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Abstract

Timetabling is a task that has to be resolved at any school or university. The fact that

it is such a common problem and that it is often a large and complex issue makes it

an interesting and suitable subject for mathematical optimization. This report presents

a model for the problem of scheduling a number of courses given by the department

of Mathematical Sciences of the University of Gothenburg and Chalmers University of

Technology. It is modeled as an integer programming problem where the constraints take

into account the requirements that are necessary for the timetable to be valid and the

objective function is chosen in such a way that it reflects the preferences of students and

teachers. The model is subsequently solved using AMPL with the solver CPLEX and

the results are visualized so that they may provide guidance on areas where the current

timetable may be improved. Sensitivity analysis is performed in order to investigate

how the solution is affected when various conditions are changed.

Sammanfattning

Schemaläggning är en uppgift som m̊aste hanteras p̊a varje skola och universitet. Att

det är ett s̊a vanligt problem och att det ofta är en stor och komplex fr̊aga gör det till

ett intressant och lämpligt ämne för matematisk optimering. Denna rapport presenterar

en modell för problemet att schemalägga ett antal kurser som ges av Institutionen för

Matematiska vetenskaper vid Göteborgs Universitet och Chalmers tekniska högskola.

Detta modelleras som ett heltalsoptimeringsproblem där bivillkoren tar hänsyn till de

krav som är nödvändiga för att schemat ska vara praktiskt möjligt och m̊alfunktionen

väljs p̊a ett s̊adant sätt att den återspelgar studenters och lärares preferenser. Modellen

löses sedan i AMPL med lösaren CPLEX och resultaten visualiseras s̊a att de kan ge

vägledning p̊a omr̊aden där det nuvarande schemat kan förbättras. Känslighetsanalys

genomförs för att undersöka hur lösningen p̊averkas när diverse förutsättningar ändras.
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1 Introduction

Optimization is a branch of mathematics concerned with finding the best solution to a given
problem. This is done by simplifying the problem and expressing it in mathematical notation
to create a so-called mathematical model describing the problem. There are many areas
where optimization is frequently used, for example in production where the goal might be
to minimize the costs of manufacturing a certain product, or when trying to find the most
efficient route for deliveries to certain destinations.

A typical optimization problem faced in a wide range of areas today is scheduling, for
example timetabling of courses at universities or scheduling of airline flights. The goal is
to find the best possible schedule that is not only practically possible, but also meets the
preferences of all parties involved. Specific applications of scheduling can be found in Pinedos
work [1].

Even though optimization is an effective technique for finding the best solution to a
variety of problems, some problems are very large and thus finding a solution can be very
time consuming. However, with increasing technical resources, many problems are today
manageable. For problems that are linear there exists a powerful solution algorithm called the
simplex method, which will be discussed further in Section 2.3. This method was developed
by George Dantzig, who was one of the pioneers within optimization theory. A detailed
description of the algorithm is written by Dantzig G. and Thapa M. N., in [2].

1.1 Background

This report describes how to solve the timetabling problem for a number of courses at the de-
partment of Mathematical Sciences of the University of Gothenburg and Chalmers University
of Technology through the use of integer programming.

Integer programming is a common approach to solve this kind of problem. It has been
applied by, among others, Daskalaki S. et al. in [3], and Dimopoulou M. and Miliotis P. in
[4]. Another possible approach is to make use of metaheuristic optimization, which is a new,
more complicated area of optimization. This was studied by Lewis R. in [5].

The timetabling at the mathematics department is currently accomplished by reusing
the timetable from previous year as closely as possible and manually correcting upcoming
problems. This is very time consuming and may take several weeks to finish, whereas an
automatized computational method would make the process faster and less demanding. Such
a method can be obtained by formulating a mathematical model of the given timetabling
problem, with respect to number of students, courses and rooms.

1.2 Specification of timetabling problem

When constructing a timetable, considerations must be taken to underlying rules telling
whether two events may occur at the same time. This implicates that there are some proper-
ties of a timetable that must be fulfilled. The problem lies in placing just one teacher and one
class, in one classroom, at one time, without any collisions. Coincidently, there is a required
number of lecture hours per course that must be scheduled every week. Besides conditions
that must be fulfilled, there are also personal opinions of teachers and students about what
makes a good schedule. This will be discussed in detail in Section 3.

This case study is made for the spring of 2013, including two study periods, each of which
has a length of eight weeks. In the first study period there are 15 courses and in the second
study period there are 13 courses. There are 11 rooms, and the number of students for the
courses varies between 4 and 68. In this case study, everything can be modeled without
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taking teachers into account, since every course has one assigned teacher who is supposed to
be available at all times. Notice that this is how it is currently done. Even so, teachers may
have some preferences which will have to be taken into account.

The resulting timetable will be one that is suitable for the mathematics department, but
it may collide with other departments’ timetables and may therefore not be a valid schedule
in practice. This is because all departments make a preliminary, potential first version of
their timetable. Then different departments compare and discuss their suggestions in order
to see if anything collides, e.g., courses in one program that are possible to take for students
at another program may not collide with other courses from either of these two programs.
If collisions are found, changes must be made. We do not have the possibility to discuss the
resulting timetable with other departments. However, if some last changes were to be made,
this would not be a problem with a mathematical tool doing all the work.

In Figure 1, the current timetable for the first study period of spring 2013 is shown. Notice
that there are some courses that are scheduled in the rooms EF and VF, which do not belong
to the mathematics department. This is due to the difficulty of finding appropriate rooms
for these courses, seeing as the number of students taking them is quite high. However, when
the timetabling is made with integer programming, this is not an issue.

1.3 Purpose

The purpose of this report is to, through the use of integer programming, determine a valid
timetable for courses given by the department of Mathematical Sciences at the University of
Gothenburg and Chalmers University of Technology during the spring of 2013. The timetable
must fulfill all requirements necessary to be practically possible and it should be optimized
with respect to preferences from teachers and students. The formulated model should be
general enough that it may be used for other study periods and departments by making
small adjustments.

1.4 Delimitations

There will be two delimitations. One is that it will be assumed that every teacher is available
at all times. In other words, there will be no consideration taken to if a teacher has another
course in another program at the same time. This is actually the way the timetable is done
today, hence this will not be a practical problem. However, this delimitation makes the
model slightly less general. The second delimitation is that the three available computer
rooms were modeled as one larger room. This simplification was made because it is common
that all computer rooms are reserved for a single lab session.

1.5 Method

To aquire the required understanding of optimization and how to construct the mathematical
model, some literature studies were needed. Since all group members do not have the same
mathematical background, all literature studies were made individually.

Information about the courses and teachers was collected from the people responsible for
timetabling at the mathematics department. They also provided information on what times
teachers generally prefer. Additional information was found on the courses’ homepages.

A model was formulated and implemented in the computer language AMPL and solved
with the solver CPLEX, described in Section 2.5. MATLAB was used to visualize the resulting
timetable, which allowed comparison with the timetable that is currently in use. The model
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was also examined with sensitivity analysis, where the stability was studied as well as the
influence of different components of the model.
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MMG800 lec Pascal
MMGL31 ex MVF26

MMG500 lec EF
MMGK11 lec Euler
MMA511 lec MVF23
MMGL31 lec MVF26
MMG720 lec MVH12
MMGF20 lec Pascal
LGMA10 ex MVF31

LGMA10 lec EF
MVG300 lec Euler
MMA421 lec MVF21
MSG200 lec Pascal
MMGK11 ex MVF23
MMGL31 ex MVF26
MMGK11 ex MVF31

MVG300 com MVF22

MMG800 lec Pascal
LGMA10 ex MVF31

MMGK11 lec Euler
MMGF30 lec MVF23
MMGL31 lec MVF33
MMG300 lec Pascal
MSG830 lec VF
LGMA10 ex MVF31
MMG500 ex MVF32
MMG500 ex MVH12

LGMA10 lec Euler
MSA200 lec MVF23
MMG300 ex MVF26
MMGK11 ex MVF31
MMGL31 ex MVF33
MMGK11 ex MVH11
MMGF20 ex MVH12
MSG830 com MVF22

MSG200 ex MVH12

MMG720 lec MVH12

MMGF20 lec Pascal
MMA421 ex MVF21
LGMA10 ex MVF23
MSG830 ex MVF33
MMGL31 comMVF22

MVG300 lec Euler
MMGF30 lec MVF23
MSG200 lec Pascal
LGMA10 ex MVF21
MMGL31 comMVF22

MSA200 lec MVF23
MVG300 com MVF22

MMGL31 ex MVF26
MMG720 ex MVH12

MMG500 lec EF
MMGK11 lec Euler
MMGL31 lec MVF26
MMG300 lec MVH12
MMG800 lec Pascal
LGMA10 ex MVF31

MSG830 lec Euler
MMA511 lec MVF23
LGMA10 lec Pascal
MMGL31 ex MVF21
MMGK11 ex MVF31
MMGK11 ex MVH11
MMG300 ex MVH12

MMA421 lec MVF21
MMG800 lec Pascal
LGMA10 ex MVF31

MMGK11 lec Euler
MMGF30 lec MVF23
MMA511 lec MVF33
MMGL31 lec Pascal
MMGF20 ex MVF26
LGMA10 ex MVF31
MMG500 ex MVF32
MMG500 ex MVH12

LGMA10 lec EF
MVG300 lec Euler
MMGK11 ex MVF21
MSA200 ex MVF23
MMGK11 ex MVF31
MMGL31 ex MVF33
MSG200 ex MVH12
MSG830 com MVF22

MVG300 com MVF22

Monday Tuesday Wednesday Thursday Friday
8:00

10:00

13:15

15:15

Figure 1: The current timetable for all courses in the first study period of spring 2013. As seen, a week is divided into five days where
every day is divided into four time periods. Notice that all sessions are presented with the course code and type of session to the left and
the room to the right. Notice that the rooms EF and VF are not part of the mathematics department.
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2 Theory

The analysis of the given optimization problem and related algorithms requires understanding
of the key concepts in optimization theory. Therefore, the essential ideas and basic facts used
to formulate and solve the described timetabling problem are presented.

2.1 Modeling and mathematical programming

The general idea of optimization, also referred to as mathematical programming, is to find the
best solution to a given problem. This is done by employing different optimization algorithms
to the mathematical description of the problem, which consists of an objective function f(x),
that is to be minimized or maximized, and a set of constraints. These constraints are of
two different types, so-called hard constraints, which have to be fulfilled, and soft constraints

which should be fulfilled if possible. The objective function expresses the objective of the
given problem in terms of variables that can be controlled, so-called decision variables x.
The variables that satisfy the given constraints define the feasible set. The objective function,
together with the set of constraints, is what builds the mathematical model for the given
problem.

Definition 1. A general mathematical programming problem is defined as

min
x

f(x),

s.t. x ∈ X,

where s.t. is an abbreviation for ’subject to’. Here, the objective function is f(x) : X → R

and X ⊆ R
n, where n ∈ N, is the feasible set determined by constraints.

The problem here is written as a minimization problem, which is usually done by con-
vention. A maximization problem can easily be rewritten as a minimization problem by
minimizing the negative objective function. The algorithms for solving many optimization
problems require considerable numerical effort but more efficient methods are available for
certain types of problems. Examples of such problems are linear programs and integer pro-
grams, which can be used to model many real world problems. A linear programming (LP)
problem consists of only linear functions describing the objective function and the set of con-
straints. Linear programs will be discussed more deeply in Section 2.3. A problem where all
decision variables are integers and the objective function and the constraints are convention-
ally linear is called an integer programming (IP) problem and is described further in Section
2.4. The problem solved in this report is an integer programming problem and therefore
we mainly focus on this type of problems and the algorithms for solving them. There are
some other types of mathematical programs, for example non-linear programs and stochastic
programs, but these will not be discussed in this report. Non-linear programming problems
are more difficult to solve than LP problems, since there is no single method that can solve a
general non-linear model. For LP problems there do exist general methods, where the most
used is the simplex method which will be discussed in Section 2.3. An additional important
term in optimization, that benefits the solution methods, is convexity.

2.2 Convexity

A problem is convex if the objective function is a convex function and the feasible set is a
convex set.
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Definition 2. A set S is said to be convex if it satisfies

x1,x2 ∈ S

λ ∈ (0,1)

}

⇒ λx1 + (1 − λ)x2 ∈ S. (1)

To get an intuitive understanding of what this means, consider the two-dimensional case.
A two dimensional set is convex if it is possible to draw a straight line between any two
points in the set, without the line ever leaving the set.

Definition 3. A function f(x) : X → R is said to be convex on the convex feasible region X
if for all points x1,x2 ∈ X and λ ∈ (0, 1) we have that

f
(

λx1 + (1 − λ)x2
)

≤ λf(x1) + (1 − λ)f(x2).

In other words, a two dimensional function is convex if the function values between two
arbitrary points on the graph of the function lie below the straight line between these two
points.

The optimal solution to a problem is given as a global minimum of the objective function
on the feasible set. Solution methods are often designed to find local minima, even though
the solution of interest is the global minimum. For convex problems it is a fact that a
local minimum is also a global minimum [6]. This makes the convexity property useful in
optimization, since there are not many effecient methods to solve problems that are non-
convex.

2.3 Linear programming

In linear programming both the objective function and the constraints are linear. A general
linear programming problem is a problem of the form

min z =

n
∑

j=1

cjxj ,

s.t.

n
∑

j=1

aijxj ≥ bi, i = 1, . . . , m,

xj ≥ 0, j = 1, . . . , n.

(2)

Here, cj is the weight coefficient of the objective function at variable xj and aij and bi are
the coefficients of the constraints. A linear program is obviously always convex, for a detailed
proof see [6].

A common approach for solving LP problems is to use the simplex method, which is often
an efficient method. This method is designed for linear programs in standard form, that is, the
problem should be rewritten to consist of only positive variables and the inequalities should
be replaced by equalities. Changing an inequality to an equality is possible by introducing
new variables, so-called slack variables. To clarify this step we look at an example.
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Consider the following inequality:

x1 + x2 ≥ b, x1, x2 > 0.

It is possible to find a variable s1 such that

x1 + x2 + s1 = b,

where s1 ≥ 0 is a slack variable. A free of sign variable xa can be rewritten by making the
substitution

xa = x+
a − x−

a ,

where x+
a , x−

a ≥ 0, see [6]. The problem (2) can now be rewritten in standard form as

min z =

n
∑

j=1

cjxj ,

s.t.
n

∑

j=1

aijxj = bi, i = 1, . . . , m,

xj ≥ 0, j = 1, . . . , n + k,

(3)

where xj , j = n + 1, . . . , n + k, are slack variables. The inequality sign has been changed to
an equality sign by appropriate choices of the slack variables.

It is now possible to define a linear problem in standard form in the more compact matrix
form.

Definition 4. A linear programming problem is said to be in the standard matrix form if it

is expressed as

min z = cT x,

s.t. Ax = b,

x ≥ 0,

(4)

where A ∈ R
m×n, c ∈ R

n, x ∈ R
n and b ≥ 0m. Here, cT is the transpose of c.

The simplex method

The simplex method utilizes the fundamental theorem of linear programming, which says
that the optimal solution to a problem is found in an extreme point of the feasible set of
solutions. To prove this theorem, we first need to define the term extreme point.

Definition 5. A point v of a convex set S is called an extreme point if whenever

v = λx1 + (1 − λ)x2,

where x1,x2 ∈ S and λ ∈ (0, 1), then

v = x1 = x2.

For a set in two or three dimensions, an extreme point can be thought of as a corner.

Theorem 1: Fundamental theorem of linear programming.

Assume that the feasible region X of an LP problem is bounded and non-empty, i.e., there

exists a bounded optimal solution to the LP problem. Then the minimum value of the objective

function cT x is obtained in an extreme point xk of X.
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The proof can now be presented as in Optimization by Lundgren et al. [6].

Proof. Assume the opposite, i.e., there exists an inner point or a boundary point (not an
extreme point) x̂ that minimizes cT x, and no extreme point xk to X gives the same objective
function value, i.e., cT x̂ < cT xk, k = 1, . . . , p. Since the feasible region defines a convex
set, every feasible point can be written as a convex combination of the extreme points in X.
Hence also the point x̂, i.e., x̂ can be expressed as

x̂ =

p
∑

k=1

λkxk,

where
p

∑

k=1

λk = 1, λk ≥ 0, k = 1, . . . , p.

This implies that

cT x̂ = cT

p
∑

k=1

λkxk =

p
∑

k=1

λkc
T xk >

p
∑

k=1

λkc
T x̂ = cT x̂

p
∑

k=1

λk = cT x̂,

which is a contradiction. Therefore, the assumption that there exists an inner point or a
boundary point that minimizes cT x is false.

What the simplex method does is to search through the extreme points to find which
extreme point gives the optimal solution [2]. This is done by systematically examining one
solution after another, in a direction where the value of the objective function is improved.
Linear problems are convex problems, hence a found local minimum also qualifies as a global
minimum.

Before explaining the simplex algorithm, we need the definition of a basic feasible solution.

Definition 6. For a problem in standard form, with the additional properties that A ∈ R
m×n

and rankA = rank(A,b) = m, n > m, a point x̃ is a basic solution if:

1. The equality constraints are satisfied at x̃, that is Ax̃ = b.

2. The columns of A corresponding to the non-zero components of x̃ are linearly indepen-

dent.

A basic solution that also satisfies the non-negativity constraints x ≥ 0n and B−1b ≥ 0m is

called a basic feasible solution.

We also need to present and explain some notation. The decision variables x can be
divided into basic and non-basic variables according to x = (xT

B ,xT
N )T . Here, xB and xN

denotes basic and non-basic variables respectively. Non-basic variables are variables that are
set to zero in order to find a basic solution to the problem, and the basic variables are the
variables that are not set to zero. In the same way as the decision variables can be divided
into two parts, so can the cost coefficients c = (cT

B , cT
N )T and the matrix A = (B| N). Here,

B consists of the coefficients of the basic variables and N consists of the coefficients of the
non-basic variables.

It is possible to prove that a basic feasible solution is equivalent to an extreme point,
see [7]. The simplex algorithm starts from a point, chosen as a basic feasible solution to the
problem. If there is no known basic feasible solution, the algorithm starts with finding such a
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point. The problem can then be divided into two parts, phase I where we find a starting point
and phase II where the solution to the given problem is found. First, phase II is described,
assuming a basic feasible solution to the given problem is known. The simplex algorithm can
now be described in a step by step procedure, following the description in An Introduction

to Continuous Optimization by Andréasson M. et al. [7]:

1. Choose the basic feasible solution x = (xT
B , xT

N )T as a starting point.

2. Determine which direction will be most beneficial to the solution, by calculating reduced
costs of the non-basic variables:

(c̃N )j := (cT
N − cT

NB−1N)j , j = 1, . . . , n − m, (5)

where (c̃N )j is a vector of the reduced costs. For the j that minimizes (c̃N )j we choose
(xN )j to enter the basis. If (c̃N )j ≥ 0 for all j = 1, . . . , n − m, then no direction is
beneficial and the optimal solution is found.

3. Determine the leaving variable, equivalent to find how long it is possible to change the
ingoing variable in the chosen direction, without leaving the feasible region. This is
done by choosing (xB)i for the i that minimizes

(B−1b)i

(B−1Nj)i

, i ∈ {k|(B−1Nj)k > 0}. (6)

If
B−1Nj ≤ 0m,

then the problem is unbounded and the algorithm stops.

4. Let (xN )j take the place of (xB)i in the basis and repeat from step 1.

To find a possible starting point and solve phase I, consider the situation where a solution
to the problem (4) is wanted. By introducing so-called artificial variables a ∈ R

m it is
possible to formulate the new problem:

min w =(1m)
T

a,

s.t Ax + Ima = b,

x ≥ 0,

a ≥ 0.

(7)

An additional variable ai, i = 1, . . . , m is introduced for every linear constraint. If a is taken
as the basic variable and x as the non-basic variable, then B will be the unit matrix in R

m×m.
This will in fact be a basic feasible solution to problem (7) and can be used as a starting point
for the simplex method. This new problem can now be solved by the algorithm as described
above. It is possible to show, see [7], that for a given optimal solution to w, we must have
that a = 0 and that x is a basic feasible solution to problem (4). If the solution to w instead
is greater than zero, it means that the original problem is infeasible since Ax + Ima = b

could not be fulfilled with a = 0, and this was required in the original problem.
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2.4 Integer programming

In many real world problems some variables may not take any value. For example if the
question is whether a specific project should be carried through or not we would not get any
useful information with a linear model. We would need a variable that takes the value one if
the project should be realized and zero otherwise. Then we get an IP problem, i.e., when all
variables may only take integer values. Solving it straightforwardly as an LP problem and
rounding the LP solution does not necassarily give the optimal solution. If the variable in the
above example can take any value between zero and one, we can not conclude that the project
should be realized even if we get 0.99 as the optimal solution. There could be several other
aspects that make this choice disadvantageous, for instance if there is not enough money
available to complete the project and it is of no use when it is incomplete.

Other examples of IP problems are scheduling problems, assignment problems, and the

traveling salesman problem. Application of IP to these topics can be found in [8], [9], and
[10]. A general IP problem may look like

min z =

n
∑

j=1

cjxj ,

s.t.

n
∑

j=1

aijxj ≥ bi, i = 1, . . . , m,

xj ≥ 0 integer, j = 1, . . . , n.

IP problems are generally much harder to solve than LP problems. This is because of
the fact that the optimal solution can be anywhere in the discrete set of possible solutions,
not only in extreme points. This set is non-convex, i.e., if we take any two points in this
set and connect them with a straight line it will always pass through infinitely many points
lying outside the feasible set. The easiest way to solve an IP problem is to compute all
possible solutions and simply choose the best one. This obvious method works in theory for
all integer problems, but it takes too much time in practice for large problems. Therefore
several other teqniques have been developed. The most used are variants of the branch-and-

bound method, usually combined with a cutting-plane method, then called branch-and-cut.
Other used methods are heuristics, i.e., non-optimizing methods. Heuristics usually find a
feasible solution relatively quickly but do not say anything about how close to the optimum it
is [11]. Sometimes heuristics are combined with algorithms that try to improve that solution.

The branch-and-bound method and cutting-plane methods will be discussed and explained
further. For this we need the definition of LP relaxation for a binary problem.

Definition 7. The LP relaxation of a binary IP problem is the problem that arises by re-

placing the constraint that each variable must be 0 or 1 by the weaker constraint that each

variable belongs to the closed interval [0,1]. That is, each constraint of the form

xi ∈ {0,1}

is replaced by the two constraints

0 ≤ xi ≤ 1.

Branch-and-bound

The idea of the branch-and-bound method is to divide the problem into subproblems and
solve LP relaxed versions of these problems, this is the branching step. The subproblems can

10



be defined by fixing a subset of the variables either to 0 or 1, for further details see [6]. For
each subproblem we try to estimate how good a solution to this problem is and this gives a
bound to the optimal solution. The number of problems will increase, but on the other hand
LP problems are easy to solve, e.g., with the simplex method, as described in Section 2.3.
Also, if there is no solution to a relaxed problem, there is no solution to the original problem.

To demonstrate the method we look at a simple example. Assume that our problem is

min z = x1 + 2x2 + 3x3,

s.t. 2x1 + 2x2 + 2x3 ≥ 3,

x1, x2, x3 ∈ {0, 1}.

The procedure of solving this problem with branch-and-bound is illustrated in Figure 2. We
start by solving the LP relaxation to the original problem. The optimal objective value z0 of
the relaxed problem P0 is a lower bound to the objective function in our original problem,
i.e., there is no feasible solution with a better value. This follows from the fact that the
set containing the solutions to the relaxed problem also contains all solutions to the original
problem. We take P0 as the starting node in our tree. The solution to P0 is not feasible and
therefore we divide the feasible region into two parts, by fixing x2 = 0 and x2 = 1. We start
with x2 = 1 and denote this subproblem P1. We continue in the same fashion until we find
our first feasible solution in P2. This solution to the LP relaxation have all variables binary
and is an upper bound to the original problem. When we solve the LP relaxed problem in P3

we see that the solution is worse than our upper bound, therefore we do not have to explore
this branch further. Now we have examined every possibility with x2 = 1, thus we continue
with the branch where x2 = 0. If we find a lower feasible solution than the current best, the
upper bound of the optimal solution is updated. The search continues until each branch is
either computed or neglected. When the search is finished we have the optimal solution in
our upper bound.

P0

P5

P4 P1

P6
P3 P2

x = (1, 0.5, 0)
z0 = 1.5

x2 = 0 x2 = 1

x = (1, 0, 0.5)
z4 = 2.5

x3 = 0 x3 = 1 x1 = 0 x1 = 1

x = (0.5, 1, 0)
z1 = 2.5

x = (0, 1, 0.5)
z3 = 3.5

Infeasible

x = (1, 0, 1)
z5 = 4 x = (1, 1, 0)

z2 = 3

FeasibleWorseWorse

Figure 2: Search tree describing the branch-and-bound method. The original problem P0 is
divided into the sub problems Pi, i = 1, . . . , 6. At every Pi, a relaxed problem is solved
with one or more variables fixed, until a feasible solution is obtained. Then the remaining
branches are examined and finally the optimal solution is found.
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Even though this method guarantees that the obtained solution is optimal it still requires
too much computing time for large problems. The number of sub problems grows expo-
nentially with the number of variables, therefore sometimes the search is stopped when the
difference between the upper and lower bound is small enough. Another way to reduce the
number of subproblems is to use cutting planes.

Cutting-plane methods

Cutting-plane methods are another group of methods that are based on repeatedly solving LP
relaxations of the IP problem. To understand the basic principle of a cutting-plane method
the following definitions are needed.

Definition 8. A point y is a convex combination of the points xk, k ∈ K, if y =
∑

k∈K

λkx
k,

∑

k∈K

λk = 1, and λk ≥ 0, ∀ k ∈ K.

Definition 9. The convex hull of a set of points xk, k ∈ K, consists of all possible convex

combinations of these points.

The convex hull of an arbitrary subset of R
n is the smallest convex set that includes this

subset. To get an intuitive understanding, consider the following set.






5x1 + 4x2 ≤ 32
−17x1 + 9x2 ≤ 9

x1,x2 ≥ 0 , integer
(8)

Figure 3 illustrates the convex hull of this set. Recall that for an IP problem the feasible
set is defined by linear inequalities and equalities, and the requirement for variables to be
integers. All points in such a set will be contained in the convex hull, but no new feasible
points will be added.

x2

x1

5

4

3

2

1

1 2 3 4 5 6

Figure 3: The figure illustrates the set (8) with its convex hull shaded. The two lines represent
the inequalities and the dots represent the discrete points in the set.
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Definition 10. Let X denote the feasible set of some IP problem. A valid inequality is a

linear inequality,
n
∑

j=1

ajxj ≤ b, that is satisfied for every x ∈ X.

Since a valid inequality is satisfied for every feasible point, adding it as a constraint to the
IP problem will not remove any feasible IP solution.

Now consider an IP problem with feasible region X. From the definitions we can make
two important observations:

� Adding valid inequalities of the problem to X will approximate the convex hull of X,
denoted by Xc.

� Solving the LP relaxation of the IP problem with x ∈ Xc will produce the same solution
as solving the IP problem with x ∈ X.

A cutting-plane method solves LP relaxations of an IP problem and in each new iteration it
adds one or several valid inequalities, in this context called cuts. This will move the solution
of the LP relaxation closer to the optimal IP solution. It is not necessary to make cuts until
the entire convex hull has been found. For a cut to be meaningful it has to be made so that
the current LP optimum is removed. Otherwise, the optimal LP solution will not change in
the next iteration. There are many strategies for generating these cuts, see for example [6],
[12] and [13].

Cutting planes can be used together with branch-and-bound to cut away some parts of
the LP relaxations’ feasible sets and reduce the computation load.

2.5 AMPL and CPLEX

AMPL (”A Mathematical Programming Language”) is a computer language used for mod-
eling and solving various types of large scale optimization problems. AMPL is well suited
for these problems because the syntax closely resembles the mathematical notation used in
optimization. For example, it is very simple to define a variable to have indices from differ-
ent sets and then sum over one or several of these indices. Variables can be chosen to be
continuous, integer or binary depending on the problem at hand.

To model an optimization problem in AMPL, two files are used: one model file and one
data file. The model file contains definitions of variables, all constraints and the objective
function, while the data file contains definitions of sets and values of the parameters that
are used. To solve a problem, these files must be loaded into AMPL. Executing the solve
command will then generate a specific optimization problem and, unless an error message
stops the process, AMPL enters the presolve phase. In this stage AMPL attempts to simplify
the problem, for example by finding constraints that fix a variable or eliminating constraints
that are redundant, see [14] for more details. When this is done, the simplified problem is
passed to one of many possible solvers.

The default solver for linear integer programs, and the one used in this report, is CPLEX.
For this kind of problem CPLEX uses branch-and-cut [15], which is a combination of a
branch-and-bound method and a cutting-plane method, which are both explained in Section
2.4. A branch-and-cut method iteratively solves LP relaxations of the IP problem and breaks
it down as in a branch-and-bound method and adds valid inequalities so as to more closely
approximate the IP problem [16]. There is a multitude of options available for CPLEX that
allow the user to give instructions on how the solver should operate but since the problem
solved in this report is relatively small and quickly solved by a modern computer it will not
be necessary to adjust the default settings.
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When the solver is finished it will return the optimal solution to AMPL which can then
display all relevant information about the solution including objective value, variable values,
which inequality constraints are active (i.e., holds with equality) etc.
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3 Problem description

To solve the given timetabling problem, a model has to be constructed. All variables will
be binary since they will essentially model yes-or-no decisions, i.e, if a course should be
scheduled at a certain time on a certain day or not. The model then takes the form of an
integer programming problem and may thus be solved as such in AMPL. First, some specifics
of the model are discussed individually, such as students, teachers, courses, and rooms. After
that, the description of all the used constraints are listed.

3.1 Students

There are different groups of students taking different courses, depending on what program
and year they study. Instead of sets of different groups of students the model has subsets of
the set of courses, where one subset contains all courses for one group of students.

3.2 Teachers

Each course is given by a certain teacher, assumed to be available at any time of the day.
Teachers are basically connected to courses and therefore there are no variables for the teach-
ers. In case a teacher has certain preferences, this is implemented in the objective function.
By adding a weight on a certain time of a certain day for the course which is taught by the
teacher, the course will not be scheduled at this time if possible.

3.3 Courses

There is a certain number of courses to be scheduled, depending on the study period. Every
course has a certain number of lectures, exercises, and computer labs during that study
period. Each course is identified by a course code and has a certain number of students who
can and will attend it. All the courses are split up into different course groups containing
courses taken by the same group of students. These groups are the courses for the students
studying the first year of the mathematics program at the University of Gothenburg, the
second year of the mathematics program at the University of Gothenburg, the first year of
Engineering mathematics and computational science at Chalmers University of Technology
and the second year of Engineering mathematics and computational science at Chalmers
University of Technology. Collisions between courses are not allowed within any of these
groups.

There are two additional groups, advanced courses and other courses. Advanced courses

are courses for students studying the third year of the mathematics program at the Univer-
sity of Gothenburg. The lectures in these courses are not allowed to collide but exercises and
computer labs are. This is due to the high number of courses in this group. Other courses

includes various remaining courses that are allowed to collide with any course except them-
selves. For a few courses the exercises are split into smaller groups. Also, some courses are
scheduled together with other departments, in the rooms of the mathematics department.
These are fixed and may not be changed. In the actual timetable, seen in Figure 1, there are
some courses with sessions scheduled in rooms not belonging to the mathematics department.
In the model, these sessions will be scheduled in the rooms that do belong to the mathematics
department.
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3.4 Rooms

There is a certain number of rooms available with different capacities for students. The rooms
and their capacities stay the same for every study period. There are ten rooms for lectures
and eight rooms for exercises. The exercise rooms are used as lecture rooms as well and
are thus included in the ten lecture rooms. There are some special computer rooms which
are used for computer labs. In the mathematical formulation, the simplification is made
that there is only one large computer room. This was done because it is a fairly common
occurrence that all computer rooms are booked for one lab session. Only a few rooms are
already occupied by courses that cannot be changed or moved. Otherwise, the rooms are free
and can be used at any time.

3.5 Constraints

There are two groups of constraints to be taken into consideration, hard constraints and soft
constraints, as described in Section 2.1. The constraints were formulated based on infor-
mation obtained from those responsible for the scheduling at the mathematics department.
The hard constraints are necessary to get a valid timetable and the soft constraints reflect
the preferences of the majority.

Hard constraints

1. There must be no more than one lecture, exercise or computer lab in one room at one
time.

2. The timetable has to be complete, i.e., all courses must be scheduled with the required
number of sessions each week.

3. The rooms must be large enough for the courses.

4. No course is allowed to collide with itself.

5. Collisions between courses in the same group are not allowed, except for advanced

courses and other courses.

6. Collisions between lectures in advanced courses are not allowed.

7. Lectures, exercises and computer labs must be given in their respective corresponding
rooms.

Soft constraints

1. There should be no more then one lecture, one exercise, and one computer lab per day
and course.

2. The timetable for the different groups of students should be spread over the week and
as compact as possible during each day.

3. An exercise in a course should be given immediately after a lecture in the same course.

4. Every lecture in a course should be in the same room. This applies to exercises as well.

5. Monday morning and Friday afternoon should not contain any sessions.

6. Sessions should preferably be scheduled between 10:00 to 15:00.
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4 Mathematical formulation

This section contains the mathematical description of the problem and a list of all included
sets, parameters, variables and constraints. At the mathematics department of the University
of Gothenburg and Chalmers University of Technology, every year is divided into four study
periods, where each period spans eight weeks. The rooms are the same in each period but the
courses are different. The teaching times are from Monday to Friday, 8:00 to 17:00, where
each day is divided into four time periods. Between each time period there is at least a 15
minute break.

The model is made in such a way that it is possible to make a timetable for any study
period by replacing the courses and adding the new ones to the correct sets.

4.1 Model

Listed below are all sets, parameters, variables, and constraints used in the optimization
model. The AMPL model file used for the first study period is presented in Appendix B and
the MATLAB code used to visualize the solution is presented in Appendix C.

Sets

� D = {1, 2, 3, 4, 5} The days from Monday until Friday.

� P = {1, 2, 3, 4} The time periods of a day where 1 is 8:00-9:45, 2 is 10:00-11:45, 3 is
13:15-15:00 and 4 is 15:15-17:00.

� CGU1 ={course#1, . . . , course#|CGU1|} Courses given to first year students of the
mathematics program at the University of Gothenburg.

� CGU2 ={course#1, . . . , course#|CGU2|} Courses given to second year students of the
mathematics program at the University of Gothenburg.

� CEM1 ={course#1, . . . , course#|CEM1|} Courses given to first year students of Engi-
neering mathematics and computational science at Chalmers University of Technology.

� CEM2 ={course#1, . . . , course#|CEM2|} Courses given to second year students of Engi-
neering mathematics and computational science at Chalmers University of Technology.

� Cadv ={course#1, . . . , course#|Cadv|} Advanced courses.

� Cothers ={course#1, . . . , course#|Cothers|} Other courses.

� C = CGU1 ∪ CGU2 ∪ CEM1 ∪ Cadv ∪ Cothers All courses.

� Cg The set of courses split into two or more exercise groups, Cg ⊆ C.

� C1 The set of courses with more than 3 lectures per week, C1 ⊆ C.

� C2 The set of courses with more exercises than lectures per week C2 ⊆ C.

� C3 The set of courses with more than five exercises per week C3 ⊆ C.

� C4 The set of courses with more than one computer lab per day, C4 ⊆ C.

� C5 The set of courses with more than five exercises per week, without being fixed,
C5 ⊆ C.
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� Rlec ={room#1, . . . , room#|Rlec|} The rooms used for lectures.

� Rex ={room#1, . . . , room#|Rex|} The rooms used for exercises.

� Rcom ={room#1, . . . , room#|Rcom|} The rooms with computers used for computer
labs.

� R = Rlec ∪Rex ∪Rcom All rooms.

Parameters

� sc The course size, i.e., the number of students, for course c ∈ C.

� mr The room capacity for room r ∈ R.

� nlec,c The number of lectures for course c ∈ C.

� nex,c The number of exercises for course c ∈ C.

� ncom,c The number of computer labs for course c ∈ C.

� gc The number of exercise groups for course c ∈ C.

Variables

� xd,p,c,r Binary variable where d ∈ D, p ∈ P, c ∈ C and r ∈ R. The variable takes the
value 1 if course c has a lecture on day d, at time p, in room r. Otherwise it is 0.

� yd,p,c,r Binary variable where d ∈ D, p ∈ P, c ∈ C and r ∈ R. The variable takes the
value 1 if course c has an exercise on day d, at time p, in room r. Otherwise it is 0.

� zd,p,c,r Binary variable where d ∈ D, p ∈ P, c ∈ C and r ∈ R. The variable takes the
value 1 if course c has a computer lab on day d, at time p, in room r. Otherwise it is 0.

� w1c,r Binary variable where c ∈ C and r ∈ R. The variable takes the value 1 if course
c has a lecture in room r. Otherwise it is 0. This variable is used to force the lectures
of course c to always be in the same room.

� w2c,r Binary variable where c ∈ C and r ∈ R. The variable takes the value 1 if course c
has an exercise in room r. Otherwise it is 0. This variable is used to force the exercises
of course c to always be in the same room.

Constraints

xd,p,c,r · sc ≤ mr, d ∈ D, p ∈ P, c ∈ C, r ∈ Rlec, (9)

0.8 · yd,p,c,r · sc/gc ≤ mr, d ∈ D, p ∈ P, c ∈ C, r ∈ Rex, (10)

zd,p,c,r · sc ≤ mr, d ∈ D, p ∈ P, c ∈ C, r ∈ Rcom, (11)

∑

c∈C

(xd,p,c,r + yd,p,c,r + zd,p,c,r) ≤ 1, d ∈ D, p ∈ P, r ∈ R, (12)

18



∑

c∈CGU1

∑

r∈R

(xd,p,c,r + yd,p,c,r/gc + zd,p,c,r) ≤ 1, d ∈ D, p ∈ P, (13)

∑

c∈CGU2

∑

r∈R

(xd,p,c,r + yd,p,c,r/gc + zd,p,c,r) ≤ 1, d ∈ D, p ∈ P, (14)

∑

c∈CEM1

∑

r∈R

(xd,p,c,r + yd,p,c,r/gc + zd,p,c,r) ≤ 1, d ∈ D, p ∈ P, (15)

∑

c∈CEM2

∑

r∈R

(xd,p,c,r + yd,p,c,r/gc + zd,p,c,r) ≤ 1, d ∈ D, p ∈ P, (16)

∑

c∈Cadv

∑

r∈R

(xd,p,c,r) ≤ 1, d ∈ D, p ∈ P, (17)

∑

r∈R

(xd,p,c,r + yd,p,c,r/gc + zd,p,c,r) ≤ 1, d ∈ D, p ∈ P c ∈ Cothers, (18)

∑

d∈D

∑

p∈P

∑

r∈Rlec

xd,p,c,r = nlec,c, c ∈ C, (19)

∑

d∈D

∑

p∈P

∑

r∈Rex

yd,p,c,r = nex,c · gc, c ∈ C, (20)

∑

d∈D

∑

p∈P

∑

r∈Rcom

zd,p,c,r = ncom,c, c ∈ C, (21)

∑

p∈P

∑

r∈R

(xd,p,c,r + xd+1,p,c,r) ≤ 1, d ∈ D\{5}, c ∈ C\{C1}, (22)

∑

d∈D

∑

p∈P

xd,p,c,r − w1c,r · nlec,c = 0, c ∈ C, r ∈ Rlec, (23)

∑

d∈D

∑

p∈P

xd,p,c,r − w2c,r · nex,c = 0, c ∈ C\{Cg}, r ∈ Rex, (24)
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∑

d∈D

∑

p∈P

(yd,p,c,r1 + yd,p,c,r2) − w2c,r1 · nex,c − w2c,r2 · nex,c = 0, (25)

c ∈ Cg, r1 ∈ Rex, r2 ∈ Rex,

∑

r∈Rlec

(yd,p,c,r/gc − xd,p−1,c,r) ≤ 0, d ∈ D, p ∈ P\{1}, c ∈ C\{C2}, (26)

∑

p∈P

∑

r∈R

xd,p,c,r ≤ 1, d ∈ D, c ∈ C, (27)

∑

p∈P

∑

r∈R

yd,p,c,r ≤ 1, d ∈ D, c ∈ C\{Cg, C3}, (28)

∑

p∈P

∑

r∈R

yd,p,c,r ≤ 2, d ∈ D, c ∈ {C5}, (29)

∑

p∈P

∑

r∈R

zd,p,c,r ≤ 1, d ∈ D, c ∈ C\{C4}, (30)

Explanation of the constraints

(9) The rooms must be at least as large as the course size for the lectures.

(10) The rooms must be large enough for the exercises. There is a multiplicative factor of
0.8 because normally not all the students take part in the exercises.

(11) The rooms must be at least as large as the course size for the computer labs.

(12) There must be no more than one lecture/exercise/computer lab in a given room at a
given time.

(13) Courses in CGU1 must not collide.

(14) Courses in CGU2 must not collide.

(15) Courses in CEM1 must not collide.

(16) Courses in CEM2 must not collide.

(17) Lectures of courses in Cadv must not collide.

(18) Courses in Cothers must not collide with themselves.

(19)-(21) Every course must have the required number of lectures, exercises, and computer
labs.

(22) Lectures must be spread out over the week, except for courses in C1.
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(23) For each course every lecture must be in the same room.

(24) For each course every exercise must in the same room.

(25) For each course where the exercises are split up into groups, each group’s sessions must
be in the same room.

(26) Exercises must be after a lecture in the same course or in time period 1.

(27) There must be no more than one lecture per day and course.

(28) There must be no more than one exercise per day and course, except for courses in C3.

(29) There must be no more than two exercises per day for courses in C5.

(30) There must be no more than one computer lab per day and course, except for courses
in C4.

Objective function

The objective function is used to set preferences for the different periods of the day. Since
the constraints will always ensure that the resulting timetable is valid, the objective function
can be chosen to reflect whatever preferences the majority has. This is done by assigning
weights to the variables corresponding to the different time periods. As this is a minimization
problem, a large weight will increase the objective function and will therefore not be beneficial
to the solution. Thus the weights control the result and the way they are chosen is essential
and will be discussed in Section 6. The objective funtion is specified as follows

min f =
∑

d∈D

∑

c∈C

∑

r∈R

(xd,1,c,r + xd,3,c,r + 4xd,4,c,r + 3yd,1,c,r + yd,2,c,r

+ 2yd,4,c,r + 3zd,1,c,r + zd,2,c,r + 2zd,4,c,r)

+
∑

c∈C

∑

r∈R

5(x1,1,c,r + y1,1,c,r + z1,1,c,r + x5,4,c,r + y5,4,c,r + z5,4,c,r).

(31)

The triple sum is over courses, days and rooms, and controls lectures, exercises and
computer labs. Lectures are preferably held in time period 2, which is why xd,2,c,r is not
included in the sum, i.e., it has a weight of zero. If this is not possible they should be in
time period 1 or 3, which is why these periods have a weight of one. The least preferred time
period for lectures is time period 4, which has a weight of four, thus it will only be chosen if
no other better solution is possible. Exercises and computer labs are preferably held in time
period 3 and then in descending order in time period 2, 4, and 1.

The double sum assigns large weights to Monday time period 1 and Friday time period 4
because these are the two least preferred times.

4.2 Data

In this section only the data for the first study period of spring 2013 is presented, data for
the second period is included in Appendix A. Table 1 includes all data about the rooms, that
is, names, sizes and types. This data can be used for any study period, as the rooms, their
sizes and their types do not change.
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Name Type Size

Euler lecture 70

Pascal lecture 60

MVF21 lecture/exercise 30

MVF23 lecture/exercise 30

MVF26 lecture/exercise 36

MVF31 lecture/exercise 42

MVF32 lecture/exercise 16

MVF33 lecture/exercise 36

MVH11 lecture/exercise 26

MVH12 lecture/exercise 38

MVF22 computer lab 90

Table 1: Rooms available at the department of Mathematical Sciences

Table 2 includes all data for the courses, that is, their sizes and their number of lectures,
exercises, and computer labs, how many exercise groups each course is split up to, in which
sets the courses are included, and whether they are fixed. In total, there are 78 sessions.
This data is different for each study period according to the offered courses. The course sizes
used are the actual number of registered students for the courses during the spring of 2013.

Course Course groups Size Lectures Exercises Computer No. of Fixed

code labs groups

MMG720 Cadv 8 2 1 0 1 No

MMG300 CGU1 38 2 2 0 1 Yes

MVG300 CGU1 34 3 0 3 1 Yes

MMG800 CEM1, Cadv 55 4 0 0 1 No

MSG200 CGU2, CEM1 50 2 2 0 1 No

MMA511 CEM1, Cadv 13 3 0 0 1 No

MMG500 CGU2, CEM2, Cadv 28 2 2 0 2 No

MSA200 CEM2 11 2 1 0 1 No

MMA421 CEM2, Cadv 19 2 1 0 1 No

MSG830 Cothers 44 2 1 2 1 Yes

MMGF20 Cothers 29 2 2 0 1 No

MMGK11 Cothers 49 4 4 0 2 No

MMGL31 Cothers 20 4 6 2 1 No

LGMA10 Cothers 35 4 8 0 1 Yes

MMGF30 Cothers 21 3 0 0 1 Yes

Table 2: Courses in the first study period of spring 2013
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5 Results

Using the data in Table 1 and 2 in the model and visualizing the results gives the timetable
in Figure 4. The figure shows a timetable for one arbitrary week, consisting of five days
with four time periods per day. The timetable in the figure contains all courses for which
a timetable is sought, as well as the rooms the courses are scheduled in. To clarify the
timetable, and to make it easier to examine whether the constraints are fulfilled within each
group, timetables consisting of smaller groups of courses are given in Figure 5 - 8.

In Figure 5 all courses given to first and second year students of the mathematics program
at the University of Gothenburg are shown. The courses are given a color to distinguish first
year students from second year students. Courses colored with color 1 are the courses given
to first year students and courses colored with color 2 are the courses given to second year
students. The same is done for students of Engineering mathematics and computational
science at Chalmers University of Technology in Figure 6. Here color 3 is for first year
students and color 4 is for second year students. In Figure 7 and 8 advanced courses and
other courses are shown respectively.

From Figure 5 and Figure 6 it is easy to see that no courses with the same color collide,
i.e., courses within the same group do not collide. In Figure 7 we see that no lectures collide
but that some exercises collide with lectures of other courses, which is allowed in the advanced

courses group according to the model. For other courses collisions are allowed, as seen in
Figure 8. All figures show that no course collides with itself. Hence hard constraints 4, 5 and
6 are fulfilled.

Comparing the timetables with the data in Table 1 and Table 2, we find that all courses
are scheduled with their required number of sessions (hard constraint 2). We also notice
that all rooms are large enough for the corresponding course size and that all sessions are
scheduled in the right type of room (hard constraints 3 and 7). There is at most one course
in one room at one time (hard constraint 1). Hence all hard constraints are fulfilled.

Further inspection of the timetables shows that lectures within most courses are spread
out over the week, i.e., these courses do not have lectures on two consecutive days (soft
constraint 2). This does not hold for courses with more than three lectures per week, i.e.,
MMG800, MMGK11, MMGL31, and LGMA10, all of which have four lectures per week. We
also see in Figure 4 that exercises always follow directly after a corresponding lecture (soft
constraint 3), except for the courses MMGL31 and LGMA10. This is because these courses
have more exercises than lectures and because LGMA10 is fixed.

Figure 4 also shows that there is at most one lecture per day and course. For some courses
this is true also for exercises and computer labs (soft constraint 1). However, some courses
have more than five exercises each week and some are fixed. We see that all lectures in a
course are scheduled in the same room throughout the week. This is fulfilled for exercises
and computer labs as well (soft constraint 4). The only sessions given in the first time period
on Monday morning and last time period on Friday are fixed (soft constraint 5). Finally, as
many sessions as possible are scheduled in time period 2 and 3 (soft constraint 6). All soft
constraints have thereby been met, as far as it is possible.

Data and results for the second study period of spring 2013 are included in Appendix A
and can be validated in the same fashion.
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LGMA10 ex MVF31

MMGK11 lec Euler
MSA200 lec MVF21
MMGF20 lec MVF23
MMG800 lec Pascal
LGMA10 ex MVF31

MVG300 lec Euler
MMA511 lec MVF33
LGMA10 lec Pascal
MMGK11 ex MVF21
MSA200 ex MVF26
MMGK11 ex MVH11
MMGF20 ex MVH12
MMGL31 com MVF22

MVG300 com MVF22

MMG800 lec Pascal
LGMA10 ex MVF31
MMGL31 ex MVF33

MSG830 lec Euler
MMGF30 lec MVF23
MMGL31 lec MVF26
MMG500 lec MVH12
MMG300 lec Pascal
LGMA10 ex MVF31

MMG720 lec MVF26
LGMA10 lec Pascal
MMG500 ex MVF23
MMG500 ex MVF31
MMGL31 ex MVF33
MMG300 ex MVH12
MSG830 com MVF22

MSG830 com MVF22

MMA511 lec MVF33

MMGK11 lec Euler
MMGF20 lec MVF23
MMGL31 lec MVF26
MMA421 lec MVH12
MSG200 lec Pascal
MSG830 ex MVF33

MVG300 lec Euler
MMGF30 lec MVF23
MMGK11 ex MVF21
MMA421 ex MVF26
MSG200 ex MVF31
MMGL31 ex MVF33
MMGK11 ex MVH11
MMGF20 ex MVH12

MMG800 lec Pascal
MVG300 com MVF22

MMG800 lec Pascal
LGMA10 ex MVF31
MMGL31 ex MVF33

MMGK11 lec Euler
MMGL31 lec MVF26
MMG500 lec MVH12
MMG300 lec Pascal
LGMA10 ex MVF31

MSG830 lec Euler
LGMA10 lec Pascal
MMGK11 ex MVF21
MMG500 ex MVF23
MMG500 ex MVF31
MMGL31 ex MVF33
MMGK11 ex MVH11
MMG300 ex MVH12

MMGL31 lec MVF26
MMA511 lec MVF33
LGMA10 ex MVF31

MMGK11 lec Euler
MSA200 lec MVF21
MMGF30 lec MVF23
MMG720 lec MVF26
MSG200 lec Pascal
LGMA10 ex MVF31
MMGL31 ex MVF33

MVG300 lec Euler
MMA421 lec MVH12
LGMA10 lec Pascal
MMGK11 ex MVF21
MMG720 ex MVF23
MSG200 ex MVF31
MMGK11 ex MVH11
MMGL31 com MVF22

MVG300 com MVF22

Monday Tuesday Wednesday Thursday Friday
8:00

10:00

13:15

15:15

Figure 4: Resulting timetable for all courses of the first study period of spring 2013.
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MVG300 lec Euler

MVG300 com MVF22

MMG500 lec MVH12

MMG300 lec Pascal

MMG500 ex MVF23

MMG500 ex MVF31

MMG300 ex MVH12

MSG200 lec Pascal

MVG300 lec Euler

MSG200 ex MVF31

MVG300 com MVF22

MMG500 lec MVH12

MMG300 lec Pascal

MMG500 ex MVF23

MMG500 ex MVF31

MMG300 ex MVH12

MSG200 lec Pascal

MVG300 lec Euler

MSG200 ex MVF31

MVG300 com MVF22

Monday Tuesday Wednesday Thursday Friday

8:00

10:00

13:15

15:15

Color 1:       

Color 2:       

Figure 5: The timetable for courses given to students at the mathematics program at the
University of Gothenburg. Color 1 is the courses given to first year students and color 2 is
the courses given to second year students.

MSA200 lec MVF21

MMG800 lec Pascal

MMA511 lec MVF33

MSA200 ex MVF26

MMG800 lec Pascal

MMG500 lec MVH12

MMG500 ex MVF23

MMG500 ex MVF31

MMA511 lec MVF33

MMA421 lec MVH12

MSG200 lec Pascal

MMA421 ex MVF26

MSG200 ex MVF31

MMG800 lec Pascal

MMG800 lec Pascal

MMG500 lec MVH12

MMG500 ex MVF23

MMG500 ex MVF31

MMA511 lec MVF33

MSA200 lec MVF21

MSG200 lec Pascal

MMA421 lec MVH12

MSG200 ex MVF31

Monday Tuesday Wednesday Thursday Friday

8:00

10:00

13:15

15:15

Color 3:       

Color 4:       

Figure 6: The timetable for courses given to students of Engineering mathematics and com-
putational science at Chalmers University of Technology. Color 3 is the courses given to first
year students and color 4 is the courses given to second year students.
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MMG800 lec Pascal

MMA511 lec MVF33

MMG800 lec Pascal

MMG500 lec MVH12

MMG720 lec MVF26

MMG500 ex MVF23

MMG500 ex MVF31

MMA511 lec MVF33

MMA421 lec MVH12

MMA421 ex MVF26

MMG800 lec Pascal

MMG800 lec Pascal

MMG500 lec MVH12

MMG500 ex MVF23

MMG500 ex MVF31

MMA511 lec MVF33

MMG720 lec MVF26

MMA421 lec MVH12

MMG720 ex MVF23

Monday Tuesday Wednesday Thursday Friday

8:00

10:00

13:15

15:15

Figure 7: Courses in the group advanced courses.

LGMA10 ex MVF31

MMGK11 lec Euler

MMGF20 lec MVF23

LGMA10 ex MVF31

LGMA10 lec Pascal

MMGK11 ex MVF21

MMGK11 ex MVH11

MMGF20 ex MVH12

MMGL31 com MVF22

LGMA10 ex MVF31

MMGL31 ex MVF33

MSG830 lec Euler

MMGF30 lec MVF23

MMGL31 lec MVF26

LGMA10 ex MVF31

LGMA10 lec Pascal

MMGL31 ex MVF33

MSG830 com MVF22

MSG830 com MVF22

MMGK11 lec Euler

MMGF20 lec MVF23

MMGL31 lec MVF26

MSG830 ex MVF33

MMGF30 lec MVF23

MMGK11 ex MVF21

MMGL31 ex MVF33

MMGK11 ex MVH11

MMGF20 ex MVH12

LGMA10 ex MVF31

MMGL31 ex MVF33

MMGK11 lec Euler

MMGL31 lec MVF26

LGMA10 ex MVF31

MSG830 lec Euler

LGMA10 lec Pascal

MMGK11 ex MVF21

MMGL31 ex MVF33

MMGK11 ex MVH11

MMGL31 lec MVF26

LGMA10 ex MVF31

MMGK11 lec Euler

MMGF30 lec MVF23

LGMA10 ex MVF31

MMGL31 ex MVF33

LGMA10 lec Pascal

MMGK11 ex MVF21

MMGK11 ex MVH11

MMGL31 com MVF22

Monday Tuesday Wednesday Thursday Friday

8:00

10:00

13:15

15:15

Figure 8: Courses in the group other courses.
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6 Analysis and discussion

In order to examine the model, sensitivity analysis was performed. In addition to this,
the general features of the resulting timetable were studied and discussed with respect to
constraints and the current timetable.

6.1 Sensitivity analysis

The optimal solution to a problem is only optimal with respect to the given data. Sensitivity
analysis is the study of how specific constraints and variables affect the solution. There are
not a lot of concepts behind sensitivity analysis for scheduling problems. This made the
analysis quite limited and the actual performed analysis merely involved observations of how
the model responds to manual changes of the constraints and the objective function.

In order to examine what effect the different constraints have on the resulting timetable,
some constraints where temporarily removed and the resulting timetable studied. It should be
clarified that this was never done with the hard constraints, since a removed hard constraint
would only yield a nonvalid result.

When removing the constraint saying that all lectures in a course should be in the same
room (soft constraint 4) we found that this has minimal effect on the solution. This indi-
cates that this constraint can be used without risk of loosing otherwise valid and favourable
solutions. In this particular case, a possible explanation to this is the high number of rooms
with respect to the number of courses.

If some rooms are removed the model still gives a solution, but the constraint saying that
exercises should be scheduled immediately after a corresponding lecture (soft constraint 3) is
broken. Also, the constraint saying that all lectures in a course should be scheduled in the
same room (soft constraint 4) is now responsible for a longer computation time, even though
the resulting timetable does not differ with or without this constraint.

The major restriction in the model is the number of courses that are not allowed to collide.
If all courses were allowed to collide, it would be possible to schedule up to 220 sessions a
week (4 time periods, 5 days, 11 rooms). Including the constraints that some courses cannot
collide significantly decreases this number.

The objective function (31) has been chosen to match the preferences from teachers and
students, by focusing lectures to the two intermediate time periods. By changing the objective
function it is possible to make the timetable focused on any two time periods. For example,
instead of weighting time period 4 with high values as is done now, it would be possible to
weight time period 1 and 2 with high values, which would result in a timetable with most
of its sessions in the afternoon. Hence it is possible to steer the timetable by using these
weights, which increases the adaptabillity to newly added preferences.

It is also possible to remove the second term of the objective function, to allow more
courses on Monday morning and Friday afternoon. In the same way, this can be changed
to weight courses on any other day and time period, hence making the timetable look a bit
different.

6.2 Discussion

One of the major challenges with scheduling, regardless of whether it is done with software
or by hand, is determining what qualifies as a ”good” schedule. Some soft constraints will
probably be unanimously agreed upon, for example that the lectures in a course should
be spread out over the week. This gives students the opportunity to prepare for lectures
in advance and to let the material sink in afterwards. However, in more subjective matters,
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such as at what times lectures should be scheduled, there are going to be different preferences
and compromises will have to be made.

In this case study, according to the provided information, the general opinion among
students and teachers was that having courses scheduled in time period 2 and 3 is preferred.
Most of them also agreed that, when possible, exercises should be scheduled directly after
lectures. This is what was considered when the model was formulated.

Comparing the obtained solution of the formulated model (visualized in the Figure 4)
with the current schedule (Figure 1) reveals some similarities, most noticeably that most
courses are concentrated to the two intermediate time periods (10:00-11:45 and 13:15-15:00).
In fact, when the model is rewritten so that all courses are fixed in their actual positions,
almost every constraint can be included. This indicates that the actual timetable is made
with respect to much of the same restrictions as the integer programming model. Most of
the constraints that are violated strictly have to do with preferences, e.g., that exercises
should follow after lectures, that two lectures in a course should not be given on consecutive
days and that lectures (and excercises) should be given in the same room. Some courses are
also scheduled with two computer labs in one day but this is something that most students
probably do not find inconvenient.

The most relevant difference between the suggested solution and the current timetable is
that the current timetable does not take consideration to all courses in the advanced courses

group, and consequently some of them do collide. In one sense this could be considered an
improvement by the optimization approach. It does make it easier for students who take
courses from this group to attend their lectures but might also bring some unwanted conse-
quences. Since the constraints about which courses may not collide are the most restricting
in this model, introducing even more conditions that courses should not collide will cause
some sessions to be scheduled at times that are not desirable. For example, there might be
combinations of courses in advanced courses that typically very few students take, e.g., stu-
dents specializing in statistics are perhaps unlikely to take courses in computational science.
Then it might be preferable to let two such courses collide. Which courses should be bound
by these constraints is therefore a delicate matter. However, once it has been decided, it is
of course easy to implement.

A difference that is a clear improvement is that sessions that are currently scheduled in
rooms not belonging to the mathematics department have been moved to rooms that do
belong to the mathematics department.

The timetabling problem solved in this report is not extremely large. Table 3 presents
some basic statistics about the problems that were specified for the two study periods.

Courses Variables Constraints Non-zeros Computation
(constraints) time

First study period 15 10 230 7 012 59 772 1.02 s
Second study period 13 8 866 6 153 56 919 0.07 s

Table 3: Size of solved problems

These small scale problems can be solved to optimality by CPLEX without difficulty and
with hardly any time requirement. The significant difference in computation time between
the two study periods is partly explained by the number of courses and the number of sessions,
which are both lower in the second study period. It is also noteworthy that the model can
easily be adapted to specific data. It was used for both study periods without alterations.
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7 Conclusions

The final timetable satisfies all hard constraints, listed in Section 3.5, which guarantees that
it is in fact a valid timetable, and it could be applied as long as there are no restrictions from
other departments. It is a good timetable in the sense that it fulfills the soft constraints to a
higher degree than the current timetable. The model is general enough that it can be used
for arbitrary data, and by changing the weights in the objective function it can be adapted to
specific preferences. Solutions would have to be analyzed by the responsible personnel before
they are used for real to be sure that all requirements are fulfilled but the work load would
be reduced noticeably.

An IP model provides great flexibility for timetabling problems in that constraints can
be formulated for restrictions that arise naturally for a university. For problems that are
reasonably limited, branch-and-bound can guarantee optimality and the objective function
can be adjusted until the resulting timetable is deemed satisfactory.

As of now, any changes to the model require basic knowledge of AMPL and MATLAB and
advanced understanding of the model itself. A possible next step to facilitate the timetabling
at the mathematics department would be to create a user friendly graphical interface. This
would make it possible to make changes and immediately view the new timetable.
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[6] Lundgren J., Rönnqvist M., and Värbrand P. (2010) Optimization. Lund: Studentlit-
teratur AB.
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A Timetable for the second study period of spring 2013

The data for the second study period of spring 2013 is presented in Table 4 and the resulting
timetable for all courses is shown in Figure 9.

Course Course groups Size Lectures Exercises Computer No. of Fixed

code labs groups

LGMA20 Cothers 30 2 4 1 1 Yes

MMGL32 Cothers 6 3 2 1 2 No

MMG511 CGU2, CEM1 65 3 0 0 1 No

MMG410 CGU1 46 3 0 3 1 Yes

MMG631 CGU2, CEM1 68 2 1 2 2 No

MMA130 Cadv 4 3 0 0 1 No

MSA410 CEM1, Cadv 25 2 0 0 1 No

MMA620 CEM2, Cadv 36 2 0 2 1 Yes

MMA700 CEM1, Cadv 51 2 1 0 2 No

MMA430 CEM2, Cadv 25 2 1 0 1 No

MSF200 CEM2, Cadv 11 4 0 0 1 No

MSA300 CEM1, Cadv 18 2 0 2 1 No

MMG300 CGU1, 38 2 2 0 1 Yes

Table 4: Courses in the second study period of spring 2013.

In this study period there are 13 courses, two fewer than in the first study period. The total
number of sessions is 54, which is lower than in the first study period. By studying Figure
9 it can be concluded that the same reasoning made for Figure 4 in Section 5 can be made
for this timetable as well. In other words, all constraints are fulfilled and as many sessions
as possible are scheduled in time period 2 and 3.
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MMG511 lec Euler
MMA430 lec MVF31
MMGL32 lec MVH12

MMG410 lec Euler
MMA130 lec Pascal
MMA430 ex MVH11
MSA300 com MVF22

MMA700 lec Pascal
MMG410 com MVF22

MSA410 lec MVH11
LGMA20 ex MVF26

MMG631 lec Euler
MSF200 lec MVF21
MMG300 lec Pascal
LGMA20 ex MVF26

LGMA20 lec MVF26
MMA620 lec MVF33
MMG300 ex MVH12
MMG631 com MVF22

MSA300 lec MVF23
MMA620 com MVF22

MMG511 lec Euler
MSF200 lec MVF21

MMGL32 lec MVH12
MMA700 lec Pascal
LGMA20 com MVF22

MMG410 lec Euler
MMA130 lec Pascal
MMA700 ex MVF26
MMGL32 ex MVF32
MMGL32 ex MVF33
MMA700 ex MVH11

MMG410 com MVF22

MSA300 lec MVF23

MMG631 lec Euler
MSF200 lec MVF21
MMG300 lec Pascal

MMA620 lec MVF33
MMG631 ex MVF21
MMG631 ex MVF31
MMG300 ex MVH12
MMGL32 com MVF22

MSA410 lec MVH11
MMA620 com MVF22

MMG511 lec Euler
MMA130 lec Pascal
LGMA20 ex MVF26

MSF200 lec MVF21
MMGL32 lec MVH12
LGMA20 ex MVF26
MSA300 com MVF22

MMG410 lec Euler
LGMA20 lec MVF26
MMA430 lec MVF31
MMGL32 ex MVF32
MMGL32 ex MVF33
MMG631 com MVF22

MMG410 com MVF22

Monday Tuesday Wednesday Thursday Friday
8:00

10:00

13:15

15:15

Figure 9: Resulting timetable for all courses in the second study period of spring 2013.
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B Sample of AMPL source code

The mathematical model had to be expressed in AMPL code. This is the model file used for
the first study period of spring 2013.

set D; # Days

set P; # Periods

set C_GU1; # Courses taken by GU students first year

set C_GU2; # Courses taken by GU students second year

set C_EM1; # Courses taken by EM students first year

set C_EM2; # Courses taken by EM students second year

set C_adv; # Other courses that should not collide

set C_others; # All other courses

set C_g; # Set with courses that have their exercises splitted into small groups

set C := C_GU1 union C_GU2 union C_EM1 union C_EM2 union C_adv union C_others;

# All courses

set R_ex; # Exercise rooms

set R_lec; # Lecture rooms

set R_com; # Computer rooms

set R := R_ex union R_lec union R_com; # All rooms

param s{C}; # Course size

param m{R}; # Room capacity

param n_com{C}; # Number of computer labs

param n_lec{C}; # Number of lectures

param n_ex{C}; # Number of excercises

param g{C}; # Number of groups for exercises

var x{D,P,C,R} binary; # Lectures

var y{D,P,C,R} binary; # Excercises

var z{D,P,C,R} binary; # Computer labs

var w1{C,R} binary; # Help variable to force lectures to be in the same room

var w2{C,R} binary; # Help variable to force excercises to be in the same room

# Object function

minimize f: sum{d in D, c in C, r in R} (x[d,1,c,r] + x[d,3,c,r] + 4*x[d,4,c,r]

+ 3*y[d,1,c,r] + y[d,2,c,r] + 2*y[d,4,c,r] + 3*z[d,1,c,r]

+ z[d,2,c,r] + 2*z[d,4,c,r])

+ sum{c in C, r in R} 5*(x[1,1,c,r] + y[1,1,c,r] + z[1,1,c,r]

+ x[5,4,c,r] + y[5,4,c,r] + z[5,4,c,r]);

subject to

# Make sure that the classes fits in the rooms

Room_capacity_lec{d in D, p in P, c in C, r in R_lec}:

x[d,p,c,r]*s[c] <= m[r];

Room_capacity_ex{d in D, p in P, c in C, r in R_ex}:

0.8*y[d,p,c,r]*s[c]/g[c] <= m[r];

Room_capacity_com{d in D, p in P, c in C, r in R_com}:

z[d,p,c,r]*s[c] <= m[r];

# Make sure that two courses will not be scheduled in

the same room at the same time
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Room_collision{d in D, p in P, r in R}:

sum{c in C} (x[d,p,c,r] + y[d,p,c,r] + z[d,p,c,r]) <= 1;

# Make sure that courses in the same group will not collide with eachother

Course_collision_GU1{d in D, p in P}:

sum{c in C_GU1, r in R} (x[d,p,c,r] + y[d,p,c,r]/g[c] + z[d,p,c,r]) <= 1;

Course_collision_GU2{d in D, p in P}:

sum{c in C_GU2, r in R} (x[d,p,c,r] + y[d,p,c,r]/g[c] + z[d,p,c,r]) <= 1;

Course_collision_EM1{d in D, p in P}:

sum{c in C_EM1, r in R} (x[d,p,c,r] + y[d,p,c,r]/g[c] + z[d,p,c,r]) <= 1;

Course_collision_EM2{d in D, p in P}:

sum{c in C_EM2, r in R} (x[d,p,c,r] + y[d,p,c,r]/g[c] + z[d,p,c,r]) <= 1;

Course_collision_adv{d in D, p in P}:

sum{c in C_adv, r in R} (x[d,p,c,r]) <= 1;

# Make sure that the other courses will not collide with themselves

Course_collision_others{d in D, p in P, c in C_others}:

sum{r in R} (x[d,p,c,r] + y[d,p,c,r]/g[c] + z[d,p,c,r]) <= 1;

# Make sure that the correct number of lectures, exercises,

and computerlabs is scheduled

Lecture_sessions{c in C}:

sum{d in D, p in P, r in R_lec} x[d,p,c,r] = n_lec[c];

Excercise_sessions{c in C}:

sum{d in D, p in P, r in R_ex} y[d,p,c,r] = n_ex[c]*g[c];

Computer_sessions{c in C}:

sum{d in D, p in P, r in R_com} z[d,p,c,r] = n_com[c];

# Make sure that there is some day between lectures when possible

Sparse{d in D diff {5}, c in C diff {’MMG800’,’LGMA10’,’MMGK11’,’MMGL31’,’MMGF30’}}:

sum{p in P, r in R} (x[d,p,c,r] + x[d+1,p,c,r]) <= 1;

# Forces the lectures for each course to be scheduled in the same room

Same_room_lec{c in C, r in R_lec}:

sum{d in D, p in P} x[d,p,c,r] - w1[c,r]*n_lec[c] = 0;

# Forces the exercises for each course to be scheduled in the same room

Same_room_ex1{c in C diff C_g, r in R_ex}:

sum{d in D, p in P} y[d,p,c,r] - w2[c,r]*n_ex[c] = 0;

Same_room_ex2{c in C_g, r1 in R_ex, r2 in R_ex}:

sum{d in D, p in P} (y[d,p,c,r1] + y[d,p,c,r2])

- w2[c,r1]*n_ex[c] - w2[c,r2]*n_ex[c] = 0;

# Forces exercises to be scheduled directly after lectures

# Works for courses that have number of lectures >= number of exercises

Ex_after_lec{d in D, p in P diff {1}, c in C diff{’MSG830’,’LGMA10’}}:

sum{r in R_lec} (y[d,p,c,r]/g[c] - x[d,p-1,c,r]) <= 0;

# Make sure that courses does not have more than 1 lecture each day
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Lecture_limit{d in D, c in C}: sum{p in P, r in R} x[d,p,c,r] <= 1;

# The same for exercises

Excercise_limit1{d in D, c in C diff (C_g union {’MMGL31’,’LGMA10’})}:

sum{p in P, r in R} y[d,p,c,r] <= 1;

Excercise_limit2{d in D}: sum{p in P, r in R} y[d,p,’MMGL31’,r] <= 2;

# The same for computerlabs

Computer_limit{d in D, c in C diff {’MSG830’}}:

sum{p in P, r in R} z[d,p,c,r] <= 1;

# Locked sessions that can not be changed

MMG300: x[2,2,’MMG300’,’Pascal’] + y[2,3,’MMG300’,’MVH12’]

+ x[4,2,’MMG300’,’Pascal’] + y[4,3,’MMG300’,’MVH12’] = 4;

MVG300: x[1,3,’MVG300’,’Euler’] + z[1,4,’MVG300’,’MVF22’]

+ x[3,3,’MVG300’,’Euler’] + z[3,4,’MVG300’,’MVF22’]

+ x[5,3,’MVG300’,’Euler’] + z[5,4,’MVG300’,’MVF22’] = 6;

LGMA10: x[2,3,’LGMA10’,’Pascal’] + x[4,3,’LGMA10’,’Pascal’]

+ x[1,3,’LGMA10’,’Pascal’] + x[5,3,’LGMA10’,’Pascal’]

+ y[1,1,’LGMA10’,’MVF31’] + y[1,2,’LGMA10’,’MVF31’]

+ y[2,1,’LGMA10’,’MVF31’] + y[2,2,’LGMA10’,’MVF31’]

+ y[4,1,’LGMA10’,’MVF31’] + y[4,2,’LGMA10’,’MVF31’]

+ y[5,1,’LGMA10’,’MVF31’] + y[5,2,’LGMA10’,’MVF31’] = 12;

MSG830: x[2,2,’MSG830’,’Euler’] + x[4,3,’MSG830’,’Euler’] + y[3,2,’MSG830’,’MVF33’]

+ z[2,3,’MSG830’,’MVF22’] + z[2,4,’MSG830’,’MVF22’] = 5;

MMGF30: x[2,2,’MMGF30’,’MVF23’] + x[3,3,’MMGF30’,’MVF23’]

+ x[5,2,’MMGF30’,’MVF23’] = 3;
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C Sample of MATLAB source code

The MATLAB code that was used to visualize the results for the first study period is presented
below.

% Getting AMPL data, that is lectures (x), exercises (y) and computer labs

% (z).

Xtmp=fileread(’x.txt’);

Ytmp=fileread(’y.txt’);

Ztmp=fileread(’z.txt’);

% Number of courses and number of rooms

numOfCourses = 15;

numOfRooms = 11;

% Signs and words that must be deleted from the read files so that they can

% be converted into numbers

bad={’L9MA10’; ’LGMA10’; ’MMA421’; ’MMA511’; ’MMG300’; ’MMG500’; ’MMG720’;

’MMG800’; ’MMGF20’; ’MMGK11’; ’MMGL31’; ’MSA200’; ’MSG200’; ’MSG830’;

’MVG300’;’Euler’; ’MVF21’; ’MVF22’; ’MVF23’; ’MVF26’; ’MVF31’; ’MVF32’;

’MVF33’; ’MVH11’; ’MVH12’; ’MMGF30’;’Pascal’;’,’;’=’;’:’;’;’;’[51**]’;

’[41**]’;’[31**]’;’[21**]’; ’[14**]’;’[13**]’;’[12**]’;’x [11**]’;

’y [11**]’;’z [11**]’;’2’;’3’;’4’;’5’;’[’;’]’;’*’;’_ex’;’_com’};

% Replace every element from ’bad’ with an empty slot for x, y and z

for i=1:length(bad);

Xtmp = strrep(Xtmp,bad{i,1},’’);

Ytmp = strrep(Ytmp,bad{i,1},’’);

Ztmp = strrep(Ztmp,bad{i,1},’’);

end

% Convert characters to numbers

Xtmp=str2num(Xtmp);

Ytmp=str2num(Ytmp);

Ztmp=str2num(Ztmp);

% Strings with zeroes. The length 20 since we got 5 days with 4 time

% periods each

X=zeros(numOfCourses,numOfRooms,20);

Y=zeros(numOfCourses,numOfRooms,20);

Z=zeros(numOfCourses,numOfRooms,20);

% The output from AMPL is in the form of a large matrix. This matrix is

% here rewritten to a three-dimensional tensor. This is done for X, Y and Z.

% will then contain submatrices representing all the timeperiods.

for i=0:19

X(:,:,i+1)=Xtmp(1+numOfCourses*i:numOfCourses*(i+1),:);

Y(:,:,i+1)=Ytmp(1+numOfCourses*i:numOfCourses*(i+1),:);

Z(:,:,i+1)=Ztmp(1+numOfCourses*i:numOfCourses*(i+1),:);

end

% Vectors with course codes for lectures, exercises and computer labs.

lectures={’\fontname{times}LGMA10 lec’; ’\fontname{times}MMA421 lec’;

’\fontname{times}MMA511 lec’; ’\fontname{times}MMG300 lec’;

’\fontname{times}MMG500 lec’; ’\fontname{times}MMG720 lec’;
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’\fontname{times}MMG800 lec’; ’\fontname{times}MMGF20 lec’;

’\fontname{times}MMGF30 lec’; ’\fontname{times}MMGK11 lec’;

’\fontname{times}MMGL31 lec’; ’\fontname{times}MSA200 lec’;

’\fontname{times}MSG200 lec’; ’\fontname{times}MSG830 lec’;

’\fontname{times}MVG300 lec’};

excercises={’\fontname{times}LGMA10 ex’; ’\fontname{times}MMA421 ex’;

’\fontname{times}MMA511 ex’; ’\fontname{times}MMG300 ex’;

’\fontname{times}MMG500 ex’; ’\fontname{times}MMG720 ex’;

’\fontname{times}MMG800 ex’; ’\fontname{times}MMGF20 ex’;

’\fontname{times}MMGF30 ex’; ’\fontname{times}MMGK11 ex’;

’\fontname{times}MMGL31 ex’; ’\fontname{times}MSA200 ex’;

’\fontname{times}MSG200 ex’; ’\fontname{times}MSG830 ex’;

’\fontname{times}MVG300 ex’};

comlabs={’\fontname{times}LGMA10 com’; ’\fontname{times}MMA421 com’;

’\fontname{times}MMA511 com’; ’\fontname{times}MMG300 com’;

’\fontname{times}MMG500 com’; ’\fontname{times}MMG720 com’;

’\fontname{times}MMG800 com’; ’\fontname{times}MMGF20 com’;

’\fontname{times}MMGF30 com’; ’\fontname{times}MMGK11 com’;

’\fontname{times}MMGL31 com’; ’\fontname{times}MSA200 com’;

’\fontname{times}MSG200 com’; ’\fontname{times}MSG830 com’;

’\fontname{times}MVG300 com’};

% Vector with rooms

rooms={’\fontname{times}Euler’; ’\fontname{times}MVF21’;

’\fontname{times}MVF22’; ’\fontname{times}MVF23’; ’\fontname{times}MVF26’;

’\fontname{times}MVF31’; ’\fontname{times}MVF32’; ’\fontname{times}MVF33’;

’\fontname{times}MVH11’; ’\fontname{times}MVH12’; ’\fontname{times}Pascal’};

% Definied colors

color1 = [0,1,0];

color2 = [0.7,1,1];

color3 = [1,0.5,0.5];

color4 = [1,1,0];

%% All courses in one timetable

% Set color

coursecol=[’y’;’y’;’y’;’y’;’y’;’y’;’y’;’y’;’y’;’y’;’y’;’y’;’y’;’y’;’y’];

figure(1)

clf

% Remove axes info

set(axes(),’XTick’,[],’YTIck’,[])

hold on

% Loop through all time periods

for k = 1:20

% Choose one time period at each iteration and

% find the non-zero indexes from this matrix

A=sparse(X(:,:,k));

% i and j are vectors with the indexes
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[i,j]=find(A);

% Find which day we are at

day = 0.7*(ceil(k/4)-1);

% Find which period we are at

if (mod(k-1,4)+1) == 4

period = 1.14*(mod(k-1,4)+1);

else

period = 1.1*(mod(k-1,4)+1);

end

% Set Y displacement to zero

% It will be increased every time a session is plotted

ydisp=0;

% If we have non zero entries

if ~isempty(i)

% A long as we have it

for l=1:length(i)

% Write the lecture and the room, then increase ydisp

text(day,2*(5-period-ydisp),lectures(i(l)),’BackgroundColor’,...

coursecol(i(l)),’FontWeight’,’bold’,’FontSize’,16);

text(day+0.32,2*(5-period-ydisp),rooms(j(l)),’BackgroundColor’,...

coursecol(i(l)),’FontWeight’,’bold’,’FontSize’,16);

ydisp=ydisp+0.13;

end

end

% Does exactly the same for exercises

A=sparse(Y(:,:,k));

[i,j]=find(A);

day = 0.7*(ceil(k/4)-1);

if (mod(k-1,4)+1) == 4

period = 1.14*(mod(k-1,4)+1);

else

period = 1.1*(mod(k-1,4)+1);

end

if ~isempty(i)

for l=1:length(i)

text(day,2*(5-period-ydisp),excercises(i(l)),’BackgroundColor’,...

coursecol(i(l)),’FontWeight’,’bold’,’FontSize’,16);

text(day+0.32,2*(5-period-ydisp),rooms(j(l)),’BackgroundColor’,...

coursecol(i(l)),’FontWeight’,’bold’,’FontSize’,16);

ydisp=ydisp+0.13;

end

end

% Does exactly the same for computer labs

A=sparse(Z(:,:,k));

[i,j]=find(A);

day = 0.7*(ceil(k/4)-1);

if (mod(k-1,4)+1) == 4
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period = 1.14*(mod(k-1,4)+1);

else

period = 1.1*(mod(k-1,4)+1);

end

if ~isempty(i)

for l=1:length(i)

text(day,2*(5-period-ydisp),comlabs(i(l)),’BackgroundColor’,...

coursecol(i(l)),’FontWeight’,’bold’,’FontSize’,16);

text(day+0.32,2*(5-period-ydisp),rooms(j(l)),’BackgroundColor’,...

coursecol(i(l)),’FontWeight’,’bold’,’FontSize’,16);

ydisp=ydisp+0.13;

end

end

end

% Separates the time periods with lines

plot([-0.2,3.3],[8,8],’k’,’LineWidth’,3);

plot([-0.2,3.3],[5.8,5.8],’k’,’LineWidth’,3);

plot([-0.2,3.3],[3.6,3.6],’k’,’LineWidth’,3);

plot([-0.2,3.3],[1.07,1.07],’k’,’LineWidth’,3);

plot([-0.01,-0.01],[0,8.5],’k’,’LineWidth’,3);

plot([0.575,0.575],[0,8.5],’k’,’LineWidth’,3);

plot([1.29,1.29],[0,8.5],’k’,’LineWidth’,3);

plot([1.99,1.99],[0,8.5],’k’,’LineWidth’,3);

plot([2.675,2.675],[0,8.5],’k’,’LineWidth’,3);

plot([3.29999,3.29999],[0,8.5],’k’);

plot([-0.2,3.3],[8.49999,8.49999],’k’);

% Draw all the days and times

text(0.16,8.2,’\fontname{times}Monday’,’FontSize’,22,’FontWeight’,’bold’);

text(0.8,8.2,’\fontname{times}Tuesday’,’FontSize’,22,’FontWeight’,’bold’);

text(1.5,8.2,’\fontname{times}Wednesday’,’FontSize’,22,’FontWeight’,’bold’);

text(2.2,8.2,’\fontname{times}Thursday’,’FontSize’,22,’FontWeight’,’bold’);

text(2.9,8.2,’\fontname{times}Friday’,’FontSize’,22,’FontWeight’,’bold’);

text(-0.15,7.8,’\fontname{times}8:00’,’FontSize’,22,’FontWeight’,’bold’);

text(-0.18,5.6,’\fontname{times}10:00’,’FontSize’,22,’FontWeight’,’bold’);

text(-0.18,3.4,’\fontname{times}13:15’,’FontSize’,22,’FontWeight’,’bold’);

text(-0.18,0.9,’\fontname{times}15:15’,’FontSize’,22,’FontWeight’,’bold’);

axis([-0.2 3.3 0 8.5])

%% GU1+2

% Creates a plot for only GU1 and GU2

% Most works as in the previous case

coursecol=[color2;color2;color2;color1;color2;color2;color2;color2;color2

color2;color2;color2;color2;color2;color1];

figure(2)

clf

set(axes(),’XTick’,[],’YTIck’,[])
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hold on

for k = 1:20

ydisp=0;

A=sparse(X(:,:,k));

[i,j]=find(A);

day = 0.7*(ceil(k/4)-1);

period = 1.12*(mod(k-1,4)+1);

if ~isempty(i)

for l=1:length(i)

% Choose only the courses we want

if i(l)==4 || i(l)==15 || i(l)==5 || i(l)==13

text(day,2*(5-period-ydisp),lectures(i(l)),’BackgroundColor’,...

coursecol(i(l),:),’FontWeight’,’bold’,’FontSize’,19);

text(day+0.38,2*(5-period-ydisp),rooms(j(l)),’BackgroundColor’,...

coursecol(i(l),:),’FontWeight’,’bold’,’FontSize’,19);

ydisp=ydisp+0.23;

end

end

end

A=sparse(Y(:,:,k));

[i,j]=find(A);

day = 0.7*(ceil(k/4)-1);

period = 1.12*(mod(k-1,4)+1);

if ~isempty(i)

for l=1:length(i)

if i(l)==4 || i(l)==15 || i(l)==5 || i(l)==13

text(day,2*(5-period-ydisp),excercises(i(l)),’BackgroundColor’,...

coursecol(i(l),:),’FontWeight’,’bold’,’FontSize’,19);

text(day+0.38,2*(5-period-ydisp),rooms(j(l)),’BackgroundColor’,...

coursecol(i(l),:),’FontWeight’,’bold’,’FontSize’,19);

ydisp=ydisp+0.23;

end

end

end

A=sparse(Z(:,:,k));

[i,j]=find(A);

day = 0.7*(ceil(k/4)-1);

period = 1.12*(mod(k-1,4)+1);

if ~isempty(i)

for l=1:length(i)

if i(l)==4 || i(l)==15 || i(l)==5 || i(l)==13

text(day,2*(5-period-ydisp),comlabs(i(l)),’BackgroundColor’,...

coursecol(i(l),:),’FontWeight’,’bold’,’FontSize’,19);

text(day+0.38,2*(5-period-ydisp),rooms(j(l)),’BackgroundColor’,...

coursecol(i(l),:),’FontWeight’,’bold’,’FontSize’,19);

ydisp=ydisp+0.23;
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end

end

end

end

plot([-0.22,3.4],[8,8],’k’,’LineWidth’,3);

plot([-0.22,3.4],[5.85,5.85],’k’,’LineWidth’,3);

plot([-0.22,3.4],[3.62,3.62],’k’,’LineWidth’,3);

plot([-0.22,3.4],[1.37,1.37],’k’,’LineWidth’,3);

plot([-0.01,-0.01],[0,8.5],’k’,’LineWidth’,3);

plot([0.635,0.635],[0,8.5],’k’,’LineWidth’,3);

plot([1.35,1.35],[0,8.5],’k’,’LineWidth’,3);

plot([2.03,2.03],[0,8.5],’k’,’LineWidth’,3);

plot([2.75,2.75],[0,8.5],’k’,’LineWidth’,3);

plot([3.39999,3.39999],[0,8.5],’k’);

plot([-0.22,3.4],[8.49999,8.49999],’k’);

text(0.16,8.2,’\fontname{times}Monday’,’FontWeight’,’bold’,’FontSize’,25);

text(0.82,8.2,’\fontname{times}Tuesday’,’FontWeight’,’bold’,’FontSize’,25);

text(1.47,8.2,’\fontname{times}Wednesday’,’FontWeight’,’bold’,’FontSize’,25);

text(2.2,8.2,’\fontname{times}Thursday’,’FontWeight’,’bold’,’FontSize’,25);

text(2.94,8.2,’\fontname{times}Friday’,’FontWeight’,’bold’,’FontSize’,25);

text(-0.18,7.7,’\fontname{times}8:00’,’FontWeight’,’bold’,’FontSize’,25);

text(-0.22,5.55,’\fontname{times}10:00’,’FontWeight’,’bold’,’FontSize’,25);

text(-0.22,3.35,’\fontname{times}13:15’,’FontWeight’,’bold’,’FontSize’,25);

text(-0.22,1.05,’\fontname{times}15:15’,’FontWeight’,’bold’,’FontSize’,25);

% Color sample

text(0.1,7.5,’\fontname{times}Color 1:’,’FontWeight’,’bold’,’FontSize’,19);

text(0.35,7.5,’ ’,’BackgroundColor’,color1);

text(0.1,7,’\fontname{times}Color 2:’,’FontWeight’,’bold’,’FontSize’,19);

text(0.35,7,’ ’,’BackgroundColor’,color2);

axis([-0.22 3.4 0 8.5])

Figures for Engineering mathematics and computational science, other courses and advanced

courses are made in the same way as the figure for the mathematics program at the University
of Gothenburg, as seen in the last cell of the code.
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D Summary in Swedish

D.1 Inledning

Optimering är en gren inom matematiken som handlar om att finna den bästa möjliga lös-
ningen till ett givet problem. Detta görs genom att uttrycka problemet som en matematisk
modell. Det finns m̊anga olika omr̊aden där optimering tillämpas, n̊agra exempel är d̊a man
vill minimera kostnaden för tillverkningen av en viss produkt, eller d̊a man vill fastställa
den mest effektiva rutten för leveranser. Med dagens tekniska resurser är m̊anga problem
hanterbara, men större eller mer komplexa problem är ofta s̊a tidskrävande att resurserna ej
räcker till. Därför är det ibland acceptabelt med en lösning som ligger tillräckligt nära den
optimala lösningen.

Ett typiskt optimeringsproblem som uppst̊ar inom m̊anga olika omr̊aden är schemalägg-
ning. Ett s̊adant problem best̊ar av att finna ett schema som inte bara är praktiskt möjligt,
utan som dessutom i största möjliga m̊an uppfyller önskem̊al fr̊an samtliga involverade parter.
Ett vanligt tillvägag̊angssätt för att lösa denna typ av problem är heltalsoptimering.

Denna rapport beskriver modellering och lösning av ett schemaläggningsproblem för kur-
ser som ges av Institutionen för Matematiska vetenskaper p̊a Göteborgs universitet och Chal-
mers tekniska högskola, genom användning av heltalsoptimering.

Schemaläggningen p̊a matematikinstutitionen görs just nu genom att, s̊a l̊angt som det
är möjligt, återanvända schemat fr̊an tidigare år och manuellt göra de ändringar som krävs.
Detta är en väldigt tidskrävande process som kan ta flera veckor att slutföra. En datoriserad
metod skulle göra denna process betydligt snabbare och mindre ansträngande.

D.2 Specifikation av schemläggningsproblemet

Vid utformningen av ett schema m̊aste hänsyn tas till underliggande regler som avgör huruvi-
da tv̊a händelser f̊ar ske samtidigt. Detta antyder att det finns vissa egenskaper som ett
schema m̊aste uppfylla. Det sv̊ara ligger i att placera en viss kurs i ett visst rum vid en viss
tid med en viss lärare, utan att den krockar med n̊agon annan kurs. Vissa kurser f̊ar lov att
ges samtidigt i olika rum, medan andra ej f̊ar ges samtidigt p̊a grund av att studenter läser
flera kurser åt g̊angen. Det finns ett bestämt antal lektionstimmar för varje kurs som m̊aste
schemaläggas varje vecka, samtidigt som varje kurs m̊aste vara schemalagd i ett passande
rum.

Förutom villkor som m̊aste uppfyllas finns personliga åsikter fr̊an lärare och elever om vad
som utgör ett bra schema. Dessa åsikter bör ocks̊a tas i åtanke vid utformningen av schemat.

Schemaläggningen utförs för v̊aren 2013 som best̊ar av tv̊a läsperioder, där vardera läs-
period sträcker sig över åtta veckor. Antalet kurser som ska schemaläggas är 15 för första
läsperioden respektive 13 för den andra. Det finns 11 rum och antalet studenter varierar
mellan 4 och 68 för de olika kurserna. Det resulterande schemat ska uppfylla alla nödvändi-
ga krav för att schemat ska vara praktiskt möjligt. Dessutom ska önskem̊al fr̊an lärare och
studenter uppfyllas i största möjlliga m̊an.

D.3 Teori

Den matematiska modellen till ett optimeringsproblem best̊ar av en m̊alfunktion, som ska
minimeras eller maximeras, samt bivillkor. Det finns tv̊a typer av bivillkor: h̊arda bivillkor,
som m̊aste uppfyllas för att lösningen ska vara praktiskt möjlig, och mjuka bivillkor, som
helst ska uppfyllas.
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Det finns olika omr̊aden inom optimering för att uttrycka olika typer av problem. Exempel
p̊a s̊adana omr̊aden är linjär- och heltalsoptimering. Ett linjärt problem best̊ar endast av
linjära bivillkor och en linjär m̊alfunktion. För s̊adana problem finns effektiva metoder och
de är relativt lättlösta. Den mest använda metoden är simplexmetoden. Ett linjärt problem
där alla variabler dessutom är heltal kallas för heltalsproblem. I den här studien modelleras
problemet som ett binärt problem där variablerna endast antar värdena 0 och 1.

Många optimeringsproblem kräver ansenlig beräkningskraft. För att lösa dessa kan det
matematiska modelleringsspr̊aket AMPL användas tillsammans med en lösare vilken i stan-
dardfallet är CPLEX. AMPL är ett effektivt verktyg vid lösning av optimeringsproblem, d̊a
syntaxen i AMPL liknar den matematiska notation som används inom optimering. För att lö-
sa ett problem i AMPL behövs tv̊a filer, en modell-fil innh̊allande den matematiska modellen
och en data-fil inneh̊allande all nödvändig data. AMPL anropar sedan en lösare, till exempel
CPLEX, som utnyttjar olika metoder för att lösa det givna problemet. D̊a det gäller heltals-
problem använder CPLEX branch-and-cut vilken är en kombination av branch-and-bound
och plansnittningsmetoder. I branch-and-bound-metoden delas problemet upp i mindre, mer
lättlösta problem. Anledningen till att de är mer lättlösta är att heltalskravet tas bort och
därför kan de lösas som linjära problem. P̊a varje delproblem tillämpas plansnittning, det vill
säga nya bivillkor läggs till för att begränsa den till̊atna lösningsmängden.

D.4 Metod

För att formulera den matematiska modellen krävdes först̊aelse för huvudkoncepten inom
optimeringsteori. D̊a förkunskaperna inom optimering varierade mellan gruppens medlemmar
gjordes först individuella litteraturstudier för att samtliga medlemmar skulle f̊a tillräcklig
teoretisk först̊aelse för att kunna delta i modelleringen.

Nödvändig information om kurser, rum och lärare inhämtades fr̊an personer ansvariga
för schemaläggningen p̊a matematikinstitutionen. Denna information kompletterades med
information hämtad fr̊an kurshemsidor.

Den matematiska modellen formulerades och implementerades i AMPL, där problemet
sedan löstes med CPLEX. För att visualisera resultatet användes MATLAB. Modellen un-
dersöktes till sist med känslighetsanalys för att avgöra modellens stabilitet och hur variabler
och olika bivillkor p̊averkar lösningen.

D.5 Modell

För att uttrycka problemet matematiskt används binära variabler. Detta är lämpligt eftersom
en variabel ska representera svaret p̊a fr̊agan huruvida en kurs ska läggas p̊a en viss tid eller
inte. Variablerna har fyra index som anger dag, tid, kurs och rum. Om kurs c schemaläggs
under dag d, p̊a tid p, i rum r s̊a är xd,p,c,r = 1. Annars är xd,p,c,r = 0. Modellen beskriver s̊a-
ledes ett heltalsoptimeringsproblem. Målfunktionen är utformad s̊a att den fokuserar schemat
till mitten av dagarna. Detta görs genom att lägga vikter p̊a tidiga och sena föreläsningar.
Detta innebär att variablerna för de icke önskvärda tiderna multipliceras med en faktor större
än 0 vilket gör att m̊alfunktionen antar ett större värde om dessa tidpunkter används. D̊a
m̊alfunktionen ska minimeras innebär detta att de oönskade tidpunkterna undviks.

Kurserna som schemaläggs är uppdelade i olika grupper, beroende p̊a vilka kurser som
f̊ar lov att schemaläggas samtidigt. De olika grupperna är:

� Kurser för studenter p̊a Göteborgs universitets matematikprogram år ett.

� Kurser för studenter p̊a Göteborgs universitets matematikprogram år tv̊a.
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� Kurser för studenter p̊a Engineering mathematics and computational science p̊a Chal-
mers tekniska högskola år ett.

� Kurser för studenter p̊a Engineering mathematics and computational science p̊a Chal-
mers tekniska högskola år tv̊a.

� Avancerade kurser.

� Andra kurser.

Avancerade kurser är kurser för de som g̊ar tredje året p̊a matematikprogrammet och andra

kurser är de kurser som inte ing̊ar i n̊agon annan grupp.
Bivillkoren som behövs i modellen är formulerade s̊a att schemat ska bli praktiskt möjligt

samtidigt som det ska uppfylla s̊a m̊anga önskem̊al som möjligt. De h̊arda bivillkoren, som
m̊aste vara uppfyllda, är:

1. Det f̊ar inte vara fler än en föreläsning, räkneövning eller datorövning i ett visst rum
vid en viss tid.

2. Schemat m̊aste vara fullständigt, det vill säga alla kurser m̊aste schemaläggas med rätt
antal lektioner.

3. Rummen m̊aste vara tillräckligt stora för kurserna.

4. Kurser f̊ar inte krocka med sig själva.

5. Kollisioner mellan kurser inom samma grupp är inte till̊atet, förutom för avancerade

kurser och andra kurser.

6. Föreläsningar i kurser i gruppen avancerad kurser f̊ar inte krocka.

7. Föreläsningar, räkneövningar och datorövningar m̊aste ges i rätt typ av rum.

De mjuka bivillkoren, som helst ska uppfyllas, ges av:

1. I en kurs bör det inte vara fler än en föreläsning, en räkneövning och en datorövning
per dag.

2. Schemat för varje grupp av studenter bör vara s̊a utspritt som möjligt över veckan och
s̊a kompakt som möjligt under dagen.

3. Räkneövningar bör komma direkt efter tillhörande föreläsning.

4. Varje föreläsning i en kurs bör ges i samma rum. Detsamma gäller för räkneövningar.

5. Måndag morgon och fredag eftermiddag bör inte inneh̊alla n̊agra lektioner.

6. Lektioner bör helst ligga mitt p̊a dagen, det vill säga undvik tidiga morgnar och sena
eftermiddagar.
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D.6 Känslighetsanalys

Den känslighetsanalys som utförts gäller främst hur modellen reagerar p̊a förändringar hos
bivillkor och m̊alfunktion. Det finns begränsat med teori för känslighetsanalys till heltalspro-
blem, men genom att tillfälligt ta bort vissa bivillkor kan man f̊a en uppfattning om hur de
p̊averkar lösningen. Om ett h̊art bivillkor tas bort blir resultatet ett ogiltigt schema vilket är
ointressant att analysera. Därför avlägsnas endast de mjuka bivillkoren.

Den största begränsningen i modellen är antalet kurser som ej f̊ar krocka med varandra.
Om alla kurser f̊ar ges samtidigt skulle det vara möjligt att schemalägga 220 lektioner varje
vecka (5 dagar, 4 tidsperioder, 11 rum) men med kurser som inte f̊ar ges samtidigt minskar
detta antal avsevärt.

Det resulterande schemat p̊averkas mycket av förändringar i m̊alfunktionen, d̊a vikterna
kan ändras s̊a att schemat koncentreras till de tider som är önskvärda. De vikter som är valda
i den nuvarande m̊alfunktionen är de som bäst uppfyller lärares och elevers önskem̊al.

D.7 Resultat och slutsats

Det genom modellen framtagna schemat uppfyller alla h̊arda bivillkor vilket garanterar att
det är praktiskt möjligt. Schemat är dessutom bra i den mening att det uppfyller de mjuka
bivillkoren i högre grad än det nuvarande schemat. Den formulerade modellen är tillräck-
ligt generell för att kunna användas för andra läsperioder och kurser och genom att ändra
vikterna i m̊alfunktionen kan modellen anpassas till nya önskem̊al. Lösningar skulle behöva
analyseras av de som i slutändan ansvarar för schemaläggningen men arbetsbördan skulle
minska avsevärt.

I nuläget kräver alla modifikationer av modellen grundläggande först̊aelse för AMPL och
MATLAB och utförlig kunskap om modellen. En möjlig fortsättning för att vidare underlät-
ta schemaläggningen p̊a matematikinstitutionen vore att utveckla ett lättförst̊aeligt använ-
dargränssnitt. Detta skulle göra det möjligt att göra ändringar och omedelbart se det nya
schemat.
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