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Abstract 
Knowing the true Counterparty Credit Risk (CCR) and accurately account for it, is vital in maintaining a 
stable financial system. The Basel committee noted that during the financial crisis of 2008-2009, about 
70% of losses related to CCR actually came from volatility in the Credit Value Adjustment (CVA) instead 
of actual defaults. This thesis is examining the properties of CVA, how to measure CCR and why it is 
important to be able to accurately model it. The model risk for CVA is investigated for an interest rate 
swap contract in a CIR-framework; the sensitivity of the CVA with respect to the underlying parameters 
in the given setting is studied. The modeling of the CVA is shown to come with great uncertainties to 
many of the included terms. It is shown that the final CVA value is sensitive to changes in the underlying 
parameters describing the interest rate as well as to variations in the other terms included in the CVA 
model.    
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1. Introduction 
In the first part of the 1900’s century, the financial industry was increasingly regulated. However, 
deregulation in the beginning of the 1990’s in US and Europe, lead to an uncontrolled growth of the 
financial industry worldwide. As an example, the banks of Iceland grew from a small industry to six times 
the GDP of the country in less than 10 years. During the turmoil of 2008, governments had to bailout 
several banks in Europe and in the US. Banks had taken unreasonable risks, mainly through possession 
of toxic assets that stressed their balance sheets (Calabresi, 2009). 

A gradual decrease in the quality of the capital held by financial institutions, combined with inadequate 
liquidity buffers made the banking system vulnerable. This resulted in a reduced belief in the banking 
sector and the worries were transmitted to the entire financial system (Caruana, 2011). Hence it is of 
high importance to banks and the rest of the world that the financial sector can accurately measure 
their risk exposure. In response to the dramatic aftermath of the 2008-2009 financial crisis, the already 
existing Basel accords were further developed and its new design is now being implemented. In this 
thesis, we will study an important concept from the Basel III accord called Credit Value Adjustment 
(CVA), which can be explained briefly as the difference between the risk free value of an asset and the 
value where the risk of default is included, the true value.  

In a climate where several European countries are experiencing financial difficulties and many banks are 
under pressure, knowing the true Counterparty Credit Risk (CCR) and accurately account for it is vital in 
maintaining a stable financial system. The Basel committee noted that during the financial crisis of 2008-
2009, about 70% of losses related to CCR actually came from volatility in the CVA instead of actual 
defaults (Douglas, 2012). Hence, CCR is an important topic, therefore investigating CVA and CCR for 
bilateral derivatives is highly relevant. The field of CCR as a research area is growing, and will continue to 
grow.  Furthermore, since this is a relatively new topic that is evolving and developing every day, the 
field of research is still open for new advancements. 

In this thesis we will investigate the CVA, a measure of CCR under the Basel III framework. The aim is to 
model the CVA and investigate the features of the advanced CVA model provided in Basel III (Basel 
Committee on Banking Supervision, 2011). We will in this thesis focus on CVA for an interest rate swap, 
which in short is an agreement between two parties to exchange each other’s interest rate cash flows, 
based on a notional amount from a floating to a fixed rate or vice versa. We assume that the interest 
rate follows a CIR-process which is independent of the default time of the counterparty. This is an 
assumption that has not been made in our referenced papers. The characteristics that define an interest 
rate which follows a CIR-process will be further explained in Section 4 of the thesis. Investigating how 
the CVA changes with the parameters in this setup will help us get an understanding of the model risk 
and also an insight in how sensitive the model is to changes in the parameters under the given 
assumptions. To do this, a CVA model is built by simulating an interest rate path following a CIR-process 
on which an interest rate swap is written. From the interest rate swap the so called Expected Exposure 
(EE), which can be explained as a weighted average of the exposure estimated for a future time, is 
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derived. Finally, by including the Expected Exposure together with the other terms of the CVA formula, a 
CVA value is calculated. The sensitivity in the model is analyzed with respect to the underlying 
parameters in the CIR-model and the Credit Default Swap (CDS) spread. A CDS, which will be further 
explained in Section 4, is a financial swap agreement, which for the buyer of it, works as an insurance 
against a default or a related credit event for a given entity. The software used for the model 
simulations is MATLAB and the theory will be built on literature and research from papers and books on 
the topic.  The books and papers on which we have based the majority of our research are: Brigo, 2006; 
Brigo, 2008; Broadie, 2006 and Filipovic, 2009. 

The rest of this thesis is organized as follows. In Section 2 we will introduce the Basel accords, explaining 
how they have developed over the years as a reaction to global financial events such as the financial 
crisis of 2008-2009. Furthermore, the content of Basel III, the latest update of the accords, will be 
discussed, by comparing it with Basel I and II. In Section 3, we will introduce credit risk where the focus 
will be put one special version of credit risk, namely counterparty credit risk. In Section 4 the models and 
instruments we used when calculating our CVA value will be explained. In Section 5 we give an 
explanation to what CVA is and its role in Basel III together with an introduction of it components. 
Following the previous part, Section 6 explains the individual steps in the process of calculating the 
expected exposure. In Section 7 the results of our study will be presented and discussed in Section 8.   

2. The Basel Accords 
In this section we will introduce the Basel accords, explaining how they have developed over the years 
from Basel I to the latest updates in Basel III. 

The Basel Committee on Banking Supervision (BCBS) was founded in 1974 with the purpose of 
constructing guidelines and standards for banking regulations for authorities to implement in countries. 
It aims to create a convergence in financial regulations worldwide. What BCBS provides is guidelines and 
recommendations; hence they have no factual legal force.  

2.1 The Basel accords, history leading up to Basel III 
The 70’s was a period full of financial stress, during which several liquidity related defaults occurred. A 
famous case is the default of Herstatt Bank in 1974, which followed as a result of flaws in capital 
requirements and because of a lack of standardized framework (Moles, et al., 2012). This resulted in 
that the Bank of International Settlements (BIS) constructed a foundation to the regulatory agreements, 
today referred to as the Basel Accords. In 1988 the BCBS, operating under BIS, agreed upon the first 
Basel Accord named Basel I, with the purpose of reducing banks’ market and credit risk exposure (Bank 
for International, 2009). 

Basel I’s framework consisted of a set of minimum capital requirements. A minimum capital 
requirement is an amount of capital held that enables the bank to sufficiently have a buffer against 
losses. Basel I divided balance sheet assets into five different groups, depending on its credit risk the 
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asset was assigned five different risk weights from zero to hundred with a gap of twenty. A requirement 
of having a minimum capital ratio at 8 percent, calculated using regulatory total capital and the risk-
weighted capital was imposed. Simultaneously, CDS were introduced, implying that the banks were able 
to hedge their lending risk and lower their credit risk exposure (Bank for International Settlements, 
2011). 

In 2004 the Basel II accords was published as an extension of Basel I, which included a more risk 
sensitive approach for reduction of credit risk, market risk and operational risk. The framework rests on 
three fundamentals, referred to as the three pillars:  

• minimum capital requirements 
• supervision review  
• market discipline 

The first pillar introduces capital requirements for the bank to reduce market, credit and operational risk. 
In order to measure the credit risk exposure, there were two recommendations of estimation, called the 
Internal Ratings-Based (IRB) and the Standardized Approach. The former, commonly used for major 
banks, allowed the banks to estimate their own internal rates for risk exposure. The latter is more risk 
sensitive and could be estimated in the same way as stated in Basel I, with a minimum capital ratio of 8 
percent. Moreover, for measuring the operational risk, there were three different measures 
proposed:  the Basic Indicator, Standardized and Internal Measurement Approach (Basel Committee on 
Banking Supervision, 2011).  

The second pillar provides guidance for the bank’s risk management and the method to deal with 
supervisory review and transparency. In the third pillar, the accord focuses on extending the market 
discipline through making it compulsory for banks to reveal and publish information that concerns the 
risk profile and the banks’ capital adequacy. 

Basel II regulated how to satisfy the requirement of the minimum capital ratio that is calculated from 
the regulated total capital and the risk-adjusted assets. This requirement has to be fulfilled in order to 
be considered as an adequately capitalized bank (Saunders, 2012).  

𝑇𝑜𝑡𝑎𝑙 𝑟𝑖𝑠𝑘𝑏𝑎𝑠𝑒𝑑 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 =
𝑇𝑜𝑡𝑎𝑙 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 (𝑇𝑖𝑒𝑟 1 + 𝑇𝑖𝑒𝑟 2)

𝑅𝑖𝑠𝑘 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑎𝑠𝑠𝑒𝑡𝑠
> 8% 

𝑇𝑖𝑒𝑟 1 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 =
𝐶𝑜𝑟𝑒 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 (𝑇𝑖𝑒𝑟1)
𝑅𝑖𝑠𝑘 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑎𝑠𝑠𝑒𝑡𝑠

> 4% 

The bank’s capital can as shown above be divided into categories of Tier I and Tier II where the total 
capital equals the sum of the Tiers less deductions. Tier I represent the core capital of the bank, 
consisting of the book value of common equity and perpetual preferred stock, which is a type of 
preferred stock with no maturity date; whereas Tier II is treated as the secondary capital resource. The 
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latter includes loan losses reserve and subordinated debt instruments. The risk-adjusted assets, which 
are the denominator of the capital ratio above, are compounded by risk-adjusted on-balance-sheet 
assets and risk-adjusted off-balance-sheet assets (Saunders, 2012). 

2.2 Basel III 
Basel II did not capture the risk exposure of the banks in a satisfying way. This has had the consequence 
that a new and improved comprehensive regulatory framework has been developed. Basel III was under 
development even before the second version was fully implemented. The financial crisis of 2008-2009 
had too serious effects for no actions to be taken. Basel III is a framework that will be gradually 
implemented up until the 31st of December 2019, where after the minimum capital requirements are 
assumed to be completely met by the banks. Basel III will require increased quantitative and qualitative 
capital possessed by the banks, increased liquidity buffers and reduced unstable funding structures 
(Basel Committee on Banking Supervision, 2011). 

2.3 Counterparty Credit Risk in Basel III 
Basel III introduces a credit risk reform, which is taken into use at the writing moment. It refers to the 
Total Counterparty Credit Risk Capital Charge, which belongs to the risk adjusted assets and is described 
as the CVA-capital charge together with the Default Risk Capital Charge (DRCC). 

The DRCC is constructed by the multiplication of the Exposure at Default (EAD), which is the total 
amount that an entity is exposed to at the time of default, with a risk weight. There are four different 
methods presented by the BIS to determine the EAD of Over-the-Counter (OTC) derivatives. Trades 
made OTC take place without the supervision of an exchange and directly between two entities.   

1. Original Exposure Method 
2. Current Exposure Method 
3. Standardized Method 
4. Internal Model Method 

The methods differ in their risk sensitivity and using a less sensitive method generates larger capital 
requirement. Hence, the banks have incentive to use the most sensitive methods in the calculations. To 
calculate the risk weights BIS provides two methods: the IRB approach and the standardized approach.  
Their names entail their differences, the standardized approach is using rating from external sources and 
the IRB is based on internal credit ratings (Basel Committee on Banking Supervision, 2011).  

The market risk capital charge for movements in the CVA caused by movements in the credit worthiness 
of counterparty is referred to as the CVA-capital charge. This part is a new addition to the Total CCR 
capital charge in Basel III. The Basel committee noted that during the latest financial crisis, about 70% of 
losses related to CCR actually came from volatility in the CVA instead of actual defaults. As a reaction to 
this notion BIS added the CVA- capital charge to the DRCC in Basel III (Douglas, 2012).  
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3. Introduction to Credit Risk 
In this section the topic of credit risk will be introduced, followed by a targeted description of one 
specific version of credit risk, namely counterparty credit risk. Lastly we discuss how credit derivatives 
can be useful tools to reduce this risk. 

3.1 Credit Risk 
Credit risk can be defined as the risk that a borrower doesn’t honor its payments. 

Credit risk can usually be decomposed into the following risks (Schönbucher, 2003): 

 Arrival risk – is the risk that a default will occur within a given time period. 
 Timing risk – is the risk related to the precise time-point of the arrival risk’s occurrence. 
 Recovery risk – is the risk related to the size of the loss when a default takes place. 
 Default dependency risk – This is the risk that several obligors simultaneously default within a 

specific time period. It could also be referred to as the correlation risk, which is a crucial factor to 
consider in a credit portfolio setting. 

The credit risk or credit worthiness of a company or even a whole country is usually assessed and given a 
rating by a bureau or a rating agency such as Moody’s and Standards & Poor (Hull, 2012). The credit risk 
rating is based on the probability of default (PD) of an entity and is categorized in different brackets 
ranging from AAA/Aaa (Standard & Poor’s /Moody’s) which is the highest rating followed by AA/Aa, A/A, 
BBB/Baa, BB/Ba and CCC/Caa. Each bracket is associated with a PD where a higher rating implies a lower 
PD (Standard & Poor's, 2009). However, the rating bureaus also divided each bracket into subcategories 
(such as Aa1, Aa2… or A+, A…) to decrease the coarseness of the scale of the credit rating. From the 
ratings, a risk premium is added to the interest rate of a loan or a bond that is issued by its entity. The 
challenge for credit agencies is to get a proper estimate of the PD, since the PD of an entity varies over 
time. What is interesting to mention is that for a bond with a high credit rating, the default probability 
tend to increase over time whereas the default probability tend to decrease over time for a bond with a 
relatively lower credit rating (Bodie, o.a., 2012). The reason behind this is that for poor rating bonds, the 
first couple of years maybe critical whereas it is possible that the financial health of the high rating 
bonds will decline with time. 

3.2 Counterparty Credit Risk 
The risk that one party after entering into a financial contract will default on it prior to its expiration is 
called counterparty credit risk (CCR). Hence CCR is the risk that the obligor will not be able to meet the 
demands required by the contract, such as fulfill payment duties.  This risk is evident when trades are 
made Over-the-Counter (OTC), because then, unlike trades made via an exchange that are backed by a 
clearing house, it’s hard to govern the financial status of the counterparty. 

Note that CCR is closely related to other forms of credit risk. However, there are features that separate 
it, for example: the CCR is a bilateral risk, meaning that both counterparties can default. 
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The counterparty risk for a transaction is calculated by applying CVA, which first was specified within the 
Basel II accords (Bank For International Settlements, 2005) as well as in the IAS39 accounting standards 
(International Accounting Standards Board, 2009). It is defined as the difference between the risk free 
value of the portfolio and the value where the risk of default is included, the true value. However, up to 
2008 many institutions neglected the CVA part in the Basel accords, reasoning that since their credit 
exposure is against big and successful companies who have a low risk of default, the credit risk can be 
neglected. The fact is, even in early 2008 almost 3 years after the Basel II was published, American banks 
where still only implementing the Basel I accords. Recently however, many banks have recognized that 
CCR can be substantial and thus cannot be omitted or ignored after events such as the bankruptcy of 
Lehman Brothers. Furthermore, BIS noted that during the financial crisis of 2008-2009, about 70% of 
losses related to CCR actually came from volatility in the Credit Value Adjustment (CVA) instead of actual 
defaults. Hence, it is crucial to include the counterparty risk when calculating the true value of a 
portfolio and CVA on the market value of CCR.  

3.3 The usage of swaps to manage credit risk 
Since we are modeling CVA for an interest rate swap and using CDS spreads as another term in the CVA 
calculation, we will therefore in this section give an introduction to the usage of swaps to manage credit 
risk. 

A swap is a contractual agreement where two parties accept to exchange fixed payments against 
floating payments (Fusar, 2008). In another words, a swap traditionally is the exchange of one security 
with another between two entities to hedge certain risk such as for example interest rate risk or 
exchange rate risk. The swap market began 1981 in the US and the notional amount outstanding of 
swaps in the OTC derivative market was $415.2 trillion in 2006, more than 8.5 times the gross world 
product during that year according to BIS at the end of 2006. There are different types of swaps existing 
in the market, among them, the most common swaps are currency swaps, interest rate swaps, 
commodity swaps, equity swaps, and credit default swaps (Kozul, 2011). 

4. Modeling Framework 
In order to provide a full understanding of the CVA calculations, this section gives an introduction to the 
theoretical background for the models and financial instruments used when calculating the different 
terms in the CVA. 

4.1 The Credit Default swap 
A credit default swap is a financial agreement constructed to be an insurance against a default or a 
related credit event. It does so by transferring the credit exposure from one party to another. An 
illustration of this will follow below. 

Assume that a company C with random default time τ, issued a bond. There is another company A who 
want to buy protection against credit losses due to a default in company C within T years for an amount 
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of N currency units. So company A turns to company B that promises A to cover the credit default loss 

by company C at the cost of a fee S(T)N
4

 quarterly until time T unless the default occurs when τ < T (see 

Figure 4.1 and 4.2). The constant S(T) is called the T-year CDS-spread or CDS-premium and is quoted in 
basis points per annum. In the situation of default, the protection seller B pays the protection buyer A 
the nominal insured times the loss ratio of company C. The constant S(T) is determined so that the 
expected discounted cash flows between A and B are equal. Hence, the discounted expected cash flows 
between A and B are given by the so called default leg (B to A) and premium leg (A to B). 

1. The discounted expected payment from B to A if company C default is called default leg, 
which is expressed as 𝑁𝐸�1{τ≤T}𝐷(𝜏)(1 − ϕ)�. 

2. The discounted expected payment from A to B is called premium leg, which is calculated by 
using 𝑁∑ 𝐸�𝐷(𝑡𝑛)∆𝑛1{𝜏>𝑡𝑛} + 𝐷(𝜏)(𝜏 − 𝑡𝑛−1)1{𝑡𝑛−1<τ≤𝑡𝑛}�𝑛𝑇

𝑛=1 . 

 

 

 

Figure 4.1: Structure of a CDS contract (Herbertsson, 2012). 
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Figure 4.2: Different scenarios with no default before time T, and default before time T (Herbertsson, 2012). 

By dividing the default leg with the premium leg, we get the T – year CDS spread 𝑆(𝑇) as 

𝑆(𝑇) =
𝐸�1{τ≤T}𝐷(𝜏)(1 − ϕ)�

∑ 𝐸�𝐷(𝑡𝑛)∆𝑛1{𝜏>𝑡𝑛} + 𝐷(𝜏)(𝜏 − 𝑡𝑛−1)1{𝑡𝑛−1<τ≤𝑡𝑛}�𝑛𝑇
𝑛=1

.     (4.1) 

The CDS spread is expressed in basis points (bp) per annum and the expectation is under the risk neutral 
measure, ϕ  is the recovery in the case of default and 𝐷(𝑡)  is the discount factor, 

𝐷(𝑡) = 𝑒𝑥𝑝 �−∫ 𝑟(𝑠)𝑑𝑠𝑡
0 � where 𝑟𝑡  is the short term risk free interest rate and a deterministic function 

of time, 𝑟𝑡 = 𝑟(𝑡). 

However, the equation above can be simplified when we assume that: 

1. The interest rate is a deterministic function of time, 𝐷(𝑡) = 𝑒𝑥𝑝 �−∫ 𝑟(𝑠)𝑑𝑠𝑡
0 �, as well as 

independent of the default time 𝜏. (𝑟(𝑡) is the risk free interest rate as a function of time 𝑡.) 
2. The credit loss 𝑙 = 1 − ϕ is constant where ϕ is the recovery rate; 

Then the Equation (4.1) can be rewritten as 
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𝑆(𝑇) =
(1 − ϕ)∫ 𝐵𝑠𝑑𝐹(𝑠)𝑇

0

∑ 𝐵𝑡𝑛∆𝑛 �1 − 𝐹(𝑡𝑛) + ∫ 𝐵𝑠(𝑠 − 𝑡𝑛−1)𝑑𝐹(𝑠)𝑡𝑛
𝑡𝑛−1

�𝑛𝑇
𝑛=1

     (4.2) 

where 𝐹(𝑡) = 𝑃[𝜏 ≤ 𝑡] is the distribution function of the default time for the obligor and 𝐵𝑡 = 𝐸[𝐷(𝑡)]. 

Also when we assume that the interest rate 𝑟𝑡 is a deterministic function of time, so that 𝑟𝑡 = 𝑟(𝑡). Then 

𝜏 and 𝑟𝑡 are independent and 𝐵𝑡 = 𝐸[𝐷(𝑡)] = 𝑒𝑥𝑝 �−∫ 𝑟(𝑠)𝑑𝑠𝑡
0 �. Moreover, let ϕ be constant, and let  

𝑓𝜏(𝑡) be the density of 𝜏, i.e. 𝑓𝜏(𝑡) = 𝑑𝐹(𝑡)
𝑑𝑡

, then we have 

𝐸�1{𝜏≤𝑇}𝐷(𝜏)(1 − ϕ)� = � 1{𝑡≤𝑇}𝐷(𝑡)(1 − ϕ)𝑓𝜏(𝑡)𝑑𝑡 = (1 − ϕ)� 𝐷(𝑡)𝑓𝜏(𝑡)𝑑𝑡
𝑇

0

∞

0
. 

Furthermore 

𝐸 �𝐷(𝑡𝑛)
1
4

1{𝜏>𝑡𝑛}� = 𝐷(𝑡𝑛)
1
4
𝐸�1{𝜏>𝑡𝑛}� = 𝐷(𝑡𝑛)

1
4
𝑃[𝜏 > 𝑡𝑛] = 𝐷(𝑡𝑛)

1
4

(1 − 𝐹(𝑡𝑛)) 

and 

𝐸�𝐷(𝜏)(𝜏 − 𝑡𝑛−1)1{𝑡𝑛−1<𝜏<𝑡𝑛}� = � 1{𝑡𝑛−1<𝑡<𝑡𝑛}(𝑡 − 𝑡𝑛−1)𝐷(𝑡)𝑓𝜏(𝑡)𝑑𝑡
∞

0
= � 𝐷(𝑡)(𝑡 − 𝑡𝑛−1)

𝑡𝑛

𝑡𝑛−1
𝑓𝜏(𝑡)𝑑𝑡 

is the accrued premium, which is a final payment done by A to B at the default time. The size of this 
premium is related to the time interval between the last payment and the default. Hence we can write 
the Equation (4.2) as 

𝑆(𝑇) =
(1 −ϕ)∫ 𝐷(𝑡)𝑓𝜏(𝑡)𝑑𝑡𝑇

0

∫ �𝐷(𝑡𝑛) 1
4 �1 − 𝐹(𝑡𝑛)� + ∫ 𝐷(𝑠)(𝑠 − 𝑡𝑛−1)𝑡𝑛

𝑡𝑛−1
𝑓𝜏(𝑠)𝑑𝑠�4𝑇

𝑛=1

.     (4.3) 

The CDS-spread formula in Equation (4.3) can be simplified if we make two more assumptions: 

1. Ignore the accrued premium term in the premium leg. 
2. Assume that the loss is paid at time 𝑡𝑛 = 𝑛

4
,  at the end of each quarter instead of at time 𝜏 when 

default occurs in the interval �𝑛−1
4

, 𝑛
4
�, that is, when 𝑛−1

4
< 𝜏 ≤ 𝑛

4
. 

Then Equation (4.2) can be rewritten into the following simplified expression (Herbertsson, 2012): 

𝑆(𝑇) =
(1 − ϕ)∫ 𝐷(𝑡𝑛)(𝐹(𝑡𝑛) − 𝐹(𝑡𝑛−1))4𝑇

𝑛=1

∑ 𝐷(𝑡𝑛)4𝑇
𝑛=1 (1 − 𝐹(𝑡𝑛)) 1

4
     (4.4) 

where 𝐹(𝑡) = 𝑃[𝜏 ≤ 𝑡]. 
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Hence, from Equation (4.4) we see that in order to calculate the CDS spread 𝑆(𝑇), we need a model for 
the default time 𝜏 , more specific, we need and explicit expression for the default distribution 
𝐹(𝑡) = 𝑃[𝜏 ≤ 𝑡]. Thus, in the next section, we will therefore discuss one such model for 𝜏, namely a so 
called intensity based model. 

4.2 Intensity based model 
In this section we will study the so called intensity based model, which is needed when calculating the 
CDS spread. 

To start with, assume that we have a probability measure 𝑃, and 𝓕𝑡 represents the information 
available at time t. Moreover, we assume (𝑋𝑡)𝑡>0 to be a d-dimensional stochastic process i.e. 
𝑋𝑡 = �𝑋𝑡,1,𝑋𝑡,2,𝑋𝑡,3,⋯𝑋𝑡,𝑑� where 𝑑 is an integer and 𝑋𝑡,1,𝑋𝑡,2,𝑋𝑡,3,⋯𝑋𝑡,𝑑 typically models different 
kind of economic or financial factors. Hence, in the function 𝜆:𝑅𝑑 → [0,∞], we have the stochastic 
process 𝜆𝑡(𝜔) = 𝜆(𝑋𝑡(𝜔)). Furthermore, let 𝐸1 be an exponential distributed random variable with 
parameter 1 that is independent of the process (𝑋𝑡)𝑡>0. Then one can define the random variable 𝜏 as 
(Herbertsson, 2012): 

𝜏 = inf �𝑡 ≥ 0:� 𝜆(𝑋𝑠)𝑑𝑠 ≥ 𝐸1
𝑡

0
� .      (4.4) 

Hence, 𝜏 is the first time the increasing process ∫ 𝜆(𝑋𝑠)𝑑𝑠𝑡
0  reaches the random level 𝐸1, see in the 

Figure 4.4 (Herbertsson, 2012) 

 

Figure 4.3: The construction of 𝝉 via 𝑬𝟏 and the process 𝑿𝒔. 

From Equation (4.4), we can further derive (Herbertsson, 2012) 
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𝑃[𝜏𝑖 > 𝑡] = 𝐸 �exp �−� 𝜆(𝑋𝑠)𝑑𝑠
𝑡

0
��      (4.5) 

and  

𝑓𝜏(𝑡) = 𝐸 �𝜆(𝑋𝑡)exp �−� 𝜆(𝑋𝑠)𝑑𝑠
𝑡

0
��      (4.6) 

where 𝑓𝜏(𝑡) is the density of the random variable 𝜏. 

Most importantly, if 𝜏 is a default time constructed as in Equation (4.4), we say that 𝜏 has the default 
intensity 𝜆(𝑋𝑡) with respect to the information (𝓕𝑡)𝑡>0. The intuitive meaning of this is as follow. 

Consider a single obligor with default time 𝜏, and we assume as discussed before that 𝜆𝑡 is a stochastic 
process and 𝜆𝑡 > 0 for all 𝑡 and 𝓕𝑡 be the market information at time 𝑡. Then we want to have the 
intuitive relation between 𝜏, 𝜆𝑡,𝓕𝑡 

𝑃[𝜏 ∈ [𝑡, 𝑡 + ∆𝑡)|𝓕𝑡] ≈ 𝜆𝑡∆𝑡   𝑖𝑓  𝜏 > 𝑡     (4.7) 

see also in Figure 4.4. Thus, the probability of having a default in the small time period [𝑡, 𝑡 + ∆𝑡) 
conditional on the information 𝓕𝑡 , given that 𝜏 has not yet happened up to time 𝑡, is approximately 
equal to 𝜆𝑡∆𝑡, where ∆𝑡 is “small” enough. 

Hence, 𝜆𝑡 should be the arrival intensity of 𝜏, given the information  𝓕𝑡. To be more specific, 𝜆𝑡 is 
denoted as the default intensity of 𝜏, with respect to the information  𝓕𝑡 (Herbertsson, 2012) 

 

Figure 4.4: Given the information, 𝝉 will arrive in [𝒕, 𝒕 + ∆𝒕) with probability 𝝀𝒕∆𝒕. 

Finally, one can prove that the construction of 𝜏 in Equation (4.4) leads to the relationship in Equation 
(4.7), that is  λt is the intensity of the random variable 𝜏. 

The Intensity 𝜆(𝑋) can for example be considered in three different cases, namely: 

 Intensity 𝜆(𝑋) can be a deterministic constant; 
 Intensity 𝜆(𝑋𝑡) can be a deterministic function of time 𝑡, 𝜆(𝑡); 
 Intensity 𝜆(𝑋𝑡) can be a stochastic process; 

When the intensity 𝜆(𝑋) is a deterministic constant, we have 𝜆(𝑋𝑠) equal to  𝜆, then the Equation (5.5) 
can be simplified to 
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𝑃[𝜏 > 𝑡] = 𝐸 �𝑒𝑥𝑝 �−� 𝜆(𝑋𝑠)𝑑𝑠
𝑡

0
�� = 𝐸�𝑒−𝜆𝑡� = 𝑒−𝜆𝑡 

that is, 𝜏 is exponentially distributed with parameter 𝜆. 

When 𝜆(𝑋𝑡) is a deterministic function of time 𝑡, which means that 𝜆 is not constant, we have 

𝑃[𝜏 > 𝑡] = 𝐸 �𝑒𝑥𝑝 �−� 𝜆(𝑠)𝑑𝑠
𝑡

0
�� = 𝑒𝑥𝑝 �−� 𝜆(𝑠)𝑑𝑠

𝑡

0
�      (4.8) 

and  

𝑓𝜏(𝑡) = 𝜆(𝑡)𝑒𝑥𝑝�−� 𝜆(𝑠)𝑑𝑠
𝑡

0
� .     (4.9) 

Another important case of deterministic default intensity 𝜆(𝑡) is a so called piecewise constant default 
intensity. Let 𝑇�1,𝑇�2,⋯ ,𝑇�𝐽  be 𝒯 different time points, then we can define a piecewise default intensity 
𝜆(𝑡) as 

𝜆(𝑡)  =

⎩
⎨

⎧ 𝜆1      𝑖𝑓    0 ≤ 𝑡 < 𝑇�1
 𝜆2      𝑖𝑓    𝑇�1 ≤ 𝑡 < 𝑇�2

⋮
    𝜆𝐽      𝑖𝑓    𝑇�𝐽−1 ≤ 𝑡 < 𝑇�𝐽

     (4.10) 

for some positive constants 𝜆1, 𝜆2,⋯ , 𝜆𝐽. Figure 4.5 illustrate a piecewise constant default intensity 𝜆(𝑡) 
in Equation (4.10). From Equation (4.8), we get that the default distribution 𝑃[𝜏 > 𝑡] is given by 

𝑃[𝜏 > 𝑡]  = 1 − 𝑒𝑥𝑝�−� 𝜆(𝑠)𝑑𝑠
𝑡

0
�      (4.11) 
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Figure 4.5: The intensity 𝝀(𝒕) as a piecewise constant function. 

  which together with Equation (4.10) yields that 

𝑃[𝜏 > 𝑡] =

⎩
⎪
⎨

⎪
⎧ 1 − 𝑒−𝜆1𝑡                                                 𝑖𝑓           0 ≤ 𝑡 < 𝑇�1

 1 − 𝑒−𝜆1𝑇�1−(𝑡−𝑇�1)𝜆2                               𝑖𝑓           𝑇�1 ≤ 𝑡 < 𝑇�2
⋮

   1 − 𝑒−∑ 𝜆𝑗�𝑇�𝑗−𝑇�𝑗−1�−�𝑡−𝑇�𝐽−1�𝜆𝐽
𝐽−1
𝑗=1        𝑖𝑓          𝑇�𝐽−1 ≤ 𝑡 < 𝑇�𝐽

 

where we define 𝑇�0 as 𝑇�0 = 0. 

An example of stochastic default intensity 𝜆𝑡 is a Vasicek-process, given by  

𝑑𝜆𝑡 = 𝛼(𝜇 − 𝜆𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡 

where 𝑊𝑡 is a Brownian motion under risk-neutral measure P. Then we get that the survival probability 
up to time 𝑡 is given by (Björk, 2009) 

𝑃[𝜏 > 𝑡] = 𝑒𝑥𝑝(𝐴(𝑡) −𝐵(𝑡)𝜆0) 

for 

𝐵(𝑡) =
1 − 𝑒−𝛼𝑡

𝛼
  

𝐴(𝑡) = (𝐵(𝑡) − 𝑡)�𝜇 −
𝜎2

2𝛼2�
−
𝛼2

4𝛼
𝐵(𝑡)2. 

Moreover, since 𝑓𝜏(𝑡) = −𝑃[𝜏>𝑡]
𝑑𝑡

, we conclude that the density  𝑓𝜏(𝑡) is given by 
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 𝑓𝜏(𝑡) = �𝑒−𝛼𝑡 �
𝜎2

2𝛼2
+ 𝜆0� − (𝑒−𝛼𝑡 − 1)�𝜇 −

𝜎2

2𝛼2�
� 𝑒𝐴(𝑡)−𝐵(𝑡)𝜆0 . 

4.3 Valuation of an Interest Rate Swap 
In this section we will explain the features of an interest rate swap, first in a general way followed by a 
more theoretical manner. 

An interest rate swap is an agreement between two parties, A and B, to exchange a fixed leg interest 
rate cash flow stream for a floating equivalent under a given period (see Figure 4.6). One party pays the 
fixed stream while the other pays the floating. The floating rate is based on an interest rate, for example 
the LIBOR.  Depending on movements in the underlying interest rate the value of the swap contract 
changes with time. A common reason to enter into an interest rate swap contract is to manage risks 
related to interest rates (Asgharian, et al., 2007). 

An interest rate swap contract specifies the following properties: 

• Swap rate (the annual fixed interest rate cash flow stream) 
• The interest rate on which the floating rate is taken from 
• Maturity 
• Payment frequency 
• Notional amount 

A simple illustration of the payments streams is displayed in Figure 4.6. 

 

Figure 4.6: Structure of an interest rate swap. 

In the following two subsections we are discussing the valuation of an interest rate swap. The interest 
rate swap can be viewed as a portfolio of generalized Forward Rate Agreements (FRA). Hence to get a 
proper understanding of the value of the Interest rate swap we start by introducing the FRA.  

4.3.1 Forward Rate Agreement 
In this section we will closely follow the setup and notation from (Brigo, et al., 2006). 
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Forward rates are interest rates that can be locked in today for an investment in a future time period. 
The forward rate can be defined through a prototypical Forward Rate Agreement (FRA). An FRA is an 
over-the-counter contract between two parties that determines the rate of interest to be paid or 
received on an obligation beginning at a future start date. It is characterized by three time instants:  

 t - the time at which the rate is considered 
 𝑇1 - the expiry date 
 𝑇2 - the time of maturity 

where t ≤ T1 ≤ T2. 

The holder of the FRA receives an interest-rate payment at time  T2 for the period between T1 and T2. At 
the maturity T2, a payment based on the fixed rate KFRA is exchanged against a floating payment based 
on the spot rate L(T1, T2). To put it in a simple way, the contract allows one to lock in the interest rate 
between time T1 and time T2 at a value of KFRA, for a contract with simply compounded rates. This 
means that the expected cash flows must be discounted from  T2 to T1. At time  T2 one receives 
δ(T1, T2)KFRAN units of cash and simultaneously pays the amount δ(T1, T2)L(T1, T2)N. Here N is the 
contract’s nominal value and δ(T1, T2) denotes the year fraction for the contract period [T1, T2].  Thus, 
the value of the FRA, at time T2 can, for the seller of the FRA (fixed rate receiver), be expressed as (Brigo, 
et al., 2006) 

N ∙ δ(T1, T2)(KFRA − L(T1, T2)).         (4.12) 

Further, L(T1, T2) can also be written as 

L(T1, T2) =
1 − P(T1, T2)

δ(T1, T2)P(T1, T2)   (4.13) 

and this enables us to rewrite Equation (4.12) as 

N ∙ δ(T1, T2) �KFRA −
1 − P(T1, T2)

δ(T1, T2)P(T1, T2)� = N �δ(T1, T2)KFRA −
1

P(T1, T2) + 1� .     (4.14) 

To find the value of the FRA at time t, the cash flow exchanged in Equation (4.14) must be discounted 
back to time t, that is, we want to compute the quantity 

N ∙ P(t, T2) �δ(T1, T2)KFRA −
1

P(T1, T2) + 1� .   (4.15) 

To do this we first note that according to classical, no arbitrage interest rate theory, the implied forward 
rate between time t and T2 can be derived from two consecutive zero coupon bonds due to the equality 
(Filipovic, 2009) 

P(t, T2) = P(t, T1)P(T1, T2).      (4.16) 
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This gives that P(t, T1) = P(t,T2)
(T1,T2). Hence, by using Equation (4.16) we then get that 

N ∙ P(t, T2) �δ(T1, T2)KFRA −
1

P(T1, T2) + 1� 

= N[P(t, T2)δ(T1, T2)KFRA − P(t, T1) + P(t, T2)]. 

Thus, we have that the value of the above FRA contract at time t is given by 

FRA(t, T1, T2,δ(T1, T2), N, KFRA) = N[P(t, T2)δ(T1, T2)KFRA − P(t, T1) + P(t, T2)].     (4.17) 

Only one value of KFRA gives the FRA a value of 0 at time t. By solving for this value of KFRA, we get that 
the appropriate FRA rate to use in the contract is the simply compounded forward interest rate 
prevailing at time t for the expiry T1 > t at maturity T2 > T1, which is defined as 

Fs(t; T1, T2) =
P(t, T1) − P(t, T2)
δ(t, T2)P(t, T2) =

1
δ(T1, T2)�

P(t, T1)
P(t, T2)− 1� .     (4.18) 

Rewriting the value of Equation (4.17) in terms of the simply compounded forward interest rate in 
Equation (4.18) gives 

FRA(t, T1, T2,δ(T1, T2), N, KFRA) = N ∙ P(t, T2)δ(T1, T2)�KFRA − Fs(t; T1, T2)�.     (4.19) 

4.3.2 Interest rate swap 
In this subsection we introduce the interest rate swap which is a generalization of the FRA. A 
prototypical payer interest rate swap exchanges cash flows between two indexed legs, starting from a 
future time. At every time point Ti, within one, by the swap contract specified period Tα+1, … Tβ, the 
fixed leg pays NδiKIRS, where KIRS is a fixed interest rate, N is the nominal value and δi is the year 
fraction between Ti−1 and Ti, (δi = Ti − Ti−1 ). The floating leg pays NδiL(Ti−1, Ti) corresponding to 
the interest rate L(Ti−1, Ti) resetting at the preceding instant Ti−1 for the maturity given by Ti. For 
simplicity, in this case, we are considering that the fixed-rate payments and floating-rate payments 
occur at the same dates and with the same year fractions. Hence cash flows only take place at the date 
of the coupons Tα+1, Tα+2, Tα+3 … Tβ. The individual who pays the fixed leg and receives the floating, B 
in Figure 4.6, is the payer while the individual on the opposite side is termed the receiver, A in Figure 4.6.  

The discounted payoff at time t < Tα from B’s side can be expressed as 

� D(t, Ti)
β

i=α+1
Nδi(L(Ti−1, Ti)− KIRS) 

and the discounted payoff at time t < Tα from A’s side can be expressed as 

� D(t, Ti)
β

i=α+1
Nδi�KIRS − L(Ti−1, Ti)�. 
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Seeing this last contract, from A’s side, as a portfolio of FRAs, every individual FRA can be valued using 
the Formulas (4.17) and (4.19). This implies that the value of the interest rate swap Πreciever(t), is given 
by (see also in Brigo, et al., 2006) 

Πreciever(t) = � FRA(t, Ti−1, Ti, δi, N, K)
β

i=α+1
 

Πreciever(t) = N� δi ∙ P(t, Ti)�KIRS − Fs(t; Ti−1, Ti)�
β

i=α+1
. 

So using Equation (4.18) in the above expression implies that 

Πreciever(t) = N� �δi ∙ KIRS ∙ P(t, Ti) −
δi ∙ P(t, Ti)
δ(Ti−1, Ti)

�
P(t, Ti−1)

P(t, Ti)
− 1��

β

i=α+1
 

which can be simplified into 

Πreciever(t) = N� �δi ∙ KIRS ∙ P(t, Ti)− �P(t, Ti−1)− P(t, Ti)��
β

i=α+1
. 

The sum above can be separated into two sums 

N� �δi ∙ KIRS ∙ P(t, Ti)�
β

i=α+1
+  N� �P(t, Ti)− P(t, Ti−1)�

β

i=α+1
. 

The second sum of the two, can be simplified 

N� �P(t, Ti) − P(t, Ti−1)�
β

i=α+1
=  N ∙ P�t, Tβ� − N ∙ P(t, Tα). 

This is because of when adding up the terms from 𝑖 = α + 1 to 𝑖 = β all terms in the sum cancel out 
apart from N ∙ P�t, Tβ� and−N ∙ P(t, Tα). Adding the sums back together yields Formula (4.20), the 
formula for the value of and interest rate swap in time t ≤ Tα, from the receiver’s point of view. 

Πreciever(t) = −N ∙ P(t, Tα) + N ∙ P�t, Tβ� + N� δi ∙ KIRS ∙ P(t, Ti)
β

i=α+1
.     (4.20) 

If we want to look at the value of the swap from the side of the payer instead of the receiver, then the 
value is simply obtained by changing the sign of the cash flows 

Πreciever(t) = −Πpayer(t). 

We can write the total value of the swap at t ≤ Tα seen from the payer as (Filipovic, 2009) 
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Πpayer(t) = N�P(t, Tα) − P�t, Tβ� − K ∙ δ� P(t, Ti)
β

i=α+1
� .      (4.21) 

To clarify the interpretation of Formula (4.21), its features will now be further discussed. The interest 
rate swap can be decomposed into two legs, a floating and a fixed. These two legs can be seen as two 
fundamental prototypical contracts. The floating leg, N ∙ P(t, Tα) in Formula (4.21), can be thought of as 

a floating rate note, while the fixed leg, −N �P�t, Tβ� + K ∙ δ ∑ P(t, Ti)
β
i=α+1 � in Formula (4.21), can be 

seen as a coupon bearing bond. This gives that the Interest rate swap could be seen as an agreement for 
exchanging the floating rate note (floating leg) for the coupon bearing bond (fixed leg). 

A coupon bearing bond is a contract that guarantees a payment of a deterministic amount of cash at 
future times Tα+1, Tα+2, Tα+3 … Tβ. Generally, the cash flows are defined as N ∙ δi ∙ KIRS for i < β and 
N ∙ δβ ∙ KIRS + N for i = β.Here  KIRS  is the fixed interest rate and N  is the nominal bond value. 
Discounting the cash flows back to present time t from the payment times Ti, the value of the coupon 
bearing bond is (Brigo, et al., 2006) 

N�P�t, Tβ� + K ∙ δ� P(t, Ti)
β

i=α+1
�. 

where N ∙ K ∙ δ ∑ P(t, Ti)
β
i=α+1  are the future discounted cash flows from the coupon payments, and 

N ∙ P�t, Tβ� is the discounted reimbursement of the notional value of the bond. N �P�t, Tβ� + K ∙

δ∑ P(t, Ti)
β
i=α+1 � is the second part of Formula (4.21). 

The floating leg in the interest rate swap, N ∙ P(t, Tα) in Formula (4.21), can be thought of as a floating 
rate note. A floating rate note is a contract guaranteeing a payment at a future 
time Tα+1, Tα+2, Tα+3 … Tβ of the interest rate that resets at the earlier time Tα, Tα+1, Tα+2 … Tβ−1.. 
Moreover, the note pays a cash flow at Tβ consisting of the reimbursement of the notional value. The 
value of a floating rate note is obtained by changing the sign of the formula for the Πreciever(t) in 
Equation (4.20) with a fixed leg of zero and then adding it to the present value of the cash flow paid at 
time Tβ . This gives (Brigo, et al., 2006) 

N ∙ P(t, Tα)− N ∙ P�t, Tβ� − 0 + N ∙ P�t, Tβ� = N ∙ P(t, Tα). 

The reason for this convenient final formula is that the entire floating rate note can be replicated 
through a self-financing portfolio. This shows that a floating rate note is always equal to N units of cash 
at its reset dates, in our case every quarter of a year. In other words, the floating rate is always equal to 
its notional amount when t=Ti. One could express this as “a floating rate note always trades at par” 
(Björk, 2009). 
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The forward swap rate Kα,β(t) at time t for the sets of times T and year fraction δ is the rate in the fixed 
leg of the interest rate swap in Formula (4.21) that makes the swap a fair contract at time t (Brigo, et al., 
2006). The formula is displayed below 

Kα,β(t) =
P(t, Tα) − P�t, Tβ�

∑ δi ∙
β
i=α+1 P(t, Ti)

.        (4.22) 

In our calculations we assume that the interest rate swap contract is written at time 𝑡 = Tα, this reduces 
Equation (4.22) to 

Kα,β(t) =
1 − P�t, Tβ�

∑ δi ∙
β
i=α+1 P(t, Ti)

.         

 

4.4 The CIR Model 
In this thesis we will use a model for the short term interest rate given by the CIR model (Cox, et al., 
1985) on the term structure of interest rate.  

The CIR model is developed to provide a general framework for determining the term structure of 
interest rates. It can be used for the pricing of derivative products and risk free securities. The model has 
its origin in Vasicek’s model from 1977 but with the change that it introduces a square root term in the 
diffusion coefficient on the instantaneous short rate dynamics. The CIR model have been highly 
recognized and grown to be a benchmark within interest rate theory. Reasons for this is its analytical 
compliance and, different from Vasicek’s model, that it assumes the short term instantaneous interest 
rates to always be positive, hence making it more handy to use. However the assumption of an always 
positive short term instantaneous interest rates is not always true in the financial climate of today. The 
CIR model specifies an instantaneous interest rate 𝑟𝑡 which follows a stochastic differential equation 
given by 

𝑑𝑟𝑡 = 𝜅(𝜃 − 𝑟𝑡)𝑑𝑡 + 𝜎�𝑟𝑡𝑑𝑍𝑡  

where 𝜅 is a strictly positive parameter illustrating the speed of adjustment to the long term mean θ. 
The term 𝜎�𝑟𝑡 is the standard deviation factor of the process and 𝜎 is often called the volatility. The 
condition 2𝜃𝜅 > 𝜎2 puts a positive restriction on 𝑟𝑡, hence 𝑟𝑡 ≥ 0 and 𝜃 is the equilibrium interest rate. 
Lastly, Z is a wiener process modeling the random market risk factor. (Cox, et al., 1985) 

 

 

http://en.wikipedia.org/w/index.php?title=Instantaneous_interest_rate&action=edit&redlink=1
http://en.wikipedia.org/wiki/Stochastic_differential_equation
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5. CVA and CVA-capital charge 
In this section we will give a description of CVA and its capital charge introduced in Basel III. 

5.1 Introduction to Credit Value Adjustment 
In this subsection, we will closely follow the notation and setup presented in (Brigo, o.a., 2009).The 
Credit Value Adjustment (CVA) for a derivative is defined as the difference between the risk free value of 
the derivative and the value where the risk of default is included, the true value. 

To further introduce the concept of CVA an example will follow. Unilateral counterparty risk is assumed; 
hence one of the parties in the bilateral contract is seen as risk free, we call this party the investor. 
However the other party has a risk of default. Hence, it is only the investor who is facing a counterparty 
risk. 

We start with letting 𝜏 denote the default time and ϕ be the recovery rate in the case of default. Let 
𝛱𝐷(𝑡,𝑇) denote the discounted value of the bilateral financial contract at time t from the investor’s 
point of view. Note that 𝛱𝐷(𝑡,𝑇) is the sum of all future discounted cash flows to the investor in the 
contract over the period t to T. So due to the counterparty risk,  𝛱𝐷(𝑡,𝑇) is a random variable when t>0. 

Continuing, we denote default free version of 𝛱𝐷(𝑡,𝑇) as 𝛱(𝑡,𝑇). Hence 𝛱(𝑡,𝑇) = 𝛱𝐷(𝑡,𝑇) if there 
would be no risk of default.  

The Net Present Value (NPV) of the risk-free cash flow is defined as 

𝑁𝑃𝑉(𝑡,𝑇) = 𝔼[𝛱(𝑡,𝑇)|𝓕𝑡]. 

Here 𝓕𝑡 is denoted as all the information available at time t. With the above definitions in mind now we 
can define 𝛱𝐷(𝑡,𝑇) as 

𝛱𝐷(𝑡,𝑇) = 1{𝜏>𝑇} 𝛱(𝑡,𝑇) + 1{𝑡≤𝜏≤𝑇} �𝛱(𝑡, 𝜏) + 𝐷(𝑡, 𝜏) �ϕ�𝑁𝑃𝑉(𝜏,𝑇)�+ − �−𝑁𝑃𝑉(𝜏,𝑇)�+��. 

In the formula above we can see, if no default happens, 𝛱(𝑡,𝑇) = 𝛱𝐷(𝑡,𝑇). However if a default would 
occur before time T, then it could be in either of the following scenarios:  
𝑁𝑃𝑉(𝜏,𝑇) > 0 𝑜𝑟 𝑁𝑃𝑉(𝜏,𝑇) ≤ 0. 

If the investor is in the position of having a positive exposure to the counterparty at the default, the 

investor can, as shown in the formula above, only expect to recover ϕ�𝑁𝑃𝑉(𝜏,𝑇)�+. However if the 
situation is the reversed, i.e. the counterparty’s exposure to the investor at default is positive, then the 
investor have to pay –𝑁𝑃𝑉(𝜏).  

The Counterparty-risk Credit-value adjustment formula (CR-CVA) is defined as follow. The value of 
𝔼[𝛱𝐷(𝑡,𝑇)|𝓕𝑡] is always non-negative, and the cash flows associated with the scenario where default is 
an option are always smaller compared to the corresponding of the default free version (Brigo, 2008). 
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𝔼[𝛱𝐷(𝑡,𝑇)|𝓕𝑡] = 𝔼[𝛱(𝑡,𝑇)|𝓕𝑡] − (1 −ϕ)𝔼 �1{𝑡≤𝜏≤𝑇}𝐷(𝑡, 𝜏)�𝑁𝑃𝑉(𝜏)�+|𝓕𝑡�. 

The CVA can be decomposed into three terms, the loss given default, the expected exposure and the 
probability of default. Closer focus will be put on each of these terms in Section 5.4, 5.5 and 5.6. 

5.2 CVA under Basel III 
In this thesis we are calculating the CVA using the advanced formula for CVA which will be introduced in 
the coming subsections. Hence, what we are calculating is one CVA value which later can be used as an 
input in a VaR-model to calculate the CVA-capital charge defined in Basel III. Nevertheless, when 
calculating the CVA-capital charge which is a new feature to Basel III the CVA calculations must be based 
on the formulas we use and introduce below in the Section 5.2.3. Hence as an important addition we 
will in this section explain the CVA-capital charge which our results can be used to calculate. Also we will 
introduce the terms expected exposure, probability of default and loss given default which is included in 
our CVA calculations. 

5.2.1 CVA Capital Charge 
Due to worsening in the counterparty’s credit quality, the CVA capital charge was added to the CCR 
capital charge to measure the risk of Mark-to-Market (MtM) losses. There exist two different methods 
to calculate the CVA capital charge, the standard and the advanced, which one to use depends on what 
method a bank is approved for in calculating capital charge for counterparty default risk and certain 
interest rate risk. Banks that use the advanced method to calculate CVA capital charge need to have 
IMM approval for counterparty credit risk as well as the approval to use the market risk internal models 
approach for the specific interest-rate risk of bonds (Basel Committee on Banking Supervision, 2011). 

5.2.2 Standard Model 
For the banks that do not have the IMM approval for counterparty credit risk, they must calculate its 
CVA capital charge using the following formula stated in the Section 104 of Basel III (Basel Committee on 
Banking Supervision, 2011) 

𝐾 = 2.33 ∙ √ℎ ∙ 𝛽 

where 

𝛽2 = �0.5 ∙�𝑤𝑖�𝑀𝑖𝐸𝐴𝐷𝑖𝑡𝑜𝑡𝑎𝑙 − 𝑀𝑖
ℎ𝑒𝑑𝑔𝑒𝐵𝑖�

𝑁

𝑖=1

−�𝑤𝑖𝑛𝑑 ∙ 𝑀𝑖𝑛𝑑 ∙ 𝐵𝑖𝑛𝑑
𝑖𝑛𝑑

�

2

 

+�0.75 ∙ 𝑤𝑖2 ∙ �𝑀𝑖 ∙ 𝐸𝐴𝐷𝑖𝑡𝑜𝑡𝑎𝑙 − 𝑀𝑖
ℎ𝑒𝑑𝑔𝑒𝐵𝑖�

2
𝑁

𝑖=1

 

   where 
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 ℎ is the one-year risk horizon (in units of a year), h=1 
 𝑤𝑖 is the weight applicable to counterparty ‘i’, which should be weighted according to the 

external rating or internal rating according to Basel III. 
 𝐸𝐴𝐷𝑖𝑡𝑜𝑡𝑎𝑙 is the exposure at default of counterparty ‘i’ who does not granted the approval for 

IMM, and the non-IMM banks the exposure should be discounted by using the factor 
[1 − 𝑒𝑥𝑝(−0.05 ∙ 𝑀𝑖)]/(0.05 ∙ 𝑀𝑖). 

 𝐵𝑖𝑛𝑑 is the full notional of one or more index CDS used for hedge the CVA risk, and should be 
discounted by using the factor [1 − 𝑒𝑥𝑝(−0.05 ∙ 𝑀𝑖𝑛𝑑)]/(0.05 ∙ 𝑀𝑖𝑛𝑑). 

 𝑤𝑖𝑛𝑑 is the weight applicable to index hedges. The bank must map indices according to one of 
the weights 𝑤𝑖 based on the average spread of index ‘ind’. 

 𝑀𝑖 is the effective maturity of the transactions with counterparty ‘i’. 

 𝑀𝑖
ℎ𝑒𝑑𝑔𝑒 is the maturity of the hedge instrument with notional 𝐵𝑖  (the 𝑀𝑖

ℎ𝑒𝑑𝑔𝑒and 𝐵𝑖  needs to be 
add together when there are several positions). 

 𝑀𝑖𝑛𝑑 is the maturity of the index hedge ‘ind’, which is the notional weight average maturity in 
case of several hedge position. 

5.2.3 Advanced method 
In order to calculate a VaR on CVA, banks uses their own specific interest rate risk VaR model for bonds 
by modeling changes in the CDS-spreads of counterparties. The VaR is calculated on the aggregated 
CVAs of the banks OTC derivatives. The model will not measure the sensitivity of CVA to changes in 
other market factors because of the restriction for the model to changes in the counterparties’ credit 
spread. The CVA capital charge is composed by the sum of a stressed and a non-stressed VaR 
component, and due to its property, the calibration of the expected exposure is normally done using the 
credit spread calibration of the worst one-year-period contained in the three-year-period.  

In Basel III it reads that, the CVA for CVA capital charge calculations must for every counterparty be 
based on the formula below, regardless of which accounting valuation method a bank uses to determine 
CVA. This is also the formula we use for our CVA calculations. The following formula is taken from 
Section 98 of Basel III (Basel Committee on Banking Supervision, 2011) 

𝐶𝑉𝐴 = (𝐿𝐺𝐷𝑀𝐾𝑇)��
𝐸𝐸𝑡𝑖−1 ∗ 𝐷𝑡𝑖−1 + 𝐸𝐸𝑡𝑖 ∗ 𝐷𝑡𝑖

2
�

𝑇

𝑖=1

∗ 𝑀𝑎𝑥 �0; 𝑒𝑥𝑝 �
−𝑠𝑡𝑖−1 ∗ 𝑡𝑡𝑖−1
𝐿𝐺𝐷𝑀𝐾𝑇

� − 𝑒𝑥𝑝 �
−𝑠𝑡𝑖 ∗ 𝑡𝑡𝑖
𝐿𝐺𝐷𝑀𝐾𝑇

�� 

where, 

 𝑡𝑖 is the i-th revaluation time bucket, start from i=1. 
 T is the contractual maturity with the counterparty. 
 𝑠𝑖 is the CDS-spread of the counterparty at time 𝑡𝑖. 
 𝐿𝐺𝐷𝑀𝐾𝑇  is the loss given default of the counterparty, based on the spread of a market 

instrument of the counterparty, which must be assessed instead of an internal estimate. 
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 𝐸𝐸𝑖  is the expected exposure to the counterparty at time 𝑡𝑖. 
 𝐷𝑖 is the default risk-free discount factor at time 𝑡𝑖, and 𝐷0 = 1. 

5.3 Exposure 
Counterparty Credit Exposure (CCE), or simply exposure, is the amount a company could lose if its 
counterparty defaults (Cesari, 2012). The Mark-to-Market (MtM) value of the OTC contract, which states 
the current market value of an asset, is the value we need to use to calculate the counterparty credit 
exposure. The MtM value can be either positive or negative; hence there is an asymmetry of potential 
losses. For example, suppose the MtM value is negative at default, then the company will owe its 
counterparty; while if it is the opposite case when the MtM value is positive, the counterparty will be 
unable to make future commitments and lose the amount of the MtM value. With the property that the 
company loses if the MtM is positive and gain nothing when the MtM is negative, we can define the 
expression of the exposure as: 

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 = max(0,𝛱𝑡 ) 

where 𝛱𝑡 is the MtM value of the contract at time t and 𝑖 represents the different scenarios. In Figure 
5.1, we display 10 simulations of exposure for interest rate swaps with the length of 10 years. 

 

Figure 5.1: Ten simulations of Exposure for interest rate swaps. 
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5.3.1 Quantitative measure of Exposure 
There are several ways to quantify exposure and according to the definition by the Basel Committee on 
Banking Supervision, three of them are widely used: 

 Expected Exposure (EE): it is the expectation of loss given default based on a zero recovery rate. 
In other word, it is the average exposure after considering different scenarios. Thus, it can be 
calculated using the formula 

𝐸𝐸𝑡 =
1
𝑁
�max�0,𝛱𝑡𝑖�
𝑁

𝑖=1

 

where 𝑁 is the number of simulated interest rate paths, and 𝛱𝑡𝑖 is the exposure at time t for 
simulation number i.  Note that 𝐸𝐸𝑡 is a Monte Carlo estimation of 𝐸[max(0,𝛱𝑡)]. 

 Potential Future Exposure (PFE): the definition for PFE is very much similar to Value at Risk (VaR), 
which is the worst possible exposure with a certain confidence interval (usually 99%). What is 
different between the two is that the PFE has a longer time horizon, usually years; while the 
VaR’s time horizon is accounted in days 
 

 Expected Positive Exposure (EPE):  is slightly different to the previous two concepts since it is 
defined to be the time average of the 𝐸𝐸𝑡, the formula is shown below: 

𝐸𝑃𝐸 =
1
𝑀
�𝑚𝑎𝑥(0,𝐸𝐸𝑡)
𝑀

𝑡=1

 

where t is the time now and M is the maturity. What needs to be mention is that the 
𝐸𝐸𝑡  𝑎𝑛𝑑 𝐸𝑃𝐸 are both weighted value of a point in time. 

5.4 Loss given default 
Loss Given Default (LGD) can be expressed as one minus the recovery rate. In other terms, it is how 
much a company will lose if a default occurs. In theory, the LGD can take every value form 0-100%, zero 
when a default doesn’t involve a loss and 100 % when everything is lost with the default. This is a value 
that is very hard to find a precise estimate for. The problem that is encountered when trying to estimate 
a good LGD value is that the sample data is often too small. This means that more subjective methods 
must be used to find a good estimation of the LGD. Depending on the features attached to the data, 
quantitative methods allows for an implicit or explicit estimation of the value. 

The market LGD approach is an explicit method that looks at market prices of bonds directly after 
default, comparing these with their original par value. After discounting the recoveries and costs that 
can be observed, the value of the company can be determined and from that the LGD can be extracted 
(Engelmann, 2011). 
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By investigating the probability distribution of recoveries from 1970-2003 for all available bonds and 
loans data from Moody’s, the LGD can be approximately estimated on average to be 60%, which is the 
value we will use in our CVA calculations. (Schuermann, 2004). 

5.5 Probability of Default 
Probability of default is the likelihood that a default will occur during a specific period of time. In a 
financial setting, PD is an estimation of the likelihood that a financial institution is incapable of or 
unwilling to fulfill its debt obligations. The PD depends on microeconomic factors i.e. counterparties as 
well as the macroeconomic factors such as an economic down turn. When the overall economic 
environment is unhealthy, PD will be relatively high compared to normal years. However, it also 
depends on the strategy the counterparties use to deal with different situation. 

Probability of default is an important concept since a correct estimation can prevent potential loss for 
companies. It is generally difficult to estimate and model since the defaults are relatively rare, statistical 
cases are not enough to be sufficient. However, there are two methods existing to estimate the credit 
worthiness of an entity: the basic model which was discussed in Section 5.2.2 and the advanced model, 
which was discussed Section 5.2.3. For the estimation of the PD in our model we use the formula 

𝑀𝑎𝑥 �0; 𝑒𝑥𝑝 �
−𝑠𝑡𝑖−1 ∗ 𝑡𝑡𝑖−1
𝐿𝐺𝐷𝑀𝐾𝑇

� − 𝑒𝑥𝑝 �
−𝑠𝑡𝑖 ∗ 𝑡𝑡𝑖
𝐿𝐺𝐷𝑀𝐾𝑇

�� .     (5.1) 

This term comes from the approximation (see also in Herbertsson 2012) 

𝑆(𝑇) ≈ 𝜆 ∙ 𝐿𝐺𝐷𝑀𝐾𝑇     𝐻𝑒𝑛𝑐𝑒     𝜆 ≈
𝑆(𝑇)

𝐿𝐺𝐷𝑀𝐾𝑇
. 

Thus 

𝑃[𝜏 > 𝑡] = 𝑒𝑥𝑝 �−
𝑆(𝑇) ∙ 𝑡
𝐿𝐺𝐷𝑀𝐾𝑇

� 

and this implies that 

𝑃[𝑡𝑖−1 < 𝜏 ≤ 𝑡𝑖] = 𝑃[𝜏 ≤ 𝑡𝑖] − 𝑃[𝜏 ≤ 𝑡𝑖−1] = 𝑃[𝜏 > 𝑡𝑖−1]− 𝑃[𝜏 > 𝑡𝑖]

= 𝑒𝑥𝑝 �
𝑆(𝑇) ∗ 𝑡𝑡𝑖−1
𝐿𝐺𝐷𝑀𝐾𝑇

� − 𝑒𝑥𝑝 �
𝑆(𝑇) ∗ 𝑡𝑡𝑖
𝐿𝐺𝐷𝑀𝐾𝑇

� 

where 𝑡𝑖−1 < 𝑡𝑖. The “max” in Equation (5.1) guarantees that the value of PD is non-negative, since in 
this formula 𝑆(𝑇) may be a function of 𝑡𝑡𝑖. 

The term 𝑠𝑡𝑖is the CDS-spread. In our thesis we have created three different CDS-spreads by simulating 
three different risk scenarios; High; medium and Low. This structure is inspired by Brigo’s article in 
2008.The complete table with the CDS-spreads will be shown in Section 7. 
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6. Calculating Expected Exposure 
In this section we explain the steps taken to calculate our CVA values for an interest rate swap in a CIR-
framework. 

6.1 The interest rate path 
To model CVA for an interest rate swap in a CIR-framework we need to model the expected exposure. 
To get a value for the expected exposure in the swap contract we start by simulating interest rate paths 
following a CIR-process. 

For the simulation we take support in an algorithm described in (Broadie, 2006). If the interest rate 
follows a CIR-process including the parameters 𝜅, 𝜃, 𝜎 and 𝑟𝑡, the value of  𝑟𝑡 given 𝑟𝑠, where 𝑠 < 𝑡, is 
given by multiplying a scaling factor with a non-central chi-squared distributed random variable. 

                                                                    𝑟𝑡 = 𝑐𝑡𝜒𝑑′2(𝑎)                                                        (6.1) 

In Equation (6.1), 𝑎 denotes the non-centrality chi-squared parameter, d is the degrees of freedom and 
𝑐𝑡 is a scaling factor. The parameters are dependent on the distance between s and t, 𝜅, 𝜎, 𝜃 and the 
initial value of the short term rate 𝑟0.  

𝑎 =
4𝜅𝑒−𝜅(t−𝑠)

𝜎2(1 − 𝑒−𝜅(t−𝑠))
∗ 𝑟𝑠 

𝑑 =
4𝜃𝜅
𝜎2

 

𝑐𝑡 =
𝜎2�1 − 𝑒−𝜅(t−𝑠)�

4𝜅
. 

The CIR-model is estimated with the restriction that 2𝜃𝜅 > 𝜎2, and if this holds, then it means that d will 
always be bigger than one. 

When d >1 a non-central chi-squared random variable can be written as a sum of a non-central chi-
squared random variable with one degree of freedom and a normal chi-squared random variable with d-
1 degrees of freedom (Broadie, 2006). So for this case, with an estimation that is restricted subject to 
d >1, the interest rate simulation for every period is modeled as follow: 

𝑟𝑡 = 𝑐𝑠�𝜒1′2(𝑎) + 𝜒𝑑−12 � 

where 

𝜒1′2(𝑎) = �𝑍 + √𝑎�
2
 

and Z is a standard normal distributed random variable. 
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Figure 6.1: CIR-process path simulation with, 𝜿 = 0.1, 𝜽= 0.03, 𝝈 = 0.1, 𝒓𝟎= 0.02. 

Figure 6.1 show 10 simulated interest rate paths over a period of ten years when the interest rate 𝑟𝑡 
follows a CIR process with the parameters 𝜅 = 0.1, 𝜃= 0.03, 𝜎 = 0.1, 𝑟0= 0.02. 

6.2 Bond Price 
Subject to assumptions of continuous trading and absence of transaction costs, it is possible to model 
the arbitrage-free price of a default-free zero coupon bond 𝑃(𝑡,𝑇) in the following way (Björk, 2009) 

𝑃(𝑡,𝑇) = 𝐴(𝑡,𝑇)𝑒−𝐺(𝑡,𝑇)r 

𝐴(𝑡,𝑇) = �
𝛼𝑒𝛽(𝑇−𝑡)

𝛽(𝑒𝛼(𝑇−𝑡) − 1) + 𝛼
�
𝛾

 

𝐵(𝑡,𝑇) =
𝛼𝑒(𝑇−𝑡) − 1

𝛽(𝑒𝛼(𝑇−𝑡) − 1) + 𝛼
 

where 

𝛼 = �𝑘2 + 2𝜎2, 𝛽 =
𝑘 + 𝛼

2
, 𝛾 =

2𝑘𝜃
𝜎2

. 



35 

 

 

 

Figure 6.2: Simulation of Bond Prices. 

In Figure 6.2 we show the bond price 𝑃(𝑡,𝑇) as a function of time t, given the realization of the interest 
rate 𝑟𝑡, with the same parameters and the same simulation of 𝑟𝑡 as in Figure 6.1. 

6.3 The Swap Contract 
The value of the swap contract Πpayer(t)  is calculated at close time points up until maturity. It is 
calculated with the formula below 

Πpayer(t) = N�P(t, Tα)− P�t, Tβ� − K ∙ δ� P(t, Ti)
β

i=α+1
�       

where the calculation is based on the bond prices P(t, T) from the previous subsection. In this 
subsection we will let 𝛼 = 𝛼(𝑡), i.e. the index 𝛼 will change as t runs from 0 to Tβ. More specific, for 
each t, 0 ≤ 𝑡 ≤ Tβ, we will let 𝛼(𝑡) be the time point Tα(t) closest to t but still above or equal to t, i.e. 
𝑇𝛼(𝑡)−1 < 𝑡 ≤ 𝑇𝛼(𝑡). 

To ease the interpretation of the formula, the Πpayer(t) can be decomposed into its individual terms. 
The factor N is the notional amount, hence the scaling factor for the interest rate swap contract. The 
derivation of the term N ∙ P(t, Tα) is further explained in Section 4. The term could be described as a 
floating rate note. It is always equal to N when t = T𝑖, so for all 𝑖 = 𝛼,𝛼 + 1,𝛼 + 2, … ,𝛽, N ∙ P(t, Tα) =
N, when 𝛼 = 𝛼(𝑡) and 𝑇𝛼(𝑡)−1 < 𝑡 ≤ 𝑇𝛼(𝑡). This will be explained in more detail below. 
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The term N �P�t, Tβ� − K ∙ δ ∑ P(t, Ti)
β
i=α+1 � is all the future discounted cash flows at time t from the 

fixed leg payment stream. Here N ∙ K ∙ δ∑ P(t, Ti) β
i=α+1 are the future discounted cash flows from the 

coupon payments, this sum decreases in size as the contract approaches maturity. The term N ∙ P�t, Tβ� 
is the discounted reimbursement of the notional value in the fixed leg, this goes to N as the contract 
approaches maturity. Here K is the swap rate that makes the contract fair at time t = 0, or in other 
words the swap rate that makes the present value of the floating and fixed leg equal at time t = 0. 
Finally, δ is the year fraction between Ti−1 and Ti (Brigo, et al., 2006) (Björk, 2009). 

The formula above is used to calculate the value of the interest rate swap at time t from t = 0 to 
t = Tβ with close steps. The swap rate  K is calculated once, at t = 0. The formula above calculates the 
value of an interest rate swap at time t for t ≤ Tα. Hence, to implement the formula at  t > 0 the 
calculations assumes that Tα  which initially is at t = 0 follows the coupon payments. Hence, by 
letting 𝛼 = 𝛼(𝑡), the index 𝛼 will change as a function of t from 0 to Tβ. Thus, at t ≤ 0 the present value 
of the contract is calculated by discounting all future cash flows from t ≤ 0 to t = Tβ for a contract with 
the length of ten years. However, when 0 < t ≤ 1.25 (𝑡 = 1.25 is the time for the first coupon payment, 
which are paid quarterly until maturity) and Tα = 1.25 the swap value is calculated for a swap contract 
with the length of 9.75 years. This is done until t = Tβ, and since 𝛼 is a function of t the calculations are 
made on increasingly shorter swap contracts as t increases. However K  is constant as the swap rate 
calculated at t = 0.  

Thus, when t = 10  no more coupon payments are left to be exchanged, 

hence N ∙ K ∙ δ ∑ P(t, Ti)
β
i=α+1 = 0, N ∙ P(t, Tα) = N and N ∙ P�t, Tβ� = N, which gives the swap contract 

a value of N− N − 0 = 0 at t = 10. 

More details on the derivation of Πpayer(t) are to find in Section 4.  In Figure 6.3, we display 10 
simulations of the swap value over 10 years. 
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Figure 6.3: Simulation of the value of the swap contracts. 

The interest rate swap is a function of the interest rate and since we model the interest rate as a CIR-
process, the value of the swap in every time point is a function of θ,σ, r and 𝜅. The quarterly jumps in 
Figure 6.3 come from the resetting of the floating rate and that the expected value of the sum of all 
future coupons is reduced after every coupon payment. 

6.4 Expected Exposure 
From the value of the swap contract calculated above, we can derive the expected exposure using the 
formula 

𝐸𝐸𝑡 =
1
𝑁
�max�0,𝛱𝑡𝑖�.
𝑁

𝑖=1

 

For this we use the method explained in Section 5. It is displayed in Figure 6.4. 
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Figure 6.4: the Expected Exposure. 

Now we have calculated all the terms needed for our CVA value. 

  



39 

 

 

7. Results 
Our CVA is calculated using the following formula with a notional amount of 1 and a value of the other 
terms as specified later in this section. 

𝐶𝑉𝐴 = (𝐿𝐺𝐷𝑀𝐾𝑇)��
𝐸𝐸𝑡𝑖−1 ∗ 𝐷𝑡𝑖−1 + 𝐸𝐸𝑡𝑖 ∗ 𝐷𝑡𝑖

2
�

𝑇

𝑖=1

∗ 𝑀𝑎𝑥 �0; 𝑒𝑥𝑝 �
−𝑠𝑡𝑖−1 ∗ 𝑡𝑡𝑖−1
𝐿𝐺𝐷𝑀𝐾𝑇

� − 𝑒𝑥𝑝 �
−𝑠𝑡𝑖 ∗ 𝑡𝑡𝑖
𝐿𝐺𝐷𝑀𝐾𝑇

�� 

For the CDS we have created CDS spreads by simulating 3 different scenarios; High; medium and Low. 
This setup is inspired by Brigo’s article in 2008 (Brigo, 2008). 

 

Table 7.1: Different CDS spreads representing different risk scenarios. 

The discount rate 𝐷𝑡 is set to be a constant interest rate of 0.02.   

The Expected Exposure EEt is estimated with 10000 interest rate paths with, κ = 0.1, θ= 0.03, σ = 0.1, 
r0= 0.02, where one parameter is changed for every scenario in Figure 7.1 while the others are kept 
constant. This is done to see how sensitive the CVA is to changes in the individual parameters in the CIR-
framework. The CVA is calculated with a quarterly exposure frequency (𝑖 in the formula). The exposure 
frequency is defined as how many steps the summation term in the CVA calculation is divided into on a 
yearly basis. This gives that our summation term contains 40 steps. 

The LGD is set to 60% for all simulations. The reason behind the chosen level of LGD is motivated in 
Section 5.  

Year Intensity CDS Intensity CDS Intensity CDS
1 0.0035 22.759956 0.0205 133.59204 0.0508 332.3057
2 0.0046 26.295304 0.022 138.39149 0.0521 336.4322
3 0.0051 28.530952 0.0233 142.70249 0.0516 336.7854
4 0.008 34.185844 0.0243 146.38399 0.053 339.0235
5 0.0095 39.418711 0.0235 147.63146 0.0541 341.6065
6 0.011 44.411884 0.0254 150.31184 0.055 344.1345
7 0.0126 49.326422 0.0268 153.35912 0.0548 345.7788
8 0.0142 54.164755 0.0286 156.8823 0.056 347.7539
9 0.0158 58.926599 0.0299 160.38565 0.0587 350.7132
10 0.0174 63.610364 0.031 163.74592 0.059 353.1898

Low Risk Medium Risk High Risk
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Figure 7.1: The change in CVA as a function of 𝜿,𝜽,𝝈, 𝒓𝟎 in three CDS scenarios. 

Although the calculated CVA value is relatively low, one should realize that these CVA values are 
calculated on a notional of one, normally the notional is much larger, ranging up to billions. So 
if 𝑁 = 108, i.e. 100 million dollars, then a CVA value of e.g. 4 × 10−3 means a CVA value of 4 × 105 =
400000 dollars, which is a non-negligible amount. However the relationships we are investigating are 
not contingent on the size of the notional, hence for simplicity it is set to one. 

Looking at the pictures above, it can be seen that the CVA is affected by the CDS level. Furthermore, we 
discovered that the CVA values seem to be sensitive to changes in the parameter 𝜃 the most, followed 
by 𝜎, which is intuitively clear, since 𝜎 derives the volatility in the exposure. 

To further look at the final CVA values, we plotted the CVA in a bivariate structure to show how it 
changes with different combinations of the parameters 𝜅,𝜃,𝜎, 𝑟0. The Figure 7.2 is constructed using the 
“high” CDS-spread. 
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Figure 7.2: CVA as a function of 𝜿,𝜽,𝝈, 𝒓𝟎. 

Instead of using a flat interest rate for the discount term 𝐷𝑡 , we have also calculated the CVA in the CIR-
framework where 𝐷𝑡 follows the simulated Interest rate. Figure 7.3 illustrate a comparison between the 
results. 
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Figure 7.3: Comparison of CVA values as a function of 𝜿 𝐚𝐧𝐝 𝝈 using different discount rate scenarios, where the upper one’s 
discount rate is dependent on the CIR simulation. 
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Figure 7.4: Comparison of CVA as a function of different discount rates. 

From Figure 7.4, it can be concluded that the two different discount scenarios seem to give relatively 
similar CVA values. 

8. Discussion and conclusion 
By looking at the model risk for CVA on an interest rate swap in the CIR-framework and by investigating 
how sensitive the CVA-value is with respect to the underlying parameters, we can conclude that the 
level of the underlying parameters has a big impact on the final CVA value.   

The estimated value of the EE will change with respect to 𝜅,𝜃,𝜎, 𝑟0, driving the simulated interest rate 
path. The parameters that affect the CVA value the most are 𝜃 and 𝜎. That the CVA calculation is the 
most sensitive to changes in 𝜃  and 𝜎  is fairly intuitive considering the meaning of the included 
parameters. The long term mean of the process 𝜃 will have a great impact on the level of the CIR-
process, in our case the interest rate. Also considering that 𝜎 is the volatility of the process, an increase 
in this parameter will lead to an increased uncertainty about the future interest rate, hence, a bigger risk 
will be associated with a high 𝜎. The level of 𝑟0will measured over a longer period not have as big of an 
impact on the interest rate. Further, if 𝜅 is high it means that the process quickly will return to its mean, 
however the speed of the return to the long term mean does clearly not have a dramatic impact on the 
CVA. 

Even if the CVA value is small and a small change of its value doesn’t seem too intimidating, it could 
have big effects. Since we have done our estimations with a notional of one, the real CVA must be scaled 
with the proper amount of the notional. It is also discovered by our research that the different CDS 
levels have a great impact on the final level of the CVA. 
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Comparing our work to previous research from Brigo (2008) and Douglas (2012), we can conclude that 
the results from our CVA calculations give similar CVA values as these papers. With similar input 
variables our output matches the results of previous efforts to calculate CVA for an interest rate swap. 
They as us, emphasize the importance of being aware of the volatility in the CVA and account for it in a 
sound manner. The scientific contribution of our work is the finding that parameters 𝜅,𝜃,𝜎, 𝑟0 have an 
impact on the CVA for an interest rate swap in a CIR framework. 

Lastly, since there is significant insecurity in the modeling of every term in the CVA model, it is very 
difficult to say with confidence that the estimated CVA value calculated in our model is accurate. 
Nevertheless if the CVA is not taken seriously, there will be a great chance that what happened in the 
financial crisis of 2008-2009 might happen again. During that crisis losses could be traced to volatility in 
CVA. So now when the importance of accurately measuring the CVA has been recognized, we believe 
that the research within this field will grow further. To conclude, it is evident that the final CVA value is 
sensitive to changes in the underlying parameters 𝜅,𝜃,𝜎, 𝑟0 as well as to variations in the other terms 
included in the CVA model, which indicates an evident model risk. 
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