

University of Gothenburg
Department of Applied Information Technology
Gothenburg, Sweden, May 2009

Design for a Voice-Based
Recipe Book

- From a Communicative Perspective

Author: Xi Chen

Master of Science Thesis in Communication

Report No. 2013:136
ISSN: 1651-4769

Abstract

A design of a voice-based recipe book application is carried out in

this project. The design is mainly based on a communicative

perspective which offers theoretical clues to the human-computer

interaction design; therefore, the communication between the system

and the users could be more fluent, efficient and similar to a real life

interaction. The implementation of the final application is based on

VoiceXML and Python, and then tested on the platform offered by

Voxeo.

Keywords

Communication Technology, Human-Computer Interaction,

Dialog System, Speech Technology, VoiceXML, Interaction Design

1

Table of Contents

ABSTRACT .. 0

KEYWORDS .. 0

1. INTRODUCTION ... 3

1.1 LANGUAGE TECHNOLOGY .. 4
1.2 SPEECH TECHNOLOGY .. 4
1.3 HUMAN-COMPUTER INTERACTION (HCI) .. 4
1.4 DIALOG SYSTEM .. 5
1.5 VOICEXML ... 5
1.6 VOXEO ... 6
1.7 COMMON GATEWAY INTERFACE (CGI) .. 6
1.8 PYTHON ... 7

2. LITERATURE REVIEW ... 7

3. THEORETICAL BACKGROUND ... 13

3.1 PATTERNS OF COMMUNICATION .. 13
3.1.1 Typical Sequences of Events ... 13
3.1.2 Turntaking ... 14
3.1.3 Feedback .. 14
3.1.4 Phonological Patterns ... 15
3.1.5 Vocabulary .. 15
3.1.6 Grammatical Patterns ... 15
3.1.7 Interpretation and Understanding.. 15

3.2 OTHER RELEVANT THEORIES .. 16
3.2.1 More about Feedback ... 16

4. DESIGN .. 17

4.1 MAIN FUNCTIONS ... 17
4.2 SEQUENCES ... 17

4.2.1 Greeting .. 17
4.2.2 Medial Sequences ... 18
4.2.3 Leavetaking .. 18

4.3 TURNTAKING .. 19
4.3.1 Interruption ... 19
4.3.2 Duration between Turns ... 20
4.3.3 Signaling ... 20

4.4 FEEDBACK .. 21
4.5 PHONOLOGICAL ISSUES ... 22
4.6 VOCABULARY AND EXPRESSIONS.. 23
4.7 DIALOG SAMPLE .. 26

5. IMPLEMENTATION ... 28

2

5.1 SECTIONS .. 28
5.1.1 Initial Section .. 28
5.1.2 Recipe Selection Section ... 28
5.1.3 Cooking Guide Section ... 29

5.2 FLOWCHART ... 29
5.3 FILES .. 32

5.3.1 Voxeo Side: .. 32
Wakeup.vxml .. 32

5.3.2 Server Side: .. 33
5.3.2.1 Command.py ... 33
5.3.2.2 Checkamount.py .. 34
5.3.2.3 Trimcond.py... 34
5.3.2.4 Recipeselection.py ... 35
5.3.2.5 Cookingstep.py ... 36
5.3.2.6 Recipes.db .. 36

5.4 DATABASE .. 37
5.4.1 Recipe Table ... 37
5.4.2 Dish Name Table ... 38
5.4.3 Material Table ... 39

6. FUTURE DEVELOPMENT ... 39

APPENDIX ... 40

A. BIBLIOGRAPHY ... 40

3

1. Introduction

Have you ever met the following situations in your life?

 You open your fridge and find that you have onion and eggs, but you don’t
know what to cook with them.

 You check the recipe book frequently while you are cooking, which makes
you flurried.

 You are so tired and starving after a whole day’s work and want to east
something simple and fast to cook.

With the rapid development and widely use of language technology,
especially speech technology, it is no longer difficult to deal with the
above-mentioned problems by the help of an electronic application – a
voice-based recipe book.

In this project, a design of this application is carried out, which is mainly
based on a communicative perspective. The reason is that even though it is a
human-computer interaction (HCI), it can also be seen as a communication
process which is performed between a computer and a human being. Thus,
studying the communicative features can help to make the human-computer
interaction more fluent, efficient and similar to a real life interaction.

The application is in fact a simple dialog system and will be designed
according to VoiceXML standard. Finally, it will be implemented and tested
based on the platform provided by Voxeo Corporation. The common gateway
interface (CGI) between the database server and the platform is programmed
by the program language Python.

The final application is intended to be able to deal with the above-mentioned
real-life problems, i.e. it can 1) provide recipes when the user mentions several
materials for cooking, 2) read the recipe step by step for the user while the
user is cooking, and 3) provide information of cooking time to the user.

This project focuses not only on the final application but also, as mentioned
above, on the work of design issues from a communicative perspective.
Therefore, the final implementation of the application should integrate both the
technique part and the design part (theoretical part).

The following introductions are intended to explain several concepts or
notions that are mentioned above.

4

1.1 Language Technology

No definition of language technology is widely accepted so far. However, the
literalness shows that it is closely related to two aspects: technology and
language. It is a combination of general linguistics and computer science.
“Human language technology” (HLT) and “natural language processing” (NLP)
are also mostly used as a substitute of language technology. The boundaries
among these definitions are not quite clear, which nevertheless does not affect
so much on the theoretical studies and the development of language
technology products. Language technology “consists of computational
linguistics (or CL) and speech technology as its core but includes also many
application oriented aspects of them” 1

1.2 Speech Technology

 such as computational syntax,
computational semantics, and so on.

“Speech technology relates to the technologies designed to duplicate and
respond to the human voice.”2

1.3 Human-Computer Interaction (HCI)

 The technology is widely used in modern
society especially as an aid to the voice-disabled, hearing-disabled, or blind
human beings. Many communication aid devices are based on speech
technology. Besides, the technology is also used by healthy people, for
example, to supplement to computer games and to aid in marketing goods or
services by telephone. Two important subfields in speech technology are
speech recognition which translates human speech into text, and speech
synthesis which artificially produces human speech. Speech-to-text (STT) and
text-to-speech (TTS) are commonly used to represent speech recognition and
speech synthesis.

“Human–computer Interaction (HCI) involves the study, planning, and
design of the interaction between people (users) and computers (or other
machines). It is often regarded as the intersection of computer science,
behavioral sciences, design and several other fields of study.”3

To study and to design the user interfaces is always the crucial part,

1 Language technology, retrieved from http://en.wikipedia.org/wiki/Language_technology on Apr 21st, 2012.
2 Speech technology, retrieved from http://en.wikipedia.org/wiki/Speech_technology on Apr 21st, 2012.
3 Human–computer interaction, retrieved from http://en.wikipedia.org/wiki/Human-Computer_Interaction on
Apr 21st, 2012.

http://en.wikipedia.org/wiki/Language_technology�
http://en.wikipedia.org/wiki/Speech_technology�
http://en.wikipedia.org/wiki/Human-Computer_Interaction�

5

because the interaction between users and computers occurs at the user
interface which includes both software and hardware. In this project, only the
software part is concerned.

HCI has a large scope. When studying HCI, both the human side and the
computer side are important. On the computer side, techniques such as
programming language are relevant; on the human side, communication
theories, linguistics, social sciences, and a lot of other fields are relevant. In
addition, the design methods and engineering are also relevant.

1.4 Dialog System

A dialog system or conversational agent (CA), which is a computer system
aimed to have discourse with a human, with a coherent structure, usually have
employed one or more modalities, such as text, speech, graphics, haptics,
gestures and other modes, for communication on both the input and the output
channel.

In this project, the application is a spoken dialog system, since only speech
mode is used. A typical spoken dialog system consists of the following parts:
an Automatic speech recognizer (ASR) which is an input recognizer/decoder
converting the users’ speech into plain text; a Natural language understanding
unit (NLU) which is used to analyze the input text; a Dialog manager which is
the core component and used to analyze the semantic information; an Output
generator which generates natural language output; and a text-to-speech
engine (TTS) which is an output render that converts the output into a human
appreciable way – speech.

“The dialog manager maintains the history of the dialog, adopts certain
dialog strategy, retrieves the content (stored in files or databases), and decides
on the best response to the user, and it maintains the dialog flow.”4

System-initiative dialog, mixed-initiative dialog, user-initiative dialog, and
learned strategy are the four staple strategies that the dialog flow can have.

1.5 VoiceXML

VoiceXML (VXML) is a W3C's standard XML format.5

4 Dialog system, retrieved from

 It is used to stipulate
interactive voice dialogues between a human and a computer. Similar to the

http://en.wikipedia.org/wiki/Dialog_system on Apr 22nd, 2012
5 See also: http://www.w3.org/TR/voicexml20/

http://en.wikipedia.org/wiki/Dialog_system�
http://www.w3.org/TR/voicexml20/�

6

relationship between HTML and visual applications in which HTML documents
can be rendered into visual applications by a visual web browser, a voice
browser can render VoiceXML documents into voice applications. Many
companies provide voice browsers which are platforms for VoiceXML
documents to be executed. These platforms are attached to the Public
Switched Telephone Network (PSTN) in order that the interactions between
users and the voice applications can be performed over the telephone.6

1.6 Voxeo

“Voxeo Corporation7 is a technology company that specializes in providing
development platforms for unified customer experience (self-service) and
unified communications (real time communications) applications.” 8

1.7 Common Gateway Interface (CGI)

 The
company pays so much attention on standards. Therefore all the platforms
developed by Voxeo are based on open standards like VoiceXML, CCXML,
and SIP, which makes it easier, efficient and standardized for the development
of speech technology products.

“The Common Gateway Interface (CGI) is a standard method for web server
software to delegate the generation of web pages to executable files. Such
files are known as CGI scripts; they are programs, often stand-alone
applications, usually written in a scripting language.”9

An example of a CGI program is one implementing a data request from the
database server on the VoiceXML platform. The user agent requests a recipe
in the VoiceXML platform by saying the dish name; the platform translates the
voice input into text and then send it to the server side; the server searches it
in the database by the given name, retrieves the information (if it exists),
transforms it into VoiceXML standard again, and then sends the result back to
the VoiceXML platform.

6 See also: VoiceXML, retrieved from http://en.wikipedia.org/wiki/VoiceXML on Apr 22nd, 2012
7 See also the official website of Voxeo: www.voxeo.com
8 Voxeo, retrieved from http://en.wikipedia.org/wiki/Voxeo on Apr 22nd, 2012
9 Common gateway interface, retrieved from http://en.wikipedia.org/wiki/Common_Gateway_Interface on Apr
22nd, 2012

http://en.wikipedia.org/wiki/VoiceXML�
http://www.voxeo.com/�
http://en.wikipedia.org/wiki/Voxeo�
http://en.wikipedia.org/wiki/Common_Gateway_Interface�

7

1.8 Python

“Python is a general-purpose, high-level programming language used for
high-level programming. Python claims to combine ‘remarkable power with
very clear syntax’, with a design philosophy which emphasizes code readability.
Python's standard library is large and comprehensive.” 10

2. Literature Review

2.1 Robert Batusek and Ivan Kopecek (1999) in their paper “User interfaces
for visually impaired people” discuss specific requirements of visually impaired
users, which they think should be crucial to applications and dialogue systems.
They believe that the “suitable dialogue strategies” is one of the most
important points when building a dialogue system, especially for visually
impaired people. They also point out that “in some applications, there is almost
no difference in using the user interface between sighted and visually impaired
user. This is, for example, the case of dialogue systems that are accessible via
telephone.” (Batusek & Kopecek 1999) This, telephone, is exactly the same as
the media that is used in this project.

They summarized the specific demands on user interfaces for visually
impaired people as following:

1. Comfortable control must be provided by the system via speech and/or
keyboard.

2. A speech command dictionary should enable speech commands to be
expressed in different ways in order to control the system more intuitively,
which is even more important to visually impaired users.

3. The system should enable the user to customize and configure easily
depends on how often the system is used and how long has the system
been used by the same user.

4. The system need to make sure users should be able to get information
quickly and get information overview when needed. This feature can be
supported by “various output speech modes and output speech rates as
well as by speech summaries, audio glances, earcons and
environmental sounds.” (Batusek & Kopecek 1999)

10 Python (programming language), retrieved from http://en.wikipedia.org/wiki/Python_(programming_language)
on Apr 22nd, 2012

http://en.wikipedia.org/wiki/Python_(programming_language)�

8

5. The information about the position should support the orientation of the
user. And this feature can be supported by the same ways as last point.

All sound required in the whole system consists of three types: 1)
synthesized voice generated by a voice synthesizer, 2) sample voice such as
recorded human-voice, and 3) non-speech sound produced by the sound
synthesizer, MIDI, wave tables or special samples. Using variety types of
sound could enhance the efficiency and effectiveness of the communication
between the system and the user.

However, they can also make the user confused sometimes. Thus, the
authors pointed out some strategy to optimize this problem:

It’s better for the system to detect or receive declaration from the user about
whether it is a beginner or an experienced user. Then, the system decides a
corresponding strategy depending on the user experience measure. The user
should be able to ask for an explanation of the meaning of the implicit
information anytime during using. If the user asks for explanation frequently,
the system should be aware of that and then shift to another communication
level. At last, the user should be able to choose between communication levels
freely.

2.2 In “VoiceXML-based spoken language interactive system” (Ondáš 2006)
the author Ondas introduced the architecture of spoken language interactive
system (SLIS). The general model of SLIS is firstly introduced in the paper,
which includes the following parts: 1) Input-output block (I/O) which processes
the input and output speech signal, 2) Automatic speech recognition (ASR)
which recognizes input speech from user and convert it to text, 3) Natural
Language Understanding (NLU) which analyzes the meaning of converted
recognized words and generate the meaning in the system’ s context, 4)
Dialog Manager (DM) which controls all operations in the system, 5) Natural
Language Generation (NLG) which generates representation of information in
order to respond to the user, and 6) Text to speech (TTS) which convert text to
phonetic information to the user. The authors also introduce two different types
of architectures of SLIS, pipeline architectures and distributed architectures.
The former is old, strictly ordered, low flexible and has late responses to errors,
while the latter is more modular and has high ability to process management
and is flexible to add new features.

2.3 Kristiina Jokinen (2004), in her paper “Communicative competence and
adaptation in a spoken dialogue system”, emphasizes that when designing a

9

practical system which can function. The author introduces a new metaphor for
human-computer interaction: “the computer is not only a tool that the user
must learn to use, but it is a (software) agent interacts with the user and
mediates between the user and the application.” Thus, interactive systems
need not only to communicate with user but also to satisfy a bigger range of
users. This is why user study is very important.

Kristiina then describes three common approaches regarding the integration
of human aspects into interactive system design: user-centered design,
ergonomics and user modeling.

User-centered design which focuses on the quality of interaction requires
user to participate in the design process and experiment the prototypes and
also give feedback of how the system should be better changed. This
approach links to the context of use, context of organizational, technical and
physical factors.

Ergonomics focuses on applying scientific information from anatomy,
physiology and psychology into design, so that environment, user capabilities
and limitations are considered. This approach helps to design, for instance, the
keyboard, displays and also take user’ s cognitive load into account. The
interface design, especially system prompts, can benefit from this approach,
so that the system prompts properly and unambiguously, and the user could
get correct information about the task and know the system’s ability and
limitation and thus give an appropriate answer back to the system.

 Studying human communicative features, such as speaker intentions,
speech and language errors, mutual beliefs, etc. and building models from
single users for their computational treatment can help to better the
human-computer interaction. User models can be both simple lists which show
user preferences, and complicated models which are usually related to system
adaptations, which means that the system has the ability to detect user
behavior and learn it.

All three approaches focus on and result in differently, but all highlight
interaction between the computer and the user. They author pointed out that
the adaptation happens in the user part in order to get accustomed to the
system. However, the system should also be capable to detect and adjust to
the user’s behaviors. This can be explained in this way: if we think about
natural language communication, mutual adaptation is the essential
communicative capability of each participant in the conversation.

10

The author then illustrates the communicative competence which a
communicatively adequate, user-oriented system should have are “physical
feasibility of the interface, efficiency of reasoning components, natural
language robustness, and conversational adequacy”. (Jokinen 2004) 1) In the
system interface, enablements for communication ought to exist, so that the
system is easy to use, learn, and talk to, and system ability and restrictions
should be transparent to the user. 2) User tends to think that the
human-computer communication is different from natural language
communication, so unnecessary pauses can exist, which could influence the
efficiency or cause a conversation termination. Thus, efficiency of reasoning
components is a fundamental communicative competence of the system. 3)
Natural language processing (interpretation and generation) is essential to
ensure elaborated interactive system and their communicative capability, even
though people may think task accomplishment is more important and the
vocabulary is limited in human-computer conversation. 4) The system should
be capable to deal with ambiguousness, confusedness, misunderstanding, etc.
provided from the user side, and convey useful collaborative information to the
user in order that all underlying tasks could be done.

Regarding evaluation, the author points out that both system design and the
perception of the user should be considered, because both system efficiency,
error-free processing, etc. and user’s comfort caused by the system design are
crucial to user satisfaction and should be evaluated. To evaluate the
adaptation is important but complicated, which calls for a longer time.

2.4 David Sadek (1999) describes in his article “Design considerations on
dialogue systems: From theory to technology –The case of Artimis-” that
because of the emerging amount of human-computer interaction on modern
media and the nature and fundamentality of speech as the way of
communication, especially the speech as the only modality to telephone users,
speech technology has been considered as an appropriate and emerging
media for human-computer interaction. User-friendliness is very crucial to an
interaction and system’s intelligence is also fundamental. However, it is hard to
balance the two. For example, it is hard to get wanted information for the user
through a single query or the answer from the system could be of very big size
even if the user’s query is well-formed. Thus, clarification, negotiation and
completion dialogues are required to complete a certain task. Furthermore, in
order that the user could express more freely, the agent’s intelligence and
knowledge are very important.

11

The author has provided several features which a user-friendly system
should embody:

Negotiation ability can enhance the system’s user-friendliness under three
circumstances. 1) The user’s request to the system is incomplete hoping that
the system could help to express more specific searching conditions. 2) The
system generates a big size of answers according to the user’s
well-formulated request. Thus, the system should help the user to constrain
the results. 3) The system cannot find any appropriate answers according to
the user’s request, so the user should be directed to revise the searching
conditions and formulate searchable ones.

Contextual interpretation and language flexibility enable the system to
understand the user’s meaning with respect to what the user has already said
before, so that the user need not to express a well-formulated request every
time under a certain task, because people tend to express only the differences
between situations rather than a whole situation. The system should also
support language flexibility because the user could choose words from a large
vocabulary and speak spontaneously when describing the difference between
situations.

Interaction flexibility means that the system follows no pre-established
interaction structure, so that the user has the possibility to “engage into a
clarification sub-dialog before answering a system’s question, or to change
topic or dialogue objectives even before the completion of a mutually agreed
dialogue task.” (Sadek, 1999)

Cooperative reactions enable the system to provide 1) completion answers,
2) corrective answers, 3) suggestive answers, 4) conditional answers, and 5)
intensional answers when interact with the user. For example, when the user
asks “Do you know when the train leaves”, the system should give the exact
time rather than saying just “Yes, I do.”

Adequacy of response style provides the system with ability to show the
answers to the user in different modalities appropriately, i.e. the system should
be able to coordinate among different medium according to the current
situation.

The author points out that these criterions are interdependent and should be
fulfilled together and generically. Thus, when designing a dialogue system, a
global approach should be carried out so that all criterions must be considered.

12

The author then illustrates two types of computational approaches for
dialogue system. Structural approaches are derived from either a
computational background or a linguistic background, which can be
represented by a finite-state automation or a CFG (context-free grammar).
They assume that in all dialogues or interactions, there are regularly structured
frameworks. Thus, they are rigid and limited to the user. While Classical
plan-oriented approaches assume that all communication interactions are
comprised of not only a set of words but also a series of communicative acts,
for example, request, feedback, confirm, etc. And all these actions are
motivated by achieving a specific goal in a certain interaction between
interlocutors whose mental states (for example, beliefs, intentions, etc.) would
be changed. The purpose of an interaction is to acknowledge the goals and
plans which people already generally have in their mind, and to generate
effects which are accordant with the original purpose.

2.5 Allwood and Ahlsén (2009) in their article point out that the rapid
development of intercultural information communication technology has
enlarged the use of multimodal intercultural communicators. This trend, on the
other hand, reflects the requirement that communicators master natural
communication abilities, so that people with lower communication skills or low
education could also use.

Activity features must be considered when designing and evaluating, since
different activity requires differently, regarding its purpose, roles, artifacts,
environment, etc.

All communicators should be based on “a generic system for interactive
communication with a number of parameters that can be set to capture
intercultural variation in communication” (Allwood and Ahlsén 2009), i.e. a
generic multimodal intercultural communicator (GMIC).

Moreover, communicators should have the capability to deal with recognition
or understanding collapse, so that the system should run meaningful process
to handle the problem rather than just reporting error.

The authors have also illustrated an outline of some intercultural parameters
which should be considered when designing, including cultural variation in
expressive behaviors (head, eyes, arm, and shoulder movements, gazing,
etc.), in content and function (emotions, attitudes, everyday topics, and
common speech acts), in perception, understanding and interpretation. There
are also some interactive features that worth to consider: turntaking, feedback,

13

sequencing, and spatial configuration. In addition, some other contextual
features (for example, use of pronouns and tense endings may not exist in
other languages; beliefs and values could also influence communication) and
other aspects of behaviors must also be examined.

3. Theoretical Background

As mentioned above, quantities of theories involved in different fields are
worth to consider when designing this application. However, only
communication theories are focused in this project, since HCI should
essentially be seen as a communication process and few studies have
connected design works of dialog systems with communication theories.

3.1 Patterns of Communication

The concept of “patterns of communication” brought out by Jens Allwood is
“fairly general and does not imply very much more than repeated traits of, or
aspects of the communication of the members of a certain social or cultural
group.” (Allwood, 1999, p.1) The concept is mostly used in the studies of
intercultural communication. However, a lot of notions are quite useful in this
project if we see human-computer interaction as the communication between
two different groups: human and computer. Allwood puts forward a framework
for the study of spoken language communication which can also be regarded
as an operational analysis of the concept of “patterns of communication”. This
design project is mainly guided by the items in his framework. All the notions
which are related to this project are listed and explained in the following. Some
notions such as spatial arrangements and nonverbal behaviors are omitted in
this part since they are irrelevant to a voice-based application.

The first three – typical sequences of events, turntaking, and feedback – are
patterns of interactive communication between speakers and listeners, and the
following three – phonological patterns, vocabularies, and grammatical
patterns are patterns in individual communicative behaviors

3.1.1 Typical Sequences of Events

Typical sequences of events refer to that many conversations start, move
ahead and end in certain sequences depending on cultural, convention,
formality, place, time, artifacts, modalities and so many possible factors. For
example, how we start and end a telephone call must differ from how we start

14

and end in a seminar: we do not say “This is Rose speaking. Who’s that” to
start a seminar or “Welcome to this…” at the beginning of a phone call either.
The way of how we greet, introduce people, say goodbye, etc. are almost
habitual, regular, and conventional.

3.1.2 Turntaking

Turntaking refers to “the distribution of the right to speak which is related to
such phenomena as how long one can speak and if one can speak
simultaneously with other speakers.” (Allwood, 1999, p.3)

Turntaking strategies vary among the cultures of the world. In some cultures,
people speak simultaneously with others to compete for attention directly.
However, in most other cultures, especially those which have low tolerance for
interruption, people draw attention indirectly by competing for the floor rather
than interrupting people directly. In some situations, interruption seems as
insult.

The period of time between speakers that values the right to the floor also
differs from cultures. For example, the pause in USA is longer than in Sweden
and in Finland it is even shorter.

It is also interesting to examine how one signal that he or she wants the floor,
keeps the floor, and is ending the floor. For example in China, people
sometimes repeat the word which sounds like “nai-g” to show that we are
hesitating or thinking but we still want to maintain the floor. If we want to end
the floor, we can gaze at another person to give out the floor.

3.1.3 Feedback

Feedback refers to “the fact that speaker as well as listener, in a
conversation must know how the other party is reacting.” (Allwood, 1999, p.3)
During a conversation, it is significant for both the speaker and the listener to
make sure whether they are perceived and understood by the other party
correctly and they perceive and understand the other party correctly through
the whole communication process; otherwise, the communication will be
ineffective and inefficient or even a communication failure will arise.

Both parties can act as feedback elicitor. For example, in English, people
can use a tag-question, such as “you want to cook Swedish meatballs, do you”
and people can also say “do you mean that you want to cook Swedish

15

meatballs”.

Both parties can act also as feedback giver and the most common way to
give a feedback, for example in Chinese Mandarin, is to either nod your head
or to utter an “eng” sound with a falling tone or to say “duei” which means
“correct” in Chinese.

How much feedback information to give is very important but also depends
on culture. Incomprehension arises when feedback giving is less than
expected, while giving more feedback than expected leads to ridiculousness,
annoying and irritating.

3.1.4 Phonological Patterns

Phonological patterns mean the sounds which are used when one speaks.
The properties of both isolated sounds and longer sequences of sounds are
worth to pay attention; these properties are, for example, intonation, stress and
melody. Sound which has numerous functions, for instance, a funny sound or a
boring sound, a rising tone or a falling tone, can arouse people’s emotions and
indicate whether it is a statement, a question or an imperative.

3.1.5 Vocabulary

Vocabulary refers to the words and expressions that are used in different
types of communication. Vocabulary variation is influenced by cultures and
nations and even by professions and activities. For example, there are more
words referring various kinds of peppers in Chinese than in English; eggplant
used in American English while aubergine is used in British English, but they
refer to the same kind of vegetable.

3.1.6 Grammatical Patterns

“Grammatical patterns refer to the differences in word order and types of
linguistic construction which exist between different languages and between
different ways of using a language.” (Allwood, 1999, p.3)

3.1.7 Interpretation and Understanding

Interpretation and understanding means that having the ability to speak is
probably not enough for people to communicate; besides, one must be able to

16

understand and interpret what the other people express. One need pre-stored
information, especially culture specific background information, with which
he/she can connect other people’s nonverbal messages, words, phonological
patterns and grammatical patterns. The more pre-stored information one has
and the more relevant the pre-stored information is, the easier interpretation
and understanding will be.

3.2 Other Relevant Theories

3.2.1 More about Feedback

Feedback is the backbone of communication. If there is no feedback, the
communication will break down easily. In face-to-face communication,
feedback is inevitable in communicative actions and expressions. The
expression of emotions and attitudes are included as a part of feedback as well.
Thus, feedback is the interaction between two people where reaction can be
shown from the interlocutor in terms of attention, understanding and
agreement.

“Feedback and eliciting are annotated by means of the same sets of
attributes, called Basic, Acceptance, and Additional emotion/attitudes”
(Allwood et al., 2005, p.4).

Allwood describes how the feedback giving is practically coordinated as
following:

Table 1

Function attribute Function Value

FEEDBACK
GIVE

Basic Contact/continuation,
Perception, Understanding (CPU)

Contact/ Continuation Perception (CP)

Acceptance Accept

Non-accept

Additional
Emotions/Attitudes

Happy, Sad, Surprised, Disgusted, Angry,
Frightened, Certain, Uncertain, Interested,

Uninterested, Disappointed, Satisfied, Other

Basic function attribute regards to the interaction between speaker and
listener(s) whether they have a desire to acknowledge contact (C) and

17

perception (P) of each other. After that the interlocutor will indicate
understanding (U) message by eliciting a sign of understanding – verbal and
nonverbal communication – such as “Huh,” “Umm, I see” or head nodding.

The function attribute acceptance indicates that the message has been
understood, perceived, agreed on or denied by the interlocutor; for instance to
give the code of agreement words: “Yes”, “Sounds good”.

Emotions and attitudes are automatic features which can occur
simultaneously with basic feedback, acceptance feature.

4. Design

Based on the theoretical introductions above, the analyses and the design
works are included in this part.

4.1 Main Functions

To search for a recipe by the name of a dish;

To search for a recipe that can be cooked by the materials the user has in
the fridge;

To provide dish introductions when more than one result are found, in order
that the user can choose which one to cook;

To read the recipe step by step for the user and jump between steps while
the user is cooking.

4.2 Sequences

4.2.1 Greeting

Even if the application will be developed and tested on the Public Switched
Telephone Network, it is still supposed that the system could be installed in
other devices in the future, which is located in the kitchen as a cooking
assistance system and easy to access and use. Therefore, conversation starts
as if it is an assistant rather than a regular phone call. So, the initial sequences
are like this: The system will wake up from a sleeping mode and say “Hello!
Welcome to use the cooking assistant” when the user calls “cooking assistant”,
and then the system will ask “what can I do for you” as people do in a shop or a
service station.

18

<noinput> </noinput>
<nomatch> </nomatch>
<form id="wakeup">
 <field name=”wakeup”>
 <option>wake up</option>
 <option>cooking assistant</option>
 <filled>
 <prompt>

Hello! Welcome to use the system!
What can I do for you?

</prompt>
 </filled>
 </field>
</form>

4.2.2 Medial Sequences

When we cook with the help of a paper-based recipe book, we usually firstly
check by the dish name or by the main material such as chicken, pork, etc.
Second, we choose one from all the matched recipes after reading the
descriptions of them. At last, we cook according to the steps showed in the
recipe.

 The medial sequences in this application will mostly imitate the sequences
as mentioned above, but there are surely a lot of things changed according to
the technical limitations of VoiceXML and the particularity of human-computer
communication.

4.2.3 Leavetaking

Fewer leavetaking seems better since after cooking a dish, the user has no
more interest in talking with the system rather than eating, and so, if the user
has no more demand from the system, one sentence “have a good appetite” is
enough for the leavetaking.

<form id="leavetaking">
 <field name=”morehelp” type=”boolean”>

19

 <prompt>
Cooking is finished. Do you need more help?

 </prompt>
 <filled>

<if cond="morehelp”>
 <submit next=”command.py "/>

 <else/>
 <prompt>OK! Have a good appetite!</prompt>

<exit/>
 </if>

 </filled>
 </field>
</form>

4.3 Turntaking

4.3.1 Interruption

 There is a property in VoiceXML called “bargein” which is used to enable or
disable users’ interruption when the system is prompting. When the value of
“bargein” is “true” the system’s prompt can be stopped by the user’s utterence;
while the value is “false”, no sound could stops the system, i.e. the system will
not stop talking until the end of the prompt.

When the “bargein” value is “true”, another property called “bargeintype”
becomes useful. There are two values that could be chosen: “speech” which
means that the prompt will be stopped as soon as any sound (including
background noise) is detected irrespective of whether or not the input matches
a grammar; and “hotword” which means the prompt will not be stopped until a
complete match of an active grammar is detected, i.e. input which does not
match an active grammar will be ignored and the prompt will not be
interrupted.

 So, the best way to deal with interruption is to set the “bargeintype” value
into “hotword” and also set as a global value. Therefore, during the whole
conversation, the system cannot be interrupted by background noise, but the
users who are familiar with the system and do not want to wait until the prompt
is finished can get their turn to talk directly by saying expected words which

20

match the grammar.

In order to set this global value,

<property name="bargeintype" value="hotword"/>

will used and placed in the beginning of the code.

4.3.2 Duration between Turns

 The period of time between turns can be assigned by the “timeout” property.
In other words, if the user does not respond anything after the assigned period
of time followed by the system’s prompt, the system will throw a “noinput”
event.

 In order to make sure that the user has enough time to think before respond
or not to waste so long time here in case the user has no idea about what to
respond, it is better to set the “timeout” value to “5s” (5 seconds).

Therefore, if the user does not know what to say, the system can take the
turn again, re-prompting or doing something else depending on what is the
“<noinput>” element.

<prompt timeout=”5s”>
Do you know the name of the dish which you want to cook?

</prompt>
<noinput count=”1”>

<reprompt/>
</noinput>
<noinput count=”2”>

<prompt>
 Please say yes if you know the dish name which you want

to cook. Otherwise, say no.
</prompt>

</noinput>

4.3.3 Signaling

In human-computer communication, it is not easy for any party to signal
when wanting, maintaining or ending a turn.

A user can say “hotwords” to signal when wanting the turn; however, as

21

mentioned before, he/she should have already got the turn when the “hotwords”
are detected. A user can leave a silence when signaling the end of the turn.
Unfortunately, a user has to talk without long silences in order to maintain a
turn.

The system usually signals the end of the turn by saying a full sentence from
which the user should be able to perceive that the system is ending its turn and
he/she is expected to give a respond. The system does not need to signal for
maintaining a turn or cannot ask for a turn either.

Thus, it is better for the system to use fewer sentences in a turn and better to
say a question or an imperative. The expressions in the sentences should be
easily understandable in order that the user knows exactly what is expected to
respond without hesitating during his/her response turn. In addition, the
system should ask simple questions rather than difficult ones, so the user can
say only a few words or shorter sentences which can minimize the risk of
causing pause when responding.

4.4 Feedback

 Due to the platform limitations, the system can neither give feedback
through non-verbal communication, such as eye contact, gestures or
head-nodding, nor give verbal messages at the same time when the user is
speaking. However, it would be better if the system somehow give feedbacks
after the user has finished talking.

Giving feedbacks to users are crucial in this application which has several
merits. First, it makes the user feel the continuation and that the conversation
is as real as talking to a person. Second, since the environment factors are
precarious which could be noisy or bad quality, it is necessary to confirm what
information is received from the user, sometimes by repeat the user’s
sentence; this step is to show the continuation, perception and understanding
all together. Third, feedbacks can show acceptance or non-acceptance to the
user, for example, the system says “sorry, I don’t understand. Please try again”
if what the user says does not match the grammar. Last, the system can even
show a little emotion through feedback giving, for example, the system says
“sorry! No dish is found in the database” with a stress sound on “sorry”.

In this application, it is even more important for the system to elicit
feedbacks from the user. As stated above that the system often need to
confirm whether the understanding is correct, thus, the system has to elicit a

22

feedback which requests a confirmation from the user side. For example, “I
heard you want to cook Swedish meatballs, don’t you?” “So, you want to cook
with potatoes and butter, is that right?”

 Nevertheless, if the whole conversation is filled with this kind of feedback
giving and eliciting, it seems tedious and iterating, which could drive the user
crazy and cause dissatisfaction.

 In the initial section, if the user is not familiar with the system, he/she may
not know what to say or say wrong words which do not match the grammar,
when the system asks “what can I do for you”. In this case, if the system
detected nothing valid feedback from the user after few seconds, the <noinput>
or <nomatch> event will be activated in which the system will say some
introductory words to tell the user what to say. If the user provides no valid
feedback for a second time, the system will redirect to a close question mode,

<noinput count=”2”>
<goto next=”#closequestions”>

</noinput>

which asks the user “do you know the dish name that you want to cook?” This
can effectively avoid the communication failure caused by wrong feedback.

4.5 Phonological Issues

 Not so much phonological factors can be considered, since the platform
does not support well. However, there are still some points which need to be
brought out.

The exclamation mark can be used somewhere in the conversation, which
generates emotional feedback to the user, for example, “have a good appetite!”
and “hello! Welcome to use the system!”

<prompt>
Have a good appetite! Bye!

</noinput>

It’s better to use full sentences rather than short ones when it is a question,
because the TTS system, in most cases, generates same intonation no matter
it is a full stop or a question mark. For example, to use “is that right” followed
by a question mark instead of “right” followed by a question mark, because in

23

the output sound, “right” followed by a full stop has no difference with “right”
followed by a question mark. Thus, the users can be confused when the
system just says “right” with a falling intonation.

Due to the current low-developed TTS technology, a problem which causes
so much inconveniences and troubles to the end users and lows down the
system’s usability is that when the system reads long sentences located in the
cooking steps and the ingredients, the words speed is so fast which causes
unclearness and difficulty to understand. One way to deal with this problem is
to add pause between the words in order to separate the important words,
either by add “<pause>” tag or by add comma or full-stop.

<prompt>
So, I heard that, you want to eat, Swedish meatballs. Is that right?

</prompt>

4.6 Vocabulary and Expressions

When writing the grammar file, it should be as inclusive as possible, such as
“I want to know how can I cook ***”, which were considered as not necessary
by the other members because no users will express like that. However, every
possible expression that the users could say should be considered. It will be
useful even if very few people will say like that. The system should be
considerate for all users who are both English natives and not native speakers.
English native speakers usually use short, simple, oral words, preposition
phrases, and even slangs, while non-native speakers tend to use normal,
written, regular words. For example,

<rule>
I

 <one-of>
 <item> want to </item>
 <item> wanna </item>
 </one-of>
 <one-of>
 <item>
 <one-of>
 <item> cook </item>

24

 <item> know how to cook </item>
 <item> can I cook </item>
 </one-of>
 </item>
 <item>
 eat
 </item>
 </one-of>
 <ruleref uri="#dishname"/>.
</item>

The variety of using vocabularies in differences cultures should be
considered. The possible way is to stored all the possible words in the
materials’ database no matter it is used in British English or American English,
or even other languages but having no direct translation into English. The
words which have the same meaning should be connected in order that the
system knows exactly what it is when for example one user says “aubergine”
and the other says “eggplant”. (cf. 5.4.3 Material Table)

Sometime, the users who are not English native speakers may have
difficulties to distinguish countable noun and uncountable noun, may not
accurately use the plural form and single form of the materials, or may wrongly
uses an article in front of the noun. However, it is not difficult to deal with. Both
“a” and “an” and both single and plural forms of the words could be put into the
grammar, i.e. no matter the user says “two eggplant” or “a eggplant”, they
could all be matched to the grammar.

Sometimes, the users could say “I have a bottle of milk” rather than “I have
milk”, or “I have some potatoes” rather than “I have potatoes”. Thus, for the
system to be more user-friendly, a list of qualifier words should be included in
the grammar.

<rule id="determiner">
 <one-of>
 <item></item>
 <item>a</item>
 <item>an</item>
 <item>some</item>
 <item>several</item>
 <item>a few</item>

25

 <item>many</item>
 <item>a lot of</item>
 <item>plenty of</item>
 <item>a little</item>
 <item>one</item>
 <item>two</item>
 <item>three</item>
 <item>four</item>
 <item>five</item>
 <item>handful</item>
 <item>a bottle of</item>
 <item>a can of</item>
 </one-of>
</rule>

In addition, there is no need to put too much consideration on the irregular
forms of turning words into plural, because the voice recognition system is not
so strict, for example, the word “tomatos”, “candys” and “peachs” can be
successfully recognized by the system, even though the correct forms should
be “tomatoes”, “candies”, and “peaches”.

Open a database connection
con = sqlite3.connect('recipes.db')
con.text_factory = str

Create a cursor
cur = con.cursor()

Retrieve data from material table
cur.execute('SELECT * FROM Ingredientstbl')
materials = cur.fetchall()

Create materials list with both singular forms and plural forms.
material_list = ""
for i in materials:
 material_list += '<item>%s</item>' % item[0]
 material_list += '<item>%ss<tag>out="%s"</tag></item>' % (i[0],i[0])

Another problem is whether to enable the users to search by both main

26

materials and side materials or just by main materials. It is hard to identify main
materials and side materials and it is also an intercultural problem since people
having different culture background may hold different opinions towards
materials and ingredients. In order to be considerate for all end users
supposing they are from all over the world, thus, all names of materials should
be included in the grammar as long as they appear in the database. (cf. 5.4.3
Material Table)

4.7 Dialog Sample

According to the analyses above and the main intended functions, five
prototype dialogs are integrated in the following table. Dialog 1 and 2 perform
the database search by cooking materials while dialog 3, 4 and 5 are based on
searching by materials. Dialog 5 also includes the function of adding conditions.
Dialog 1, 3 and 5 use open questions while dialog 2 and 4 use close questions
when the user fails to answer an open question. The discourse with GREY
background is given by the system and that with WHITE background is given
by the user.

Table 2

1. 2. 3. 4. 5.

Open Close Open Close Open

Search by dish name Search by materials
Search by materials

+ Add condition
Cooking assistant!
Yes, what can I do for you?

How to
cook
Swedish
Meatballs
?

Err...

What can I
cook with
beef and
flour?

Err...
What can I cook with
beef?

What can i do
for you?

What can i do
for you? So, you want to cook

with beef.
Four dishes have been
found. Do you want to
continue?

Err... Err…
Do you know
the name of
the dish you
want to cook?

Do you know
the name of the
dish you want to
cook?

Yes No Add a condition.

What's the
name of the
dish?

What materials
do you have?
Name one or
two.

What do you want to
add?

27

Swedish
meatballs.

I have beef and
flour.

Cooking time no more
than 90 minutes.

I heard that you want to eat
Swedish meatballs. Is that
right?

So, you want to cook with
beef and flour.

So, you want to cook
with beef, in less than
90 minutes.

Two dishes have been found.
Do you want to continue?

One dish is found. Do
you want to continue?

Yes

Yes Yes
Here are the options: 1.
Swedish Meatballs. 2. Beef
pie. Which one do you
prefer?

The dish is called
Swedish meatballs. Do
you want it?

Swedish
Meatballs
(Number
One).

What's Swedish meatball?
Swedish meatball is a dish which......
Would you like it?
Yes.

Do you want to listen to the materials of Swedish meatballs?

No
Yes
Main materials: Side materials:

The whole process needs around 80 minutes. Do you want to cook now?
Yes.
OK. Let's starting cooking. There are totally 11 steps to cook Swedish meatballs.
Please follow the steps carefully.
Step 1: Beat egg and add milk and bread crumbs.
Go back.

Next step.
Repeat.

This is the first step. Step 1:
Next step. Next step.
Step2: Combine crumb mixture with cooked onion, salt, black pepper, ground beef,
and ground pork.
Go back.

Next step.
Repeat.

Step1: Step 2:
Step 3. Step 3.
Step 3:
...... (from step 3 to step 11)
Step 11:
Go back.

Next step.

Repeat.
Step 10:
Next step. Step 11:
Step 11:

Next step.
Next step.
This is the last step. Cooking is finished. Do you need more help?
Yes. No.
OK. You are going back to the main menu. OK! Have a nice appetite!

28

5. Implementation

In this part, issues concerning how the application is finally implemented are
presented. First, how the application is divided into sections is introduced.
Second, the flowcharts of the dialogs of each section are showed. Then, the
files that are included in this application are listed and are described regarding
the usage. At last, how the database is organized is demonstrated.

5.1 Sections

The whole application has three sections in general: the initial section in
which greetings are given and search conditions are collected from the user;
the recipe selection section which is in charge of providing information about
recipes in the searching result and enables the user to choose; the cooking
guide section which provides cooking instructions step by step.

5.1.1 Initial Section

 The system greets the user first and asks “what can I help you” which is an
open-question. The user answers with the search condition by mentioning
either a dish name or a series of materials that he/she wants to use for cooking.
If the user failed to provide grammar-matched answers, the system will offer
support instructions and if this happens again, the system will turn to
close-question mode and asks whether the user knows the dish name. If no,
the system will ask the user to mention some materials that the user has. Both
open-question mode and close-question mode go to a confirmation where the
system will repeat the conditions given by the user, and tell the user how many
dishes can be found, and ask if the user wants to continue. If the user says no,
the dialog will start from the beginning. If the user says yes, the dialog will
continue to the recipe selection section. The user could also say “add a
condition” after which the system will ask “what more materials do you have?”
After the user adds conditions, the system will redirect to the confirmation step
again, performing a loop. At last, the dialog will come to the second section –
recipe selection.

5.1.2 Recipe Selection Section

If there is only one search result, or if the user mentions a dish name directly

29

in the previous section, the system will repeat the name of the dish and ask
whether the user wants to listen to all the materials that are needed in the
following cooking process. If the user says yes, the system will read and then
asks if the user wants to listen again in case it is too long or too fast for the
user to check; if the user says no, the system will tell the user the approximate
cooking time and ask for a confirmation of whether the user wants to continue
to cook. Here, the user could say yes to continue, say no to start over from the
initial section. In the beginning of this section, the user could ask could also
ask, for example “what is Swedish meatball”. The system will provide
information about the dish then.

 If there is more than one result, the system will list all the options with 3
options in each page. Then the user could select the dish by mentioning the
dish name or browsing between pages by mentioning the page number or ask
for the information about the dishes in the same way as described above. After
the user chooses a dish, the followed processes are the same.

5.1.3 Cooking Guide Section

In this section, the system will starts with reading the first step in the recipe,
and then wait for the user’s respond. The system will do nothing until the user
says “next step”. Of course, during the whole cooking guide process, besides
saying “next step”, the user could say “go back” to listen to the previous step,
say “repeat” to listen to the current step again, or say “step n” (n means the
number of any step) to jump directly to the n-th step. After reading the final
step, the system will tell the user that the whole cooking step is finished and
ask whether the user wants to go back to the initial section in order to cooking
something else. If the user says no, the system will say “have a good appetite”
and then goes back to the sleeping mode.

5.2 Flowchart

30

The flowcharts of all three sections are showed here respectively. The
yellow rounded rectangles represent the users’ inputs and the blue rectangles
represent the system’s discourses. The red parallelogram means accessing to
the database. The green boxes stand for the entire sections and the only blue
rounded rectangle is the end of the dialog flow. The arrows show the directions
of the dialog flow.

31

32

5.3 Files

Since the Voxeo platform supports only XML, VXML, and other static files
rather than database and other dynamic files, most files need to be stored in
the server side in order to retrieve information from the recipe database.

 *.vxml is the extension name of VoiceXML files and they are static files
which can be stored on the Voxeo platform.

The files ending with *.py are Python files which will be accessed through
CGI. In the beginning of each *.py file, a variable called “cgipath” is defined,
such as

cgipath = ‘http://192.168.1.1/cgi-bin’

which is used to store the path of the CGI files since the address of the server
is always changing, therefore it is unnecessary to modify all of them in each file
every time when testing the application.

The database file ends with *.db and is created according to SQLite
database standard by SQLite Manager.

5.3.1 Voxeo Side:

Wakeup.vxml

This simple file is just used as a trigger for the application to wake up and go
on to the initial section.

<?xml version="1.0" encoding="UTF-8"?>
<vxml xmlns="http://www.w3.org/2001/vxml" version="2.0">
 <noinput> </noinput>
 <nomatch> </nomatch>

<form id="wakeup">
 <field>
 <option>wake up</option>
 <option>cooking assistant</option>
 <filled>
 <prompt>Hello! Welcome to use the system!</prompt>
 <submit next="http://Server_IP/cgi-bin/command.py"/>

33

 </filled>
 </field>

</form>
</vxml>

5.3.2 Server Side:

5.3.2.1 Command.py

Command.py is the main file of the initial part which controls the main dialog
flow and contains the grammar for taking the user’s command and search
conditions.

The reason why to use a python file rather than a VoiceXML file here is that
the grammar of the “searching by ingredients” part is very large since we never
know what the users will say when they mention the ingredients that they have.
The system should be very considerate that it must be able to recognize all the
possible cooking materials, as well as the plural forms of the words. If we put
all the possible words into the grammar included in a vxml file, the file will be
too long for the system to access. Moreover, since the recipe database will be
updated frequently and new materials will appear, it is impossible to cover
them in a static VoiceXML file. Thus, to generate the grammar by a python
program is easier and efficient; the program fetches the names from the
database and make a copy of them with an “s” in the end as the plural forms,
and store them into a variable in order to use it repeatedly instead of fetching
them from the database again which causes so much burden to the database.
In addition, since the <grammar> element supports neither CGI nor a variable,
both the way of using a dynamic grammar (<grammar src=”*.cgi”>), or the way
of using <grammar> to read a variable which is assigned by using <data>
element to retrieve a CGI based grammar, do not work. After all, this
command.py file generates both the grammar part and other VoiceXML
functions.

 As mentioned earlier, the system offers a function by which the user can add
ingredients or other conditions such as cooking time if there are too many
search results (for example, more than 10). In order not to create so many
condition variables, such as condition1, condition2, condition3, condition4, etc.
the following code can be used:

34

<assign name = ”condition” expr = ”condition + ’,’ + new_condition” />

Therefore, the variable will be re-assigned as the user adds new conditions.
Even though the user adds iterative conditions, it doesn’t matter because in
the python file, the condition variable will be split by ‘,’ and be trimmed into a
set of strings (without iteration) in the trimcond.py which will be introduced
below. (cf. 5.3.2.3 Trimcond.py) Therefore the system could repeat all the
condition in a well-formed sentence and the users can understand easily.

5.3.2.2 Checkamount.py

This file takes the conditions requested by the user and conducts a search in
the database. Then, it returns only the count of the results to the ongoing
command.py file, which helps the user to decide whether to add a search
condition or not.

The search conditions are introduced in a string separated by commas.
Then they are transferred into a list and afterwards into a set in which, all
repetitive conditions are reduced to one; therefore, no unnecessary access to
the database will be conducted.

When conducting the search, the following SQL string is used:

'SELECT item FROM Recipestbl WHERE (main_material like "%s%"
or side_material like "%s%")

Firstly, only “item” (the name of the dish) is retrieved here because the other
information is not needed, and this reduces the burden to the database.
Second, “like” rather than “=” is used in order to make it case-insensitive,
because the recipes in the database could come from anywhere or any culture
and could be nonstandard.

5.3.2.3 Trimcond.py

This file collects all the search conditions from the user, reduces the
repetition, and composes a sentence as a feedback giving to the user, for
example, “you want to cook with tomato, pasta, and cheese, cooking time no
more than 3 minutes.”

35

5.3.2.4 Recipeselection.py

Recipeselection.py is the only file of the recipe selection section. It is divided
into several parts using “if…elif…” function, because it is then able to deal with
several situations: searching by ingredients, searching by dish name, and
searching by item ID (final retrieval after the user has a decision). So the
programming code turns out to be more clear and organized.

if method == "ingredients":
omission of several codes here
 sqlstr='SELECT * FROM Recipestbl WHERE ('
omission of several codes here
 cur.execute(sqlstr)
 recipes = cur.fetchall()
 byIngredients(recipes)
elif method == "name":
 sqlstr='SELECT * FROM Recipestbl WHERE name like "%s"' % (cond1)
 cur.execute(sqlstr)
 recipe = list(cur.fetchone())
 byName(recipe)
elif method == "item":
 sqlstr='SELECT * FROM Recipestbl WHERE item = "%s"' % (cond1)
 cur.execute(sqlstr)
 recipe = cur.fetchone()
 byName(recipe)

There are three different conditions distinguished by if…elif…else function in
the “searching by ingredients part”: only 1 result, 2 or 3 results, more than 3
results.

def byIngredients(recipes):
if len(recipes)== 1:

omission of several codes here
elif len(recipes)<=3 and len(recipes)>1:

omission of several codes here
elif len(recipes)>3:

omission of several codes here

For the system to be considerate, listing three names at one time is

36

acceptable, but it could be difficult for a user to remember more than three
options in a voice-based situation. Not as vision which can be nonlinearly
remembered by the users, voice is linear. Giving too much information at one
turn would cause communication failure. Thus, when dealing with more than 3
results, they are divided into pages with 3 items in each and then the user can
switch among pages by saying “next page”, “previous page”, and the page
number directly, and choose recipes in a page. However, the users are
suggested to refine the search conditions so that the searching results will not
be so many. (cf. 错误！未找到引用源。)

5.3.2.5 Cookingstep.py

Cookingstep.py is the only file for the cooking guide section. The system
introduces how many steps are there totally in order for the user to get a
general idea.

<form id="step0">
 <block>
 <prompt>
 There are totally %s steps to cook %s. Please follow the
steps carefully. <break/>
 </prompt>
 <goto next="#step1"/>
 </block>
</form>

If the user says “go back” at the first step or if the user says “next step” at the
final step, the system will give friendly respond telling the user that it is already
the first/last step, rather than give no feedback which will cause confusion to
the user.

5.3.2.6 Recipes.db

 This is the database file of the whole application. It contains all the recipes’
information and all the materials’ information which can be used for both the
“searching by materials” and “searching by dish name” function. More
description of the database will be given in the following section.

37

5.4 Database

There are 3 tables in the database: “Dish_namestbl”, “Ingredientstbl”, and
“Recipestbl”. They are used to store the dish names, the materials, and the
recipes respectively.

Even though all the dish names and the material names can be retrieved in
the recipe table, two new tables are created in which all the dish names and
material names mentioned in the recipe table are stored. They reason is that
they can be retrieved more easily, without causing too much burden to the
database and too much processing time, because in the recipe table, several
names were written in one cell, which calls for more time to separate them into
a list in Python.

5.4.1 Recipe Table

The recipe table is one of the core parts in this application which stores all
the information of all recipes. Besides the index column, there are 7 columns in
this table: name, time, type, area, main, side, and step. The name column
stores all the dish names and the time column contains the approximate
cooking time of each dish. The category information, such as main course,
dessert, and soup, to which the dish belongs can be found in the type column
and the information about where the dish comes from is in the area column.
The main and the side column, of course, keep the information about the
needed main materials and side materials respectively and materials existing
in one cell are separated by semicolons. All the cooking steps are kept in the
step column and separated by semicolons.

The reason for adding a time column is that the system should provide a
piece of information before leading the user to the cooking steps: “The whole
process needs around * minutes”. Therefore, the system can be more
considerate, because the user can have a general idea of the cooking time and
if it is too long for the user, the user can stop timely.

An idea of how to use the columns in order to make our system seem more
intelligent is that: since the distinction of main and side materials still exists in
the database, during the recipe choosing process, when the user faces several
options retrieved from the database and asks “what is Swedish meatball” or
“what is grilled salmon”, the system can give a feedback by combining the data
from several columns, such as “Swedish meatballs is a Swedish [area], Main

38

Course [type], made by 2.5 pounds ground beef and onion [main]”. This idea
makes the system more considerate for the user and it is also a good way to
make full use of our database. Here is an example of one row in this table:

Table 3

ID Name Time Type Area Main Side Step

1 swedish

meatballs

50 main

course

Swedish 2.5 pounds

ground

beef;

onion;

1 egg;

1 cup milk;

half cup dry

bread

crumbs;

2 teaspoons

salt; half

teaspoon

black

pepper;

2

tablespoons

water;

1 and half

cups milk;

……

Beat egg and

add milk and

bread

crumbs;

 ……;

Combine

crumb

mixture

with cooked

onion,

salt, black

pepper,

ground

beef, and

ground

pork;

……

5.4.2 Dish Name Table

Besides the index column, only one column exists in this table. All the dish
names mentioned in the recipe table are copied to here. When the application
starts, the python fetches all the names and put them into the grammar in
VoiceXML, so that when the user mentions one of these names, it can be
recognized.

Table 4

Row_ID NAME
1 Swedish meatballs
2 Teriyaki Chicken
3 Layered Taco Casserole
4 Grilled Salmon
5 Fresh Peach Dessert
…… ……

39

5.4.3 Material Table

Two columns are there in the table, besides the index column. The first
column is used to store all the material names existing in both the main
materials column and the side material column in the recipe table, since the
distinction between main material and side material varies in cultures. (cf. 4.6
Vocabulary and Expressions) The second column stores the alternative names
of the first column, for example, aubergine and eggplant. (cf. 4.6 Vocabulary
and Expressions)

Table 5

Row_ID MATERIALS ALT_NAME
1 ground pork
2 chicken
3 onion
4 milk
5 bread crumb
6 ginger
7 Tomato
8 potato
9 chicken legs
10 eggplant aubergine
…… …… ……

6. Future Development

1. One design direction of this application can be multimodal – voice and
visual. Therefore, users can conduct all the process through both channels,
and can also see the pictures from the screen. However, it should not disobey
the original intention of designing this application as a voice-based one,
because when using voice, people can have their eyes and hands free from
the screen and then can concentrate on cooking.

2. It is an ideal situation that the user could say “what’s next after the rice?”
However, it is too ideal to program. It requires so many considerations in the
grammar part in which all the possible expressions should be taken into
consideration. However, in the current application, it will be better if the system
tells the user how many steps totally there are before starting the cooking
steps, so that they can have a general view of the following cooking steps, and
it’s easier for them to jump among the steps.

40

3. Another function could be added is the timer function which enables the
user to set one or more timers when cooking. The timers can be named by the
user arbitrarily and can also be cancelled.

4. As mentioned earlier, one problem of this system which caused so much
inconveniences and troubles to the users and low down the system’s usability
is that the current low-developed TTS technology which makes the voice
output hard to understand. Some solutions have been introduced above (cf.
4.5 Phonological Issues). However, in the future development, I think we can
do it with the help of syntactic analysis, for example, we add comma after a
verb if it is followed by a noun phrase, and add comma after the noun. Then,
“add 3 gram salt into the mixture” will become “add, 3 gram salt, into the
mixture”.

5. It is better in the future to trim the data in the material column in the
database. For example, “3 chopped tomatoes;” can be written as “tomato (3,
chopped);” Therefore, data can be retrieved and used much more easily. For
example, when the system introduces a dish, the names of the materials
without the followed data in the parentheses will be retrieved; when the system
reads the materials that the user need to prepare in order to cook a certain
dish, all of the data are retrieved; when the user asks how many tomatoes are
needed, we retrieve the first element in the parentheses.

6. The feedbacks (confirmations) in the dialog should still be reduced, since
it is too fussy, boring and disgusts user. However, the reason why many
confirmations are set here is that due to the low speech recognition rate, it
would be better be if the system confirms with the user before going to the next
process. In the further development, the dialog design could be like this: let the
system go to the next step first, repeat a little of what the user said, and then, if
it is a wrong recognition, the user could go back by saying “no, no”, “I didn’t
said…” This design is very good on a communicative perspective, but it is a
little hard to implement in VoiceXML now.

Appendix

A. Bibliography

1. Allwood, J., (1999). Are there Swedish patterns of communication? In H.
Tamura(Ed) Cultural Acceptance of CSCW in Japan & Norid Countries,

41

Kyoto Institute of Technology, 1999. p. 90-120. Retrieve also from
http://sskkii.gu.se/jens/publications/docs076-100/087.pdf

2. Allwood, J., Cerrato, L., Jokinen, K., Navarretta, C. & Paggio, P. (2005) The
MUMIN annotation scheme for feedback, turn management and
sequencing. In Allwood, J., Dorriots, B. & Nicholson, S. (eds.) Proc. of the
2nd Nordic Symposium on Multi-modal Communication. Gothenburg,
Sweden: 91-109

3. Allwood, J. & Ahlsén, E. (2009) Multimodal intercultural information and
communication technology – a conceptual framework for designing and
evaluating multimodal intercultural communicators. From SSKKII
Interdisciplinary Center, University of Gothenburg.

4. Batusek, R. & Kopecek, I. (1999) User interfaces for visually impaired
people. Proceeding of Fifth ERCIM workshop on User Interfaces for All,
Dagstuhi,Germany,1999

5. Jokinen, K. (2004) Communicative competence and adaptation in a spoken
dialogue system. In proceeding of: INTERSPEECH 2004 - ICSLP, 8th
International Conference on Spoken Language Processing, Jeju Island,
Korea, October 4-8, 2004

6. Ondáš, I. S. (2006) VoiceXML-based spoken language interactive system.
In: Proc. 6th PhD Student Conference and Scientific and Technical
Competition of Students of Faculty of Electrical Engineering and
Informatics Technical University of Košice, Košice, 17.5.2006, s. 97-98.
ISBN 80-8086-035-1.

7. Sadek, D. (1999) Design considerations on dialogue systems: from theory
to technology – the case of Aritimis -. In IDS-99, 173-187

8. Language technology, retrieved from
http://en.wikipedia.org/wiki/Language_technology on Apr 21st, 2012.

9. Speech technology, retrieved from
http://en.wikipedia.org/wiki/Speech_technology on Apr 21st, 2012.

10. Human–computer interaction, retrieved from
http://en.wikipedia.org/wiki/Human-Computer_Interaction on Apr 21st,
2012.

11. Dialog system, retrieved from http://en.wikipedia.org/wiki/Dialog_system on
Apr 22nd, 2012

12. Voice Extensible Markup Language (VoiceXML) Version 2.0, retrieved from
http://www.w3.org/TR/voicexml20/ on Apr 21st, 2012

13. VoiceXML, retrieved from http://en.wikipedia.org/wiki/VoiceXML on Apr
22nd, 2012

http://sskkii.gu.se/jens/publications/docs076-100/087.pdf�

42

14. Voxeo: www.voxeo.com

15. Voxeo, retrieved from http://en.wikipedia.org/wiki/Voxeo on Apr 22nd, 2012

16. Common gateway interface, retrieved from
http://en.wikipedia.org/wiki/Common_Gateway_Interface on Apr 22nd,
2012

17. Python (programming language), retrieved from
http://en.wikipedia.org/wiki/Python_(programming_language) on Apr 22nd,
2012

	Abstract
	Keywords
	1. Introduction
	1.1 Language Technology
	1.2 Speech Technology
	1.3 Human-Computer Interaction (HCI)
	1.4 Dialog System
	1.5 VoiceXML
	1.6 Voxeo
	1.7 Common Gateway Interface (CGI)
	1.8 Python

	2. Literature Review
	3. Theoretical Background
	3.1 Patterns of Communication
	3.1.1 Typical Sequences of Events
	3.1.2 Turntaking
	3.1.3 Feedback
	3.1.4 Phonological Patterns
	3.1.5 Vocabulary
	3.1.6 Grammatical Patterns
	3.1.7 Interpretation and Understanding

	3.2 Other Relevant Theories
	3.2.1 More about Feedback

	4. Design
	4.1 Main Functions
	4.2 Sequences
	4.2.1 Greeting
	4.2.2 Medial Sequences
	4.2.3 Leavetaking

	4.3 Turntaking
	4.3.1 Interruption
	4.3.2 Duration between Turns
	4.3.3 Signaling

	4.4 Feedback
	4.5 Phonological Issues
	4.6 Vocabulary and Expressions
	4.7 Dialog Sample

	5. Implementation
	5.1 Sections
	5.1.1 Initial Section
	5.1.2 Recipe Selection Section
	5.1.3 Cooking Guide Section

	5.2 Flowchart
	5.3 Files
	5.3.1 Voxeo Side:
	Wakeup.vxml

	5.3.2 Server Side:
	5.3.2.1 Command.py
	5.3.2.2 Checkamount.py
	5.3.2.3 Trimcond.py
	5.3.2.4 Recipeselection.py
	5.3.2.5 Cookingstep.py
	5.3.2.6 Recipes.db

	5.4 Database
	5.4.1 Recipe Table
	5.4.2 Dish Name Table
	5.4.3 Material Table

	6. Future Development
	Appendix
	A. Bibliography

