

Chalmers University of Technology
Department of Applied Information Technology,

Göteborg, Sweden, 2012

Report nr: 2013:006

ISSN: 1651-4769

Experience database
Pre-study and development at QRTECH AB

Master of Science Thesis

ANDREAS OHLDIN

MARCUS WELDEBORN NORLANDER

Experience database

Pre-study and development at QRTECH AB

By

ANDREAS H. OHLDIN

MARCUS G.E. WELDEBORN NORLANDER

© ANDREAS OHLDIN, July 2012.

© MARCUS WELDEBORN, July 2012.

Performed at: QRTECH AB

Mejerigatan 1, 412 76 Göteborg

Examiner:
Claes Strannegård

claes.strannegard@chalmers.se

Academic supervisor:
Claes Strannegård

claes.strannegard@chalmers.se

QRTECH supervisor:
Olof Bergquist

Mejerigatan 1, 41276 Göteborg

olof.bergquist@qrtech.se

Chalmers University of Technology

University of Gothenburg
Department of Applied Information Technology,

SE-412 96 Göteborg

Telephone + 46 (0)31-772 1000

Department of Applied Information Technology,

Göteborg, Sweden July 2012

Cover: Illustrates individuals exchanging experiences and how these experiences can be

stored into a database.

Abstract

In today’s enterprises, information is exchanged faster than
ever before. Companies can gain a competitive advantage by
implementing new IT tools, making their organization more ef-
ficient.

This thesis focus on developing a tool to facilitate the ex-
change of experiences inside the enterprise QRTECH AB situ-
ated in Göteborg, Sweden. The company found no solution on
today’s market and decided to develop a new instrument ad-
justed to their needs.

In this thesis an experience is defined as a knowledge a spe-
cific person has obtained during a certain period of time. An
experience can be described using words, which in this thesis
are called tags, in order to give experiences a context. This cre-
ates opportunities which are difficult to obtain when utilizing a
traditional approach of categorizing.

The application consists of a MySQL database and a web
site. PHP was used to enable the communication between the
database and web site. The necessary languages used for the web
site are XHTML and JavaScript. By utilizing the library JQuery
and method AJAX the development process was facilitated.

The web site has the ability to search for experiences and
projects in order for employees to find colleagues possessing
knowledge requested. Employees can create a personal account
to be able to add experiences and projects into the database. An
administrator account has been implemented in order to enable
the possibility to prepare the database with information since it
is empty at the beginning.

By evaluating the performance of the web site, using two
developed scripts, several improvements were implemented on
the database queries.

Currently, the established functionalities create the founda-
tion on which future features can be implemented. The objective
for future works should be to continue improving the perfor-
mance, functionality and layout and to review issues regarding
security. However, the first issue to address is to solve the prob-
lems associated with Internet Explorer 8.0 since it is QRTECH’s
default browser.

Preface

This thesis was performed during the spring/summer in year 2012 by
Andreas Ohldin and Marcus Weldeborn in collaboration with QRTECH
AB and the Department of Applied Information Technology at Chalmers
University of Technology. The objective was to develop an experience
database for QRTECH AB in order to enable employees to internally locate
knowledge.

We are two students, who have studied three years at the Automa-
tion and Mechatronics institution followed by two years at the Intelligent
System Design Master program at Chalmers University of Technology. The
years at Chalmers have given us wider knowledge in electronics, mechanics,
mathematics and programming. It is mainly the knowledge in mathematics
and programming which has proven to be useful in the project. In this
thesis MySQL along with the software MySQL Workbench was utilized
to build the database meanwhile the XHTML, JavaScript and PHP code
was written in Adobe Dreamweaver which facilitated the web interface
development.

This section is dedicated to the people who, during the project, have
devoted their time to help and guide us:

QRTECH AB
Olof Bergqvist, our supervisor, for his creative ideas, guidance and commit-
ment.
Fredrik Hansson, for his creative ideas and expertise.
Roger Hendelberg, Lars-Åke Johansson, Tomas Olsson, Peter Buch and
Joakim Bergman for their feedback and discussions during this thesis.

Chalmers University of Technology
Claes Stranneg̊ard, for the help with thesis administration.
Jonas Almström Dureg̊ard, for giving us feedback on the database structure
even though he was not obliged to.

Göteborg, Sweden,

Keywords: MySQL, PHP, HTML, JavaScript, Database, Web interface

Contents

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 1
1.3 Delimitations . 1
1.4 Thesis description . 2

2 Theory 4
2.1 Databases . 4

2.1.1 Tables and Relations 4
2.1.2 Views . 5
2.1.3 DBMS . 5
2.1.4 ER-Diagram . 6
2.1.5 Functional dependencies 7

2.2 Web development . 8
2.2.1 Markup languages . 8
2.2.2 Scripts . 9
2.2.3 Method: AJAX . 12

3 Methodology 15
3.1 Planning . 15
3.2 Functionality and Design . 15
3.3 Implementation and Verification 16

4 Analysis of database structure 17
4.1 Choice of DBMS . 17
4.2 Ideas . 17

4.2.1 Experience tree . 17
4.2.2 Experiences and tags 18

4.3 Choice of database structure 20
4.4 Database design . 20

4.4.1 ER-Diagram . 20

5 Web site implementation 24
5.1 Choice of server script language 24
5.2 Overview . 24

5.2.1 Structure . 24
5.2.2 Database queries . 24

5.3 In-depth description . 25
5.3.1 Navigation . 25
5.3.2 Search . 25
5.3.3 Profile . 30
5.3.4 Administration . 34

6 Performance evaluation 36
6.1 Collecting data . 36

6.1.1 Query time logging . 36
6.1.2 Usage logging . 36

6.2 Average query time test . 37
6.2.1 Outcome . 39
6.2.2 Improvements . 40

7 Results 42

8 Discussion 43

9 Conclusions 44

10 Future development 45

11 References 48

Appendix A: Functional Dependencies I

Appendix B: ER-diagram overview IV

Appendix C: Performance evaluation results V
C.1 Before improvements . V
C.2 After improvements . VIII
C.3 Query - calculating the average query time IX

Appendix D: Gantt chart X

Abbreviations

Abbreviation Name

ASP Active Server Pages

AJAX Asynchronous JavaScript and XML

CSS Cascading Style Sheets

DBMS Database Management System

DOM Document Object Model

DTD Document Type Definition

ER-diagram Entity Relationship-diagram

FD Functional Dependency

HTML Hypertext Markup Language

MIT Massachusetts Institute of Technology

PHP PHP: Hypertext Preprocessor

SQL Structured Query Language

SVN Subversion

UI User Interface

W3C World Wide Web Consortium

XHTML Extensible Hypertext Markup Language

XML Extensible Markup Language

Commonly used abbreviations

List of Figures

1 ER-diagram fundamentals . 6
2 Code example: JavaScript . 10
3 Code example: JavaScript including JQuery 10
4 PHP communication overview 11
5 Code example: PHP-script read by server 12
6 Code example: PHP-script sent from server 12
7 Traditional web applications model vs Ajax model 13
8 Synchronous and asynchronous communication 14
9 Box-diagram showing the working process 15
10 The structure of Experience tree idea 17
11 The structure of Experience and tags idea 19
12 ER-diagram showing the most vital relations 20
13 ER-diagram: has learned . 21
14 ER-diagram: Experience . 22
15 ER-diagram: ex has tags . 22
16 ER-diagram: learned in . 23
17 ER-diagram: Project . 23
18 Overview over index.php structure 24
19 Overview over PHPQuery.php communication 25
20 Web interface: Project search 26
21 Web interface: Navigation buttons 26
22 Web interface: Experience search 27
23 Web interface: Profile view 28
24 Web interface: Flowchart illustrating search algorithm 29
25 Web interface: Project search (hidden column) 29
26 Web interface: Project dialogue 30
27 Web interface: Update project 30
28 Web interface: Create user dialogue 31
29 Web interface: List experiences 32
30 Web interface: Update experience 33
31 Web interface: Administrator view 34
32 Performance test with 50 experiences/employee 38
33 Performance test with 100 experiences/employee 39
34 Performance test with 200 experiences/employee 39
35 Performance test after optimizations 40
36 The entire ER-diagram . IV
37 MySQL query: average query time calculation IX
38 Gantt chart . X

List of Tables

1 Example of a relation containing Movies 4
2 Example of a relation containing Moviestars 5
3 Example of a relation containing StarsIn 5
4 Bad design of a database table 7
5 Example on the relation has learned 21
6 Example on the relation ex has tags 22
7 Example on the relation learned in 23
8 Example rows from Query time log 36
9 Example rows from Usage log 37
10 Four longest query times . 40
11 Web site functionalities . 42
12 Entire performance test results with 50 experiences V
13 Entire performance test results with 100 experiences VI
14 Entire performance test results with 200 experiences VII
15 Entire results after optimizations with 200 experiences VIII

1 INTRODUCTION 1

1 Introduction

Companies wants to improve their efficiency. A common approach is to
provide a good customer service and utilize the resources, for instance the
employees, in a more beneficial way. A good communication within the
company tends to be a vital part in order to have a high efficiency. A
software solution for registering and handling experiences has been requested
by the employees at QRTECH. This thesis will describe a software solution
for registering and searching for experiences.

1.1 Background

QRTECH is a consulting firm with approximately 80 employees and is con-
stantly growing. It is contracted by companies to develop products and is
mainly situated in Göteborg. QRTECH’s business plan is to lease employees
to other companies, which basically makes knowledge the commercial prod-
uct. The idea to develop a software tool emerged at an internal conference
since employees at QRTECH had problems finding colleagues with the right
expertise. It would be beneficial if technicians could search among colleagues
in order to receive help and expertise. Similarly, the sales organization could
use the tool as customers calls to locate employees with the qualifications
needed. This simplifies the process of assigning the right person to the right
post and makes the enterprise QRTECH more efficient.
The experience database development is made at QRTECH where no pre-
vious work has been performed in this area.

1.2 Purpose

Employees at QRTECH occasionally find it hard to locate colleagues with a
certain experience. The company has been evaluating several existing soft-
ware solutions on the market but none has been satisfactory. The decision
to develop an own customized tool was made. The aim with the software is
to find knowledge within QRTECH and thereby utilize the already existing
resources more efficiently.

1.3 Delimitations

The time frame for this Master thesis is 20 weeks, ending approximately at
the 10th of July 2012. The short time frame is essentially the main reason
why limitations must be made:

• Security - No encryption or protection against advanced SQL injections

• Design - A basic layout will be implemented

1 INTRODUCTION 2

• Browser compatibility - Focus on establishing support for the follow-
ing four browsers Internet Explorer 8+, Firefox 13+, Safari 5.1+ and
Google Chrome 19+

• Tutorial section - Help texts will be available on the site, but a in-depth
tutorial showing functionalities will not be created

1.4 Thesis description

This master thesis will initially incorporate an investigation to determine
what functionalities the employees at QRTECH request. Interviews with
individual employees and group discussions involving employees possessing
useful expertise will be performed to determine the actual needs. Ideas of
functionality, which goes beyond our work, will be taken into account as
future development possibilities. It is therefore, of great importance that
this master thesis work is not detrimental to future development.

An ER-diagram (Entity Relationship), describing the database struc-
ture, will be developed to receive an overview of the database and verify
its functionalities. The choice of DBMS will be determined by studying
literature before any SQL-code is written.

Sketches specifying the design and functionality of the user interface are
to be established. Programming languages and access methods, of various
types, will be evaluated. The web interface should be accessible via the
internal network at QRTECH and be able to run in standard browsers.

The software development will begin by implementing the basic functions
log-in, search and profile page. Additional functionality will be implemented
as the basic functionality is completed. Improved layout, design and remain-
ing software refinements are handled at the end of the time frame for the
project.

Our master thesis work will continuously be documented throughout
the project.

Thesis objectives

1. Collection / identification of relevant data to be stored

2. Creation of a data model for the database

3. Selection of development chain (programming languages, database
access mechanism)

4. Selection of SQL relational database

5. Design of software

6. Implementation of the database and access functions

7. Development of an user interface to search for knowledge

8. Documentation and presentation of the work

2 THEORY 3

2 Theory

This section explains the theory behind techniques and tools used in the Mas-
ter thesis.

2.1 Databases

A database consists of tables, also called relations, making it possible to
store information. Databases are frequently used within corporations and
organizations to store valuable data e.g. registering orders placed by cos-
tumers.

A database is controlled by a DBMS (Database Management System),
making the database efficient. The DBMS makes it possible to create and
manage large amounts of information as well as monitoring the data, in order
to keep information consistent over time. DBMS are by many considered to
be one of the most complex software ever written. (Garcia-Molina, 2009)

2.1.1 Tables and Relations

In databases a two-dimensional table is called a relation. The relation
Movies, see Table 1, consists of the attributes Length, Year, Title and Genre.
The attributes describe the properties of the relation Movies. For example,
the attribute Year contains the year when a certain film was produced. A
relation can contain multiple rows where each row corresponds to a specific
film, e.g. Braveheart or Pulp fiction.

Title Year Length Genre

Braveheart 1995 177 Action

Pulp fiction 1994 154 Thriller

Table 1: Example of a relation containing Movies

Relations can have various constraints where the most fundamental one
is the key constraint. A key is a set of attributes which uniquely identifies a
row in a relation. For instance, the relation Movies can have a key attribute
combination of Title and Year. The assumption is that two movies with the
same title will not be produced in the same year. If the assumption holds,
then the title and the year a movie was produced is enough to identify a
specific movie.

The relation in Table 2 has the attributes Name, Address, Gender and
Date of birth where the name of the movie star is the key. The two relations
Movies and MovieStar can be connected by combining their individual keys,
see Table 3. By introducing a combined relation, a movie can be said to
have many movie stars and likewise a movie star can take part in several
films. Garcia-Molina (2009)

2 THEORY 4

Name Address Gender Date of birth

Mel Gibson Chelsea road Male 1956-01-03

John Travolta Hollywood road Male 1954-02-18

Table 2: Example of a relation containing Moviestars

Title Year Name

Braveheart 1995 Mel Gibson

Braveheart 1995 Sophie Marceau

Pulp fiction 1994 John Travolta

Table 3: Example of a relation containing StarsIn

2.1.2 Views

Tables are stored physically in the database and are persistent. This means,
the information stored in a database is said to be saved for an infinite time, as
long as modifications aren’t performed. Modifications are done by executing
a query* to the database.

Views on the other hand do not physically exist in the database and
contains no data on itself. Views are often called Virtual Views because
these elements don’t exist on their own. By using views, information from
various tables can be combined into a common result. It is possible to query
a view in order to receive a result and, in some sense, to modify views.
(Garcia-Molina, 2009)

2.1.3 DBMS

A DBMS structures data in databases and makes it accessible. There exists
various types of DBMS, for instance Oracle, MySQL and Microsoft Access.
The main features of a DBMS, regardless of which brand, is the following:

• Provide facilities for creating the database structure

– Define the logical structure of the data to be stored
– Define relationships among data

• Provide the ability to insert, modify and delete data

– Form-based or command-line interface

• Provide the ability to receive data

* A query is a question to the database to execute a command

2 THEORY 5

– Support for complex queries using Boolean algebra (AND, OR
and NOT operators)

• Provide methods for restricting access to data

– For instance creating usernames and passwords and assign access
data to the user

DBMS are usually designed for multiple user access, though some sys-
tems are entirely intended to handle single users. Similarly, there exists
DBMS for all sizes of organizations where larger installations are performed
using mainframes. These are often categorized as enterprise edition DBMS
and are expansive pieces of software. (Harrington, 2009)

2.1.4 ER-Diagram

In the initial process of developing a database various options are consid-
ered and changes are rapidly performed. A common method for describing
databases on a higher level is the ER-diagram. An ER-diagram can describe
schemas of databases graphically and visualize the design. However, the di-
agram do not contain any actual data, it is merely a graph. (Garcia-Molina,
2009)

An ER-diagram is a graph consisting of relationships, attributes and
entity sets where each category is represented by various shapes:

• Relationships – Diamond

• Attributes – Oval

• Entity sets – Rectangular

Attributes are connected to entity sets using edges and the same applies
for the connection between relationships and entity sets. Figure 1 illustrates
the possible shapes and the connections enabled by edges in an ER-diagram.
(Garcia-Molina, 2009)

Figure 1: ER-diagram fundamentals

In Figure 1 the entity Project consists of two attributes Company and
Name. Similarly, is the entity Experience constructed with its attribute Ex-
perience ID meanwhile the relationship learned in establishes the connection
between the entities Experience and Project.

2 THEORY 6

2.1.5 Functional dependencies

A functional dependency (FD) on a specified relation R is describes as:
If two tuples of R have all their attributes equal each other A1, A2, ...,

An then they have to agree on the same attributes of another list B1, B2,
..., Bm. The functional dependency can be written as A1, A2, ..., An →
B1, B2, ..., Bm, same as saying A1, A2, ..., An functionality determines B1,
B2, ..., Bm. It can also be interpreted as, ”Given the left side, the right side
can be determined”. (Garcia-Molina, 2009)

2.1.5.1 An applied example

A badly designed relation is displayed in Table 4 and it cannot be created
in the database due to the FDs. To find out what’s wrong with the design,
the FDs are investigated further.

The entity Project has the attributes Company, Name, Start date, End
date and Employee, see Table 4. The key of this relation is the tuple Com-
pany and Name and the functional dependency can be assumed to be:

• Company, Name → Start date, End date

If two rows in a relation have the same values on the attributes Company
and Name, they will also have the same Start date and End date values.
This is illustrated in Table 4 where the first and second row has the exact
same Start date and End date. However, the attribute Employee is not a
functional dependency since the following statement does not hold:

• Company, Name → Employee

Given the attributes Company and Name, a specific Employee can’t be
determined. It is visualized in Table 4, on the first and second row, where
two different employees are connected to the same project. Therefore, the
information about an employee should be placed into a separate table. An
alternative solution is to include the Employee attribute as a key along with
Company and Name, in order to allow projects to include several employees.
(Garcia-Molina, 2009)

Company Name Start date End date Employee

Volvo Engine V70 2012-01-01 2012-02-01 Per Ohldin

Volvo Engine V70 2012-01-01 2012-02-01 Marcus Ek

Saab Gearbox 9.3 2011-02-20 2011-08-20 Marcus Ek

Table 4: Bad design of a database table

2 THEORY 7

2.2 Web development

The World Wide Web was created in year 1989 by Tim Berners-Lee. In late
year 1990 Berners-Lee wrote the first web server and client program with
a browser and an editor. He also wrote the first version of HTML which
became the standardized formatting language for documents on the Web. In
year 1994 Tim Berners-Lee founded W3C at MIT (Massachusetts Institute
of Technology) in the United States and the organization develops standards
for the World Wide Web. (W3C, 2012)

The demand of sophisticated and dynamic web pages has resulted in the
implementation of JavaScript. HTML and JavaScript code can be written in
the same document and interpreted by the web browser. The combination
of HTML and JavaScript makes it possible to modify HTML code in real-
time, enabling development of dynamic web pages. However, JavaScript is
a client side language and cannot by itself receive data from a server. To
implement real-time content on a web page a server sided script is needed
and currently PHP is the most common one used. (Chapman, 2012)

A PHP script can receive requests from a JavaScript and perform tasks,
for example fetch data from an external web server, and return the data to
the JavaScript. The JavaScript inserts the received data into the client’s
HTML-document in order to display the content to the user.

2.2.1 Markup languages

The definition of text, in context of web development, often gets divided into
two categories, unordered structures and ordered structures. An unordered
structure only consists of plain text, while ordered structures includes more
information in addition to the text. The ordered structure of documents
is often split up into two parts, layout and logic. Layout describes visible
parameters (colors, text sizes, margins etc.) while the logical part includes
information regarding sections and references within the document. (Mou-
nia, 2009)

The word markup means to highlight information and give it a context.
In documents, opening and closing tags are used to mark information such as
paragraphs, lists and headers. An opening tag has the formatting <book>
meanwhile the closing tag has the following layout </book>, where the
word book gives the tag a context. Markup languages can be used to convert
unordered text into an ordered. The most commonly used markup languages
are HTML, XHTML and XML and all of the languages follow the W3C
standards. (Mounia, 2009)

2.2.1.1 HTML / XHTML

HTML stands for Hypertext Markup Language and is the basis, on which
all information on the Internet uses to display content. A HTML document

2 THEORY 8

is divided into two parts, a set of instructions and content of information.
The web browser needs the description in order to know how to display
information to the user. (Brooks, 2007)

Extensible Hypertext Markup Language called XHTML is a further de-
velopment of HTML, which combines XML and HTML. XHTML is sup-
ported by W3C and is a replacement for HTML 4.0. (Schwartz, 2000)
XHTML demands a structure which is stricter compared to HTML. The
main reason is to ease the workload and management on the web browsers,
in order to avoiding misinterpretations. (Brooks, 2007)

Layout parameters need to be defined for all elements within a HTML
document which can result in repetitive information. A Cascading Style
Sheet, CSS, can be used to define layout parameters and apply them to
multiple elements. (Schwartz, 2000)

2.2.2 Scripts

2.2.2.1 JavaScript

JavaScript is a script language running on the client side and can be used to
create dynamic web sites. It is a powerful tool and applications like Google
Docs and Google Calendar are built on the script (McPeak, 2010)

By using JavaScript, a static web site environment can be transformed
into an interactive experience. A well written HTML code is not only im-
portant for the structure and presentation of a web page, but also for the
communication with the JavaScript to be successful. (Goodman, 2010)

2.2.2.1.1 JQuery

JQuery is a JavaScript library facilitating the implementation of commonly
used features for today’s web applications. Actions written in JQuery re-
quires less code writing for the developer compared to plain JavaScript.
JQuery can perform basic actions such as event handling but also complex
tasks such as dynamical modifications of web applications using AJAX, see
section 2.2.3. Narayan (2011)

In Figure 2 and 3 two examples are presented, both performing the same
task of reading an external file and inserting the information into a DOM
object.

2 THEORY 9

var xmlhttp;

xmlhttp=new XMLHttpRequest();

xmlhttp.onreadystatechange=function()

{

if (xmlhttp.readyState==4 && xmlhttp.status==200)

{

document.getElementById("demo").innerHTML= \

xmlhttp.responseText;

}

}

xmlhttp.open("GET","text.txt",true);

xmlhttp.send();

Figure 2: Code written in JavaScript
(W3School, 2012)

$("#demo").load(text.txt);

Figure 3: Code written in JavaScript with JQuery included
(JQuery API:Load, 2012)

2.2.2.1.2 JQuery UI

jQuery UI is an open source JavaScript library containing interface compo-
nents and is based on the JQuery library. (Parker, 2011)

The components used in this thesis:

• Autocomplete - Provides suggestions as you type into a field

• Button - Theme support for buttons

• Datepicker - Interactive calendar overlay, simplifies input of a date
into a field

• Dialog - A dialog window overlay, used to create dialogues

• Tabs - Put content into multiple sections and switch between them
using tabs

2 THEORY 10

2.2.2.1.3 DataTables

DataTables is an open-source plug-in for the jQuery Javascript library. It
provides advanced interaction controls of HTML tables. (Jardine, 2011)

Example of key features:

• Variable length pagination

• On-the-fly filtering

• Multi-column sorting

• Support for themes

2.2.2.2 PHP

PHP, an abbreviation for PHP: Hypertext Preprocessor, is an open source
project introduced in year 1995 by Rasmus Lerdorf. (MacInTyre, 2010)

Figure 4: Basic overview showing PHP communication

PHP is a widely-used scripting language suited for web development.
Contrary to JavaScript, PHP runs on the server-side, which requires the
server to support PHP. As a PHP document is requested by a client, the
server searches for embedded PHP sections to execute. As shown in Figure
4, the PHP interpreter can communicate with file systems, databases, and
email servers before delivering a web page to the web server which return it
to the client’s browser.

In Figure 5 is a PHP-request to the server illustrated and the result
returned to the client is visualized in Figure 6. (Welling, 2003)

2 THEORY 11

<body>

<p> <?php echo date("Y-m-d"); ?> </p>

</body>

Figure 5: Code section read by server

In Figure 6, no trace can be seen that the PHP script has been modifying
the HTML code. By using PHP, web sites can become dynamic compared
to a static HTML document. (MacInTyre, 2010)

<body>

<p> 2012-06-21 </p>

</body>

Figure 6: Code section after PHP execution

PHP has support for various types of databases e.g. MySQL, Oracle,
SQLite and MS SQL. The implementation of databases into PHP was re-
leased in year 1996 and currently companies like Facebook and Yahoo! use
the technique. (MacInTyre, 2010)

2.2.3 Method: AJAX

At the beginning of the World Wide Web, updates of a HTML document
were performed by sending a request and reload the entire document upon
response. This caused screens to flicker and unnecessary large amount of
data to be transferred each time a change was made. The AJAX technique
has been able for use since year 1998 and solves this issue. AJAX is an
acronym for Asynchronous JavaScript and XML and is a method used to
send and receive data asynchronously on a web page, without disturbing the
existing page. It has revolutionized the functionality of web applications.
(Holzner, 2008)

AJAX consists of several technologies:

• Presentation using XHTML and CSS

• Dynamic visualization and interaction using DOM

• Data interchange and manipulation using XML and XSLT

2 THEORY 12

• Asynchronous data retrieval using XMLHttpRequest

• JavaScript, binding all into one

The classic way for a user to interact with a web page is to perform an
event, e.g. by clicking a link. A request will be sent to the server which
responds by sending the corresponding HTML page back to the user. In
some cases, it can be appropriate to reload the entire HTML page. However,
it is often not needed and can result in unnecessary large amount of data
being transmitted. By only updating specified parts of the HTML page the
amount of data can be reduced.

Figure 7: Traditional web applications model compared to the Ajax model
(Garret, 2005)

AJAX works as a layer between the user browser and the web server. As a
user interacts with a web page and generates a HTTP request, the JavaScript
sends the appropriate request to the AJAX engine. The AJAX engine can
handle several requests as background transactions making updates of a web
page faster, see Figure 7 and 8. (Garret, 2005)

2 THEORY 13

Figure 8: Synchronous and asynchronous communication (Garret, 2005)

3 METHODOLOGY 14

3 Methodology

The methodology section aims to describe the work flow during the Master
thesis.

Figure 9: Box-diagram showing the working process

3.1 Planning

The planning process involved information gathering regarding the main
components, databases and HTML. Performing tutorials proved to be im-
portant to obtain knowledge about HTML and associated tools e.g. JQuery,
AJAX, XML, XHTML, PHP, CSS and XQuery in order to understand the
possibilities.

To elucidate the functionalities being useful for QRTECH was an ongoing
process and it was carried out in parallel with the information gathering.
Interviews with employees at QRTECH provided useful information for the
process of developing new ideas.

As the functionalities was established a planning report was created. The
report included background, method, objective, delimitations and a Gantt
chart visualizing the project time line, see Appendix D.

3.2 Functionality and Design

In the functionality and design phase, the development of the actual product
began.

The design of the database included development of an ER-diagram and
evaluation of the FDs (Functional Dependencies). The database require-
ments was determined and validated during the specification and testing
steps. Testing implementations permeated the entire project and was con-
tinuously performed. The user experience and human interaction abilities
are important and the software solution has to be intuitively easy to use.

3 METHODOLOGY 15

During the entire project this was constantly kept in mind, in order for the
final web application to be as qualitative as possible.

3.3 Implementation and Verification

The last phase is Implementation and verification and consists of the ele-
ments Functionality corrections, Testing and Layout adjustments. During
this period, the work consisted of testing and debugging in order to correct
errors and adjust settings and layout. By letting employees evaluate the web
application, useful feedback can hopefully be provided in order to improve
the final product.

4 ANALYSIS OF DATABASE STRUCTURE 16

4 Analysis of database structure

This section discuss database ideas, the structure chosen and also present
detailed descriptions on how the most vital parts of the database are con-
structed.

4.1 Choice of DBMS

A minor investigation was performed at the beginning of this thesis to deter-
mine which DBMS was most suitable to utilize for developing the database.
There exists many different DBMS for example MySQL, Oracle and MS
SQL. A vital property in this thesis was to create a complete database so-
lution while still keeping the expenses low. The best solution in this case
was to utilize the open source software MySQL, since it does not require any
license fees.

4.2 Ideas

The objective is to construct a database model which excludes redundancy of
information and facilitates the user experience. In the database development
process the two main ideas Experience tree and Experiences and tags evolved.

4.2.1 Experience tree

The initial approach was to divide experiences into categories, see Figure
10. The strategy of using a tree structure is a top-down approach, meaning
searches will be performed from the top categories stepwise down in the
experience tree in order to find the result.

Figure 10: The structure of Experience tree idea

4 ANALYSIS OF DATABASE STRUCTURE 17

4.2.1.1 Inserting data

Employees at QRTECH could insert information into the tree by add new
categories. A category could work as an experience by itself but also as a
branch, containing one or more child-experiences, enabling the experience
tree to grow over time.

4.2.1.2 Search

The search operations could be performed on the entire database or on
specific categories. The user could restrict in which categories the search
would be executed within by using scroll lists consisting of the categories
available in the experience tree. A search field enables users to request
information from the database.

4.2.1.3 Advantages

• Intuitively easy to understand

• Good database performance when searches are performed

4.2.1.4 Disadvantages

• Users have subjective opinions regarding where a certain experience
should be placed in the tree. This could make it hard to categorize
experiences uniformly and the same experience can exist at multiple
places in the tree

• Inserting an experience requires the user to put additional time and
effort to plan where the experience should be positioned in the tree,
creating a reduced user experience

• High redundancy in the database

4.2.2 Experiences and tags

A concept to not categorize experiences emerged, confronting the problem
from a different angle. By using keywords called tags to describe experiences,
the idea Experiences and tags manages to avoid categorization.

Instead of using a top-down approach, the Experiences and tags idea uti-
lizes the reversed approach bottom-up. This means, employees at QRTECH
register an experience and uses tags to describe it, see Figure 11. Expe-
riences are detailed information, since the approach is bottom-up, whereas
tags can range from being general to detailed data.

4 ANALYSIS OF DATABASE STRUCTURE 18

Figure 11: The structure of Experience and tags idea

4.2.2.1 Inserting data

An experience could be registered into the database e.g. FLEX-RAY in
Figure 11. The mandatory parts of an experience are the name of the
experience, start-date and end-date. The two dates are an important in order
to create a time span which is used to define the weight of the experience as
a search for experiences is performed.

Tags and projects are optional and can be applied to the experience in
order to create a context for the experience. An experience can have zero
or an infinitely number of tags depending on how well the user wants to
describe it.

4.2.2.2 Search

By connecting several tags when inserting experiences, employees contribute
to create an environment where colleagues with the requested knowledge
easily can be found. Adding many tags increase the possibility to appear on
the ranking board as searches are performed in the database.

4.2.2.3 Advantages

• Easy to describe an experience by connecting tags

• Improved user experience by avoiding categorization

• Low redundancy

4 ANALYSIS OF DATABASE STRUCTURE 19

4.2.2.4 Disadvantages

• The approach down-up can be complicated in the beginning for users
to grasp

• Lower database performance, due to the data mining approach and
the increased amount of data it needs to process

4.3 Choice of database structure

The Experiences and tags idea was chosen to be the database structure. The
main reason was the dynamical approach to define an experience. By letting
users connect tags to an experience, complex experiences could be inserted
which otherwise would be hard, or even impossible, to categorize when using
the Experience tree approach. An additional reason was the low redundancy
of information in the database.

4.4 Database design

This section aims to describe the most vital parts of the database by using
ER-diagrams, see Figure 12. An ER-diagram visualizing the entire database
structure can be viewed in Appendix B.

4.4.1 ER-Diagram

In the following section, the database design in Figure 12 will be described.

Figure 12: ER-diagram describing the most vital relations in the database

The core relationship of the database is the one between the tables Ex-
perience and Employee since it gives an experience a context meaning who

4 ANALYSIS OF DATABASE STRUCTURE 20

obtained this experience. By using the Experience relation, data regarding
projects and tags can be associated with an experience and thereby also an
employee.

4.4.1.1 Employee

The relation Employee consists of the attributes First name, Last name,
Username, Password, Phone number, Street, Post code, Street number, City,
Title, E-mail, Age, Country, Date of employment, Description, Active and
Picture, see Figure 12. All personnel related information will be stored
in this relation. An employee is uniquely identified by its key attribute,
Username, needed in order to log-in to the web site.

4.4.1.2 Has learned

The table Employee is connected to the table Experience via the relation
has learned, see Figure 13. The two tables are connected by a many-to-
one relation, meaning an employee can be attached to several experiences
meanwhile an experience can only be associated with exactly one employee.
If an experience ID is known, the information regarding the employee who
obtained it is also known. The underlying concept of the database structure
is to view each experience as unique, meaning it has to be obtained by
exactly one employee.

Figure 13: ER-diagram on the relation has learned

The relation has learned consists of the key attributes of the tables Em-
ployee and Experience, see Table 5. It illustrates users with specific expe-
riences and enables the connection between the two tables Employee and
Experience.

Experience ID Username

1 Andohl

2 Marwel

3 Andohl

Table 5: Example on the relation has learned

4 ANALYSIS OF DATABASE STRUCTURE 21

4.4.1.3 Experience

The relation Experience consists of the attributes Experience ID, Experience
name, Degree, Start date and End date and Employee username, visualized
in Figure 14. Experience ID represents the key and is an auto-incremental
integer. The attribute continuously increase the integer as new experiences
are inserted into the relation making each experience unique.

Figure 14: ER-diagram on the relation Experience

4.4.1.4 Ex has tags

The tables Experience and Tags are connected via the relation ex has tags
using a many-to-many relationship, see Figure 15.

Figure 15: ER-diagram on the relation ex has tags

Table 6 illustrates the relation ex has tags with example data. The re-
lation consists of tuples with the keys Experience ID and Tags, where none
of the tuples are equal.

Tags Experience ID

Math 1

Simulink 2

MySQL 3

Table 6: Example on the relation ex has tags

4 ANALYSIS OF DATABASE STRUCTURE 22

4.4.1.5 Tags

The table Tags only consist of one attribute which defines the tag name and
it is also the key of this relation.

4.4.1.6 Learned in

The relation learned in establishes a connection between the tables Experi-
ence and Project by creating a table consisting of the keys Experience ID,
Company and Name. The connection is a many-to-many relationship and
Table 7 displays the structure of the relation learned in.

Figure 16: ER-diagram on the relation learned in

Company Name Experience ID

Volvo Engine V70 1

Saab Gearbox 9.3 2

Volvo Gearbox S60 3

Table 7: Example on the relation learned in

4.4.1.7 Project

Project is a table consisting of the attributes Company, Name, Start date
and End date where Company and Name together represent the key in the
relation.

Figure 17: ER-diagram on the relation Project

5 WEB SITE IMPLEMENTATION 23

5 Web site implementation

This section aims to describe the functionality, development and implemen-
tation of the web site.

5.1 Choice of server script language

A server-sided script was necessary in order to establish connections between
the web site and the database. Today, several solutions exist on the market
such as PHP, ASP and Python. The choice was determined to be PHP since
it is open source and free to use. Additionally, PHP is used by enterprises
like Yahoo! and Facebook which demonstrates that it is widely utilized.

5.2 Overview

The overview chapter demonstrates the web site structure, how communica-
tions are performed between the web site and database using PHP and the
overall functionality.

5.2.1 Structure

The web site consists of fourteen html-files and two php-files. The html-files
are stand alone solutions, each designed for one specific task. By import-
ing these solutions into the file, index.php, the functionality is joined and
combined into one unit, see Figure 18.

Figure 18: Overview showing all html-files included to build index.php

5.2.2 Database queries

To ease the maintenance, all queries from the web site to the MySQL
database are handled by one php-file named PHPQuery.php, see Figure 19.
Requests sent to PHPQuery.php consists of the necessary variables and a
String, defining which function to execute. For example, as a user attempts
to login, index.php includes the entered username and password together
with the string ”check login” as variables. ”check login” is in this given

5 WEB SITE IMPLEMENTATION 24

case the function string. PHPQuery.php performs the query on the mySQL
database and take action depending on the result it receives. In this particu-
lar case, the action is to return true if the username-password combination
exists in the database, otherwise return false to index.php.

Figure 19: Overview showing how PHPQuery.php handles web site/database
communication

5.3 In-depth description

This chapter describes the web site features more thoroughly, see Figure 20
to view the web site layout.

5.3.1 Navigation

Navigation buttons are displayed on the top of the web site, see Figure
20. The Search button, Figure 21a, is always available for users and is not
affected by the status of being logged in or not. The Profile button, Figure
21b, is merely available as a user is logged in and enables the employees to
view and edit personal experiences and information. The button is blurred
in order to visualize that the feature is disabled to users not being logged in,
demonstrated in Figure 20. The navigation bar also consists of the Admin
button, see Figure 21c, merely visible to users logged in as administrator.
Main reason for not displaying it until a user logs in as administrator is to
avoid confusion.

5.3.2 Search

As the navigation button Search is clicked, see Figure 21a, the user will be
presented a page consisting of the two tabs Experiences and Projects.

5.3.2.1 Experiences

The purpose of the experience search feature is to enable employees to find
colleagues possessing the knowledge requested. In Figure 22 the experience
search view is visualized and it consists of the following features:

• Help button - show/hide information regarding the search syntax

• Search field - keywords are entered here to perform searches

• Data table - contains all persons matching the entered keywords

5 WEB SITE IMPLEMENTATION 25

Figure 20: Screen-shot from the Experience database web interface. Cur-
rently showing the project search tab

Figure 21: Navigation buttons

Searching for experience is achieved by typing keywords into the search
field. To improve the user experience, an Autocomplete function is continu-
ously giving the user suggestions from the database as he/she types into the
search field. Multiple searches on experiences can be performed by separat-
ing words with a comma token. The following four operands can be used to

5 WEB SITE IMPLEMENTATION 26

Figure 22: Search on experiences to find employees

constrain the search further:

• & = AND syntax: Math, &Simulink

• ! = NOT syntax: Math, !Simulink

• - = MINUS syntax: Math, -Simulink

The result from a search consists of the employee name, email, phone
number and score. The score is based on the total number of days the
employee has been working with the experience requested.

The user has the ability to click on a row to trigger a dialogue display-
ing additional information about the specific user. The triggered dialogue
contains contact information and experiences associated with the user, see
Figure 23.

The flowchart in Figure 24 is used to illustrate the experience search
algorithm used in the Experience database. The search process is initialized
when the user enter a character in the search field. Instead of performing the
actual search directly, a timer is started and waits 200ms before performing
the search. If an additional character is entered in the search field the timer
resets itself. This reduces the number of calls to database when the user is
writing and the delay is barely noticeable to the user.

What Perform search, showed in Figure 24, is doing in detail is to:

1. Take the characters written in the search field and separate into
words, based on comma (,) placement

2. Place each word into one of the four categories OR, AND, NOT
or MINUS based on the prefix the word has. (“nothing”, “&”, “!”or“-”)

5 WEB SITE IMPLEMENTATION 27

Figure 23: Specific employee information view

3. Send the categorized words to PHPQuery.php, which constructs a
MySQL query and executes it on the database.

4. When the result is recieved from the server, PHPQuery formats the
data so the JavaScript easily can insert it into a data table

5. PHPQuery sends the formatted data to the JavaScript

5.3.2.2 Projects

All projects performed at QRTECH are inserted into a data table on which
searches can be executed. The data table presents the information in a list
where each row consists of a composition of the company name and the
actual project name, see Figure 20.

The data table shown in Figure 20 has an additional column, not visible
to the user. The column consists of a paired list of all the expereince names
and tags connected to the project together with the firstname, lastname,
email and username of the users that have registered at least one experience
to the specific project. An example of how the hidden column can look like is
illustrated in Figure 25. The mechanism behind a project search is a string
compare between the words entered in the search field and the keywords in
the hidden column; If a project does not have the keywords entered, it is
filtered out and immediately removed from the list.

Each row in the data table is clickable enabling the web site to display
a dialogue with additional project information, see Figure 26.

At the top of the dialogue a header displays the unique combination of
the company name and the project name. Additional information is added
underneath such as start and end date, a description and two tables con-
sisting of tags and employees associated with the specified project. The

5 WEB SITE IMPLEMENTATION 28

Figure 24: Flowchart illustrating the search algorithm used for experience
search

tag table display tags associated with the project and how frequently these
occur. The employee table presents essential data about the employees in-
volved in the project. As a row in the employee table is clicked a dialogue
is triggered, displaying profile information regarding the specific user. This
function is equal the event in section 5.3.2.1, where contact information and
experiences of a unique user can be viewed, see Figure 23.

The Edit project button enables logged in users to edit project infor-
mation, see Figure 27. The attributes Project company and Project name
are keys in the database, meaning the combination of the two attributes
has to be unique. Therefore, validating the new project combination is nec-
essary since updates otherwise wouldn’t be accepted by the database. In

Figure 25: Showing a part of the project search view. This Figure is specially
made for the report and the Tags-column is normally not visible. (referred
to as hidden column in the report)

5 WEB SITE IMPLEMENTATION 29

Figure 26: Project information dialogue

case, an issue occurs an error dialogue is displayed to the user explaining
the situation.

Figure 27: Update project information view

5.3.3 Profile

5.3.3.1 Create account

New visitors at the web site, employed by QRTECH, have the ability to
register a personal account. As the button Create user is clicked, see the
top right corner in Figure 20, a dialogue appears, see Figure 28. By filling
out the form and pressing Create account a request is sent to the database
to create the account. Validation of the form information is performed and
the input data needs to be configured according to the following rules in
order to be accepted:

5 WEB SITE IMPLEMENTATION 30

• First and last name can only consist of letters, spaces and dashes

• The entered strings in the two password fields has to be equal

• The email need to have the syntax of an email and be unique in the
database since will also be the username for the new user

The user will automatically be logged in as a new account have been
registered and approved.

Figure 28: Create user dialogue

5.3.3.2 Login

As a user tries to login a request is sent to the database to validate the
username and password entered and the database returns either 0 or 1.

• Returns 0 – Access denied

• Returns 1 – Access granted

Entering the incorrect information will trigger the web site to display an
error dialogue. However, if access is granted, the username and password is
stored as a cookie and will be automatically filled in next time the user visits
the web site. Enable blurred or hidden buttons and change the current view
will be performed as the user logs in. A user will be navigated to its profile
page meanwhile the administrator will be presented the administrator page.

5.3.3.3 Profile page

This view is presented to the user as he/she clicks the Profile navigation
button, see Figure 21b, and enables users to view their profile page and
experiences. Notice, the user has to be logged in to be able to utilize these
functions.

5 WEB SITE IMPLEMENTATION 31

An employee has the possibility to change the attributes first name, last
name, date of employment, street, post code, street number, city, country,
password, title, age and email. This is done by pressing the edit button. A
dialogue will then appear with fields containing the current values of each
attribute. The user has the possibility to change and save the attributes.

5.3.3.4 Personal Experiences

The Experience tab, presented in Figure 29, visualize all personal experi-
ences associated with a given user. The list of experiences provide infor-
mation regarding ID number, name, start- and end date, tags and projects
associated with each given experience.

The search field can be used to filter the displayed experiences depending
on keywords entered. The filter mechanism updates the data table continu-
ously as the user types on the keyboard.

Figure 29: All personal experiences view

The button Add experience, in Figure 29, makes it possible for users to
add new experiences by entering data into a dialogue. The dialogue has
the similar appearance as the Update experience dialogue, see Figure 30.
However, the difference is that the input fields are empty and the Update
button is exchanged to an Add button.

Users can edit registered experiences by clicking the corresponding row
in the data table. A dialogue is then displayed, see Figure 30, containing
input fields with experience information gathered from the database. The

5 WEB SITE IMPLEMENTATION 32

following attributes are editable:

• Experience name - As the experience name is entered, suggestions of
commonly used tags will be automatically updated and presented. The
field has Auto-complete functionality.

• Start/End date - Define the time frame for the experience. The times-
pan between the two dates is used in the algorithm when searching
for experiences. When the input field is clicked a calendar will appear
making it simple for the user to insert a date.

• Intensity - This attribute defines the workload. It is selected from a
scroll list, where low means 10 hours per week, medium 20 hours per
week and high 40 hours per week.

• Projects - An experience can be connected to one or more projects
by making selections from a scroll list containing all projects in the
database. All users can create a new project by clicking the button
Add new project.

• Tags - Multiple tags can be added to the experience by writing the tag
name into the Tag field and press enter.

As the information in the dialogue is inserted the user clicks the update
button to save it. The delete button removes the experience and all it’s
connections to projects and tags.

Figure 30: Update experience information view

5 WEB SITE IMPLEMENTATION 33

5.3.4 Administration

As an user is logged in as administrator the Admin button, see Figure 21c,
will be visible. The administrator section consists of the four tabs Experi-
ence, Tag, Project and Activate, see Figure 31.

Figure 31: Administrator view

5.3.4.1 Experience, Tag and Project

The main idea with the administrator experience, tag and project features
is to provide the ability to edit and populate the experience database with
suggestions. The database will initially be empty and the Autocomplete
functionality will therefore not be able to give the users any guidance when
entering information. This makes it harder for the users to use common
language when performing various actions, for instance searching or adding
experiences. To preprocess the database and solve the issues, three new
tables were created in the database for administrator use only. This enables
the administrator to create fictional experience, tags and projects, which
will become real when the first user uses them. The administrator can then
give the users suggestions, even though the database is empty, and thereby
reduce redundancy.

Apart from the ability to add and remove fictional experiences, tags and
projects the administrator account make it possible to perform changes on

5 WEB SITE IMPLEMENTATION 34

experience-, tag- and project names. These changes are updated on all its
connections. For example, changing the tag name Electrical to Electronics
will trigger the database to cascade updates on all elements having the tag
Electrical. If the name is changed to a already existing name i the database,
they get merged into one.

5.3.4.2 Activate/Deactivate employees

As a new user creates an account at the web site, the person is by default
set to active in the database. Active is an attribute which each employee
has and it is either 1 or 0 depending on if the employee is currently working
at QRTECH or not.

The activate/deactivate functionality enables the administrator to view
the employees currently working at QRTECH and former employed person-
nel. The administrator also has the authority to change the current status
of employees between the two states active or inactive. Inactivated employ-
ees are not included as searches for experience are performed. However, the
experiences gained by former employees are still stored in the database to
data mine info about projects and in case persons return to QRTECH in the
future. Their experiences and tags are also utilized by the system to give
current employees suggestions and guidance regarding existing information
in the database.

6 PERFORMANCE EVALUATION 35

6 Performance evaluation

Section 6.1 and 6.2 describes how the tests were performed on the experience
database in order to evaluate the performance.

6.1 Collecting data

This section explains how information was gathered by logging actions per-
formed by users on the web site. The two types of logging implemented are
Query time logging and Usage logging.

6.1.1 Query time logging

By registering information such as query time the performance of the
database queries can be investigated. An example of how a part of the
Query time log can look like is visualized in Table 8.

Each row in the Query time log consists of four attributes:

• Id - Uniquely identifies each row in the log

• Date - When was the call made (date and time)

• Query time - The time it took for the database to execute the query
and receive the result

• Function - Which PHP-function were called

Id Date Query time [ms] Function

...
8492 2012-06-25 09:13 5.51915 insert project
8493 2012-06-25 09:14 6.10995 Delete admin experience
8494 2012-06-25 09:14 7.66993 Insert admin new expe
8495 2012-06-25 09:18 5.79405 delete experience
8496 2012-06-25 09:25 7.49493 Insert admin new tag

...

Table 8: Example of rows from the Query time log.

6.1.2 Usage logging

The Usage logging gives a overview what actions are performed, which func-
tionalities are used and who is using them. Table 9 is giving an example of
how some rows in the Usage log can look like. The information gathered

6 PERFORMANCE EVALUATION 36

can be used later to analyse which users are most active and what parts of
the web interface users tend to use most.

Each row in the usage log consists of four attributes:

• Id - Uniquely identifies each row in the log

• Date - When was the call made (date and time)

• Username - Who, which user, made the call

• Message - Describing in text what the call lead to

Id Date Username Message

...
1304 2012-06-15 15:35:44 anna-lena@qrtech.se created an account
1305 2012-06-15 15:35:44 anna-lena@qrtech.se logged in
1306 2012-06-15 15:38:11 anna-lena@qrtech.se updated the profile
1307 2012-06-15 15:51:17 admin logged in
1308 2012-06-15 15:51:58 admin created a tag

...

Table 9: Example of rows from the Usage log.

6.2 Average query time test

To be able to test and validate the database performance, two scripts were
developed.

The first script enables the developer to create employees and all as-
sociated connections. A developer can determine how many employees to
create and the number of experiences each will have. The number of tags
and projects connected to each employee can also be specified.

The second script calls functions, presented in Appendix C, one-by-one
and can be used to simulate traffic on the web server. This test utilizes both
scripts.

The test is performed by evaluating how different numbers of employees
and experiences affect the response time from the server depending on which
function is used. Three different number of employees will be tested, 100,
200 and 400. The number of experiences associated with each employee is
changed between 50, 100 and 200. All of the nine possible combinations
will be tested and evaluated. The following parameters will be connected to
each employee and have a constant value:

• 5 tags / experience

6 PERFORMANCE EVALUATION 37

• 1 project / experience

• 40 projects and 66 tags available in the database

The Figures 32, 33 and 34 display the average time it took for the PHP-
function to request and receive information from the database. Each func-
tion has been executed and logged at least 20 times to get a more precise
average value. A time out was set to 30 seconds, meaning the request will
be halted if the limit is exceeded. The time out only works as a upper-limit
when testing; Calls to the database should be completed well below the time
frame of 30 seconds to be acceptable. However, it indicates evidently which
functions having performance issues as the experience database becomes
larger.

For example, in the first test the number of experiences per employee
was set to a constant value of 50. The first script added 100 employees,
each with 50 experiences, and afterwards the second script was executed to
generate function calls to the database. The query in Appendix C.3 was
utilized to calculate the average values of each function.

This procedure was repeated nine times and the results are published in
the Figures 32, 33 and 34.

Figure 32: Performance test with 50 experiences/employee

6 PERFORMANCE EVALUATION 38

Figure 33: Performance test with 100 experiences/employee

Figure 34: Performance test with 200 experiences/employee

6.2.1 Outcome

The four functions with the longest query times were:

• dt specific proj employees - Requests information regarding all em-
ployees associated with a given project

• dt get project and tags– Lists all projects in a data table and all
experiences, tags, usernames, emails, first and last names connected
to each of them.

• dt specific proj tags – Requests all tags connected to a given project
including calculating how frequently each unique tag is connected to
the given project

• JSON Expe datatable – Requests data regarding all experiences and
its connected projects and tags for a certain user

To view the complete results for all functions from the tests, see Ap-
pendix C, where all query times are presented. By studying the outcome of

6 PERFORMANCE EVALUATION 39

the performance tests presented in Figures 32, 33 and 34 it could be deter-
mined that all four functions have performance issues when the number of
employees and experiences were increased in the database.

6.2.2 Improvements

By analysing the functions optimizations was implemented and the results
are visualized in Figure 35 and Table 10.

After the optimizations, the worst case scenario with 400 employees and
200 experiences/employee was executed again in order to evaluate the im-
provements. From the results it was found that all four of the former queries
had been enormously improved. The results are as follows:

• dt get project and tags 30+ seconds → 16,40 seconds

• dt specific proj employees 30+ seconds → 0,085 seconds

• JSON Expe datatable 18,66 seconds → 0,020 seconds

• dt specific proj tags 17,72 seconds → 0,048 seconds

Figure 35: Performance test with 200 experiences/employee (After optimiza-
tions)

Function (200 exp/empl.) 100 empl. 200 empl. 400 empl.

dt specific proj tags 14,53 25,35 47,8
JSON Expe datatable 19,83 20,16 19,85

dt get project and tags 2582,7 5409,14 16416,6
dt specific proj employees 20,99 41,85 85,14

Table 10: The four queries with longest query time after optimization (Re-
sult in ms)

6 PERFORMANCE EVALUATION 40

The improvements of the queries have made the web site faster. By using
the test scripts the problem-filled areas could be detected and issues handled.
The results from this test shows that it is worth considering developing even
more sophisticated test environments to get improved analysis and make
furthermore optimizations.

7 RESULTS 41

7 Results

The final Experience database consists of a web interface and a MySQL
database.

The web interface provides three states in which a user can be in: Not
logged in, Logged in as user and Logged in as admin. Users have access
to different functionalities depending on the state, see Table 11. The table
illustrates all the features that the website provides.

It exists functionalities in the database which aren’t yet implemented in
the web interface. An entire representation of the database structure can be
seen in Appendix B.

Function
Not

logged in
Logged in

as user
Logged in
as admin

Create user x

Search for employee/project x x x

View employee information x x x

View project information x x x

Add/Edit projects x x

Edit own profile x x

Add/Edit/Remove own experiences x x

Add/Edit/Remove admin tag x

Add/Edit/Remove admin experience x

Add/Remove admin project x

Activate/Deactivate employees x

Table 11: Web site functionalities where ”x” marks which feature is available

The web site supports the browsers Internet Explorer 9+, Firefox 13+,
Safari 5.1+ and Google Chrome 19+. The absence of full support for In-
ternet Explorer 8.0 is the main flaw but it can be avoided by using newer
browser versions. The application is also adjusted to work on Smart phones.

At the end of this thesis test scripts were developed to evaluate the
performance of the database queries made by the website. The results in-
dicated that several of the queries had performance issues which had to be
addressed. All problematic queries have been handled with only one excep-
tion. The performance of the problematic query was improved but is still not
satisfactory. To improve it further structural changes needs to be performed
and it wasn´t implemented due to the time limitation of this thesis.

8 DISCUSSION 42

8 Discussion

Developing a database structure which fulfilled all pre-defined requirements
was proven to be harder than expected. One of the difficulties was to define
what an experience is in order to enter and store it properly in the database.
Our initial work with the Experience tree model, see section 4.2.1, was not
satisfactory since the model made it difficult for users to categorize experi-
ences. The transition to the Experiences and tags model, see section 4.2.2,
was successful and it met all the requirements. By implementing tags the
experiences could be defined dynamically, in comparison to the approach
of categorizing experiences, and it also facilitated the data mining process.
Additionally, tags decreased the redundancy of information in the database,
making it more efficient.

Various strategies were applied during the development of the web site.
Several iterations were performed until the final structure was established.
Continuous iterations were necessary due to new ideas or approaches to
implement functionalities. Minor mistakes were initially made regarding
the development of HTML and JavaScript but since improvements were
constantly implemented, most of the problems were solved.

Unfortunately, one problem that was not completely solved was full sup-
port for Internet Explorer 8.0. Installation of a newer version of Internet
Explorer is currently not possible since QRTECH mainly utilize Windows
XP as operating system which does not have support for a higher version
than 8.0. Throughout this thesis, the main issues regarding web browsers
were mainly perceived to be associated with Internet Explorer. However,
no severe errors were detected in Internet Explorer 9.0, Chrome, Firefox or
Safari as the web site was displayed.

The development of the web site was initially performed in smaller sep-
arate segments which all were standalone solutions presenting a part of the
web interface. However, the need of a SVN (Subversion) service emerged
later on as the different parts were to be combined into one solution.

The testing phase, which was performed late in this project, proved to
be more interesting then we initially thought. The test utilized developed
PHP-scripts to simulate users by making database calls through the web
site. It supplied us with useful information indicating problematic areas in
need of improvement which otherwise would not be located, see section 6.
The web interfaces has not yet been put into operation at QRTECH and
the Usage logging, see section 6.1.2, can’t yet provide any useful results.
However, over time the logging will indicate areas of the web page being
used and which users are most active.

9 CONCLUSIONS 43

9 Conclusions

The database and web interface provides a satisfactory solution for perform-
ing the wanted functionality and is not detrimental to future implementa-
tions. Employees at QRTECH have been involved in the evaluation of the
user interface to establish a qualitative product. The user experience can
still be improved by making the layout more intuitive using pictures and
additional help texts.

The query optimizations made at the end of the project, see section 6,
proved to have a huge impact on the user experience, making the web site
more responsive. Further optimizations can be performed but due to the
project’s time limitation these are to be considered as future improvements.

10 FUTURE DEVELOPMENT 44

10 Future development

The objective of this section is to highlight features to improve.

• Error codes – As attempts are performed to insert inaccurate data
into the database it returns an error code. All error codes aren’t
intuitively easy to understand, making it an area of improvement since
the system should suit all employees at QRTECH regardless profession.

• Security

– MySQL injections – Issues regarding MySQL injections can be
investigated further in order to evaluate the safety of the experi-
ence database web site. A possible improvement is to implement
the PHP function mysql real escape string() before querying the
database. The function replaces backslashes with other tokens
for example to prevent deletions of an entire database. However,
additional approaches need to be evaluated to find the most suit-
able solution.

– MySQL transactions – The ability to perform an synchronized
operation when executing several queries in a sequence can be
improved by using the commands BEGIN, COMMIT and ROLL-
BACK.

– Password encryption – User account passwords are stored as
readable text in the database. It is preferable to add some sort
of encryption.

• Layout – By investigating current research on layout of documents
and web sites adjustments to fonts, text-sizes, colors etc. can be
implemented to improve the user experience.

• Add reference attribute – During this thesis it was discussed to
implement a new attribute to the Experience table called Reference.
A reference can be the location of a document, a link to web site,
simply plain text. The idea is to enable employees to share references
to documentation regarding the specified experience.

• Help texts – The web site utilizes help texts to guide the user but
improvements can always be performed on this area to increase the
quality.

• Tutorial – Users should have the ability to view a presentation
explaining the web site functionalities. The suggestions discussed
during this thesis on how to present the information were to either do
a video tutorial or a slide-show with pictures.

• Unused database features – The database is constructed for additional
features beyond the implementations performed in this thesis.

10 FUTURE DEVELOPMENT 45

– Product table – The product table was at first thought of
enabling users to add a connection between a project and a
product. Several projects could for instance have contributed to
finalize a specific product.

– Addtional employee email, phone number and address – These
three tables exist in the database with the objective to give
users the ability to add additional emails, phone numbers and
addresses. Currently users can merely have one email, phone
number and address using the attributes on the table Employee.

– Wanted Experience – The database include a table called Wanted
Experience and it is similar to the table Experience. The idea is
to allow employees to enter desired experiences to obtain in the
future. A connection between projects and a wanted experience
is not necessary since it’s simply a request for future skills.
However, the wanted experience can still have tags describing
the desired experience. Enabling a wanted experience feature
and making it visual to colleagues can be useful when assigning
personnel to tasks or projects.

– CV tag – Suggestions have been proposed by employees at
QRTECH to prepare the database for future implementations of
a CV functionality. A CV at QRTECH consists of seven areas of
competence e.g. operating system, programming language etc.
By enabling the database to connect a CV tag to an experience,
the conditions to begin to implement the CV feature are met.

• Diagrams – The JavaScript library JSChart can be utilized to
generate various types of diagrams and charts making it possible to
display statistics in a graphical way.

• Log data – Improved data logging can be used for error checking and
to locate problematic areas.

• Testing environment – An improved testing environment with a
graphical user interface would make it easier to regularly perform
tests on the web interface and database.

• Search algorithm

– Experience intensity – Each experience has an attribute called
Intensity. The objective is to use the attribute in the experience
search algorithm to adjust the scores, e.g. score = number of
days × intensity. This will make the scores from the rankings
accurate since both the working pace and time is considered.

– Search logic – Currently the operands OR, AND, NOT and
MINUS can be used to configure search strings. However, NOT
and MINUS can be considered as superfluous since employees use

10 FUTURE DEVELOPMENT 46

the web site to locate colleagues possessing experiences instead
of the opposite.

– Search optimization – The search algorithm can be optimized to
increase the search performance.

11 References

References

Brooks, D. R. (2007), An introduction to HTML and JavaScript for Scien-
tists and Engineers, 1 edn, Springer Verlag, London.

Chapman, S. (2012), “What is javascript?”, Collected 2012-06-26 . http:

//javascript.about.com/od/reference/p/javascript.htm.

Garcia-Molina, Hector; Ullman, J. D. W. J. (2009), Database Systems The
Complete Book, 2 edn, Pearson Education International.

Garret, J. J. (2005), “Ajax: A new approach to web applica-
tions”, Collected 2012-06-19 . http://www.adaptivepath.com/ideas/

ajax-new-approach-web-applications.

Goodman, Danny; Gustaff Rayl, C. (2010), JavaScript Bible, Wiley.

Harrington, J. L. (2009), Relational Database Design.

Holzner, S. (2008), Ajax Bible, John Wiley and Sons Inc.

Jardine, A. (2011), Collected 2012-07-10 . http://datatables.net.

JQuery API:Load (2012), Collected 2012-07-02 . http://api.jquery.com/
load/.

MacInTyre, P. B. (2010), PHP: The good parts.

McPeak, Jeremy; Wilton, P. (2010), Beginning JavaScript.

Mounia, L. (2009), XML Retrieval.

Narayan, S. (2011), Collected 2012-07-02 .
http://www.codeproject.com/Articles/157446/

What-is-jQuery-and-How-to-Start-using-jQuery.

Parker, R. D. W. T. (2011), Collected 2012-07-10 . http://jqueryui.com/
demos.

Schwartz, M. (2000), “Xhtml”, Computerworld .

W3C (2012), Collected 2012-05-06 . http://www.w3.org/Consortium/

facts#history.

W3School (2012), Collected 2012-07-02 . http://www.w3schools.com/

ajax/tryit.asp?filename=tryajax_first.

Welling, Luke; Thompson, L. (2003), PHP and MySQL Web Developement,
2 edn, Sams Publishing.

47

http://javascript.about.com/od/reference/p/javascript.htm
http://javascript.about.com/od/reference/p/javascript.htm
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://datatables.net
http://api.jquery.com/load/
http://api.jquery.com/load/
http://www.codeproject.com/Articles/157446/What-is-jQuery-and-How-to-Start-using-jQuery
http://www.codeproject.com/Articles/157446/What-is-jQuery-and-How-to-Start-using-jQuery
http://jqueryui.com/demos
http://jqueryui.com/demos
http://www.w3.org/Consortium/facts#history
http://www.w3.org/Consortium/facts#history
http://www.w3schools.com/ajax/tryit.asp?filename=tryajax_first
http://www.w3schools.com/ajax/tryit.asp?filename=tryajax_first

Appendix A: Functional Dependencies

The functional dependencies which were derived during the development
phase in the thesis are described in this section. View 2.1.5 for theory.

Tables written with bold text represent tables containing information about
e.g. an employee. The other tables written without bold text represent
tables containing relational information which connects tables e.g. em-
ployee has additional email. These tables only consist of the keys from each
table it connects. Underlined attributes are key attributes.

Office phone(OFFI ADD phone nr, OFFI ADD type)

office has additional phone(OFFI ADD phone nr, OFFI name)
OFFI name → Office.OFFI name
OFFI ADD phone nr → Office phone.OFFI ADD phone nr

Office email(OFFI ADD email, OFFI ADD type)

office has additional email(OFFI name, OFFI ADD email)
OFFI name → Office.OFFI name
OFFI ADD email → Office email.OFFI ADD email

Office(OFFI name, OFFI phone, OFFI email, OFFI street,
OFFI post code, OFFI country, OFFI city, OFFI street nr)

works in(OFFI name, EMPL username)
EMPL username → Employee.EMPL username
OFFI name → Office.OFFI name

Employee(EMPL username, EMPL first name, EMPL last name,
EMPL date of employment, EMPL phone nr, EMPL street,
EMPL post code, EMPL country, EMPL city, EMPL street nr,
EMPL title, EMPL age, EMPL password, EMPL picture,
EMPL description, EMPL email, EMPL active)

employee has additional email(EMPL ADD email, EMPL username)
EMPL ADD email → Employee email.EMPL ADD email
EMPL username → Employee.EMPL username

Employee email(EMPL ADD email, EMPL ADD type)

employee has additional phone(EMPL ADD phone nr, EMPL username)
EMPL ADD phone nr → Employee phone.EMPL ADD phone nr
EMPL username → Employee.EMPL username

I

Employee phone(EMPL ADD phone nr, EMPL ADD type)

employee has additional address(EMPL ADD street,
EMPL ADD post code, EMPL ADD street nr, EMPL username)
EMPL ADD street, EMPL ADD post code, EMPL ADD street nr →
Employee address.(EMPL ADD street, EMPL ADD post code,
EMPL ADD street nr)
EMPL username → Employee.EMPL username

Employee address(EMPL ADD street, EMPL ADD post code,
EMPL ADD street nr, EMPL ADD city, EMPL ADD type)

performed at(PROJ company, PROJ name, OFFI id)
PROJ company, PROJ name → Project.(PROJ company, PROJ name)
OFFI id → Office.OFFI id

Project(PROJ company, PROJ name, PROJ start date,
PROJ end date, PROJ description)

learned in(PROJ company, PROJ name, EXPE id)
PROJ company, PROJ name → Project.(PROJ company, PROJ name)
EXPE id → Experience.EXPE id

Experience(EXPE id, EXPE name, EXPE start date, EXPE end date,
EXPE degree, EMPL username)
EMPL username → Employee.EMPL username

Wanted Experience(WEXPE id, WEXPE name, WEXPE log time,
EMPL username)
EMPL username → Employee.EMPL username

Product(PROD name)

developed in(PROJ company, PROJ name, PROD name)
PROJ company, PROJ name → Project.(PROJ company, PROJ name)
PROD name → Product(PROD name)

Tags(TAGS name)

product has tags(PROD name, TAGS name)
TAGS name → Tags.TAGS name
PROD name → Product.PROD name

project has tags(PROJ company, PROJ name, TAGS name)
TAGS name → Tags.TAGS name
PROJ company, PROJ name → Product.(PROJ company, PROJ name)

II

wex has tags(WEXPE id, TAGS name)
TAGS name → Tags.TAGS name
WEXPE id → Wanted Experience.WEXPE id

ex has tags(EXPE id, TAGS name)
TAGS name → Tags.TAGS name
EXPE id → Experience.EXPE id

Has CV tag(EXPE id, CV tag name)
EXPE id → Experience.EXPE id
CV tag name → CV tag.CV tag name

CV tag(CV tag name)

Admin experience(EXPE name)

Admin tag(TAGS name)

Admin project(PROJ company, PROJ name, PROJ start date,
PROJ end date, PROJ description)

Log(LOG id, LOG date, LOG querytime, LOG function)

Log msg(LOGM id, LOGM user, LOGM date, LOGM function)

III

Figure 36: The entire ER-diagram

Appendix B: ER-diagram overview

Appendix C: Performance evaluation results

This section demonstrates the results from the performance test performed
regarding the queries to the database. All tests have been performed using a
local web server.

C.1 Before improvements

The test in Table 12 has a constant value of 50 experiences and varies the
number of employees between 100, 200 and 400.

PHP function 100 empl. 200 empl. 400 empl.

Admin active activateORdeactivate 80.46 60.76 73.15
DB update user info 167.61 103.71 130.05
Delete admin experience 126.88 73.37 71.45
Delete admin tag 354.24 120.08 126.57
Insert admin new expe 90.61 92.21 66.01
Insert admin new tag 167.19 124.68 128.78
JSON Admin active employees 2.86 3.90 7.98
JSON Admin add expe 14.01 23.73 62.61
JSON Admin add project 1.92 1.85 1.75
JSON Admin add tag 2.24 2.01 1.73
JSON Expe datatable 559.01 1024.71 3418.85
JSON LOAD user info userinfo 0.87 0.74 0.68
check login 100.83 53.35 71.14
create user check 77.79 71.62 66.15
delete experience 78.31 69.36 65.64
dialog updateexp fill 203.10 278.85 639.75
dt all projects 2.50 2.22 2.13
dt get project and tags 842.34 1401.38 4661.84
dt get tag suggestions 6.87 9.90 25.90
dt specific proj employees 1947.65 4785.09 30000+
dt specific proj tags 296.78 462.76 5412.61
get exp suggestions json 14.99 23.82 63.31
get specific project info 0.99 0.61 0.55
get tag and exp suggestions json 16.18 26.21 67.07
get tag suggestions json 2.10 2.24 2.01
insert experience 91.13 62.75 81.89
insert project 91.29 133.59 67.71
update experience name 94.05 77.89 239.72
update project info 89.61 98.25 250.26
update tag name 75.45 70.90 60.46

Table 12: Entire performance test results with 50 experiences

V

The test in Table 13 has a constant value of 100 experiences and varies the
number of employees between 100, 200 and 400.

PHP function 100 empl. 200 empl. 400 empl.

Admin active activateORdeactivate 66.20 68.00 61.83
DB update user info 124.96 135.64 123.51
Delete admin experience 61.04 71.71 67.47
Delete admin tag 146.81 131.98 126.67
Insert admin new expe 62.15 73.71 65.00
Insert admin new tag 112.88 147.23 123.11
JSON Admin active employees 2.56 4.49 8.11
JSON Admin add expe 26.21 49.17 98.22
JSON Admin add project 1.73 1.77 1.75
JSON Admin add tag 1.74 1.75 1.74
JSON Expe datatable 1042.90 2462.24 5846.52
JSON LOAD user info userinfo 0.68 0.66 0.67
check login 82.16 75.93 73.45
create user check 55.74 66.77 66.86
delete experience 54.59 65.86 61.75
dialog updateexp fill 251.04 461.54 961.58
dt all projects 2.07 2.08 2.08
dt get project and tags 1327.13 3451.45 15566.73
dt get tag suggestions 9.99 18.82 35.98
dt specific proj employees 3895.92 19307.77 30000+
dt specific proj tags 392.72 3765.76 7698.33
get exp suggestions json 26.69 50.34 101.61
get specific project info 0.55 0.58 0.54
get tag and exp suggestions json 25.56 48.66 91.97
get tag suggestions json 2.08 2.00 2.04
insert experience 66.30 81.92 72.38
insert project 52.34 70.29 59.53
update experience name 94.00 115.99 158.05
update project info 93.99 251.59 269.88
update tag name 53.75 68.13 68.43

Table 13: Entire performance test results with 100 experiences

VI

The test in Table 14 has a constant value of 200 experiences and varies the
number of employees between 100, 200 and 400.

PHP function 100 empl. 200 empl. 400 empl.

Admin active activateORdeactivate 70.81 66.12 74.58
DB update user info 139.60 170.10 145.37
Delete admin experience 68.02 69.70 160.56
Delete admin tag 136.43 148.22 163.15
Insert admin new expe 153.92 66.29 64.62
Insert admin new tag 148.78 163.15 135.79
JSON Admin active employees 2.58 4.74 8.05
JSON Admin add expe 51.15 96.96 203.35
JSON Admin add project 1.80 1.77 1.81
JSON Admin add tag 1.77 1.75 1.80
JSON Expe datatable 2720.09 6418.80 18663.32
JSON LOAD user info userinfo 0.67 0.69 0.69
check login 71.88 77.69 96.79
create user check 74.19 66.55 63.54
delete experience 77.04 67.04 71.62
dialog updateexp fill 473.16 1063.01 3823.87
dt all projects 2.13 2.10 2.13
dt get project and tags 3124.25 16016.97 30000+
dt get tag suggestions 18.76 35.43 72.56
dt specific proj employees 17889.71 30000+ 30000+
dt specific proj tags 3868.36 7877.18 17726.46
get exp suggestions json 50.93 98.14 204.01
get specific project info 0.56 0.56 0.56
get tag and exp suggestions json 47.31 93.04 192.20
get tag suggestions json 2.08 2.04 2.10
insert experience 77.47 83.54 83.67
insert project 70.14 67.11 67.37
update experience name 117.23 164.43 263.18
update project info 151.63 266.96 532.65
update tag name 72.27 65.42 71.47

Table 14: Entire performance test results with 200 experiences

VII

C.2 After improvements

The test in Table 15 is performed after changes have been made to the
queries. The results are based on the worst case scenario, 400 employees
each with 200 experiences.

PHP function 100 empl. 200 empl. 400 empl.

Admin active activateORdeactivate 73.21 67.24 84.55
DB update user info 157.45 221.06 142.36
Delete admin experience 75.77 77.90 73.44
Delete admin tag 165.50 155.11 129.72
Insert admin new expe 85.09 72.51 70.25
Insert admin new tag 144.36 128.40 141.72
JSON Admin active employees 2.58 4.53 8.00
JSON Admin add expe 46.26 89.27 178.22
JSON Admin add project 1.95 1.79 1.72
JSON Admin add tag 2.50 1.80 1.72
JSON Expe datatable 19.83 20.16 19.85
JSON LOAD user info userinfo 0.67 0.67 0.68
check login 103.61 65.32 74.61
create user check 76.61 65.11 69.10
delete experience 81.27 71.19 71.02
dialog updateexp fill 1.40 1.43 1.39
dt all projects 2.09 2.09 2.09
dt get project and tags 2582.69 5409.14 16416.57
dt get tag suggestions 19.03 36.19 71.78
dt specific proj employees 20.99 41.85 85.14
dt specific proj tags 14.53 25.35 47.80
get exp suggestions json 47.29 91.12 177.75
get specific project info 0.56 0.55 0.55
get tag and exp suggestions json 49.18 95.01 185.78
get tag suggestions json 2.05 2.37 2.13
insert experience 86.51 94.58 86.15
insert project 80.17 72.87 70.93
update experience name 133.91 179.69 274.67
update project info 176.13 278.70 508.21
update tag name 77.82 65.16 68.55

Table 15: Entire results after optimizations with 200 experiences

VIII

C.3 Query - calculating the average query time

To compute the query times the following query was executed:

SELECT ROUND(AVG(LOG_querytime),2) AS Average_time,

LOG_func, COUNT(*) AS Nr_of_calls

FROM Log

GROUP BY LOG_func

ORDER BY Average_time DESC;

Figure 37: MySQL query used for average query time calculation

IX

Appendix D: Gantt chart

Figure 38: Gantt chart illustrating the project schedule

• Report documentation (stage 1)

– Create ground structure

∗ Headings
∗ Layout

– Continuously write under corresponding header

• Report documentation (stage 2)

– Focus on refining the report

∗ Uniform language and style
∗ Look through references and figures

X

