increased relative number of mature B cells in 
spleen130,131.  In accordance with the sex-biased prevalence of autoimmune 
diseases, estradiol has been proposed to accelerate and testosterone to inhibit 
autoimmunity132. Thus, estradiol elevates BAFF production, increases mature 
B cells, and accelerates autoimmune disease 126-132,241-246 while testosterone 
has the opposite actions126-129,241-246. Hence, it may be speculated that 
differential regulation of BAFF by estradiol and testosterone might partially 
explain the sex difference in autoimmune disease.  

5.5 Indirect androgen/AR actions in 
adaptive immunity and vascular 
pathology  

In papers III–V, we suggest the target cells for AR actions in adaptive 
immunity (i.e. osteoblasts, TECs, and non-hematopoietic spleen cells) and 
vascular pathology (i.e. endothelial cells) are affecting the phenotype of other 
cells (i.e. B and T lymphocytes and VSCMs, respectively). Thus, 
androgens/AR seems to affects the phenotypes in an indirect manner.  

It is likely that these indirect actions of androgens/AR are mediated by 
secreted factors. For the indirect effect of endothelial cells on VSMCs the 
mechanisms may involve NO produced in endothelial cells. For 
lymphopoiesis the effect on B lymphopoiesis likely involves cytokines such 
as IL-7, SCF, or CXCL1250,52,53 secreted form osteoblasts. The effect on T 
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lymphopoiesis may involve Dll4 and CCL2542,252 production in TECs. For 
the splenic subsets of B and T cells, BAFF secreted by radiation-resistant, 
non-hematopoietic, spleen cells255 potentially increases the number of 
peripheral B and T cells.  

Thus, there is a striking concordance in the way androgens/AR regulate cell 
survival/proliferation of VSMCs and B and T cells, through inhibiting or 
increasing production of factors that in turn influence the effector cells. This 
aspect of androgenic activity has also been seen in other tissues/organs, such 
as prostate stromal cells – tumor cells262, prostate stromal cells/smooth 
muscle cells – prostate epithelium263-265, myeloid cells/sertoli cells – germ 
cells31,266-268. On the other hand, other effects of androgens/AR appear to be 
direct , such as the effects on adipocytes269 and hepatocytes270.  

5.6 AR-dependent and AR–independent 
effects of testosterone 

Testosterone can have both AR-dependent and AR-independent effects. In 
the papers included in this thesis (II–V) we have evaluated the relative 
importance of AR-dependent vs. AR-independent actions of testosterone in 
adaptive immunity and vascular pathology.  

The effects of testosterone in regulation of peripheral B and T cell number 
are fully AR-dependent (Papers IV–V); testosterone lowers splenic B cells as 
well as CD4+ and CD8+ T cells in WT mice, while testosterone did not affect 
the cell numbers in ARKO mice. The skewed CD4/CD8 ratio displayed the 
same pattern. Further, testosterone lowered Baff expression in spleen of WT 
but not ARKO mice. The relative importance of AR-dependent vs. AR-
independent effect of testosterone on B and T lymphopoiesis was not 
determined in our studies; however, an AR-dependent thymic involution 
suggests that at least the effect on T lymphopoiesis would be AR-dependent. 
Thus, the effects of testosterone in adaptive immunity seem to be completely 
AR-dependent (Figure 6).  

The relative importance of AR-dependent vs. AR-independent effects of 
testosterone in vascular pathology is more diverse. The effect on 
atherosclerosis (Paper II) was shown to be both AR-dependent as well as AR-
independent. However, the AR-independent effect size varied in different 
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vessel segments. The relative AR-dependent and AR-independent effects of 
testosterone for inhibition of neointimal hyperplasia were not determined, but 
the putative mediators of the decreased proliferatory/migratory capacity of 
VSMCs (i.e. eNOS and p27) were inhibited by testosterone in an AR-
dependent manner (Figure 6).       

Taken together, the pattern of AR dependency indicate that the inhibitory 
effect of testosterone on B and T cell homeostasis may not be the sole 
mechanism for the atheroprotective effect, suggesting that additional 
mechanisms underlie the atheroprotective effects of testosterone. In 
accordance, the relative effect size of AR-dependent vs. AR-independent 
effects of testosterone on atherosclerosis in different vessel segments would 
suggest an important vessel-intrinsic, rather than a systemic, mechanism. 

 

 AR-dependent vs. AR-independent effect of testosterone in adaptive Figure 7.
immunity  and vascular pathology. ND=not determined 
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5.7 Clinical relevance 
Gene knockout is an extreme manipulation of physiology where a gene is 
completely missing as compared with e.g. reduced function of a gene/protein, 
which would result in a less severe phenotype. In knockout mice the deletion 
of the gene is often produced early in development, which may cause 
adaptive responses. Further the expression of the Cre-recombinase construct 
both in general- or cell-specific knockouts may cause toxicity271,272. In this 
thesis results for general and cell-specific ARKO mice are presented, where 
one might argue that the ARKO mice may be an imperfect model due to both 
mentioned caveats. However the results are strengthened by data from 
orchiectomy, and thus removal of endogenous testosterone, experiments in 
WT mice that induce the same response/phenotype. In addition, we have 
thoroughly evaluated our control groups; e.g. both the LCK- and Mb1-Cre 
construct alone affected the lymphocyte number significantly compared to 
Cre-negative littermates, possibly due to toxicity of Cre or in Mb1-Cre+ mice, 
a hemizygote knockout of the CD79a gene. Moreover, Osx1-cre+ mice have a 
severe growth retardation phenotype273 compared to Cre-negative littermates, 
in part due to malocclusion, an effect that we also clearly observed in our 
mice. Therefore having Cre+ littermates as controls to cell-specific ARKO, 
was of great importance. Further, we see no effects of the ARflox construct 
alone.  

To further consolidate our findings, mutations in AR (i.e. CAG-repeat length 
or others) affecting AR functionality would then have consequences for 
autoimmune disease or CVD. Although conflicting data exist and few studies 
have examined autoimmune disease in relation to CAG-repeats in men, the 
length of CAG-repeats is associated with autoimmune diseases, such as 
RA274-276 and SLE277,278. Moreover, chromosomal defects (i.e. Klinefelter 
syndrome 47XXY), affecting testosterone levels, have also been associated 
with autoimmunity, in particular with SLE but also with RA and myasthenia 
gravis279-284. Of note however, having an extra X chromosome might also 
influence autoimmunity since several risk genes285 is located on the X 
chromosome and skewed X-inactivation is associated with autoimmune 
disease286,287.  

The length of the CAG-repeat polymorphism is inversely associated with 
CVD; long CAG-repeats are associated with increased risk for coronary 
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artery disease288 and/or risk factors for CVD such as high cholesterol and the 
metabolic syndrome289-292. The Klinefelter syndrome is also associated with 
increased risk for CVD e.g. ischemic heart disease293,294 and CVD risk factors 
such as insulin resistance, the metabolic syndrome, and increased carotid 
intima–media thickness295.  

Lastly, androgen deprivation therapy in treatment of prostate cancer is 
associated with an increased risk of autoimmunity296,297 and CVD298-300. 

5.8 Clinical implications 
The experimental results from this thesis may have consequences for future 
treatment options of autoimmune disease and CVD in the clinical setting.    

Although the results in Paper I do not support endogenous 2-ME2 formation 
as a pathway for vascular protection by estradiol, exogenous 2-ME2 still may 
represent an effective and promising vascular protective agent at 
pharmacological doses162,164,173,215. 

Much interest has focused on testosterone supplementation to elderly men 
and the use of testosterone supplementation increases6. Compounds that 
activate or inhibit the AR in a tissue-specific way (selective androgen 
receptor modulators; SARMs) are receiving interest with the goal to achieve 
beneficial effects (e.g. on bone) and with no adverse effects (e.g. on the 
prostate)301. A crucial step for the design of SARMs with a beneficial 
cardiovascular and/or immunological profile will be the identification of the 
target cell(s) for the cardiovascular and immunological actions of androgens.  
From results in paper IV and V, we can identify important target cells for 
regulating central lymphopoiesis, i.e. osteoblasts and TECs, while we can 
narrow the search for a target cell regulating peripheral B and T cell 
homeostasis: i.e. a non-hematopoietic splenic stromal cell. Further research is 
needed to clarify which splenic cell subset that exerts the actions of 
androgens/AR, putatively, via lowered BAFF production. Also for the 
vasculoprotective effect of androgen/AR, future studies in which the AR is 
inactivated specifically in endothelial cells and VSMCs will be highly 
informative.  

Our results suggest that the AR may represent a potential therapeutic target to 
limit neointimal hyperplasia and possibly clinical cardiovascular disease in 
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men. Since testosterone levels in men decline with age, and low testosterone 
levels have been implicated in CVD risk14, androgen-deficient men might 
benefit from testosterone treatment. If testosterone supplementation is 
contraindicated, androgen-deficient (age-associate or induced, i.e. anti-
androgen treatment in prostatic cancer patients) men might benefit from more 
aggressive treatment to reduce other CVD risk factors, such as to lower high 
blood pressure and serum cholesterol levels, and be encouraged to reduce 
lifestyle-associated risk factors, such as smoking, inactivity, unhealthy diet, 
etc.  

From the results in paper IV, we can conclude that androgens/AR regulate 
BAFF, a pivotal survival factor for B cells and newly identified treatment 
target for autoimmune disease. BAFF is implicated in the development of 
autoimmunity where excessive BAFF production misrepresents B cell 
tolerance leading to increased survival of autoreactive B cells57,58. BAFF 
inhibition (Belimumab®) is a newly approved treatment for SLE and is in 
phase III clinical trials for other autoimmune diseases, such as RA and 
Sjögren’s syndrome59,60,302,303. In line with our experimental data, BAFF has 
been shown to be negatively correlated to testosterone levels in psoriatic 
arthritis patients304. As BAFF is a successful therapeutic target for 
autoimmune disease, our findings open up a new potentially druggable 
mechanism for autoimmune disease where a SARM305 directed to the spleen 
stromal cell compartment could lower BAFF levels with minimal adverse 
androgenic effects in other tissues. Further, as androgen deficiency leads to 
increased BAFF production, men with autoimmune disease and subnormal 
testosterone levels might particularly benefit from BAFF-inhibition.   
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6 FUTURE PERSPECTIVES 
Although the conclusions from the papers included in this thesis increase our 
understanding of the role of sex steroid hormones in adaptive immunity and 
vascular pathology, they also raise new questions: 

6.1 Target cells for the effects on 
peripheral B and T cell number? 

For the immunological phenotype in androgen/AR deficiency, data from 
Paper IV and V show that the target cells for AR in lymphopoiesis include 
osteoblasts and TECs, while the target cell(s) responsible for the peripheral 
homeostasis of B and T cells remain(s) to be identified. We hypothesize that 
these target cells could be follicular dendritic cells (FDc) in spleen and 
therefore would be the target for androgens/AR responsible for BAFF 
production255,306. To test this hypothesis we have generated FDc-specific 
ARKO (FDc-ARKO) mice and the splenic B and T cell pool will shortly be 
analyzed in these mice.   

6.2 Autoimmune disease in our models? 
An important question to investigate is whether any of these cell-specific 
ARKO mice would develop autoimmune disease, since androgen/AR 
deficiency is known to increase autoimmune susceptibility127-129,246,279,307-311.   
For autoimmunity driven by B cells, O-ARKO would probably not increase 
autoimmune disease susceptibility as positive selection of B cells is achieved 
in the spleen. If FDc-ARKO will lead to increased BAFF production and, 
hence, an increased peripheral B cell pool, these mice would potentially be 
more prone to autoimmune disease. For T cell-driven autoimmunity, on the 
other hand, E-ARKO might be more susceptible to autoimmune disease 
development since both positive and negative selection occur within the 
thymus. Future studies using these cell-specific ARKO mice in models of 
RA, SLE, or other autoimmune diseases will be informative in finding the 
target cells for the protective effect of androgen/AR in autoimmune disease.   
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6.3 Atherosclerosis in our models? 
Atherosclerosis is a chronic inflammatory disease and autoimmune disease is 
associated with increased risk of CVD events65,312-316. Therefore, it is not 
unlikely that the mechanism behind increased atherosclerosis development in 
ARKO partly depends on the heightened adaptive immune system in 
androgen/AR-deficient states. This notion warrants further investigation and 
studies are ongoing in our lab on atherosclerosis prone O- and E-ARKO 
mice. Also FDc-ARKO on an ApoE-/- background will be tested if this model 
shows elevated peripheral B and/or T homeostasis.   

6.4 AR target cells in vasculature? 
Additional experiments on both atherosclerosis and vascular injury in 
endothelial cell- and VSMC-specific ARKO mice would clarify the vessel-
intrinsic mechanisms and target cells for the vasculoprotective effects of 
androgens/AR. In addition, co-culture of endothelial cells and VSMCs in 
vitro might provide mechanistic insight in the cross-talk between these cell 
types influenced by androgens. Ongoing studies in our lab are addressing 
both these hypotheses. 

6.5 Increased atherosclerosis following 
preeclampsia in COMTKO females? 

From the results in Paper I, we can conclude that endogenous production of 
2-ME2 does not mediate the atheroprotective effects of estradiol in virgin 
mice. Yet, 2-ME2 seems important during pregnancy when levels are much 
increased due to placental induction of COMT317-319. Pregnant COMTKO 
females develop a preeclampsia-like state318; the mice display vascular 
defects in the placenta/decidua, with hyaline-like deposits containing foam 
cells in the vessel wall and thrombosis in the lumen as well as signs of 
endothelial damage. COMTKO mice receiving 2-ME2 showed restored 
placental health and reduced symptoms of preeclampsia. Thus, endogenous 
production of 2-ME2 via COMT likely plays an important role in 
maintaining vascular integrity during pregnancy. Notably, because only 
nulliparous/virgin female mice were included in Paper I, it cannot be 
excluded that COMTKO females would be prone to develop increased 
atherosclerosis and/or intimal hyperplasia after pregnancy, an important 
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notion to test since preeclampsia is associated with CVD events later in 
life320,321. Studies on atherogenesis in COMTKO female mice post pregnancy, 
and thus preeclampsia, would be informative in showing whether the 
association between preeclampsia and CVD is causative or solely a result of 
existence of common risk factors in these women320. 

6.6 The effects of sex vs. the effects of sex 
steroid hormones?  

CVD and autoimmune disease both have a clear sexual dimorphism in spite 
of the fact that they are associated with each other and share many features 
(see section 1.3.2); male sex is a risk factor for CVD while female sex 
strongly associates with autoimmune disease. The long-term goal of the 
research on the effects of sex steroid hormones are not only to better 
understand the mechanisms by which sex steroid hormones exert their 
effects,  but importantly also to understand the sex difference in disease 
prevalence and/or incidence. Future studies considering the match/mismatch 
between sex and sex steroid hormone effects on atherosclerosis and 
autoimmune disease will provide further mechanistic insight into underlying 
mechanisms and will likely identify novel therapeutic targets both within and 
outside the sex hormone system.  
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