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Abstract

Environmental conditions and pollution levels have been proven to a¤ect �rms�

and households�location decisions in various ways. In this paper, we study the opti-

mal and equilibrium distribution of industrial and residential land in a given region.

Industries produce a single good using land and labor and generate emissions of a

pollutant, and households consume goods and residential land and dislike pollution.

The trade-o¤ between the agglomeration and dispersion forces, in the form of in-

dustrial pollution, environmental policy, production externalities, and commuting

costs, determines the emergence of industrial and residential clusters across space.

We also show that the joint implementation of a site-speci�c environmental tax and

a site-speci�c labor subsidy can reproduce the optimum as an equilibrium outcome.
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1 Introduction

The formation of residential and industrial clusters in a city or region re�ects the existence

of forces that drive the observed spatial patterns. Agglomeration and dispersion forces

have been extensively analyzed in the literature of urban economics and have played an

important role in explaining the initial formation and the further development of cities.

In this context, it has been proven that �rms bene�t from operating closer to other �rms

since it gives them access to a pool of knowledge and the possibility of exchanging ideas

is likely to boost productivity. And this is where workers come into the picture, as �rms

have to compete not only with the rest of the �rms when they choose their location, but

also with workers. Since commuting always implies extra costs, which increase with the

distance, workers prefer to locate closer to their workplaces. Thus, even though in most

regions of the globe there is excess supply of cheap land, economic agents are willing to

pay high land rents in order to locate in large centers.

Apart from the above forces, which are well-known from both the theoretical and em-

pirical literature, there are additional determinants of the location decisions of economic

agents that need to be studied in a formal framework. Air pollution is considered an un-

ambiguously signi�cant factor of concern to both industries and consumers in many ways.

Industries generate emissions, and since workers are negatively a¤ected by pollution they

try to avoid locating near them. However, the spatial interdependence of industries and

workers explained above makes the problem of air pollution even bigger. If industries

were located in pure business areas with no residents around, then the damage from the

generation of emissions would be much lower compared with the case of industries being

located close to residential or mixed areas. As regards urban areas, where pollution prob-

lems are getting increasingly serious, it is easy to understand that pollution externalities

should be studied in a spatial context.

The interaction between industrial pollution and residential areas has often been iden-
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ti�ed as a reason for government intervention. Mostly in developed countries, govern-

ments impose high taxes or di¤erent kinds of environmental policy on polluting activities

or force industries to take abatement measures to reduce the total level of pollution.

In the EU, for example, air pollution has been one of the main political concerns since

the late 1970s. In this context, one of the objectives of the Sixth Environment Action

Programme (2010) is to achieve air quality levels that do not give rise to unacceptable im-

pacts on human health and the environment. Di¤erent actions need to be taken at local,

national, European, and international level, which clearly points to the spatial aspect of

the problem.1 In this way, the role of environmental policy is crucial in the development

of residential and industrial clusters, as strict environmental measures can discourage

�rms from operating in speci�c areas, while the reduced pollution levels that will result

from this kind of policy could encourage people to again locate close to business areas.

This paper contributes to the literature by extending the general equilibrium models

of land use by incorporating environmental externalities. More speci�cally, we study how

pollution from stationary sources �which a¤ect workers negatively and make governments

impose environmental regulations �combined with other agglomeration forces such as ex-

ternalities in production and commuting cost will �nally determine the internal structure

of a region. Once the optimal and equilibrium land uses are speci�ed, we characterize two

kinds of spatial policies that can be used in order to implement the optimal allocations

as equilibrium outcomes. In particular, the derived market allocations di¤er from the op-

timal ones due to the assumed externalities in the form of positive knowledge spillovers

and pollution di¤usion. Thus, we use the spatial model to de�ne site-speci�c policies

that will improve the e¢ ciency in the given region. We show that the joint enforcement

of a site-speci�c pollution tax and a site-speci�c labor subsidy will reproduce the optimal

allocation as a market outcome. Numerical experiments will illustrate the di¤erences

between the two solutions and will show that industrial areas are concentrated in smaller

intervals in the optimal solution. Also, mixed areas emerge in the market allocation but

not in the optimal one.

1Information on the environmental policy enforced by the EU can be found at
http://ec.europa.eu/environment/air/quality/index.htm)
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The reason we use the existence of interactions among �rms as the basic agglomeration

force of the model lies in the fact that they have been proven to be the basic force for

the clustering of economic activity.2 These interactions facilitate exchange of information

and knowledge between �rms, which means that, other things being equal, each �rm has

an incentive to locate closer to the other �rms, forming industrial or business areas. On

the other hand, the formation of a pure business center increases the average commuting

cost of workers and gives rise to higher wages and land rents in the area surrounding the

cluster. This process acts as a centrifugal force that impedes further agglomeration of

�rms.

The trade-o¤ of production externalities and commuting costs has been explained ex-

tensively in a lot of studies, such as in Lucas and Rossi-Hansberg (2002), Rossi-Hansberg

(2004) and Fujita and Thisse (2002) (Chapter 6). In an earlier paper, Fujita and Ogawa

(1892) presented a model of land use in a linear city, where the population was �xed and

�rms and households would compete for land at the di¤erent spatial points. In this paper,

using a general equilibrium model of land use and following Lucas and Rossi-Hansberg

(2002) in the modeling of knowledge spillovers, we examine how pollution created by

emissions, which are considered to be a by-product of the production process, determines

the residential and industrial location decisions and hence a¤ects the spatial structure

of a region. Accordingly, pollution a¤ects negatively the productivity of labor, implies

implementation of environmental policy in the form of a site-speci�c tax, and discour-

ages workers from locating in polluted sites. An important point here is that pollution

comes from a stationary source yet di¤uses in space, creating uneven levels of pollution

at di¤erent spatial points. As far as the policy is concerned, �rms will be obliged to pay

a site-speci�c pollution tax, the size of which will depend on the marginal damage of

pollution at the site where they will decide to locate. However, the higher the number

of industries that locate in a spatial interval, the more polluted this interval will be.

Thus, if �rms decide to locate close to each other so as to bene�t from positive knowl-

edge spillovers, they will have to pay a higher pollution tax and su¤er some loss in the

2For empirical studies con�rming the role of knowledge spillovers in the location decisions of �rms,
see Keller (2002), Bottazzi and Peri (2003) and Carlino et al.(2007).
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form of decreased labor productivity due to pollution. Thus, pollution discourages the

agglomeration of economic activity. As for the consumers, they are negatively a¤ected

by pollution and prefer to locate in �clean�areas. Yet this means that they will have to

move further away from the �rms, which implies higher commuting costs. The balance

among these opposite forces, as well as the use of land for both production and residential

purposes, will �nally de�ne the industrial and residential areas.

The �rst models of spatial pollution (e.g., Tietenberg, 1974, Henderson, 1977) as-

sumed a pre-determined location for housing and industry, without giving the possibility

to workers to locate in an area that is already characterized as industrial and without

allowing for a change in the spatial patterns. The paper that is closest to the present

one in the modeling of pollution is Arnott et al. (2008), who assume non-local pollution

in order to investigate the role of space in the control of pollution externalities. More

analytically, they study how the trade-o¤ between pollution costs and commuting costs

a¤ect the location combinations of housing and industry around a circle. They show that

in a spatial context, in order to achieve the global optimum, a spatially di¤erentiated

added-damage tax is needed. The di¤erence between the present paper and Arnott et

al. (2008) (apart from the methodological part, which will be explained below) is that

we examine how pollution di¤usion interacts with the force that has been identi�ed to

explain most of the spatial industrial concentration in clusters, i.e., the positive produc-

tion externalities. This interaction determines the equilibrium and optimal land uses and

help us characterize spatial policies in the form of environmental taxes and labor subsi-

dies that reproduce the optimum as equilibrium outcome. Another form of interaction

between pollution di¤usion and a natural cost-advantage site, as well as its e¤ects on the

distribution of production across space, are analyzed in Kyriakopoulou and Xepapadeas

(2013). Their results suggest that in the market allocation, the natural advantage site

will always attract the major part of economic activity. However, when environmental

policy is spatially optimal, the natural advantage sites lose their comparative advantage

and do not act as attractors of economic activity.

The methodological contribution of this paper lies in the use of a novel approach
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that allows for endogenous determination of land use patterns through endogenization

of the kernels describing the two externalities. This approach is based on a Taylor-series

expansion method (Maleknejad et al., 2006) and helps us solve the model and provide an

accurate solution for the level of the residential and industrial land rents, which will �nally

determine the spatial pattern of our region. The method also helps in the determination

of the site-speci�c policies studied here, which can be used to reproduce the optimal

structure as a market outcome. We believe that this constitutes an advance compared

to the previous studies, where arbitrary values were assigned to the functions describing

the spillover e¤ects (as in Lucas and Rossi-Hansberg, 2002) or there is not an explicit

endogenous solution of the externality terms (as in Arnott et al., 2008). We believe

that the spatial policies derived here, which can be calculated using the novel approach

described above, provide new insights and can contribute to the improvement of e¢ ciency

in the internal of a region.

The rest of the paper is organized as follows. In Section 2 we present the model

and solve for the optimal and market allocations. In Section 3 we describe the spatial

equilibrium conditions, while in Section 4 we derive the optimal, spatial policies which

can be used to close the gap between e¢ cient and equilibrium allocations. In Section 5

we present the numerical algorithm that is used to derive the di¤erent land use patterns,

and then we show some numerical experiments. Section 6 concludes the paper.

2 The Model

2.1 The region

We consider a single region that is closed, linear, and symmetric. It constitutes a small

part of a large economy. The middle of the region is normalized to S
2
; while the total

length is given by S and 0 and S are the left and right boundaries, respectively. The

whole spatial domain is used for industrial and residential purposes. Industrial �rms and

households can be located anywhere inside the region. Land is owned by absent landlords.
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2.2 Industrial Firms

There is a large number of industrial �rms operating in the internal of our region. The

location decisions of these �rms are determined endogenously.

Assumption 1. Production

All �rms produce a single good that is sold at a world price, and the world price

is considered exogenous to the region. The production is characterized by a constant

returns to scale function of land, labor L(r); and emissions E(r): Production per unit of

land at location r is given by:

q(r) = g(z(r))x(A(r); L(r); E(r)); (1)

where q is the output, L is the labor input, and E is the amount of emissions generated

in the production process. Also, production is characterized by two externalities: one

positive and one negative. Hence, A is the function that describes the negative externality,

which is basically how pollution at spatial point r a¤ects the productivity of labor at

the same spatial point. z describes the positive production externality in the form of

knowledge spillovers.

In the numerical simulations, the functions g and x are considered to be of the form:

g(z(r)) = e
z(r)

x(A(r); L(r); E(r)) = (A(r)L(r))bE(r)c:

The two opposing forces that will be shown to a¤ect the location decisions of �rms

are associated with the two kinds of production externalities mentioned above. More

speci�cally, the main force of agglomeration is related to the positive knowledge spillovers,

while the dispersion force comes from the negative consequences of pollution. The trade-

o¤ between these two forces de�nes the industrial areas in our spatial domain.

Assumption 2. Positive knowledge spillovers

Firms are positively a¤ected by locating near other �rms because of externalities in
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production, namely positive knowledge spillovers. The positive production externality is

assumed to be linear and to decay exponentially at a rate � with the distance between

(r; s):

z(r) = �

Z S

0

e��(r�s)
2

�(s) lnL(s)ds:

Note that �(r) is the proportion of land occupied by �rms at spatial point r; and 1��(r)

is the proportion of land occupied by households at r. The function k(r; s) = e��(r�s)
2
is

called normal dispersal kernel, and it shows that the positive e¤ect of labor employed in

nearby areas decays exponentially at a rate � between r and s:

This kind of production externality relates the production at each spatial point with

the employment density in nearby areas. In this context, �rms bene�t from the inter-

action with the other �rms if they locate in areas with a high density of industries.

This assumption has been used extensively in urban models of spatial interactions and

comprises one of the driving forces of business agglomeration.3

Assumption 3. Pollution

The production process generates emissions that di¤use in space and increase the total

concentration of pollution in the city. This is reinforced in areas with a high concentration

of economic activity, where a lot of �rms operate and pollute the environment. The use of

emissions in the production and the negative consequences that follow require enforcement

of environmental regulation. Since emissions, as well as the concentration of pollution,

di¤er throughout the spatial domain, environmental regulations will be site-speci�c. In

particular, environmental policy is stricter in areas with high concentrations of pollution

and laxer elsewhere. This means that it is more costly for �rms to locate at spatial

points with high levels of pollution. However, apart from the cost of pollution in terms

of environmental policy, �rms avoid locating in polluted sites since pollution a¤ects the

productivity of labor negatively. As a result, pollution works as a centrifugal force among

�rms.
3For empirical studies that con�rm the signi�cance of this force, see Footnote 2. For the theoretical

modeling of knowledge spillovers, see Lucas (2001), Lucas and Rossi-Hansberg (2002), and Kyriakopoulou
and Xepapadeas (2013).
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As stated above, the generation of emissions during the production of the output

damages the environment. The damage function per unit of land is given by

D(r) = X(r)�; (2)

where D is the damage per unit of land and � � 1; D0(X) > 0; D00(X) � 0.4 Aggregate

pollution, X; at each spatial point r is a weighted average of the emissions generated in

nearby industrial locations and is given by:

lnX(r) =

Z S

0

e��(r�s)
2

�(s) lnE(s)ds;

with the normal dispersal kernel equal to k(r; s) = e��(r�s)
2
: Using similar interpretation

with the kernel describing the production externality, emissions in nearby areas a¤ect the

total concentration of pollution at the spatial point r; while this e¤ect declines as the

distance between the di¤erent spatial points r and s increases. � is a parameter indicating

how far pollution can travel; it depends on weather conditions and the natural landscape.

Finally, the negative e¤ect of pollution on the productivity of labor is given by A(r) =

X(r)��; where � 2 [0; ��] determines the strength of the negative pollution e¤ect. � = 0

implies that there is no connection between aggregate pollution and labor productivity,

while a large value of � means that workers become unproductive due to the presence of

pollution.

The negative e¤ects of pollution on the productivity of labor are usually explained

through their connection with health e¤ects.5 The air pollution in China can be thought

of as an example of this. In 2012, the China Medical Association warned that air pol-

lution was becoming the greatest threat to health in the country, since lung cancer and

cardiovascular disease were increasing due to factory- and vehicle-generated air pollution.

More precisely, a wide range of airborne particles and pollutants from combustion (e.g.,

4In order to model the damage function, we follow Koldstad (1986), who de�nes damages at a speci�c
location as a function of aggregate emissions of the location. We do not directly relate damages to the
number of people living in that location, so as to avoid the potential contradiction of assigning very low
damages to a heavily polluted area that lacks high residential density.

5See, e.g., Williams (2002) and Bruvoll et al. (1999).
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wood�res, cars, and factories), biomass burning, and industrial processes with incomplete

burning create the so-called "Asian brown cloud", which is increasingly being renamed

the "Atmospheric Brown Cloud" since it can be spotted in more areas than just Asia.

The major impact of this brown cloud is on health, which explains the need for a positive

� parameter above.

2.3 Households

A large number of households are free to choose a location in the interval of the given

region. The endogenous formation of residential clusters is determined by two forces that

a¤ect households�location decisions: commuting costs and aggregate pollution.

Assumption 4. Utility maximization.

Consumers derive positive utility from the consumption of the good produced by

the industrial sector and the quantity of residential land, while they receive negative

utility from pollution. Thus, a household located at the spatial point r receives utility

U(c(r); l(r); X(r));where c is the consumption of the produced good and l is residential

land.

To obtain a closed-form solution, we assume that the utility U is expressed as

U(r) = c(r)al(r)1�a �X(r)�; (3)

where 0 < a < 1 and � � 1:

As explained above, the residential location decisions are determined by two opposing

forces. The �rst one is related to commuting costs, which are modeled below. This is a

force that impedes the formation of pure residential areas since workers have an incentive

to locate close to their workplace so as not to spend much time/money commuting. As

a result, commuting costs promote the formation of mixed areas where people live next

to their workplaces.

The second force is a force that promotes the concentration in residential clusters

and comes from the fact that the consumers receive negative utility from pollution. Ac-
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cordingly, they tend to locate far from the industrial �rms to avoid polluted sites. The

pollution levels at each spatial point, which are determined by the location and produc-

tion decisions of industrial �rms, are considered as given for consumers.

Assumption 5. Commuting costs

Consumers devote one unit of time working in the industrial sector, part of which

is spent commuting to work. Agents who work at spatial point r; but live at spatial

point s; will �nally receive w(s) = w(r)e�kjr�sj: This equation corresponds to a spa-

tially discounted accessibility, which has been used extensively in spatial models of in-

teraction. Now, if a consumer lives at r and works at s; the wage function becomes

w(s) = w(r)ekjr�sj: If r is a mixed area, people who live there work there as well, and

w(r) denotes both a wage rate paid by �rms and the net wage earned by workers.

2.4 Agglomeration forces

The centripetal and centrifugal forces explained above are summarized in the following

table.

Forces promoting: Industrial Firms Households

Concentration in clusters Strong knowledge spillovers High pollution levels

Dispersion High pollution levels High commuting costs

To summarize the e¤ect of the agglomeration forces assumed in this paper, industrial

�rms concentrate in clusters under the presence of strong knowledge spillovers, while high

pollution levels work in the opposite direction since they imply a double negative e¤ect

for the same �rms. Moreover, high pollution levels promote the formation of residential

clusters, since residents try to avoid the industrial polluted areas. However, this tendency

is moderated in the case where these agents have to pay high commuting costs. The use of

land for industrial and residential purposes prevents the two parts from locating around

a unique spatial point.

The objective of this paper is in examining the optimal and equilibrium patterns of

land use under the above agglomeration forces and in designing optimal policies. The
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trade-o¤ between the above forces will de�ne residential, industrial, or mixed areas in the

internal of the region under study.

2.5 The Endogenous Formation of the Optimal Land Use

We assume the existence of a regulator who makes all the industrial and residential

location decisions across the spatial interval [0; S]: The objective of the regulator is to

maximize the sum of the consumers�and producers�surplus less environmental damages

in the whole region.

The optimal problem is solved in two stages. In the �rst stage, we derive the optimal

industrial land rent, which is the rent that �rms are willing to pay at each spatial point

in order to locate there.

Thus, if we denote by p = P (q) the inverse demand function, the optimal problem

becomes:

max
L;K;E

SZ
0

24q(r)Z
0

P (v)dv � w(r)L(r)�D(r)

35 dr:
The FONC for the optimum are:

P (q)
@q(r)

@L(r)
= w(r)

P (q)
@q(r)

@E(r)
=
@D(r)

@E(r)

or

pbe
z(r)X(r)�b�L(r)b�1E(r)c +

SZ
0

pe
z(s)X(s)�b�L(s)bE(s)c

@z(s)

@L(r)
ds = w(r) (4)

pce
z(r)X(r)�b�L(r)bE(r)c�1�

�
SZ
0

�
pb�e
z(s)X(s)�b��1L(s)bE(s)c + �X(s)��1

� @X(s)
@E(r)

ds = 0: (5)

After making some transformations that are described in detail in Appendix A, we get

the following system of second kind Fredholm linear integral equations with symmetric
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kernels:

�

Z S

0

e��(r�s)
2

"(s)ds+ g�1(r) = y(r) (6)

�
�
c

Z S

0

e��(r�s)
2

y(s)ds+
(1� b)�+ bk

c

Z S

0

e��(r�s)
2

"(s)ds+ g�2(r) = "(r); (7)

where y(r) = lnL(r) and "(r) = lnE(r); while g�1(r) and g
�
2(r) are some known functions.

In order to determine the solution of the system (6) - (7), we use a Taylor-series expansion

method (Maleknejaket et al., 2006), which provides accurate, approximate solutions of

systems of second kind Fredholm integral equations. Following this technique, we get

the optimal amount of inputs L�(r) and E�(r); which can determine the optimal level

of production at each spatial point, q�(r): The optimal emission level will �nally de�ne

the total concentration of pollution at each spatial point r; X�(r); as well as the damage,

D�(r):

Using the above optimal values, we can de�ne the optimal industrial land-rent as

follows:

R�I(r) = pq
�(r)� w(r)L�(r)�D�(r): (8)

Equation (8) describes the maximum amount of money that �rms locating at the spatial

point r are willing to pay in order to settle there.

In the second stage, we derive the optimal residential land-rent function, i.e., the

maximum amount of money that agents are willing to spend in order to locate at a

speci�c spatial point. Thus, total revenues, w(r); are spent on the land they rent at a

price RH(r) per unit of land and on the consumption of the good, c(r); which can be

bought at a price p:

So, consumers minimize their expenditures:

w(r) = RH(r)l(r) + pc(r) = min
l;c
[RH(r)l + pc] (9)
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subject to

U(c; l;X) � �u (10)

so that no household will have an incentive to move to another spatial point inside or

outside the region. To solve for the equilibrium, we assume that a consumer living at site

r considers the amount of aggregate pollution X(r) at the same spatial point as given.

This is actually derived by the �rst stage of the problem, so here we use the optimal value

X�(r):

Using equation (3), we form the Lagrangian of the problem as follows,

L = RH(r)l(r) + pc(r) +$[�u� cal1�a +D�(r)]; (11)

and obtain the following �rst order conditions (FONC):

RH(r) = (1� a)$l�aca (12)

p = a$ca�1l1�a: (13)

Solving the FOC and making some substitutions, we get the optimal residential land

rent at each spatial point:

R�H(r) =

"
w(r)

(u+D�(r))(1��
�
)� 1
1��

# 1
1��

;

where w(r) = w(s)e�kjr�sj is the net wage of a worker living at r and working at s: Also,

R�H(r) is the rent per unit of land that a worker bids at location r while working at s

and enjoying the utility level �u: We observe that #R
�
H(r)

#X�(r) < 0: This means that residential

land rents are lower in areas with high pollution concentrations. In other words, people

are willing to spend more money on areas with better environmental amenities. This is

supported by the fact that the highest residential rents in the real world are observed in

purely residential areas in the suburbs of the cities, far from the polluted business centers.
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Finally, assuming that the land density is 1; we can de�ne the optimal population

density N at each spatial point r;

N (r)l(r) = 1 =) N(r) =
1

l(r)�

N�(r) =
(w(r))

a
1�a

(�u+D�(r))
1

1�a (1�a
a
)

a
1�a ( 1

1�a)
a

1�a
:

It is obvious that the population distribution moves upward when the net wage increases

and when the concentration of pollution at the same spatial point decreases. The com-

parison between the R�I(r) and the R
�
H(r) at each spatial point provides the optimal land

uses.

2.6 The Endogenous Formation of the Equilibrium Land Use

Equilibrium and optimal land uses will di¤er because of the existence of externalities. On

the one hand, the decisions about the amount of emissions generated by each �rm a¤ect

the total concentration of pollution in the internal of our region. However, in equilibrium,

when �rms choose the amount of emissions that will be used in the production process,

they do not realize or do not take into account that their own decisions a¤ect aggregate

pollution, which actually describes their myopic behavior. When, for instance, a �rm

increases the amount of generated emissions at site r, aggregate pollution is increased

not only at r; but also in nearby places through the di¤usion of pollution. These higher

levels of aggregate pollution a¤ect �rms in two ways: �rst, they increase the cost of

environmental policy. Second, they make the negative pollution e¤ect on the productivity

of labor stronger. Finally, �rms in equilibrium do not consider the fact that their own

location decisions a¤ect the productivity of the rest of the �rms through knowledge

spillovers. For instance, they do not realize the fact that employing one extra worker will

not only increase their productivity but also the productivity of nearby �rms. Therefore,

equilibrium location decisions do not internalize fully the above e¤ects, which distorts

the optimal land uses studied above and makes them di¤er from the equilibrium ones.
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To derive the equilibrium solution, we assume that a �rm located at spatial point r

chooses labor and emissions to maximize pro�ts:

RI(r) = max
L;E

fpe
z(r)(A(r)L(r))bE(r)c � w(r)L(r)� �(r)E(r)g;

where �(r) is the environmental tax enforced by the government. The tax here is assumed

to be a site-speci�c environmental policy instrument, which is equal to the marginal

damage of emissions, i.e., �(r) =MD�(r): The solution will be a function of (z; A; � ; p; w):

L = L̂(z; A; � ; p; w) and E = Ê(z; A; � ; p; w): The maximized pro�ts at each spatial point

R̂I(z; A; � ; p; w) can also be interpreted as the business land rent, which is the land rent

that a �rm is willing to pay so as to operate at this spatial point.

Following the discussion at the beginning of this section, a �rm located at site r treats

the concentration of pollution X(r); the negative pollution e¤ect on the productivity

of labor A(r); and the e¤ect of knowledge spillovers in the production process z(r) as

exogenous parameter Xe; Ae; and ze respectively. This assumption implies that the tax

�(r) is also treated as a parameter at each spatial point.

The �rst order necessary conditions (FONC) for pro�t maximization are:

pbe
z(r)X(r)�bkL(r)b�1E(r)c = w(r) (14)

pce
z(r)X(r)�bkL(r)bE(r)c�1 = �(r): (15)

So, we solve explicitly for:

L̂(z; w; �) =

�
ccb1�cAe
z

� cw1�c

� 1
1�b�c

(16)

Ê(z; w; �) =

�
c1�bbbAe
z

� 1�bwb

� 1
1�b�c

: (17)

Substituting (16) and (17) into the maximized pro�t function, we solve explicitly for

the industrial land rents:
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R̂I(z; w; �) =

�
e
zAbbcc

� cwb

� 1
1�b�c

(1� b� c): (18)

In the explicit solution for L;E; and RI presented above, there are two integral equa-

tions: one describing knowledge spillovers and the other describing the concentration of

pollution at each spatial point.6 Most authors who have studied knowledge spillovers

of this form use simplifying assumptions about the values that the kernels take at each

spatial point. However, this approach forces �rms to locate around the sites that cor-

respond to the highest assumed arbitrary values of knowledge spillovers, and hence we

do not take into account that L(s) and E(s), s 2 S, appear in the right-hand side of

(16)-(17) and therefore these equations have to be solved as a system of simultaneous in-

tegral equations. Instead of following this approach, we choose to use a novel method of

solving systems of integral equations, which was also implemented in Kyriakopoulou and

Xepapadeas (2013). More speci�cally, if we take logs on both sides of equations (14)-(15)

and do some transformations that are described in Appendix B, the FONC result in a

system of second kind Fredholm integral equations with symmetric kernels:


�

1� b� c

Z S

0

e��(r�s)
2

y(s)ds+
c(1� �)� bk
1� b� c

Z S

0

e��(r�s)
2

"(s)ds+ g1(r) = y(r) (19)


�

1� b� c

Z S

0

e��(r�s)
2

y(s)ds+
(1� b)(1� �)� bk

1� b� c

Z S

0

e��(r�s)
2

"(s)ds+ g2(r) = "(r);

(20)

where y(r) = lnL(r); "(r) = lnE(r) and g1(r); g2(r) are some known functions.

Proposition 1 Assume that: (i) the kernel k(r; s) de�ned on [0; S] � [0; S] is an L2-

kernel that generates the compact operator W; de�ned as (W�) (r) =
R S
0
k (r; s)� (s) ds;

0 � s � S; (ii) 1� b� c is not an eigenvalue of W ; and (iii) G is a square integrable

function. Then a unique solution determining the optimal and equilibrium distributions

of inputs and output exists.
6There are kernels in the right-hand side of equations 16-18 (see the de�nition of z(r); A(r); and �(r)

above).
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The proof of existence and uniqueness of both the optimum and the equilibrium is

presented in the following steps:7

� A function k (r; s) de�ned on [0; S]� [0; S] is an L2-kernel if it has the property thatR S
0

R S
0
jk (r; s)j2 drds <1:

The kernels of our model have the formulation e�� (r�s)
2
with � = �; � (positive

numbers) and are de�ned on [0; 10]� [0; 10] :

We need to prove that
R 10
0

R 10
0

���e�� (r�s)2���2 drds <1:
Rewriting the left part of inequality, we get

R 10
0

R 10
0

��� 1

e� (r�s)2

���2 drds:
The term 1

e� (r�s)2 takes its highest value when e
� (r�s)2 is very small. Yet the lowest

value of e� (r�s)
2
is obtained when either � = 0 or r = s and in that case e0 = 1: So,

0 <
��� 1

e� (r�s)2

��� < 1: When ��� 1

e� (r�s)2

��� = 1 and S = 10; then R 100 R 10
0

��� 1

e� (r�s)2

���2 drds =
100 <1: Thus, the kernels of our system are L2-kernels.

� If k (r; s) is an L2-kernel, the integral operator

(W�) (r) =

Z S

0

k (r; s)� (s) ds ; 0 � s � S

that it generates is bounded and

kWk �
�Z S

0

Z S

0

jk (r; s)j2 drds
� 1

2

:

So, in our model the upper bound of the norm of the operator generated by the

L2-kernel is kWk �
nR S

0

R S
0
jk (r; s)j2 drds

o 1
2
=

�R 10
0

R 10
0

��� 1

ei (r�s)2

���2 drds� 1
2

� 10:

� If k (r; s) is an L2-kernel and W is a bounded operator generated by k; then W is

a compact operator.

� If k (r; s) is an L2-kernel and generates a compact operator W; then the integral

equation

Y �
�

1
1�a�b�c

�
W Y = G (21)

7See Moiseiwitsch (2005) for more detailed de�nitions.

18



has a unique solution for all square integrable functions G if (1� b� c) is not an

eigenvalue of W (Moiseiwitsch [?]): If (1� b� c) is not an eigenvalue of W; then�
I � 1

1�b�cW
�
is invertible.

� As we show in Appendix C, both systems (6)-(7) and (19)-(20) can be transformed

into a second kind Fredholm Integral equation of the form (21). Thus, a unique

optimal and equilibrium distribution of inputs and output exists.�

To solve systems (6)-(7) and (19-20) numerically, we use a modi�ed Taylor-series

expansion method (Maleknejad et al., 2006). More precisely, a Taylor-series expansion

can be made for the solutions y(s) and "(s) in the integrals of systems (6)-(7) and (19-

20). We use the �rst two terms of the Taylor-series expansion (as an approximation for

y(s) and "(s)) and substitute them into the integrals of (6)-(7) and (19-20). After some

substitutions, we end up with a linear system of ordinary di¤erential equations. In order

to solve the linear system, we need an appropriate number of boundary conditions. We

construct them and then obtain a linear system of three algebraic equations that can

be solved numerically. The analytical solution of the optimal and equilibrium model is

provided in Appendices A and B.

3 Land Use Structures

Having studied the optimal and equilibrium problems, we are able to de�ne the di¤erent

land uses in each case. The region under study is strictly de�ned in the spatial domain

[0; S] and �rms and households cannot locate anywhere else. Thus, a spatial equilibrium

is reached when all �rms receive zero pro�ts, all households receive the same utility level

�u; land is allocated to its highest values, and rents and wages clear the land and labor

markets.

Consumers dislike pollution, which means that they have an incentive to locate far

from industrial areas. On the other hand, consumers work at the �rms and if they locate

far from them, they will su¤er higher commuting costs, which promotes the formation of
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mixed areas. The trade-o¤ between these two forces will de�ne the residential location

decisions.

Firms have a strong incentive to locate close to each other in order to bene�t from

the positive knowledge spillovers. However, if all �rms locate around a speci�c site,

this site will become very polluted, which will increase both the cost of environmental

policy and the negative productivity e¤ect. Thus, if all �rms decide to locate in one

spatial interval, then they will be obliged to pay a higher environmental tax and su¤er

from the negative pollution e¤ects. In other words, high pollution levels impede the

concentration of economic activity. The trade-o¤ between these forces will de�ne the size

of the industrial areas.

The conditions determining the land use at each spatial point are described in the

following steps:

1. Firms receive zero pro�ts.

2. Households receive the same level of utility U(c; l;X) = �u:

3. Land rents equilibrium: at each spatial point r 2 S;

R(r) = maxfRI(r); RH(r); 0g (22)

RI(r) = R(r) if �(r) > 0 and RI(r) > RH(r) (23)

RH(r) = R(r) if �(r) < 1 and RH(r) > RI(r): (24)

4. Commuting equilibrium: at each spatial point r 2 S;

w(r) = w(s)e�kjr�sj = max
s2S

[w(s)e�kjr�sj]: (25)

As people choose s to maximize their net wage, this means that in equilibrium

w(s)e�kjr�sj � w(r) � w(s)ekjr�sj (26)

This is the wage arbitrage condition that implies that no one can gain by changing his

job location.
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5. Labor market equilibrium: for every spatial point r 2 S;

Z S

0

(1� �(s))N(s)ds =
Z S

0

�(s)L(s)ds: (27)

6. Industries�and households�population constraints:

Z S

0

(1� �(s))N(s)ds = �N (28)

Z S

0

�(s)L(s)ds = �L; (29)

where �N is the total number of residents and �L the total number of workers.

7. Land use equilibrium: at each spatial point r 2 S;

0 � �(r) � 1 (30)

�(r) = 1 if r is a pure industrial area

�(r) = 0 if r is a pure residential area

0 < �(r) < 1 if r is a mixed area.

Equations (22)-(24) mean that each location is occupied by the agents who o¤er the

highest bid rent. Condition (25) implies that a worker living at r will choose her working

location s so as to maximize her net wage. Condition (27) ensures the equality of labor

supply and demand in the whole spatial domain. This condition will determine the

equilibrium wage rate at each spatial point, w�(r): Finally, conditions (28)-(29) mean

that the sum of residents in all residential areas is equal to the total number of residents

in the city and that aggregate labor in all industrial areas equals the total number of

workers in the city.
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4 Optimal Policies: Labor Subsidies and Environ-

mental Taxation

Using the optimal values for L�; E�; z�; A�; X�; N�; and ��; we can determine the wages

and the level of the tax that would make �rms and households in the equilibrium to

make the same decisions as in the optimum. Thus, we would be able to implement the

optimum as an equilibrium outcome.

From the �rst-order conditions for the optimum (for ��(r) = 1);

w(r) = pbe
z(r)X(r)�b�L(r)b�1E(r)c +

SZ
0

pe
z(s)X(s)�b�L(s)bE(s)c

@z(s)

@L(r)
ds

| {z }
knowledge spillover e¤ect

(31)

and

pce
z(r)X(r)�b�L(r)bE(r)c�1�

�
SZ
0|{z}
24pb�e
z(s)X(s)�b��1L(s)bE(s)c| {z }

labor productivity e¤ect

+ �X(s)��1

35 @X(s)

@E(r)
ds| {z }

spatial pollution e¤ect

= 0: (32)

If the environmental tax enforced by the government is a site-speci�c environmental

policy equal to the marginal damage of emissions, �(r) = MD�(r) = �X�(s)��1; then

the di¤erences between the optimum and the equilibrium are shown by the bold terms

above.

Let us analyze the �rst-order condition with respect to labor input. Firms here seem

to internalize the externality that is related to the knowledge spillover e¤ect taking into

account the positive e¤ect of their own decisions on the productivity of the rest of the

�rms, located in nearby areas. Since the di¤erence between the optimal and equilibrium

FOC comes from the knowledge spillover e¤ect in equation (31), the policy instrument

that would partly lead the equilibrium to reproduce the optimal distributions would be a

subsidy of the form v�(r) =
SR
0

pe
z(s)X(s)�b�L(s)bE(s)c
 @z(s)
@L(r)

ds: Thus, �rms would have

to pay a lower labor cost, w(r) � v�(r); employ more labor, bene�t from the stronger
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knowledge spillovers, and produce more output.

As far as the second FOC wrt emissions is concerned, given that �rms in equilibrium

pay a tax equal to the marginal damage, as stated above, the di¤erence between the

two cases is presented by the labor productivity e¤ect and the spatial pollution e¤ect in

equation (32). Thus, an optimal tax, instead of imposing �(r) = MD�(r) = �X�(s)��1;

should be of the form � �(r) =
SR
0

h
pb�e
z(s)X(s)�b��1L(s)bE(s)c + �(r)

i
@X(s)
@E(r)

ds: It is

obvious that the optimal taxation, � �(r); is higher than the equilibrium one, �(r); at each

spatial point in the internal of our city or region. The reason is that, �rst, the optimal

taxation takes into account the extra damage caused in the whole region by emissions

generated at r (spatial pollution e¤ect). However, apart from this e¤ect, the optimal

taxation captures the fact that increased emissions in r mean lower productivity for �rms

locating in r and in nearby areas (labor productivity e¤ect � spatial pollution e¤ect). This

negative productivity e¤ect is now added to the cost of taxation, and the full damage

caused by the generation of emissions during the production process is internalized.

Theorem 2 A labor subsidy of the form

v�(r)=

SZ
0

pe
z(s)X(s)�b�L(s)bE(s)c

@z(s)

@L(r)
ds

and an environmental tax of the form

� �(r) =

SZ
0

h
pb�e
z(s)X(s)�b��1L(s)bE(s)c + �X(s)��1

i @X(s)
@E(r)

ds

will implement the optimal distributions as equilibrium ones.

Proof. In equilibrium, �rms will maximize their pro�ts, households will minimize their

expenditures given a reservation utility, land is allocated to its highest value, the wage no

arbitrage condition is satis�ed, and all workers are housed in the internal of our region.

Since all the above are in line with the optimal problem as well, the only thing we need to

do in order to impose the optimal allocation as an equilibrium one is to use the optimal

policy instrument described in Theorem 2. Thus, the joint enforcement of a labor subsidy,
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which will decrease the labor cost for the �rms, and a higher environmental tax will close

the gap between the equilibrium and optimal allocations.

Proposition 3 E¢ ciency in a market economy can be achieved by using the site-speci�c

policy instruments described in Theorem 2. Uniform taxes or subsidies, which produce

the same revenues or expenses, do not lead to optimal allocations.

Proof. An industry, paying � �(r) for generating E�(r) emissions, receiving v�(r) for

employing L�(r) workers and paying w(r) wages for the same number of workers andR�I(r)

as land rents, will receive zero pro�ts in equilibrium. Having proved the uniqueness of the

equilibrium, any other level of taxes or subsidies will not satisfy the zero pro�t condition

for the same amount of emissions and labor, and will not constitute an equilibrium

outcome.

Site-speci�c taxes should be enforced in every industrial location and must equal the

added damages caused by the emissions generated from this unit of land. Site-speci�c

subsidies should be given in every industrial location and must equal the positive e¤ects

caused by the di¤usion of knowledge coming from this industrial location and a¤ecting

the rest of the industries.

5 Numerical Experiments

Numerical simulations will help us obtain di¤erent maps explaining the residential and the

industrial clusters formed in our city. To put it di¤erently, the optimal and equilibrium

spatial distributions of residential and industrial land rents will determine the location of

�rms and households in our domain. The numerical method of Taylor-series expansion,

described above, will give us the optimal and equilibrium values of land rents. We solve

the system of integral equations using Mathematica.

The numerical algorithm to characterize the optimal and equilibrium land use patterns

consists of the following steps:

Step 1. We give numerical values to the parameters of the model.
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Step 2. We solve for the optimal (and equilibrium) distributions L�; E�; q�; N�; c�; z�; X�

(L̂; Ê; q̂; N̂ ; ĉ; ẑ; X̂) at every spatial point as a function of �:

Step 3. We derive the optimal (and equilibrium) distributions of residential and

industrial land rents R�I ; R
�
H (R̂I ; R̂H) and plot them in graphs so as to characterize the

areas as residential, industrial, or mixed. Then, we determine the � value (see below).

Step 4. We calculate the total number of residents and workers in the region. The

aim is to have equal numbers of residents and workers, which will satisfy the condition

that all workers should be housed inside the region.

Step 5. If the number of residents does not equal the number of workers, then the

level of the wage changes and we start solving the problem again (back to Step 2). We

follow this process until we obtain equal numbers of residents and workers. An iterative

approach is used since a change in the wage level will also change the demand for the

second input (emissions), which in turn will a¤ect the aggregate pollution. However,

aggregate levels of pollution change the level of environmental tax and a¤ect both the

productivity of labor and the residential location decisions.

Step 6. The � value for each spatial point is �nally determined. If an interval is purely

residential or industrial, which means that one of the land rents is always higher than

the other, then � is either 0 or 1; respectively. When land rents are equal in a speci�c

interval, we calculate a value of 0 < � < 1 such that the numbers of residents and workers

are equal.

The ex-post calculation of � allows the explicit endogenous solution of the externalities

of the model, and we consider this to be an advantage of this approach over previous

solutions where the spatial kernels were arbitrarily chosen.

The results of this numerical algorithm are presented below. Figure 1 shows the

optimal distributions of labor, emissions, output, and land rents, assuming the following

values for the parameters: � = 2; � = 0:5; � = 0:01 and k = 0:001:8 The distribution

of workers, emissions, and output is higher around two spatial points (r = 1:6; 8:4):

This happens because at the optimum all the externality e¤ects are internalized by the

8For a discussion on these parameter values, see Kyriakopoulou and Xepapadeas (2013) and Lucas
and Rossi-Hansberg (2002).
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regulator. Thus, high levels of pollution that come from the production process increase

the per unit damage of emissions at polluted sites, as well as the negative e¤ect on the

productivity of labor. This prevents industrial concentration around one spatial point, as

it is predicted by models considering only the positive spillover e¤ects. In other words,

the �rst reason industrial activity at the optimum concentrates around two spatial points

is that it captures bene�ts from the positive knowledge spillovers, which are higher in

areas with high employment density. The second one is that by avoiding creating highly

polluted areas, it keeps the productivity loss associated with aggregate pollution at a

lower level.

Studying households�location decisions, we can observe in the last part of Figure 1

(d) that residents are willing to pay higher land rents in less polluted areas, i.e., in the

center of our region and close to the two boundaries. It is also very obvious that in the

spatial intervals preferred by the industries, the residential land rents are very low. Note

that the gap between the levels of the two land rents is represented by the black areas.

As a result, we could argue that the optimal land use structure includes two industrial

areas and three residential areas in between.

At this point it is of great interest to study the market allocations using the same pa-

rameter values. In Figure 2, we can see the same plots, i.e., labor, emissions, output, and

land rents distribution. Without the assumption of pollution di¤usion, which implies the

enforcement of environmental policy, �rms would concentrate around a central location in

order to bene�t from positive knowledge spillovers (see Kyriakopoulou and Xepapadeas,

2013). However, the trade-o¤ between these spillovers and the ones associated with the

environmental externalities make �rms move further from the central area, which results

in higher distributions of labor, emissions, and output close to the boundaries. The op-

posite is true for households, who prefer to locate in the rest of the region in order to

avoid the polluted industrial sites. The comparison between residential and industrial

land rents, under the condition that all agents should work and be housed in the region

under study, leads to a mixed area at the city center, surrounded by two residential areas,

which are followed by two industrial areas close to the boundaries. There are two peaks
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(a). Labor (b). Emissions

(c). Output (d). Land Rents

Figure 1: Optimal Densities
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(a). Labor (b). Emissions

(c). Output (d). Land rents

Figure 2: Equilibrium Densities

in the residential areas, which can be explained as follows: In these areas workers are

willing to pay higher land rents to avoid the high commuting costs that would result from

locating further away, yet as we move close to the boundary, i.e., to industrial areas, the

pollution discourages workers from paying high land rents. In the mixed areas we also

need to specify the � value so as to have the same number of residents and workers. In

this numerical example, � = 0:35; i.e., the 35% of the interval where agents and indus-

tries coexist is covered by the industrial sector and the remaining 65% by the residential

sector.

The most apparent di¤erence between the optimal and the equilibrium land use pat-

terns is that, while mixed areas can emerge as an equilibrium outcome, a similar emer-

gence of mixed areas at the optimum does not seem possible within our parameter range.

This result is in line with previous literature studying optimal city patterns, such as Rossi-
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Hansberg (2004), who proves that the optimal land use structure has no mixed areas.

What we can also observe is the fact that industries operate in a much smaller interval

covering 25% of the region in this numerical example, while in the market outcome �rms

operate in 40% of the given area. The full endogenization of the external e¤ects at the

optimum impedes �rms from locating in central areas, which would be the �expected�

result and seems to be the case in the market allocation. Contrary to this, the optimal

solution seems to be a concentration of �rms in small, spatial intervals, creating pure in-

dustrial clusters and hence restricting the di¤usion of pollution across the region, which

will reduce the damage to the residential areas. Some comparative analysis will help us

understand which allocation is the most e¢ cient in terms of the amount of generated

emissions per unit of output calculated in the whole region. In the numerical experiment

presented above, the optimal emissions per output equal 0:99 while the equilibrium rate

is 1:36: Implementing the optimal policy instruments and deriving the optimum as an

equilibrium outcome will signi�cantly improve the generated emissions per unit of output

by decreasing this rate by 27%:

6 Conclusion

This paper studies the optimal and market allocations in a spatial economy with pollu-

tion coming from stationary sources. It contributes to the literature by combining the

assumption of pollution di¤usion with two other forces that have been proven to signi�-

cantly a¤ect the spatial patterns: commuting costs and externalities in productions. The

second di¤erence compared with previous literature lies in the use of a novel approach

of solving spatial models, which allows the full endogenization of the assumed external

e¤ects, i.e., the pollution and production externalities.

In order to model the above agglomeration and dispersion forces, we use a linear

region where households and �rms are free to choose where to locate. Firms produce

by using land, labor, and emissions, enjoy positive knowledge spillovers, and pay an

extra cost in the form of environmental taxation. Households work in the industrial
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sector, commute to work, consume the produced good and housing services, and derive

negative utility from pollution. The optimal and the equilibrium spatial patterns are

derived when considering the trade-o¤ between the externalities in production, workers�

commuting cost, and the consequences of aggregate pollution in terms of environmental

policy and pollution damages.

A very general conclusion that comes from the incorporation of environmental issues

in a general equilibrium model of land use is that the monocentric city result does not

exist anymore. We show that �rms have an incentive to create clusters in more than one

location so as not to increase the cost of environmental policy even further by making

a site very polluted. Also workers�incentive to locate close to �rms to avoid high com-

muting costs has now changed, since pollution works to encourage them to locate in pure

residential areas.

However, the most important result is that under the existence of pollution and pro-

duction externalities, the optimal and equilibrium land uses di¤er a lot. This model

allows us to identify the di¤erent allocations and suggest spatial policies that will close

the gap between e¢ cient and equilibrium outcomes. More speci�cally, we show that the

joint implementation of a site-speci�c labor subsidy and a site-speci�c environmental tax

can reproduce the optimum as an equilibrium outcome.

The numerical approach employed in this paper can be used to investigate further

the role of pollution in spatial models of land use and provide insights on optimal spatial

policies. The idea of two kinds of industries � polluting and a non-polluting ones �

could be studied using the numerical tools presented here. Another possible extension

of this model is to assume that pollution comes from non-stationary sources, like the

transport sector, which is actually the case in modern cities. We leave these issues for

future research.
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Appendix A

We use the modi�ed Taylor-series expansion method in order to solve a system of

second kind Fredholm integral equation with symmetric kernels, and derive the optimal

land use patterns.

The FONC for the optimum are given by (4) and (5).

The FONC with respect to L(r) is:

pbe
z(r)X(r)�b�L(r)b�1E(r)c +

SZ
0

pe
z(s)X(s)�b�L(s)bE(s)c

@z(s)

@L(r)
ds = w(r);

where z(r) = �

SZ
0

e��(r�s)
2
�(s) ln(L(s))ds

For di¤erent values of r; s the integral can be written as:9

9At this step, we assume that �(s) = 1 for all s 2 S:
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� flnL(0)+e��(0�r)2 lnL(r)+e��(0�S)2 lnL(S) jr=0 +:::::+e��(r�0)
2
lnL(0)+lnL(r)+

e��(r�S)
2
lnL(S) jr=r +:::::+

+e��(S�0)
2
lnL(0) + e��(S�r)

2
lnL(r) + lnL(S) jr=Sg

So, �z(s)
�L(r)

= � 1

L(r)
[e��(0�r)

2
+ :::+ 1 + :::+ e��(S�r)

2
] = � 1

L(r)

SZ
0

e��(r�s)
2
ds:

For the numerical analysis, we approximate the value of the integral that expresses

the aggregate impact on all sites from a change in site r, by valuing the aggregate impact

with the marginal valuation at site r: Then the FONC wrt L(r) becomes:

bpe
z(r)X(r)�b�L(r)b�1E(r)c + pe
z(r)X(r)�b�L(r)bE(r)c
�
1

L(r)

SZ
0

e��(r�s)
2

ds = w

so

pe
z(r)X(r)�b�L(r)b�1E(r)c(b+ 
�

SZ
0

e��(r�s)
2

ds) = w:

Taking logs,

ln p+ 
�

SZ
0

e��(r�s)
2

ln(L(s))ds� b�
Z S

0

e��(r�s)
2

ln(E(s)) ds+ (b� 1) lnL(r) + c lnE(r)

+ ln(b+ 
�

SZ
0

e��(r�s)
2

ds) = lnw:

Next, we di¤erentiate with respect to E(r):

pce
z(r)X(r)�b�L(r)bE(r)c�1�
SZ
0

�
pb�e
z(s)X(s)�b��1L(s)bE(s)c � �X(s)��1

� @X(s)
@E(r)

ds = 0:
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Aggregate pollution, X(r), is described by: lnX(r) =
R S
0
e��(r�s)

2
ln(E(s)) ds or

elnX(r) = e
R S
0 e

��(r�s)2 ln(E(s)) ds or

X(r) = e

SR
0

h
e��(r�s)

2
lnE(s)

i
ds
:

For di¤erent values of r; s the exponential term can be written as:

e[lnE(0)+e
��(0�r)2 lnE(r)+e��(S)

2
lnE(S)] pr=0 +:::::: + e[e

��(r)2 lnE(0)+lnE(r)+e��(r�S)
2
lnE(S)] pr=r

+::::::+

+e[e
��(S)2 lnE(0)+e��(S�r)

2
lnE(r)+lnE(S)] pr=S :

So, di¤erentiating this expression wrt E(r), we have:

�X(s)
�E(r)

=
�
e��(0�r)

2

E(r)
+ ::::+ 1

E(r)
+ ::::+ e��(S�r)

2

E(r)

�
e

SR
0

h
e��(r�s)

2
lnE(s)

i
ds
=

1
E(r)

e

SR
0

h
e��(r�s)

2
lnE(s)

i
ds �
e��(0�r)

2
+ ::::+ 1 + ::::+ e��(S�r)

2
�
=

1
E(r)

e

SR
0

h
e��(r�s)

2
lnE(s)

i
ds SR

0

e��(s�r)
2
ds:

For the numerical analysis, we approximate the value of the integral that expresses

the aggregate impact on all sites from a change in site r by valuing the aggregate impact

with the marginal valuation at site r: Then the FONC wrt E(r) becomes:

cp e
z(r)X(r)�b�L(r)bE(r)c�1�bkpe
z(r)X(r)�b��1L(r)bE(r)c 1

E(r)
e

SR
0

h
e��(r�s)

2
lnE(s)

i
ds
SZ
0

e��(s�r)
2

ds

��X(r)��1 1

E(r)
e

SR
0

h
e��(r�s)

2
lnE(s)

i
ds
SZ
0

e��(s�r)
2

ds = 0)

p e
z(r)X(r)�b�L(r)bE(r)c�1

0@c� b� SZ
0

e��(s�r)
2

ds

1A = �X(r)�
1

E(r)

SZ
0

e��(s�r)
2

ds:

Taking logs,

ln p+
�

SZ
0

e��(r�s)
2
ln(L(s))ds�b�

R S
0
e��(r�s)

2
ln(E(s)) ds+b lnL(r)+(c�1) lnE(r) =
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ln�+�
R S
0
e��(r�s)

2
ln(E(s)) ds�lnE(r)+ln

�
SR
0

e��(s�r)
2
ds

�
�ln

�
c� b�

SR
0

e��(s�r)
2
ds

�
)

ln p+ 
�

SZ
0

e��(r�s)
2
ln(L(s))ds+ b lnL(r) + c lnE(r) =

ln�+ (�+ b�)
SR
0

h
e��(r�s)

2
lnE(s)

i
ds+ ln

�
SR
0

e��(s�r)
2
ds

�
� ln

�
c� b�

SR
0

e��(s�r)
2
ds

�
:

So, the �rst-order conditions are:

ln p+ 
�

SZ
0

e��(r�s)
2

ln(L(s))ds� b�
Z S

0

e��(r�s)
2

ln(E(s)) ds+ (b� 1) lnL(r) + c lnE(r)

+ ln(b+ 
�

SZ
0

e��(r�s)
2

ds) = lnw

and

ln p+ 
�

SZ
0

e��(r�s)
2

ln(L(s))ds+ b lnL(r) + c lnE(r)

= ln�+ (�+ b�)

SZ
0

h
e��(r�s)

2

lnE(s)
i
ds+ ln

0@ SZ
0

e��(s�r)
2

ds

1A� ln
0@c� b� SZ

0

e��(s�r)
2

ds

1A :

Setting lnL = y and lnE = "; we obtain the following system:


�

SZ
0

e��(r�s)
2

y(s)ds�b�
Z S

0

e��(r�s)
2

"(s) ds+(b�1)y(r)+c"(r) = lnw�ln p�ln(b+
�
SZ
0

e��(r�s)
2

ds)


�

SZ
0

e��(r�s)
2

y(s)ds+ by(r) + c"(r)� (�+ b�)
Z S

0

e��(r�s)
2

"(s) ds

= ln�� ln p+ ln

0@ SZ
0

e��(s�r)
2

ds

1A� ln
0@c� b� SZ

0

e��(s�r)
2

ds

1A :
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We need to do the following transformation in order to obtain a system of second kind

Fredholm integral equations with symmetric kernels:

B

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

0B@ 
� �b�


� ��� b�

1CA
0BBBBBBB@

SZ
0

e

��(r�s)2

y(s)ds

SZ
0

e

��(r�s)2

"(s)ds

1CCCCCCCA
+

0BBBBBBBB@
ln

0B@b+ 
� SZ
0

e

��(r�s)2

ds

1CA+ ln p� lnw
ln p� ln�� ln

0B@ SZ
0

e

��(s�r)2

ds

1CA+ ln
0B@c� b� SZ

0

e

��(s�r)2

ds

1CA

1CCCCCCCCA
=

0BBB@ 1� b �c

�b �c| {z }

1CCCA
0B@y(r)
"(r)

1CA
| {z }

A Z

B = AZ

A�1B = Z;

where A�1 =

0B@ 1 �1

� b
c
�1�b

c

1CA
0B@ 1 �1

� b
c
�1�b

c

1CA
8>><>>:
0B@ 
� �b�


� ��� b�

1CA
0BB@
Z S

0

e��(r�s)
2
y(s)dsZ S

0

e��(r�s)
2
"(s)ds

1CCA+
0BBBB@

ln (b+ 
�

SZ
0

e��(r�s)
2
ds)+ ln p� lnw

ln p� ln�� ln
�
SR
0

e��(s�r)
2
ds

�
+ ln

�
c� b�

SR
0

e��(s�r)
2
ds

�
1CCCCA
9>>>>=>>>>; =

0B@ y(r)

"(r)

1CA)

0B@ 0 �

�
�
c

(1�b)�+b�
c

1CA
0BB@
Z S

0

e��(r�s)
2
y(s)dsZ S

0

e��(r�s)
2
"(s)ds

1CCA +
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0BBBBBBBBBBBBBBBBBBBBBBBBB@

ln (b+ 
�

SZ
0

e

��(r�s)2

ds)+ ln p� lnw� ln p+ ln�+ ln (
SZ
0

e��(s�r)
2

ds)�

� ln (c� b�
SZ
0

e

��(s�r)2

ds)

� b
c

264ln (b+ 
� SZ
0

e

��(r�s)2

ds)+ ln p� lnw

375�
�1�b

c

264ln p� ln�� ln ( SZ
0

e��(s�r)
2

ds)+ ln (c� b�
SZ
0

e

��(s�r)2

ds)

375

1CCCCCCCCCCCCCCCCCCCCCCCCCA

=

0B@ y(r)

"(r)

1CA
So, the system of second kind Fredholm integral equations is:

�

Z S

0

e��(r�s)
2

"(s)ds+ g�1(r) = y(r) (A1)

�
�
c

Z S

0

e��(r�s)
2

y(s)ds+
(1� b)�+ b�

c

Z S

0

e��(r�s)
2

"(s)ds+ g�3(r) = "(r); (A2)

where

g�1(r) = ln (b+ 
�

SZ
0

e��(r�s)
2

ds)+ ln p� lnw� ln p+ ln�+ ln

0@ SZ
0

e��(s�r)
2

ds

1A(A3)
� ln

0@c� b� SZ
0

e��(s�r)
2

ds

1A
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g�2(r) = �b
c

24ln (b+ 
� SZ
0

e��(r�s)
2

ds)+ ln p� lnw

35� (A4)

�1� b
c

24ln p� ln�� ln
0@ SZ

0

e��(s�r)
2

ds

1A+ ln
0@c� b� SZ

0

e��(s�r)
2

ds

1A35 :

We use a modi�ed Taylor-series expansion method for solving Fredholm integral equa-

tions systems of second kind (Maleknejad et al., 2006).10 So, a Taylor-series expansion

can be made for the solutions y(s) and "(s) :

y(s) = y(r) + y0(r)(s� r) + 1
2
y00(r)(s� r)2

"(s) = "(r) + "0(r)(s� r) + 1
2
"00(r)(s� r)2:

Substituting them into (1), (2), and (3):

�

Z S

0

e��(r�s)
2f"(r) + "0(r)(s� r) + 1

2
"00(r)(s� r)2g ds+ g�1(r) = y(r)

�
�
c

Z S

0

e��(r�s)
2 fy(r) + y0(r)(s� r) + 1

2
y00(r)(s� r)2g ds+

(1� b)�+ b�
c

Z S

0

e��(r�s)
2f"(r) + "0(r)(s� r) + 1

2
"00(r)(s� r)2g ds+ g�2(r) = "(r):

Rewriting the equations, we have:

y(r)�
�
�

Z S

0

e��(r�s)
2

ds

�
"(r)� (A5)

10K. Maleknejad, N. Aghazadeh, and M. Rabbani, Numerical solution of second kind Fredholm integral
equations system by using a Taylor-series expansion method, Appl. Math. Comput. 175, 1229-1234
(2006).
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�
�

Z S

0

e��(r�s)
2

(s� r)ds
�
"0(r)�

�
1

2
�

Z S

0

e��(r�s)
2

(s� r)2ds
�
"00(r) = g�1(r)

�

�

c

Z S

0

e��(r�s)
2

ds

�
y(r) +

�

�

c

Z S

0

e��(r�s)
2

(s� r)ds
�
y0(r)+

�
1

2


�

c

Z S

0

e��(r�s)
2

(s� r)2ds
�
y00(r) +

�
1� (1� b)�+ b�

c

Z S

0

e��(r�s)
2

ds

�
"(r)�

(A6)

�
(1� b)�+ b�

c

Z S

0

e��(r�s)
2

(s� r)ds
�
"0(r)�

�
1

2

(1� b)�+ b�
c

Z S

0

e��(r�s)
2

(s� r)2ds
�
"00(r) = g�2(r):

If the integrals in equations (3)-(4) can be solved analytically, then the bracketed quan-

tities are functions of r alone. So (3)-(4) become a linear system of ordinary di¤erential

equations that can be solved if we use an appropriate number of boundary conditions.

To construct boundary conditions, we di¤erentiate (1), (2):

y0(r) = �

Z S

0

�2� (r � s) e��(r�s)2 "(s) ds+ g�
0

1 (r) (A7)

y00(r) = �

Z S

0

�
�2� + 4�2 (r � s)2

�
e��(r�s)

2

"(s) ds+ g�
00

1 (r) (A8)

"0(r) = �
�
c

Z S

0

�2� (r � s) e��(r�s)2 y(s) ds+ (A9)

(1� b)�+ b�
c

Z S

0

�2� (r � s) e��(r�s)2 "(s) ds+ g�
0

3 (r)
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"00(r) = �
�
c

Z S

0

�
�2� + 4�2 (r � s)2

�
e��(r�s)

2

y(s) ds+ (A10)

(1� b)�+ b�
c

Z S

0

�
�2� + 4�2 (r � s)2

�
e��(r�s)

2

"(s) ds+ g�
00

3 (r):

We substitute y(r); "(r) for y(s); "(s) in equations (5)-(8):

y0(r) =

�
�

Z S

0

�2� (r � s) e��(r�s)2 ds
�
"(r) + g�

0

1 (r) (A11)

y00(r) =

�
�

Z S

0

�
�2� + 4�2 (r � s)2

�
e��(r�s)

2

ds

�
"(r) + g�

00

1 (r) (A12)

"0(r) =

�
�
�
c

Z S

0

�2� (r � s) e��(r�s)2 ds
�
y(r)+ (A13)

�
(1� b)�+ b�

c

Z S

0

�2� (r � s) e��(r�s)2 ds
�
"(r) + g�

0

3 (r)

"00(r) =

�
�
�
c

Z S

0

�
�2� + 4�2 (r � s)2

�
e��(r�s)

2

ds

�
y(r)+ (A14)

�
(1� b)�+ b�

c

Z S

0

�
�2� + 4�2 (r � s)2

�
e��(r�s)

2

ds

�
"(r) + g�

00

3 (r):

From equations (A11)-(A14), y0(r); y00(r); "0(r); "00(r) are functions of y(r); "(r);

g�
0

1 (r); g
�00
1 (r); g

�0
3 (r); g

�00
3 (r): Substituting them into (A5) and (A6), we have a linear

system of two algebraic equations that can be solved using Mathematica.

Appendix B
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The same method of modi�ed Taylor-series expansion was used in order to solve for

the market allocations. We take the logs of the system (14) and (15) and follow the same

process as the one described in Appendix A.

Appendix C

Transformation of the system of equations (6)-(7) to a single Fredholm equation of

2nd kind (Polyanin and Manzhirov, 1998).

We de�ne the functions Y (r) and G(r) on [0; 2S], where Y (r) = yi(r � (i � 1)S)

and G(r) = gi(r � (i � 1)S) for (i � 1)S � r � iS:11 Next, we de�ne the kernel �(r; �r)

on the square [0; 2S] � [0; 2S] as follows: �(r; �s) = kij(r � (i � 1)S; �r � (j � 1)S) for

(i� 1)S � r � iS and (j � 1)S � �r � jS:

So, the system of equations(6)-(7) can be rewritten as the single Fredholm equation

Y (r)� 1
1�b�c

R 2S
0
�(r; s) Y (s) ds = G(r), where 0 � r � 2S:

If the kernel kij(r; s) is square integrable on the square [0; S] � [0; S] and gi(r) are

square integrable functions on [0; S], then the kernel �(r; s) is square integrable on the

new square: [0; 2S]� [0; 2S] and G(r) is square integrable on [0; 2S]: Functions gi(r); as

described in Appendix A by equations (A3)-(A4) are square integrable.

11We assume that y1 = y and y2 = "; so as to follow the notation of our model.
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