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Abstract 
 

Sample size calculation is a crucial step in all experimental design.  In clinical 

research and drug development activities, it is required in order to be able to 

demonstrate a presumed statistical effect of a drug or a treatment. Today many sample 

size calculation algorithms and formulas exist. However, in this work an algorithm 

based on the results of Liu and Liang (1997) is tested and used to predict the right 

sample size based on data from a study involving 211 patients with abdominal aortic 

aneurysm (also known as AAA). In this study the growth of the diameter of the 

aneurysm was monitored over time and the slope of that growth was calculated. Since 

no information about treatment effect was provided, a statistically significant 

reduction of the slope by 20% was chosen to replace the lack. More precisely, we 

want to calculate the sample size required to demonstrate a desired effect of growth 

reduction by 20% of a treatment at the statistical power of 80%.   

 

The aim of this work was not only to examine statistically the abdominal aortic 

aneurysm data from placebo patients and the involved variables but also to evaluate 

the “longpower” package existing in the programming language R to calculate the 

sample size for longitudinal data. 

  

The statistical model chosen for this work was a linear mixed model with TIME as a 

random and fixed variable and logarithm of aneurysm diameter at baseline (AD0) as a 

fixed variable. Non-equidistant TIME measured the intervals of ultrasound screenings 

in years whereas AD0 was measured in mm. 

 

The formula of Liu and Liang (1997) using “longpower” package in R computed a 

required sample size of 420 patients with a power of 80% and reduction of TIME 

slope by 20%. In order to verify the sample size of 420 a simulation for the control 

and the treatment groups were run. A two-sample t-test showed statistically 

significant difference in means of logarithms of aneurysm diameters for simulated 

control and treatment groups at the significance level of less than 0.1%. 

 

Moreover, a linear mixed model using simulated data for 210 placebo and 210 

treatment patients to investigate a cross effect of TIME*TREATMENT as fixed and 

random variable gave a statistically significant difference between the control and the 

treatment groups at the significance level of less than 0.1%. 

 

To test the number 2*210 patients, another simulation of 2*105 patients were run. 

Two-sample t-tests showed statistically significant difference in means of logarithms 

of aneurysm diameters for these simulated control and treatment groups at the 

significance level of less than 0.1%. Investigation of the cross effect of 

TIME*TREATMENT in a linear mixed model showed statistically significance at the 

significance level of less than 0.1% for the simulation of 2*105 patients.  

 

Although both sample sizes of 2*210 and 2*105 were acceptable from statistical 

standpoint, power calculations revealed that the sample size of 2*210 gave a power of 

73% whereas 2*105 gave only a power of 61%. Finally, the sample size of 420 

(2*210) was verified by the simulations. 
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Background 
 

Sample size calculation 
 

Prior to designing experiments researchers must know what sample size they should 

choose to be able to demonstrate a desired effect of a medication or a treatment. Over 

the course of many years, many different methods and formulas have been developed 

for this purpose. One of these formulas is Liu and Liang’s formula (1997) [3] which is 

implemented in the “longpower” package of the programming language R. The 

formula is suited for studies for longitudinal data at equidistant points in time with 

correlated observations. This function will be applied to abdominal aortic aneurysm 

data containing non-equidistant measurements for patients who have been ultrasound 

screened several times over a period of time. 

 

Abdominal aortic aneurysm 
 

Abdominal aortic aneurysm (also known as AAA) is a localized dilatation of the 

abdominal aorta exceeding the normal diameter by more than 50 percent (normal 

diameter of the aorta is approximately 20 mm). Mostly, AAA causes no symptoms 

while it can sometimes cause pain in the abdomen and back. The most dangerous 

complication of abdominal aortic aneurysms is the rupture of the aneurysm which 

spills a large amount of blood into the abdominal cavity and can lead to death within a 

few minutes (See Figure 1). 

 

 
 

Figure 1: A CT image of an AAA (34 mm in diameter). The red arrow indicates the 

position of the aneurysm [8]. 
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So far no medication to decrease the growth rate or rupture rate of asymptomatic 

AAA has been found. However, studies have suggested that therapy with angiotensin 

converting enzyme inhibitors, beta-blockers, and statins can protect against AAA. 

Ultimately surgery is needed for a severe (>55 mm in diameter) AAA. 

Linear mixed model 

 

A linear mixed model is a linear statistical model containing both fixed and random 

effects, i.e. mixed effects. Such models are frequently used for statistical analysis and 

are especially useful when repeated measurements are made on the same person or 

statistical unit. 

 

A mixed model in matrix notation can be generally represented as: 

 

Y = Xβ + ZU + ε 

 

Y is a vector of observations, with mean E(Y) = Xβ 

β is a vector of fixed effects 

U is a vector of random effects with mean E(U) = 0 and variance-covariance matrix 

 Var(U) = G 

ε is a vector of random error terms with mean E (ε) = 0 and variance Var(ε) = R 

X and Z are matrices of regressors relating Y to β and U 

 

Nevertheless, the linear mixed model in this work will be represented as: 

 

Yij = αi,fixed + αi,random + βi,fixedXij + βi,randomZij + εij   

 

Yij is a matrix of dependent variable 

Xij are matrices of fixed independent variables  

Zij are matrices of random independent variables   

αi,fixed is intercept with a fixed part (within the group)  

αi,random is intercept with a random part (within the individual) ~ N (0, σintercept
2
) 

βi,fixed is slope with a fixed part 

βi,random is slope with a random part ~ N (0, σslope
2
) 

εij are random error terms ~ N (0, σerror
2
) 

i is individual 

j is time 

 

Longpower 

 

The “longpower” package contains functions for computing sample size for linear 

models of longitudinal data based on the formula of Liu and Liang (1997) and Diggle 

et al. (2002) [5]. 

 

In this work the formula of Liu and Liang (1997) was chosen to calculate the sample 

size with a given effect for the linear mixed model.   

 

This is a powerful package since not so many packages which can calculate sample 

size over a time period with different measurements exist in R. One drawback of the 

functions of “longpower” is their inability to handle non-equidistant points. 
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Results 
 

Studied variables 

 

To set up our statistical linear mixed model potential variables needed to be chosen. 

The pharmaceutical data provided the following variables: 

 

Variable Description 

SUBJECT Identification number for each patient 

RANGE Range of the aneurysm depending on size at baseline 

25<=AD0<35 

35<=AD0<45 

45<=AD0<55 

         AD0=>55 

AD Aneurysm diameter 

AD0 Aneurysm diameter at baseline 

TIME Time for each measurement 

WOMAN Gender 

DIABETES Occurrence of diabetes type 2 

AGE Age 

 

Table 1: A summary of the variables assumed to be involved in abdominal aortic 

aneurysm and the response variable (AD). 

 

The study started to assess which of these variables to be included in or excluded from 

the model. So a series of linear mixed model separately for each variable were run in 

SPSS for this purpose. RANGE, WOMAN, DIABETES and AGE gave high p-values 

(much greater than 0.05) and were excluded from the model. It was unexpected that 

WOMAN was not statistically significant at the significance level of 5% despite the 

fact that the vast majority of the patients were men. An attempt to categorize the 

patients according to their age was done with no success of getting an acceptable p-

value. 

 

Test the model 
 

Only the variables AD0 (Aneurysm diameter at baseline) and TIME were statistically 

significant at the significance level of 5%. So a linear mixed model with TIME as 

fixed and random variable and AD0 as fixed was run. TIME was chosen as a random 

variable to let a variation in time between the individuals.  

 

The covariance structure chosen here after referring to Littell et al. (2000, [4]) was the 

default one in SPSS i.e. Variance Components. The reason for the choice was that 

Variance Components does not need a repeated variable which was lacked in the 

provided data. In addition Variance Components assumes no special correlation 

structure between the measurements which was appropriate for our data since the 

measurements were not equidistant in time.  
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Moreover logarithmation of AD and AD0 gave much better Information Criteria 

which made us to use the logarithms of these variables in the rest of the study.  

 

Variables Schwarz’s Bayesian Criterion (BIC) 

AD and AD0 5106.096 

LOG10_AD and LOG10_AD0 -5014.007 

 

Table 2: The Information Criteria obtained when running the model with AD and 

AD0 respective LOG10_AD and LOG10_AD0. The lower the BIC value the better the 

model is. 

 

To evaluate the model the residuals were plotted (Figure 2). As shown the model did 

not show heteroscedasticity and the residuals seemed normally distributed. 

 

  

 

Figure 2: Plotted residuals for the model with dependent variable Log10 _AD and 

independent variables TIME and Log10_AD0. 

 

Growth rate 

 

 
Figure 3: The growth rate of AAA for the patients in the data. For every year the 

aneurysm grew in average 1.74 mm. 
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The growth rate of the aneurysm was studied in this group of patients by plotting 

TIME against ADJUSTED_AD which was simply the difference of AD and AD0. 

According to Figure 3 for each passed year the aneurysm grew 1.74 mm in average 

for these patients. 

 

The model 
 

By choosing TIME as random and fixed variable and Log10_AD0 as fixed, the 

following results were obtained in SPSS. 

 

Estimates of Fixed Effects
a
 

Parameter Estimate Std. Error df t Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Intercept ,023364 ,022676 282,710 1,030 ,304 -,021271 ,067998 

TIME ,023846 ,001450 153,547 16,445 ,000 ,020981 ,026710 

LOG10_AD0 ,983406 ,014362 280,894 68,474 ,000 ,955135 1,011676 

a. Dependent Variable: Log10 of aneurysm diameter. 

 

Table 3: The fixed parameter estimates of the linear mixed model. 

 

Estimates of Covariance Parameters
a
 

Parameter Estimate Std. Error Wald Z Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Residual ,000323 1,626686E-005 19,838 ,000 ,000292 ,000356 

Intercept [subject = SUBJECT] Variance ,000130 2,388897E-005 5,436 ,000 9,055928E-005 ,000186 

TIME [subject = SUBJECT] Variance ,000300 4,173999E-005 7,180 ,000 ,000228 ,000394 

a. Dependent Variable: Log10 of aneurysm diameter. 

 

Table 4: The random variance estimates of the linear mixed model. 

 

No interaction between TIME and Log10_AD0 as fixed variables was defined since 

TIME started at 0 when measuring AD0. 

 

Our model was defined as: 

Log10_AD = αfixed + αrandom + β1fixedTIME + β1randomTIME + β2fixedLog10_ AD0 + ε 

 

i.e. according to Tables 3 and 4: 

 

Log10_AD = 0.023364 + √         Z1 + 0,023846 TIME + √         Z2 TIME  

 + 0,983406 Log10_ AD0 + √         Z3 

 

where Z1, Z2 and Z3 were independent random variables distributed N (0,1). 
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Run “longpower” 
 

“longpower” is a package defined in the programming language R and from this point 

we stopped using SPSS and the statistical analysis was transferred to R. 

 

Since the data contained only placebo patients and no treatment patients, a strategy of 

reduction of TIME slope by 20% was used instead. This strategy just implied that the 

reaching time to the rupture point of 55 mm for the patients was assumed to be 

delayed by 20%. 

 

Correlation between random intercept and random slope was assumed to be 0 since 

data about treatment patients was not available. To test this correlation namely 0, 

different values were inserted in the variable of correlation without changing the 

sample size significantly. This fact indicated that the correlation between random 

intercept and random slope was not so important for this data and this model. 

 

Moreover, to assess the number of measurements for the placebo group, the 

equidistant time t’ until the rupture of aorta in the placebo data was calculated 

according to: 

 

Log10_AD = 0.023364 + 0,023846 TIME + 0,983406 Log10_ AD0  

 

Log10(55) = 0.023364 + 0,023846 * t’ + 0,983406 * 1.5702    → t’ = 7.2 years 

 

Here 55 mm is the assumed rupture point and 1.5702 is the mean of Log10_AD0 in 

the placebo data. 

 

In addition, two plots were drawn for a control and a treatment patient to assess the 

number of measurements for the treatment group in “longpower”. As shown in Figure 

4, the control patient passed the rupture line (AD = 55 mm or Log10_AD = 1.74) after 

approximately 8 years whereas the treatment patient passed the same line after 

approximately 10 years. 

 
Figure 4: The black dots show the control patient to pass the rupture line (red) after 8 

years whereas the green dots, with a slope reduction of 20%, show the treatment 

patient passing the same line after 10 years. 
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So, 10 equidistant measurements for the pretended treatment group were assumed. 

The difference of the slopes of these plots gave the most crucial argument delta in 

“longpower”. 

 

“longpower” is a straight-forward algorithm [1,3] and only needs to be inserted with 

the input values. Input arguments in “longpower” are presented in Table 5. 

 

Argument Description 
N the total sample size 

n sample size per group 

delta group difference (possibly a vector of differences) 

u a list of covariate vectors or matrices associated with the parameter of interest 

v a list of covariate vectors or matrices associated with the nuisance parameter 

sigma2 the error variance 

R the variance-covariance matrix for the repeated measures 

sig.level type one error 

power power 

alternative one- or two-sided test 

  

Table 5: The input arguments required in the “longpower” algorithm. 

 

After inserting the variance estimates’ values estimated by SPSS in the “longpower” 

algorithm [Appendix II], the algorithm calculated a sample size of 420. The R output 

was: 

 

Longitudinal linear model power calculation (Liu & Liang, 1997)  

 

              N = 419.3564 

              n = 209.6782, 209.6782 

          delta = 0.00477 

         sigma2 = 1 

      sig.level = 0.05 

          power = 0.8 

    alternative = two.sided 

 

 NOTE: N is total sample size and n is sample size in each group. 

 

An attempt to run the linear mixed model in R was made and variance estimates’ 

values were extracted. This time the “longpower” algorithm [Appendix III] calculated 

a sample size of 380. Although the sample size of 380 calculated completely by R is 

relatively close to the sample size of 420 calculated by SPSS and R but this fact 

shows that there exists a difference between SPSS and R using different algorithms to 

model a linear mixed model. 

 

Significance test of the variables 
 

The fixed and random coefficients of the variable TIME and coefficient of 

Log10_AD0 only as fixed turned out to be significant at the significance level of 5%. 

The rest of variables: RANGE, WOMAN, DIABETES and AGE were not significant 

at the significance level of 5%. 
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An attempt to run Log10_AD0 as a random effect in the linear mixed model was 

made hoping to obtain a better model. This attempt was not successful implying that 

there was no correlation in AD0 variable for the patients. 

 

Simulations   
                                                              

In order to evaluate the number 420 calculated by “longpower”, simulations of the 

model by a sample size of 2*210, number of measurements in time of 10 and two 

different fixed time slopes representing control and treatment groups were done. The 

parameter and variance estimates were retrieved from our original data of 211 placebo 

patients. A two-sample t-test showed a difference in means between these two groups 

at a statistical significance level of less than 0.1% [Appendix IV]. 

 

In SPSS the residuals for 2*210 patients were randomly spread with no 

heteroskedasticity and normally distributed. 

 

   
 

Figure 5: The residuals for simulated linear mixed model for 2*210 patients.  

 

By choosing the interaction term TREATMENT*TIME as random and fixed cross 

variable, the results in Table 6 and 7 were obtained for 2*210 patients in SPSS. As 

seen in the tables, there existed difference between control and treatment groups at 

significance level less than 0.1%. This means that 2*210 patients as a sample size is 

an appropriate sample size to start a similar study with.  

 

 
 

Table 6: The fixed cross effect estimates of the simulated linear mixed model for 

2*210 patients were statistically significant. Treatment=0 is for control and 

Treatment=1 is for the treatment group. 
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Table 7: The random variance estimates of the simulated linear mixed model for 

2*210 patients were statistically significant. 

 

To challenge the generated sample size of 2*210 by “longpower” another simulated 

linear mixed model was run with the same conditions in SPSS with only 2*105 

patients. The residuals for 2*105 patients were randomly spread with no 

heteroskedasticity and normally distributed. 

 

    
 

Figure 6: The residuals for simulated linear mixed model for 2*105 patients.  

 

TREATMENT*TIME as fixed and random cross variable gave fixed and random 

effects for 2*105 patients shown in Table 8 and Table 9. As seen, there again existed 

difference between control and treatment groups at significance level less than 0.1%. 

 

 
 

Table 8: The fixed cross effect estimates of the simulated linear mixed model for 

2*105 patients were statistically significant. Treatment=0 is for control and 

Treatment=1 is for the treatment group. 
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Table 9: The random variance estimates of the simulated linear mixed model for 

2*105 patients were statistically significant. 

 

Since there existed difference between control and treatment groups at significance 

level less than 0.1%, so even the sample size of 2*105 is acceptable to start a similar 

study with.  

 

Power calculations 
 

Power calculations both for the calculated sample size by “longpower”, 2*210 and our 

alternative sample size, 2*105 on simulated data were done [Appendices V-VIII]. 

 

Power calculations 

Sample size: 2*210 Sample size: 2*105 

N = 420.0002 

n = 210.0001, 210.0001 

delta = 0.00445 

sigma2 = 1 

sig.level = 0.05 

power = 0.7329034 

alternative = two.sided 

N = 209.9914 

n = 104.9957, 104.9957 

delta = 0.00456 

sigma2 = 1 

sig.level = 0.05 

power = 0.60751 

alternative = two.sided 

 

Table 10: Power calculations of sample sizes 2*210 and 2*105 are crucial to choose 

an appropriate sample size. 

 

These findings showed how a powerful tool “longpower” is to calculate sample size 

and power and its ability to predict an appropriate sample size for data before start of 

an experiment. A desired sample size is followed by a desired power for an 

experiment. 
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Discussion 
 

Correlation in scientific data occurs frequently. Longitudinal data is a perfect example 

of correlated data. The statistical model, the linear mixed model is designed to study 

such data to give correct estimates for the fixed variables and variance estimates for 

the random variables. Unfortunately, the correlations in this work were assumed to be 

zero since the data was collected in non-equidistant time periods. The covariance 

structure for the linear mixed model was chosen accordingly namely no correlation 

between measurements for a patient. The longitudinal data was treated as an 

independent sample in this work. 

 

Abdominal aortic aneurysm (AAA) is especially important to study due to its high 

mortality rate among people older than 65. Gender, ethnicity and smoking are the 

biggest risk factors. Ruptured abdominal aortic aneurysms (AAAs) cause 15,000 

deaths per year in US and 12,000 in UK [9, 10]. Since patients with risk factors are 

screened frequently by ultrasound in order to have control over the growth of the 

aneurysm, makes this group of patients interesting for mixed model analysis.  

 

Another major issue to consider in such analyses is the assessment of the sample size. 

Sample size calculation is needed prior to the design of the study which makes 

algorithms created for this purpose of great importance. 
 

The fact that in this work, 420 patients as a sample size was calculated by the 

“longpower” package in R using a linear mixed model showed the efficiency of this 

algorithm to calculate a sample size with a desired power prior to an experiment.  

 

A major limitation in this work was the fact that only a data of placebo patients was 

provided. Data of treatment patients lacked which forced us to make a lot of 

assumptions in the study. E.g. correlation between random intercept and random slope 

for the treatment group was assumed to be 0 and the number of measurements for this 

group was assumed to be 10. In addition the improvement of the treatment group was 

simulated by reduction of the slope by 20%. Indeed, with a data of treatment patients 

much more accurate calculations could be done.  

 

Although there were many variables registered in this study, the variables WHITE and 

SMOKER were missing. These variables are of great importance for emergence and 

development of abdominal aortic aneurysm [9, 10].  

 

The calculated sample size by “longpower” was 420. Simulations of the model for 

control and treatment groups with sample sizes of 2*210 and 2*105 gave a difference 

in means at a statistical significance level of less than 0.1% in two-sample t-tests. In 

addition, for both simulations the fixed parameter estimates and the random variance 

estimates were statistically significant when run as linear mixed models. This fact 

showed that both sample sizes are acceptable until power calculations were done for 

those sample sizes. The power calculations indicated that a sample size of 2*210 gave 

much higher power than a sample size of 2*105. 

 

Despite “longpower” being a very powerful tool, it needs at least one more 

improvement. Namely, one cannot insert in “longpower” function correlations 
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between different measurements when the measurements are non-equidistant. 

Measurements close to each other are more correlated than measurements far from 

each other. Although “longpower” has undergone many improvements since its 

emergence in 1997 but more improvements are clearly expected. Its efficiency to 

calculate sample size and power will keep it practical for researchers in the near 

future.  

 

It is important to remember that the results obtained in this work are only 

computations. These calculations need to be further examined and verified by more 

clinical experiments and statistical computations.  

 

Future challenges  
 

There is no doubt that sample size calculations and algorithms created for that purpose 

will continue to be of current interest. More and more of these algorithms will be 

programmed by statisticians and evaluated by clinical researchers. 

 

The next step of studying abdominal aortic aneurysm is to include as many variables 

as possible which can be suspected to play a role for the emergence and development 

of this affliction. Indeed, bigger sample groups of both placebo and treatment patients 

are needed despite the cost of ultrasound screenings.   

 

The study of abdominal aortic aneurysm will continue to be on the general agenda for 

the scientists in the future due to aging populations in the world. This affliction will 

affect millions of people in the future and necessary measures need to be taken.  

 

In the light of this fact, advanced statistician algorithms, software and reasonably less 

costly screening apparatuses need to be developed and invented. These findings will 

not only help us to understand the nature of abdominal aortic aneurysm but will also 

help us to discover new drugs and treatments for AAA patients and other similar 

diseases and thereby save lives. 
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Patients and Methods 
 

Data 
 

The dependant variable (AD) was the aneurysm diameter (measured in mm) and the 

studied independent variables were: 

 

Variable Description 

AD0 Aneurysm diameter at baseline (mm) 

AD – AD0 Adjusted aneurysm diameter (mm) 

RANGE 25<=AD0<35 == 0 

35<=AD0<45 == 1 

45<=AD0<55 == 2 

         AD0=>55 == 3 

TIME  Measurements (year) 

WOMAN Woman == 1, Man == 0 

DIABETES Yes == 1, No == 0 

AGE  

  

Table 11: The variables provided in the study of abdominal aortic aneurysm and the 

response variable (AD). 

 

AD, AD0, ADJUSTED_AD, TIME and AGE were handled as continuous data 

whereas RANGE, WOMAN and DIABETES as categorical data. No missing values 

were encountered.    

 

Software 

SPSS 

 

SPSS (originally, Statistical Package for the Social Sciences) is a computer program 

used for many different applications, among others survey authoring and deployment, 

data mining, text analytics and statistical analysis. SPSS version 20 was used in this 

work to analyze a linear mixed model and to draw respective diagrams. This is 

powerful software that can do many things and works perfectly with any kind of 

pharmaceutical data.  

 

Unfortunately, SPSS has a poor export function for texts like tables as a graphic 

format. It made me first save my tables in other software to be able to save them as 

graphics. Another limitation was SPSS’ inability to plot a linear mixed model. 

R 

 

R is a programming language and software environment for statistical analysis and 

graphics. Most users agree that R is much more powerful than other popular statistical 

packages, such as SAS, SPSS and Stata.  
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R is an extensive programming tool partly because of its user-created packages. This 

feature makes it possible to do specialized statistical techniques, graphical devices, 

import/export capabilities, reporting tools and so much more. Importantly, it was 

possible to plot a linear mixed model in R which makes it easier for the researcher to 

comprehend and visualize the studied model.   

 

R version 3.0.0 was used in this work to do the statistical calculations and 

simulations. Especially the “longpower” package written by Liu and Liang (1997) 

was used for our pharmaceutical data.   

 

Statistical analyses 

Linear mixed model 

 

A linear mixed model is a linear statistical model containing both fixed and random 

effects that allows for correlation between measurements. This model was used in this 

work because there were mixed effects in the data due to repeated screenings on the 

same person during time intervals. 

 

The model was run in SPSS choosing the logarithm of aneurysm diameter 

(Log10_AD) as dependent variable, the logarithm of aneurysm diameter at baseline 

(Log10_AD0) as fixed and time (TIME) as both fixed and random variable. 

 

The covariance structure was chosen in accordance to Littell et al. (2000, [4]). The 

covariance structure “Variance components” in SPSS was chosen since our 

pharmaceutical data lacked a repeated variable and no correlation between the non-

equidistant measurements was assumed. To express it statistically: 

 

Cov(Yijk, Yijl) = σ
2

b = 0    ,    k ≠ l 

 

Var(Yijk) = Cov(Yijk, Yijk) = σ
2

b + σ
2

w = 0 + σ
2

w = σ
2

w    

 

i = individual 

j = time 

k, l = measurement  

σ
2

b = between-individual variance 

σ
2

w = within-individual variance 

 

Variance Components: 

[
 
 
 
 
  

     
     
     
     
      

 ]
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Statistical power 

 

The power of a statistical test is the probability that the test will reject the null 

hypothesis when the null hypothesis is false i.e. the probability of not committing a 

Type II error. Since the probability of a Type II error is referred as β, the power is 

referred as 1 – β. 

 

Power analysis can be used to calculate the minimum sample size required so that one 

can likely detect an effect of a given size. Power analysis can also be used to calculate 

the minimum effect size that is likely to be detected in a study using a given sample 

size. 

 

A simple example: Assume 

{
        
        

 

 

and true value of the mean μ = 52, sample size n = 10 and Type II error β = 0.264. 

 

So the power is: 1 – β = 1 – 0.264 = 0.736 = 73.6% when μ = 52.   

 

Power is a measure of sensitivity of a statistical test and in this example it means that 

if the true value of mean is really 52, this test will correctly reject the null hypothesis 

73.6% of the time. If this value of power is judged to be too low, an increase in 

sample size n can be considered. 

Two-sample t-test 

 

This test was used to compare the means of two simulated control and treatment 

groups with the same sample size and equal variances. The following hypotheses were 

considered: 

 

{
     ̅    ̅   

     ̅    ̅   
   

 

The t-statistic to test if the means are different is:         
 ̅    ̅ 

√    
      

    
 

 ̅  = mean of each group  

   

 
 = variance of each group 

i = 1, 2 

2n – 2 = degrees of freedom for this test 

n = sample size 

The denominator of t is the standard error of the difference between two means. 

Finally, the null hypothesis is rejected if tobs > tcritical. 
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Appendix I  
(Using SPSS and R) 

 

#Program: Calculating delta (difference of slopes of control and  

#treatment patients) with a given effect (%20) for an abdominal  

#aortic aneurysm data. Delta is an argument in "longpower". 

#All parameter estimates were retrieved using SPSS. 

#Author: Eric Markarian 

#Date: 01.04.2013 

 

#These estimates were retrieved after running linear mixed model in SPSS 

fixed.intercept  <- 0.023364 #Fixed intercept coefficient estimate   

fixed.time  <- 0.023846 #Fixed time slope coefficient estimate 

fixed.log10AD0 <- 0.983406 #Fixed log10AD0 slope coefficient estimate 

LOG10AD0  <- 1.5702 #Mean of log10AD0 

n   <- 2*1  #One control and one treatment patient 

p   <- 10  #Number of measurements 

 

#Create a log10AD matrix and define a simple model 

log10AD <- matrix(nrow=n, ncol=p)  

for(i in 1:n) { 

 if (i > n/2) 

  fixed.time <- 0.8 * fixed.time  #For treatment patient 

 for(t in 1:p) { 

  log10AD[i, t] <- fixed.intercept +  

   fixed.log10AD0*LOG10AD0 + fixed.time*t  

 } 

} 

 

#Split log10AD to control and treatment patients for plotting 

log10AD.control <- log10AD[1:(n/2),] 

log10AD.treatment <- log10AD[((n/2)+1):n,] 

 

#Create time variable and time matrix 

time  <- seq(0, 9, 1) 

time.matrix <- matrix(time, nrow=n/2, ncol=p, byrow = TRUE) 

 

#Create a device with specific size with place for 1 figure 

dev.new(width=60, height=32) 

par(mfrow = c(1,1)) 

 

#Plot log10AD.control and log10AD.treatment vs time.matrix 

plot(time.matrix, log10AD.control,  

 xlim=c(-0.1,10), ylim=c(1.5,2),  

 xlab="Time", ylab="Log10 AD", pch=19) 

par(new=TRUE) 

plot(time.matrix, log10AD.treatment, col="green",  

 xlim=c(-0.1,10), ylim=c(1.5,2),   

 xlab="Time", ylab="Log10 AD", pch=19) 
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abline(h = 1.74, col="red") #Rupture line 

 

log10AD.control.line <- lm(log10AD.control ~ time) 

summary(log10AD.control.line) #Gave control slope 0.02385 

 

log10AD.treatment.line <- lm(log10AD.treatment ~ time) 

summary(log10AD.treatment.line) #Gave treatment slope 0.01908    
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Appendix II 
(Using SPSS and R) 

 

#Program: Calculating sample size with a given effect (%20) for an abdominal  

#aortic aneurysm data based on the formula of Liu and Liang (1997) 

#using "longpower" package in R.  

#All variance estimates were retrieved using SPSS. 

#Author: Eric Markarian 

#Date: 01.04.2013 

 

library(longpower) 

 

#These estimates were retrieved using SPSS 

sigma2.i  <- 0.000130      #Variance of random intercept   

sigma2.s  <- 0.000300      #Variance of random slope 

sigma2.e  <- 0.000323      #Residual variance 

 

#Covariance of slope and intercept 

#Correlation between random intercept and random slope was assumed to be 0 

covariance.s.i <- 0*sqrt(sigma2.i)*sqrt(sigma2.s)     

 

#t is number of measurements for treatment group 

#10 measurements for treatment group were assumed here 

t = seq(0, 9, 1)    

n = length(t) 

 

#Covaiance structure 

covariance.t <- function(t1, t2, sigma2.i, sigma2.s, covariance.s.i){ 

 sigma2.i + t1*t2*sigma2.s + (t1+t2)*covariance.s.i} 

R = outer(t, t, function(x,y){covariance.t(x, y,  

 sigma2.i, sigma2.s, covariance.s.i)}) 

R = R + diag(sigma2.e, n, n) 

 

#A covariate vector associated with the parameter of interest 

u = list(u1 = t, u2 = rep(0,n)) 

 

#A covariate vector associated with the nuisance parameter 

v = list(v1 = cbind(1,1,rep(0,n)), v2 = cbind(1,0,t)) 

 

#The slope values were calculated in Appendix I 

control.slope  <- 0.02385 

treatment.slope <- 0.01908 

 

#Run the liu.liang.linear.power function to obtain the sample size 

print(liu.liang.linear.power(delta=control.slope-treatment.slope, u=u,  

 v=v, R=R, sig.level=0.05, power=0.8, alternative="two.sided"), "\n") 
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Appendix III  
(Using only R) 

 

#Program: Calculating sample size with a given effect (%20) for an abdominal  

#aortic aneurysm data based on the formula of Liu and Liang (1997) 

#using "longpower" package in R.  

#The variance estimates were retrieved after printing the R model below. 

#Author: Eric Markarian 

#Date: 01.04.2013 

 

library(xlsx) 

library(longpower) 

library(lme4) 

library(languageR) 

 

fil <- read.xlsx("AAA.xlsx", 1)   #Read a .xlsx file's 1st sheet 

 

#Define the linear mixed model with default Variance-Covariance structure (no 

#correlation between measurements for the same patient)   

model <- lmer(fil$LOG10_AD ~ 1 + fil$LOG10_AD0 + fil$TIME +  

 (1 + fil$TIME | fil$SUBJECT), REML = FALSE) 

print(model) 

 

#Calculate the residuals and the fitted values 

residuals  <- resid(model) 

fitted.values  <- fitted(model) 

 

#Create a device with specific size with place for 2 figures 

dev.new(width=40, height=16) 

par(mfrow = c(1,2)) 

 

#Plot fitted values of the model vs residuals 

plot(fitted.values, residuals,  

   xlab="Fitted values of Log10 AD", 

   ylab="Residuals", main="Figure 1", pch=19)  

abline(h = 0) 

 

#Create a histogram over the residuals 

hist(residuals, density=20, breaks=20, prob=TRUE,  

 xlab="Residuals of Log10 AD", ylim=c(0, 35), main="Figure 2")  

curve(dnorm(x, mean=mean(x),sd=sd(x)),  

      col="blue", lwd=2, add=TRUE)   

 

#Inserted estimates are from the output of the model above 

sigma2.i   <- 0.00012363 #Variance of random intercept 

sigma2.s   <- 0.00027201 #Variance of random slope 

sigma2.e   <- 0.00031904 #Residual variance 
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#Covariance of slope and intercept 

#Correlation between random intercept and random slope was assumed to be 0 

covariance.s.i <- 0*sqrt(sigma2.i)*sqrt(sigma2.s)     

 

#t is number of measurements for treatment group 

#10 measurements for treatment group were assumed here 

t = seq(0, 9, 1)    

n = length(t) 

 

#Covaiance structure 

covariance.t <- function(t1, t2, sigma2.i, sigma2.s, covariance.s.i){ 

 sigma2.i + t1*t2*sigma2.s + (t1+t2)*covariance.s.i} 

R = outer(t, t, function(x,y){covariance.t(x, y,  

 sigma2.i, sigma2.s, covariance.s.i)}) 

R = R + diag(sigma2.e, n, n) 

 

#A covariate vector associated with the parameter of interest (random var?) 

u = list(u1 = t, u2 = rep(0,n)) 

 

#A covariate vector associated with the nuisance parameter (fixed var?) 

v = list(v1 = cbind(1,1,rep(0,n)), v2 = cbind(1,0,t)) 

 

#The slope values were calculated in Appendix I 

control.slope  <- 0.02385 

treatment.slope <- 0.01908 

 

#Run the liu.liang.linear.power function to obtain the sample size 

print(liu.liang.linear.power(delta=control.slope-treatment.slope, u=u,  

 v=v, R=R, sig.level=0.05, power=0.8, alternative="two.sided"), "\n") 
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Appendix IV 
(Using SPSS and R) 

 

#Program: Simulations of a linear mixed model with a given sample size with  

#two different slopes of time for an abdominal aortic aneurysm data.  

#Finally, a two-sample t-test compares these two simulations. 

#All parameter and variance estimates were retrieved using SPSS.  

#Author: Eric Markarian 

#Date: 01.04.2013         

 

#The parameter and variance estimates' values are inserted after running the 

#linear mixed model in SPSS. The number of patients is calculated by  

#"longpower" package in R. 

fixed.intercept  <- 0.023364 #Fixed intercept coefficient estimate   

fixed.time  <- 0.023846 #Fixed time slope coefficient estimate 

fixed.log10AD0 <- 0.983406 #Fixed log10AD0 slope coefficient estimate   

sigma.i   <- sqrt(0.000130) #Standard deviation of intercept 

sigma.s  <- sqrt(0.000300) #Standard deviation of time slope  

sigma.e  <- sqrt(0.000323) #Standard deviation of standard error 

n   <- 2*105 #Number of control and treatment patients 

p   <- 10  #Number of measurements 

 

#Create a log10AD matrix and define the simulation model 

log10AD <- matrix(nrow=n, ncol=p)  

for(i in 1:n) { 

 random.intercept <- rnorm(1, 0, sigma.i) #Random intercept 

 random.time  <- rnorm(1, 0, sigma.s) #Random time 

 if (i > n/2) 

  fixed.time <- 0.8 * fixed.time  #For treatment group 

 for(t in 1:p) { 

  log10AD[i, t] <- fixed.intercept + random.intercept +  

   fixed.log10AD0 + (fixed.time + random.time)*t +  

   rnorm(1, 0, sigma.e) #Random error 

 } 

 if (i > n/2) 

  fixed.time <- fixed.time / 0.8  #Restore fixed.time 

} 

 

#Split log10AD to control and treatment groups for plotting 

log10AD.control <- log10AD[1:(n/2),] 

log10AD.treatment <- log10AD[((n/2)+1):n,] 

 

#Create time variable and time matrix 

time  <- seq(0, 9, 1) 

time.matrix <- matrix(time, nrow=n/2, ncol=p, byrow = TRUE) 

 

#Create a device with specific size with place for 1 figure 

dev.new(width=60, height=32) 

par(mfrow = c(1,1)) 
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#Plot log10AD.control and log10AD.treatment vs time.matrix 

plot(time.matrix, log10AD.control,  

 xlim=c(-0.1,10), ylim=c(0,2.5),  

 xlab="Time", ylab="Simulated Log10 AD", pch=19) 

par(new=TRUE) 

plot(time.matrix, log10AD.treatment, col="green",  

 xlim=c(-0.1,10), ylim=c(0,2.5),   

 xlab="Time", ylab="Simulated Log10 AD", pch=19) 

abline(h = 1.74, col="red") #Rupture line 

 

#Two-sample t-test for comparing the means of the control and the 

#treatment groups. 

print(t.test(log10AD.control, log10AD.treatment, alternative="two.sided",  

 var.equal=TRUE)) 

 

#Write the output to a file 

sink("HelpFile.txt") 

array(t(log10AD), c(n*p,1)) 

sink() 
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Appendix V 
(Using SPSS and R) 

 

#Program: Calculating delta (difference of slopes of control and treatment  

#patients) with a given effect (%20) for a simulated abdominal aortic aneurysm  

#data à 2*210 patients. Delta is an argument in "longpower". 

#All parameter estimates were retrieved using SPSS. 

#Author: Eric Markarian 

#Date: 01.04.2013 

 

#These estimates were retrieved after running linear mixed model in SPSS 

fixed.intercept  <- 1.006002 #Fixed intercept coefficient estimate   

fixed.time.control <- 0.022251 #Fixed time*control coefficient estimate 

fixed.time.treatment <- 0.018790 #Fixed time*treatment coefficient estimate 

n   <- 2*1  #One control and one treatment patient 

p   <- 10  #Number of measurements 

 

#Create a log10AD matrix and define a simple model 

log10AD <- matrix(nrow=n, ncol=p)  

for(i in 1:n) { 

 if (i > n/2) 

  fixed.time.control <- 0.8 * fixed.time.control #For treatment patient 

 for(t in 1:p) { 

  log10AD[i, t] <- fixed.intercept +  

   fixed.time.control*t  

 } 

} 

 

#Split log10AD to control and treatment patients for plotting 

log10AD.control <- log10AD[1:(n/2),] 

log10AD.treatment <- log10AD[((n/2)+1):n,] 

 

#Create time variable and time matrix 

time  <- seq(0, 9, 1) 

time.matrix <- matrix(time, nrow=n/2, ncol=p, byrow = TRUE) 

 

#Create a device with specific size with place for 1 figure 

dev.new(width=60, height=32) 

par(mfrow = c(1,1)) 

 

#Plot log10AD.control and log10AD.treatment vs time.matrix 

plot(time.matrix, log10AD.control,  

 xlim=c(-0.1,10), ylim=c(1,2),  

 xlab="Time", ylab="Log10 AD", pch=19) 

par(new=TRUE) 

plot(time.matrix, log10AD.treatment, col="green",  

 xlim=c(-0.1,10), ylim=c(1,2),   

 xlab="Time", ylab="Log10 AD", pch=19) 

abline(h = 1.74, col="red") #Rupture line 
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log10AD.control.line <- lm(log10AD.control ~ time) 

summary(log10AD.control.line)  #Gave control slope 0.02225 

 

log10AD.treatment.line <- lm(log10AD.treatment ~ time) 

summary(log10AD.treatment.line)  #Gave treatment slope 0.0178     
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Appendix VI 
(Using SPSS and R) 

 

#Program: Calculating power with a given effect (%20) for a simulated  

#abdominal aortic aneurysm data à 2*210 patients based on the formula  

#of Liu and Liang (1997) using "longpower" package in R.  

#All variance estimates were retrieved using SPSS. 

#Author: Eric Markarian 

#Date: 01.04.2013 

 

library(longpower) 

 

#These estimates were retrieved using SPSS 

sigma2.i  <- 0.000104      #Variance of random intercept   

sigma2.s  <- 0.000308      #Variance of random slope 

sigma2.e  <- 0.000329      #Residual variance 

 

#Covariance of slope and intercept 

#Correlation between random intercept and random slope was assumed to be 0 

covariance.s.i <- 0*sqrt(sigma2.i)*sqrt(sigma2.s)     

 

#t is number of measurements for treatment group 

#10 measurements for treatment group were assumed here 

t = seq(0, 9, 1)    

n = length(t) 

 

#Covaiance structure 

covariance.t <- function(t1, t2, sigma2.i, sigma2.s, covariance.s.i){ 

 sigma2.i + t1*t2*sigma2.s + (t1+t2)*covariance.s.i} 

R = outer(t, t, function(x,y){covariance.t(x, y,  

 sigma2.i, sigma2.s, covariance.s.i)}) 

R = R + diag(sigma2.e, n, n) 

 

#A covariate vector associated with the parameter of interest 

u = list(u1 = t, u2 = rep(0,n)) 

 

#A covariate vector associated with the nuisance parameter 

v = list(v1 = cbind(1,1,rep(0,n)), v2 = cbind(1,0,t)) 

 

#The slope values were calculated in Appendix V 

control.slope  <- 0.02225 

treatment.slope <- 0.0178 

 

#Run the liu.liang.linear.power function to obtain the power 

print(liu.liang.linear.power(N=2*210, delta=control.slope-treatment.slope, u=u,  

 v=v, R=R, sig.level=0.05, alternative="two.sided"), "\n") 

 

 

 


